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ABSTRACT 
 

Scorpion Phylogeography in the North American Aridlands 

by 

Matthew Ryan Graham 

 

Dr. Brett R. Riddle, Examination Committee Co-Chair 
Professor 

University of Nevada, Las Vegas 
 

Dr. Jef R. Jaeger, Examination Committee Co-Chair 
Research Assistant Professor 

University of Nevada, Las Vegas 
 

 Understanding the geographic, geologic, and climatic forces responsible for 

generating current patterns of biodiversity has been a central objective of 

phylogeography. To develop a better understanding of these processes in the North 

American aridlands, I used DNA sequence data and species distribution modeling to 

conduct three phylogeographic assessments incorporating four species of arid-adapted 

scorpions: Hadrurus arizonensis, H. jedediah, H. spadix, and Paruroctonus becki. In an 

assessment of H. arizonensis, phylogeographic patterns indicate that Pleistocene climate 

cycles and associated glacial refugia played a central role in structuring the genetic 

diversity of this species in the Mojave and Sonoran deserts, mostly supporting 

predictions from a recent model of historical biotic assembly for these regions. 

However, the phylogeography of H. arizonensis also revealed a potential glacial 

refugium along the Lower Colorado River Valley that had not been considered in 



 

iv 

 

previous evaluations. To assess the impact that Pleistocene climate fluctuations had in 

other North American aridlands, I then compared phylogeographic patterns from H. 

jedediah and H. spadix, to those from H. arizonensis. Since these three species are 

closely related and morphologically similar, effects from phylogenetic signal and 

divergent phenotypes should have been minimal, so differences in phylogeographic 

patterns should reflect the relative influence of Pleistocene climates in different regions. 

Under this assumption, comparative phylogeography of these three species suggest that 

the impact of glacial climates was most pronounced for the biotas of the Great Basin 

and Snake River Plain, over those in the Colorado Plateau, and Mohave and Sonoran 

deserts. Finally, I conducted a phylogeography of P. becki, an unrelated species that 

spans the Mojave Desert and western Great Basin. Phylogenetic analyses identified five 

mitochondrial lineages in P. becki. The timing and geographic arrangement of these 

lineages supports a vicariant origin associated with the tectonically dynamic Eastern 

California Shear Zone. In association with these deeper patterns, demographic analyses 

indicated that a lineage in the Great Basin had undergone a recent post-glacial 

expansion, which according to predictions from climate-based models and a landscape 

interpolation of genetic distances, probably occurred from refugial areas in the 

northwest Great Basin. In general, phylogeographic assessments of North American 

aridland scorpions support phylogeographic inferences from co-distributed organisms, 

but add a novel glacial refugium in the Mojave Desert and a unique pattern of post-

glacial expansions from an area within the Great Basin.  
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CHAPTER 1 

INTRODUCTION 

 Over two decades ago, John Avise and others introduced a field known as 

‘phylogeography’. At the time, the principle aim of phylogeography was to better 

understand micro- and macro-evolutionary processes by forming a bridge between 

phylogenetics and population genetics. The field of phylogeography has since flourished, 

and is now largely integrative, with the focus progressing toward comparisons of 

phylogeographic patterns among multiple taxa. In the next three chapters, I use 

phylogeography to study the evolutionary history of four species of scorpions 

distributed throughout the North American aridlands. 

 I begin in Chapter 2 with a fine-scale phylogeographic analysis of the largest and 

perhaps most renowned scorpion in North America, the Arizona hairy scorpion 

(Hadrurus arizonensis Ewing). This species occurs in low to mid-elevation habitats 

throughout the Mojave and Sonoran deserts where it is often abundant, particularly in 

sandy habitats like desert washes. By collecting several hundred specimens throughout 

the range of H. arizonensis, I conducted a comprehensive genetic assessment of this 

scorpion species. Analysis of mitochondrial sequence data, along with species 

distribution modeling, suggest that glacial climates caused H. arizonensis to fragment 

into at least six refugia, from which populations expanded as climates warmed following 

the last glacial maximum. Of these refugia, an area along the northern portion of the 

Lower Colorado River appears be a novel refugium that had not been specifically 

considered in previous phylogeographic evaluations of co-distributed taxa. 
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 In Chapter 3, I explored phylogeographic patterns in two additional Hadrurus 

species; the black hairy scorpion (Hadrurus spadix Stahnke) from the Colorado Plateau 

and a new species that my colleagues and I are currently describing from the Mojave 

and Great Basin deserts (Hadrurus jedediah Prendini et al. [in prep]). By comparing the 

phylogeographic patterns of these three species, I assessed the influence of Pleistocene 

climate fluctuations on scorpion populations from different North American aridlands. 

Since all three species are closely related and morphologically similar, I discuss the 

results under the assumption that differences among their phylogeographic patterns are 

not strongly influenced by phylogenetic signal or major differences in phenotypes. 

Genetic data, along with species distribution models, suggest that all three species were 

indeed influenced by glacial climates, highlighting the pervasive impact of historical 

climate change on the North American aridlands. However, scorpions in the Great Basin 

and Snake River Plain appear to have been most severely impacted. Like several co-

distributed taxa, the phylogeography of H. jedediah suggest that it only recently 

colonized these northern regions from more stable areas in the south, probably as 

climates warmed following the last glacial maximum. Therefore, in relation to nearby 

arid regions, the Great Basin and Snake River Plain biotas may have been the most 

sensitive to historical changes in climate.  

 In Chapter 4, I further explore the sensitivity of the Great Basin Desert by using 

mitochondrial and nuclear markers, as well as species distribution models, to 

reconstruct the phylogeography of the Beck desert scorpion, Paruroctonus becki 

(Gertsch and Allred). Although distantly related, the current distribution of P. becki is 
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similar to that of H. jedediah, occurring throughout the Mojave Desert and western 

sections of the Great Basin. Interestingly, I detected five geographically structured 

mitochondrial DNA lineages that closely correspond with the location and timing of 

Pliocene geologic events in the tectonically dynamic Eastern California Shear Zone. In 

addition, phylogeographic patterns suggest that a lineage in the western Great Basin 

colonized the region following the last glacial maximum, and may have endured glacial 

conditions in another previously undetected small refugium within the northwest Great 

Basin. Landscape interpolations of genetic distances suggest that P. becki may have 

expanded south and east from this glacial refugium, establishing a larger distribution in 

the Great Basin as climates warmed. 

 In summary, the phylogeography of four North American scorpions generally 

supports predictions made by similar assessments of co-distributed terrestrial 

organisms. I expand on the descriptions of glacial refugia for arid-adapted organisms in 

the Mojave Desert specifying an additional refugium along the northern reach of the 

Lower Colorado River Valley.  I also identify an area within the Lahontan Trough of the 

northwestern Great Basin where one desert-adapted scorpion species appears to have 

persisted during glacial periods. Both regions are within basins known to have retained 

somewhat warmer conditions than surrounding regions during glacial periods, and 

should be incorporated into future models of biotic assembly in the Mojave Desert and 

Great Basin. Furthermore, phylogeographic patterns from scorpions underscore the 

instability of the northernmost aridlands, as organisms in the Great Basin and Snake 

River Plain appear be particularly sensitive to climate change. 
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CHAPTER 2 

PHYLOGEOGRAPHY OF THE ARIZONA HAIRY SCORPION (HADRURUS ARIZONENSIS) 

SUPPORTS A MODEL OF BIOTIC ASSEMBLY IN THE MOJAVE DESERT AND ADDS A NEW 

PLEISTOCENE REFUGIUM 

 

Abstract 

 With increasing phylogeographic data from North American deserts, multi-taxon 

biogeographic syntheses of individual desert regions are beginning to emerge. One such 

synthesis, which I call the ‘Mojave Assembly Model’, compares phylogeographic 

patterns from predominantly vertebrate taxa to provide a preliminary model for the 

assembly of the Mojave Desert biota. Here, I tested predictions made by the Mojave 

Assembly Model by examining the phylogeographic history of Hadrurus arizonensis, a 

notably large scorpion distributed throughout the Mojave and Sonoran deserts. I 

reconstructed the maternal history of H. arizonensis using mitochondrial sequence data 

and used occurrence records to generate climate-based species distribution models. 

Phylogenetic and structure analyses revealed a maternal genealogy that splits basally 

into a southern clade along the coast of Sonora and a northern clade that includes a 

minimum of six geographic lineages (groups) throughout the northern Sonoran and the 

Mojave deserts. Molecular dating suggested that the two basal clades diverged between 

the late Pliocene and early Pleistocene, whereas lineages within each clade diverged 

between the middle and late Pleistocene. The timing and location of genetic 

differentiation, in combination with results from demographic analyses and species 
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distribution models, suggest that Pleistocene climate cycles and associated glacial 

refugia played an important role in structuring genetic diversity within H. arizonensis. 

These results are generally consistent with predictions of Pleistocene refugia from 

studies of vertebrates, but also reveal an area along the northern portion of the Lower 

Colorado River Valley that may have acted as an additional refugium for arid-adapted 

taxa during Pleistocene glacial cycles. 

 

Introduction 

 The deserts landscapes of southwestern North America were shaped by a 

complex history of landscape evolution through the Neogene due to tectonic activity 

associated with the junction of the Pacific and North American plate boundaries (e.g. 

Flesch et al. 2000). Species inhabiting these deserts through this time not only endured 

physical changes in the earth’s surface, such as formation of basins and mountain 

ranges due to extensions of the lithosphere, but coped with repeated changes in 

climate, especially during the Pleistocene (Riddle and Hafner 2006). As a result, the 

biodiversity and endemism of the North American deserts is high in relation to other 

natural ecosystems in North America (Mittermeier et al. 2003), most likely elevated by 

vicariance and adaption in a topographically dynamic landscape. 

Biogeographic studies of North American deserts indicate that many desert 

organisms exhibit similar histories associated with the evolution of regional deserts, and 

with new datasets continuing to emerge, our understanding of the histories of North 

American desert biotas continues to improve (Hafner and Riddle 2011). While many 
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early biogeographic studies focused on broad-scale, interspecific relationships within 

and between the North American deserts (e.g. Riddle & Honeycutt 1990; Riddle 1995), 

increasing phylogeographic information from multiple taxa provides prospects for 

addressing more intricate biogeographic histories within individual regions. Recently, 

Bell et al. (2010) conducted one such synthesis by comparing phylogeographic data from 

two species of Xerospermophilus Merriam (round-tailed ground squirrels) to similar 

studies of co-occurring taxa in the Mojave and Sonoran deserts. Their model (hereafter 

referred to as the ‘Mojave Assembly Model’) outlines a preliminary hypothesis for the 

historical assembly of the Mojave Desert biota (as well as part of the adjacent Sonoran 

Desert), which can be summarized as a history of geologically and climatically induced 

vicariant events between the late Neogene and Quaternary, followed by postglacial 

expansion and secondary contact (see Fig. 2.1 for a visual overview).  

In short, the Mojave Assembly Model begins with diversification associated with 

the development of the Colorado River and an aquatic incursion of the Colorado and 

Gila rivers called the ‘Bouse Formation’ between the Late Miocene and early Pliocene 

(reviewed in Mulcahy et al. 2006). During the late Pliocene, orogenesis of the Sierra 

Nevada and Transverse ranges (Wakabayashi and Sawyer 2001; Jones et al. 2004; 

Warrick and Mertes 2009; but see Henry 2009 for a review of alternative geologic 

reconstructions), as well as uplift of the western Mojave Desert (Cox et al. 2003), may 

have then left some arid-adapted forms isolated in rain-shadowed basins where they 

diverged in allopatry. Climatic conditions during Pleistocene glacial periods are thought 

to have fragmented arid habitats even further, facilitating additional lineage formation 
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associated with isolated desert basins, drainages, and other isolated regions of suitable 

climate. Following the last glacial maximum (LGM), arid-adapted organisms then 

expanded their ranges out of the basins, with southern populations generally spreading 

northward. 

Support for the Mojave Assembly Model comes mostly from phylogeographic 

studies of terrestrial vertebrate taxa, and with the exception of Homalonychus Marx 

spiders, patterns proposed by the model have not been adequately assessed with 

terrestrial invertebrates. Herein I contribute a detailed phylogeographic investigation of 

Hadrurus arizonensis Ewing, an arid-adapted scorpion distributed throughout low to mid 

elevations of the Mojave and Sonoran deserts. This scorpion is most common in sandy 

areas such as dune systems and washes (Williams, 1970) where it can construct 

elaborate burrows up to 2 meters in depth (Stahnke 1966; Anderson 1975). Also known 

as the Arizona hairy scorpion, H. arizonensis is the largest scorpion in North America (up 

to 127 mm in length). The species has considerable morphological variation, potentially 

indicative of geographic structuring of populations. Two formerly recognized subspecies: 

H. arizonensis arizonensis Ewing, H. arizonensis pallidus Williams and H. arizonensis 

austrinus Williams were synonymized when mitochondrial data did not support 

morphological interpretations (Fet et al. 2001).  

 Using mitochondrial sequence data from H. arizonensis samples collected from 

throughout its distribution for genetic assessment, my goal was to explore the 

phylogeography of H. arizonensis, with particular reference to the Mojave Assembly 

Model, but also including the species’ distribution in the Sonoran Desert. In addition, I 
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used species distribution modeling (Elith and Leathwick 2009) to investigate changes in 

the distribution of climate suitable for H. arizonensis since the LGM (~21 Ka). If H. 

arizonensis was influenced by the events outlined by the Mojave Assembly Model, then 

I would expect this ground-dwelling invertebrate to yield phylogeographic patterns 

similar to those recovered from co-distributed vertebrate species. Furthermore, if 

climatic conditions during Pleistocene glacial periods caused H. arizonensis to fragment 

into allopatric refugia, as predicted by the Mojave Assembly Model, species distribution 

models should depict a fragmented distribution during the LGM and genetic data should 

reveal evidence of lineage formation in areas where climates remained suitable. 

 

Materials and Methods 

Sampling 

 I obtained 256 samples representing 84 unique localities from throughout the 

distribution of H. arizonensis. Representative voucher specimens have been preserved 

at the American Museum of Natural History (AMNH) and the San Diego Natural History 

Museum (SDNHM), with those collected from Death Valley National Park on a long-term 

loan to SDNHM. I pooled localities less than 10 km apart and without obvious 

intervening biogeographic barriers for analyses, resulting in 64 general sites (Fig. 2.2; 

Table 2.1). Phylogeography, as often currently practiced, incorporates elements of 

phylogenetics, population genetics, and demographic approaches (e.g. Althoff and 

Pellmyr 2002), and these methods require different sampling strategies. For 

phylogenetic analyses that did not require large sample sizes per site – the haplotype 
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network and Mantel test – I used all 256 individual samples. To calculate nucleotide 

diversity (π), haplotype diversity (h) and frequency of private haplotypes, I limited 

assessments to sites with sample sizes ≥ 8, resulting in 14 sites containing a total of 135 

samples. In order to characterize population structure (SAMOVA, see below), I used 

sites with samples sizes ≥ 4 (27 sites), but in a separate assessment used only sites with 

sample sizes ≥ 8 (14 sites) to ensure that sample size did not produce substantially 

different results (see below). 

For species distribution modeling, I used 267 occurrence points, representing the 

84 unique sampling localities and 183 additional locations from georeferenced museum 

specimens (AMNH, SDNH, Smithsonian Institution, and California Academy of Sciences). 

I visually verified species designations of each museum specimen. The majority of 

museum records lacked coordinates, so I used GOOGLE EARTH 

(http://earth.google.com) to estimate latitude and longitude from information on 

voucher labels using standard georeferencing techniques. I excluded records with 

georeferencing errors greater than five kilometers so that the input records matched 

the spatial resolution of the modeling rasters (2.5 arc-minutes).  

 

Molecular Techniques 

 I sequenced a 1029 base pair (bp) portion of the mitochondrial gene for 

cytochrome c oxidase subunit I (cox1), a marker that has been useful for 

phylogeographic assessments of insects (Zhang and Hewitt 1997) and arachnids (e.g. 

Prendini et al. 2003, 2005; Thomas and Hedin 2008; Wang et al. 2008, Graham et al. 
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2012). First, I isolated total genomic DNA from leg tissue using a standard phenol-

chloroform extraction or DNeasy Extraction Kit (Qiagen Inc., Valencia, CA, USA). I then 

amplified the targeted gene by polymerase chain reaction using ExTaq Polymerase 

Premix (Takara Mirus Bio Inc., Madison, WI, USA) and different combinations of external 

primers listed in Table 2.2. All combinations of external primers successfully amplified 

sequences at annealing temperatures ranging between 54°C and 60°C. Since two 

regions of single nucleotide repeats (8-10 bp) caused signal strength at the 3’ end to 

weaken, I used internal primers to verify nucleotide calls in regions with weak signal by 

sequencing within the region amplified by the external primers. I conducted cycle 

sequencing using BigDye Terminator Cycle Sequencing Ready Reaction Kit v. 3.1 (Qiagen 

Inc., Valencia, CA, USA). For electrophoresis and visualization, I used an ABI 3130 

automated sequencer (Applied Biosystems Inc., Foster City, CA, USA). I aligned 

sequences using SEQUENCHER v. 4.6 (Gene Codes Corp Inc., Ann Arbor, MI, USA) and 

verified alignments against those of Uroctonus mordax Thorell (GenBank No. 

EU523756.1). 

 

Phylogenetic Analyses and Population Structure 

 I assessed the cox1 phylogeny of H. arizonensis under the criterion of bayesian 

inference (BI) implemented in MRBAYES v. 3.1.2 (Ronquist and Huelsenbeck 2003), 

conducting the analyses through the Cyberinfrastructure for Phylogenetic Research 

cluster (CIPRES Gateway v 3.1) at the San Diego Supercomputer Center. First, I used the 

program COLLAPSE v. 1.2 (available at http://darwin.uvigo.es) to remove redundant 
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haplotypes. I then calculated best-fit models of nucleotide substitution for the 

haplotype data under several codon partitioning schemes (separately, positions 1+2 

combined and 3 separate, and unpartitioned) using JMODELTEST v. 0.1.1 and the Akaike 

information criterion (AIC; Posada 2008). For the BI runs, I unlinked model parameters 

across character partitions and left the Metropolis-coupled Markov Chain Monte Carlo 

(MCMC) on default (3 hot, 1 cold chain), except I set the heating parameter to 0.01 in 

order to keep state swap frequencies between 10% and 70%. I ran each partitioning 

scheme for 10 million generations, sampling trees every 1000 generations and 

discarding the first 25% as burn-in. All analyses were run twice, and after confirming 

that the duplicate Markov chains converged on similar mean likelihoods in TRACER v. 

1.5 (Rambaut and Drummond 2007) and the program AWTY (Are We There Yet; 

Nylander et al. 2008), I inferred the best-fit partitioning scheme using bayes factors 

(Nylander et al. 2004). I based final interpretations on the 50% majority-rule consensus 

tree and associated posterior probabilities from the two runs of the best model.  

Much of the structure in the resulting BI phylogeny was shallow (see Results), so 

I used the program NETWORK v. 4.5.1.6 (Fluxus Technology Ltd 2004) to construct 

median-joining networks of the mtDNA haplotypes (Bandelt et al. 1999). I first 

constructed preliminary networks and explored the effect of different 

transition/transversion weighting schemes (all assessments produced nearly identical 

topologies). I constructed a final network with transitions/transversions weighted 3 to 1 

and used the maximum parsimony option to remove excessive links (Polzin and 

Daneshmand 2003). 
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 To identify genetically distinct geographic groups without a priori groupings, I 

used SAMOVA V. 1.0 (Dupanloup et al. 2002) to conduct a spatial analysis of molecular 

variance (SAMOVA). Using 500 iterations for each run, I conducted assessments with 

partitions (k values) rising from 2 to 13 (the maximum number of groupings given the 14 

sites) for the ≥ 8 dataset and 2 to 20 (the maximum number of groupings program will 

allow) for the ≥ 4 dataset. I evaluated trends in FCT, a measure of the degree of 

differentiation between groups, to determine which number of partitions (k value) best 

represents groupings that are maximally differentiated and geographically homogenous. 

As the interpretation of SAMOVA may be affected by isolation by distance (Dupanloup 

et al. 2002), I used ALLELES IN SPACE v. 3.11 (Miller 2005) to perform a Mantel test 

(Mantel 1967) to evaluate correlation between geographic Euclidean distances and 

uncorrected p-distances (using 1000 randomizations). 

 

Demographic History 

 I used ARLEQUIN v. 3.11 (Excoffier et al. 2005) to estimate several genetic indices 

for groups that were indicated by the BI tree, haplotype network, and SAMOVA. I 

estimated nucleotide diversity (π) and haplotype diversity (h), because in a comparative 

context these diversity indices can reveal patterns of past demographic expansion or 

constriction (Grant and Bowen 1998; see Results). I also calculated Fu’s F (Fu 1997) and 

mismatch analyses (Rogers 1995) to test for demographic or spatial expansion within 

predefined groups. 
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 I constructed Bayesian skyline plots, implemented in BEAST v. 1.5.4 (Drummond 

& Rambaut 2007) to estimate the shape of population growth through time for each 

group. This assessment required estimation of best-fit substitution models for each 

group (as above), followed by BEAST runs of 20 million generations for each group 

except one (group I; see Results), which required 2 independent runs of 60 million 

generations in order to reach an ESS greater than 200. Demographic plots were 

visualized using TRACER. 

 

Molecular Dating 

 I used BEAST on a reduced dataset consisting of eight exemplar samples, 

selected to capture the deeper genetic structure within H. arizonensis, to estimate 

divergence dates between mtDNA groups. For this analysis, I estimated a best-fit 

substitution model for the unpartitioned sequences using JMODELTEST. I used an 

uncorrelated lognormal clock model and a mutation rate of 0.007 

substitutions/site/million years, which was based on geological calibrations for the 

separation of island and mainland populations of a scorpion species (Mesobuthus 

gibbosus Brullé) from the Aegean region in the eastern Mediterranean (Gantenbein et 

al. 2005). I selected a standard deviation of 0.003, thereby encompassing an alternative 

mutation rate based on 16S rDNA in scorpions (Gantenbein and Largiadèr 2002) which is 

thought to evolve at a similar rate as cox1  (Gantenbein et al. 2005; also see Chapter 4). I 

ran BEAST for 40 million generations with a Yule tree prior and retained samples every 

1,000 generations. I again used Tracer to confirm stationarity of the MCMC chain, as 
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well as to determine the adequacy of the effective sample sizes (ESS > 200 for each 

estimated parameter). 

 Because the BEAST topology derived from the eight exemplar samples was 

different at the more recent nodes than that resulting from the BI analysis of the entire 

dataset (see Results), I also used BSPs to estimate time to most recent common 

ancestor (TMRCA) for the groups identified by SAMOVA. I again used TRACER to ensure 

stationarity and to obtain TMRCA estimates. 

 

Species Distribution Models 

 I constructed species distribution models using the program MAXENT v. 3.3.2 

(Phillips et al. 2006), known to perform well in comparisons with other modeling 

approaches (Elith et al. 2006). I screened 19 bioclimatic predictor layers representing 

current climatic trends, seasonality, and extremes of temperature and precipitation 

(Hijmans et al. 2005), to avoid over-fitting and improve model transferability (Peterson 

et al. 2007), by assessing correlations among the different layers based on values from 

grid cells containing occurrence records. I selected among the correlated layers 

(Pearson’s correlation coefficient > 0.75), retaining layers representing quarter climates 

rather than monthly climates, and precipitation during the coldest quarter rather than 

precipitation during the wettest quarter. The final predictor layers comprised the 

following 10 bioclimatic layers: Bio2, mean diurnal range; Bio3, isothermality; Bio6, 

minimum temperature of the coldest month; Bio7, temperature annual range; Bio8, 

mean temperature of the wettest quarter; Bio10, mean temperature of warmest 
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quarter; Bio11, mean temperature of coldest quarter; Bio15, precipitation seasonality; 

Bio17, precipitation of the driest quarter; Bio18, precipitation of the warmest quarter; 

Bio19, precipitation of the coldest quarter. I masked (clipped) the bioclimatic layers to 

ecoregions (Olson et al. 2001) that contain occurrence records (Mojave Basin and 

Range, Sonoran Desert, Arizona/New Mexico Mountains, Sinaloa Coastal Plain, Baja 

Californian Desert) to improve model accuracy and reduce problems with extrapolation 

(Pearson et al. 2002; Thuiller et al. 2004; Randin et al. 2006), 

I ran MAXENT using logistic output with default settings and random seeding. I 

tested the robustness of the models by cross-validation, dividing presence points into 

five groups and running five iterations while using a different group for each run. Thus, 

20% of the presence points were used as test points and 80% were used for model 

training (Nogués-Bravo 2009). I relied on the default method available in MAXENT for 

determining the area under the receiver operating characteristic curve (AUC) to assess 

model performance. 

 I projected the models onto simulated climates for the LGM derived from the 

Community Climate System Model (CCSM; Otto-Bliesner et al. 2006) and the Model for 

Interdisciplinary Research on Climate (MIROC; Hasumi and Emori 2004) to explore the 

distribution of suitable habitat for H. arizonensis during glacial periods. Climatic 

suitability was displayed in ARCGIS by converting continuous MAXENT outputs into 

binary grids using the maximum training sensitivity plus specificity threshold. This 

threshold balances errors of omission (sensitivity) with the fraction of the study area 

predicted as suitable habitat, which is used as a proxy for commission error (specificity), 
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and has performed well in comparisons of various threshold criteria (Liu et al. 2005; 

Jiménez-Valverde 2007). 

 

Results 

Phylogenetic Analyses and Population Structure 

 The 256 cox1 sequences obtained for H. arizonensis yielded 141 unique 

haplotypes containing 149 variable sites, 103 of which were parsimony-informative. 

Uncorrected p-distances ranged from 0.0% to 4.1%, with an average of 1.1%. 

Examination of chromatograms revealed no evidence of double peaks, indels, 

frameshifts, or premature stop codons that would indicate co-amplification of nuclear 

mitochondrial pseudogenes (Bertheau et al. 2011). 

Bayes factors indicated that partitioning by each codon position provided the 

best fit, and substitution models selected under the AIC were as follows: first = HKY+G, 

second = HKY+G, third = HKY+I+G. The resulting majority-rule consensus tree exhibited 

two strongly supported deeper nodes (Fig. 2.3) that formed geographically cohesive 

clades – a northern clade representing the majority of the samples distributed 

throughout the northern half of the range, and a southern clade along the coast of 

Sonora. The uncorrected p-distances between samples within the southern clade ranged 

from 0.8% to 2.4%, with an average of 1.6%; and up to 2.5% in the northern clade, with 

an average of 1.1%. Average uncorrected p-distance between the northern and 

southern clades was 3.35%.Both clades contained considerable phylogeographic 

structure, with numerous subclades (groups) strongly supported within the northern 
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clade (identified as groups I – VI; Fig. 2.3). There was no statistical support for 

relationships between most groups, with the exception of groups II and III (Fig. 2.3).   

The median-joining haplotype network (Fig. 2.4) revealed sub-networks, or 

groups, that mostly correspond to the clades and groups identified in the BI analyses. As 

in the BI analysis, the southern samples form a distinct group of haplotypes, separated 

from the large group of northern haplotypes by 19 mutational steps. Similarly, the 

southernmost sample is removed from the southern group by 17 steps. The remaining 

samples comprise the northern clade in the BI tree and are highly structured. The 

largest group within the northern clade (group I) occupies a central position within the 

haplotype network and is distributed across the center of the range, extending from the 

northern coast of the Gulf of California, north along the Lower Colorado River Valley to 

the northernmost sites in Nevada and Utah. Several long branches within this group 

were further labeled as groups A-D. 

The SAMOVA results using different samples sizes yielded similar FCT values and 

groupings, so for ease of presentation I limit results to the ≥ 4 dataset because it 

includes more sites and represents a more thorough geographic sampling. SAMOVA 

indicated a high degree of geographic structuring in the northern clade, as FCT values 

continued to increase over the range of possible groups (Table 2.3). An asymptote was 

reached at about five groups (k = 5), which corroborated four of six groups identified 

within the northern clade in BI and network analyses (Fig. 2.5a). At k = 6, SAMOVA 

identified a group from north of the Gila River near Phoenix, AZ (Site 38 – Piute Valley, 

NV) that was strongly supported by both BI and network analyses (Fig. 2.5b). At k = 7,  a 
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group in the western Anza-Borrego Desert region (Salton Trough) was identified, which 

was also supported by the haplotype network (Fig. 2.4 – group A), but the 

distinctiveness of this group was not supported by the BI analysis (Fig. 2.3). 

The Mantel test revealed a correlation between geographic and genetic 

distances (Fig. 2.6; r = 0.49, p > 0.01), indicating the potential for isolation by distance 

(IBD). In the presence of IBD, SAMOVA results can be skewed, as they are expected to 

identify partitions that fall between the most widely spaced populations or the middle 

of the sampling areas (Dupanloup et al. 2002). Instead of conforming to a pattern 

expected under IBD, all groups identified partitions (as k increased until FCT values 

reached an asymptote) representing geographically cohesive lineages supported by the 

BI and network analyses. Although one partition was identified near the middle of the 

sampling area (group III), all samples in the group are narrowly restricted to a small area 

along the Lower Colorado River Valley and represent a strongly supported monophyletic 

group.  

 

Demographic History 

 Each of the groups within the northern clade contained π values ranging from 

0.836 to 1.0 and values of h ranging from 0.002 to 0.007 (Table 2.4), although the larger 

values are influenced by a single site containing individuals from two different 

haplogroups (Site 38 – Surprise, AZ). All Fu’s F values were negative (Table 2.4), 

indicating deviations from mutation-drift equilibrium, as would be expected for 

populations that have undergone recent expansion or selection (Fu 1997). Mismatch 
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distributions were unimodal for groups I–IV, indicating recent demographic expansion 

or selection (Rogers and Harpending 1992). Distribution curves were multimodal for 

groups V and VI, signifying that the populations may be at equilibrium, although sample 

sizes were low for both groups. Similarly, parametric bootstraps resulted in sum of 

squares deviations (SSD) that were all low, but many fold lower for groups I–IV. 

Raggedness values (r) were not significant for either the sudden expansion or spatial 

expansion mismatch models (Table 2.4), meaning the data are a good fit for either 

model of expansion.  

For group I, a history of moderate population growth during the late Pleistocene 

was depicted by the BSP (Fig. 2.7). This growth apparently ceased about 100,000 

thousand years ago when the population underwent a brief decline, followed by a 

period of rapid population growth and subsequent stability during the last 50 Ka. For all 

other groups, BSPs portray relatively stable population sizes through the late 

Pleistocene and Holocene. 

 

Divergence Dating 

 Molecular dating (Fig. 2.8) estimated the divergence between the northern and 

southern clades to have occurred between the late Pliocene to mid Pleistocene (3.08--

1.79 Ma), with a mean estimate at the start of the Pleistocene (2.44 Ma). Divergence 

within the southern clade is estimated to have occurred between the early (2.4 Ma) and 

mid (1.03 Ma) Pleistocene. The TMRCA for each group in the northern clade (Table 2.4) 

was estimated to be between the Pleistocene (1.43 Ma) and the Holocene (6 Ka). 
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Species Distribution Models 

 The species distribution models yielded high AUC scores for both training and 

testing data (both > 0.95), indicating that the models performed significantly better than 

random (Raes and ter Steege 2007). The species distribution model under current 

climatic conditions (Fig. 2.9a) depicted largely contiguous suitable climate across the 

majority of the Mojave Desert and northern portions of the Sonoran Desert. Unsuitable 

areas were predicted in the mountainous regions of the Mojave Desert. In the south, 

climate is predicted to be suitable in a narrow region along the Mexican coastlines of 

Sonora and Baja California. This model appears to somewhat underestimate the 

distribution of suitable areas in Sonora, as two occurrence records in Sonora fall outside 

of the predicted area. 

LGM models based on different climatic scenarios (MIROC and CCSM) were 

similar (Figs. 2.10b, c), but incongruent along a northern portion of the Lower Colorado 

River Valley extending upriver to the mouth of the western Grand Canyon. Examination 

of multivariate similarity surfaces (MESS) show slightly negative values for both models 

in this region (Fig. 2.10), so the discrepancy could be due to ‘novel’ environments where 

at least one variable has a value that is outside the reference (current) range (Elith et al. 

2010). An area of even lower (more negative) MESS values occurs along the northern 

Sonora coast in the CCSM models, mostly driven by a variable representing average 

diurnal temperature range (Bio2). The CCSM models also predicted suitable but highly 



 

21 

 

disjunct areas along the southern coast of Sonora and the northern coast of Baja 

California Sur, whereas the MIROC model does not. 

Both models highlight a minimum of two general areas that may have contained 

suitable climate during the LGM, one in the western Mojave and one along the southern 

portion of the Colorado River. Although the degree of connectivity varied between 

models, both predicted suitable climate within low-elevation valleys of the western and 

northwestern Mojave Desert. In the CCSM model, fragmented areas with suitable 

climates were predicted within Saline, Death, and Panamint valleys; although these 

valleys were mostly filled in by Pleistocene lakes (Grayson 1993). In contrast, the MIROC 

model predicted larger areas of suitable climate in these regions, indicating that areas 

surrounding the Pleistocene lakes (which probably contained sandy habitat along 

shorelines) may have been suitable as well. Southern areas predicted by both LGM 

models were similar, but extended further south in the MIROC model. The LGM models 

both highlighted southern portions of the California Central Valley, an area currently 

occupied by the related species Hadrurus obscurus Williams. 

 

Discussion 

Phylogeography of Hadrurus arizonensis 

 Mitochondrial sequence data suggest that the phylogeography of H. arizonensis 

has been shaped by a history of fragmentation, reduced gene flow, and demographic 

expansion since the late Pliocene. My assessments of phylogenetic and population 

structure (Figs. 2.3, 2.4, and 2.5) all indicate that the species consists of two main clades; 
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a southern clade narrowly distributed along the coast of Sonora, Mexico, and a 

widespread northern clade comprising the remainder of the distribution in the Sonoran 

and Mojave deserts. Divergence between these two clades appears to have occurred 

between the mid Pliocene and early Pleistocene, a timeframe too recent to be explained 

by Neogene vicariant events such as the extensions of the Sea of Cortez (the Bouse 

Embayment) and development of the Colorado River (Fig. 2.1; reviewed in Wood et al. 

2008). Instead, divergence between northern and southern clades could have been 

associated with contemporaneous uplift of the Transverse and Peninsular ranges, which 

created isolated rain-shadow deserts (Axelrod 1979) where arid-adapted taxa are 

thought to have diverged in allopatry (Bell et al. 2010). According to the Mojave 

Assembly Model, the first of these isolated basins developed during the Pliocene 

(between 4 and 2 Ma); one located in the western Mojave Desert and another along the 

Lower Colorado River Valley (Fig. 2.1b). However, based on their distributions, the split 

between the northern and southern clades probably occurred somewhere along the 

coast of Sonora, so isolation within these basins was probably not responsible for the 

initial north and south divergence of H. arizonensis. More likely, the clades diverged 

during the early Pleistocene, a timeframe during which desert taxa fragmented into 

additional desert basins (Bell et al. 2010), including one along the coast of Sonora (Fig. 

2.1c). 

 Although my sampling of the southern clade was sparse, levels of genetic 

differentiation between southern specimens was high, as the southernmost population 

was 2.4% divergent (uncorrected p-distance) from the nearest coastal sample 200 km to 
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the northwest. Molecular dating places this level of divergence between the early and 

mid Pleistocene. Accordingly, vicariance within the southern clade could be attributed 

to an increased influence of the Río Yaqui (indicated in Fig. 2.4a). This river, like other 

rivers to the south, runs west from the Sierra Madre Occidental and has been 

postulated as the cause of genetic divergences in other taxa (Hafner and Riddle 2011). 

The CCSM model proposes that LGM climates may have been suitable in a disjunct area 

on the southern Sonora coast (Fig. 2.9b). Persistence in this area during the LGM would 

explain the high genetic diversity in the southern clade if individuals from this area have 

retained a genetic signal of earlier divergence. Following the LGM, habitat may have 

become available along the rest of the Sonoran coast, allowing haplotypes north of the 

Río Yaqui to freely colonized new areas, following the coastline northward. This scenario 

contradicts predictions from the MIROC model, which portrays no suitable climate along 

the southern and central coast of Sonora (Fig. 2.9c). Instead, suitable climate is depicted 

along the Lower Colorado River Valley and in fragmented patches that are currently 

within the Sea of Cortez, but were terrestrial during the LGM. If the MIROC model more 

accurately depicts the LGM distribution, then the Southern Clade could have diversified 

in these areas, followed by expansion along the coast of Sonora during the current 

interglacial. Additional genetic sampling, however, would be needed to test these 

alternative hypotheses. 

 Phylogeographic patterns within the northern clade appear to have been shaped 

during the Pleistocene. Six geographically structured groups (Fig. 2.5b), representing 

monophyletic maternal lineages were recovered by the phylogenetic and structure 
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analyses (Figs. 2.3–2.5), and molecular dating estimates place the TMRCA for these 

groups in the mid Pleistocene to early Holocene. The distributions of these groups 

mostly correspond to the same basins and drainages where other organisms are 

thought to have persisted during Pleistocene glacial periods. Based on these results, the 

fluctuating climates of the Pleistocene most likely isolated northern clade populations 

within several allopatric refugia long enough to establish reciprocally monophyletic 

mtDNA lineages.  

Most of the mtDNA lineages within the northern clade of H. arizonensis are 

geographically congruent with glacial refugia predicted by the Mojave Assembly Model. 

There is also demographic evidence that populations of these scorpions have undergone 

recent spatial expansions, as would be expected for arid-adapted taxa expanding their 

ranges as the climate became warmer. The evidence of expansion is particularly strong 

for groups I-IV (Table 2.4, Fig. 2.7). Additional tests of demographic expansion 

conducted by comparing within group values of π and h, based on the method 

employed by Grant and Bowen (1998), provide further evidence of expansion. Groups 

II–VI all have low π and high h, containing few highly divergent haplotypes. Such a 

genetic pattern would be expected under a hypothesis of Pleistocene fragmentation 

where populations underwent bottlenecks (such as contraction into glacial refugia), 

followed by rapid population growth and accumulation of novel mutations (Grant and 

Bowen 1998). Genetic patterns within Groups I and V show high π and high h, and 

appear to have had more stable population sizes through time. 
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 These results provide convincing evidence that the phylogeography of H. 

arizonensis, like co-occurring vertebrate species, was influenced by climatic fluctuations 

during the Pleistocene. As predicted by the Mojave Assembly Model, climatic conditions 

during glacial periods appear to have forced the distribution H. arizonensis to fragment 

into several isolated regions mostly associated with desert basins and drainages. The 

only pattern that conflicts with the Mojave Assembly Model is that of an additional 

refugium along the northern section of the Lower Colorado River Valley, which I discuss 

below. 

 

Northern Lower Colorado River Valley Refugium (NLCR) 

 The phylogeography of H. arizonensis highlights an additional potential refugium 

that may have existed along a northern portion of the Lower Colorado River Valley 

(hereafter referred to as the NLCR). Evidence for this refugium comes both from the 

presence of a geographically cohesive mtDNA lineage of H. arizonensis (Group III) in the 

area (Figs. 2.1–2.3), and from one of the species distribution models which predicts that 

climate within the area was suitable for H. arizonensis during the LGM (Fig. 2.9c). The 

Group III haplotypes cluster within the center of the area predicted by the model, but 

peripheral localities on the east and west of the predicted area also contain haplotypes 

from Group I. Furthermore, only Group I haplotypes were found in the northern portion 

of the area predicted by the model, so the NLCR might have been contained within a 

smaller region than predicted. The CCSM model does not depict suitable climate in this 

region at all, so neither model may be entirely accurate in this region. 
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 Group I haplotypes found in sympatry with and north of the Group III haplotypes  

exhibited low haplotype diversity in relation to Group I haplotypes to the south, 

suggesting they may have recently expanded northward from a larger refugium (Fig. 

2.9c) in the southern section of the Lower Colorado River Valley (hereafter SLCR). This 

pattern brings up an interesting question; namely, why was the northern Mojave Desert 

not colonized by postglacial expansion of haplotypes from the NLCR rather than those 

from the SLCR? Given that Group I and Group III haplotypes in this region occur on both 

sides of the Colorado River, this landscape feature clearly has not been a consistent 

barrier (as seen with many other desert organisms). In addition, there are no other 

obvious topographic barriers between Group I and Group III haplotypes found east of 

the river in the northern portion of the proposed NLCR. One possibility is that there are 

fitness differences between these lineages. Given the potential disparity between the 

sizes of the two refugial areas (Fig. 2.9), the population in the south may have 

experienced a wider range of ecological conditions than that within the NLCR during 

glacial periods. As the glacial periods lasted longer than the interglacials, the ecological 

requirements (fundamental niche) of fragmented populations may have diverged, 

yielding differential dispersal capabilities across the postglacial landscape.  

More intriguing is the possibility that dispersal or fitness differences between 

these lineages may result from potential hybridization of populations of H. arizonensis 

at sites within the NLCR with H. spadix, a closely related species. Hadrurus spadix is a 

generalist and found in a variety of habitats, and prone to occur in rocky habitats and at 

higher elevations. As currently understood, H. spadix is distributed throughout a variety 
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of mid-elevation habitats within the Mojave Desert and Colorado Plateau, as well as low 

to mid-elevations in the western and northern Great Basin Desert. However, recent 

findings suggest that H. spadix actually comprises two morphologically similar species 

(unpublished data); H. spadix in the Colorado Plateau, and a new species in the Mojave 

and Great Basin deserts (Prendini et al. in prep). Provocatively, I found H. arizonensis 

and H. spadix in sympatry in the Newberry Mountains of Nevada and the Black 

Mountains of Arizona, both of which are areas within the NLCR. During sampling, I noted 

that a few specimens from these sites showed indications of gross morphological 

intermediacy for patterns in coloration and trichobothria (sensory hairs) ornamentation 

(data not shown), lending support to the possibility of hybridization. A definitive 

assessment of whether Group III individuals represent hybrids, however, would best be 

accomplished through a genetic assessment of nuclear genes. 

The presence of a Pleistocene NCLR is supported by phylogeographic patterns in 

some other taxa occupying the region. For example, the relict leopard frog (Rana 

[Lithobates] onca Cope) appears to have diverged from its closest relative, the lowland 

leopard frog (Rana [Lithobates] yavapiensis Platz and Frost), in this region during the 

Pleistocene, rendering the former narrowly distributed along river drainages within the 

NCLR and the latter distributed more broadly across the Sonoran Desert (Oláh-

Hemmings et al. 2009). Species distribution models constructed for a related scorpion 

species, Hadrurus spadix Stahnke from the Mojave and Great Basin deserts (potentially 

a new species as discussed above) predict little suitable habitat in the Great Basin during 

the LGM, but suitable climate within the Mojave Desert includes a patch which 
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encompasses the NLCR (Chapter 3). Furthermore, species distribution models for the 

chisel-toothed kangaroo rat (Dipodomys microps Merriam), a rodent species endemic to 

the Great Basin Desert, predicted that LGM climates were suitable in an area very 

closely matching that of the NLCR (Jezkova et al. 2011, their Fig. 4b). Therefore, the 

NLCR might represent an area where several Mojave and Great Basin desert species 

were able to persist during Pleistocene glacials. 

 

Testing the Mojave Assembly Model 

With the exception of the NLCR, phylogeographic patterns in H. arizonensis are 

mostly congruent with patterns predicted by late Pliocene through Holocene portions of 

the Mojave Assembly Model. During the late Pliocene to early Pleistocene, the Mojave 

Assembly Model predicts lineage formation in the western Mojave Desert as regional 

uplift forced desert organisms into basin refugia in the rain shadow of the Transverse 

Ranges. Although I recovered a unique lineage of H. arizonensis in this area (Group II), 

the molecular clock estimate placed the TMRCA for this group in the middle to late 

Pleistocene (0.25–0.93 Ma). During the Pleistocene, the Mojave Assembly Model posits 

that continued block-faulting formed the modern basin topography which, along with 

more mesic conditions, may have fragmented populations into basins associated with 

the Mojave River, Amargosa River, Salton Sea, and Lower Colorado River (Fig. 2.1c). The 

distributions of groups I, II, and IV from the northern clade suggest that H. arizonensis 

may also have occupied these areas during glacial periods. The center of the distribution 

of Group I, the largest group, extends along the Lower Colorado River Valley and, as 
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mentioned earlier, may have recently expanded from the southern portion of this 

region (the SLCR). Group II is distributed throughout the western Mojave Desert, 

whereas the distribution of Group IV circumscribes the Amargosa River and Death Valley 

regions. Demographic analyses suggest that these latter two groups underwent recent 

expansions (Table 2.4, Fig. 2.7), perhaps expanding their ranges from two small glacial 

refugia in the northwestern Mojave Desert, as predicted by the Mojave Assembly 

Model. 

Bell et al. (2010) attribute these refugia to the Mojave and Amargosa River 

drainages. Species distribution models for H. arizonensis, however, do not predict 

suitable climate along the Amargosa River during the LGM, but adjacent low-elevations 

of Death Valley are predicted as suitable (Fig. 2.9). During pluvial periods, Death Valley 

was filled with a large body of water known as Lake Manly, so while climate may have 

been suitable, much of the predicted habitat almost certainly was not. Even so, the 

MIROC model predicted suitable LGM climate in an area larger than high stand 

estimates for Lake Manly, so populations of H. arizonensis in Death Valley could have 

persisted in areas distributed around the lake, especially in sandy lakeshore habitats. 

The Mojave Assembly Model states that Pleistocene climates may have also 

facilitated vicariance among desert organisms near the Gila River in Arizona. Although 

my sampling in this area was limited, unique groups of H. arizonensis haplotypes 

(Groups V and VI) from the eastern portion of its range also appear to be divided north 

and south of the Gila River. Given the relatively small size and ephemeral nature of this 

river, its significance as a biogeographic barrier is hard to imagine, but distinct groups of 
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haplotypes have also been found on opposite sides of the river in Phrynosoma 

platyrhinos Girard (desert horned lizards; Jones 1995; Jezkova 2010) and Chaetodipus 

penicillatus Woodhouse (desert pocket mice; Jezkova et al. 2009). Jones (1995) 

attributed divergence in the P. platyrhinos to a Pliocene inundation of the Colorado and 

Gila Rivers during the Bouse Embayment (see Fig. 2.1a). However, Jezkova et al. (2009) 

estimated the genetic divergence in C. penicillatus to have occurred more recently 

during the Pleistocene, possibly by fragmentation of habitat in the Gila River area by 

climatic fluctuations, and not directly by the river itself. A similar situation could have 

occurred in H. arizonensis, as molecular date estimates also suggest that groups across 

the Gila River diverged during the Pleistocene (Fig. 2.8). 

The evidence of substantial genetic structure within the eastern portion of the H. 

arizonensis distribution indicates the potential for some degree of persistence within 

this region, certainly during the LGM. This is in conflict with the species distribution 

models that do not depict any suitable climate in the area during the LGM, instead 

suggesting that the nearest habitat was along the Lower Colorado River Valley. If the 

species distribution models are not grossly inaccurate in this region and H. arizonensis 

did persist in these eastern areas during the LGM, as evidenced by genetic patterns, 

then populations there must have endured climate conditions outside of the current 

realized niche, and perhaps underwent ‘niche drifting’ (Jezkova et al. 2011).  

In summary, the phylogeography of H. arizonensis lends support to the predictions of 

the Mojave Assembly Model during the Pleistocene. Genetic diversity within H. 

arizonensis appears to have been influenced by climate-induced fragmentation and 
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contraction into glacial refugia, which appears to have caused autochthonous lineage 

formation within specific regions throughout the Mojave and Sonoran deserts. 

Furthermore, an additional glacial refugium along the northern portions of the Lower 

Colorado River (the NLCR) should be incorporated into future models for the historical 

assembly of the Mojave and Sonoran desert biotas. 
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Table 2.1. Location and voucher information for genetic samples used in this study. Site 
numbers correspond with localities portrayed in Fig. 2.1. Coordinates only represent the 
general sample area. 
 

 

 

Site State Locality Lat. Long. n Voucher Numbers 

1 UT SNOW CANYON 37.173 -113.649 8 MG0151, MG0152, MG0155, 
MG0156, MG0980-MG0983 

2 NV COYOTE SPRINGS 36.992 -114.987 8 MG0777-MG0781, MG1146-
MG1148 

3 NV VIRGIN RIVER 36.739 -114.186 1 MG0969 

4 NV BIG DUNE 36.638 -116.544 9 MG0997, MG0999-MG1006 

5 CA DOLOMITE ROAD 36.574 -117.978 7 MG0291-MG0297 

6 CA PANAMINT VALLEY 36.433 -117.432 10 MG0551-MG0560 

7 NV MUDDY 
MOUNTAINS 

36.406 -114.766 1 MG1149 

8 CA DEATH VALLEY 36.227 -116.880 7 MG0766-MG0770, MG0772, 
LP4974 

9 CA WEST SIDE ROAD 35.937 -116.713 3 MG0438-MG0440 

10 CA IBEX DUNES 35.739 -116.383 2 MG0773, MG0774 

11 AZ GREGG'S HIDEOUT 35.905 -114.169 1 MG0792 

12 NV EL DORADO VALLEY 35.887 -114.952 10 MG1133-MG1142 

13 AZ TEMPLE BAR 35.864 -114.481 3 MG1143-MG1145 

14 NV MESQUITE VALLEY 35.762 -115.580 10 MG0230-MG0239 

15 CA TRONA PINNACLES 35.617 -117.370 1 LP1638 

16 NV PIUTE VALLEY 35.269 -114.925 4 MG0101, MG0103, MG0104, 
MG0105 

17 AZ E OF LAUGHLIN 35.215 -114.430 1 MG0571 

18 CA CALIFORNIA CITY 35.200 -118.058 11 MG0755-MG0764, LP3191 

19 NV NEWBERRY 
MOUNTAINS 

35.174 -114.684 5 MG0467-MG0470, LP8490 

20 AZ WILLOW CREEK 35.141 -113.548 4 MG0717, MG0718, MG0720, 
MG0721 

21 AZ SITGREAVES PASS 35.046 -114.360 11 MG1069-MG1077, LP2962, LP8997 

22 CA AFTON CANYON 35.040 -116.381 4 MG0742-MG0745 

23 AZ BUCKEYE STATION 34.720 -114.242 7 LP7174, LP7206, MG0088-MG0092 

24 AZ WARM SPRINGS 34.748 -114.482 2 LP7190, LP7211 

25 CA PARK MOABI 34.710 -114.517 1 LP7200 

26 AZ HAVASU QUARRY 34.605 -114.353 2 MG0791, LP7134 

27 CA PEARBLOSSOM 34.602 -117.908 1 LP3190 

28 CA SIDEWINDER 
MOUNTAINS 

34.598 -117.143 1 MG0466 

29 CA CADIZ DUNES 34.403 -115.417 10 MG0970-MG0979 

30 CA SHEEPHOLE 
MOUNTAINS 

34.254 -115.717 4 MG1033-1036 

31 CA PARKER DAM ROAD 34.254 -114.174 1 LP7098 

32 AZ PARKER 34.146 -114.196 7 MG0782-MG0786, LP7189, LP7204 
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Table 2.1. Location and voucher information continued. 

Site State Locality Lat. Long. n Voucher Numbers 
33 CA TWENTYNINE 

PALMS 
34.091 -115.608 1 LP7113 

34 CA RICE ROAD 34.083 -115.128 2 LP8959, LP8960 

35 CA WHITE WATER 33.971 -116.653 2 LP3192, LP3421 

36 AZ UTTING 33.840 -113.884 2 MG0572, MG0573 

37 CA INDIO 33.743 -116.170 5 MG1029-1032, LP7218 

38 AZ SURPRISE 33.717 -112.378 10 MG0654-MG0663 

39 AZ QUARTSZITE 33.599 -114.311 5 MG1037-MG1041 

40 AZ EHRENBERG 33.596 -114.500 1 MG0699 

41 CA WILEY'S WELL 33.542 -114.883 9 MG0682-MG0690 

42 AZ SALT RIVER 33.499 -111.788 1 LP8489 

43 CA SALTON CITY 33.288 -116.021 5 MG1024-MG1028 

44 CA BORREGO SPRING 33.214 -116.375 1 LP5045 

45 AZ MARICOPA 32.990 -112.075 1 MG0753 

46 CA VALLECITO 32.972 -116.384 9 MG0118-0122, MG1119-MG1121, 
MG1123 

47 AZ GILA BEND 32.945 -112.723 1 VF0076 

48 AZ DATELAND 32.807 -113.553 1 VF0046 

49 CA LOS ALGODONES 32.724 -114.728 2 LP4452, VF0077 

50 CA HEBER DUNES 32.723 -115.388 1 LP10553 

51 AZ FORTUNA WASH 32.665 -114.382 5 MG0607-MG0610, LP1813 

52 BC LAGUNA SALADA 32.575 -115.743 1 LP3470 

53 AZ MARANA 32.475 -111.187 10 MG0637-MRG0646 

54 AZ AJO 32.351 -112.830 10 MG0624-MG0633 

55 SO CERRA PRIETA 32.234 -114.067 1 LP4458 

56 AZ BOPP ROAD 32.177 -111.066 1 LP3047 

57 SO SONOYTA 32.103 -113.785 3 LP4460, LP5087, LP5088 

58 SO CEDO DUNES 31.292 -113.498 1 LP2168 

59 BC SAN FELIPE 30.955 -114.796 1 LP4456 

60 BC PUNTA BUFEO 29.857 -114.442 2 LP3469, LP4457 

61 BC PUNTA CALAMAJUE 29.685 -114.163 1 LP8730 

62 SO BAY NEW KINO 28.921 -112.043 1 LP6328 

63 SO SAN CARLOS 27.952 -111.094 2 MG0787, MG0788 

64 SO HUATABAMPITO 26.697 -109.606 1 LP9971 
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Table 2.2. Primers used for amplification or sequencing of a 1029 bp portion of the 
mitochondrial gene for cytochrome oxidase subunit I (cox1). 
 

Name Direction Position Sequence (5' to 3') 

C1_HAD1_L Forward External CGTGCTGARATTGGAAGTCCTGG 

LCO Forward External GGTCAACAAATCATAAAGATATTGG 

C1_2776_MOD Reverse External GGATAATCAGAATAHCGAGG 

HCOoutout Reverse External GTAAATATATGRTGDGCTC 

Hariz_Int_F Forward Internal GCTATTACTATGTTGTTGACGG 

LE1r Reverse Internal GTAGCAGCAGTAAARTARGCYCGAGTATC 

Cruzr Reverse Internal CATACCCAAAGARCCAAAAGG 
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Table 2.3. Results from spatial analyses of molecular variance (SAMOVA) with different pre-defined number of groups (K) 
with samples sizes ≥ 4. Numbers in partitions reference sites identified in Figure 2.5. Abbreviations for fixation indices as 
follows: FSC = proportion of genetic variation between populations within groups; FST = proportion of genetic variation 
between populations and groups overall; FCT = proportion of among group genetic variation. 

K FSC FST FCT  
Partition 

2 0.6041 0.7619 0.3985 
 

(1, 2, 4, 8, 12, 14, 16, 19, 20, 21, 23, 29, 30, 32, 37, 38, 39, 41, 43, 46, 51, 53, 54)(5, 6, 18, 22) 

3 0.5693 0.7589 0.4402 
 

(1, 2, 4, 8, 12, 14, 16, 19, 20, 23, 29, 30, 32, 37, 38, 39, 41, 43, 46, 51, 53, 54)(5, 6, 18, 22)(21) 

4 0.5299 0.7550 0.4789 
 

(1, 2, 4, 8, 12, 14, 16, 19, 20, 23, 29, 30, 32, 37, 38, 39, 41, 43, 46, 51, 54)(5, 6, 18, 22)(21)(53) 

5 0.4332 0.7363 0.5348 
 

(1, 2, 12, 16, 19, 20, 23, 29, 30, 32, 37, 38, 39, 41, 43, 46, 51, 54)(4, 8, 14)(5, 6, 18, 22)(21)(53) 

6 0.4022 0.7270 0.5433 
 

(1, 2, 12, 16, 19, 20, 23, 29, 30, 32, 37, 39, 41, 43, 46, 51, 54)(4, 8, 14)(5, 6, 18, 22)(21)(38)(53) 

7 0.3667 0.7197 0.5573 
 

(1, 2, 12, 16, 19, 20, 23, 29, 30, 32, 37, 39, 41, 43, 51, 54)(4, 8, 14)(5, 6, 18, 22)(21)(38)(46)(53) 

8 0.3395 0.7161 0.5701 
 

(1, 2, 12, 16, 19, 20, 23, 29, 30, 32, 39, 41, 43, 51, 54)(4, 8, 14)(5, 6, 18, 22)(21)(37)(38)(46)(53) 

9 0.3240 0.7098 0.5708 
 

(1, 2, 12, 16, 19, 20, 29, 30, 32, 39, 41, 43, 51, 54)(4, 8, 14)(5, 6, 18, 22)(21)(23)(37)(38)(46)(53) 

10 0.2623 0.6894 0.5790 
 

(1, 2)(4, 8, 14)(5, 6, 18, 22)(12, 16, 19, 20, 29, 30, 32, 39, 41, 43, 51, 54)(21)(23)(37)(38)(46)(53) 
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Table 2.4. Nucleotide diversity (π), haplotype diversity (h), and results of Fu’s F (F), mismatch analyses, and estimated time to 
most recent common ancestor (TMRCA; in Ma) for groups in the northern clade (see text). Asterisks indicate values with 
associated p-values of <0.02 for Fu’s F (threshold value corresponding to α = 0.05). Graphs of mismatch distributions are 
displayed in Fig. 2.7. 

  
 

  
Sudden 

Expansion 
Spatial 

Expansion  
 

Group 
Number 

N π h F SSD r SSD r 
Distribution 

Curve 
TMRCA 

(95% HPD) 

I 146 0.007 0.982 -24.799* 0.001 0.007 0.001 0.007 unimodal 1.02 (0.64–1.43) 

II 32 0.002 0.841 -3.764* 0.008 0.057 0.008 0.057 unimodal 0.58 (0.25–0.93) 

III 21 0.003 0.910 -3.463* 0.004 0.017 0.006 0.017 unimodal 0.31 (0.13–0.54) 

IV 33 0.002 0.867 -4.630* 0.008 0.072 0.008 0.072 unimodal 0.20 (0.006–0.39) 

V 7 0.005 1.000 -2.987* 0.063 0.091 0.036 0.091 multimodal 0.59 (0.27–0.96) 

VI 11 0.003 0.836 -0.321 0.032 0.101 0.034 0.101 multimodal 0.35 (0.12–0.63) 
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Figure 2.1. The ‘Mojave Assembly Model’ of historical assembly for the Mojave Desert 
biota: (a) distribution of taxa sundered by the Bouse Formation and development of a 
through-flowing Colorado River between 9 and 4 Ma; (b) distribution of taxa isolated in 
desert basins in the western Mojave Desert (Antelope and Phelan Peak basins) and 
along the Lower Colorado River Valley between 4 and 2 Ma; (c) location of taxa isolated 
in desert basins developing during the Pleistocene; (d) fragmented arid refugia during 
the last glacial maximum; (e) expansion from arid refugia and secondary contact during 
the Holocene; (f) current boundaries of the Mojave Desert and adjacent Sonoran and 
Great Basin deserts. Figure redrawn from Bell et al. (2010). 
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Figure 2.2. Map depicting locations for samples of Hadrurus arizonensis Ewing used in 
genetic analyses. Numbers correspond to location information presented in Table 2.1. 
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Figure 2.3. Midpoint rooted consensus tree for Hadrurus arizonensis Ewing constructed 
using 1029 bp of cox1 mtDNA and estimated under a criterion of Bayesian inference. 
Black circles indicate nodes supported with posterior probabilities of 0.9 or greater. 
Roman numerals represent groupings indicated by SAMOVA.
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Figure 2.4. Map (a) and network (b) of mtDNA sequence haplotypes of Hadrurus arizonesis Ewing (c). Each circle in the 
network represents one haplotype. Circle size in both the map and network are proportional to sample size. Colors in the 
map correspond to the colors of each of the groups identified in the haplotype network. Lengths of lines connecting 
haplotypes in the network are proportional to the number of mutations between the haplotypes, with a 
transition/transversion ratio of 3:1. Roman numerals represent groupings indicated by SAMOVA. 
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Figure 2.5. Results from SAMOVA with the number of partitions (k) set to five (a) and six 
(b). Dotted lines indicate groups of populations that are geographically homogenous and 
maximally differentiated. Roman numerals indicate groups also recovered in the 
network (Fig. 2.4) analyses. 
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Figure 2.6. Results from a Mantel test of geographic distances (km) and genetic 
distances (uncorrected p-distance) for H. arizonensis.
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Figure 2.7. Bayesian skyline plots and mismatch distributions for the six mtDNA groups recovered in phylogenetic, network, 
and spatial analyses. The Bayesian skyline plots depict changes in population size over time, presented in thousands of years 
(Ka). Dashed lines in mismatch distributions represent the expected distribution if the populations underwent demographic 
expansion, whereas bars indicate the observed frequency of pairwise differences.
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Figure 2.8. Ultrametric tree with the topology and divergence times for major lineages 
within Hadrurus arizonensis Ewing as estimated in BEAST. Divergence times are 
presented as means and 95% highest posterior densities (HPD).  
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Figure 2.9. Graphical results from species 
distribution models generated using 
MAXENT and displayed using the maximum 
training sensitivity plus specificity 
threshold. Models represent climate 
predicted as suitable for Hadrurus 
arizonensis Ewing (dark shading) during 
current conditions (a) and two LGM 
conditions estimated from CCSM (b) and 
MIROC (c) climatic simulations. Black dots 
(a) represent occurrence records used to 
generate the models. Arrows indicate 
postulated glacial refugia discussed in the 
text. Note that areas predicted as suitable 
in the Sea of Cortez during the LGM were 
terrestrial at the time. 
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Figure 2.10. Multivariate environmental similarity surfaces (MESS) for projections of 
LGM climates based on (a) CCSM, and (b) MIROC climate simulations. Negative values 
(white and red) indicate areas of extrapolation into novel climates. 



 

47 

 

CHAPTER 3 

COMPARATIVE PHYLOGEOGRAPHY OF GIANT HAIRY SCORPIONS (HADRURUS) EXPOSES 

DIFFERENTIAL SENSITIVITES TO HISTORICAL CLIMATE CHANGE 

AMONG THE NORTH AMERICAN ARIDLANDS 

 

Abstract 

 A primary goal of comparative phylogeography is to characterize the spatial and 

demographic responses of different taxa to the same historical events. When distantly 

related and morphologically dissimilar taxa are compared, however, chances increase 

that phylogenetic signal and divergent phenotypes will influence patterns and confound 

interpretations. One way to minimize these effects is to compare closely related species 

with commensurable phenotypes. I used this approach to assess the influence of 

Pleistocene climate fluctuations in different North American aridlands by comparing the 

phylogeographic histories of three closely related and morphologically similar species of 

giant hairy scorpion (Hadrurus jedediah, H. spadix, and H. arizonensis). Phylogeographic 

analyses of mitochondrial sequence data (cox1) and climate-based distribution models 

suggest that all three species were impacted by glacial climates, but the magnitude of 

the impact differed substantially among species, presumably influenced by 

characteristics of the different regions occupied. In the Sonoran and Mojave deserts, H. 

arizonensis appears to have fragmented into at least six glacial refugia, with stronger 

bottleneck effects in the north. On the Colorado Plateau, H. spadix may have 
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fragmented into three glacial refugia, and demographic assessments predict stable 

population sizes in the west and a bottleneck in the east. In Mojave Desert, H. jedediah 

appears to have fragmented into three glacial refugia, but only recently colonized the 

Great Basin and Snake River Plain from the south. With effects from phylogenetic signal 

and phenotypic differences minimized, comparative phylogeography of giant hairy 

scorpions provides support to a hypothesis that the biotas of the Great Basin and Snake 

River Plain were the most sensitive of the North American aridland biotas to historical 

changes in climate. 

 

Introduction 

 As emphasized by Darwin (1859), phenotypic traits of related species are often 

derived from common ancestors and thus not independent. Instead, related species 

tend to resemble one another more than they resemble species drawn at random from 

a phylogeny, a phenomenon referred to as ‘phylogenetic signal’ (Blomberg and Garland 

2002; Losos 2008). In comparative studies, phylogenetic signal can be problematic (Burt 

1989; Harvey and Pagel 1991), making it difficult to distinguish between differences 

among patterns that are adaptive versus those that are products of common ancestry 

(Ricklefs 1996). Phylogenetic signal could also confound comparative phylogeographic 

studies aimed at determining if different taxa underwent similar responses to the same 

historical events (Gutiérrez-García and Vázquez-Domínguez 2011; for an early example 

see Riddle et al. 2000). In particular, when the taxa being compared are distributed in 

different biogeographic regions, it becomes hard to distinguish between responses that 



 

49 

 

may be unique to the respective areas versus responses driven by phylogenetic signal. 

This could complicate interpretations for researchers interested in understanding and 

comparing the biogeographic histories of areas or regions. Although there are statistical 

methods to correct for phylogenetic signal (such as phylogenetic independent 

contrasts), such methods generally increase error variances and weaken interpretations 

(Felsenstein 1985), and have generally not yet been adapted for use in comparative 

phylogeography. 

 An alternative to controlling for phylogeny, and thus minimizing effects from 

phylogenetic signal, is to compare taxa that are closely related and have shallow 

phylogenetic histories (MacDougall-Shackleton and Ball 1999); a technique that could 

easily be applied to comparative phylogeography. By controlling for phylogeny, 

differences or similarities in spatial and demographic responses to the same historical 

events (such as Pleistocene climate fluctuations) would more likely be driven by factors 

inherent to the system or region, such as topography, rather than idiosyncrasies among 

the study organisms. Taking taxon selection one step further, comparative 

phylogeography of related taxa that are morphologically similar, such as different 

species of ‘living-fossils’, would add an additional constraint on effects from phenotypic 

differences (although this many not control for physiological changes). Therefore, in a 

comparative phylogeographic context, related species of morphologically similar taxa, 

such as the ‘living fossils’, could be useful for addressing the influence that specific 

historical events have had on different regions. 
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 Dating to the Carboniferous (Jeram 1994; Coddington et al. 2004), scorpions 

(Order Scorpiones) are a textbook example of living fossils, so they could hold promise 

for such a comparative phylogeography. Herein, I compare the phylogeographic 

histories of three closely related, but differentially distributed, species of giant hairy 

scorpions (Hadrurus). All species of Hadrurus are similarly large (up to 127 mm), hirsute, 

and morphologically similar (Williams 1970), which has complicated taxonomic 

classifications and estimates of phylogeny (e.g. Williams 1970; Soleglad 1976; Fet and 

Soleglad 2008; Francke and Prendini 2008). The three species in this study are estimated 

to have diverged in the Miocene, but the phylogeographic histories within each species 

appear to be rooted in the Quaternary Period (unpublished data), a time when global 

climates are known to have undergone profound fluctuations that radically impacted 

many organisms (Hewitt 2000).  

 My objective was to assess the influence of Pleistocene climate fluctuations on 

organisms inhabiting different North American aridlands. To accomplish this, I 

conducted a comparative phylogeography by investigating the phylogeographic histories 

of Hadrurus jedediah Prendini et al. (in prep) and Hadrurus spadix Stahnke, and 

reanalyzing phylogeographic data for H. arizonensis (Ewing) (Chapter 2). Until recently, 

H. jedediah was considered synonymous with H. spadix, but the species is currently 

being described as a distinct species based on genetic patterns and subtle morphological 

differences (Prendini et al. in prep). The distribution of H. jedediah is predominately 

within the Great Basin and Mojave deserts, whereas H. arizonensis occurs throughout 
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the Mojave Deserts and southward into the Sonoran Desert. Hadrurus spadix is endemic 

to the Colorado Plateau.  

Using mitochondrial sequence data from samples collected throughout the 

ranges of these scorpions, I assessed patterns of genetic diversity using methods from 

landscape and population genetics. In order to evaluate potential range shifts caused by 

historical fluctuations in climate, I also developed climate-based species distribution 

models (SDMs) for each species and projected (hindcasted) the predictions onto 

estimates of climate conditions during the last glacial maximum (LGM) (approach 

reviewed in Nogués-Bravo 2009). Earlier Pleistocene glacial periods are expected to 

have experienced climates similar to that of the LGM (Webb and Bartlein 1992; Bintanja 

et al. 2005), so I evaluated SDMs under the assumption that such modeling can provide 

insight into general climatic trends during Late Pleistocene glacial periods. Since the 

focal species are closely related and morphologically similar, I compared their 

phylogeographic histories under the assumption that patterns were not largely 

influenced by phylogenetic signal and divergent phenotypes, and instead represent the 

differential influence that Pleistocene climate cycles had in the aridlands. 

 

Materials and Methods 

Taxon Sampling 

 I sequenced 141 samples of H. jedediah from 56 localities and 43 samples H. 

spadix from 13 localities (Fig. 3.1, Appendices 3, 4). I also used data from 256 samples 

representing 64 sites from my recent phylogeographic study of H. arizonensis (Chapter 
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2). I identified species based on the locations where samples were collected, and by a 

combination of diagnostic morphological features (Prendini et al. in prep). All samples 

were processed as voucher specimens and preserved in the American Museum of 

Natural History and the San Diego Natural History Museum. 

 

Species Distribution Models 

 I constructed SDMs using a total of 152 occurrence points for H. jedediah and 36 

points for H. spadix, representing a combination of the sampling localities and additional 

locations from museum specimens. I compiled occurrence records from museum 

collections (San Diego Natural History Museum, Smithsonian, California Academy of 

Sciences, and American Museum of Natural History) and from GPS coordinates 

associated with my field collections. As above, I identified the museum specimens to 

species by visually assessing a combination of morphological characters. The majority of 

museum records lacked coordinate data, so I used GOOGLE EARTH 

(http://earth.google.com) to estimate latitude and longitude from information on 

voucher labels. I excluded records with errors greater than five kilometers so that the 

occurrence data matched the spatial resolution of the modeling rasters (2.5 arc-

minutes). 

For species distribution modeling, I used MAXENT v. 3.3.2 (Phillips et al. 2006) 

which has been shown to perform better than other modeling software (Elith et al. 

2006). Additional input data included a unique subset of data layers for each species, 

chosen from the 19 bioclimatic layers used in Chapter 2. For H. arizonensis, I used the 
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same models that were constructed for Chapter 2. For H. jedediah and H. spadix, I chose 

subsets of bioclimatic layers by removing highly correlated layers following Chapter 2, 

except that I used quarter climates over monthly climates and precipitation during the 

coldest quarter over precipitation during the wettest quarter. Final subsets comprised 

11 bioclimatic layers for H. jedediah and 9 layers for H. spadix. For H. jedediah, I used 

the following layers: Bio2, mean diurnal range; Bio3, isothermality; Bio4, temperature 

seasonality; Bio5, maximum temperature of the warmest month; Bio6, minimum 

temperature of the coldest month; Bio8, mean temperature of the wettest quarter; 

Bio9, mean temperature of the driest quarter; Bio15, precipitation seasonality; Bio16, 

precipitation of the wettest quarter; Bio17, precipitation of the driest quarter; Bio18, 

precipitation of the warmest quarter. For H. spadix I used: Bio2; Bio3; Bio7, temperature 

annual range; Bio8; Bio9; Bio11, mean temperature of coldest quarter; Bio14, 

precipitation of the driest month; Bio15; Bio18. Final subsets were masked (clipped) to 

the ecoregions that contained occurrence records (Arizona/New Mexico Plateau, 

Central Basin and Range, Northern Basin and Range, Mojave Basin and Range, Colorado 

Plateau, Snake River Plain; Olson et al. 2001). 

I ran MAXENT using logistic output with default settings except for random 

seeding. I then projected final models onto CCSM (Otto-Bliesner et al. 2006) and MIROC 

(Hasumi and Emori 2004) simulations of climatic conditions during the LGM. Model 

robustness was assessed following procedures outlined in Chapter 2. 

 

Molecular Techniques 
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 As done with H. arizonensis (Chapter 2), I isolated total genomic DNA from leg 

tissues of H. jedediah and H. spadix using a standard phenol-chloroform extraction and 

DNeasy Extraction Kit (Qiagen Inc., Valencia, CA, USA). I sequenced a portion of the 

mitochondrial gene for cytochrome oxidase subunit I (cox1) for H. jedediah and H. 

spadix samples using procedures identical to those used for H. arizonensis (Chapter 2). 

To align sequences, I used SEQUENCHER v. 4.6 (Gene Codes Corp Inc., Ann Arbor, MI, 

USA) and verified alignments against those from the H. arizonensis dataset. 

 

Phylogeographic Analyses 

 I used NETWORK v. 4.5.1.6 (Fluxus Technology Ltd 2004) to construct median-

joining networks (Bandelt et al. 1999) of the cox1 haplotypes for each species. Unlike 

tree-based approaches, networks do not assume that ancestral haplotypes are extinct, 

allowing for better estimates of relationships among sequences when genetic structure 

is shallow (Crandall and Templeton 1996). I first constructed preliminary networks for 

each species to explore the effect of different transition/transversion weighting 

schemes, although changing these parameters made little difference to network 

topologies. I constructed final networks with transitions and transversions weighted 3 to 

1, and used the maximum parsimony option to remove excessive links (Polzin and 

Daneshmand 2003). 

I used ARLEQUIN v. 3.11 (Excoffier et al. 2009) to estimate nucleotide diversity 

(π) and haplotype diversity (h) for each species, and for all but one of the haplogroups 

within H. jedediah and H. spadix that were inferred from the haplotype network (one 
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group was not assessed due to an insufficient sample size; see Results). In a comparative 

context, these diversity indices have been shown to reveal patterns of past population 

expansion or contraction (Grant and Bowen 1998; Kerdelhue et al. 2009). As an 

additional test of demographic expansions, I used ARLEQUIN to calculate Fu’s F (Fu 

1997) statistics for each species and each haplogroup. 

To visually assess the distribution of genetic diversity for each species, I 

constructed landscape interpolations of nucleotide and haplotype diversity. First, I 

pooled localities for each species within 10 km from each other and without obvious 

intervening biogeographic barriers. Using ARLEQUIN, I then calculated nucleotide and 

haplotype diversity for individual sites with sample sizes of ≥4 for H. jedediah (due to 

sampling limitations in the eastern Mojave Desert), and ≥8 for H. spadix and H. 

arizonensis. I then interpolated each of these values across the areas of currently 

suitable climate for each species (as predicted by SDMs) using the inverse distance 

weighted interpolation procedure of the spatial analyst package (Watson and Philip 

1985) in ARCGIS.  

To assess spatial patterns of genetic differentiation within each species, I used 

ALLELES IN SPACE v. 3.11 (Miller 2005; Miller et al. 2006) to generate pairwise genetic 

distances from a Delaunay triangulation-based connectivity network (Brouns et al. 2003; 

Watson 1992). Distance values were calculated as residuals from a regression of genetic 

and geographic distances, which corrects for autocorrelation between these measures 

(Miller et al. 2006). Values were then interpolated onto a 50 x 50 grid in ALLELES IN 

SPACE with the distance weighting parameter set to 0.5. 
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I used BEAST v. 1.5.4 (Drummond and Rambaut 2007) to estimate time to most 

recent common ancestor (TMRCA) for each species and each haplogroup with an 

adequate sample size (>8), using best-fit substitution models calculated using 

JMODELTEST v. 0.1.1 and the Akaike information criterion (AIC; Posada 2008). Since 

fossil data are not available, I calibrated the analyses using a cox1 mutation rate of 0.007 

substitutions/site/million years using an uncorrelated lognormal clock model. This rate 

was estimated for an unrelated group of scorpions (Gantenbein et al. 2005), but has 

been used in other assessments of scorpions species (e.g. Prendini et al. 2005; Borges et 

al. 2010; Graham et al. 2012). I set the standard deviation to 0.003, thereby 

encompassing an alternative mutation rate for scorpions estimated for 16S rDNA 

(Gantenbein and Largiadèr 2002; see Chapter 2). I ran BEAST for 50 million generations 

for H. jedediah and H. spadix, and for each haplogroup, but ran two independent runs 

for H. arizonensis in order to reach ESS values greater than 200. After discarding 10% of 

the generations as burn-in, I used Tracer to ensure stationarity, to obtain TMRCA 

estimates, and to draw the Bayesian skyline plots. 

 

Results 

Species Distribution Models 

 The various SDMs yielded high AUC scores for both training and testing data 

(both > 0.95), indicating that the models performed significantly better than random 

(Raes and ter Steege 2007). Under current climatic conditions, the SDM for H. jedediah 

indicated that areas of suitable climate encompassed most of the Mojave Desert, 
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extending north through the low to mid-elevations of the western Great Basin, and into 

the Snake River Plain of southern Idaho and eastern Oregon (Fig. 3.2a). No regions of 

suitable climate were predicted in the eastern Great Basin for this species except for a 

small disjunct low elevation patch in the Bonneville Basin, which was part of Lake 

Bonneville during pluvial maxima (Grayson 1993). 

Models of areas that might be suitable for H. jedediah during the LGM were 

similar under both CCSM and MIROC projections (Figs. 3.2d & 3.2g). Both models 

suggested that the Great Basin was devoid of suitable climate during the LGM except for 

small isolated patches in the Lahontan Trough north of Reno, NV, much of which was 

under water during pluvial maxima (Grayson 1993). Suitable climate was predicted to 

have remained available during the LGM in parts of the Mojave Desert, Salton Trough, 

sections of the Lower Colorado River Valley, and along the majority of the California 

coast, the coastal ranges, and California’s Central Valley. The models also highlighted a 

potentially isolated glacial refugium at the northern end of the Lower Colorado River 

(see discussion of this region in Chapter 2). The greatest difference between the two 

LGM models for H. jedediah was along the Snake River Plain, which was predicted to 

have retained suitable climate in the MIROC model (Fig. 3.2g) but not in the CCSM 

model (Fig. 3.2d).  

The SDM for H. spadix under current climatic conditions (Fig. 3.2b) indicated 

suitable climate throughout much of the Colorado Plateau and portions of the southern 

Great Basin Desert and eastern Mojave Desert. In the eastern portion of this range, the 

distribution of suitable climate extended into western Colorado and northwestern New 
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Mexico following the drainages of the Colorado, Delores, and San Juan rivers. During the 

LGM, Both the CCSM and MIROC models for H. spadix suggested that the majority of 

this area on the Colorado Plateau was not suitable (Figs. 3.2e, h). Both models, however, 

depicted small patchworks of suitable climate in portions of the Mojave Desert, but the 

MIROC model also included suitable patches within the northern end of the Lower 

Colorado River Valley (see Chapter 2). The MIROC model also predicted a large area of 

suitable climate along the Mogollon Rim in Arizona, the northeast Sonoran Desert, and 

into the Madrean region of northern Mexico. 

 

Phylogeography 

 Mitochondrial cox1 sequences contained 101 variable and 63 parsimony 

informative sites for H. jedediah, and 39 variable and 24 parsimony informative sites for 

H. spadix. From these data, I identified a total of 90 unique halpotypes (70 and 20 

respectively). In H. arizonensis, I had previously identified 149 variable and 103 

parsimony informative sites among 141 haplotypes (Chapter 2). Careful examination of 

chromatograms revealed no evidence of co-amplification of nuclear mitochondrial 

pseudogenes in any of the sequences (Bertheau et al. 2011). 

The median-joining haplotype network for H. jedediah (Fig. 3.3a) revealed three 

main haplogroups. The largest haplogroup formed the center of the network and 

consisted of haplotypes distributed throughout the Mojave Desert (Mojave 

Haplogroup). An additional haplogroup, nine mutational steps removed from the central 

group, consisted of haplotypes narrowly distributed within the eastern Mojave Desert, 
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ranging from the Amargosa Valley to the Las Vegas Valley (Southern Nevada 

Haplogroup). A third haplogroup, also nine steps removed from the central group, 

consisted of specimens from northern portions of the sampling distribution (Northern 

Haplogroup). Within this haplogroup, individuals from the northern Great Basin Desert 

and Snake River Plain formed a star-shaped network  (indicated by white circles in Fig. 

3.3a), a pattern that can indicate recent demographic expansion (Avise 2000). 

The median-joining network for H. spadix also consisted of three haplogroups 

which were separated by a minimum of 8 and 9 mutational steps (Fig. 3.3b). These 

haplogroups were arranged geographically, with a group in the Grand Canyon and Virgin 

Mountains (Western Haplogroup), a group in the Grand Canyon and Little Colorado 

River Valley (Central Haplogroup), and a group from the Canyonlands of southern Utah 

and northern Arizona (Eastern Haplogroup). Of these, the haplogroup from the Grand 

Canyon and Virgin Mountains contained the greatest genetic diversity, whereas the 

haplogroup from the Canyonlands formed a star shape in the network. The number of 

mutational steps among the four samples in the Grand Canyon and Little Colorado River 

Valley was greater than those within the haplogroup to the northeast, although 

sampling was too limited to provide a meaningful assessment of this genetic diversity. 

Landscape interpolations of genetic distance values (Fig. 3.4) formed geographic 

clines of high to low genetic distances for each species. For H. jedediah, genetic 

distances were relatively high in the south, with the highest differentiation occurring as 

high peaks in the southwest and southeast in the Mojave Desert and southern Great 

Basin. At approximately 38°N, distance values decreased considerably, with the lowest 
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values occurring in the low-elevations areas of the Lahontan Trough within the Great 

Basin. Genetic distance interpolations for H. spadix reveal a geographic cline running 

from the southwest to northeast, with the highest values in the west along the Grand 

Canyon region, eastern Mojave Desert, and southeast Great Basin. For H. arizonensis, 

genetic distances were greatest in the southeast, gradually decreasing to the northwest. 

Two troughs of low distance values occurred along this cline, one in the vicinity of Lower 

Colorado River Valley, and another in the extreme northwest in areas surrounding the 

Amargosa Valley. 

 

Demographic Analyses 

 Comparisons of nucleotide and haplotype diversity can reveal patterns of past 

demographic expansion and/or constriction (Grant and Bowen 1998). Nucleotide 

diversity values greater than 0.005 and haplotype diversity values greater than 0.5 are 

considered high, whereas values lower than these thresholds are considered low (Grant 

and Bowen 1998). Nucleotide and haplotype diversity were high for each species (Table 

3.2), indicating significant genetic structuring. For H. jedediah, both the Northern 

Haplogroup and the Southern Nevada Haplogroup contained high haplotype diversity 

but low nucleotide diversity, a pattern indicative of recent population growth. A similar 

pattern was present for the Eastern Haplogroup in H. spadix. For the Mojave 

Haplogroup in H. jedediah and the Western Haplogroup of H. spadix both nucleotide 

and haplotype diversity were high, indicating the potential that these groups maintained 

larger, and more stable effective population sizes. Values of Fu’s F were negative for 
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each species and each haplogroup, which is expected for groups that have undergone 

expansions (Table 3.2).  Although samples sizes were small, the values were not 

significant for the southern haplogroup in H. jedediah and the Western haplogroup in H. 

spadix, indicating that a model of stability could not be rejected for these groups. 

For H. jedediah, the landscape interpolation of nucleotide diversity, clipped to 

areas of currently suitable climate, indicated high diversity in the south with decreasing 

diversity northward (Fig. 3.5a). The interpolation of haplotype diversity is similar (Fig. 

3.5d), but with an area of low diversity at the transitional region between the Great 

Basin and Mojave deserts near the White-Inyo Mountain Range. Furthermore, an area 

of low nucleotide diversity and high haplotype diversity occurs along the Owens River 

Valley, which extends north from the Mojave Desert. In combination, these data 

suggested that populations of H. jedediah probably remained stable along the northern 

Lower Colorado River Valley and in parts of the northern Mojave, but expanded 

northward into the Great Basin and most recently into the Snake River Plain. 

Landscape interpolations of nucleotide diversity for H. spadix indicated high 

diversity in the western portion of the predicted distribution and much lower nucleotide 

diversity in the east (Fig. 3.5b). The interpolation of haplotype diversity is similar except 

that values were high in the northeastern areas (Fig. 3.5e) near Moab, Utah (site 51). 

This pattern is consistent with a bottleneck or founder event, suggesting that 

populations of H. spadix could have remained stable in the western part of its range and 

undergone a recent demographic expansion to the northeast. Results from 

interpolations of nucleotide and haplotype diversity in H. arizonensis depicted a general 
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trend of high diversity in the south, especially the southeast, with decreasing diversity 

northward. 

Although confidence intervals are large, Bayesian skyline plots (Fig. 3.6) 

portrayed similar trend lines for each H. jedediah haplogroup, indicating that population 

sizes for groups of this species appear to have undergone demographic expansion 

starting about 50 to 100 Ka. For H. spadix, the small samples size resulted in little 

predictive power, although the pattern may indicate that the population remained 

relatively stable through the late Pleistocene and Holocene. For H. arizonensis, BSPs 

depict population growth during the late Pleistocene, but relatively stable population 

sizes for Groups II-VI through the late Pleistocene and Holocene (Chapter 2). TMRCA 

estimates for the groups within these species all fell within the late Pleistocene. Mean 

estimates of the TMRCA for H. jedediah and H. spadix were in the mid Pleistocene, with 

that for H. arizonensis in the late Pliocene (Table 3.2). 

 

Discussion 

Giant Hairy Scorpion Phylogeography 

 Climate models for H. arizonensis predicted fragmented areas of suitable climate 

during the LGM, particularly in the Mojave Desert (Figs. 3.2f, 3.2i), and mitochondrial 

data revealed a minimum of six geographically structured lineages (Fig. 3.3c). Several of 

the lineages overlap the areas predicted to contain suitable climate during the LGM, so 

historical fragmentation of suitable climate may have facilitated lineage formation 

within the species. Genetic diversity was generally higher in the southern distribution of 
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H. arizonensis, decreasing northward (Figs. 3.4c, 3.5c, f). Under the assumption that 

earlier Pleistocene glacial periods experienced climates similar to that of the LGM, these 

results suggest that the phylogeography of H. arizonensis was shaped by a history of 

fragmentation into glacial refugia (Fig. 3.7c) with resultant reduction of population sizes, 

followed by demographic expansion as climate warmed. Lower diversity within northern 

populations could reflect stronger bottleneck effects than in areas further south (see 

Chapter 2 for details). 

 The majority of the genetic diversity within H. jedediah occurs within the Mojave 

Desert (Figs. 3.4a, 3.5a, d), and a haplotype network revealed three main haplogroups 

within this species (Fig. 3.3a). All three haplogroups are present in the Mojave Desert, 

but only one occurs in the Great Basin and Snake River Plain (Fig. 3.7a). Since the 

western Great Basin and Snake River Plain contain only a subset of haplotypes that are 

found in the south, H. jedediah may have expanded recently from the south into these 

northern areas following a leading edge model of colonization (Hewitt 1996). 

Demographic analyses are concordant with this scenario, as genetic patterns within the 

northern haplogroup of H. jedediah are consistent with population expansion (Table 3.2, 

Fig. 3.6). 

The SDMs also support a hypothesis of recent northward expansion by H. 

jedediah. Currently suitable climates in the Great Basin and Snake River Plain were 

predicted to be mostly unsuitable during the LGM (Fig. 3.2d, g). In the Mojave Desert, 

however, the SDMs predicted maintenance of suitable climate during the latest glacial 

period, although in smaller, more fragmented areas than depicted currently (Figs. 3.2d, 
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g). Interestingly, SDMs also predicted a large area of suitable climate for H. jedediah 

along the California coast and California’s Central Valley during the LGM. Although 

Hadrurus have never been documented from the California coast, Hadurus obscurus 

Stahnke, a species closely related to H. jedediah and H. spadix (Francke and Prendini 

2008; unpublished data), is known from California’s Central Valley. 

To the east, SDMs predicted areas with currently suitable climate for H. spadix 

throughout the Colorado Plateau and in parts of the eastern Mojave Desert and 

southern Great Basin (Fig. 3.2b). During the LGM, however, no suitable climate was 

predicted on the Colorado Plateau (Figs. 3.2e, h). Instead, the distribution was predicted 

to have been shifted to the south and to the west during the LGM, with the most 

proximal areas of suitable climate found along the Colorado River just west of the Grand 

Canyon, as well as within the Virgin River Basin. The haplotype network for H. spadix 

revealed three geographically structured haplogroups (Fig. 3.3b), two of which have 

coalescent times in the late Pleistocene (Table 3.2). During late Pleistocene glacial 

periods, the climate of the Colorado Plateau was in general much cooler and drier than 

it is today, and vertical distributions of many plant species were displaced to lower 

elevations (Betancourt 1990). If H. spadix underwent a similar response to glacial 

climates, then the lack of suitable climate on the Colorado Plateau depicted by the 

models (Figs. 3.2e, h) could be due to using bioclimatic rasters (layers) that were too 

coarse to capture fine-scale climate conditions within canyons. 

The westernmost haplogroup within H. spadix consisted of individuals collected 

from the western Grand Canyon and the Virgin Mountains. The western Grand Canyon 
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is essentially a low-elevation corridor of warm desert extending into the Colorado 

Plateau (Cole 1990), providing an elevational gradient of different microhabitats along 

which organisms like H. spadix could have endured changing climates. This seems 

particularly true for rocky south-facing slopes and hillsides, which could have retained 

solar radiation and perhaps remained warmer than adjacent habitats during glacial 

cycles. Although my sample size was small (12 individuals from 3 sites), demographic 

analyses suggest that the effective population size of the western haplogroup has 

remained stable (Table 3.2, Fig. 3.6).  

On the eastern Colorado Plateau, I found another haplogroup distributed along 

the San Juan and Upper Colorado rivers, potentially reflecting another glacial refugium 

in this area. Although the sample size was small, the star-shaped haplotype network 

(Fig. 3.3b) and patterns of genetic diversity of this eastern haplogroup (low π and high h 

- Fig. 3.5) are consistent with a population bottleneck followed by rapid population 

growth (Grant and Bowen 1998). Haplotype diversity in this group was highest in the 

northeast (Figs. 3.5e), so H. spadix in the eastern Colorado Plateau may have expanded 

from a glacial refugium along the Upper Colorado River drainage (Fig. 3.7b). 

Demographic analyses of the eastern haplogroup portray conflicting results, as Fu’s F 

rejected a hypothesis of demographic stability (Table 3.2) but the Bayesian skyline plot 

indicated a stable effective population size (Fig. 3.6). However, credibility intervals for 

the estimated effective population size of the Eastern Haplogroup (based on 27 

individuals from 3 sites) were large and the coalescent time was recent (Table 3.2), so 

the sequence data may not have contained enough variation to detect the true 
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demographic signal. I also detected a haplogroup in H. spadix from areas along the 

drainage of the Little Colorado River in northern Arizona, so the species may have 

retained populations in this area during glacial periods as well. Unfortunately, my 

sample size was not large enough for demographic analyses of this group. 

The SDMs predicted suitable climate in areas within the eastern Mojave Desert 

and southern Great Basin (Fig. 3.2b), and although my sampling was limited, I have not 

documented any records of H. spadix from this region. Instead, this area is within the 

known distribution of H. jedediah. Potentially westward expansion of H. spadix may be 

inhibited by competitive or demographic processes associated with its close relative. 

Alternatively, the current distribution of H. spadix might actually reflect ecological 

conditions (such as sandstone habitats of the Colorado Plateau) that were not reflected 

in the climatic layers used for modeling. Such factors seem especially prone to influence 

scorpion distributions since scorpions tend to exhibit strong ecological stenotopy and 

are known to be influenced by edaphic conditions (Fet et al. 1998; Prendini 2001, 2005). 

 

Comparative Phylogeography: Differential Impact of Pleistocene Climates 

 Pleistocene climate oscillations appear to have influenced the sizes and 

distributions of Hadrurus scorpions in the Mojave Desert, Sonoran Desert, Great Basin, 

Colorado Plateau, and Snake River Plain. Demographic responses and the scale and 

direction of distributional shifts, however, varied considerably among the species and 

regions. Phylogeographic patterns suggest that the distributions H. arizonensis, H. 

jedediah, and H. spadix all deceased in size during the LGM. Of these species, H. 
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arizonensis appears to have experienced the smallest reduction, but the highest degree 

of fragmentation, as it may have endured glacial conditions in six or more refugia 

(Chapter 2). This pattern is generally consistent with those from co-distributed 

organisms in the Mojave and Sonoran Deserts that also appear to have endured glacial 

periods in isolated desert refugia (Bell et al. 2010). These deserts experience less 

seasonality than regions to the north, so extreme conditions during glacial periods do 

not appear to have been as severe as in northern areas. In addition, the Mojave and 

Sonoran deserts are at lower mean elevations than the adjacent arid regions, so mean 

temperatures during glacial periods were generally warmer (Grayson 1993). 

 On the Colorado Plateau, the distribution of H. spadix also appears to have 

decreased in size and became fragmented during the LGM, but potentially with more of 

a range reduction than H. arizonensis and less fragmentation. Genetic data suggest that 

H. spadix endured glacial conditions in at least three refugia and colonized much of the 

current range on the Colorado Plateau, especially the eastern portion, as climate 

warmed following the LGM (Fig. 3.7b). Other plants and animals of the Colorado Plateau 

are thought to have responded similarly. According to data from macrofossils 

(Bentancourt et al. 1990; Thompson and Anderson 2000), plants currently inhabiting the 

Colorado Plateau underwent similar responses to glacial climates, as some tree species, 

such as Pinus ponderosa Douglas ex Lawson (ponderosa pine) and Pinus edulis 

Engelmann (Colorado pinyon), were displaced southward during the glacial periods. 

Phylogeography of some animal taxa on the Colorado Plateau, such as Bufo punctatus 

Baird and Girard (red-spotted toads) and the Perognathus fasciatus Wied-Neuwied 
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species group (silky pocket mice), have indicated close affinities with the Chihuahuan 

Desert, southern Rocky Mountains, and Great Plains (Jaeger et al. 2005; Neiswenter and 

Riddle 2011). Phylogeographic patterns from others, such as Xantusia Baird (night 

lizards; Sinclair et al. 2004), Hypsiglena Cope (night snakes; Mulcahy 2008), Crotalus 

Linnaeus (rattlesnakes; Pook et al. 2000; Ashton and de Queiroz 2001), and Sceloporus 

Wiegmann (spiny lizards; Orange 1997; Schulte et al. 2006; Leaché and Mulcahy 2007) 

suggest a western ancestry in the Sonoran and Mojave deserts. Thus, as inferred by 

Leaché and Mulcahy (2007), the Colorado Plateau has a mixed ancestry, with a modern 

biota containing a combination of species from surrounding arid regions. 

Phylogeographic patterns suggest that H. jedediah underwent a severe 

distributional response to changing climates during glacial cycles. As predicted by SDMs 

(Fig. 3.2), H. jedediah appears to have only recently colonized the entire northern half of 

its current distribution. Contrary to the Mojave and Sonoran deserts, the northern areas 

of the Great Basin and Snake River Plain experience greater seasonality and colder mean 

temperatures due to their more northern latitudes and lower elevations. During the 

glacial periods, organisms within these regions would have had to either track their 

climate niche by shifting distributions, or endure extreme climate conditions in situ by 

altering their realized niches. Phylogeographic analyses of Great Basin rodents, 

Dipodomys microps Merriam (chisel-toothed kangaroo rat; Jezkova et al. 2011) and 

Microdipodops megacephalus Merriam (dark kangaroo mouse; Hafner and Upham 

2011) suggest that these rodents shifted realized niches and persisted in the Great 

Basin. Alternatively, genetic patterns from Phrynosoma platyrhinos Girard (desert 
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horned lizard; Jezkova 2010), Neotoma cinerea (Ord) (bushy-tailed woodrat; Hornsby 

and Matocq 2011), and those described herein for H. jedediah all indicate that they 

shifted distributions, and only recently colonized the northern areas since the LGM from 

more stable regions in the south (but see Chapter 4 for a novel response). 

In summary, H. arizonensis and H. spadix appear to have endured Pleistocene 

glacial episodes in patches of suitable climate throughout their distributions, but H. 

jedediah may have been more severely impacted, only recently colonizing the western 

Great Basin and Snake River Plain from glacial refugia to the south. Since H. arizonensis, 

H. jedediah, and H. spadix are closely related and morphologically similar, these 

differences should reflect the relative influence of Pleistocene climates and topography 

in different North American aridlands, rather than resulting from divergent phenotypes 

or phylogenetic signal. Working under this assumption, the arid biotas of the Mojave 

Desert, Sonoran Desert, Great Basin, Colorado Plateau, and Snake River Plain all appear 

to have been impacted to some degree by Pleistocene glacial cycles. The Great Basin 

and Snake River Plain biotas, however, may have been particularly sensitive, as many of 

the current species occupying these regions appear to have only recently colonized as 

glacial conditions retreated and climates warmed. 
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Table 3.1 Location and voucher information for genetic samples used in this study. Site 
numbers correspond with localities portrayed in Fig. 3.1. Coordinates only represent the 
general sample area. 

Site Species State Locality Lat. Long. n Voucher Numbers 

1 H. jedediah CA BERDOO CYN 33.8276 -116.1512 3 LP8909, LP8950, 
LP8506 

2 H. jedediah CA PALMDALE 34.5082 -117.9790 2 MG1110, MG1111 

3 H. jedediah CA PROVIDENCE MTS 34.9148 -115.5457 4 MG1125, MG1126, 
MG1127, MG1128 

4 H. jedediah AZ OATMAN 35.0087 -114.3880 1 LP2444 

5 H. jedediah CA MOJAVE 35.0689 -118.2410 1 MG0711 

6 H. jedediah NV XMAS TREE PASS 35.2612 -114.7440 5 MG1051, MG1053, 
MG1054, MG1057, 
MG1058 

7 H. jedediah CA JAWBONE CYN 35.3175 -118.0810 1 LP7225 

8 H. jedediah CA MORNING STAR 
MINE 

35.3627 -115.4229 1 LP8503 

9 H. jedediah CA AVAWATZ MTS 35.5191 -116.3184 1 LP4396 

10 H. jedediah NV NIPTON RD 35.5197 -115.1400 2 MG0221, MG0222 

11 H. jedediah NV MESQUITE DUNES 35.7622 -115.5797 3 MG0227-MG0229 

12 H. jedediah NV SANDY VALLEY 35.9016 -115.3973 1 LP8512 

13 H. jedediah CA WILD ROSE 36.0926 -117.1327 1 MG0775 

14 H. jedediah NV NELLIS AFB 36.2231 -115.0190 1 MG0793 

15 H. jedediah NV BLUE POINT 36.3928 -114.4425 1 MG0570 

16 H. jedediah CA EMIGRANT CYN 36.4102 -117.1747 2 MG0464, MG0465 

17 H. jedediah CA ECHO CYN 36.5049 -116.7070 2 MG0771, MG0985 

18 H. jedediah CA TUTTLE CREEK 36.5058 -118.1733 8 MG0455-MG0462 

19 H. jedediah CA SALINE VALLEY 36.5599 -117.5870 1 LP5039 

20 H. jedediah CA LONG JOHN CYN 36.6693 -117.9707 8 MG0300, MG0301, 
MG0303-MG0308 

21 H. jedediah CA MESQUITE SPRINGS 36.9631 -117.3710 1 LP4975 

22 H. jedediah NV SARCOBATUS 37.0400 -116.8157 9 MG0938-MG0946 

23 H. jedediah CA GLACIER LODGE RD 37.0597 -118.2637 1 LP8904 

24 H. jedediah CA EUREKA DUNES 37.1093 -117.6741 6 MG0149, MG0150, 
MG0566-MG0569 

25 H. jedediah NV N BEATTY 37.2946 -117.0462 1 MG0014 

26 H. jedediah CA DEEP SPRINGS 37.3130 -118.1031 1 MG0317 

27 H. jedediah CA TUNGSTON HILLS 37.3567 -118.5291 6 LP5046, MG0311-
MG0315 

28 H. jedediah NV TIKABOO 37.5740 -115.6079 10 MG0908-MG0917 
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Table 3.1. Location and voucher information continued 

Site Species State Locality Lat. Long. n Voucher Numbers 

29 H. jedediah NV MURIETTA 38.2461 -118.3905 1 MG0441 

30 H. jedediah NV LUNAR CRATER 38.3892 -116.0684 1 MG0316 

31 H. jedediah NV BLACK DYKE MT 38.3949 -118.1811 1 LP4777 

32 H. jedediah NV MINA 38.4293 -118.0657 10 MG0415, MG0416, 
MG0847-MG0854 

33 H. jedediah NV HAWTHORNE 38.6111 -118.7176 1 LP6295 

34 H. jedediah NV BLOW SAND MTS 39.1990 -118.7221 2 MG0443, MG0444 

35 H. jedediah NV KINGSTON 39.2080 -117.0929 2 MG0877, MG0878 

36 H. jedediah NV FERNLEY 39.5073 -119.2175 3 MG0419-MG0421 

37 H. jedediah NV SPARKS 39.8553 -119.6559 1 LP6296 

38 H. jedediah NV HONEY LAKE 
VALLEY 

40.1290 -119.8215 1 MG0442 

39 H. jedediah NV GERLACH 40.6431 -119.3127 2 MG0289, MG0290 

40 H. jedediah NV WINNEMUCCA 41.1256 -117.7631 9 MG0278-MG0285 

41 H. jedediah NV SURPRISE VALLEY 41.1622 -119.9612 2 MG0287, MG0288 

42 H. jedediah ID BRUNEAU CYN 42.7622 -115.7394 2 MG0257, MG0258 

43 H. jedediah ID GLENNS FERRY 43.0174 -115.2463 10 MG0246-MG0255 

44 H. jedediah ID MURPHY 43.2012 -116.5861 9 MG0268-MG0277 

45 H. spadix AZ SUNSET CRATER 35.6053 -111.3684 3 LP7792, MG1016, 
MG1018,  

46 H. spadix AZ BRIGHT ANGEL 36.0660 -112.1369 2 MG1009, MG1010 

47 H. spadix AZ TOROWEAP 36.2256 -113.2263 1 MG1017 

48 H. spadix AZ VIRGIN MTS 36.6622 -114.0116 10 MG0162, MG0959-
MG0967 

49 H. spadix AZ LEE'S FERRY 36.7261 -111.7581 9 MG0182, MG0789, 
MG0889-MG0894, 
MG0896 

50 H. spadix UT BLUFF 37.2896 -109.6329 9 MG0201, MG0790, 
MG0989-MG0995 

51 H. spadix UT MOAB 38.6264 -109.5061 9 LP7277, MG0208-
MG0214, MG0219 
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Table 3.2. Sample size (n), number of haplotypes (k), nucleotide diversity (π), haplotype 
diversity (h), results from Fu’s F (F), and estimated time to most recent common 
ancestor (TMRCA; in Ma) for species and haplogroups of Hadrurus (see text). Asterisks 
indicate values with associated p-values of <0.02 (the threshold value corresponding to 
α = 0.05 for Fu’s F). Values for Hadrurus arizonensis Ewing and Groups I–VI are repeated 
from Chapter 2. 

Species / 
haplogroup 

n k π h F (p-value) TMRCA 

H. jedediah 141 69 0.012 0.917 -24.136* 1.46 (0.99-1.98) 

Northern 71 21 0.003 0.707 -7.130* 0.61 (0.29-0.96) 

Mojave 56 39 0.006 0.970 -25.224* 0.51 (0.23-0.81) 

Southern NV 14 9 0.004 0.879 -1.933 0.61 (0.37-0.88) 

H. spadix 43 20 0.008 0.804 -2.650 1.33 (0.75-1.96) 

Eastern 27 9 0.001 0.513 -7.990* 0.06 (0.02-0.11) 

Western 12 8 0.007 0.924 -0.011 0.73 (0.40-1.08) 

H. arizonensis 256 141 0.011 0.989 -23.944* 3.07 (2.12-4.11) 

 Group I 146 90 0.007 0.982 -24.799* 1.02 (0.64–1.43) 

Group II 32 11 0.002 0.841 -3.764* 0.58 (0.25–0.93) 

Group III 21 11 0.003 0.910 -3.463* 0.31 (0.13–0.54) 

Group IV 33 11 0.002 0.867 -4.630* 0.20 (0.006–0.39) 

Group V 7 7 0.005 1.000 -2.987* 0.59 (0.27–0.96) 

Group VI 11 6 0.003 0.836 -0.321 0.35 (0.12–0.63) 
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Figure 3.1. Map depicting samples sites for Hadrurus jedediah Prendini et al. (in prep) 
(sites 1-44) and H. spadix Stahnke (sites 45–51). Outlines and shading represent 
ecoregions discussed in the text. Numbers correspond to those in Table 3.1. 



 

74 

 

Figure 3.2. Graphical results from species distribution models generated using MAXENT 
and displayed using the maximum training sensitivity plus specificity threshold for 
Hadrurus jedediah Prendini et al. (in prep) (a, d, g), Hadrurus spadix Stahnke (b, e, h), 
and Hadrurus arizonensis Ewing (c, f, i). Models represent climate predicted as suitable 
(dark shading) during current conditions (a-c) and during the last glacial maximum as 
estimated from CCSM (d-f) and MIROC (g-i) climatic simulations. Black dots represent 
occurrence records used to generate the models. 
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Figure 3.3. Map and network of mtDNA sequence haplotypes for Hadrurus jedediah 
Prendini et al. (in prep) (a), Hadrurus spadix Stahnke (b), and Hadrurus arizonensis Ewing 
(c). Each circle in the network represents one haplotype. Circle size in both the map and 
network are proportional to sample size. Lengths of lines connecting haplotypes in the 
network are proportional to the number of mutations between the haplotypes, 
assuming a transition/transversion ratio of 3:1. 
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Figure 3.4. Genetic landscape shape 
analysis (Miller, 2005) for Hadrurus 
jedediah Prendini et al. (in prep) (a), 
Hadrurus spadix Stahnke (b), and 
Hadrurus arizonensis Ewing (c) based 
on cox1 data. Surface plots depict 
genetic distances based on 
interpolations of geographic 
midpoints from a Delaunay 
triangulation network constructed 
among the sampled populations. 
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Figure 3.5. Landscape interpolations of nucleotide (a-c) and haplotype (d-f) diversity for 
Hadrurus jedediah Prendini et al. (in prep) (a & d), Hadrurus spadix Stahnke (b & e), and 
Hadrurus arizonensis Ewing (c & f). Shading indicates areas predicted to exhibit high 
(dark) and low (light) values. 
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Figure 3.6. Bayesian skyline plots for Hadrurus jedediah Prendini et al. (in prep) and 
Hadrurus spadix Stahnke haplogroups. 
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Figure 3.7. Simplified schematics to explain the Quaternary history of Hadrurus jedediah 
Prendini et al. (in prep) (a), Hadrurus spadix Stahnke (b), and Hadrurus arizonensis Ewing 
(c). Black circles and arrows indicate supported refugia and post-glacial colonization 
routes (respectively) that were strongly supported by the analyses. White circles and 
arrows depict potential but less obvious Quaternary events. 
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CHAPTER 4 

PHYLOGEOGRAPHY OF THE BECK DESERT SCORPION (PARUROCTONUS BECKI) REVEALS 

PLIOCENE DIVERSIFICATION IN THE EASTERN CALIFORNIA SHEAR ZONE AND 

POSTGLACIAL EXPANSION FROM A GREAT BASIN REFUGIUM 

 

Abstract 

 The distribution of Paruroctonus becki (Scorpiones: Vaejovidae), the Beck desert 

scorpion, spans the ‘warm’ Mojave Desert and the western portion of the ‘cold’ Great 

Basin Desert. During the late Pleistocene, the Great Basin climate was substantially 

colder than it is today, which is thought to have caused plant and animal taxa to 

undergo severe shifts in geographic distributions, especially since the last glacial 

maximum (LGM). To gain a better understanding of such distributional shifts, I used 

mitochondrial (cox1 and 16S) and nuclear (ITS-2) DNA, as well as species distribution 

modeling, to test whether P. becki persisted in the Great Basin Desert during the LGM, 

or colonized the area as glacial conditions retreated as the climate warmed. 

Phylogenetic and network analyses uncovered five geographically structured 

mitochondrial lineages in P. becki with varying degrees of statistical support. Molecular 

clock estimates, and the geographic arrangement of three of the lineages, indicated that 

Pliocene geologic events in the tectonically dynamic Eastern California Shear Zone may 

have driven diversification by vicariance. Diversification was estimated to have 

continued through the Pleistocene, during which a clade endemic to the western Great 

Basin diverged from related samples in the eastern Mojave Desert and western 
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Colorado Plateau. Demographic and network analyses indicate that P. becki underwent 

a recent expansion in the Great Basin. According to a landscape interpolation of genetic 

distances among samples, this expansion probably occurred from the northwest, 

meaning that P. becki could have persisted in a portion of the Great Basin during the 

LGM. This prediction is supported by species distribution models which suggest that 

climate was unsuitable throughout the majority of the Great Basin during the LGM, but 

that small patches of suitable climate may have remained in areas of the Lahontan 

Trough. 

 

Introduction 

 Of the currently recognized deserts of North America, the Great Basin Desert is 

perhaps the most biologically unique (see a review in Hafner and Riddle 2011). 

Positioned between the Sierra Nevada to the west and the Rocky Mountains to the east, 

the Great Basin occurs at more northern latitudes and higher elevations than any other 

North American desert. Together, these factors make the summer climate less severe, 

but winters longer and colder. Accordingly, the region is sometimes referred to as the 

only ‘cold’ or ‘temperate’ desert in North America (Grayson 1990). During the late 

Pleistocene, the Great Basin climate was at times even colder, with temperatures 

fluctuating between cool glacial periods and warm interglacials (Spaulding 1990; 

Thompson 1990), probably making conditions even more extreme for desert organisms. 

 Based on macrofossil data from packrat middens, many Great Basin plant taxa 

are thought to have undergone severe distributional shifts in response to Pleistocene 
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climate fluctuations, especially since the Last Glacial Maximum (LGM) (Thompson 1990; 

Thompson and Anderson 2000). Although arid shrub-steppe vegetation was able to 

persist in some northern areas during at least the most recent Pleistocene glacial-

interglacial cycles (Madsen et al. 2001; Wilson and Pitts 2010), phylogeographic data 

suggest that some arid-adapted taxa may have only recently colonized the Great Basin 

following the LGM (Norwak et al. 1995; Jezkova 2010; Hornsby and Matocq 2011). Other 

arid-adapted species, however, appear to have remained in the Great Basin during the 

Pleistocene in spite of severe habitat changes, potentially enduring fluctuations in 

climate by shifting their realized niche (within a stable fundamental niche), a 

phenomenon referred to as ‘niche drifting’ (Jezkova et al. 2011). Furthermore, genetic 

data and species distribution models (SDMs) indicate that some montane species in the 

Great Basin responded to Pleistocene climates by shifting ranges along elevational 

gradients (Waltari and Guralnick 2008; Galbreath 2009, 2010), colonizing lower 

elevations during glacial periods and higher elevations when climates were warm. 

Together, data from fossils, phylogenetics, and SDMs portray a wholesale resorting of 

plant and animal communities within the Great Basin as climate changed between the 

LGM and current interglacial. 

 To the south, a similar but less severe biogeographic history is also beginning to 

emerge for the Mojave Desert (Bell et al. 2010; Chapter 2). Found at lower latitudes and 

lower mean elevations, the region experiences more extreme summers but less severe 

winters (Redmond 2009). The Mojave Desert contains flora and fauna from many of the 

surrounding regions with few endemics, making it a transitional desert between the 
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cooler Great Basin to the north and the warmer Peninsular and Sonoran deserts to the 

south (Bell et al. 2010; Hafner and Riddle 2011). During glacial extremes, the geographic 

distributions of many arid-adapted organisms in the Mojave Desert are thought to have 

contracted into areas associated with desert basins and drainages, where some were 

isolated long enough to form distinct lineages (see review in Bell et al. 2010, and 

Chapter 2 for an example in scorpions). In the northern Mojave Desert, there is also 

evidence that some areas harbored arid-adapted taxa that are now primarily distributed 

throughout the Great Basin (Jezkova et al. 2011) 

 In this study, I investigated the phylogeography of Paruroctonus becki (Gertsch 

and Allred), commonly known as the Beck desert scorpion, which is found in both the 

Mojave and Great Basin deserts (Gertsch and Allred). Surprisingly little is known about 

this often abundant scorpion, but it has been collected from elevations between 343 

and 1,798 m and from a variety of plant communities (Gertsch and Allred 1965). Like 

other members of genus Paruroctonus Werner, P. becki is fossorial and has setal combs 

on its tarsi (legs), both of which are thought to be adaptations to life in sandy habitats 

(Fet et al. 1998). I collected the species in a variety of xeric environments, ranging from 

sand dunes to Ponderosa Pine forest. Little is published regarding the physiological or 

ecological factors that limit the distribution of P. becki. At higher elevations, P. becki 

may be replaced by Paruroctonus boreus (Girard), a related species distributed from 

northern Arizona to southern Canada, but I did not extensively sample at high 

elevations. At lower elevations, P. becki might face competition from several other small 

scorpion species and predation from larger species like Hadrurus arizonensis Ewing and 
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Smeringurus mesaensis (Stahnke) that are known to readily prey on other scorpions 

(Polis 1980; Polis and McCormick 1987). By studying the phylogeographic history of P. 

becki, I hoped to add to our understanding of how organisms with distributions 

spanning both the Mojave and Great Basin deserts have responded to climatic warming 

since the LGM. In particular, I set out to test whether P. becki persisted in the Great 

Basin during the LGM, or whether it recently colonized the area as glacial conditions 

retreated and climates warmed. 

 To accomplish these objectives, I began by sequencing a mitochondrial gene 

(cox1) from samples collected throughout the species’ range. I then sequenced an 

additional mitochondrial gene (16S) from a subset of samples that characterized the 

majority of this variation (exemplars from the major cox1 lineages), and then used these 

data together (concatenated) in an attempt to resolve poorly supported nodes. I placed 

the matrilineal genealogy in a temporal context by using a relaxed molecular clock. I 

then used demographic analyses to compare the genetic data to expectations under 

models of population expansion. Relying solely on mitochondrial DNA (mtDNA) for 

evolutionary reconstructions has become controversial (e.g., Zink and Barrowclough 

2009; Edwards and Bensch 2009), so I also sequenced a variable nuclear gene (ITS-2) 

from a subset of individuals for comparison. Finally, I use climate-based species 

distribution models (SDMs) to examine the potential distribution of suitable climate for 

P. becki during the LGM. 

 Since phylogeographic studies often expose previously overlooked patterns in 

morphological variation among populations, sometimes with important taxonomic 
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implications (e.g. Fouquet et al. 2007; Wood et al. 2008; Köhler and Glaubrecht 2010), I 

also discuss my results in light of taxonomic hypotheses for P. becki currently based on 

morphology. Specifically, I used the phylogeographic data to address whether P. becki 

represents a monophyletic group with respect to the morphologically similar species P. 

variabilis Hjelle and Paruroctonus silvestrii Borelli. 

 

Materials and Methods 

Sampling 

 I collected 89 P. becki from 51 locations throughout the Mojave and Great Basin 

deserts (Table 4.1, Fig. 4.1) using ultraviolet light detection (Stahnke 1972). Legs were 

removed from the left side of each specimen and stored at -80° in 95% ethanol (Vink et 

al. 2005). Remaining vouchers were preserved in 70% ethanol and accessioned into the 

scorpion collections at the San Diego Natural History Museum and the American 

Museum of Natural History. Four specimens representing three congeneric taxa were 

also processed as outgroups: P. boreus, P. silvestrii, and P. variablis. 

 To construct SDMs, I used occurrence records associated with my genetic 

samples as well as additional records from literature (Gertsch and Soleglad 1966; 

Haradon 1985). Since the literature records for P. becki lacked coordinate data, I used 

GOOGLE EARTH (http://earth.google.com) to estimate latitude and longitude for 

specimens from the locality descriptions, and excluded records with errors greater than 

five kilometers to match the resolution of the modeling rasters (2.5 arc-minutes). 
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Molecular Techniques 

 I isolated genomic DNA from leg tissues by standard phenol-chloroform 

extraction or with a DNeasy Extraction Kit (Qiagen Inc., Valencia, CA, USA). I then 

sequenced portions of mtDNA coding for cytochrome c oxidase I (cox1) using the 

primers LE1r and COImodF (Table 4.2). I chose this gene because it has proven useful in 

intraspecific studies of arachnids (e.g. Thomas and Hedin 2008; Wang et al. 2008, 

Graham et al. 2012), and is used in DNA barcoding initiatives (Herbet et al. 2003). Based 

on a preliminary assessment of the cox1 dataset (see Results), I selected a subset of 

samples that represented the majority of the genetic structure in cox1. For this subset, I 

sequenced portions of the mitochondrial 16S ribosomal RNA (16S) using scorpion-

specific primers from Gantenbein et al. (1999), and the nuclear internal transcribed 

spacer region (ITS-2) using primers from Ji et al. (2003). Amplifications were performed 

via polymerase chain reactions using AmpliTaq Gold (Applied Biosystems, Inc., Foster 

City, CA, USA). I conducted cox1 amplifications using annealing temperatures of 50°-54° 

C for 34 cycles, and amplified 16S at 50° C for 30 cycles. I then conducted fluorescence-

based cycle sequencing using BigDye Terminator Cycle Sequencing Ready Reaction Kit v. 

3.1 (Qiagen Inc., Valencia, CA, USA) and the associated PCR primers (Table 4.2). 

Electrophoresis was carried out on an ABI 3130 automated sequencer (Applied 

Biosystems Inc., Foster City, CA, USA). I aligned sequences using SEQUENCHER v. 4.9 

(Gene Codes Corp., Inc., Ann Arbor, MI, USA).  
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Phylogenetics and Divergence Dating 

 I assessed phylogenetic patterns using the criterion of Bayesian inference (BI) 

implemented in MRBAYES v. 3.1.2 (Ronquist and Huelsenbeck 2003) through the 

Cyberinfrastructure for Phylogenetic Research cluster (CIPRES Gateway v 3.1) at the San 

Diego Supercomputer Center. For the cox1 data, I calculated best-fit models of 

nucleotide substitution for the haplotype data under several codon partitions 

(separately, positions 1+2 and 3 separate, and unpartitioned) using JMODELTEST v. 0.1.1 

under the Akaike information criterion (Posada 2008). For a concatenated mtDNA 

dataset (cox1+ 16S), I also explored substitution models calculated for different gene 

partitions. I then determined the best-fit partitioning scheme for each dataset using 

Bayes factors on the harmonic mean marginal likelihood values (Nylander et al. 2004). 

Final analyses were run for 10 million generations using the appropriate partitioning 

scheme and substitution models. Trees were sampled every 1,000 generations with the 

first 2.5 million generations of sampled trees discarded as burn-in after confirming chain 

stationarity using TRACER v. 1.5 (Rambaut and Drummond 2007) and the web-based 

program AWTY (Nylander et al. 2008). 

 I used the program NETWORK v. 4.5.1.6 (Fluxus Technology Ltd 2004) to 

construct separate median-joining networks of mtDNA and nuclear haplotypes (Bandelt 

et al. 1999). I limited the mtDNA network to the cox1 sequences of P. becki. For the 

nuclear network, I included ITS-2 sequences from the P. becki exemplars as well as from 

the P. variabilis samples. To remove excessive links within these networks, I selected the 
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maximum parsimony option (Polzin and Daneshmand 2003). Three individuals 

contained a heterozygous site in the nuclear data, so I first reconstructed haplotypes 

using PHASE (Stephens and Donnelly 2003) implemented in DNASP v. 5 (Librado and 

Rozas 2009). 

 To estimate diversification times within the P. becki phylogeography, I used a 

relaxed molecular clock implemented in BEAST v. 1.5.4 (Drummond and Rambaut 2007). 

I chose best-fit substitution models for each gene (no codon partitions) using 

JMODELTEST, and estimated divergence dates using an uncorrelated lognormal clock 

model. I selected a scorpion-specific mean mutation rate of 0.007 

substitutions/site/million based on cox1 data (Gantenbein et al. 2005) with a mean 

standard deviation of 0.003 (see Chapter 2; Gantenbein and Largiadèr 2002). I ran 

BEAST for 40 million generations with the Yule tree prior and retained samples every 

1,000 generations, with Tracer used to confirm stationarity of the MCMC chain, as well 

as to determine the adequacy of the effective sample sizes (ESS > 200 for each 

estimated parameter). 

 

Demographic Analyses 

 I used ARLEQUIN v. 3.11 (Excoffier et al. 2005) to conduct mismatch distribution 

tests of demographic expansion for four of the geographically structured lineages 

indentified in the phylogenetic and network analyses (see Results below). These 

distributions were run with 10,000 bootstrap replicates, with the sum of square 
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deviations (SSD) between the observed and simulated data used to assess statistical 

significance. In addition, I used ARLEQUIN to calculate Fu’s F (Fu 1997) for the same four 

groups. Groups that underwent recent demographic expansion would be expected to 

have significantly negative F values, indicating deviations from mutation-drift 

equilibrium. 

 

Species Distribution Modeling 

 I used MAXENT v. 3.3.2 (Phillips et al. 2006) to construct SDMs from a total of 65 

unique occurrence points. Additional input data included bioclimatic layers representing 

current climatic trends, seasonality, and extremes of temperature and precipitation 

(Hijmans et al. 2005). For model accuracy and to reduce problems with extrapolation 

(Pearson et al. 2002; Thuiller et al. 2004; Randin et al. 2006), I masked (clipped) the 

bioclimatic layers to the ecoregions (Olson et al. 2001) that contained occurrence 

records (Central Basin and Range, Northern Basin and Range, Mojave Basin and Range, 

Sonoran Desert). I then assessed correlations among available bioclimatic layers from 

the values of grid cells containing occurrence records to avoid over-fitting the models 

and to improve model transferability (Peterson et al. 2007). When the Pearson’s 

correlation coefficient was > 0.75 (Rissler et al. 2006; Rissler and Apodaca 2007), I 

selected an individual layer among the correlated layers for retention in MAXENT runs. 

For modeling, I chose 9 bioclimatic layers representing quarter climates rather than 

monthly climates, precipitation during the driest quarter over precipitation during the 
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warmest quarter, and temperature annual range instead of mean diurnal range. These 

bioclimatic layers were: Bio3, isothermality; Bio5, maximum temperature of the 

warmest month; Bio6, minimum temperature of the coldest month; Bio7, Temperature 

Annual Range (P5-P6); Bio8, mean temperature of the wettest quarter; Bio9, mean 

temperature of the driest quarter; Bio15, precipitation seasonality; Bio16, precipitation 

of the wettest quarter; Bio17, precipitation of the driest quarter. 

 I ran MAXENT using logistic output with default settings except that I selected 

random seeding. I used cross-validation to assess model robustness by dividing presence 

points into five groups and running five iterations with different groups selected for 

each run; thus, 20% of the presence points were used as test points and 80% were used 

for model training (Nogués-Bravo 2009). Model performance was evaluated by the area 

under the receiver operating characteristic curve (AUC). To extrapolate models to LGM 

climates, I projected the distribution models onto simulated climates for the LGM (c. 21 

ka) derived from the Community Climate System Model (CCSM; Otto-Bliesner et al. 

2006) and the Model for Interdisciplinary Research on Climate (MIROC; Hasumi and 

Emori 2004). I displayed climatic suitability in ARCGIS V. 9.2 (ESRI, Redlands, CA, USA) by 

converting continuous MAXENT outputs into binary grids using the maximum training 

sensitivity plus specificity threshold (Liu et al. 2005; Jiménez-Valverde 2007). 

 

Landscape Interpolations 

 To assess genetic diversification across the Great Basin, I created a landscape 

interpolation of genetic distances; limiting this assessment to data from a genetic clade 
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identified from this region (see Results). I used the program ALLELES IN SPACE v. 3.11 

(Miller 2005) to calculated pairwise genetic distances from the cox1 sequence data as 

determined by a Delaunay triangulation-based connectivity network. To correct for 

spatial autocorrelation among samples, distance values were calculated as residuals 

from a regression of genetic and geographic distances (Miller et al. 2006). The program 

then interpolated values onto a 50 x 50 grid representing a minimum convex polygon 

around the targeted samples. I set the distance weighting parameter to 0.25. 

 

Results 

Phylogenetics and Divergence Dating 

 I successfully sequenced a 747 bp portion of cox1 for 92 samples, a 484 bp 

region of 16S for 47 samples, and 241 bp section of ITS-2 for 33 samples. For 45 

individuals, I constructed a concatenated dataset by combining cox1 and 16S sequences. 

After comparing bayes factors, I ran BI analyses of the cox1 dataset with sequence data 

partitioned by codon, and the concatenated mtDNA dataset partitioned by gene and 

codon. 

 The cox1 phylogeny yielded several geographically structured lineages, although 

not all were strongly supported (Figs. 4.2). Among the outgroups, P. boreus and P. 

silvestrii formed a strongly supported basal lineage, but one P. variabilis sample 

appeared more closely aligned with P. becki than to the other outgroups, while the  

other P. variabilis sample was paraphyletic with respect to P. becki samples from the 

Providence Mountains and the White-Inyo Mountain Range (see Fig. 4.1). Other 
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geographically structured lineages comprise individuals from the Great Basin Desert, the 

western Mojave Desert, and eastern Mojave Desert, with a few samples in the latter 

group also extending into the highlands of Northern Arizona. Of all the geographically 

structured lineages, only the Great Basin and White-Inyo Range lineages were strongly 

supported. In general, individuals collected from the same or nearby sample sites 

generally grouped together on this tree with strong BI support, although three areas 

(sites 21, 31, and 40) contain haplotypes from different lineages. 

 The topology of the concatenated (cox1 and 16S) tree (Fig. 4.3) was similar to the 

cox1 tree, but with a few important differences. In the concatenated tree, the P. becki 

samples from the Providence Mountains that were divergent in the cox1 tree instead 

formed the most basal lineage within a weakly supported clade containing all P. becki 

samples, rendering the species tentatively monophyletic. Although Bayesian support 

was not strong, P. variabilis samples from the San Joaquin Valley in California appeared 

monophyletic in the concatenated tree, and sister to the clade containing P. becki. As in 

the cox1 tree, samples from the White-Inyo Range were strongly supported as a 

monophyletic clade (hereafter the White-Inyo Clade). Samples from the western Mojave 

formed a lineage with low Bayesian support in the cox1 tree, but strong support in the 

concatenated tree (hereafter the Western Mojave Clade). In both the cox1 and 

concatenated trees, specimens from throughout the eastern Mojave Desert form a 

weakly supported group together with those from the Great Basin (hereafter the 

Eastern Group, reserving ‘clade’ for lineages with high Bayesian support). Within the 

Eastern Group, most of the widespread samples from the Great Basin form a strongly 
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supported lineage consisting of very similar haplotypes (hereafter the Great Basin Clade) 

(Fig. 4.4). 

 The haplotype network constructed from cox1 data portrayed a pattern similar 

to that of the concatenated mtDNA tree (Fig. 4.3). Samples from the Great Basin Clade 

formed a star-shaped pattern that was 20 mutational steps from the nearest sample 

within the Eastern Group, which also formed a distinct, though diverse subnet. Of the 

four samples from the Providence Mountains, two were nested within the Eastern 

Group and two formed a divergent lineage positioned between the samples from the 

Western Mojave Clade (37 mutational steps removed) and the Western Mojave Clade 

(41 steps removed).  

Much less genetic structure was recovered in the nuclear haplotype network, 

with all P. becki haplotypes centered within two mutations steps from the most 

common haplotype consisting of samples from the Eastern Group, and including both 

mitochondrial lineages from the Providence Mountains (Fig. 4.5b). The only sample 

successfully sequenced for ITS-2 from the White-Inyo Clade shared a haplotype with 

samples from the Western Mojave Clade, and this haplotype was only one step 

removed from the most common haplotype. Both P. variabilis samples comprised the 

most divergent haplotype in the nuclear network, but this haplotype was only two steps 

from the most similar P. becki haplotype.   

 Results from BEAST analyses of the concatenated mitochondrial data (Fig. 4.6) 

suggest that divergence between P. becki and the most closely related outgroup, P. 

variabilis, took place between the Late Miocene and early Pliocene. Subsequently, initial 
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diversification within P. becki began with the divergence of a linage represented in the 

Providence Mountains sometime in the Late Miocene to mid Pliocene. The Eastern 

Group, White-Inyo Clade and Western Mojave Clade were estimated to have diverged 

during the Pliocene, and the remaining diversification, including that between Great 

Basin Clade and the other samples in the Eastern Group, was estimated to have 

occurred during the Pleistocene. 

 

Demographic Analyses 

 Mismatch analyses of the Western Mojave, and the White-Inyo clades resulted 

in sum of squared deviation (SSD) values that were nonsignificant, meaning that these 

data do not deviate from models of demographic expansion (Table 4.3), but significant 

for the Eastern Group. However, when the Great Basin Clade was analyzed 

independently, the SSD value was nonsignificant. Furthermore, the Great Basin Clade 

exhibited unimodal distribution(Fig. 4.7), and was the only grouping that yielded a 

significantly negative Fu’s F value, both of which would be expected for a population 

that has undergone expansion.  

 

Species Distribution Models 

 The SDMs performed significantly better than random, as AUC scores were high 

(both > 0.95) for both training and testing data (Fig. 4.8). Under current climatic 

conditions, the SDM for P. becki depicts suitable climate over much of the low and mid-
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elevation areas within the Mojave Desert, Great Basin, and the southern Colorado 

Plateau. Additional areas are also predicted to the north along the Snake River Plain of 

southern Idaho, in patches of arid regions in southeastern Oregon, and in the northwest 

portion of the Sonoran Desert in the Anza-Borrego Desert. 

 Both LGM models (CCSM & MIROC) portrayed suitable climate throughout the 

Mojave and western Sonoran deserts, as well as along the length of western California 

and northern Baja California (Fig. 4.5). In contrast, areas of suitable climate extended 

further south along the coast of Sonora, Mexico in the MIROC model, but not as far 

north in California. The MIROC model also suggested that climate was generally not 

suitable throughout the higher elevations of southern California. The CCSM model 

predicted suitable climate in all but the highest elevations in southern California. Both 

models suggested that climate in the Great Basin was not suitable during the LGM, 

except for very small patches in the western Great Basin Desert (the Lahontan Basin). 

Neither model predicted suitable climate in the Colorado Plateau during the LGM. 

 

Landscape Interpolation 

 The interpolation of residual genetic distances for the cox1 data from the Great 

Basin Clade (Fig. 4.4b) displays a pattern of decreasing genetic diversity from the 

northwest to the southeast. The highest diversity occurs in the extreme northwest 

portion of the current distribution of P. becki in an area within the Lahontan Basin. 
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Discussion 

Postglacial Colonization of the Great Basin 

 The main purpose of this study was to determine whether P. becki persisted 

throughout its current distribution in the Great Basin Desert during the LGM, or whether 

the species recently colonized the area as glacial conditions retreated and climates 

warmed. Phylogenetic and demographic analyses of mtDNA provide convincing 

evidence of the latter, as P. becki appears to have recently colonized a large part of the 

western Great Basin following the LGM. The pattern, however, was not as expected 

since the SDMs and genetic data suggest that P. becki persisted in part of the Great 

Basin during the LGM and then expanded its range from this refugial area when the 

climate warmed. 

 The SDMs projected onto LGM conditions predicted that climate throughout 

most of the Great Basin was unsuitable; but suitable climate remained available in much 

of the Mojave Desert and importantly in small low-elevation subbasins in the western 

Great Basin (Fig. 4.8). In the CCSM model, the predicted area encompasses Walker Lake 

(Fig. 4.8b), whereas the MIROC model predicted subbasins further north that include 

Pyramid Lake and the Smoke Creek Desert (Fig. 4.8c). These subbasins occur within the 

Lahontan Trough, which filled with water and coalesced to form Lake Lahontan during 

pluvial maxima (Fig. 4.4; Bensen 1991). Therefore, at times most if not all of the area 

identified as suitable during the LGM was enveloped by lake waters. Persistence of P. 

becki in this region, perhaps only along slopes adjacent to the lake, would likely have 
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resulted in a bottleneck at that time which may explain the low genetic diversity within 

the Great Basin Clade. 

 Genetic analyses support the prediction that P. becki persisted in the western 

Great Basin. In the cox1 haplotype network, the samples from this region formed a star-

shaped pattern (Fig. 4.4b), which is usually indicative of recent range expansion (Avise 

2000). Furthermore, demographic analyses lend support to a pattern of expansion by 

the Great Basin Clade (Table 4.2). The foremost models of colonization, the gradual 

expansion model (reviewed in Koizumi et al. 2012) and the leading edge model 

(reviewed in Jezkova et al. 2011), both predict that genetic differentiation should be 

higher among older populations than between populations from recently colonized 

regions. Under this prediction, the landscape interpolation of genetic distances within 

the Great Basin Clade (Fig. 4.4b) indicates that P. becki probably expanded its Great 

Basin distribution from one or more glacial refugia within the region. 

 This geographic expansion appears to have been to the east and southeast. 

Westward expansion was probably inhibited by the Sierra Nevada, but no obvious 

biogeographic barriers occur to the north. I conducted several searches in northern 

areas predicted to be currently suitable for P. becki, but did not find any of these 

scorpions. I suspect that the species is absent from more northern areas and speculate 

that this could reflect physiological or ecological limitations associated with higher 

latitudes that were not accurately portrayed by the SDMs. Provocatively, individuals 

from the Great Basin Clade in the south were found within close proximity to individuals 

from several other lineages, but never in sympatry (Fig. 4.4), so I suspect  that there 
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might be some degree of high density blocking (Waters 2011), or even potential 

competition, among P. becki lineages. 

 

Pre-Pleistocene Diversification 

 Divergence between P. becki and P. variabilis (putative sister species) was 

estimated to have occurred during the Late Miocene, a timeframe that corresponds 

with that of a marine embayment of the San Joaquin Valley (Hall 2002). Paruroctonus 

variabilis is endemic to the eastern flanks of the California coastal ranges that boarder 

the San Joaquin Valley (Hjelle 1982), so divergence between these species could have 

occurred when marine waters isolated the Coastal Ranges from adjacent arid regions 

(Fig. 4.4). Intriguingly, subsequent nodes representing diversification among the 

Western Mojave Clade, Eastern Group, and White-Inyo Clade have mean estimates 

within the Pliocene. These clades meet in the eastern California Shear Zone, a 

geologically active region of predominantly right-lateral strike-slip faults (Fig. 4.1). The 

faults are thought to accommodate motion between the Pacific and North America 

plates (Frankel et al. 2010). This region experienced intense extensional tectonics 

(stretching of the earth’s crust) during the Pliocene (Phillips 2008). Extensional faulting 

is thought to have first begun along the east side of the White-Inyo Range at the Fish 

Lake Valley fault zone (6.9–4 Ma), forming deep desert valleys (Reheis and Sawyer 

1997). Subsequent faulting on the west side of the White-Inyo Range then took place 

during the late Pliocene, causing a rapid deepening of a preexisting valley and forming 

the modern low-laying Owens Valley along the White Mountains and Owens faults 
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(Stockli et al. 2003; Phillips, 2008). The location (Figs. 4.1 & 4.4) and timing (Fig. 4.6) of 

these events match the placement and estimated divergence times between the three 

clades, and populations of P. becki may have become divided on each side of the 

expanding low-elevation valleys east of the White-Inyo Range. Formation of the Owens 

Valley in the Late Pliocene could have then further sundered P. becki populations within 

the region, facilitating the formation of the Western Mojave and White-Inyo clades. 

 The divergent mtDNA haplotypes recovered from the Providence Mountains are 

curious (Figs. 4.1–4.4, Vulcan Mine). Out of four samples from this site (Fig. 4.1), two 

grouped with other eastern Mojave samples, while the other two formed a lineage basal 

to all other P. becki samples (Figs. 4.2 & 4.3). The nuclear haplotypes of these latter 

samples, however, were identical to the haplotypes recovered in samples from the 

Eastern Group, and I found no obvious differences in their morphology. Assessment of 

the sequence data revealed no evidence of pseudogenes (numts), such as double peaks, 

indels, frameshifts, or premature stop codons (Bertheau et al. 2011). Other potential 

explanations include incomplete lineage sorting (retention of ancestral polymorphism) 

or mitochondrial introgression from a divergent population or related species not 

represented in my sampling. Of these, the latter explanation may be more likely. The 

southernmost record for P. becki is from the Coachella Valley area of the Colorado 

Desert region (Gertsch and Soleglad 1966) of the Sonoran Desert. Although I searched 

the area twice in seemingly suitable habitat and at various elevations between the 

Coachella Valley and the Providence Mountains, I was unable to find P. becki. If 
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populations do exist in these areas, then perhaps these animals hold the answer to the 

patterns I found in samples from the Providence Mountains. 

 

Taxonomic Considerations 

 Although a thorough morphological assessment was beyond the scope of this 

project, I did notice a few morphological points of interest among the voucher 

specimens. First, I noted a conspicuous morphological similarity between P. becki and its 

likely sister species P. variabilis. I find this surprising because P. variabilis was at first 

considered to be a “light race” of P. silvestrii, a species distributed throughout southern 

California and adjacent areas in northern Baja California (Gertsch and Soleglad 1966; 

Hjelle 1982). The original description of P. variabilis, however, compares it to P. silvestrii 

and P. becki, distinguishing P. variabilis from the latter by a combination of the following 

characters: distinct denticles opposite biscuspid tooth on the ventral margin of the 

cheliceral fixed finger, more dorsal marbling, and different electrophoretic patterns of 

venom proteins. This last character was of little use as venom is not typically used to 

diagnose scorpion species, and the degree to which venom proteomes vary within 

scorpion species has not yet be adequately assessed. I found that dorsal marbling also 

was an unreliable diagnostic character. Although most P. becki are superficially similar in 

color and degree of marbling of the dorsum, some populations (e.g. Site 32 - Ash 

Meadows) contained phenotypes with darker marbling than that of P. variabilis. This left 

only the cheliceral denticles, and I screened several P. becki specimens representing 

each major lineage, but none had these structures. Consequently, the presence of 
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cheliceral denticles on P. variabilis seems to remain a diagnostic character between 

these species. Because P. variabilis forms a monophyletic group slightly differentiated 

from P. becki in my analyses of both nuclear and mtDNA data (Fig. 4.3), I suggest 

retaining their current status as independent species. 

 Both species, however, would clearly benefit from more rigorous morphological 

evaluations and detailed redescriptions, which would perhaps uncover additional 

distinguishing traits. This would be particularly valuable as I found that several 

characters typically used to identify P. becki are actually highly variable. Specimens are 

often identified by chelae morphology, for example, but I found that some populations 

of P. becki possessed more robust chelae with strong carination, while others contained 

slender chelae with little carination. In addition, P. becki are commonly thought to be 

easily identified in the field by the presence of a crescent shaped area of infuscation 

between the lateral and median eyes, but I discovered several specimens that 

completely lacked this pattern. 

 

Conclusions 

 Due to the wealth of data that have been extracted from packrat middens 

throughout southwestern North America (Betancourt 1990), floristic responses to late 

Pleistocene climate fluctuations are relatively well characterized for the Great Basin. The 

geographic ranges of Great Basin plant species are thought to have responded in two 

ways; they were either relatively insensitive to climate change and experienced very 

little changes to their geographic ranges, termed ‘orthoselective’ (i.e. species that 
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shifted along elevational gradients but did not undergo large geographic changes), or 

they shifted to new areas, following a ‘migration’ model (Nowak et al. 1994). Using this 

logic, we can begin to develop a model of late Pleistocene distributional response for 

the Great Basin terrestrial fauna. 

 Rodent species that occupy basins within the region appear to fall under both 

categories. Recent phylogeographic assessments of the chisel-toothed kangaroo rat, 

Dipodomys microps Merriam (Jezkova et al. 2011), and the pallid kangaroo mouse, 

Microdipodops pallidus Merriam (Hafner et al. 2008), suggest that both species 

remained in the Great Basin during the LGM (rendering them orthoselective). 

Phylogeography of the bushy-tailed woodrat, Neotoma cinerea (Ord), indicates that it 

followed the migration model, as the LGM distribution of this species appears to have 

shifted to the south (Hornsby and Matocq 2011). Other recent studies of arid-adapted 

reptile species – the desert horned lizard, Phrynosoma platyrhinos Girard (Jezkova 2010) 

and the western North American nightsnake, Hypsiglena torquata (Günther) (Mulcahy 

2008) – suggest that both species likely followed the migration model. Data from P. 

becki provide multiple lines of evidence that this scorpion persisted within limited areas 

of the western Great Basin, and then recently expanded to occupy a larger portion of 

the region, fitting a migration model.  

 The phylogeography of P. becki also uncovered an unexpected degree of 

phylogeographic structure across the Mojave Desert. Given that mitochondrial lineages 

were not strongly supported by nuclear data, and the fact that no obvious 

morphological divergences were discerned from samples collected throughout the 
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species’ range, I conclude that P. becki probably represents a single species. Such 

patterns underscore the need for integrative and modern approaches to delimit species 

and assess relationships among little-known terrestrial invertebrates like scorpions. 
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Table 4.1. Location and voucher information for genetic samples used in this study. Site 
numbers correspond with localities portrayed in Fig. 4.1. Coordinates only represent the 
general sample area. 
 

Site State Locality Latitude Longitude Voucher Numbers 

1 NV WINNEMUCCA 41.12564 -117.76308 MG0397, MG0398 

2 NV GERLACH 40.64307 -119.31268 MG0350, MG0351 

3 NV FLAT TIRE 40.601367 -117.91349 L10560 

4 NV BEOWAWE 40.52007 -116.51368 MG0015, MG0018 

5 NV HONEY LAKE VALLEY 40.12901 -119.82145 MG0516, MG0517 

6 NV SPARKS NORTH 39.855278 -119.655889 LP6289 

7 NV HOT SPRINGS MT 39.76 -118.87 MG0164 

8 NV SPARKS SOUTH 39.735998 -119.686388 LP6290 

9 NV WADSWORTH 39.633801 -119.285448 MG0514 

10 NV BLOW SAND MTS 39.19902 -118.72205 MG0528, MG0529 

11 NV BIG SMOKEY VALLEY 39.239123 -117.000493 MG0879, MG0080 

12 NV HAWTHORNE 38.586683 -118.604542 LP6291 

13 NV MINA 38.429296 -118.065709 MG0837, MG0838 

14 NV MURIETTA 38.252972 -118.350441 MG0504, MG0505, MG0506 

15 NV TEMPIUTE 37.654021 -115.640362 MG0918, MG0919, MG0920 

16 NV GOLDFIELD 37.61572 -117.226262 MG1080, MG1081 

17 CA MILLPOND 37.37903 -118.48391 MG0385, MG0386, MG0387 

18 CA TUNGSTON 37.3424 -118.52415 LP5007 

19 CA DEEP SPRINGS VALLEY 37.31298 -118.10313 MG0375, MG0376, MG0378 

20 NV SARCOBATUS FLAT 37.040003 -116.815702 MG0949, MG0950, MG951 

21 CA SALINE VALLEY 36.753133 -117.86325 LP4984, LP4992 

22 CA TUTTLE CREEK 36.596765 -118.188562 MG0541, MG0542 

23 CA ALABAMA HILLS 36.59985 -118.183417 LP4991 

24 CA LONG JOHN CYN 36.63608 -118.00033 MG0361, MG0362, MG0363 

25 CA PANAMINT RANGE 36.40923 -117.17596 MG0475, MG0476, MG0477 

26 CA CHINA LAKE, MT 
SPRINGS CYN 

35.944983 -117.543652 LP4373 

27 CA TRONA PINNACLES 35.617533 -117.370104 LP4369 

28 CA MOJAVE 35.069529 -118.220224 MG0713 

29 CA PALMDALE 34.508208 -117.978967 MG1112, MG1113, MG1155 

30 CA DANTE'S VIEW 36.21697 -116.72399 MG0451, MG0542 

31 CA AMARGOSA DUNES 36.432483 -116.421417 LP4995 

32 NV ASH MEADOWS 36.466013 -116.377554 L10450 
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Table 4.1. Location and voucher information continued. 

Site State Locality Latitude Longitude Voucher Numbers 

33 CA AVAWATZ MTS 35.510409 -116.309343 LP4384 

34 CA HALLORAN SUMMIT 35.412699 -115.802629 MG1042, MG1043, MG1044 

35 CA VULCAN MINE 34.914776 -115.545667 MG1131, MG1132, 
MG1153, MG1154 

36 NV SPRING MTS NORTH 36.2458 -115.54299 MG0012 

37 NV SPRING MTS SOUTH 35.95397 -115.43804 MG0136 

38 NV MT POTOSI 35.9149 -115.55276 MG0060 

39 CA MORNING STAR MINE 35.362694 -115.422928 LP8502 

40 NV NIPTON ROAD 35.5197 -115.14 MG0224, MG0225, MG0226 

41 NV CHRISTMAS TREE PASS 35.261226 -114.743965 MG1060, MG1061, MG0162 

42 NV BLUE POINT 36.399938 -114.446469 MG0127, MG0128, MG0129 

43 AZ VIRGIN MTS 36.639712 -114.014165 MG0157, MG0158, MG0159 

44 UT WARNER VALLEY 37.042092 -113.453533 LP7250 

45 AZ HUALAPAI MTS 35.076556 -113.882472 MG1151, MG1152 

46 AZ SOAP CREEK CYN 36.72607 -111.75808 MG0183, MG0184 

47 AZ CLIFF DWELLERS LODGE 36.74677 -111.751569 LP7698 
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 Table 4.2. Primers used in this study to amplify and sequence portions of mitochondrial 
and nuclear DNA. 
 
Primer name Sequence Source 

COImodF 5’-ATCATAAGGATATTGGGACTATGT-3’ Bryson et al. (in review) 

LE1r 5’-GTAGCAGCAGTAAARTARGCYCGAGTATC-3’ Bryson et al. (in review) 

16SmodF 5’-CACCGRTTTGAACTCAGATCA-3’ Gantenbein et al. (1999) 

16SnewR 5’-ACCTTTTGTATCAGGGATT-3’ Gantenbein et al. (1999) 

CAS28sB1d 5’-TTCTTTTCCTCCGCTTATTTATATGCTTAA-3’ Ji et al. (2003) 

CAS5p8sFc 5’-TGAACATCGACATTTYGAACGCACAT-3’ Ji et al. (2003) 
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Table 4.3. Results from goodness-of-fit tests of population expansion based on 
mismatch distributions and Fu's F for geographically structured lineages in Paruroctonus 
becki (Gertsch and Allred) identified by phylogenetic (Figs. 4.2 & 4.3) and network (Fig. 
4.4) analyses. Asterisks indicate nonsignificant SSD values (>0.05) and significant F values 
(<0.02) which both mean the data do not differ from expectations under models of 
expansion. 

 

Western 
Mojave 
Clade 

White-Inyo 
Clade 

Eastern  
Group 

Great Basin 
Clade 

Goodness-of-fit test 
  

  

Distribution curve multimodal multimodal multimodal unimodal 

SSD 0.016072 0.081827 0.0173 0.000059 

P 0.134* 0.134* 0.012 1.0* 

Fu's F -0.27583 0.1211 -5.41313 -5.47584 

P 0.432 0.488 0.087 <0.001* 
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Figure 4.1. Map of the study area showing sample locations for Paruroctonus becki 
(Gertsch and Allred), with numbers corresponding to sites identified in Table 4.1. 
Dashed lines outline the Mojave and Great Basin Deserts. Inset indicates major faults 
within the Eastern California Shear Zone. Strike-slip faults are identified by dark lines 
with arrows and letters as follows: a = Coaldale Fault, b = White Mountains Fault zone, c 
= Fish Lake Valley Fault zone, d = Furnace Creek Fault, e = Owens Valley Fault, f = Hunter 
Mountain Fault, g = Death Valley Fault, h = Panamint Valley Fault, i = Garlock Fault. Dark 
lines without arrows indicate normal faults.
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Figure 4.2. Majority rule (50%) consensus tree depicting results of Bayesian 
phylogenetic analysis of Paruroctonus becki (Gertsch and Allred) using cox1 mtDNA. 
Vertically arranged bars indicate geographically structured lineages. Arrows point to two 
Paruroctonus variabilis Hjelle sequences. Stars indicate individuals from the Providence 
Mountains. Nodes with Bayesian posterior probability values indicating strong support 
(PP > 0.9) are represented by black dots, otherwise actual values are indicated above 
nodes. 
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Figure 4.3. Combined cox1 and 16S phylogenetic estimate based on Bayesian inference. 
Vertically arranged bars indicate geographically structured lineages. Nodes with 
Bayesian posterior probability values indicating strong support (PP > 0.9) are 
represented by black dots, otherwise actual values are indicated above nodes. 
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Figure 4.4. Map depicting the distribution of major lineages within the phylogeography 
of Paruroctonus becki (Gertsch and Allred) discussed in the text. Sample sites used for 
genetic analyses are indicated by white dots. The dark shading with the white outline 
portrays Lake Lahontan at its pluvial maximum. Solid lines indicate strongly supported 
clades, whereas the dotted line outlines the weakly supported Eastern Group. 
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Figure 4.5. Haplotype networks for Paruroctonus becki (Gertsch & Allred) based on 
mitochondrial cox1 (a) and nuclear ITS-2 (b) sequence data. Circle sizes are proportional 
to haplotype frequencies. Color indicates geographic groups identified in Fig. 4. The 
yellow circle in the nuclear network (b) represents Paruroctonus variabilis Hjelle. 
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Figure 4.6. Rate-calibrated chronogram for Paruroctonus becki (Gertsch and Allred). 
Posterior probabilities are indicated for nodes. Letters below nodes identify mean 
divergence date estimates within the Miocene or Pliocene. Bars represent highest 
posterior densities (95%) around mean date estimates. 
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Figure 4.7. Mismatch distributions based on cox1 data for four mtDNA groups of 
Paruroctonus becki (Gertsch and Allred) recovered in phylogenetic analyses. Dashed 
lines represent the expected distribution if populations underwent demographic 
expansion, whereas bars indicate the observed frequency (y-axis) of pairwise 
differences (x-axis). 
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Figure 4.8. Graphical results from species distribution models of Paruroctonus becki 
(Gertsch and Allred) generated using MAXENT and displayed using the maximum 
training sensitivity plus specificity threshold. Models represent climate predicted as 
suitable (dark shading) during current conditions (a) and LGM conditions estimated from 
CCSM (b) and MIROC (c) climatic simulations. Black dots represent occurrence records 
used to generate the models. Arrows indicate potential northern refugia within the 
Great Basin Desert
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