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ABSTRACT 

Skeletal development is a tightly regulated process and requires proper 

communication between the cells for efficient exchange of information. Cell–cell 

communication, facilitating the exchange of small metabolites, ions and second 

messengers, takes place via aqueous proteinaceous channels called gap junctions. 

Connexins (Cx) are the subunits of a gap junction channel, and Cx43 is the major Cx 

expressed in bone cells. Mutations in human and mouse Cx43 result in a severe skeletal 

disorder called oculodentaldigital dysplasia (ODDD) characterized by craniofacial 

abnormalities and limb deformities. Mutations in zebrafish cx43 produces the short 

fin (sof b123) phenotype and is characterized by short fins due to reduced segment length 

of the bony fin rays and reduced cell proliferation. The mechanism by which CX43-

based mutations cause skeletal defect phenotypes is largely unknown. However, it is 

apparent that the function of Cx43 in the vertebrate skeleton is conserved. Hence, it is 

important to understand the role of Cx43 during skeletal development. 

The zebrafish caudal fin is an excellent model for studying bone/skeletal 

morphogenesis during fin regeneration for several reasons. The fin has a simple 

architecture with few tissue types. The bony fin rays made up of joints and segments 

are clearly visible, allowing for easy genetic manipulation, and the fin can completely 

regenerate within 2 weeks after amputation. An important, yet poorly understood, 

question with respect to mutations in connexin genes, in general, is how does gap-

junctional intercellular communication (GJIC) impact tangible cellular events like cell 

division and differentiation? One hypothesis is that Cx43-based GJIC can influence 
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gene expression patterns. Our lab exploited the availability of the two 

mutants, sof b123 and alf dty86, in order to identify those genes whose expression depends 

on Cx43. Previously established results from our lab using the fin mutants demonstrate 

that Cx43 plays a dual role, regulating both cell proliferation (growth) and joint 

formation (patterning) during the process of skeletal morphogenesis. Thus, we utilized 

a novel microarray strategy to identify a set of candidate genes, which are both 

downregulated in sof b123 and upregulated in alf dty86. Hapln1a (Hyaluronan 

and Proteoglycan Link Protein 1a) is one among the several genes identified by the 

microarray analysis.  

The focus of this thesis was to elucidate the role and mechanism of Hapln1a in 

mediating Cx43 function during skeletal development in the regenerating zebrafish fin. 

Hapln1a belongs to the family of link proteins that play an important role in stabilizing 

the extracellular matrix (ECM) by linking the aggregates of hyaluronan (HA) and 

proteoglycans (PGs). In the first part of this study, we have shown that Hapln1a is 

molecularly and functionally downstream of Cx43, and knockdown of hapln1a resulted 

in reduced segment length, cell proliferation, and reduced HA. In the second part of the 

study, we have shown that besides destabilization of HA, hapln1a knockdown results 

in reduced aggrecan (Acan) and provides evidence that both HA and Acan are required 

for skeletal growth and patterning. Additionally, we show that the Hapln1a–ECM 

stabilizes the secreted growth factor Semaphorin3d (Sema3d) and Hapln1a-dependent 

ECM provides the required conditions for Sema3d stabilization and function. This study 

demonstrates the requirement for components of the Hapln1a–ECM for Sema3d signal 
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transduction. ECM plays a dynamic role during the process of wound healing, 

embryogenesis, and tissue regeneration, and in the final part of the study, we have 

shown that a transitional matrix analogous to the one formed during newt skeletal and 

heart muscle regeneration is synthesized during fin regeneration. We have demonstrated 

that a provisional matrix rich in hyaluronic acid, tenascin C, and fibronectin is 

synthesized following amputation. Additionally, we observed that the link protein 

Hapln1a-dependent ECM, consisting of Hapln1a, HA, and PG aggrecan, is upregulated 

during fin regeneration. Our findings on zebrafish fin regeneration implicates that 

changes in the extracellular milieu represent an evolutionarily conserved mechanism 

that proceeds during tissue regeneration, yet with distinct players depending on the type 

of tissue that is involved.  

Collectively data from this dissertation provide evidence that Cx43 and 

Hapln1a–ECM function in a common pathway to coordinate skeletal growth and 

patterning. Moreover, this study provides novel insights into the mechanistic role of the 

ECM and, in particular, the role of Hapln1a–ECM during vertebrate skeleton 

regeneration that has not yet been elucidated in any other mammalian systems. 
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1.1 Zebrafish: A versatile model for tissue and skeletal regeneration studies 

 Regenerative medicine aims at developing strategies to restore tissues or organs 

that are damaged or lost. Unlike most animals, some species possess the remarkable 

capacity to regenerate body parts throughout adult life. A number of human conditions 

that are a result of injury, aging, and other disorders could be improved if therapies that 

aid tissue regeneration are made available. There are two broad approaches to the field 

of regenerative medicine: the first aims for stem cell based models to generate a set of 

differentiated cells for therapeutic applications and the second exploits the intrinsic 

regenerative capacity of non-mammalian models to define the molecular events that 

license tissue regeneration. Although there are a number of animal models such as 

salamaders and newts with regenerative capacity, zebrafish has emerged as a more 

powerful vertebrate regenerate model for a number of reasons. Some of the advantages 

include rapid regeneration time, large number of externally fertilized eggs, recent 

advances in zebrafish genetics, and the ability to transiently modify gene function 

during development. Zebrafish possess the remarkable capacity to regenerate their heart 

muscle, fin, retina, optic nerve, liver, spinal cord, and sensory nerve cells [1]. 

Understanding the molecular and genetic pathways that function in a coordinated 

fashion to accomplish regeneration in different model organisms will pave the way for 

understanding the shared gene networks and the underlying principle to regeneration. 

This in turn will accelerate the development and generation of therapeutic methods to 

circumvent the limitations in mammalian regenerative abilities. A number of molecular 

networks involved in appendage development and regeneration are conserved across 
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multiple species. For example, key players of the fibroblast growth factor (fgf) and 

wingless (wnt) family are well-defined players in human, mouse, chicken, tadpole, and 

fruit fly limb development and zebrafish caudal fin regeneration. Also, there is growing 

evidence for the conservation of morphological and molecular events among different 

organs within a same species. For example, fgf signaling [2,3], hsp60 [3,4], cx43 [5,6], 

and notch signaling [7] are required for proper regeneration of both heart and the fin 

tissue of Zebrafish. 

1.2 The zebrafish caudal fin as a model for skeletal morphogenesis 

The zebrafish caudal fin has several ideal properties for experimental procedures 

and regeneration studies. First, it is the largest external appendage located at the 

posterior end of the body, which makes it the most accessible for surgery and imaging. 

Second, in contrast to the remaining fins, it displays a bi-lobed morphology that is 

optimal for analysis of the differential growth rate along the medial−lateral axis. Third, 

the fin has some unique features compared to the amphibian limb. It exhibits a simpler 

anatomy, lacking certain tissues such as muscles and cartilage. Fourth, the completion 

of tail regeneration is rapidly and faithfully achieved within 2−4 weeks, depending on 

the water temperature. Finally, rays can regenerate independently of each other, 

providing autonomous regenerative units and multiple experimental replicates within 

the same appendage [8]. These powerful features render the caudal fin an ideal model 

system to tackle fundamental issues concerning vertebrate organ regeneration.  
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The zebrafish caudal fin originates predominantly from the ventral side of the 

larval fin. During adulthood, it remains connected to the vertebral column by bones of 

ventral origin, with the exception of the dorsal-most rays [9]. Anatomically, this 

appendage can be defined as a non-muscularized dermal fold that is stabilized by 16−18 

main segmented and occasionally bifurcated bony rays spanned by soft interray tissue 

(Figure 1.1A). The segment length is demarcated by the intersegmental joints that are 

spaced approximately 240−320μm ranging from the distal to proximal terminus of the 

ray, the formation of which can be mathematically modeled [10]. The bi-lobed shape of 

the adult fin arises as the result of a higher number of segments in the lateral rays of the 

lobes compared to the medial rays of the cleft, displaying a difference of approximately 

four segments between the longest and the shortest ray [11]. As fish can grow during 

their entire lifespan, fins maintain a capacity of extending their size throughout 

adulthood. The growth of the fin is achieved by the sequential addition of new ray 

segments at the tip which, once formed, can become increasingly thicker but cannot 

elongate [11]. Thus, in contrast to a tetrapod limb with a constant sequence of bones, 

which is set up during embryogenesis, the number of ray segments increases in 

proportion to the growth of the animal. Each newly grown ray segment arises as a distal 

unit, but it acquires a proximal value as the elongation of the tail continues. The 

robustness of the fin fold depends predominantly on the collagenous bone matrix called 

lepidotrichia, which is deposited by osteoblasts (also named scleroblasts) underneath 

the epidermis. The major proximal portion of the ray is supported by calcified bone 

matrix, while the three to four distal-most segments are thin and remain non-mineralized 
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(Figure 1.1C, D). The gradient of ray mineralization indicates the smooth transition 

between the proximal and distal portion of the appendage (Figure 1.1B). The distal-most 

segment of each ray lacks bone matrix at the tip. However, it is supported by a brush-

like bundle of fine spicules named actinotrichia (Figure 1.1C), which are synthesized 

by non-osteoblasts [12,13]. It is reasonable to assume that mineralized matrix at the base 

and flexible structures at the tip of the appendage provide optimal architecture for the 

hydrodynamic function of the fin.  

The ray contains two concave bones at each side of the fin fold, called hemirays. 

The bilateral organization of the ray can be assessed in longitudinal fin sections (Figure 

1.2A). In this perspective, the pair of concave bones appears as parallel rods below the 

multilayered epidermis (Figure 1.2B). The lepidotrichia are tightly covered by flattened 

osteoblasts that deposit matrix to adjust the diameter of the bone during growth. The 

space between the hemirays is filled with connective tissue, which, in contrast to typical 

mammalian dermis, contains densely interconnected fibroblasts (Figure 1.2B). The rays 

are innervated and vascularized by central arteries [14]. The interrays, which separate 

adjacent rays, lack skeletal elements and contain veins embedded in a mesenchymal 

tissue with larger spacing between cells (Figure 1.2C). Taken together, fins are 

composed of multiple tissues, including connective tissue, lepidotrichia, actinotrichia, 

blood vessels, nerves, and epidermis, all of which must regenerate coordinately to 

restore the shape and function of the organ. Direct interactions between adjacent tissues 

have to be established to synchronize the regrowth and patterning.  
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1.3 Epimorphic regeneration is facilitated by the formation of blastema 

Epimorphic regeneration is a post-traumatic morphogenetic event characterized 

by aggregation of mesenchymal cells at the wound site to form the blastema [15,16]. 

Following amputation, regeneration of adult caudal fin is completed in approximately 2 

weeks (reviewed in [17]) and involves 3 main phases: (1) wound healing, (2) blastema 

formation, and (3) regenerative outgrowth (Figure 1.3). Following amputation, within 

the first day, the wound epidermis thickens and the connective tissue within a distance 

of approximately 150 μm from the amputation plane undergoes disorganization (Figure 

1.2D) [18]. The fibroblasts of the activated mesenchyme round up, express tissue 

remodeling proteins, such as tenascin C, and start to proliferate [19]. The early 

regeneration genes are induced to set up the two key structures of the regenerate, namely 

a specialized wound epithelium and the blastema, with proliferating cells of 

mesenchymal origin. Specifically, the core of the blastema consists of a loose cluster of 

mesenchymal cells, while the undifferentiated osteoblasts maintain their original 

distribution underneath the wound epidermis, recapitulating the pattern of mature bones 

in the stump (Figure 1.2E−G). Accordingly, the dedifferentiated migrating osteoblasts 

neither invade the interray tissue nor intermingle with the mesenchymal cells of the rays. 

In conclusion, the histological architecture of the blastema outgrowth displays a 

remarkable degree of spatial histological organization that reproduces the pattern of the 

original structures. 



10 
 

The epithelial−mesenchymal interactions are fundamental to the execution of 

developmental and regenerative programs [20–22]. Accordingly, the wound epidermis 

functions not only as a physical barrier to protect the internal fin tissues, but also as an 

organizer of the underlying blastema. The latter function is attributed particularly to the 

basal layer of the wound epidermis that consists of a single row of aligned cells forming 

a niche-like environment for the blastema. The wound epithelium provides architectural 

cues and secreted factors, such as Sonic hedghog (Shh), Wnt5b, Fgf24, to control 

blastema function [23–27]. However, the formation of the specialized wound epithelium 

is dependent on the signals from the blastema, such as Fgf20a, Sdf1, Igf2b, and retinoic 

acid (RA) [21, 28–31]. The inhibition of any of these signaling pathways prevents both 

blastema formation and wound epithelium organization. The reciprocal communication 

between the wound epithelium and mesenchyme is also one of the prerequisites for 

blastema formation in the amphibian limb [32], indicating similar principles for 

appendage regeneration in vertebrates. 

After the establishment of the interacting wound epithelium and blastema, cell 

proliferation takes place very rapidly and the increase of the outgrowth size has to be 

immediately accompanied by pattern formation. The apical part of the outgrowth is 

formed by a columnar basal epithelium and the distal-most blastema, which comprises 

mesenchymal cells with a slow proliferative activity [18]. In situ hybridization analyses 

demonstrated that several genes, such as aldh1a2, wnt5a, fgf3, demarcate a broader 

extent of the distal blastema, including rapidly proliferating cells [33–36]. The proximal 

compartment of the blastema comprises a central cluster of rapidly proliferating 
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mesenchymal cells and the lateral compact layers of dedifferentiated osteoblasts that are 

located underneath the cuboidal basal wound epithelium. The cuboidal wound 

epithelium expresses a signaling protein, Shh, that could be involved in guidance of the 

underlying osteoblasts through the regeneration process [23,37]. Thus, the wound 

epithelium and the blastema display a compartmentalization already at the early 

outgrowth phase. It has been proposed that the apical part of the blastema acts as the 

upstream organizer of the regenerate through the Wnt signaling pathway, which 

regulates epidermal patterning, blastemal cell proliferation, and osteoblast maturation 

indirectly via secondary signals, such as Fgf and bone morphogenetic protein (BMP) 

[36]. However, the proximal compartment of the blastema has a regenerative task to 

maintain high cell proliferation and their progressive redifferentiation. Recently, two 

studies have reported that a balance between the two processes is regulated by the Notch 

signaling pathway [38,39]. During the outgrowth phase, the blastema becomes 

vascularized and innervated. Blocking angiogenesis through inhibition of vascular 

endothelial growth factor receptor does not impair the initial wound epidermis and 

blastema formation [40]. In the absence of blood supply within the regenerate, the 

elongation of the outgrowth is terminated at approximately 3 dpa. Although the role of 

innervation during blastema formation has been extensively investigated in the 

amphibian limb, little is known about this topic in the context of the fin. 

 Cell lineage tracing experiments combined with transgenic technologies in 

zebrafish showed that the regenerated tissues derive from pre-existing cells that retain 

their developmental identity during their transition in the blastema [41–44]. However, 
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this lineage commitment displays remarkable plasticity under certain restrictive 

conditions. The genetic ablation of all osteoblasts using a nitroreductase system did not 

prevent bone regeneration [45]. This unexpected finding reveals an impressive plasticity 

of the fin to activate alternative mechanisms in order to generate de novo osteoblasts. 

Mosaic transgene expression analysis provides no evidence for a contribution by 

circulating stem cells to the fin regenerate [43,45]. Thus, the new osteoblasts could 

derive either from putative osteoblast stem cells or through transdifferentiation of 

mesenchymal blastema cells into bone-forming cells. The latter explanation would 

involve the reactivation of developmental programs that promote osteoblast formation 

from the mesenchymal condensations [46]. The recapitulation of developmental 

processes might be dependent on the activity of the Shh and BMP signaling pathways, 

which have been implicated in bone regeneration [26,46]. Further studies are needed to 

understand the mechanisms controlling bone regeneration under normal and specific 

circumstances.  

 The factors controlling fin regrowth and morphogenesis can be studied using a 

genetic approach in zebrafish. Several mutants have been identified that carry 

abnormally developed fins, some of which also display regeneration defects [26,47]. 

One of these mutants, called another long fin (alf dty86), attracted much attention in 

research due to its extraordinarily elongated fins [48]. The severity of the alf mutant 

phenotype is associated with skeletal defects of the fin, such as irregular and longer 

segments of the rays and misaligned joints. A lower frequency of elastic ligaments along 

the ray length was predicted to decrease the flexibility of the fin during swimming, 



13 
 

leading to incidences of bone fractures and bone dislocation [48]. The alf mutant locus 

has recently been identified as a gain-of-function mutation in kcnk5b, a gene encoding 

a two-pore domain potassium channel, which probably causes hyperpolarization of the 

cell [49]. The authors suggest that a coordinated ion flux may provide some cues for 

coordination of growth. A concept of molecular bioelectricity has already been 

implicated in diverse examples of regeneration, development, and oncogenesis [50]. 

The remaining question is how the bioelectrical signals regulate downstream cellular 

responses to determine positional information and to induce morphogenetic decisions 

such as segmental border formation. The opposite phenotype to the alf elongated fins is 

represented by another genetic mutation called shortfin (sof b123) that causes shortened 

ray segments and shorter fins compared to wild type [51]. sof mutants exhibit a 

decreased expression of cx43, a component of gap junctions, as opposed to alf mutants 

with enhanced levels of Cx43 [48,52]. The gap junctions serve as stimuli-regulated 

intercellular channels for sharing small molecules, such as inorganic ions and 

metabolites, during development and homeostasis [53–55]. Thus, both opposing fin-

size phenotypes of alf and sof mutants are associated with aberrant membrane channels 

involved in ion flux. A loss of Cx43 activity leads to short segments, while a gain of 

Cx43 activity results in longer segments. It becomes evident that the ion flux in a cluster 

of proliferating cells is essential to orchestrate morphogenetic decisions during 

development and regeneration. 
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1.4 Cx43 function during skeletal development is conserved across species 

The focus of this dissertation is to study the underlying mechanisms for skeletal 

morphogenesis, using zebrafish caudal fin regeneration as a tool. We utilize the 

zebrafish short fin mutant (sof b123) to address the role of Cx43 during skeletal 

development. Previous studies from our lab have shown that the mutation in zebrafish 

cx43 gene causes the short fin (sof  b123) phenotypes characterized by short bony fin ray 

segments, short fins, and reduced cell proliferation. The sof  b123 mutant exhibits reduced 

levels of cx43 mRNA and Cx43 protein, without a lesion in the coding sequence [51].  

In bone tissue, connexins play a direct role in regulating the development and 

modeling of matrix components. More specifically, the GJ protein, Cx43 is present in 

several bone cell types including chondrocytes, osteoclasts, and osteocytes [56–58]. The 

syndrome ODDD, characterized by abnormalities in craniofacial elements, limbs and 

dentition, has been linked to missense mutations in the CX43 gene locus in humans [59]. 

At least 24 separate point mutations have been identified in patients with ODDD [59–

61]. The CX43 knock out (CX43-/-) mouse dies perinatally because of cardiac 

malformations [62,63]. Similarly, targeted gene knock-down of cx43 results in 

embryonic heart defects in zebrafish, signifying the essential role of cx43 during 

development [51]. The skeletal defects seen in the CX43-/- KO mouse model exhibited 

hypomineralization of craniofacial bones and severely delayed ossification of the 

appendicular skeleton [57]. Moreover, the ODDD phenotype is similar to a set of 

craniofacial abnormalities observed in the targeted CX43 knock-down chick model 
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[64,65]. In zebrafish, a homozygous mutation in cx43 causes the short fin phenotype, 

characterized by shorter tail fins due to defects in the fin skeleton (Figure 1.4). The 

mechanism by which CX43-based mutations cause skeletal defect phenotypes is largely 

unknown. However, it is apparent that the function of Cx43 in the vertebrate skeleton is 

conserved. Thus, our findings on the role of Cx43 during skeletal morphogenesis are 

applicable to all vertebrates. 

Gap junctions play a critical role in coupling tissue function, and they have long 

been hypothesized to play a role in the maintenance of homeostasis, morphogenesis, 

cell differentiation, and growth control in multicellular organisms and during the 

process of skeletogenesis [66]. Gap junctions are proteinaceous channels formed by the 

docking of two connexons of neighboring cells and mediate the exchange of low 

molecular weight metabolites (<1000Da), ions and second messengers between the 

contacting cells. Each connexon or hemichannel is made up of connexin, a four pass 

transmembrane domain containing protein. The complex control of cell differentiation 

and synchronization of events that occur during bone development is mediated by the 

intercellular diffusion of signaling molecules through gap junctions. This exchange 

process, termed GJIC [67], occurs through channels made up of connexin proteins.  

1.5 Cx43 activity coordinately regulates cell proliferation and joint formation 

during zebrafish fin regeneration 

Skeletal morphogenesis is a complex process involving cell proliferation and 

differentiation that is coordinated by genetic programs that regulate the mechanisms of 
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differentiation, function and also their interaction with components of the ECM [68,69]. 

Newly synthesized bone could be formed either by endochondral ossification (involving 

a cartilage template) or by intramembranous ossification (without a cartilage template) 

in which the osteoblasts assemble and mineralize the tissue directly [70,71]. The latter 

mechanism occurs during zebrafish tail fin regeneration [1,15].  

We were interested in revealing molecular mechanisms for role of Cx43 in bone 

growth. The sofb123 mutant shows reduced levels of cx43 mRNA and Cx43 protein 

without any lesion in the coding sequence [51,72]. However, three additional alleles 

having missense mutations in the cx43 gene also resulted in reduced cx43 mRNA, 

protein levels, and reduced GJIC [52]. During the process of fin regeneration, the 

population of actively dividing cells in the blastema shows an upregulation of cx43 

mRNA, and the expression is observed throughout the mesenchyme [72] (Figure 1.5).  

 Morpholino-mediated knockdown of cx43 in wild type regenerating fins 

resulted in reduced fin length, reduced segment length, and reduced cell proliferation, 

completely recapitulating the phenotypes observed in sof alleles [72]. Collectively, 

these data reveal that reduced levels of cx43 mRNA or protein or GJIC cause the same 

set of phenotypes. Thus, any loss of Cx43 function is equivalent to loss of Cx43 activity. 

Given the fact that loss of Cx43 activity results in reduced cell proliferation and short 

segments, it is possible to argue that the reduced segment length could be an effect 

caused by reduced cell proliferation. However, inhibiting cell proliferation via Shh or 

Fgfr1 signaling pathways resulted in reduced cell proliferation and fin length but did 
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NOT impinge on the segment length [26,73], suggesting that reducing cell proliferation 

alone cannot influence segment length. Interestingly, another mutant alf dty86 exhibits 

long fins, overlong segments, and stochastic joint failure [47] (Figure 1.6A) that is 

contrasting to the phenotypes exhibited by the sof mutant. We have shown that alfdty86 

has higher levels of cx43 mRNA, and cx43 knock-down in alf dty86 fins rescued the fin 

and segment length, suggesting that Cx43 over expression is the basis for the alf dty86 

phenotypes [48] (Figure 1.6B). Based on some of the results mentioned earlier, we 

suggest that in addition to promoting cell proliferation, Cx43 plays an additional role in 

impacting the segment length by regulating the process of joint formation. Thus, Cx43 

functions in more than one way, by positively influencing cell proliferation and also by 

suppressing joint formation, thereby concomitantly regulating bone growth and skeletal 

patterning during the process of fin regeneration.  

1.6 Research objectives and Hypotheses 

An important, yet poorly understood question with respect to mutations in 

connexin genes in general is, how does GJIC impact tangible cellular events like cell 

division and differentiation? One hypothesis is that Cx43-based GJIC can influence 

gene expression patterns [58,74]. Our lab exploited the availability of the two mutants, 

sof b123 and alf dty86, to identify genes whose expression depends on Cx43. Thus, we 

utilized a novel microarray strategy to identify a set of candidate genes, which are both 

downregulated in sof b123 and upregulated in alf dty86. To date, there are 15 genes that 

have been validated to have cx43-dependent functions. Among the 15 genes, the first 
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gene validated was sema3d [75]. So far, we have established that Cx43 coordinates two 

activities, cell proliferation and joint formation, to precisely regulate segment length. 

However, we are yet to understand how Cx43 mediates those activities. In other words, 

it remains unclear how direct cell–cell communication influences cellular functions that 

in turn effectively regulate morphogenesis. To identify global changes in gene 

expression occurring downstream of cx43, our lab utilized a microarray strategy, 

focusing on the subset of genes both downregulated in sof b123 and upregulated in alf 

dty86 to enable the identification of cx43-dependent genes. Based on a previous report 

from our lab, we know that sema3d, a secreted signaling molecule is expressed in the 

skeletal precursor cells and is molecularly and functionally downstream of Cx43, 

mediating cx43-dependent phenotypes (Figure 1.7) [75]. We anticipate that there are 

other cx43-dependent genes that can contribute to the two mechanistic pathways of cell 

proliferation and joint suppression. Therefore, it is important to identify genes that are 

expressed downstream of cx43, especially genes that are upregulated in alf dty86 and 

downregulated in sof b123. The goal of this research was to elucidate the role of hapln1a 

(ECM protein-coding gene identified by the microarray analysis) in mediating Cx43-

dependent skeletal phenotypes during fin regeneration. 

1) In mouse and human, the orthologous protein HAPLN1 has also been 

referred to as either cartilage link protein (Crtl1) or link protein (LP). The function of 

Hapln1 is to “link” hyaluronic acid (HA) with proteins termed PGs in the ECM (Figure 

1.8). The mouse knockout for CRTL1 (aka HAPLN1) causes dwarfism, craniofacial 

abnormalities, and perinatal lethality in the mouse [76] and interestingly, cartilage-

A 

A 
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specific expression of transgenic Hapln1a rescues skeletal abnormalities in LP knockout 

mice [77]. Also, single nucleotide polymorphisms identified in the HAPLN1 gene is 

associated with spinal osteoarthritis in aging females [78]. Together, these studies 

highlight the importance of this ECM protein during skeletal morphogenesis. Hence, it 

is interesting to understand the role of Hapln1a during skeletal morphogenesis and to 

our knowledge this is the first study addressing the role of this ECM protein in a 

regenerating fin skeleton. We found that knockdown of hapln1a recapitulated all of 

cx43 knockdown phenotypes, suggesting that hapln1a is indeed molecularly and 

functionally downstream of Cx43. Additionally, we also found that hapln1a knockdown 

destabilizes HA which might be contributing to the observed skeletal phenotypes [79]. 

This objective is presented as Chapter 2. 

2) The ECM can influence the ability of the secreted signaling molecules 

that act as ligand, to physically interact with their specific cell surface receptors. It is 

possible that Hapln1a-based ECM, containing HA as the important component, could 

play a role in signaling by interacting with some of the signaling molecules that are 

known to be secreted during fin regeneration. For example, the signaling molecule 

Sema3d is known to mediate Cx43-dependent phenotypes, perhaps via physical binding 

to Neuropilin and Plexin receptors [75]. We evaluated the genetic and physical 

interaction between the Hapln1a-dependent ECM and secreted signaling molecule 

Sema3d. The findings of this study are summarized in Chapter 3. We found that the 

components of Hapln1a–ECM, namely HA and the PG aggrecan (Acan) are important 

to mediate Hapln1a functions, namely, cell proliferation (growth) and joint formation 
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(patterning). And, we provide evidence that Hapln1a–ECM genetically interacts with 

and stabilizes at least one signaling molecule, Sema3d, during fin regeneration. 

3) Skeletal development depends upon appropriate cell proliferation and 

cell differentiation. The fact that hapln1a knockdown causes reduced cell proliferation 

and reduced segment length provides evidence that at least the HA–Hapln1a based ECM 

influences these cellular behaviors. However, it is not clear how mutations and defects 

in ECM proteins cause skeletal disorders. Interestingly, nothing has been published on 

the role of HA/Hapln1a or other major ECM components during zebrafish fin 

regeneration. To achieve a better understanding about how the ECM is remodeled 

during zebrafish fin regeneration, we looked at components of the ECM over time. We 

focused on the expression pattern of Hapln1a–ECM components (i.e., Hapln1a, HA, 

Acan, Vcan) (Figure 1.9), as well as the other components of the putative transitional 

matrix such as FN and TNC [80–83]. In addition, we included laminin (LAM), which 

is characteristic of differentiated tissues. The findings from this study are summarized 

in Chapter 4. Our results show that a transitional matrix analogous to the one formed 

during newt skeletal and heart muscle regeneration is synthesized during fin 

regeneration. We also demonstrate that a provisional matrix, rich in hyaluronic acid, 

tenascin C, and fibronectin is synthesized following amputation. Additionally, we 

observed that the link protein Hapln1a-dependent ECM, consisting of Hapln1a, HA, and 

PG-Acan, is upregulated during fin regeneration [84]. Our findings on zebrafish fin 

regeneration implicate that changes in the extracellular milieu represent an 
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evolutionarily conserved mechanism that proceeds during tissue regeneration, yet with 

distinct players, depending on the type of tissue that is involved. 
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1.7 Figures 

 

Figure 1.1: The zebrafish fin is a model system for skeletal morphogenesis. (A) The 

caudal fin is stained with calcein (detects bone matrix). Bony fin rays made of segments 

separated by joints (Bright green lines) The bi-lobed morphology of the caudal fin fold 

is stabilized by 16−18 segmented and occasionally bifurcated bony rays (stained 

structures), named lepidotrichia, that are interconnected by soft interray tissue 

(unstained regions between the bony rays). The bones are predominantly composed of 

calcified matrix (magenta), with the exception of the distal parts which remain non-

mineralized. (B) A higher magnification of the distal region shows a gradual decrease 

of the calcification level towards the fin margin. The length of segments is nearly 

identical in proximal (magenta) and distal (cyan) parts of the rays. (C) The tips of the 

rays are supported by a brush-like bundle of fine spicules, called actinotrichia, which 

surround the apical-most segment of the lepidotrichia and expand further distally 

beyond the end of the bone. (D) The proximal segments of the rays are at least three 

times broader than the distal calcified segments (compared with B), but their length 

remains nearly constant. Scale bars: (B)−(D) 100 μm. (B, C, D, adapted from Pfefferli 

et al, 2015) 

 

A 
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Figure 1.2: The histological organization of an uninjured and regenerating caudal 

fin. (A) Schematic representation of the fin structure with the planes of sectioning along 

the interray (green frame) and rays (blue frame). (B)−(I) Longitudinal fin sections 

stained with hematoxylin and eosin. (B) Each lepidotrichium consists of a pair of 

concave bones (b) that appear as parallel rods underneath the multilayered epidermis 

(e). Bones are tightly covered by flattened osteoblasts that deposit the bone matrix. The 

mesenchymal tissue (m) between the bones is composed of connective tissue containing 

densely interconnected fibroblasts, nerves, and arteries (a). (C) The interray is devoid 

of skeletal elements and contains loose connective tissue. (D) At 30 hpa, the blastema 

(bl) appears as a cluster of undifferentiated mesenchymal cells covered by a wound 

epidermis (we) above the amputation plane (white dashed line). Blastema formation 

results from the dedifferentiation of cells located in the stump that progressively lose 

their specialized morphology, initiate proliferation, and migrate distally toward the 
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amputation plane. (E) At 72 hpa, the blastemal outgrowth exhibits a spatial organization 

of the newly formed tissue. (F) Higher magnification of the distal part of the outgrowth 

(apical signaling zone with slowly cycling cells). Mesenchymal cells become elongated 

perpendicularly to the growth (proximo-distal) axis. The basal layer of the wound 

epithelium (bwe) contains columnar cells. (G) Higher magnification of the proximal part 

of the outgrowth (proliferation and redifferentiation zone). Dedifferentiated osteoblasts 

(ob) are tightly interconnected and remain aligned underneath the wound epidermis. The 

basal layer of the wound epithelium (bwe) contains cuboidal cells. The mesenchymal 

cells are round and loosely distributed. Scale bars: 50 μm. (Adapted from Pfefferli et al, 

2015). 
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Figure 1.3: The regeneration process of the caudal fin in zebrafish. (A) Time-lapse 

imaging of the same fin during the regeneration process at 27C. Uncut, the original fin 

prior to amputation presents a bi-lobed morphology. At 1 dpa, white tissue above the 

amputation consists of the wound epidermis and a few blastema cells. At 3 dpa, a white 

excrescence above the amputation plane contains the blastema, which, despite its 

uniform appearance, exhibits subdivisions at the cellular and molecular level. At 6 dpa, 

the outgrowth extends very rapidly; the white tissue is maintained at the fin margin, 

while the proximal outgrowth starts to display bone structures and pigmentation, which 

are the macroscopic markers of tissue redifferentiation. At 12 dpa, fin regeneration is at 

its advanced stage. At 20 dpa, the size of the fin nearly reaches its original size and 

pattern. The white margin of tissue remains at the tip for homeostatic 

growth/regeneration. (B) Higher magnifications of the fin surface at the position of 

amputation (white dashed line) at the respective time points are indicated in the upper 
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panel (A). (C) The milestones of the fin regeneration process. Scale bars: (A) 1000 μm; 

(B) 200 μm. (Adapted from Pfefferli et al, 2015). 
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Figure 1.4:  Fin length mutants exhibit defects in skeletal morphogenesis. Top: 

wildtype zebrafish. Middle: sof b123 mutant. Bottom: alf dty86 mutant. (Reviewed in 

Ton and Iovine, 2013). 
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Figure 1.5: cx43 mRNA is detected by in situ hybridization. (A) Cryosection shows 

the expression of cx43 in the blastema (b). Picture taken at 20X magnification. (B) 

Cartoon of a longitudinal cross-section through a single fin ray shows the central 

mesenchyme (m) and outer epithelium (e). The basal layer of the epithelium is outlined 

in red. The proximal (pb) and distal (db) blastema (purple) is in the mesenchyme (m) 

and represents the region of proliferating cells. Skeletal precursor cells (green) are 

adjacent to dividing cells in the blastema suggesting that Cx43 activity influences joint 

formation. 
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Figure 1.6: The alf dty86 mutant phenotype before and after the rescue. (A) Before 

the cx43 knockdown experiment, the mutant exhibits stochastic joint segments. (B) 

After the knockdown, segment length is rescued and more joints are formed. Adapted 

from Sims et al., 2009. 
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Figure 1.7: Model showing Cx43-Sema3d influence on skeletal morphology. (A) 

Proposed pathway of Cx43–Sema3d and downstream receptors (text colors are 

coordinated with the cartoon in B). Cx43 activity influences sema3d gene expression, 

influencing cell proliferation and joint formation independently. Sema3d interacts with 

Nrp2a to yield a net positive influence on cell proliferation (dotted arrow). Sema3d 

interacts with PlxnA3 in the skeletal precursor cells to inhibit joint formation. (B) 

Cartoon illustrating the compartments of gene expression in the Cx43–Sema3d pathway 

(e, epithelium; m, mesenchyme; basal layer of the epidermis is dotted). The cx43 mRNA 

is upregulated in the blastema (red), adjacent to the sema3d-positive and plxna3-positive 

skeletal precursor cells (green). Cx43-dependent up-regulation of Sema3d allows 

Sema3d to signal back to the blastema to provide a net positive signal for growth (dotted 

arrow), perhaps via Nrp2a. Sema3d signaling via PlxnA3 inhibits joint formation in the 

skeletal precursor cells, perhaps by influencing osteoblast/joint-forming cell 

differentiation. (Adapted from Ton and Iovine, 2012). 
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Figure 1.8: Hapln1a in the Extracellular matrix. The link protein Hapln1a (red) 

stabilizes the interaction between hyaluronic acid (green) and proteoglycan (brush like 

structure in black). Collagen fibrils in the ECM are represented as tube like structures 

in pink. 
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Figure 1.9: Defining Hapln1a-ECM. Hapln1a, HA, Acan and Vcan form Hapln1a-

ECM. Bone associated proteoglycans are aggrecan (Acan) and versican (Vcan). 

Hapln1a, and the associated components stabilized by Hapln1a, namely, HA, Acan and 

Vcan constitute the Hapln1a-ECM. 
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2.1 Abstract 

Cell–cell communication, facilitating the exchange of small metabolites, ions 

and second messengers, takes place via aqueous proteinaceous channels called gap 

junctions. Connexins (Cx) are the subunits of a gap junction channel. Mutations in 

zebrafish cx43 produces the short fin (sof b123) phenotype and is characterized by short 

fins due to reduced segment length of the bony fin rays and reduced cell proliferation. 

Previously established results from our lab demonstrate that Cx43 plays a dual role 

regulating both cell proliferation (growth) and joint formation (patterning) during the 

process of skeletal morphogenesis. In this study, we show that Hapln1a (Hyaluronan 

and Proteoglycan Link Protein 1a) functions downstream of cx43. Hapln1a belongs to 

the family of link proteins that play an important role in stabilizing the ECM by linking 

the aggregates of hyaluronan and proteoglycans. We validated that hapln1a is expressed 

downstream of cx43 by in situ hybridization and quantitative RT-PCR methods. 

Moreover, in situ hybridization at different time points revealed that hapln1a expression 

peaks at 3 days post amputation. Expression of hapln1a is located in the medial 

mesenchyme and in the lateral skeletal precursor cells. Furthermore, morpholino 

mediated knockdown of hapln1a resulted in reduced fin regenerate length, reduced 

bony segment length and reduced cell proliferation, recapitulating all the phenotypes 

of cx43 knockdown. Moreover, Hyaluronic Acid (HA) levels are dramatically reduced 

in hapln1a knockdown fins, attesting the importance of Hapln1a in stabilizing the ECM. 

Attempts to place hapln1a in our previously defined cx43–sema3d pathway suggest 

that hapln1a functions in a parallel genetic pathway. Collectively, our data suggest that 
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Cx43 mediates independent Sema3d and Hapln1a pathways in order to coordinate 

skeletal growth and patterning. 

2.2 Introduction 

Gap junctions play a critical role in coupling tissue function and they have long 

been hypothesized to play a role in the maintenance of homeostasis, morphogenesis, 

cell differentiation, growth control and the process of skeletogenesis in multicellular 

organisms [1]. Gap junctions are proteinaceous channels formed by the docking of two 

connexons between neighboring cells, and they mediate the exchange of low molecular 

weight metabolites (<1000 Da), ions and second messengers between the contacting 

cells [2]. Each connexon or hemichannel is made up of six connexins, each protein 

containing a four pass transmembrane domain. The syndrome Oculodentodigital 

dysplasia (ODDD), characterized by abnormalities in craniofacial elements, limbs and 

dentition, has been linked to missense mutations in the GJA1gene locus in humans [3]. 

At least 24 separate point mutations in GJA1, which codes for Connexin43 (Cx43), have 

been identified in patients with ODDD [3]–[5]. The CX43 knock out (CX43−/−) mouse 

dies perinatally because of cardiac malformations [6], [7]. Similarly, targeted gene 

knockdown of cx43 results in embryonic heart defects in zebrafish, signifying the 

essential role of cx43 during development [8]. The skeletal defects seen in 

the CX43−/− KO mouse model exhibited hypomineralization of craniofacial bones and 

severely delayed ossification of the appendicular skeleton [9]. Moreover, the ODDD 

phenotype is similar to a set of craniofacial abnormalities observed in the 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Goodenough1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Paznekas1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Paznekas1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Richardson1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Reaume1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ya1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Iovine1
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targeted CX43 knockdown chick model [10], [11]. In zebrafish, a homozygous mutation 

in cx43 causes the short fin phenotype, characterized by shorter tail fins due to defects 

in the fin skeleton. The mechanism by which CX43 based mutations cause skeletal 

defect phenotypes is largely unknown. However, it is apparent that the function of Cx43 

in the vertebrate skeleton is conserved. 

We utilize the zebrafish short fin mutant (sof b123) to address the role of Cx43 

during skeletal development. Our lab has found that the mutation in zebrafish cx43 gene 

causes the short fin (sof b123) phenotypes characterized by short bony fin ray segments, 

short fins, and reduced cell proliferation. The sof b123 mutant exhibits reduced levels 

of cx43 mRNA and Cx43 protein, without a lesion in the coding sequence [8]. 

Moreover, three additional alleles that cause missense mutations also resulted in 

reduced gap junctional intercellular communication (GJIC), short segments, and 

reduced cell proliferation [12]. Furthermore, morpholino mediated knockdown of Cx43 

in wild type zebrafish completely recapitulate all the phenotypes produced by sof 

alleles [13]. In contrast to sof b123, the another long fin (alf dty86) mutant exhibits fin 

overgrowth and overlong segments due to stochastic joint failure [14]. These 

phenotypes are opposite to those of sof, and we have shown that alf dty86 exhibits 

increased levels of cx43 mRNA [15]. Indeed, cx43 knockdown in alf dty86 rescues the 

segment length phenotype, suggesting that Cx43 over expression contributes to 

the alf dty86 phenotypes (note that the mutation causing alf dty86 phenotypes is not located 

in the cx43 gene [15]). We interpret the cx43-dependent loss of joints in alf dty86 and the 

premature joint formation (i.e. short segment) phenotype in sof to indicate that Cx43 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Becker1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Law1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Iovine1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-HoptakSolga1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-HoptakSolga2
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-vanEeden1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Sims1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Sims1
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suppresses joint formation. At the same time, Cx43 is positively associated with cell 

proliferation. Thus, Cx43 functions in more than one way, both positively influencing 

cell proliferation and negatively influencing joint formation, thereby concomitantly 

regulating bone growth and skeletal patterning during the process of fin regeneration. 

An important, yet poorly understood question with respect to mutations 

in connexin genes in general is, how does GJIC impact tangible cellular events like cell 

division and differentiation? One hypothesis is that Cx43 based GJIC can influence gene 

expression patterns [16], [17]. Our lab exploited the availability of the two 

mutants, sof b123 and alf dty86, in order to identify genes whose expression depends on 

Cx43. Thus, we utilized a novel microarray strategy to identify a set of candidate genes, 

which are both downregulated in sof b123 and upregulated in alf dty86. The first gene 

validated from this microarray is semaphorin3d (sema3d) [18]. Here, we provide 

molecular and functional validation of another gene identified from the microarray 

analysis, hapln1a (hyaluronan and proteoglycan link protein 1a). In mouse and human, 

the orthologous protein Hapln1 has also been referred to as either cartilage link protein 

(Crtl1) or link protein (LP). The function of Hapln1 is to “link” hyaluronic acid (HA) 

with proteins termed proteoglycans (PG) in the extracellular matrix (ECM). 

Remarkably, the mouse knockout for CRTL1 (aka HAPLN1) causes dwarfism, 

craniofacial abnormalities, and perinatal lethality in the mouse [19]. 

The ECM is a complex mixture of proteins and carbohydrates that forms a dense 

network surrounding cells. Little is known about the functional role of the ECM during 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Stains1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Stains2
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ton1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Watanabe1
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zebrafish fin regeneration. Pharmacological treatments that alter the localization of PGs 

and collagen, as well as the expression levels of matrix metalloproteases, have been 

found to restrict outgrowth during fin regeneration [20], [21]. Even less is known about 

the particular role of the Hapln1a-based ECM, including HA, in the regenerating fin. 

HA is a large molecular weight carbohydrate polymer with a molecular mass up to 106–

107 Da [22], [23]. The structure of the ECM is stabilized by Haplns by virtue of forming 

stable associations between HA and PGs [24]–[26]. Unsulfated glycosaminoglycans 

(such as HA) are prominent in the blastemas of late stage regenerating cichlid fins, 

although their function has not been elucidated [27]. Apart from contributing to the 

physicochemical properties, ECM turnover and remodeling are critical events during 

tissue injury and repair. HA is also known to regulate cell migration, proliferation, and 

differentiation through activation of HA-specific cell surface receptors [28]–[30]. This 

is the first study to evaluate the effects of destabilizing the Hapln1a-based ECM during 

zebrafish fin regeneration. We find that reduced Hapln1a causes skeletal growth and 

patterning defects during fin regeneration, perhaps via destabilization of HA. 

Furthermore, we find that hapln1a functions downstream of cx43, providing novel 

insights into how skeletal morphogenesis could be influenced by Cx43. 

2.3 Materials and Methods 

Statement on the ethical treatment of animals 

This study was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Andreasen1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Bai1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Bastow1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Contreras1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Knudson1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Sherman1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Santamaria1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ghatak1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Misra1
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The protocols used for this manuscript were approved by Lehigh's Institutional Animal 

Care and Use Committee (IACUC) (protocol identification #128, approved 

11/14/2012). Lehigh University's Animal Welfare Assurance Number is A-3877-01. All 

experiments were performed to minimize pain and discomfort. 

Animal procedures 

The following zebrafish (Danio rerio) strains were used in this study: wild-type 

C32, sof b123[31] and alf dty86 [14]. Fish were maintained at a constant temperature of 

25°C with 14 light: 10 dark photoperiod [32]. Fish were anaesthetized in 0.1% tricaine 

and caudal-fin amputations were performed at the 50% level using razor blades. Fin 

regeneration was then allowed to proceed until the desired time period and the 

regenerated fins were harvested from anaesthetized fish. Fins were fixed overnight in 

4% paraformaldehyde (PFA) in PBS and dehydrated in 100% methanol at −20°C. 

Knockdown and whole mount in situ hybridization experiments were performed in 

triplicate with 5 fins per trial. For histochemistry on sectioned tissue, a minimum of 10 

sections were evaluated from each of 3 different fins. For quantitative analyses, student's 

t-tests were completed to determine statistical significance (p<0.05). 

In situ hybridization on whole mount and cryosectioned fins 

RNA probes were generated from PCR amplified linear DNA in which the 

reverse primer contained the T7 RNA polymerase binding site. The primers used in this 

study for ISH are summarized in Table 2.1. Digoxygenin (DIG) labeled RNA probes 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Iovine2
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-vanEeden1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Westerfield1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-t001
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were synthesized using DIG labeling mix (Roche) and in situ hybridization on 

regenerated whole fins was carried out as described [18]. Briefly, for the whole mount 

method, fins stored in methanol were sequentially rehydrated with methanol/PBST and 

then treated with 5 µg/ml proteinase K for 45 min and re-fixed in 4%PFA in PBS for 20 

min followed by extensive washes with PBST and finally the pre-hybridization process 

was carried out with HYB (50% formamide, 5X SSC, 10 mM citric acid, 0.1% 

Tween20, heparin and tRNA) at 65°C for 0.5–1 h. Hybridization with DIG labeled 

probes suspended in HYB was carried out overnight at 65°C followed by sequential 

washes with HYB/PBST and finally with PBST. Anti-DIG Fab (Roche) fragments were 

used at 1:5000 dilution, followed by extensive PBST washes and short washes in 

staining buffer. Subsequently fins were transferred to a staining solution containing 

NBT and BCIP and allowed to develop under dark conditions until purple color was 

observed. The reaction was stopped by washing in PBST and fixing overnight with 4% 

PFA. Finally the fins were mounted on a glass slide and analyzed using a Nikon Eclipse 

80i microscope. Pictures were taken using a digital Nikon camera. 

For in situ on sections, fins were fixed overnight with 4% PFA in PBS after 

harvest. After a brief methanol wash, fins were dehydrated in 100% methanol and stored 

at −20°C until use. Before sectioning, fins were sequentially rehydrated in a methanol-

PBS series of washes and then were embedded in 1.5% agarose/5% sucrose dissolved 

in PBS and equilibrated overnight in 30% sucrose. Fins were mounted in OCT and 

cryosectioned (15 µm sections) using a Reichertâ Jung 2800 Frigocut cryostat. Sections 

were collected on Superfrost Plus slides (Fisher) and allowed to air dry overnight at 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ton1
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room temperature. Sections can be stored at −20°C for up to a year. Before use, the 

slides were brought to room temperature for at least an hour. Using a marking pen 

(ImmEdge Pen H-4000; PAP pen, VWR Laboratories), sections were circled. An 

appropriate amount of probe was pre-hybridized with a mixture of 1X salt solution 

(NaCl, Tris HCl, Tris Base, Na2HPO4.7H20, NaH2PO4, and 0.5 M EDTA) containing 

50% deionized formamide (Sigma), 10% dextran sulfate, 1 mg/mL tRNA, and 1X 

Denhart's (Fisher) at 70°C for 5 mins. Hybridization with DIG–labeled antisense probes 

was carried out at 65°C overnight. The following day, slides were taken through a series 

of washes in a solution of 1X SSC, 50% formamide and 0.1% Tween-20 at 65°C. Slides 

were brought to room temperature and washed extensively in MABT (100 mM Maleic 

acid, 150 mM NaCl, and 0.1% Tween-20) and incubated in a blocking solution (MABT, 

Goat serum and 10% milk) for at least 2 hours. Anti-DIG Fab fragments (pre-absorbed 

against zebrafish fin tissue) were used at 1:5000 dilution and incubated overnight at 

4°C. On day 3, slides were washed 4X in MABT (30 min each) followed by 2X short 

washes (5–10 min) with staining buffer (100 mM Tris, 9.5, 50 mM MgCl2, 100 mM 

NaCl, and 0.1% Tween20). Slides were then transferred to 10% polyvinyl alcohol 

(PVA; MW: 86,000) staining solution with NBT/BCIP stock solution (Roche) and 

allowed to develop overnight at 37°C. When a purple color started to appear on the 

sections, the reaction was stopped by washing the slides with PBST for at least 3 h and 

then stored in PBST at 4°C until imaging. Sections were mounted in 100% glycerol and 

examined on a Nikon Eclipse 80i microscope. 

Morpholino mediated gene knockdown in regenerating fins 
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All morpholinos (MOs) used in this study were fluorescein tagged, obtained 

from Gene Tools, LLC and used at a 1 mM concentration for injection. The sequences 

for MOs used in this study can be found in Table 2.1. Injection and electroporation were 

carried out as described previously [18]. Briefly, 3 dpa fish were anesthetized and 

approximately 50 nl of MO (targeting or mismatch [MM] control) was injected into 

either the dorsal or the ventral half of the tail fin. The un-injected half of the fin served 

as the internal control. Following injection, the entire fin was electroporated using a 

CUY21 Square Wave electroporator (Protech International Inc). MO-positive fish were 

selected 24 hpe (hours post electroporation) by examination under a fluorescence 

microscope. For H3P staining and qRT-PCR analysis, the fins were harvested 1 dpe, 

and for the analysis of regenerate length and segment length, the fins were harvested 4 

dpe. For each MO (i.e., targeting or mismatch) 5–6 fish were injected on one half of the 

fin with the un-injected side serving as an internal control. Reproducibility was 

confirmed by testing the MO in three independent experiments. Statistical significance 

was determined using the student's t-test (P<0.05). 

Immunochemistry and detection of HA 

The following primary antibodies were used: Rabbit anti-histone-3-phosphate 

(anti-H3P, Millipore, 1:200); Mouse anti-Hapln1a antibody (MD Bioproducts, 1:500). 

The following secondary antibodies were used: anti-mouse Alexa 488 or 546 (1:200); 

anti-rabbit Alex 546 (1:200). For H3P staining, whole fins were harvested 1 dpe, after 

MO mediated knockdown and the experiment was carried out as described [18]. HA 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-t001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ton1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ton1
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was detected by biotinylated-HABP (US Biological, 1:300) followed by fluorescently 

labeled streptavidin-Alexa-546 conjugate, (Invitrogen, 1:200). For detection of Hapln1a 

or HA after MO injection (targeting or MM control), the fins were harvested 1 dpe, 

fixed in 4% PFA overnight and then stored in Methanol. Cryosectioning was done as 

described [18] and the sections were allowed to dry overnight. The sections were then 

rehydrated in PBS, twice for 10 min followed by two washes with Immunostaining 

block (2% BSA, 0.1% Tween in PBS). Then, sections were blocked for another 1 h at 

room temperature with the immunostaining block and then incubated in primary 

antibody or biotin-HABP overnight at 4°C. The sections were washed with block (3x, 

15 min each), incubated at room temperature for 1 hr with secondary antibody or 

streptavidin-Alexa-546 (pre-absorbed for 1 hr. at room temperature with fixed zebrafish 

fins to reduce background staining), washed (3x, 15 min each), incubated with 

HOECHST stain for 10 min at room temperature, followed by a quick wash with 

distilled water. They were blotted dry and then mounted for imaging. To test for 

specificity of HABP, WT fin sections were treated with bovine hyaluronidase (Sigma-

H3506, final concentration 200 U/ml) in 10 mM phosphate buffer containing 100 mM 

NaCl (pH 6.0) for 2 hours at 37°C [33], [34]. Untreated sections were incubated in buffer 

without enzyme. Following treatment the sections were washed two times in 

Immunostaining block before staining for HABP as described above. 

Lysate preparation and Immunoblotting 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ton1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Li1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Matsumoto1
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For WT and sof b123, 5 dpa regenerating fins were harvested from 10–15 fish. 

For MO injected fins, the injections were performed at 3 dpa fish (20–25 fish) and 

harvested the next day. Regenerating fins were harvested into 300–500 µl of RIPA lysis 

buffer, supplemented with protease inhibitor (Thermo scientific, Halt™ Protease and 

Phosphatase Inhibitor Cocktail) and homogenized using a tissue homogenizer (Bio-

Gen, PRO 200) at high speed (5X) for 5 seconds with 10 second cooling intervals. 

Homogenized samples were centrifuged at 200 g for 10 min at 4°C and supernatant was 

used for further analysis. The protein samples were concentrated using a lyophilizer 

(Edwards-Freeze dryer super modulyo) and the pellet was resuspended in a minimal 

volume of PBS containing (Thermo scientific, Halt™ Protease and Phosphatase 

Inhibitor Cocktail, 100X) and the protein levels estimated by Bradford's assay. 

To release Hapln1a from HA for detection by immunoblotting, equal 

concentrations of Hapln1a MO and MM lysates were treated with 100 U/ml of bovine 

hyaluronidase (Sigma) for 2 hours at 37°C as described [35]. Immunoblotting was 

performed as described [13] using mouse anti-Hapln1a (MD Bioproducts, 1:500) and 

anti-α-tubulin (Sigma, 1:3000) in combination with peroxidase-conjugated goat anti-

mouse IgG (1:10,000). Signal detection was performed using ECL Prime western 

blotting detection reagent (Amersham™ - GE Healthcare). 

Measurements 

The regenerate length, segment length, and the number of dividing cells were 

estimated/calculated as described [18]. For each experiment, at least 5 fish were 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Sun1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-HoptakSolga2
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ton1
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evaluated in triplicate and a student's t-test was performed to evaluate statistical 

significance. Image Pro software was used to measure the regenerate length from the 

plane of amputation to the tip of the fin and segment length between two joints under 

bright field. Cell number was calculated by counting the number of histone-3-phosphate 

(H3P) positive cells from the distal-most 250 µm2of the 3rd fin ray. 

Quantitative real-time PCR 

For qRT-PCR analysis, TRIZOL RNA extraction was made from the 5 dpa 

regenerating fins of wild-type, sof b123, and alf dty86 and 1 dpe for MO injected fins 

(targeting or MM). A minimum of 10 fins was used for total RNA extraction. For each 

sample, 1 µg of total RNA were reverse transcribed with Super Script III reverse 

transcriptase (Invitrogen) using oligo-dT primers. Primers for qPCR analysis 

of hapln1a, sema3d and actin were designed using Primer express software (Table 2.1). 

Three independent RNA samples were used for the experimental comparison and qPCR 

for each gene was done in duplicates. The samples were analyzed using Rotor-Gene 

6000 series software (Corbette Research) and the average cycle number (CT) was 

determined for each amplicon. Delta CT (ΔCT) values represent normalized expression 

levels of the test with respect to actin, the internal control. The relative level of gene 

expression, which is the fold difference, was determined using the delta delta CT (ΔΔCT) 

method (i.e., 2−ΔΔCT). 

2.4 Results 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-t001
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hapln1a is expressed downstream of cx43 

Recently, we described a microarray strategy to identify genes that function 

downstream of Cx43. We identified ~50 genes that were both downregulated 

in sof b123 and upregulated in alfdty86 [18]. One of the candidate genes identified 

was hapln1a. To validate that hapln1a is expressed downstream of cx43, we compared 

the expression levels of hapln1a in WT, sof b123, and alf dty86 regenerating fins by whole 

mount in situ hybridization (Figure 2.1). As expected, hapln1a mRNA expression 

appeared to be downregulated in sof b123. We noticed some variability 

among alf dty86 regenerating fins, where some fins exhibited upregulation and some 

appeared more similar to WT regenerating fins (two representative images are shown 

in Figure 2.1). Therefore, we performed quantitative RT-PCR (qPCR) to evaluate the 

level of hapln1aexpression in sof b123 and alf dty86 regenerating fins compared with WT 

(Table 2.2). As expected, hapln1a is downregulated in sof b123. However, we did not 

observe an upregulation of hapln1ain alf dty86, suggesting that among a population 

of alf dty86 regenerating fins, there is little difference in the expression level 

of hapln1a between WT and alf dty86.To determine the tissue-specific expression 

of hapln1a, we performed in situ hybridization on cryosections. The longitudinal section 

of a regenerating fin ray reveals several outer epidermal layers, including the basal layer 

of epidermis, which is adjacent to the mesenchyme. The mesenchyme is located 

medially. Within the mesenchymal compartment, a blastema is established at the distal 

or growing end, of each ray. Blastemas are comprised largely of dividing cells that 

contribute to new tissue growth (reviewed in [36], [37]). The hapln1a mRNA is 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ton1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-t002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Akimenko1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Poss1
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expressed throughout the mesenchyme with slightly higher expression in the blastema, 

and to a lesser extent in the skeletal precursor cells (Figure 2.1).  

In order to provide a secondary test to demonstrate cx43-dependence of hapln1a, 

we examined its expression in fins treated for cx43 knockdown [13]. Indeed, the 

expression of hapln1a is reduced in WT fins treated for cx43 knockdown compared 

to cx43 mismatch-treated fins by both in situ hybridization (Figure 2.2) and by qPCR 

(Table 2.2). In contrast, cx43 expression is not reduced in WT fins treated 

for hapln1a knockdown (Table 2.2), indicating that cx43 expression does not depend 

on hapln1a. In summary, we find that hapln1a is reduced both in sof b123 and 

in cx43 knockdown fins, providing independent confirmation that hapln1a is expressed 

in a cx43-dependent manner. Together, these data support the conclusion that hapln1a is 

molecularly downstream of cx43. 

To evaluate when during fin growth hapln1a may be required in WT 

regenerating fins, we examined the expression pattern of hapln1a in non-regenerating 

fins, and at 2 dpa, 3 dpa, 5 dpa and 8 dpa (Figure 2.3). In non-regenerating 

fins hapln1a expression was not detectable. By 2 dpa, the expression of hapln1a was 

slightly up-regulated, and by 3 dpa hapln1a was expressed strongly within each fin ray. 

At 5 dpa, there was a clear decrease in expression, and its expression was decreased 

even more by 8 dpa. Thus, hapln1a expression is expressed at 2 dpa and is maximally 

expressed at 3 dpa. The maximum expression at 3 dpa corresponds with the time point 

at which maximum rate of regeneration has been observed [38]. 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-HoptakSolga2
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574.s001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-t002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-t002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g002
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Hapln1a is functionally downstream of Cx43 

In order to determine if hapln1a is functionally downstream of cx43, we 

completed morpholino-mediated gene knockdown of hapln1a in WT regenerating 

fins [13], [15]. Two targeting morpholinos (MOs) were generated, an ATG blocker 

(ATG MO) that inhibits protein translation and a splice blocker (Splice MO) that was 

designed to inhibit the splicing of intron 1. As a control, we used a mismatch MO (MM 

MO), which includes five mismatches to the target sequence for the ATG-blocking MO 

(Table 2.1). All MOs are conjugated to fluorescein, permitting validation of cellular 

uptake. Following microinjection and electroporation, MO-positive fish were selected 

for fluorescein-positive cells at 24 hours post electroporation (hpe). Positive fins were 

either harvested for analysis of cell proliferation or permitted to regenerate for 4 

additional days for evaluation of segment length and regenerate length. The effect 

of hapln1a knockdown on cell proliferation was evaluated by counting the number of 

mitotic cells detected by H3P immunostaining. Regenerate length was measured as the 

distance between the amputation plane and the distal end of the fin. Segment length was 

measured as the distance between the first two joints in the regenerate. Interestingly, we 

found that hapln1a knockdown with both the ATG MO and Splice MO exhibited the 

same phenotypes as cx43 knockdown. Thus, knockdown fins exhibited reduced fin 

length (Figure 2.4A), reduced segment length (Figure 2.4B), and reduced cell 

proliferation (Figure 2.4C). The specificity of these knockdowns is demonstrated by the 

use of two independent gene-targeting MOs and also by the mismatch control. 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-HoptakSolga2
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Sims1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-t001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g003
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g003
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g003
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Collectively, these data reveal that cx43 and hapln1a act in a common pathway to 

promote cell proliferation and to inhibit joint formation. 

Hapln1a knockdown destabilizes HA 

To evaluate the effect of hapln1a knockdown on HA in WT regenerating fins, 

we completed a MO-mediated hapln1a knockdown (i.e. using the ATG MO) and 

evaluated both Hapln1a staining and HA staining on the treated fins. The success 

of hapln1a MO-mediated protein knockdown was further confirmed by 

immunostaining. Thus, comparison of the MM MO treated fins with the ATG MO 

treated fins revealed that Hapln1a protein is reduced following hapln1a knockdown 

(Figure 2.5A-B). Moreover, reduced Hapln1a protein levels in ATG MO treated fins 

were confirmed through immunoblotting (Figure 2.5C). Hapln1a protein is glycosylated 

and typically detected as several bands above its predicted molecular weight of 38 

kD [35]. All bands are reduced following Hapln1a knockdown. Since Hapln1a is crucial 

for the stabilization of the HA-PG network in the ECM, we also evaluated the level of 

HA in hapln1a knockdown fins. We utilized biotinylated HA-binding protein (HABP-

biotin) in combination with streptavidin-Alexa546 to detect HA. First, we demonstrate 

that HABP is specific for the detection of HA by treating fin sections with the HA-

degrading enzyme hyaluronidase. Endogenous levels of HA may be observed in WT 5 

dpa fins (untreated). In contrast, treatment of fin sections with hyaluronidase greatly 

reduced the staining by HABP (Figure 2.6A-B), suggesting that HA is required for 

detection. Importantly, we also observed a clear reduction in the amount of detectable 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g004
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g004
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Sun1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g005
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HA following hapln1a knockdown (Figure 2.6C-D). These findings strongly support 

the hypothesis that HA is destabilized in the absence of sufficient Hapln1a. 

To further demonstrate that hapln1a functions in a cx43-dependent manner, we 

next evaluated HA levels in both sof b123 regenerating fins and in fins treated for cx43-

knockdown [13]. Since hapln1a levels depend upon Cx43 activity, we predicted that 

reduced Cx43 would similarly lead to reduced levels of HA. Indeed, this is what we 

found. In sof b123 regenerating fins compared with WT regenerating fins, we observed 

reduced levels of HA (Figure 2.7A-B). Similarly, in WT fins treated for MO 

mediated cx43 knockdown, HA levels are reduced compared with the MM control-

treated fins (Figure 2.7C-D). Together with our previous findings, these data strongly 

support the conclusion that hapln1a functions in a common pathway with cx43, and that 

this pathway mediates cell proliferation and joint formation at least in part through 

influencing the Hapln1a-based ECM. 

Hapln1a functions in a cx43-dependent and sema3d-independent genetic pathway 

In our recent study, we found that Cx43 and Sema3d function in a common 

molecular pathway to promote cell proliferation and joint formation [18]. We next 

wished to determine how hapln1a contributes to this previously defined pathway. Our 

prior findings suggest that Sema3d utilizes the Nrp2a receptor to mediate cell 

proliferation and the PlxnA3 receptor to mediate joint formation. Indeed, in addition to 

Cx43 knockdown, both Sema3d- and PlxnA3 knockdown rescues joint formation 

in alf dty86. Therefore, we first tested if hapln1a knockdown functioned similarly. 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g005
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-HoptakSolga2
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g006
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g006
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ton1
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Interestingly, segment length was not rescued in alf dty86 fins by hapln1a knockdown 

(Figure 2.8). Failure of hapln1a knockdown to rescue segment length in alf dty86 was not 

due to a failure of the knockdown, since both Hapln1a and HA was similarly reduced 

(i.e. evaluated by immunostaining for Hapln1a protein or for HA levels as completed 

above, see Figure 2.9). The finding that hapln1a knockdown does not rescue joint 

formation in alf dty86 is consistent with our finding that hapln1a is not up-regulated 

in alf dty86. Moreover, this suggests that hapln1a functions independently of sema3d-

plxna3-dependent joint formation. We next evaluated changes 

in hapln1a and sema3d gene expression following reciprocal knockdown experiments. 

Thus, in sema3d knockdown fins hapln1a is not affected (Table 2.2), suggesting 

that hapln1a is not downstream of sema3d. Similarly, in hapln1a knockdown 

fins sema3d expression is not affected (Table 2.2), suggesting that sema3d is not 

downstream of hapln1a. Collectively, our findings provide evidence 

that hapln1a and sema3d both function downstream of cx43, but independently of each 

other. Therefore, these data suggest that at least two pathways contribute to cx43-

dependent cell proliferation and cx43-dependent joint formation (Figure 2.8A). Future 

studies will be completed to determine if the Sema3d and Hapln1a gene products instead 

functionally interact in a common pathway. 

2.5 Discussion 

This is the first report to provide a functional analysis of hapln1a in zebrafish. 

Our finding that Hapln1a functions downstream of Cx43 is supported by multiple 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g007
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574.s002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-t002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-t002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g007
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independent lines of evidence. The hapln1a gene exhibited reduced expression levels 

in sof b123 and cx43 knockdown fins compared to WT regenerating fins by in situ 

hybridization. Additionally, qPCR analysis confirmed that hapln1a expression is 

dependent upon the level of cx43 expression. Knockdown of Hapln1a using two 

independent MOs recapitulated all of the Cx43-dependent phenotypes, namely reduced 

regenerate length, reduced segment length, and reduced cell proliferation. 

Thus, hapln1a functions downstream of cx43. Moreover, we found that HA levels were 

strongly reduced in Hapln1a knockdown fins, suggesting that the loss of Hapln1a 

protein influences the stability of HA. The finding that HA levels are similarly reduced 

in sof b123 and in cx43 knockdown fins provides additional evidence 

that cx43 and hapln1a function in a common pathway. Attempts to include hapln1a in 

the established cx43-sema3d pathway suggest that hapln1a may function independently 

of sema3d (Figure 2.10A). Therefore, Cx43 promotes cell proliferation and suppresses 

joint formation via the coordination of (at least) two downstream pathways. We find it 

interesting that Hapln1a is located in the ECM that physically connects the medial cx43-

positive compartment of dividing cells [8] and the lateral sema3d-positive compartment 

of skeletal precursor cells [18]. The functional significance of this observation is 

unclear. 

Hapln1a belongs to the hyaluronectin superfamily, which includes four 

members in mammals (HAPLNs1-4) and five in zebrafish, where the hapln1 gene 

appears to have duplicated into hapln1a and hapln1b. These genes share high degrees 

of sequence homology, especially in the amino acid sequence coding for the link 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g008
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Iovine1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ton1
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module [25], [39]. Hapln1 was first identified in cartilage, however it can also be found 

in non-cartilaginous tissue like sclera [40], aorta [41], brain [42], dermis of the 

embryonic skin [43], and in chicken embryonic mesonephros [44]. During zebrafish 

embryogenesis, expression of hapln1a has been observed in multiple tissues, including 

somites, floor plate, hypochord, and rhombomeres [45]. During jaw and skull 

formation, hapln1a expression co-localized with the PG aggrecan in the pharyngeal 

arches and with the PG dermacan in the pectoral fins [45]. Functional studies were not 

performed as part of these studies. However, reduced Hapln1 function is correlated with 

skeletal defects in other animals, including human. For example, single-nucleotide 

polymorphisms identified in the HAPLN1 gene have recently been associated with 

spinal osteoarthritis in aging female populations [46]. Moreover, targeted gene 

knockout of CRTL1 (aka HAPLN1) in the mouse reveals that Crtl1/Hapln1 is 

indispensible during skeletal development. For example, the CRTL1−/− mouse showed 

defects in cartilage and bone development with short limbs and craniofacial 

abnormalities, suggesting a prominent function for Crtl1 during chondrocyte 

differentiation [19]. In addition to these skeletal defects, CRTL1−/− mice die perinatally 

and exhibit a spectrum of myocardial defects. These defects have been attributed to the 

reduction in the PG versican [47], which may promote cell proliferation [48]–[50]. 

Interestingly, cartilage-specific expression of transgenic Crtl1/Hapln1a inhibits 

perinatal lethality and rescues skeletal abnormalities in CRTL1−/− mice [51], reinforcing 

the importance of the HA-PG network during heart development and skeletogenesis. 

These studies provide evidence that the “link” function of Hapln1 is critical for stability 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Neame1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Kohda1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Lohmander1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Gardell1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Ripellino1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Binette1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Stirpe1
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone.0088574-Kang1
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of components of the ECM and for regulation of cell differentiation and cell 

proliferation. Our findings on the function of Hapln1a in the regenerating fin are 

consistent with the role of Hapln1 in the developing mouse skeleton. Future studies will 

be focused on defining how Hapln1a mediates skeletal growth and patterning. 

We propose that Cx43 activity in the blastema activates gene expression 

of hapln1a in the medial mesenchyme (Figure 2.10B). Secretion of Hapln1a in the ECM 

establishes the HA-PG network, stabilizes HA, and contributes to the regulation of cell 

proliferation and joint formation via unknown mechanisms. The Hapln1a-dependent 

ECM might be involved in providing the necessary microenvironment for the 

surrounding cells. Alternatively, Hapln1a may be required to maintain a stable 

population of HA, which in turn mediates signaling pathways through interaction with 

HA-specific cell surface receptors. Indeed, it is known that HA has diverse functions in 

skeletal biology including bone remodeling [22], bone resorption [52], and 

osteogenesis [53], [54]. Further, there is growing evidence that the ECM can influence 

interactions between locally secreted growth factors and their receptors [55]–[59]. 

Continued studies are required to determine if Hapln1a plays direct or indirect roles in 

influencing cellular behaviors required during fin skeletal morphogenesis. 

2.6 Conclusions 

The identification of the Cx43-dependent Hapln1a pathway is novel and reveals 

tangible roles for the ECM during bone growth and skeletal patterning. We find that 

reduced Hapln1a levels are correlated with reduced HA levels, which may provide 
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insights into the underlying mechanism of Hapln1a function. Combined with known 

skeletal defects associated with the loss of Hapln1 in the mouse, and with skeletal 

diseases associated with Hapln1 polymorphisms in human, these findings demonstrate 

that the role of Hapln1a is conserved in zebrafish. Therefore, continued studies designed 

to elucidate the mechanism of Hapln1a-dependent cell proliferation and joint formation 

will provide new and relevant insights into skeletal development in all vertebrates. 
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2.7 Figures 

 

Figure 2.1: Validation of microarray results by in situ hybridization using whole 

mount in situ hybridization on 5 dpa regenerating fins. (A) hapln1a expression is 

reduced in sof b123 compared with WT (B). (C,D) alf dty86 expression is variable. (E,F) 

In situ hybridization on a WT 5 dpa cryosection reveals compartment specific 

expression of hapln1a, mainly in the blastema (b), in the mesenchyme (m), and skeletal 

precursor cells (*). The thick arrow identifies the basal layer of the epidermis, which 

underlies the epidermis (e). The thin arrow identifies lepidotrichia and the arrowhead 

identifies the actinotrichia. The amputation plane is indicated in panels A-D. Scale bar 

in E and F is 50 µm. 
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Figure 2.2: Cx43 knock down results in reduced expression levels of hapln1a. Whole 

mount in situ hybridization shows reduced expression of hapln1a in WT fins treated 

for cx43 knock-down (Cx43KD) fins compared to WT fins treated for cx43 mismatch 

control (Cx43MM) control fins. 
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Figure 2.3: hapln1a expression pattern at different time points in regenerating fin. 

Whole mount in situ hybridization for hapln1a on regenerating fins at different time 

points. The hapln1agene is not expressed during normal fin growth (uncut). Expression 

of hapln1a initiates around 2 dpa and is maximally expressed at 3 dpa, followed by 

gradual reduction at 5 dpa and 8 dpa. Arrow identifies the distal end of the fin; the 

arrowhead identifies region of staining (or where staining would be observed in uncut 

fins). The amputation plane is indicated for 2 dpa, 3 dpa, and 5 dpa, and is out of the 

field of view for the 8 dpa image. Scale bar is 50 µm. 
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Figure 2.4: Morpholino mediated knock-down of hapln1a recapitulates all cx43-

dependent phenotypes. (Top row) Total regenerate length was measured in MO and 

MM treated fins. Hapln1a knock-down resulted in reduced fin length (*). The dotted 
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line represents the amputation plane. (Middle row) Segment length was measured in 

MO and MM treated fins. Hapln1a knock-down resulted in reduction of segment length 

(*). Arrowheads identify joints. (Bottom row) Total number of H3P positive cells (red) 

was counted. Images of representative whole fins stained for H3P are shown for each 

condition. Knock-down of Hapln1a resulted in reduced cell proliferation (*) compared 

to the mismatch control. MO represents targeting morpholino; ATG MO targets 

translation initiation; Splice MO targets splicing event; MM represents control 

morpholino with 5 mismatches to target sequence; CS represents uninjected/untreated 

side. All experiments were completed in triplicate with a minimum of five fins treated 

with MO per trial. Statistical significance was determined by student's t-test where 

p<0.05. By student's t-test, there is no statistical difference between MM and CS. Error 

bars represent the standard deviation. Scale bar is 50 µm. 
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Figure 2.5: Morpholino mediated knock-down of hapln1a in WT regenerating fins 

results in reduced Hapln1a. Immunostaining for Hapln1a and HOECHST staining for 

DNA (blue). The green reveals the location of the targeting and control MOs, which are 

fluorescein tagged. (A) Longitudinal section of a fin ray treated with Hapln1a control 

morpholino (MM). (B) Longitudinal section of a fin ray knocked down for Hapln1a 

with a targeting morpholino (KD). Compared to the control MM fins, Hapln1a knock-

down (KD) fins exhibit reduced staining for Hapln1a. (C) Immunoblots confirming 

reduced levels of Hapln1a protein following Hapln1a knockdown. Hapln1a-MO treated 

fins (KD) were compared to control morpholino (MM). Tubulin was used as a loading 

control. Arrow identifies the basal layer of the epidermis; m, mesenchyme; e, 

epithelium. Scale bar is 50 µm. 
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Figure 2.6: Morpholino mediated knock-down of hapln1a in WT regenerating fins 

results in reduced HA levels. HA is detected by biotin-HABP with streptavidin-Alexa-

546. HOECHST detects DNA (blue). The green reveals the location of the targeting and 

control MOs, which are fluorescein tagged. (A, B) Fin sections from 5 dpa WT 

regenerating fins were either untreated or treated with hyaluronidase. The reduced signal 

in the hyaluronidase-treated sections demonstrates that HABP detects HA. (C) 

Longitudinal section of a fin ray treated with Hapln1a control morpholino (MM). (D) 

Longitudinal section of a fin ray knocked down for Hapln1a with a targeting morpholino 

(KD). Compared to the control MM fins, Hapln1a knock-down (KD) fins exhibit 

reduced staining for HA. Arrow identifies the basal layer of the epidermis; m, 

mesenchyme; e, epithelium. Scale bar is 50 µm. 
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Figure 2.7: HA levels are reduced in sof b123 and in cx43-KD regenerating fins. 

Immunostaining for HA (Red) and HOECHST staining for DNA (blue). In the panels 

treated for cx43-MO or MM, the green reveals the location of the MOs, which are 

fluroescein tagged. HA levels were detected as described in Figure 2.5. (A,C) HA levels 

in WT 5 dpa regenerating fins and in WT fins treated for cx43-MM. (B,D) HA levels 

are reduced in sof b123 regenerating fins and in WT fins treated for cx43-MO. Arrow 

identifies the basal layer of the epidermis; m, mesenchyme; e, epithelium. Scale bar is 

50 µm. 

 

 

 

 

 

 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088574#pone-0088574-g004
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Figure 2.8: Hapln1a knock-down does not rescue segment length in alf dty86. 

Compared to the uninjected control side (CS) the Hapln1a morpholino treated side (MO) 

does not show significant difference in the segment length. Statistical significance was 

determined by Student's t-test where p<0.05. Error bars represent the standard deviation. 
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Figure 2.9: The hapln1a-KD was effective in alf dty86. Immunostaining for Hapln1a or 

HA (Red) and HOECHST staining for DNA (blue). The green reveals the location of 

the targeting and control MOs, which are fluroescein tagged (A) Longitudinal section 

of an alf dty86 fin ray treated with Hapln1a control morpholino (MM). (B) Longitudinal 

section of an alf dty86 fin ray knocked down for Hapln1a with a targeting morpholino 

(KD). Compared to the control MM fins, Hapln1a knock-down (KD) fins exhibit 

reduced staining for Hapln1a. HA was detected by biotinylated-HABP followed by 

streptavidin-Alexa 546 conjugate. (C) Longitudinal section of an alf dty86 fin ray treated 

with Hapln1a control morpholino (MM). (D) Longitudinal section of an alf dty86 fin ray 

knocked down for Hapln1a with a targeting morpholino (KD). Compared to the control 

MM fins, Hapln1a knock-down (KD) fins exhibit reduced staining for HA. Arrow 

identifies the basal layer of the epidermis; m, mesenchyme; e, epithelium. Scale bar is 

50 µm. 
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Figure 2.10: Model depicting Cx43-Hapln1a mediated effect on skeletal patterning 

during fin regeneration. (A) Proposed pathway for Hapln1a mediated effects of Cx43. 

Hapln1a functions in acx43-dependent, but sema3d-independent pathway, positively 

influencing cell proliferation and inhibiting joint formation. (B) Cartoon illustrating the 

compartments of gene in the regenerating fin: The cx43 mRNA is expressed throughout 

the mesenchyme (red) accompanied by cx43-dependent hapln1a upregulation in the 

same compartment (red), but primarily in the distal blastema (blue-red) and to a lesser 

extent in the proximal skeletal precursor cells (blue). e, epithelium; m, mesenchyme; b, 

blastema; db, distal blastema; spc, skeletal precursor cells; ble, basal layer of epidermis. 
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2.8 Tables 

 

 

Table 2.1 Primers and Morpholinos 
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Table 2.2 Quantitative RT-PCR confirms changes in gene expression 
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Cx43-dependent skeletal phenotypes are mediated by 

interactions between the Hapln1a-ECM and Sema3d during fin 

regeneration 
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3.1 Abstract  

Skeletal development is a tightly regulated process and requires proper 

communication between the cells for efficient exchange of information. Analysis of fin 

length mutants has revealed that the gap junction protein Connexin43 (Cx43) 

coordinates cell proliferation (growth) and joint formation (patterning) during zebrafish 

caudal fin regeneration. Previous studies have shown that the extra cellular matrix 

(ECM) protein Hyaluronan and Proteoglycan Link Protein1a (Hapln1a) is molecularly 

and functionally downstream of Cx43, and that hapln1a knockdown leads to 

destabilization of the glycosaminoglycan hyaluronan. Here we find that the 

proteoglycan aggrecan is similarly destabilized when Hapln1a is reduced. Notably, we 

demonstrate that both hyaluronan and aggrecan are required for skeletal growth and 

patterning. Moreover, we provide evidence that the Hapln1a-ECM stabilizes the 

secreted growth factor Semaphorin3d (Sema3d), which has been independently shown 

to mediate Cx43 dependent skeletal phenotypes during skeletal regeneration. Double 

knockdown of hapln1a and sema3d reveal synergistic interactions. Further, hapln1a 

knockdown phenotypes were rescued by Sema3d overexpression. Therefore, Hapln1a 

maintains the composition of specific components of the ECM, which appears to be 

required for the stabilization of at least one growth factor, Sema3d. We propose that the 

Hapln1a dependent ECM provides the required conditions for Sema3d stabilization and 

function. Interactions between the ECM and signaling molecules are complex and our 

study demonstrates the requirement for components of the Hapln1a-ECM for Sema3d 

signal transduction. 
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3.2 Introduction 

Vertebrate skeletal morphogenesis is a highly coordinated and tightly regulated 

process that contributes to the formation of bones of the correct size and shape. The 

underlying mechanisms that control the regulation of skeletal development are largely 

unknown. However, it is clear that proper communication and exchange of information 

between different cells of the skeletal tissue is crucial for proper bone formation. Gap 

junction mediated intercellular communication is one such mechanism that is known to 

contribute to skeletal development [1,2,3]. Intercellular communication through gap 

junctions involves the direct exchange of ions, second messengers and small metabolites 

between the cells and allows for coordinated cellular activity. It is hypothesized that gap 

junctional intercellular communication (GJIC) facilitates a range of functions including 

growth, differentiation, morphogenesis, skeletogenesis and developmental signaling 

[4,5]. Gap junctions are composed of oligomeric integral membrane protein subunits 

called connexons. Connexons from adjacent cells join to form the continuous gap 

junction channel that connects their cytoplasmic milieu allowing for direct exchange of 

low molecular weight (<1000 Da) metabolites [6]. Each connexon in turn is made up of 

trans-membrane protein subunits called connexins. Among the 21 different connexins 

known to be expressed in humans [7], CONNEXIN43 (CX43) is the major connexin 

expressed in bone cells [8]. Autosomal dominant missense mutations in human and 

mouse CX43 results in the syndrome Oculodentodigital dysplasia (ODDD), 

characterized by craniofacial and limb abnormalities [1,2]. The CX43-/- knockout mouse 

model exhibits severely delayed appendicular skeletal ossification and hypo-
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mineralization of craniofacial bones [9]. A similar set of phenotypes was observed in 

the targeted CX43 knockdown chick model [10,11]. Recessive homozygous mutations 

in zebrafish cx43 results in the short fin (sof b123) phenotype characterized by short fins, 

reduced cell proliferation and short bony fin ray segments [3]. Together, these studies 

reveal that Cx43-dependent GJIC exhibits conserved skeletal functions across 

vertebrates. The mechanisms by which CX43 dependent mutations result in the 

observed skeletal phenotypes remain largely unknown. 

To study the role of Cx43 during skeletal morphogenesis, we utilize the fin 

length mutant sof b123 that expresses reduced levels of cx43 mRNA and Cx43 protein 

without a lesion in the coding sequence. Three additional alleles of sof are caused by 

missense mutations in the cx43 coding sequence, which exhibit defects in GJIC using 

heterologous assays [12]. Based on the sof phenotypes of reduced cell proliferation and 

short segments (i.e. premature joint formation), we suggest that Cx43 regulates skeletal 

morphogenesis by coordinating growth (i.e., promoting cell proliferation) and 

patterning (i.e., inhibiting joint formation) [13,14].  

To understand how Cx43-based GJIC influences tangible cellular events like 

proliferation and differentiation, we completed a microarray analysis to identify 

candidate genes that may function downstream of cx43 [15]. Two genes identified by 

the microarray and subsequently validated include semaphorin3d (sema3d), a secreted 

signaling molecule, and hyaluronan and proteoglycan link protein 1a (hapln1a), an 

extracellular matrix (ECM) protein [15,16]. Through previous studies, we have shown 

that Hapln1a and Sema3d are molecularly and functionally downstream of Cx43, 
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mediating Cx43-dependent cell proliferation and joint formation. We have also shown 

that sema3d and hapln1a are transcriptionally independent of each other, since 

knockdown of one does not affect the expression of the other [16]. However, the 

possibility remains that the sema3d and hapln1a gene products functionally interact. 

The major function of Hapln1 is to “link” and stabilize the interaction between 

the glycosaminoglycan (GAG) hyaluronic acid (HA) and proteoglycans (PGs) in the 

ECM. In humans and mouse, the orthologous protein Hapln1 has also been referred to 

as link protein (LP) or cartilage link protein (CRTL1). The mouse knockout for CRTL1 

(aka HAPLN1) results in perinatal lethality, dwarfism, delayed ossification, short limbs, 

defects in cartilage and bone development and craniofacial abnormalities [17] showing 

that CRTL1 is critical for proper skeletal development. In a recent study, we found that 

hapln1a knockdown in regenerating zebrafish fins causes reduced levels of HA in vivo, 

suggesting that the ECM becomes partially destabilized when Hapln1a is reduced [16]. 

However, since Hapln1a is involved in stabilizing the interaction between HA and PGs, 

it is possible that, in addition to HA, the PG levels could also be affected upon hapln1a 

knockdown. ECM remodeling is well known to be essential for proper skeletal 

development and regeneration [18,19,20,21]. Mounting evidence suggests that in 

addition to providing structural stability the ECM also has roles in sequestering growth 

factors, presenting growth factors to their receptors, and sensing and transducing 

mechanical signals [22,23]. Therefore, it is of interest to define how reduced Hapln1a 

causes Cx43-dependent skeletal phenotypes. 
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This report builds upon our prior studies showing that hapln1a knockdown 

results in reduced regenerate length, reduced segment length, reduced cell proliferation 

and destabilization of HA [16]. Here, we explore the possibility of whether reduced HA 

is sufficient to cause the observed skeletal phenotypes. As a part of these studies, we 

also found that aggrecan (Acan) levels are reduced following hapln1a knockdown and 

that reduced Acan also contributes to the hapln1a knockdown phenotypes. Finally, we 

provide evidence that, while hapln1a and sema3d gene transcription are independently 

regulated downstream of cx43 [16], the Hapln1a and Sema3d protein products appear 

to interact functionally. These findings provide important new insights into the role of 

Hapln1a during skeletal morphogenesis and, into the requirement for the ECM during 

Sema3d-based signal transduction. 

3.3 Materials and Method 

Statement on the ethical treatment of animals 

This study was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. 

The protocols used for this manuscript were approved by Lehigh’s Institutional Animal 

Care and Use Committee (IACUC) (protocol identification #128, approved 

11/16/2014). Lehigh University’s Animal Welfare Assurance Number is A-3877-01. All 

experiments were performed to minimize pain and discomfort. 

Housing and husbandry  
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Zebrafish are housed in a re-circulating system built by Aquatic Habitats (now 

Pentair). Both 3 L tanks (up to 12 fish/tank) and 10 L tanks (up to 30 fish/tank) are used. 

The fish room has a 14:10 light:dark cycle and room temperature (RT) varies from 27-

29°C [24]. Water quality is automatically monitored and dosed to maintain conductivity 

(400-600 µs) and pH (6.95-7.30). Nitrogen levels are maintained by a bio filter. A 10% 

water change occurs daily. Recirculating water is filtered sequentially through pad 

filters, bag filters, and a carbon canister before circulating over UV lights for 

sterilization. Fish are fed three times daily, once with brine shrimp (hatched from INVE 

artemia cysts) and twice with flake food (Aquatox AX5) supplemented with 7.5% 

micropellets (Hikari), 7.5% Golden Pearl (300-500 micron, Brine Shrimp direct), and 

5% Cyclo-Peeze (Argent). 

Experimental procedures and animals 

Wild-type C32 zebrafish (Danio rerio) and Tg(hsp70:sema3dgfp) (generously 

provided by Mary C. Halloran) were used in this study. Fish were anaesthetized in 0.1% 

tricaine and caudal-fin amputations were performed at 50% level. Fin regeneration was 

allowed to proceed until the desired time period (3- 7 days post amputation [dpa]) 

depending on the type of experiment. The regenerated fins were harvested at the 

required time point after anaesthetizing the fish. Whole mount in situ hybridization, 

immunofluorescence and histochemical staining were performed on regenerating fins. 

Descriptions of each of these methods follow. 

In situ hybridization on whole mount fins 
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Fins were fixed overnight in 4% paraformaldehyde (PFA) in PBS and 

dehydrated in 100% methanol and stored at -20°C until use, for in situ hybridization 

(ISH). RNA probes were generated from PCR amplified linear DNA in which the 

reverse primer contained the T7 RNA polymerase binding site. The primers used in this 

study for ISH are summarized in Table 3.1. Digoxygenin (DIG) labeled RNA probes 

were synthesized using DIG labeling mix (Roche) and in situ hybridization on 

regenerated whole fins was carried out following standard protocols [15,16]. For each 

gene under study, a minimum of 4-5 fins were used per trial and 3 independent trials 

were performed.  

Morpholino mediated gene knockdown in regenerating fins 

All MOs used in this study were fluorescein tagged, obtained from Gene Tools, 

LLC and used at a final concentration of 1mM for injection, unless otherwise described. 

The sequences for MOs used in this study can be found in Table 3.1. Injection and 

electroporation were carried out as described previously [16,25]. Briefly, 3 dpa fish 

were anesthetized and approximately 50nl of MO (targeting morpholino [MO] or 

mismatch control morpholino [MM]) or standard control MO 5’ 

CCTCTTACCTCAGTTACAATTTATA 3’ was injected into either the dorsal or the 

ventral half of the tail fin. The un-injected half of the fin served as the internal control. 

Following injection, the entire fin was electroporated using a CUY21 Square Wave 

electroporator (Protech International Inc). MO-positive fish were selected 24 hpe (hours 

post electroporation) by examination under a fluorescence microscope. The knockdown 

fins were evaluated for regenerate length, segment length, histone-3-phosphate (H3P) 
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analysis, alizarin red staining, immuno-fluorescence and histochemical experiments. 

The procedure for each analysis is described separately. For each MO (i.e., targeting or 

mismatch) 6-8 fish were used. Reproducibility was confirmed by testing the MO in three 

independent experiments. Statistical significance was determined using the student's t-

test (P<0.05). 

Rescue of hapln1a knockdown phenotypes with sema3d overexpression 

We used three groups of fish for these experiments. Groups 1 and 2 were positive 

for the transgene, Tg(hsp70:sema3dgfp), while Group 3 fish were negative for the 

transgene. Knockdown of hapln1a was performed on 3 dpa fins as described above. 

Four hours after hapln1a knockdown, heat shock was performed for one hour at 37°C 

(Groups 1 and 3). Alternatively, Group 2 fish were positive for the transgene but were 

not exposed to heat shock. Induction of transgene expression in Group 1 animals was 

confirmed after 24 hours of heat shock by screening for GFP-positive fins. For 

regenerate and segment length analyses the fins were harvested 4 dpe (days post 

electroporation) and data analysis was performed as described below. For each 

experiment a minimum of 6-8 fins were used per trial and 3 independent trials were 

performed. Statistical significance was determined using the student's t-test (P<0.05). 

Fin regenerate length, segment length and H3P analysis 

For each type of analysis, minimum of 6-8 fins were used per trial and 3 

independent trials were performed. Statistical significance was determined using the 

student's t-test (P<0.05). Images were collected on a Nikon SMZ1500 dissecting 
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microscope using a Nikon DXM1200 digital camera unless otherwise stated. 

Measurements were performed using Image Pro software.  

Fin regenerate length analysis was performed as described [15]. Briefly, fins 

were harvested at 4 dpe, fixed and stored in methanol until use at -20°C. The 

measurements were taken from the longest fin ray (i.e. the third ray from either the 

dorsal or ventral end) that was previously established as a standard [26]. Fin regenerate 

length was measured using Image Pro Software from the amputation plane (clearly 

visible in bright field) to the tip of the fin. To evaluate the phenotypic effect of MO 

based knockdown experiments on fin regenerate length, the targeting MO or control 

MM injected side of each fin is compared to its un-injected side by the percent similarity 

method as described [27]. Briefly, the percent similarity for each fin is calculated as 

([length of the injected side in µm / length of the un-injected side in µm] X 100). Values 

close to 100% indicate that the injected MO has no effect on the phenotype whereas a 

value less than 100% indicate that the MO has an effect on the observed phenotype. The 

mean of percent similarity for the MO treated experimental group and the corresponding 

MM treated control group were estimated and compared. Percent similarity of greater 

than 100 % reflects the fact that the experimental side can be measurably larger than the 

control un-injected side. Statistical significance was determined using the student's t-

test (P<0.05). 

Segment length analysis was performed on calcein stained fins. Calcein staining 

was performed on live fish as described [28]. Briefly, fish were permitted to swim in 

0.2 % calcein for 10 min, followed by 10 min in fresh water. Fish were anesthetized as 
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described above and fins were imaged at 4X. For segment length, the distance between 

the first two newly formed joints following amputation was measured in the third fin 

ray from either the dorsal or ventral end [26]. Segment length was measured using 

Image Pro Software. To evaluate the phenotypic effect of MO based knockdown 

experiments on segment length, the percent similarity method was used as described 

above.  

For H3P analysis, the fins were harvested 1 dpe, fixed overnight in 4% 

paraformaldehyde (PFA) in PBS and dehydrated in 100% methanol and stored at -20°C 

until use. Cell proliferation analysis was performed by counting number of mitotic cells 

by H3P immuno-staining as described [15]. H3P positive cells were counted from 

within the distal most 250 µm of each fin above the third fin ray from either the dorsal 

or ventral end [26]. To evaluate the phenotypic effect of MO based knockdown 

experiments on cell proliferation, the percent similarity method was used as described 

above. For cell proliferation, the percent similarity for each fin is calculated as ([# H3P 

positive cells per 250 µm2 of injected side / # H3P positive cells per 250 µm2 of un-

injected side] X 100). 

Alizarin red staining 

For alizarin red staining, the fins were harvested 4 dpe, fixed overnight in 4% 

paraformaldehyde (PFA) in PBS and dehydrated in 100% methanol and stored at -20°C 

until use. Fins were rehydrated through a decreasing methanol series as described for 

ISH. Following that fins were bleached for 30 minutes in 0.8% KOH, 0.6% H2O2 

(should be prepared and used within one week). Subsequently, fins were washed twice 
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with water and then washed for 1hr in a saturated Alizarin Red solution containing 1% 

KOH [29] followed by 30 minutes wash in water and mounted in glycerol for imaging. 

The extent of mineralization was calculated as the ratio of the zone of mineralization 

(extent of detectable alizarin red staining length) to the total regenerate length. To 

evaluate the phenotypic effect of MO based knockdown experiments on alizarin red 

staining, the % similarity method was used as described above. The % similarity for 

each fin is calculated as ([ratio of {regenerate length : alizarin red staining length} of 

the injected side / ratio of {regenerate length : alizarin red staining length}of un-injected 

side] X 100). The mean of % similarity for the MO treated experimental group and the 

corresponding MM treated control group were estimated and compared, and the 

statistical significance between the groups was determined using two tailed unpaired 

student's t-test (P<0.05). For each experiment minimum of 6-8 fins were used per trial 

and 3 independent trials were performed. 

Cryosectioning for immunofluorescence and histochemistry 

Fixed and embedded fins were mounted in OCT and cryosectioned (15 µm 

sections) using a Reichertâ Jung 2800 Frigocut cryostat. Sections were collected on 

Superfrost Plus slides (Fisher) and allowed to air dry O/N at RT. Sections can be stored 

at –20°C for up to a year. The slides were stored at –20°C for at least one day before 

starting the experiment. For all experiments using cryosections, the slides were brought 

to RT for one hour. Sections were circled using a marking pen (ImmEdge Pen H-4000; 

PAP pen, VWR Laboratories). To confirm reproducibility, minimum of 3-5 different 
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fins were used for each experiment and approximately 8-12 sections per fin were 

analyzed. 

Vcan Immunofluorescence  

For detection of Vcan, fins were fixed for 10 min with 2% PFA at RT followed 

by three 10 min washes with 1X PBS, and then embedded in 1.5% agarose/5% sucrose 

in PBS and equilibrated in 30% sucrose in PBS and sectioned as described above. For 

Vcan immuno-staining, the sections were rehydrated twice for 10 min in PBS followed 

by two washes with block (2% BSA, 0.1% TritonX 100 in PBS). Then, sections were 

blocked for another one hour at RT and then incubated in primary antibody, Rabbit anti-

versican (H-56) (Santa Cruz Biotechnology-SC-25831) O/N at 4C. Following 

incubation with primary antibodies, sections were washed three times in block (15 min 

each), incubated at RT for one hour with respective secondary antibody goat anti-rabbit 

Alexa-663 (Invitrogen, 1:200) and washed again three times in block (15 min each). 

Sections were next incubated with propidium iodide (final concentration 0.01mg/ml in 

block) for 30 min at RT to stain nuclei, followed by a quick wash with distilled water.  

Acan Immunofluorescence  

For detection of Acan, fins were fixed for 10 min with 2% PFA at RT followed 

by three 10 min washes with 1X PBS, and then embedded in 1.5% agarose/5% sucrose 

in PBS and equilibrated in 30% sucrose in PBS and sectioned as described above. Acan 

immuno-staining was performed as described earlier [30]. Briefly, the sections were 

rehydrated twice for 10 min in PBS at RT, followed by antigen unmasking by digestion 
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with chondroitinase. First, the slides were incubated with the chondroitinase treatment 

buffer (50mM Tris, 60mM sodium acetate, 0.02% BSA, pH 8.0) at 37C for 5 min, 

followed by deglycosylation using chondroitinase ABC enzyme (Sigma-C2905, final 

concentration 0.05U in the treatment buffer) for 2 h at 37C. Following that, slides were 

washed with block for 10 min at RT. Then, sections were blocked for another one hour 

at RT, incubated with Mouse anti-aggrecan (BC-3) (Thermo Scientific-MA3-16888) 

primary antibody O/N at 4C. Following incubation with primary antibodies, sections 

were washed three times in block (15 min each), incubated at RT for one hour with 

secondary antibody goat anti-mouse Alexa-663 (Invitrogen, 1:200) or goat anti-mouse 

Alexa-568 (Invitrogen, 1:200) and washed again three times in block (15 min each). 

Sections were next incubated with propidium iodide (final concentration 0.01mg/ml in 

block) or To-Pro-3-iodide (Life Technologies, 1:1000) for 30 min at RT, followed by a 

quick wash with distilled water.  

Sema3d Immunofluorescence  

For detection of Sema3d, fins were fixed for 30 min with 2% PFA at RT 

followed by three 10 min washes with 1X PBS, and then embedded in 1.5% agarose/5% 

sucrose in PBS and equilibrated in 30% sucrose in PBS and sectioned as described 

above. For Sema3d immuno-staining, the sections were rehydrated twice for 10 min in 

PBS followed by antigen retrieval. Slides were transferred to coplin jars containing 10 

mM sodium citrate (pH=6) and incubated at 99.5 °C water bath for 10 minutes. The 

slides were allowed to cool down to room temperature and again washed in 1X PBS 

(2X, five minutes each). Following that slides were washed twice with block (2% BSA, 
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0.1% TritonX 100 in PBS). Then, sections were blocked for another one hour at RT and 

then incubated in primary antibody, Rabbit anti-Sema3d (Sigma-SAB1402064, 1:500) 

or Mouse anti-EGFP (Clonetech, 1:1000) O/N at 4C. Following incubation with 

primary antibodies, sections were washed three times in block (15 min each), incubated 

at RT for one hour with secondary antibody goat anti-rabbit Alexa-663 (Invitrogen, 

1:200) or goat anti-mouse Alexa 488 and washed again three times in block (15 min 

each). Sections were next incubated with propidium iodide (final concentration 

0.01mg/ml in block) or DAPI (1:1000) for 30 min at RT, followed by a quick wash with 

distilled water.  

Histo-chemical analysis of HA 

For detection of HA, fins were fixed overnight (O/N) with 4% PFA in PBS. 

After a brief methanol wash, fins were dehydrated in 100% methanol and stored at –

20°C until use. Before sectioning, fins were sequentially rehydrated in a methanol-PBS 

series of washes and then were embedded in 1.5% agarose / 5% sucrose in PBS and 

equilibrated in 30% sucrose in PBS and then sectioned as described above. HA was 

detected as described [16]. Briefly the sections were rehydrated twice for 10 min in PBS 

followed by two washes with block. Then, sections were blocked for another one hour 

at RT, incubated with biotinylated hyaluronic acid binding protein (bHABP-

Calbiochem-385911, 1:100) O/N at 4C. The sections were washed three times in block 

(15 min each), incubated at RT for one hour with streptavidin-Alexa-546 conjugate, 

(Invitrogen, 1:200) and washed again three times in block (15 min each). Sections were 

next incubated with propidium iodide (final concentration 0.01mg/ml in block) or To-
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Pro-3-iodide (Life Technologies, 1:1000) for 30 min at RT, followed by a quick wash 

with distilled water.  Then the slides were blotted dry and mounted for imaging as 

described above.  

Confocal microscopy 

The slides were blotted dry and mounted with vectashield for imaging. Confocal 

microscopy was used to image the sections using a 40×/1.3 numerical aperture objective 

on an inverted microscope (Axiovert 200 M; Carl Zeiss, Jena, Germany) equipped with 

an LSM510 META scan head (Carl Zeiss). Argon ion and HeNe lasers were used to 

generate the 488 and 543/633 lines used for excitation, and pinholes were typically set 

to 1–1.5 Airy units. Images were exported as TIFF files and printed using Photoshop.  

3.4 Results 

Components of Hapln1a-ECM are expressed in the regenerating fin 

In a recent study, we showed that hapln1a knockdown results in Cx43 dependent 

skeletal phenotypes: reduced fin regenerate length, reduced segment length and reduced 

cell proliferation [16]. Since Hapln1a links HA with PGs we were interested in the 

expression of genes responsible for synthesis of HA and in the expression of PGs. HA 

is synthesized by hyaluronic acid synthases (Has) and Acan and Vcan are the two major 

bone associated PGs involved in matrix organization [31]. We performed whole mount 

in situ hybridization on WT 5 days post amputation (dpa) regenerating fins to determine 

which of the HA synthesizing enzymes (has1, has2 and has3) and which of the skeletal 

PGs (i.e, acana, acanb, vcana and vcanb) are expressed. Of the three different HA 
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synthesizing enzymes, has1 and has2 are expressed in the regenerating fin. Of the 

duplicate copies of acan and vcan, only acanb and vcanb are expressed in regenerating 

fins (Figure 3.1). 

Reduced HA levels only partially contribute to the Hapln1a mediated phenotypes 

Because hapln1a knockdown results in reduced HA [16], we hypothesized that 

manipulating the HA levels by targeting the HA synthesizing enzymes should 

recapitulate the hapln1a knockdown phenotypes. Since it is likely that homozygous 

mutations in genes required for the Hapln1a-ECM will be essential, or will cause serious 

global skeletal defects, we rely on morpholino (MO) based knockdown for evaluation 

of gene function in the regenerating fin. As controls, we use either paired 5 mismatch 

(MM) non-targeting control MOs or the standard control MO. Further, we also confirm 

that the target is reduced following knockdown. We find that this is a suitable method 

to establish specificity for target genes. In order to manipulate the HA levels, we 

completed MO mediated knockdown of the HA-synthesizing enzymes has1 and has2 

in WT regenerating fins, and we used MM treated fish as control. All MOs used in this 

study are fluorescein tagged, permitting the confirmation of cellular uptake. Following 

MO microinjection and electroporation at 3 dpa, MO positive fish were screened 24 

hours post electroporation (hpe) by detection of fluorescein positive cells. To evaluate 

the effect of the knockdown of the HA synthesizing enzymes (has1 and has2) on HA 

levels, MO or MM positive fins were harvested 24 hpe and processed for immuno-

histochemical analysis for HA using biotinylated HA binding protein. During 

regeneration, HA is predominantly upregulated in epidermis and in the proximal 
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mesenchyme of the regenerate, and in the mesenchyme of the stump tissue [16,30]. 

Histochemical analysis for HA on has1 and has2 knockdown fins revealed reduced 

levels of HA compared to the MM treated fins, indicating that HA synthesis has been 

successfully down regulated upon knockdown of these synthesizing enzymes (Figure 

3.2).  

We next evaluated the effect of the has1 and has2 knockdowns on Cx43-

Hapln1a dependent phenotypes and compared to the MM treated fish. Either the target 

MO or the control MM is injected into fin rays in one half of the fin, and the other half 

is un-injected. Next, the injected side was compared with the respective un-injected side 

and the percent similarity was determined. This method reduces the effect of fin to fin 

variation. High similarity between the injected and un-injected side (i.e. close to 100%) 

indicates little or no effect of the MO treatment, whereas values with low similarity (i.e. 

less than 100%) indicates that the MO had an effect on treatment side. Fin length was 

measured at 4 dpe as the distance from the amputation plane to the distal end of the 

regenerate (Figure 3.3A). We observed that knockdown of has1 had no effect on 

regenerate length, whereas has2 knockdown resulted in significant reduction in 

regenerate length (~14% reduced) compared to the MM control (Figure 3.3B). The 

segment length was measured at 4 dpe by calcein staining as the distance between the 

first two joints distal to the amputation plane (Figure 3.3C). Similar to regenerate length, 

has1 knockdown had no effect on segment length; whereas has2 knockdown resulted in 

significant reduction in segment length phenotype (~12% reduced) (Figure 3.3D). The 

effect of the knockdown of these enzymes on cell proliferation was evaluated by 
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counting the number of mitotic cells following immuno-fluorescence for H3P at 1 dpe 

(Figure 3.3E). For cell proliferation we found that has1 knockdown resulted in ~ 20% 

reduction, whereas has2 knockdown had a stronger effect (~ 32% reduced); both 

resulted in significant reduction in cell proliferation compared to the control MM treated 

fins (Figure 3.3F). Overall, compared to has1 knockdown, has2 knockdown showed a 

stronger effect and showed a significant effect on all of the hapln1a phenotypes. Since 

has1 and has2 knockdown both lead to reduced HA levels, it is unclear why has2 

knockdown has a much stronger effect than has1 knockdown. However, it has been 

shown that HAS2 knockout is lethal in mice, while HAS1 or HAS3 knockout mice appear 

healthy [32,33]. Further, HAS2 knockout cannot be compensated by expression of Has1 

or Has3 [34]. These studies support the idea that HA synthesized by Has2 may be 

distinct from HA synthesized by Has1 and Has3.  

To determine if reduced HA is sufficient to mediate Hapln1a effects, we 

compared the reduction in regenerate length, segment length and cell proliferation of 

has2 knockdown (~14%, ~12% and ~32% respectively) with hapln1a knockdown 

(~26%, ~23% and ~40% respectively). The effect of hapln1a knockdown levels are 

represented as a dotted line in Figures 3D, E and F. Interestingly, we find that hapln1a 

knockdown alone resulted in a much stronger effect than the knockdown of has2. 

Therefore, in addition to HA there could be other Hapln1a-ECM components 

contributing to Hapln1a-Cx43 dependent skeletal phenotypes that account for the 

stronger hapln1a knockdown phenotype. 
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Acan, but not Vcan, contributes to the observed hapln1a knockdown skeletal 

phenotypes 

Acan and Vcan are the major PGs associated with bones [31]. In addition to HA, 

we hypothesized that the Hapln1a associated PGs may also contribute to Hapln1a 

mediated skeletal phenotypes. We first determined if either Acan or Vcan protein levels 

are reduced in hapln1a knockdown fins using immuno-histochemistry. In prior studies 

we found that Acan is initially upregulated in mesenchyme during regeneration (around 

3-4 dpa), and later expressed more prominently in the lepidotrichia (around 5 dpa). In 

contrast, Vcan is primarily expressed in the epidermis and less so in the mesenchyme at 

both time points [30]. Upon hapln1a knockdown, we observed that Acan protein levels 

are down regulated in hapln1a MO treated fins compared to the control MM treated fins 

(Figure 3.4). In contrast, Vcan protein levels appeared unchanged, (Figure 3.5) 

suggesting that Vcan is not involved in mediating Hapln1a phenotypes. Next, we 

determined whether Acan contributes to Hapln1a-Cx43 dependent skeletal phenotypes. 

We used a MO targeting the acanb mRNA to knockdown Acan. The effect of acanb 

knockdown on Acan protein levels was confirmed by immuno-staining analysis for 

Acan, showing that acanb knockdown caused significant reduction of Acan protein 

levels (Figure 3.6A). We next evaluated the effect of acanb knockdown on Hapln1a 

mediated phenotypes. Knockdown of acanb resulted in significant reduction of 

regenerate length (~13% reduced), segment length (~20% reduced) and cell 

proliferation (~16% reduced) (Figure 3.6B). Since Acan is important for bone 

mineralization, we examined bone calcification at 4 dpe using alizarin red, which stains 
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mature bone matrix. The extent of mineralization was determined by calculating the 

ratio of the total regenerate length to the zone of mineralization (i.e., the length of 

detectable alizarin red staining). Either the target MO or the control MM injected side 

was compared with the respective un-injected side and the percent similarity was 

determined. In contrast to the control MM treated fins, acanb MO treated fins showed 

a much shorter zone of bone calcification (~20% reduced) (Figure 3.6C, D), suggesting 

that Acan might play a role in regulating bone matrix maturation and joint formation.  

 Similar to has2 knockdown, the effect of acanb knockdown was not as strong 

as observed for the hapln1a knockdown (see dotted lines in Figures 3.6B). Interestingly, 

the additive effects of reduced HA and reduced Acan are similar to the total effects of 

reduced Hapln1a. Moreover, we observed that has2 knockdown (reduced HA) had a 

stronger effect on cell proliferation (~32% reduction) compared to acanb knockdown 

(~16% reduction), suggesting that HA might play a more significant role in regulating 

cell proliferation. On the other hand, acanb knockdown had a stronger effect on segment 

length (~20% reduction) compared to has2 knockdown (~13% reduction), suggesting 

Acan might play a more significant role in regulating joint formation. Together, these 

results suggest that both HA and Acan are crucial for proper skeletal regeneration and 

contribute to the Hapln1a-Cx43 dependent phenotypes. 

Hapln1a and Sema3d gene products interact to mediate Cx43 dependent skeletal 

phenotypes 

Data from our recent study suggested that hapln1a and sema3d are 

transcriptionally independent of each other, meaning that the expression of either does 
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not depend upon the other [16]. However, these findings do not exclude the possibility 

that the two proteins work together. Several studies demonstrate that GAGs and the 

ECM function together to regulate signal transduction pathways. For example, GAGs 

in the ECM play a role during physiological and pathological remodeling processes, 

such as regeneration, bone development, cancer metastasis and osteoarthritis [35,36,37]. 

Moreover, GAGs have been implicated in regulating signaling pathways of molecules 

such as FGFs, BMPs, Wnts, Hhs and IGFs (reviewed in [38]). Sema3d is a signaling 

molecule that is known to mediate Cx43 dependent skeletal phenotypes [15] and 

Hapln1a is an ECM protein known to mediate Cx43 dependent skeletal phenotypes [16]. 

Therefore, we wished to test the hypothesis that the protein products function together. 

To test this hypothesis, we looked for evidence of genetic interaction by performing 

double knockdowns of sema3d and hapln1a and testing for synergistic effects. We first 

identified sub-threshold concentrations for both the sema3d and hapln1a MOs, where 

neither single knockdown resulted in a skeletal phenotype. We found that 0.5mM 

concentration of the hapln1a MO and 0.25mM concentration of the sema3d MO did not 

result in skeletal phenotypes (data not shown). Next, we performed double knockdowns 

of both hapln1a and sema3d using these sub-threshold concentrations (0.5mM Hapln1a 

MO + 0.25mM Sema3d MO) and compared with the double MM control at the same 

concentrations. Either the double MO or the double control MM injected side was 

compared with the respective un-injected side and the percent similarity was determined 

as described earlier. Interestingly, we observed that the double knockdown resulted in 

reduced regenerate length (~11% reduced), reduced segment length (~12% reduced) 
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and reduced cell proliferation (~34% reduced) (Figure 3.7), revealing that hapln1a and 

sema3d gene products act synergistically and indeed function in a common molecular 

pathway.  

Hapln1a-ECM stabilizes Sema3d  

Based on the genetic interaction data, we hypothesized that Hapln1a-ECM is 

playing a role in mediating Sema3d dependent signal transduction. It is well known that 

the ECM can contribute to stabilizing growth factors and thereby influencing growth 

factor dependent signaling [39]. Hence, it is possible that when Hapln1a protein levels 

are reduced by hapln1a knockdown, the disruption of Hapln1a-ECM affects either the 

stabilization of Sema3d or affects the presentation of Sema3d to its receptors. To 

determine whether Sema3d stability depends on Hapln1a, we examined the Sema3d 

protein levels following hapln1a knockdown and compared to control MM treated fins 

by immuno-staining analysis. We observed that Sema3d protein is reduced following 

hapln1a knockdown (Figure 3.8), suggesting that Hapln1a is required for the stability 

of Sema3d.  

To distinguish the possibility of whether Hapln1a is required for stabilization, 

or required for both stabilization and presentation of Sema3d to its receptors, we asked 

if Sema3d overexpression could rescue hapln1a knockdown phenotypes. We utilized 

the transgenic line, Tg(hsp70:sema3dgfp) that overexpresses Sema3d-GFP under the 

control of a heat shock promoter [40]. If Hapln1a is required primarily for the 

presentation of Sema3d to its receptors, then hapln1a knockdown phenotypes will likely 

not be rescued by overexpression of Sema3d. On the other hand, if Hapln1a dependent 
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ECM is required mainly for Sema3d stabilization, then we expect that hapln1a 

knockdown phenotypes would be rescued by Sema3d overexpression. We first 

confirmed overexpression of sema3dgfp mRNA and Sema3d-GFP protein in 

regenerating fins by whole mount ISH for sema3d and immuno-staining for Sema3d 

and GFP on heat shocked versus non-heat shocked Tg(hsp70sema3dgfp) fins. We 

observed that both sema3d mRNA and Seme3d-GFP protein expression was increased 

in heat shocked fins compared with fins not treated with heat shock (Figure 3.9). 

The rescue experiment involved 3 different groups of animals (Figure 3.10A). 

Group 1 animals (experimental group) were positive for the transgene. This group was 

treated for hapln1a knockdown and Sema3d-GFP was induced 4 hours after knockdown 

by a 1 hour heat shock at 37ºC. Group 2 animals (control 1) were also positive for 

transgene. This group was also treated for hapln1a knockdown, but did not receive the 

heat shock (and therefore do not overexpress Sema3d). Group 3 animals (control 2) 

were transgene negative siblings. This group was treated for hapln1a knockdown and 

received 1 hour of heat shock at 37ºC. At 24 hours post hapln1a knockdown, all animals 

were screened for GFP expression. Only Group 1 animals showed positive GFP 

expression in the fin, since they all carried the transgene and were heat shocked for the 

overexpression of Sema3d (Figure 3.10B). Only GFP positive fish were selected from 

Group 1 for further analysis. All three groups were treated for knockdown at 3 dpa. Four 

hours post knockdown, Groups 1 and 3 were treated for a 1 hour heat shock at 37ºC. 

Fins were harvested from all groups at 4 dpe and regenerate and segment length analyses 

were completed using the percent similarity method. Therefore, within each group, the 
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injected side was compared with the respective un-injected side and the percent 

similarity was determined. We found that Group 1 had a high percent similarity (i.e., 

close to 100%) between the injected vs un-injected side showing that hapln1a 

knockdown phenotypes were fully rescued by overexpression of Sema3d (Figure 

3.10C). We showed that rescue depended on both the heat shock to induce Sema3d 

overexpression and on the presence of the transgene since neither animals from Group 

2 nor animals from Group 3 exhibited rescue of skeletal phenotypes. Thus, for both 

control groups regenerate length was reduced by ~20% and for segment length, Group 

2 showed ~23% reduction and Group 3 showed ~20% reduction (Figure 3.10C). 

Therefore, Sema3d overexpression rescues hapln1a knockdown phenotypes. These 

experiments highlight the importance of the Hapln1a-ECM for stabilization Sema3d, 

and for Sema3d-based signal transduction. 

3.5 Discussion 

Previously we have shown that hapln1a knockdown results in significant 

reduction in HA levels during fin regeneration [16]. Here we tested whether HA is 

sufficient to cause the observed Hapln1a dependent skeletal phenotypes. We found that 

in addition to HA, Acan also contributes to the phenotypes. The effects of HA and Acan 

seem to be additive, where HA has a stronger impact on cell proliferation while Acan 

has a stronger impact on joint formation. Further, we demonstrate the dependence of 

Sema3d on the presence of the Hapln1a-ECM. We show that Hapln1a and Sema3d 

genetically interact and we find that sema3d overexpression can rescue hapln1a 

knockdown phenotypes. Based on this current study we propose a new model for the 
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Cx43 pathway (Figure 3.11). Even though transcriptionally hapln1a and sema3d have 

been shown to be independent of each other [16], the current study demonstrates that 

the Hapln1a-ECM plays a role in stabilizing Sema3d protein. Therefore, it is likely that 

Sema3d signal transduction requires the Hapln1a-ECM. Our findings indicate that the 

Sema3d and Hapln1a gene products work together to mediate Cx43 phenotypes during 

skeletal growth and patterning in the regenerating fin.  

Independent studies in different model systems provide evidence that 

components of the Hapln1a-ECM (link protein/Hapln, HA, PGs Acan and Vcan) are 

interdependent and critical during skeletal morphogenesis. HA plays a central role in 

organizing the matrix where it serves as a central backbone binding to the PGs 

Acan/Vcan via the link protein. Moreover, in addition to reduced HA, Has2 deficiency 

also resulted in reduced Acan content [41]. Conditional knockout of HAPLN1 (also 

called CRTL1) in the mouse reveals that the function of link protein is indispensable 

during skeletal development for stabilizing the HA-PG aggregate [17]. The HAPLN1 

knock out mouse dies perinatally due to myocardial defects. These defects are attributed 

to reduced Vcan levels leading to decreased cell proliferation [42,43]. Vcan itself is also 

known to play a role during joint morphogenesis and patterning of muscles and nerves 

in mouse embryonic limb morphogenesis [44]. Acan deficient mice and chicks are 

characterized by dwarf limbs, craniofacial abnormalities, and perinatal lethality 

[45,46,47]. We find that loss of Hapln1a protein is associated with reduced cell 

proliferation, reduced bony segment length, reduced HA levels [16], and reduced Acan 

levels (this study). Therefore, requirements for the Hapln1a-ECM are conserved in the 
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skeleton. Future studies will reveal how particular components of the Hapln1a-ECM 

contribute to specific cellular functions. 

HA is ubiquitously present throughout the body and in all the bones and 

cartilages of the skeleton. Depending on its molecular size, HA fulfills various structural 

and metabolic functions (Reviewed in [48,49]), [41,50]). The three HA synthases Has1, 

Has2 and Has3 reside on the plasma membrane and extrude HA directly into the 

extracellular space [51,52,53,54,55]. All three are integral membrane proteins with six 

putative transmembrane domains [55], and all contain conserved amino acid residues 

that have both GlcNAc and GlcA transferase activity [56]. The Has enzymes each 

synthesize HA of similar composition but may differ in the rate of synthesis, chain 

length and the ease with which HA is released from the cell surface [57]. Has2 in 

particular is believed to play a major role during development of the skeleton. For 

example, while chondrocytes express all three Has genes, Has2 exhibits the highest 

expression levels in all cartilages [32,58,59]. Moreover, knockout of the HAS2 gene in 

mice results in embryonic lethality whereas knockout mice of HAS1 and HAS3 are 

viable and appear normal [34]. Conditional HAS2 gene knockout in mice is sufficient to 

cause shortened axial and appendicular skeleton and defects in patterning of digits 

[41,60]. Strikingly, overexpression of Has2 in the developing chick limb bud mesoderm 

also perturbs limb morphogenesis, leading to shortened bones with abnormal 

morphology and positioning [50], suggesting the need for regulated HA synthesis 

during skeletal development and patterning. Collectively, these findings highlight the 

significance of HA produced by Has2, and may explain our findings that knockdown of 



114 
 

has2 results in a stronger effect on Hapln1a dependent skeletal phenotypes compared to 

has1 knockdown (i.e. even though knockdown of either gene reduces the amount of 

HA). 

During fin regeneration, reduced HA exhibited a stronger effect on cell 

proliferation than on patterning. Previously, we found that HA is expressed in a 

conserved pattern during fin regeneration [30]. HA is strongly upregulated in the distal 

stump and proximal blastema (i.e., just above and below the amputation plane) 

compared to the distal end of the regenerate, where it may maintain the proliferative 

state of the mesenchymal cells by limiting contact inhibition between cells that leads to 

tissue differentiation [61,62,63,64,65]. In contrast, knockdown of acanb exhibited a 

stronger effect on segment length than on cell proliferation, and also caused reduced 

bone mineralization of the fin rays. Changes in the bone matrix may influence 

differentiation of bone-forming cells and/or joint-forming cells, resulting in short bony 

segments.  

The ECM is no longer considered to be an inert substance surrounding cells, but 

rather, can contribute to the regulation of multiple signaling pathways [66]. For 

example, the ECM can serve as a reservoir for secreted growth factors. Local release of 

ECM-bound growth factors could influence temporal regulation of signal transduction 

pathways, and/or the half-life of secreted growth factors. Moreover, the concentration 

of signaling molecules at a particular location may contribute to the establishment of 

morphogen gradients that play critical roles during patterning and developmental 

processes [67,68]. Our findings reveal that the Hapln1a-ECM is crucial for the stability 
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of the secreted growth factor, Sema3d. Further work is required to understand how 

Sema3d interacts with components of the Hapln1a-ECM, and how these interactions 

may regulate Sema3d-receptor based signal transduction. 
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3.6 Figures 

 

Figure 3.1: Whole mount in situ hybridization showing the expression of Hapln1a-ECM 

components on 5 dpa regenerating fins. Components of the Hapln1a-ECM namely, has1, 

has2, acanb and vcanb are expressed during fin regeneration. The amputation plane is indicated 

by a black line in all the panels. Scale bar represents 100µm. 
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Figure 3.2: Morpholino mediated knockdown of has1 and has2 results in reduced 

HA. Longitudinal section of fin rays treated with has1 control morpholino (Has1 MM), 

has1 target morpholino (Has1 MO), has2 control morpholino (Has2 MM) and has2 

target morpholino (Has2 MO). HA is detected by histochemical staining using 

biotinylated HABP and Streptavidin-Alexa 546. TO-PRO is used as the counterstain 

and detects DNA (blue). Compared to Has1 MM and Has2 MM treated fins, Has1 MO 

and Has2 MO treated fins exhibit reduced staining for HA. Arrow identifies the basal 

layer of epithelium; arrow head identifies the bone; m, mesenchyme; e, epithelium. 

Scale bar represents 20 µm.  
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Figure 3.3: Reduced HA contributes to Hapln1a knockdown phenotypes. Prior to 

knockdown and electroporation, all fins were amputated at 50% level and allowed to 

regenerate for 3 days (amputation plane indicated by horizontal lines). Fin rays treated 

with targeting MO or standard control MM were measured and compared to their un-

injected sides. The ratio of injected (MO or control MM) and un-injected side multiplied 

by 100 is the percent similarity. Percent similarity greater than 100% reflects the fact 

that the experimental side can be measurably larger than the control injected side. (A) 

Representative images showing regenerate length for Has2 MM and Has2 MO treated 

fins. Total regenerate length was evaluated by measuring the distance between the 

amputation plane (black line) to the distal end of the fin using the 3rd fin ray (marked by 

yellow arrows). (B) Bar graph shows that regenerate length is significantly reduced 

upon has2 knockdown but not in has1 knockdown. The black dotted line indicates the 

extent of hapln1a knockdown effect compared to has1 and has2 knockdowns. (C) 
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Representative calcein stained fins showing segment length for Has2 MM and Has2 MO 

treated fins. Segment length was evaluated by measuring the distance between first two 

joints in the regenerate (marked by yellow arrows). (D)  Bar graph shows that segment 

length is significantly reduced upon has2 knockdown but not in has1 knockdown. The 

black dotted line indicates the extent of hapln1a knockdown effect compared to has1 

and has2 knockdowns. (E) Representative H3P stained fins showing H3P positive cells 

for Has2 MM and Has2 MO treated fins. H3P positive cells were counted within a 

defined area (marked by white brackets). (F) Bar graph shows that cell proliferation is 

significantly reduced upon has1 and has2 knockdown, with has2 having a greater effect 

than has1. The black dotted line indicates the extent of hapln1a knockdown effect, 

compared to has1 and has2 knockdowns. Students t-test was performed (p<0.05) to 

determine significance, and the error bars indicate standard error of the mean. Scale bar 

is 50 μm in all panels.  
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Figure 3.4: Morpholino mediated knockdown of hapln1a results in reduced Acan 

protein levels. Longitudinal section of fin rays treated with hapln1a control morpholino 

(Hapln1a MM) and hapln1a targeting morpholino (Hapln1a MO). Immuno-staining for 

Acan (blue) and counterstained for nuclei with Propidium Iodide (PI, red). Compared 

to the control Hapln1a MM treated fins, Hapln1a MO treated fins show reduced staining 

for Acan. Arrow identifies the basal layer of epithelium; arrow head identifies the bone; 

m, mesenchyme; e, epithelium. Scale bar represents 20 µm.  
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Figure 3.5: Vcan protein levels are unchanged following MO mediated knockdown 

of hapln1a. Longitudinal section of fin rays treated with hapln1a control morpholino 

(Hapln1a MM) and hapln1a targeting morpholino (Hapln1a MO). Immuno-staining for 

Vcan (blue) and counterstained for nuclei with Propidium Iodide (PI, red). Hapln1a MM 

treated fins and Hapln1a MO treated fins show similar levels of staining for Vcan. 

Arrow identifies the basal layer of epithelium; arrow head identifies the bone; m, 

mesenchyme; e, epithelium. Scale bar represents 20 µm.  
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Figure 3.6: Reduced Acan contributes to Hapln1a knockdown phenotypes. Prior to 

knockdown and electroporation, all fins were amputated at 50% level and allowed to 

regenerate for 3 days. Fin rays treated with targeting MO or standard control MM were 

measured and compared to their un-injected sides. The ratio of injected (MO or control 

MO) and un-injected side multiplied by 100 is the percent similarity. Percent similarity 

greater than 100% reflects the fact that the experimental side can be measurably larger 

than the control un-injected side. (A) Longitudinal section of fin rays treated with 
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standard control morpholino (Standard MM) and acanb target morpholino (Acanb MO). 

Immuno-staining for Acan (red) and counterstained for nuclei with To-pro (blue). 

Compared to the standard MM treated fins, Acanb MO treated fins show reduced 

staining for Acan. White arrow identifies the basal layer of epithelium; yellow arrow 

identifies Acan staining in the lepidotrichia, arrow head identifies the bone; m, 

mesenchyme; e, epithelium. Scale bar represents 20 µm. (B) Bar graph shows that 

regenerate length, segment length and cell proliferation is significantly reduced upon 

acanb knockdown. The mean of percent similarity for the MO treated experimental 

group and the corresponding MM treated control group were estimated and compared. 

Statistical significance was determined using the student's t-test (P<0.05) and the error 

bars represent standard error of mean. The black dotted line indicates the extent of 

hapln1a knockdown effect compared to acanb knockdown. (C) Representative alizarin 

red stained fins showing extent of bone calcification. The black line indicates the 

amputation plane. (D) The extent of mineralization was calculated as the ratio of the 

zone of mineralization (extent of detectable alizarin red staining length) to the total 

regenerate length. The mean of percent similarity for the MO treated experimental group 

and the corresponding MM treated control group were estimated and compared, and the 

statistical significance between the groups was determined using two tailed unpaired 

student's t-test (P<0.05) and the error bars indicate the standard error of mean. 
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Figure 3.7: Hapln1a and Sema3d interact genetically to mediate Cx43 phenotypes. 

Prior to knockdown and electroporation, all fins were amputated at 50% level and 

allowed to regenerate for 3 days. Fin rays treated with combined targeting MO or 

combined control MM were measured and compared to their un-injected sides. The ratio 

of injected (MO or control MO) and un-injected side multiplied by 100 is the percent 

similarity. Percent similarity greater than 100% reflects the fact that the experimental 

side can be measurably larger than the control un-injected side. Independent hapln1a 

knockdown at 0.5mM concentration and sema3d knockdown at 0.25mM concentration 

did not produce significant effects on Cx43 dependent phenotypes (not shown). Bar 

graphs reveal that double knockdown at MO concentrations of 0.5mM Hapln1a and 

0.25mM of Sema3d recapitulated the Cx43 knockdown phenotypes (reduced regenerate 

length, segment length and cell proliferation), suggesting that Hapln1a and Sema3d 

interact genetically to promote Cx43 function. Students t-test was performed (p<0.05) 

to determine significance, and the error bars indicate standard error of the mean. 
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Figure 3.8: Morpholino mediated knockdown of hapln1a results in reduced 

Sema3d protein levels. Longitudinal section of fin rays treated with hapln1a control 

morpholino (Hapln1a MM) and hapln1a targeting morpholino (Hapln1a MO). Immuno-

staining for Sema3d (blue) and counterstained for nuclei with Propidium Iodide (PI, 

red). Compared to the control MM treated fins, Hapln1a MO treated fins show reduced 

staining for Sema3d. Arrow identifies the basal layer of epithelium; arrow head 

identifies the bone; m, mesenchyme; e, epithelium. Scale bar represents 20 µm.  
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Figure 3.9: Heat shock induces upregulation of sema3d mRNA and Sema3d protein 

in Tg(hsp70:sema3d-gfp). (A) Whole mount in situ hybridization shows increased 

expression of sema3d mRNA in heat shock treated fins compared to the untreated fins. 

Black line indicates amputation plane. (B) Immuno-staining analysis of longitudinal fin 

sections reveal increased expression of GFP (green) and Sema3d (Red) in heat shock 

treated fins compared to the untreated fins. DAPI (blue) is used as the counter stain and 

stains the nuclei. Arrows indicate basal layer of epithelium and arrow head marks the 

bone. e, epidermis; m, mesenchyme. Scale bar represents 100µm in both panels. 
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Figure 3.10: Sema3d overexpression rescues hapln1a knockdown phenotypes. (A) 

Experimental design. Three groups of fish were analysed: G1, G2 and G3. Fins from all 

three groups were amputated at 50% level. On 3 dpa all animals (G1, G2 and G3) were 

treated for hapln1a knockdown. Four hours post knockdown, G1 and G3 animals were 

heat shocked for 1hr at 37°C. G2 animals were not treated for heat shock. The following 

day, 1 dpe, G1 animals were selected for GFP positive fins. For GFP detection, immuno-

staining (IS) and in situ hybridization experiments (ISH), fins were harvested 1 dpe and 

for regenerate and segment length analyses fins were harvested at 4 dpe. (B) Heat shock 

induces Sema3d-GFP (green) expression in Tg(hsp70:sema3d-gfp). GFP is not detected 

in the absence of heat shock. The white line indicates the amputation plane. Scale bar 

represents 50μm. (C) Following hapln1a knockdown the experimental group (G1) that 

is positive for both transgene and heat shock alone shows rescue for the phenotypes (i.e., 

shows high percent similarity compared to the un-injected side) whereas the control 
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groups either negative for heat shock (G2) or negative for transgene (G3) fail to show 

rescue (i.e., shows reduced percent similarity compared to the un-injected side). 

Students t-test was performed (p<0.05) to determine significance, and the error bars 

indicate standard error of mean.  
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Figure 3.11: Hapln1a and Sema3d function in a common pathway to mediate Cx43 

function during fin regeneration.  (A) Proposed pathway showing interactions of 

Hapln1a-ECM and Sema3d proteins in skeletal growth and patterning. The Hapln1a 

dependent ECM stabilizes Sema3d protein and permits Sema3d dependent signaling 

events through its putative receptors, Nrp2a to promote cell proliferation (growth) and 

PlxnA3 to inhibit joint formation (patterning), to mediate Cx43 functions. (B) 

Speculative model showing co-operative functioning of Hapln1a-ECM and Sema3d 

protein. Hapln1a-ECM components HA and Hapln1a are expressed in the blastema 

(orange), mesenchyme (white), epidermis (grey) and by the skeletal precursor cells 

(green) in the lateral compartment. Acan is expressed both in the blastema and 

surrounding the lepidotrichia (blue). The sema3d mRNA is produced in the lateral 

skeletal precursor cells (green) (Ton and Iovine, 2012), while Sema3d protein is 

secreted. The Hapln1a-ECM stabilizes the secreted Sema3d protein and may facilitate 

its proper diffusion to promote signaling events via its receptors (the nrp2a mRNA is 

expressed in the medial mesenchyme while the plxna3 mRNA is expressed in the lateral 

skeletal precursor cells, [15]). The black dotted line represents the plane of amputation, 

b, blastema; ble, basal layer of epithelium; e, epidermis; m, mesenchyme; lep, 

lepidotrichia; spc, skeletal precursor cells. 
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3.7 Tables 

Gene Primer Sequence for ISH Morpholino Sequence 

hapln1a F-ggttctccgcttggcagcg            

RT7-taatacgactcactataggggcccatccctgcctaagacc 

MO-gccacagaaaacagagcaatcatct 

MM-gccagacaaaagagaccaatgatct 

sema3d F-cgaagtgtagtaccatttacg            

RT7-taatacgactcactatagggtatgaggatcatatgtcc 

MO-tgtccggctcccctgcagtcttcat 

MM-tgtgccgctgccctccactcttcat 

has1 F-gaaatttgtgtctctggtccgagc      

RT7-taatacgactcactataggggacctaaggggccgc 

MO-tctttaagactggcttgaggtccat 

MM-tcttaaacagtggcttcacgtccat 

has2 F-gttgggacgacactgttcgg              

RT7-taatacgactcactatagggctcgattggtcagatggcgg 

MO-gctgaccgctttatcacatctcatc 

MM-gctcaccccttaatcagatgtcatc 

has3 F-ggtgcggatcttcatcaccacc         

RT7-taatacgactcactatagggggtctggtggtaccagggc 

 

acana F- cttccaggacaacacagtcaacg      

RT7-taatacgactcactatagggcttcatcgcctgtttcagagtagc 

 

acanb F-cccatgattctggcacctaccg         

RT7-taatacgactcactataggggcatagcgcccagattcagc 

MO-acagcaggagccaaatcaaagacat 

 

vcana F-cctaccagtttgtctacgcagc           

RT7-taatacgactcactataggggctgttctgatgtagcaatggtcg 

 

vcanb F-gaacttcacacaagctcagcagg    

RT7-taatacgactcactataggggaatcacactctccggagtctcc 

 

The RNA polymerase T7 binding site in reverse primers is highlighted in bold. F = 

Forward primer; RT7 = Reverse primer; MO = Targeting morpholino; MM = Control 

morpholino with 5 mismatch pairs to target sequence 

Table 3.1: Primer and Morpholino Sequence 
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4.1 Abstract 

Extracellular matrix plays a dynamic role during the process of wound healing, 

embryogenesis and tissue regeneration. Caudal fin regeneration in zebrafish is an 

excellent model to study tissue and skeletal regeneration. We have analyzed the 

expression pattern of some of the well characterized ECM proteins during the process 

of caudal fin regeneration in zebrafish. Our results show that a transitional matrix 

analogous to the one formed during newt skeletal and heart muscle regeneration is 

synthesized during fin regeneration. Here we demonstrate that a provisional matrix rich 

in hyaluronic acid, tenascin C, and fibronectin is synthesized following amputation. 

Additionally, we observed that the link protein Hapln1a dependent ECM, consisting of 

Hapln1a, hyaluronan and proteoglycan aggrecan, is upregulated during fin regeneration. 

Laminin, the protein characteristic of differentiated tissues, showed only modest change 

in the expression pattern. Our findings on zebrafish fin regeneration implicates that 

changes in the extracellular milieu represent an evolutionarily conserved mechanism 

that proceeds during tissue regeneration, yet with distinct players depending on the type 

of tissue that is involved. 

4.2 Introduction 

 The Extra Cellular Matrix (ECM) is secreted by cells and is composed 

of a wide variety of components that broadly include proteins, carbohydrates and 

proteins modified by sugar moieties termed proteoglycans (PG). Together these 

components form a complex meshwork that provides both structural and functional 

information to the cells. Initially, the ECM was thought to play only passive roles as a 
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space filling material between cells and tissues. More recent work suggests that in 

addition to providing structural stability, the ECM also acts to sequester and store 

growth factors, present growth factors to their receptors and sense and transduce 

mechanical signals [1,2]. Therefore, the biochemical and the mechanical cues provided 

by the ECM play critical roles in regulating cell behaviors including migration, shape, 

survival, differentiation, and proliferation. Moreover, remodeling of the ECM occurs 

during normal development, morphogenesis, wound healing and during the mediation 

of disease states such as cancer [3,4]. Also, ECM remodeling has recently been shown 

to contribute to epimorphic regeneration of newt skeletal muscle and heart, Xenopus 

tadpole tails, and zebrafish heart [5-8].  

Although mounting evidence suggests the importance of the ECM on cellular 

functions critical for morphogenesis, development, wound healing, tissue repair and 

regeneration, only a handful of studies address the role of ECM and its components 

during epimorphic regeneration. Several studies substantiate the establishment of a 

common transitional matrix rich in hyaluronic acid (HA), fibronectin (FN) and tenascin 

C (TNC) during epimorphic regeneration [7-9] and down regulation of ECM proteins 

that are characteristic of differentiated skeletal tissues like laminin (LAM) and collagen 

type I [10,11]. Moreover, numerous studies have identified important roles for the poly-

anionic high molecular weight compound hyaluronic acid (HA). HA is upregulated in 

matrices undergoing remodeling, during regenerative repair mechanisms [4,7,8,12], and 

has been demonstrated to modulate signal transduction pathways such as EGFR/ErbB, 

TGFb and BMP [13-15]. HA is a linear non-sulfated glycosaminoglycan (GAG) of 
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repeating disaccharide units of [D-glucuronic acid (1-β-3) and Nacetyl-D-glucosamine 

(1-β-4)] n and plays a principal role in organizing PG aggregates like aggrecan (Acan) 

and versican (Vcan). HAPG aggregates are stabilized by link proteins, which bring PGs 

to a backbone of HA [16,17]. The PG family is a heterogeneous group consisting of a 

core protein with GAG side chains attached covalently. As opposed to HA, the GAGs 

in PGs are frequently sulfated. Acan is distinct from Vcan in that Acan has ~100 keratin 

and chondroitin sulfate GAG chains attached to the core protein, whereas Vcan has only 

~12-15 chondroitin sulfate GAG chains [18,19]. These poly-anionic macromolecular 

aggregates provide the required structural organization and flexibility and bind to 

several cationic proteins involved in signaling that aid the progression of regeneration 

[20].  

Our lab was the first to demonstrate the functional consequences of reduced HA 

during zebrafish fin regeneration [21]. For example, we found that the link protein 

Hapln1a (Hyaluronan and Proteoglycan Link Protein 1a) is required for cell 

proliferation and fin ray joint formation. Hapln1a belongs to the family of link proteins 

that play a critical role in stabilizing the ECM by linking the aggregates of HA and PGs. 

We define Hapln1a and the associated HA and PGs as Hapln1a-ECM. We have shown 

that reduction in Hapln1a levels leads to reduction in HA levels that might contribute to 

the observed skeletal phenotypes in the regenerating fins [21]. Together, data from our 

study and other studies highlight the importance of ECM components (HA and PGs) 

stabilized by Hapln1a during skeletal growth and patterning [12,22].  
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To achieve a better understanding about how the ECM is remodeled during 

zebrafish fin regeneration, we looked at components of the ECM over time. We focused 

on the expression pattern of Hapln1a-ECM components (i.e. Hapln1a, HA, Acan, 

Vcan), as well as the other components of the putative transitional matrix i.e. FN and 

TNC [7,8,10,11]. In addition, we included LAM, which is characteristic of 

differentiated tissues. We find that all components of the transitional matrix (HA, FN 

and TNC) are also upregulated during fin regeneration. Moreover, we find that Hapln1a 

and Acan expression patterns change extensively over the time course, while Vcan 

pattern is less dynamic. In contrast, LAM expression pattern showed modest changes 

from ontogeny to regenerating fins. These findings provide the first examination of 

ECM remodeling during skeletal regeneration of zebrafish fin. 

4.3 Materials and Method 

Statement on the ethical treatment of animals 

This study was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. 

The protocols used for this manuscript were approved by Lehigh’s Institutional Animal 

Care and Use Committee (IACUC) (protocol identification #128, approved 

11/16/2014). Lehigh University’s Animal Welfare Assurance Number is A-3877-01. 

All experiments were performed to minimize pain and discomfort. 

Housing and husbandry  
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Zebrafish are housed in a re-circulating system built by Aquatic Habitats (now 

Pentair). Both 3L tanks (up to 12 fish/tank) and 10 L tanks (up to 30 fish / tank) are 

used. The fish room has a 14:10 light:dark cycle and room temperature (RT) varies from 

27-29°C [23]. Water quality is automatically monitored and dosed to maintain 

conductivity (400-600 µS) and pH (6.95-7.30). Nitrogen levels are maintained by a 

biofilter. A 10 % water change occurs daily. Recirculating water is filtered sequentially 

through pad filters, bag filters, and a carbon canister before circulating over UV lights 

for sterilization. Fish are fed three times daily, once with brine shrimp (hatched from 

INVE artemia cysts) and twice with flake food (Aquatox AX5) supplemented with 7.5 

% micropellets (Hikari), 7.5 % Golden Pearl (300-500 micron, Brine Shrimp direct), 

and 5 % Cyclo-Peeze (Argent). 

Animal procedures 

The wild-type C32 zebrafish (Danio rerio) strain was used in this study. Fish 

were anaesthetized in 0.1% tricaine and caudal-fin amputations were performed at 50 

% level. Fin regeneration was then allowed to proceed until the desired time period (3, 

5 or 7 days post amputation [dpa]) and the regenerated fins were harvested from 

anaesthetized fish. Fins were processed for immunohistochemistry as described below. 

A minimum of 5 different fins for each time point were sectioned and approximately 

15-20 sections per fin were analyzed for each of the ECM component under study. 

Fixing conditions and cryosectioning 



147 
 

Prior to immunostaining, ontogenic fins (i.e. unamputated) and regenerating fins 

(3, 5 and 7 dpa) were fixed overnight (O/N) with 4% PFA in PBS (for detection of HA, 

Hapln1a, Fibronectin, Tenascin-C and Laminin).  After a brief methanol wash, fins were 

dehydrated in 100% methanol and stored at –20°C until use. Before sectioning, fins 

were sequentially rehydrated in a methanol-PBS series of washes and then were 

embedded in 1.5% agarose/5% sucrose in PBS and equilibrated in 30% sucrose in PBS. 

For detection of Acan and Vcan, fins were fixed for 10 min with 2% PFA at RT followed 

by three 10 min washes with 1X PBS, and were next embedded in 1.5% agarose/5% 

sucrose in PBS and equilibrated in 30% sucrose in PBS. Following that embedded fins 

were mounted in OCT and cryosectioned (15 µm sections) using a Reichertâ Jung 2800 

Frigocut cryostat. Sections were collected on Superfrost Plus slides (Fisher) and allowed 

to air dry O/N at RT. Sections can be stored at –20°C for up to a year. The slides were 

stored at –20°C for at least one day before starting the experiment.  

Immunofluorescence  

First, the slides were brought to RT for at least one hour. Sections were circled 

using a marking pen (ImmEdge Pen H-4000; PAP pen, VWR Laboratories). For 

Hapln1a and Vcan immunostaining, the sections were rehydrated twice for 10 min in 

PBS followed by two washes with block (2% BSA, 0.1% TritonX 100 in PBS). Then, 

sections were blocked for another one hour at RT and then incubated in respective 

primary antibodies. The following primary antibodies were used: Mouse anti-Hapln1a 

antibody (MD Bioproducts, 1:500) and Rabbit anti-versican (H-56) (Santa Cruz 

Biotechnology-SC-25831) O/N at 4C. 
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For FN, TNC and LAM the sections were rehydrated twice for 10 min in PBS 

followed by a brief Trypsin-EDTA treatment (1:1 diluted with PBS) (Gibco-Life 

Technologies #25300-054) for 3 min at RT and then washed with PBS twice for 10 min. 

Following that, slides were washed with block for 10 min at RT. Then, sections were 

blocked for another one hour at RT, incubated in respective primary antibodies O/N at 

4C. The following primary antibodies were used: Rabbit anti-human fibronectin 

(Sigma-F3648, 1:100); Rabbit anti-chicken tenascin (US Biological-T2550-23, 1:500) 

and Rabbit anti-rat laminin (Thermo scientific-RB-082-A1, 1:100). 

For Acan immunostaining, the sections were rehydrated twice for 10 min in PBS 

at RT, followed by antigen unmasking by digestion with chondroitinase. First, the slides 

were incubated with the chondroitinase treatment buffer (50mM Tris, 60mM sodium 

acetate, 0.02% BSA, pH 8.0) at 37C for 5 min, followed by deglycosylation using 

chondroitinase ABC enzyme (Sigma-C2905, final concentration 0.05U in the treatment 

buffer) for 2 h at 37C. Following that, slides were washed with block for 10 min at RT. 

Then, sections were blocked for another one hour at RT, incubated with Mouse anti-

aggrecan (BC-3) (Thermo Scientific-MA3-16888) primary antibody O/N at 4C.  

Following incubation with primary antibodies, sections were washed three times 

in  block (15 min each), incubated at RT for one hour with secondary antibody goat anti-

mouse Alexa-488 (Invitrogen, 1:200, pre-absorbed for one hour, at RT with fixed 

zebrafish fins to reduce background staining) and washed again three times in block (15 

min each). Sections were next incubated with propidium iodide (final concentration 

0.01mg/ml in block) for 30 min at RT, followed by a quick wash with distilled water. 



149 
 

Then the slides were blotted dry and mounted for imaging. Confocal microscopy was 

used to image the sections using a 40×/1.3 numerical aperture objective on an inverted 

microscope (Axiovert 200 M; Carl Zeiss, Jena, Germany) equipped with an LSM510 

META scan head (Carl Zeiss). Argon ion and 543 HeNe lasers were used to generate 

the 488 and 543 lines used for excitation, and pinholes were typically set to 1–1.5 Airy 

units. Images were exported as TIFF files and printed using Photoshop. 

Histo-chemical analysis of HA 

HA was detected as described [21]. Briefly the sections were rehydrated twice 

for 10 min in PBS followed by two washes with block. Then, sections were blocked for 

another 1 h at RT, incubated with biotinylated hyaluronic acid binding protein (bHABP-

Calbiochem-385911, 1:100) O/N at 4C. The sections were washed three times in block 

(15 min each), incubated at RT for one hour with streptavidin-Alexa-546 conjugate, 

(Invitrogen, 1:200) and washed again three times in block (15 min each). Sections were 

next incubated with propidium iodide (final concentration 0.01mg/ml in block) for 30 

min at RT, followed by a quick wash with distilled water.  Then the slides were blotted 

dry and mounted for imaging as described above. 

Semi-quantitive analysis for protein expression during the time course of regeneration 

Semi quantitation of fluorescence staining for expression of each protein under 

study, over the time course of regeneration was performed using ImageJ software. 

Briefly, the tissue sections for each time point was selected using the freeform drawing 

tool and converted to RGB stack. Then using the analyze menu, the measurements  were 
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set to obtain the values for area, integrated density and mean gray values for Alexa 488 

fluorescence. To account for the background, three unstained regions surrounding the 

tissue were selected and the values were obtained as before. To calculate the corrected 

total fluorescence pixel intensity for each section the following formula was used. 

Corrected total fluorescence = Integrated Density – (Area of selected tissue X Mean 

fluorescence of the back ground). This was repeated for each time point, for each of the 

protein under study and the average and standard deviation were calculated and plotted 

as Average total pixel intensity on the Y-axis. For ontogeny Acan fin sections, since the 

staining is localized to the joints, the area around the joints was selected instead of the 

whole section and the corrected total fluorescence was calculated as before.  

4.4 Results and Discussion 

Previous studies on newt skeletal muscle and heart regeneration have shown that 

upon tissue injury, ECM remodeling results in the synthesis of a regeneration specific 

transitional matrix rich in HA, TNC and FN [5-8,12,24,25]. These components are 

considered as the fundamental ECM components during embryonic development 

[22,26-28] and wound healing [29-31]. The spatial and temporal expression and the 

concentration of these components influence the type of response that is elicited upon 

tissue injury. Comparative gene ontology analysis has shown that the up regulation of 

this transitional matrix is an evolutionarily conserved response between species during 

tissue regeneration, as opposed to repair mechanisms that result in scarring [8]. 

Importantly, during early stages of repair, HA provides a highly hydrated environment 

and TNC generates anti-adhesive effects thereby promoting the undifferentiated state. 
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Concomitant with the up regulation of this transitional matrix, several studies have 

shown that the components of differentiated tissues, like collagen type I and LAM, are 

suppressed by the action of matrix metallo proteases (MMP's). Together, these changes 

lead to significant changes in the local environment that prevent scarring and instead 

are conducive for regeneration to proceed [10,11,32]. We have demonstrated in this 

study that the components of the transitional matrix are also expressed during zebrafish 

caudal fin regeneration. To our knowledge, this is the first study to describe the 

expression pattern of these ECM proteins in a time course during fin regeneration. 

The zebrafish caudal fin is made up of 16-18 segmented bony fin rays 

(lepidotrichia) that are connected by soft inter ray tissue that is devoid of any skeleton. 

The lepidotrichia are made of two concave hemi-rays that are lined by bone secreting 

osteoblasts [33,34]. Lepidotrichia surround blood vessels, nerves, fibroblasts and 

pigment cells and are covered by a multilayered epidermis. Following amputation, a 

wound epidermis derived from the stump epithelium closes the wound. Formation of a 

multilayered epidermis has been shown to be an important requirement for blastema 

establishment and proliferation of cells [35]. Just beneath the wound epidermis and 

distal to each fin ray, a blastema is formed that consists of de-differentiated and highly 

proliferative cells [36-39]. The longitudinal section of a fin ray reveals a simple 

architecture with a central mesenchyme separated from the multilayered outer epidermis 

by a single layer of epithelial cells termed the basal layer of epithelium (BLE) (Fig. 1). 

During regeneration, just beneath the BLE, collagenous fibers called the actinotrichia 

are synthesized that serve to support the fin folds [40,41]. Osteoblasts and joint forming 
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cells, collectively termed the skeletal precursor cells (SPC's), reside between the 

actinotrichia and BLE [42,43]. The formation of the blastema and the regenerative 

outgrowth is characterized by cell division and cell differentiation to replace all lost 

tissues of the fin.  

In order to evaluate changes in ECM components during skeletal regeneration, 

we examined ECM proteins in longitudinal fin sections at 0 dpa (uncut), 3 dpa, 5 dpa 

and 7 dpa regenerating fins. The uncut 0 dpa fin represents the ontogenic, non-

regenerative state mostly consisting of well differentiated tissue. The early time point 3 

dpa represents the time during which maximum rate of regeneration occurs [44,45]. 

Later, regenerative outgrowth and fin patterning continues up to 14 days [34]. The time 

points of 5 and 7 dpa were chosen to evaluate the expression patterns of the ECM 

proteins during the outgrowth and patterning phase of fin regeneration. We further 

paired immunohistochemical analyses with semi-quantitative analyses in order to 

validate the qualitative interpretation of overall changes in expression levels.  

Hapln1a dependent ECM undergoes transient dynamic modification during 

regeneration  

In a recent study, we showed that the ECM protein Hapln1a plays critical roles 

during skeletal growth and patterning by influencing cell proliferation, joint formation 

and the distribution of HA in the regenerating fin (Govindan and Iovine, 2014). Here 

we evaluate expression and localization of the link protein Hapln1a, the PGs Acan and 

Vcan, and HA during the time course for regeneration. Hapln1a and HA exhibit similar 

expression patterns during all time points of regeneration (Fig. 2A and B). In ontogeny 
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fins, both Hapln1a and HA were low in the epidermis. In the mesenchyme, Hapln1a was 

almost absent but HA was observed. HA appeared to be tightly associated with 

epidermal cells and may be associated in a pericellular manner (Knudson et al., 2002; 

Toole, 2004). By 3 dpa, Hapln1a and HA were predominantly upregulated in 

mesenchyme and epidermis (Fig. 2A and B). The proximal end of the mesenchymal 

compartment showed more expression compared to the proliferative blastema. 

Additionally, HA was also strongly upregulated in the mesenchyme of the stump tissue 

(Figure S1). At 5 dpa, Hapln1a and HA were seen throughout the mesenchymal 

compartment and in the epidermis. During 7 dpa, the Hapln1a staining was more like 

the ontogeny fin where the epidermal staining was reduced significantly, but there was 

moderate staining in the mesenchyme. HA appeared to go down at 7 dpa compared to 3 

and 5 dpa but was still moderately expressed throughout the mesenchyme (Fig. 2A and 

B).  

The similar expression pattern of Hapln1a and HA during regeneration is 

expected as these two components are dependent on each other to associate with the PG 

aggregates. In particular, HA by itself is known to play a crucial role during matrix 

remodeling. It is well documented that HA synthesis and HA dependent signaling play 

a critical role during tissue regeneration, implying that it could be an evolutionarily 

conserved process that takes place in response to tissue loss to promote regeneration. 

The HA expression pattern in the regenerating zebrafish fin strongly corroborates with 

newt skeletal muscle and Xenopus tail regeneration studies where HA is expressed 

strongly in the distal stump and proximal blastema, as compared to the distal end of the 



154 
 

regenerate. This, in turn is thought to regulate the proliferative state of mesenchymal 

cells in the regenerating tissue by modulating the distance between the cells 

[7,12,28,46,47]. Also, the immediate up regulation of HA proximal to the amputation 

plane and in the distal stump could play an important role to promote smooth migration 

of the progenitor cells into the regenerating blastema. For example in vitro studies using 

newt myoblasts have shown that myoblasts in an HA rich environment show reduced 

fusion and differentiation and a significant increase in migration [7]. In contrast, the 

comparatively reduced expression of HA in the blastema could facilitate cell 

proliferation [7,20,48,49].  

The aggregating PGs Acan/Vcan are present surrounding the bones and are 

important for matrix organization, cell motility and growth and are effective inhibitors 

of mineral deposition because of their ability to sequester calcium and impose steric 

hindrance [50]. Furthermore, changes in GAG composition are now considered a 

signature event during various physiological and pathological remodeling processes, 

such as bone formation, regeneration, scarring, osteoarthritis, and cancer metastasis 

[51,52].We have analyzed the expression pattern of both Acan and Vcan in regenerating 

fins.  

Acan expression shows a distinct pattern in each of the different stages during 

fin regeneration. In ontogeny fins, Acan strongly localized to the mature joints and was 

poorly expressed in the mesenchyme and epidermis (Fig. 2C). On 3 dpa, we observed a 

moderate up regulation of Acan expression surrounding the mesenchymal cells, and 

around the stump bone matrix. Epidermal staining was reduced compared to the 
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mesenchyme. Around 5 dpa, Acan expression was very strongly associated with 

lepidotrichia consisting of SPC's and, to a lesser extent with actinotrichia and 

mesenchyme. Acan expression goes down by 7 dpa, but was still observed in the 

lepidotrichia and to a lesser extent surrounding the mesenchymal cells (Fig. 2C). Even 

though the skeletal elements in fin rays are considered to be of dermal origin and formed 

by intramembranous ossification [53,54], studies have shown the expression of 

chondrogenic markers that are specific to cartilage, implying that the fin skeleton could 

be an intermediate between intramembranous and endochondral type of bone [55-57]. 

There is evidence showing that Acan contributes to functional properties such as 

mechanical stiffness, and to the normal development and growth of membranous bones 

[20,58]. These data are consistent with our findings. In 5 dpa sections, Acan is expressed 

in the area of lepidotrichia where the bone forming osteoblasts reside. This suggests that 

the fin skeleton requires relatively higher Acan expression levels at specific tissue 

compartments as part of a coordinated program of ECM synthesis and remodeling 

during skeletal regeneration. 

We next evaluated the expression of Vcan, another major PG that forms 

aggregates with HA and is expressed during bone development [59]. We found that, in 

ontogeny fin sections, Vcan staining was minimal in the mesenchyme, but was 

prominent in the epidermis (Fig. 2D). During 3 dpa and 5 dpa, Vcan was slightly 

upregulated in the expanded mesenchyme and also was found associated with the cells 

of BLE and epidermis. At 7 dpa, the Vcan levels in the mesenchyme were reduced to 

ontogeny levels while appearing slightly upregulated in the epidermis. Overall, the Vcan 
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expression pattern did not show robust changes compared to the other components of 

the Hapln1a ECM during regeneration. Vcan was found mostly associated with the 

epidermis during ontogeny and the later time point 7 dpa, but was slightly upregulated 

in the mesenchyme during the earlier time points of regeneration (Fig. 2D). Even though 

previous studies have shown Vcan expression in mesenchymal condensations of chick 

limb cartilage [60,61], epiphyseal ends of long bones [62] and in mouse presumptive 

joints [63], the exact role of Vcan is not clearly known. It has been suggested that the 

ternary stable complex of Vcan-HA-Link protein has anti-adhesive effects, creating a 

highly hydrated environment conducive for cell migration [64-66]. Further studies are 

required to elucidate the functional role of Vcan during fin regeneration.  

A semi-quantitative analysis of Hapln1a-ECM components during the time 

course of regeneration shows that all components exhibit a change in the expression 

pattern during early regeneration compared to the ontogeny state (Fig. 2E). In particular, 

Hapln1a and HA show more robust changes than Vcan. Acan showed distinct temporal 

and spatial expression patterns and was maximal at 5 dpa. Moreover, by 7 dpa the 

overall Acan expression levels appear reduced compared to earlier time points. Thus, it 

is possible that components of the Hapln1a-ECM contribute more to the earlier stages 

of skeletal regeneration versus later stages.  

TNC, FN and LAM show distinct expression patterns during fin regeneration 

Earlier studies in zebrafish fin regeneration have used TNC as a counter stain, 

to evaluate the integrity of the mesenchyme [35,39,67,68], and to define and demarcate 

the distal mesenchymal region of the regenerating vertebrate appendages [35,67,68]. 



157 
 

Here, we show that TNC exhibits a dynamic expression pattern during fin regeneration 

and, hence, could play a combined role with other components in defining the 

regeneration specific matrix. In ontogeny fins, TNC was expressed poorly (Fig. 3A). 

During 3 dpa, extensive staining was seen just beneath the BLE, in the blastema, and in 

the mesenchyme throughout the regenerating fin tissue. At 5 dpa, the expression still 

seemed very strong and was similar to 3 dpa. At the later time point 7 dpa, the pattern 

still resembled 3 and 5 dpa, but the strength of staining was lower than 5 dpa showing 

that it is down regulated during the later time point of regeneration (Fig. 3A). During 

all regenerative time points that were under study, TNC expression was found to be 

present and clearly demarcate the mesenchyme from the epidermis. TNC is known to 

be upregulated in injured tissue sites where the outcome is regeneration rather than 

scarring [69,70]. Previous studies on newt muscle and heart regeneration have shown 

that TNC in the regeneration specific transitional matrix promotes cell migration and 

suppresses differentiation by coordinating function with HA and creating a hydrated 

environment to facilitate cell motility. Further, in vitro studies using newt myoblasts 

and in vivo studies in regenerating newt heart and muscles have shown that TNC 

promotes cell cycle re-entry thereby promoting cell proliferation [7,8]. Moreover, TNC 

alone has been shown to be sufficient to induce cardiomyocyte proliferation in vitro 

suggesting that ECM derived signals can induce cell proliferation during regeneration 

[8]. During zebrafish fin regeneration we observed an initial up regulation of HA and 

TNC. Based on the previous studies, we hypothesize that the initial up regulation of 
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these components can be an important event for progenitor cell migration and the down 

regulation at later time points could be a required step to promote differentiation.  

FN is another ECM component that is shown to be specifically upregulated in 

the transitional matrix that is formed during regeneration of newt heart and skeletal 

muscle [7,8] and in zebrafish heart [71]. FN promotes tissue regeneration in multiple 

ways. It is known to be involved in clearing the tissue debris at the site of injury and 

influences both cell proliferation and differentiation by serving as a scaffold for cell 

adhesion and migration [72]. We observed that FN is expressed during zebrafish fin 

regeneration (Fig. 3B). In both epidermis and mesenchyme, FN expression was minimal 

in ontogeny fins. During 3 dpa, FN expression was upregulated in the mesenchymal 

compartment and remained low in the epidermis. At 5 dpa, the expression was much 

stronger and was observed strongly in the blastema and, to a lesser extent, in the 

epidermis up to the apical tip of the fin. At 7 dpa, the expression of FN appeared to go 

down and was more like the ontogeny pattern (Fig. 3B). Compared to TNC and HA 

which are upregulated throughout the regenerative time course, FN exhibited a more 

transient and modest temporal up regulation followed by a decrease in expression during 

later time points of fin regeneration. Previous in vivo and in vitro studies have shown 

that FN promotes differentiation and also might be playing a combined role with TNC 

to promote DNA synthesis and proliferation [7,8]. Loss of function experiments have 

shown that FN is essential for proper heart regeneration and could play a role in 

signaling during cardiomyocyte migration [71]. Expression of FN in regenerating fins 
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is intriguing and further studies will help us to understand the role of FN expression 

during fin regeneration.  

In addition to the above mentioned ECM proteins, we also looked at the 

expression of the protein LAM that is characteristic of differentiated tissues. LAM is 

one among several glycoproteins present in the basement membranes that self assembles 

to form the basal laminae or BLE, adjacent to the epithelial layers of the epidermis. In 

ontogeny fins, LAM was expressed both in mesenchyme and epidermis throughout the 

fin section, typical of a differentiated tissue (Fig. 3C). During 3 dpa and 5 dpa, we 

observed prominent expression of LAM surrounding the cells of BLE and importantly 

reduced and dispersed expression in mesenchyme and epidermis. At the later time point 

7 dpa, specific expression surrounding BLE disappeared and the pattern resembled 

ontogeny fin sections (Fig. 3C). Overall, we observed only a modest change in the 

expression of LAM during the time course of fin regeneration. BLE has several 

functions, including boundary formation to separate and connect several tissue types, 

providing a mechanical scaffold and molecular information to regulate cell migration 

and proliferation [73,74]. Additional in vitro and in vivo studies will reveal the 

importance and functional roles of specific up regulation of LAM expression 

surrounding the BLE during regeneration.  

A semi-quantitative analysis of the overall expression levels of TNC, FN and 

LAM during the time course of regeneration shows robust up regulation of TN and FN 

during the earlier time points compared to the ontogeny state (Fig. 3D). In contrast, 

LAM expression shows minimal changes between ontogeny and regeneration and 
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during the time course of regeneration. These findings suggest that TNC and FN are 

functionally more important during earlier stages of fin regeneration. Since LAM is 

present at relatively constant levels, LAM may not provide a specific functional 

requirement for regenerating tissue.  

4.5 Conclusions 

Adult mammals have very limited regeneration capacity following tissue injury. 

In contrast, some animals like axolotls, newts and zebrafish possess an unlimited and 

remarkable level of tissue regenerative ability. Recent studies have highlighted the 

importance of dynamic extracellular modifications that occur during newt heart and 

skeletal muscle and zebrafish heart regeneration. In this study, we have shown that 

zebrafish fin regeneration also recapitulates a similar response following fin amputation. 

This indeed provides additional evidence for the evolutionarily conserved ECM 

alterations that take place during tissue repair and regeneration. Future work will be 

directed towards understanding the mechanism of how the involved players contribute 

individually and function together to regulate cell behavior. For example, combined in 

vivo and in vitro studies will provide new insights into how the biochemical properties 

of the changing ECM plays a role in regulating proliferation and differentiation during 

the fin skeletal tissue regeneration. 
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4.6 Figures 

 

Figure 4.1: Cartoon of a longitudinal section illustrating the different 

compartments in a regenerating fin ray. The dotted line (black) represents the 

amputation plane. Upon amputation, a wound epidermis (e) (gray) is formed. The arrow 

points to the basal layer of epithelium (brown cuboidal cells) just beneath the epidermis 

(e) (gray) separating it from the central mesenchyme (m) (cream). Following that, 

blastema (b) (red) is established that contains two zones, the distal blastema, containing 

relatively slowly proliferating cells that direct regenerative outgrowth, and proximal 

blastema, containing rapidly proliferating cells that differentiate into other cell types. 

The closed arrowhead points to the newly formed bony rays-lepidotrichia (blue), open 

arrowhead points to the skeletal precursor cells (green) and the asterix (*) denotes the 

actinotrichia (purple lines) extending towards the tip of the fin. 
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Figure 4.2: Immunostaining and histochemistry for Hapln1a-ECM 

components during the time course of regeneration. Longitudinal fin sections were 

treated with the respective primary antibodies and detected using the corresponding 

secondary antibody conjugated with Alexa Fluore 488 (green). Propidium iodide 

(nuclei) is used as the counter stain (red). For each time point the percentage of sections 
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showing similar expression pattern is denoted in each panel (n=40-65 sections). (A) 

Immunostaining for Hapln1a; (B) histochemical detection of HA using biotin-HA 

binding protein; (C) immunostaining for Acan, the arrowhead identifies the joints and 

(D) immunostaining for Vcan. (E) The graph illustrates the overall change in the 

expression level during the time course of regeneration for each component. Efforts to 

compare expression levels between components were not completed. Arrows identify 

the basal layer of epithelium (BLE); yellow arrowhead identifies lepidotrichia and 

yellow arrow identifies actinotrichia; m, mesenchyme; e, epidermis; dpa, days post 

amputation. Scale bar is 20 μm. 
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Figure 4.3: Immunostaining for TNC, FN and LAM during the time course 

of regeneration. Longitudinal fin sections were treated with the respective primary 

antibodies and detected using the corresponding secondary antibody conjugated with 

Alexa Fluore 488 (green). Propidium iodide (nuclei) is used as the counter stain (red). 

For each time point under study the percentage of sections showing similar expression 

pattern is denoted in each panel (n=40-65 sections). (A) Immunostaining for TNC; (B) 

immunostaining for FN and (C) immunostaining for LAM. (D) The graph illustrates the 

overall changes in the expression levels of each of the component under study during 

the time course of regeneration. Efforts to compare expression levels between 
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components were not completed. Arrows identify the basal layer of epithelium (BLE); 

m, mesenchyme; e, epidermis dpa, days post amputation. Scale bar is 20 μm. 
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5.1 Summary 

Studies using different model systems provide evidence that Cx43 function 

during skeletal morphogenesis is highly conserved. However, very little is known about 

the molecular changes that occur downstream of Cx43. One way to understand this is 

by looking at cx43 dependent changes in gene expression that influence skeletal growth 

and patterning. Several putative genes have been identified by a novel microarray 

analysis that could possibly function in a cx43 dependent way. One of the genes 

identified by this analysis is hapln1a that codes for an ECM protein. This dissertation 

has revealed some of the important findings about the mechanistic roles of Hapln1a in 

mediating Cx43 function during skeletal regeneration of zebrafish caudal fin.  

To summarize, we have shown that Hapln1a is molecularly and functionally 

downstream of Cx43 and transient knockdown of hapln1a destabilizes the interaction 

between HA and PGs leading to reduced levels of HA [1] and Acan (Chapter 3). We 

observed that morpholino mediated reduction in HA, or reduction in Acan can mediate 

Hapln1a phenotypes, namely reduced cell proliferation (i.e., growth) and reduced 

segment length (i.e., affects patterning). We observed that HA had a stronger effect on 

cell proliferation and Acan had a stronger effect on segment length, but neither could 

completely recapitulate hapln1a knockdown phenotypes. This suggests that there might 

be other players contributing to Hapln1a function or, Hapln1a could have other 

additional functions (Chapter3). This opens up the question whether Hapln1a has other 

roles, other than stabilizing the HA and Acan interaction during skeletal regeneration 

Moreover, we have shown that Hapln1a dependent ECM and the microenvironment 
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provided by the Hapln1a-ECM is crucial for stabilization of Sema3d protein (another 

molecule known to function downstream of Cx43) and they function together to mediate 

Cx43 dependent skeletal phenotypes. This shows that Hapln1a-ECM is important for 

proper function of signaling molecules, at least Sema3d during fin regeneration.  Hence 

it would be interesting to know whether Hapln1a-ECM influences other signaling 

molecules that are required to maintain the proliferative state of the blastema. 

Additionally, we provide evidence that components of Hapln1a-ECM comprising of 

Hapln1a, HA, Acan and Vcan are expressed during fin regeneration. We have also 

shown that the evolutionarily conserved transitional matrix comprising of HA, TNC and 

FN that is formed during epimorphic regeneration of zebrafish and newt heart, and newt 

skeletal muscles and limbs is also conserved during zebrafish fin regeneration [2]. Our 

study provides the first evidence for the expression and formation of the Hapln1a-ECM 

and evolutionarily conserved transitional matrix and some of its functional significance 

during zebrafish fin skeleton regeneration. Hence determining components of the ECM 

(especially Hapln1a, HA, Acan, TNC and FN) that may provide regulatory cues for cell 

proliferation and cell differentiation during skeletal development will provide novel 

insights into skeletal regeneration. Overall, the work compiled in this dissertation 

highlights two important but previously unknown aspects of Cx43 function during 

skeletal regeneration. First we provide evidence that Hapln1a expression is Cx43 

dependent and then we have shown that Hapln1a dependent ECM remodeling 

(consisting of at least HA and Acan) is crucial for and contributes to skeletal growth 

and patterning in regenerating fin. Further studies are required to elucidate the 



179 
 

biochemical function and importance of ECM during fin regeneration that was 

previously thought to have only structural roles. Several questions remain open and 

some of the future directions are summarized below. 

5.2 Future Directions 

(1) Determine whether Hapln1a has other roles, besides stabilizing the HA and 

Acan interaction during skeletal regeneration 

We have shown that Hapln1a knockdown resulted in reduced HA (chapter 2) 

and reduced Acan (chapter 3). Experiments to check whether HA and Acan contributed 

to observed Hapln1a dependent phenotypes showed that reducing HA levels by 

knockdown of HA synthesizing enzymes, or Acan knockdown, both resulted in reduced 

cell proliferation and reduced segment length. However we observed that has2 

knockdown had a stronger effect on cell proliferation and acanb knockdown had a 

stronger effect on segment length. Even though it is not possible to compare two 

independent knockdown effects, it appears that the additive effects of reduced HA and 

reduced Acan are similar to the total effects of reduced Hapln1a (data in chapter 3).  

Several other studies also highlight the fact that HA promotes cell proliferation 

[3,4,5,6,7] and Acan deficiency leads to shortened limbs [8,9,10]. Hence it would be 

interesting to know whether double knockdown of has2 and acanb can result in 

recapitulation of hapln1a knockdown phenotypes. This might provide further insights 

into additional roles of Hapln1a and help us answer the following questions namely, 

whether Hapln1a purely plays a structural role and are there any other unidentified 

players involved in this. Our preliminary data on double knockdown of has2 and acanb 
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indeed show reduction in regenerate and segment length and reduced cell proliferation 

but do not recapitulate the effects seen in hapln1a knockdown (Figure 5.1). However, 

one of the caveats of this double knockdown is that, when we do the double knockdown 

the concentration of the morpholino is halved and hence it is necessary to quantify the 

effect of the knockdown on the protein levels to better understand the function. In 

addition to looking at the phenotypes i.e., cell proliferation and segment length in the 

has2+acanb double knockdown and hapln1a knockdown fins, quantitation and 

comparison of HA and Acan protein levels by histochemistry and immuno-staining will 

permit direct comparison of each single knockdown with the double knockdown. If HA 

and Acan levels are similar in both the double knockdown and hapln1a knockdown, and 

if the double knockdown can recapitulate the hapln1a knockdown phenotypes then it is 

likely that the majority of the effect of hapln1a knockdown phenotypes are due to 

destabilization of HA and Acan. Conversely, if the effect of double knockdown has 

lesser effect than hapln1a knockdown then it opens up new possibilities that will require 

further analysis. 

(2) How does Hapln1a influence the evolutionarily conserved transitional 

matrix during fin regeneration? 

In chapter 4, we have shown that  establishment of a common transitional matrix 

rich in hyaluronic acid (HA), fibronectin (FN) and tenascin C (TNC) during epimorphic 

regeneration [7,11,12] of various organs in different model systems, is also established 

during zebrafish fin regeneration. All the components of this transitional matrix are 

known to have an effect on cell proliferation or cell migration or differentiation 
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[7,11,12]. We studied the changes in ECM composition from non-regenerative to 

regenerative fin. Numerous studies have identified important roles for HA in matrices 

undergoing remodeling and during regenerative repair mechanisms [6,7,12,13], and has 

been demonstrated to modulate signal transduction pathways such as EGFR/ErbB, 

TGFb and BMP [14,15,16]. We have shown that hapln1a knockdown results in reduced 

HA (one of the components of the conserved transitional matrix) that in turn leads to 

reduced cell proliferation and segment length (Chapter 3). To further understand the 

role of Hapln1a during regeneration and to assess how the conserved transitional ECM 

changes during hapln1a-knockdown, a similar strategy could be utilized to see the effect 

of hapln1a knockdown on other two transitional matrix components namely TNC and 

FN. Immuno-staining analysis for FN and TNC could be performed on hapln1a-

knockdown regenerating fins and compared with hapln1a- mismatch treated (negative 

control) regenerating fins. Several studies have shown down regulation of ECM proteins 

that are characteristic of differentiated skeletal tissues like laminin (LAM) and collagen 

type I [17,18]. In chapter 4 we provide evidence that LAM expression shows modest 

change in expression pattern over the time course of regeneration. Hence performing 

immunostaining analysis for LAM in hapln1a knockdown regenerating fins and 

comparing with hapln1a mismatch treated (negative control) regenerating fins could 

serve as a control for these experiments. Those ECM components that vary in the 

hapln1a knockdown fins might play a role and mediate relevant cellular behaviors such 

as cell proliferation and cell differentiation (i.e. the two major cellular behaviors 

influenced by cx43-dependent pathways) which could be tested further by in vitro 
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assays. Overall, the result from these experiments will provide insight into how Hapln1a 

dependent ECM contributes to the Cx43 dependent skeletal phenotypes. 

(3) Determining components of the ECM that may provide regulatory cues for 

cell proliferation and cell differentiation during skeletal development. 

Skeletal development depends upon appropriate cell proliferation and cell 

differentiation. The fact that hapln1a knockdown causes reduced cell proliferation and 

reduced segment length provides evidence that the Hapln1a based ECM components 

HA and Acan influence these cellular behaviors. However, it is not clear how mutations 

and defects in ECM proteins cause skeletal disorders. Not much is known about the role 

of Hapln1a/HA/Acan or other major ECM components during zebrafish fin 

regeneration. In chapter 4 we provide evidence that ECM components comprising the 

transitional matrix, namely FN, TNC and HA are expressed in a regenerating fin. In 

addition we also provide evidence for the expression of other ECM components namely 

LAM and the PGs- Acan and Vcan [2]. Further experiments to evaluate and understand 

their ability to influence cellular behaviors will provide novel insights into how these 

components can influence cellular behavior. Tissue culture polystyrene dishes coated 

with different ECM components have been successfully used to study muscle 

regeneration [7]. Results from the experiments mentioned in the previous section can 

provide ideas to design tissue culture experiments for the ECM components that are up-

regulated during regeneration or show a difference in hapln1a knockdown fins. 

However, the use of ECM components that are not up-regulated or that do not show any 

change upon hapln1a knockdown will provide an important internal control for the 



183 
 

analyses. These ECM components can be coated individually on polystyrene tissue 

culture dishes as described [7]. Cells from a zebrafish fin cell line (adult fin fibroblast, 

AB9) can be plated over each ECM component and Hapln1a mediated cellular 

behaviors namely, cell proliferation and joint formation, can be evaluated. Cell 

proliferation can be monitored by measuring the incorporation of BrdU (i.e. an analog 

of one of the 4 bases that comprise DNA) into cell nuclei. BrdU-positive cells will be 

counted over time, and the ability of different ECM components to induce cell 

proliferation can be evaluated. The ability of different ECM components to induce 

differentiation of bone-forming cells or joint-forming cells can be monitored either by 

staining for established bone and joint markers (i.e. alkaline phosphatase for bone, 

matrix metalloproteases for joints), or by the detection of genes up-regulated in bone 

cells (i.e., runx2, osx) or joint cells (evx1). Completion of these experiments will help 

in defining the ECM components that are up-regulated during regeneration and the ECM 

components that depend on Hapln1a for their continued expression and will provide 

information if the same ECM components facilitate cell proliferation and/or cell 

differentiation. Results from these experiments will play a critical role to predict which 

ECM proteins are most relevant during growth and patterning of the skeleton. These 

findings will be crucial for establishing evidence-based hypotheses for how the ECM 

may regulate cell proliferation and cell differentiation, the two major cellular behaviors 

impacted by reduced Hapln1a. 
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(4) Elucidate the role of HA signaling during fin skeletogenesis 

The Hapln1a based ECM is largely composed of hyaluronic acid (HA) and 

proteoglycan (PG) network that is cross linked and stabilized by Hapln1a.  Our studies 

show that knockdown of hapln1a results in reduced HA levels as evaluated by 

histochemical HABP staining. HA is an abundant component of ECM and is enriched 

in matrices undergoing remodeling [19] such as in case of tissue injury, and functional 

studies to evaluate its role in zebrafish fin regeneration have shown that HA influences 

cell proliferation and joint formation (Chapter 3). Studies reveal that any treatment 

influencing the synthesis or degradation of the HA polymer causes defects in bone size, 

shape, and growth in animal model systems [20,21,22]. These data provide compelling 

evidence that HA contributes significantly to skeletogenesis. Moreover, HA receptors 

like CD44 and RHAMM can transduce signals thereby activating a variety of 

intracellular signaling cascades like ERK1/2, PKC, FAK and Rho1 [23], and it is 

possible that, by altering the HA levels, Hapln1a is indirectly affecting one or many of 

the signaling pathways.  Attempts to look at the expression of HA receptors CD44 and 

RHAMM, revealed that RHAMM is expressed in regenerating fins (Figure 5.2). 

Interestingly in situ hybridization for rhamm in 5 dpa regenerating fins of WT, sof b123 

and alf  dty86 showed that compared to WT, rhamm is much upregulated in alf  dty86 and 

downregulated in sof b123 (a pattern similar to cx43 expression) suggesting an exciting 

possible role for  rhamm in Cx43 pathway. Further studies are required to understand 

whether HA interacts with RHAMM during fin regeneration and contributes to Cx43 

dependent functions. 
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(5) Elucidating the effect of Hapln1a-ECM on secreted signaling molecules 

Previous findings from our lab have revealed that the secreted signaling 

molecule Sema3d coordinates growth and patterning of the vertebrate skeleton through 

interactions with two distinct cell surface receptors. The receptor Nrp2a mediates 

skeletal growth/cell proliferation and receptor PlxnA3 mediates joint 

formation/patterning [24]. Using transgenic Sema3d over expression line, we have 

shown that HA/Hapln1a-ECM is required for stabilization of Sema3d to mediate the 

skeletal phenotypes (Chapter 3). Another independent study by mass spectroscopy 

analysis as an attempt to identify the co-receptors for Nrp2a revealed RHAMM as a 

potential Nrp2a interacting factor (data unpublished). Together these studies suggest 

that the HA receptor RHAMM may be required to mediate Sema3d-Nrp2a interactions. 

Further studies are required to prove and understand this mechanism. Also, several 

studies provide evidence for the expression and the critical need of various signaling 

molecules during the process of fin regeneration. Knowing that Hapln1a-ECM plays an 

important role in stabilizing Sema3d, it is intriguing to understand the effect of 

Hapln1a–ECM on other signaling molecules especially ActivinβA and Notch which 

play an important role in maintaining the proliferative state of the blastema [25,26]. 

Further studies will provide evidence for the dependence of signaling molecules on 

Haplna-ECM.  

(6) Zebrafish regenerating fin as a model for osteoarthritis research 

Degenerative joint disease is a leading source of morbidity resulting in significant 

social and economic impact. One to 5% of the population under the age of 45 and 15-
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85% of older individuals suffer from some form of degenerative joint disease, mainly 

osteoarthritis [60,61] Osteoarthritis is characterized by the slow progressive 

deterioration of articular cartilage. Current therapeutic regimens address mainly pain 

but not degeneration (RE Mitchell et al 2013). A better understanding of the distinct 

micro-environment of articular cartilage and the complex interactions that exist between 

cell and surrounding extracellular matrix (ECM) is critical so that strategies can be 

directed towards treating degenerative joint disease.  

Cartilage is composed of the cells named chondrocytes and the ECM produced by 

these cells. The biochemical properties of cartilage and the physical function of joints 

are critically dependent on the integrity of the matrix. The ECM molecules in cartilage 

include proteoglycans, hyaluronan (also called hyaluronic acid or HA), type II collagen, 

glycoproteins and various mixtures of elastic fibers. Most of the proteoglycans exist as 

aggregates formed by the non-covalent association of proteoglycan with HA and link 

protein (WightTN 1992, Kiani et al 2002). Among the components of ECM molecules, 

the most crucial to the proper functioning of articular cartilage is the large aggregating 

chondroitin sulfate proteoglycan aggrecan and hyaluronic acid. 

It is well documented that HA and Acan play crucial roles in maintaining the 

articular cartilage and their functions are perturbed in osteoarthritic joints [60,61] and 

one of the major drawbacks in osteoarthritic research is the availability of a suitable 

model system. This dissertation provides evidence that the ECM component HA is 

upregulated, and Acan is expressed in a distinct pattern and indeed contributes to 

skeletal phenotypes during zebrafish fin regeneration. Even though the articular 
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cartilage is not exactly the same as what is seen in lepidotrichia of zebrafish fin, the 

regenerating fin could serve as a model for studying various signaling pathways that are 

perturbed during osteoarthritic disease state. 

One of the interesting findings from this study is the distinct expression pattern (data 

in chapter 4) of the cartilage PG- Acan that is expressed during fin regeneration. 

Previous studies have described that the skeletal elements in fin rays are of dermal origin 

and are formed by intramembranous ossification [27,28]. Even though fish fins are made 

of dermal bones several studies have shown the expression of both chondrogenic 

markers such as sox9a, sox9b, ihha, col10a1, col2a1 that are considered to be strictly 

associated with endochondral bone formation and genes associated with 

intramembranous ossification such as runx2a, runx2b, osteonectin and col1a1 in 

regenerating fins [29,30,31,32,33]. Independently we have also shown the expression 

of the chondrogenic markers sox9a and sox9b (Figure 5.3). These observations have 

posed an important question about the nature of bone in zebrafish fin rays suggesting 

that it could be an intermediate between endochondral and intramembranous type and 

it is complicated to define it purely as an intramembranous type.  The expression of 

Acan in regenerating fins in our study is an important cartilage marker [34,35] and thus 

supports the fin characteristics to be an intermediate between endochondral and 

intramembranous type. The results obtained for Acan expression were unexpected 

because intramembranous bones normally develop from the direct deposition of bone 

matrix by the mesenchymal cells and does not involve a cartilage intermediate which is 

an important requirement for endochondral bone formation.  
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To our knowledge this is the first study to analyze the expression pattern of the PG 

Acan during in vivo fin tissue regeneration. In ontogeny fins, Acan strongly localized 

to the mature joints and was poorly expressed in the mesenchyme and epidermis. On 3 

dpa, we observed a moderate up regulation of Acan expression surrounding the 

mesenchymal cells, and around the stump bone matrix. Epidermal staining was very 

much lower compared to the mesenchyme. On 5 dpa, Acan expression was very strongly 

associated with lepidotrichia consisting of SPC’s and to a lesser extent with actinotrichia 

and mesenchyme. Acan expression goes down by 7dpa but was still observed in the 

lepidotrichia and to a lesser extent surrounding the mesenchymal cells [2]. The cartilage 

contains chondrocytes that secrete an ECM rich in HA, Acan and type II collagen [36]. 

Even though our current findings on Acan expression in dermal fin skeleton was 

surprising, there is molecular and biochemical evidence for Acan expression in 

membranous bones by osteoblasts in chick embryos. Based on the studies on nanomelia 

chick embryos that contain a mutation that affect the transcriptional regulation of the 

Acan core protein, it has been suggested that Acan contributes to the functional 

properties especially mechanical stiffness and to the normal development and growth of 

membranous bones [37,38]. This clearly agrees with our current data and we observe in 

5 dpa sections that Acan is expressed in the area of lepidotrichia where the bone forming 

osteoblasts reside. This shows that the development of fin skeleton requires relatively 

higher Acan expression levels at tissue specific sites transiently as part of a coordinated 

program of ECM synthesis and remodeling. Also, it is well known that Acan expression 

is regulated by BMPs [39,40] and BMP signaling has been shown to be required for fin 
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regeneration that regulates both chonrogenic and osteogenic gene expression during fin 

regeneration [29]. This opens up the possibility that Acan expression could be 

downstream of BMP signaling in regenerating fins that needs to be investigated.  

Analyses of several signaling pathways suggest that lepidotrichia behave similar to 

the main skeletal tissues, at least under experimental studies using inducing factors. For 

example, shh signaling is able to ectopically induce any skeletal tissue, bone or cartilage. 

In fins, absence of shh signaling affects lepidotrichia and leads to outgrowth arrest 

during fin regeneration [41].  Retinoic acid is a potent repressor of cartilage formation 

[42,43], whereas it induces both terminal chondrocyte [44,45] and osteoblast 

differentiation [42,46]. Several studies highlight that retinoic acid participates in both 

ray pattern formation and differentiation [47,48]. Another signaling molecule Indian 

hedgehog (ihh) couples chondrogenesis and osteogenesis by repressing hypertrophic 

chondrocyte formation [49,50] and promoting osteoblast lineage commitment [49]. 

Studies on zebrafish ontogeny and fin regeneration [30] suggest that ihh is expressed in 

developing and regenerating fins during scleroblast differentiation. Fibroblast growth 

factors (FGFs) are able to induce all types of skeletal tissues [51,52,53,54,55]. Several 

studies suggest that FGF could be necessary for lepidotrichia formation. The inhibition 

of FGF signaling pathway stops fin outgrowth [56] and modulation of the FGF signaling 

regulates the rate of fin outgrowth [57,58]. wnt genes are also involved in the regulation 

of chondro-osteogenesis differentiation in mammals and wnt3a, wnt5, and β-catenin 

genes are expressed during fin regeneration [59].  
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From an evolutionary point of view, dermal fin rays are not homologous to the 

tetrapod limb. Furthermore, morphological and molecular evidence suggests that 

lepidotrichia is a special type of skeletal tissue different from any main skeletal tissue. 

Despite this recognized peculiarity of the lepidotrichia, the above-mentioned 

explanations and evidences suggest a close similarity between the main skeletal tissues 

in vertebrates and lepidotrichia (i.e., regenerating fins) and hence could be of interest in 

preclinical studies of osteoarthritic research and therapies. HA and Acan show distinct 

expression pattern and several chondro and osteogenic markers are expressed in a 

regenerating fin making it an attractive model for osteoarthritis research. 
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5.3 Figures 

 

Figure 5.1: Double knockdown of has2 and acanb contribute to Hapln1a 

phenotypes. Bar graph shows that regenerate length, segment length and cell 

proliferation is significantly reduced upon double knockdown. The mean of percent 

similarity for the MO treated experimental group and the corresponding MM treated 

control group were estimated and compared. Statistical significance was determined 

using the student's t-test (P<0.05) and the error bars represent standard error of mean. 
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Figure 5.2: ISH for rhamm. In situ hybridization for the HA receptor rhamm in 5 dpa 

regenerating fins of WT, sof b123 and alf dty86. 
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Figure 5.3: ISH for sox9a and sox9b. In situ hybridization showing the expression of 

the chondrogenic progenitors sox9a and sox9b in WT 5 dpa regenerating fins. 
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