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Abstract 

Paenibacillus larvae spore germination and American Foulbrood disease development in honey 

bee larvae 

By 

Israel Alvarado 

Dr. Michelle M. Elekonich, Examination Committee Chair 

Associate Professor of the School of Life Sciences 

University of Nevada Las Vegas 

Dr. Ernesto Abel-Santos, Examination Committee Co-Chair 

Associate Professor of Biochemistry 

University of Nevada Las Vegas 

 

 

Honey bee (Apis mellifera) pollination plays an important role in meeting our agricultural 

needs, yet we are incapable of completely preventing a decline in bee health, partially due to 

bacterial diseases. American Foulbrood (AFB), a bacterial disease of honey bee larvae, is 

particularly troublesome because the infectious agent is the bacterial spore of Paenibacillus 

larvae. Bacterial spores are resistant to extreme temperatures, unaffected by antibiotics, 

withstand exposure to disinfectants, and can remain dormant for years until they can revert back 

to vegetative cells. 

Our research investigated P. larvae spore germination at the functional and pathogen-host 

level. We have found that P. larvae spores exit dormancy after exposure to an L-tyrosine plus 

uric acid solution. Germinated P. larvae spores were susceptible to killing with heat that would 

normally not affect dormant spores. These data suggest how triggering spore germination could 

help in decontamination of P. larvae spores in bee hives. We identified indole and phenol as 

inhibitors of P. larvae spore germination in vitro. Additional compound screens identified other 

indole analogs that inhibited P. larvae spore germination. These compound screens probed the 
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binding pocket(s) of the P. larvae germination receptor machinery. We identified compounds 

that interacted with the germination receptor(s) and blocked L-tyrosine plus uric acid spore 

germination. We also tested the effect of germination inhibitors on honey bee larvae. Larvae fed 

germination inhibitors had similar survival to the control groups. We found that prophylactic 

treatment with germination inhibitors prevented AFB disease in laboratory reared larvae. Lastly, 

we measured mRNA levels for the putative GerKA and PrkC germination receptors found in P. 

larvae spore. Two GerKA germination receptor mRNAs were found to be upregulated during 

sporulation. Our findings are relevant to beekeeping industry and a wide scientific audience 

because the spore germination is the first step in establishment of several diseases. 
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Chapter 1: Introduction 

1.1 Overview 

Honey bees (Apis mellifera) play an important part in meeting our agricultural needs 

(Morse, R.A. & Calderone, N.W 2000). In the United States, the added value of agricultural 

productivity due to bee pollination in 2000 was approximately 15 billion dollars (Morse, R.A. & 

Calderone, N.W 2000). Honey bees support pollination of estimated 90-130 commercial crops 

that are important to our diet (Perez, Pollack 2003). Without bee pollination, crops planted in 

remote or desolate habitats would not be productive. Furthermore, as the number of 

farms/acreages devoted to farming decrease there is a higher density of plants per acre that 

require pollination. Thus, our modern planting and management schemes require that millions of 

bee colonies are transported by road to pollinate crops. However, we are unable to completely 

prevent a decline in bee health. This decline is partially due to bacterial diseases (Matheson 

1993, Morse, R.A. & Calderone, N.W 2000, Genersch 2010a).  

 American foulbrood (AFB) is a widespread bacterial disease of honey bees that kills 

developing larvae (White 1906). Paenibacillus larvae spores are the infectious agent for AFB, 

but it is the vegetative cells that cause disease (Tarr 1938). In 2005, a survey of pollinating bee 

colonies indicated 4% of colonies had significant AFB load (Eischen, Graham 2005). Once a 

beekeeping operation is contaminated, the P. larvae spores are not easily removed (Shimanuki 

1983). Although autoclaving and high concentrations of chemical disinfectants effectively kill 

spores, these treatments are not viable for the bee keeping industry (Dobbelaere, De Graaf et al. 

2001). Autoclaves are expensive to purchase, install, and maintain thus reducing their use by 

beekeepers. Additionally, chemical disinfectants kill P. larvae spores when highly concentrated 

solutions are used. Traditionally, terramycin has been used for treatment and prevention of AFB, 
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however, the spore stage of P. larvae is not affected by antibiotic treatment and use of antibiotics 

leads to resistant strains (Alippi 1999, Alippi, López et al. 2007). Presently, burning of infected 

colonies and beekeeping equipment is the only accepted practice for controlling the spread of 

AFB (Shimanuki 1983, Genersch 2010a).  

Because our long term goal is controlling spore germination in order to prevent AFB 

disease in bee larvae, characterization of the germination pathways that P. larvae spores used to 

exit dormancy is necessary. In nature, bacterial spores exit dormancy in response to an influx of 

nutrients, via Ger receptors, and/or muropeptides, via PrkC receptors (Peter 2003, Shah, 

Laaberki et al. 2008). Both Ger and PrkC spore germination pathways were previously 

characterized in the commensal bacterium, Bacillus subtilis.  

This dissertation examined the role of Ger receptors in in vitro and in vivo spore 

germination and the molecular mechanisms allowing P. larvae spores to exit dormancy and 

cause AFB in honey bee larvae. We used molecular probes, bioinformatic tools, gene expression 

analyses, and genetic approaches to advance our understanding of the host-pathogen 

relationships causing AFB disease. Our research determined the importance of the two 

ubiquitous and widely studied germination pathways in AFB disease establishment. We 

determined the triggers and inhibitors of P. larvae spore germination that will be developed into 

an AFB disease treatment. Our findings are relevant to the beekeeping industry, but also to a 

wide scientific audience because spore germination is the first step in the establishment of 

several diseases (e.g.., anthrax, botulism, and Clostridium difficile infection) (Alvarez, Abel-

Santos 2007, Dodatko, Akoachere et al. 2010, Howerton, Ramirez et al. 2011, Howerton, Patra et 

al. 2013b, Howerton, Patra et al. 2013a). This research yields new insights into factors shaping 
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the evolution of pathogen selectivity for a host; an evolutionary pressure that drives the 

germination receptor diversity seen in pathogenic spore formers.  

1.2 Honey bee biology 

The life cycle of a honey bee is composed of four stages (egg, larva, pupa, and adult) 

(Winston 1987). Queen bees lay eggs, and larva take approximately three days to hatch (eclose) 

after which they continue to develop through pupation into adulthood. Queen bees can lay 

unfertilized eggs that become drones/male bees and fertilized eggs that become worker/female 

bees. A larva takes 24 days to become a drone and 21 days to become a worker. The larval stage 

of workers is five days long and characterized by eating and the growth of a larva. When a larva 

reaches its full growth, it undergoes pupation and transforms into an adult after 13 days. Drone 

bees leave the colony to mate with virgin queens during growing seasons. On the other hand, 

worker bees that emerge from the cells begin working within the bee hive immediately. They are 

responsible for ensuring the health of the queen, drones, and developing bees by performing a 

series of tasks (Winston 1987).  

 The set of tasks/behaviors a worker bee performs is largely dependent on the age of the 

bee (Winston 1987). During the first 2-3 weeks of life, honey bees spend time cleaning comb and 

nursing developing larvae. As honey bees mature, they perform additional tasks including 

building comb and hive ventilation. Prior to becoming foragers, honey bees serve as guards at 

the entrance of the hive. The foraging bees are the oldest bees in the hive. They collect nectar, 

pollen, and water for the colony. They fly several hours and up to 2 miles to gather resources for 

the colony (Winston 1987). During flight, bees have the highest mass-specific metabolic rate 

measured in muscles (Suarez, Lighton et al. 1996). In the end, honey bees die while performing 

this metabolically expensive foraging behavior.  
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An essential need of the honey bee colony is to replenish and expand worker bee 

numbers for two reasons (Winston 1987). Firstly, the life expectancy of a honey bee is 

approximately 4 to 8 weeks, means bees are constantly dying. Secondly, extra worker bees are 

needed to utilize resources available during the peak flowering season. There can be between 

40,000 to 60,000 honey bees reared within a single colony. Queens may lay up to 2,000 eggs per 

day to maintain the growth and health of the colony. Replenishment and expansion of the 

workers ensures that essential tasks continue to be performed (Winston 1987). 

1.3 American Foulbrood (AFB) disease 

P. larvae is the causative agent of American Foulbrood (AFB) disease. AFB disrupts the 

life cycle of the honey bees by killing the animals at the larval stage (White 1906). Honey bee 

larvae are infected by consuming larval diet that is contaminated with P. larvae spores (White 

1906, Tarr 1938, Crailsheim, Riessberger-Galle 2001, Genersch 2010a). Although P. larvae 

spores can be found in every part of a contaminated bee hive, the spores are only known to 

germinate inside honey bee larvae (Shimanuki 1983, Piccini, D'Alessandro et al. 2002, Bakonyi, 

Derakhshifar et al. 2003).  

American foulbrood disease occurs as newly germinated P. larvae cells proliferate in first 

or second instar larvae (Yue, Nordhoff et al. 2008). Once germinated, P. larvae cells are able to 

proliferate in the incoming larval diet and larval hemolymph (Djukic, Brzuszkiewicz et al. 2014). 

Furthermore, P. larvae produces toxins and cytolysins similar to other pathogenic bacteria which 

aid in killing the host (Fünfhaus, Poppinga et al. 2013, Djukic, Brzuszkiewicz et al. 2014). An 

important step for AFB disease development is breaching of the midgut by P. larvae cells. 

Proteases, collagenases, chitinase, and toxins are believed to allow P. larvae to breach the 

midgut via degradation of connective tissue. In fact, in vitro and larval exposure assays have 
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shown that P. larvae strains lacking toxins have reduced virulence. Extreme bacteremia causes 

the death of larvae several days after P. larvae spore infection (Davidson 1973, Genersch, 

Ashiralieva et al. 2005, Genersch, Forsgren et al. 2006). After the nutrients in honey bee larvae 

are depleted, P. larvae cells sporulate forming billions of spores that are distributed in the colony 

allowing the disease to continue.  

The symptoms of AFB disease can be detected by inspection of honey bee colonies 

(White 1906, Shimanuki 1983, Shimanuki, Knox 2000). In a healthy colony, the cells within a 

comb have a solid and compact section/brood patch for bees at various developmental stages 

(egg, larvae, pupa, and emerging adults). By comparison, as AFB progresses the brood patch 

takes on an irregular appearance due to the presence of dead larvae or pupae in cells. The AFB 

diseased combs are drier, darker, and have a slight foul odor (White 1906, Shimanuki 1983, 

Shimanuki, Knox 2000). 

As AFB disease progresses larval appearance changes from a pearly white to brown to 

almost black color. The deceased larva forms a sticky-ropy mess that can be stretched longer 

than 2.5 cm. Over time the dead larva dries out, toughens and becomes a scale that sticks to the 

side of cell walls. The caps of dead brood can puncture or remain intact thus preventing bees 

from cleaning cells containing dying or dead larvae (White 1906, Shimanuki 1983, Shimanuki, 

Knox 2000). 

The majority of bee larvae in the brood chamber die from AFB after the cells are capped 

(White 1906, Shimanuki 1983, Shimanuki, Knox 2000). However, a few larvae have been shown 

to die of AFB disease prior to being capped (White 1906, Shimanuki 1983, Shimanuki, Knox 

2000). Strains of P. larvae subspecies pulvifaciens were suspected to cause this rapid form of 
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AFB disease. This rapidly killing form of AFB disease is seldom reported because of the low 

incidence. These dead larvae are quickly removed by adult bees. The resulting powdery scale 

disease is characterized by a scale that crumbles when handled. (White 1906, Shimanuki 1983, 

Shimanuki, Knox 2000).  

P. larvae spores are distributed within and between colonies by the transfer of food 

mouth-to-mouth (known as trophallaxis), swarming, robbing, and beekeeping practices 

(Shimanuki 1983, Fries, Camazine 2001, Fries, Lindström et al. 2006). Honey bees regularly 

exchange food and glandular secretions allowing spores to be distributed within bee hives. 

During the spring and summer when colonies are active and growing, honey bee colonies may 

divide into “swarms” forming two or more new colonies. Spores travel within the bees in the 

swarm to the new colonies. Weakened colonies have their food stores robbed by stronger 

neighbors. If a colony is debilitated by AFB, the robbing behavior allows spores to move 

between colonies and infect a new beehive (Fries, Lindström et al. 2006, Fries, Camazine 2001). 

Beekeepers actively move bees, honey, pollen, and brood amongst colonies and move colonies 

around the country. Beekeepers import and export honey bees and bee products worldwide 

(Shimanuki 1983, Alippi 1999, Bakonyi, Derakhshifar et al. 2003). P. larvae spores can 

contaminate any of these materials facilitating dispersal of AFB infection.  

Honey is a major reservoir of P. larvae spores (Shimanuki 1983, Alippi 1999, Fries, 

Camazine 2001). One study found Paenibacillus larvae spores in one quarter of the raw honey 

samples tested. The presence of spores in honey is troubling because honey containing frames of 

honey comb and extracted honey are routinely shared by beekeepers (Sturtevant 1932, 

Lindström, Korpela et al. 2008). Furthermore, beekeepers move resources between hives to 

ensure health of their colonies. During the winter months, honey bee colonies can be fed honey 



 
 

7 
 

as resources within the colony are exhausted. The levels of spores in adults fed contaminated 

honey have been shown to peak during the winter. Feeding colonies contaminated honey 

produces clinically diseased larvae at similar levels as colonies with dead larvae in combs 

(Sturtevant 1932, Lindström, Korpela et al. 2008). These studies indicate that regardless of how 

P. larvae spores enter the colony, the disease causing agent persists within the colony.  

1.4 Current AFB disease management 

AFB disease management relies on antibiotics, breeding, natural products, and 

destruction of infected hives (Genersch 2010a). These management strategies do not eliminate 

AFB disease because the infectious agent is the resistant spore stage of Paenibacillus larvae. 

Decontamination of bacterial spores from hives and beekeeping equipment is difficult because 

spores are resistant to high temperatures, desiccation, UV irradiation, and harsh chemicals 

(Dobbelaere, De Graaf et al. 2001, Setlow, Loshon et al. 2002, Setlow 2006, Forsgren, 

Stevanovic et al. 2008). Moreover P. larvae spores can remain dormant in honey, pollen, wax, 

adult bees, and on hive surfaces (Shimanuki 1983, Shimanuki, Knox 2000, Alippi 1999) for 

years.  

Antibiotics are used to prevent and control American Foulbrood disease (Alippi 1999, 

Shimanuki, Knox 2000). Antibiotics prevent AFB disease when they are incorporated into the 

larval diet produced by the adult bees where they kill newly germinated P. larvae cells (Peng, 

Mussen et al. 1992, Alippi 1999). Furthermore, antibiotics can control AFB disease by 

preventing additional P. larvae spore formation and thus reducing the number of larvae killed. 

Antibiotics such as terramycin/oxytetracycline, tylosin, and sodium sulfathiazole have been used 

in many countries (Alippi 1999). However, the use of antibiotics for AFB treatment has been 
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banned in most of Europe due to residue contamination, antibiotic resistance in bacteria, and 

inability to remove the infectious P. larvae spore (Alippi 1999, Genersch 2010a). As honey bees 

share food provided by beekeepers the antibiotic residues are spread throughout the colony. 

Overuse of antibiotics has led to resistant P. larvae strains (Alippi, López et al. 2007, Genersch 

2010a). Moreover, the infectious spores are not affected by antibiotics and can remain dormant 

long after the antibiotic treatment (Peng, Mussen et al. 1992, Alippi 1999, Shimanuki, Knox 

2000, Lodesani, Costa 2005, Alippi, López et al. 2007).  

An alternative AFB disease treatment is to breed honey bees to have increased brood 

hygienic behavior (Spivak, Reuter 2001, Spivak, Downey 1998). Hygienic strains of honey bees 

detect and remove diseased brood from the colony more readily. Removal of diseased brood is 

thought to help control spread of AFB and other diseases within the colony. Colonies are 

selected based on their ability to remove freeze-killed brood. The daughters and sons of hygienic 

queens are mated to obtain new generations of hygienic bees. Hygienic bee colonies are 

susceptible to AFB disease although at a lower level than non-hygienic colonies. Although 

hygienic bees offer some protection from AFB, the disease persists because not all diseased 

larvae are removed and spores reservoirs remain (Spivak, Downey 1998, Spivak, Reuter 2001).  

The effectiveness of bee venom, probiotics, essential oils, propolis, and plant extracts in 

the field of AFB disease control has been evaluated (Yoshiyama, Wu et al. , Antúnez, Harriet et 

al. 2008, Gende, Maggi et al. 2009, Fuselli, S., García de la Rosa, B., Eguaras, M., Fritz,R. 2010, 

Forsgren, Olofsson et al. 2010, Fernández, Porrini et al. 2014). In vitro assays have shown that 

these natural treatments have activity against P. larvae cells. Furthermore, toxicity assays have 

shown that these therapeutic agents can be incorporated in larval diet without changing larval 

development. Finally, exposure assays investigate the effects of therapeutic agents on AFB 
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disease development (Yoshiyama, Wu et al. , Antúnez, Harriet et al. 2008, Gende, Maggi et al. 

2009, Fuselli, S., García de la Rosa, B., Eguaras, M., Fritz,R. 2010, Forsgren, Olofsson et al. 

2010, Fernández, Porrini et al. 2014). The majority of these therapeutic agents can significantly 

lower AFB disease development. Unfortunately, these natural treatments target the active 

infection similarly to antibiotics but not the root of the disease which is the spore of P. larvae. 

Our inability to control AFB reduces the number of hives available for pollination, 

reduces beekeeper profits, and threatens our food supply. A survey of bee hives pollinating 

California almond crops indicated 4% of colonies had significant AFB load (Eischen, Graham 

2005). Another set of surveys in New South Wales, Australia, have shown 50% of beekeepers 

have a current or past history of AFB in their bee hives. Beekeeper profits decrease because AFB 

disease management requires purchasing disease treatments, higher labor costs, and cost of 

replacing bee hives (Rhodes, McCorkell 2007). For the past decade, the cost of pollinator 

services has increased due to a decline in bee health (Sumner, Boriss 2006). As a result, food 

prices increase and our food supply is threatened due to AFB disease.  

Once a colony develops AFB disease, it needs to be destroyed to completely eradicate the 

infectious spores (Shimanuki 1983, Alippi 1999, Shimanuki, Knox 2000, Genersch 2010a). This 

represents a great cost to a beekeeper. Normally a hive costs approximately $552 (e.g. Dandant 

beginners hive $335 package of bees 3 pounds $163, 1 queen bee $54). When a hive is 

contaminated, all of the honey combs, bees, and hive equipment are burned in a large pit fire. 

What remains after the fire is buried to prevent the spread of the spores (Shimanuki 1983, Alippi 

1999).  
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Establishment of alternative effective AFB disease treatments is needed. We propose to 

develop AFB treatments based on controlling P. larvae spore germination. Germinated spores 

are susceptible to treatments that prevent the AFB unlike dormant spores. Inhibiting spore 

germination would prevent cells from causing AFB disease. Thus, we needed to understand P. 

larvae spore germination to develop AFB treatments.  

1.5 Bacterial spore biology 

 Studies of P. larvae spores are rare in part because AFB disease research focuses on bee 

biology (Genersch 2010a). As a result we have a limited knowledge of P. larvae spore 

characteristics. We know through microscopy studies that P. larvae produces spores in stages 

that are similar to other spore-formers (Bakhiet, Stahly 1985b). Furthermore, P. larvae spores are 

ellipsoidal and measure about 0.6 µm wide by 1.4 µm long (Alippi 1999). The spores are 

resistant to desiccation, high temperatures, UV light, and disinfectants. Our lack of knowledge of 

P. larvae spore biology prevents us from targeting the AFB disease vector.  

Insights into P. larvae biology can be made by utilizing knowledge and tools developed 

for the study of other spore-forming organisms. Indeed studies have shown the importance of 

cell differentiation, sporulation, spore dormancy, spore resistance, and spore germination in the 

life cycle of bacteria. If we control any of these spore characteristics then we can alter the life 

cycle of the associated bacteria. Thus, one of the goals of this dissertation was to study the 

biology of P. larvae spores.  

Sporulation, the differentiation of bacteria to dormant spores, occurs as a response to 

nutrient deprivation (Errington 2003, Errington 1993). Although sporulation has been studied in 

many bacteria, the best understood model system for sporulation is B. subtilis. At the end of 

exponential growth, B. subtilis cells use resources accumulated to either divide or form spores. 
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Because sporulation occurs in conjoined cells, the execution of this process takes place in several 

phases. One cell provides resources for spore formation and is ultimately broken down, while the 

other cell is packed into a resistant coat, which is endowed with germination machinery. Finally, 

the cell enters dormancy (Errington 1993, Errington 2003).  

The physiological and biochemical properties of the spore are formed during a period of 

eight hours in B. subtilis (Errington 1993, Errington 2003). To produce viable spores during this 

process, the transcriptional activation and deactivation of several gene sets is required. There are 

transcriptional regulatory proteins in B. subtilis that regulate transcription of sporulation-specific 

genes. Initiation of sporulation depends on activation of the master regulator/protein Spo0A via 

phosphorylation by kinases. Phosphorylated Spo0A induces transcription of two sigma factors, 

SigA (σA) and SigH (σH), which promote RNA polymerase transcription. Genes induced by the 

activity of SigA and SigH allow for septum formation between the mother cell and forespore 

compartments. After septum formation, SigE (σE) and SigF (σF) activity allows for differential 

gene expression in the mother and fore-spore compartments. SigE allows for early mother cell 

genes to be activated, while SigF allows for the RNA polymerase to transcribe sporulation genes 

within the fore-spore compartment. Together the activity of SigE and SigF allows for engulfment 

of the fore-spore by the mother cell. After spore engulfment, the SigG and SigK factors are 

activated within the pre-spore and late mother cell. SigG induces transcription of genes involved 

in chromosome structure and germination machinery. SigK directs the synthesis of protective 

cortex and coat spore layers. The appearance of specialized transcription/sigma factors allows 

RNA polymerase to transcribe sporulation related promoters (Errington 1993, Errington 2003).  

Bacterial spores are extremely resilient forms of bacteria (Setlow, Loshon et al. 2002, 

Setlow 2006). Treatment of B. subtilis spores with 1M HCl (pH 0) or NaOH (pH 14) solutions 
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for 40 minutes is not sufficient to kill them. Wet or dry heat at temperatures up to 120°C kills 

growing cells but not dormant spores. Bacterial spores are resistant to solutions we normally use 

to decontaminate surfaces (formaldehyde, chlorine, hydrogen peroxide, detergents, ethanol). UV 

resistance allows spores to remain on surfaces without incurring any DNA damage (Setlow, 

Loshon et al. 2002, Setlow 2006).  

Bacterial spores are believed to be the longest lived cellular structures known (Gould 

2006). There are two reports of revival and identification of spores from different environments. 

A bacterial spore was isolated from the abdominal contents of bees preserved in amber for 25-40 

million years (Cano, Borucki 1995). The isolation of a 250 million year old spore-forming 

bacterium from salt crystals has also been reported (Vreeland, Rosenzweig et al. 2000). Sample 

quality and contamination concerns have made these studies less accepted. Nonetheless, multiple 

studies have shown spores have the capability of surviving for several years. In dry larval scales, 

P. larvae spores have been shown to be viable for 35 years or more (Alippi 1999).   

 Initiation of spore germination is determined by detection of cues from an environment 

that provides substances required for growth (Setlow 2003). Three spore germination pathways 

are well characterized in Clostridium and Bacillus species (Paredes-Sabja, Setlow et al. 2011). 

The first pathway, called the Ger receptor pathway, is triggered by detection of nutrients in the 

environment. Sugars, nucleosides, purines, amino acids, and organic salts promote spore 

germination via Ger receptors (Setlow 2003, Moir 2006). The Ger receptor pathway is thought to 

be the primary trigger of spore germination in nature (Paredes-Sabja, Setlow et al. 2011). The 

second pathway, called the PrkC receptor pathway, is triggered by the detection of muropeptides 

released from closely related growing bacteria (Shah, Laaberki et al. 2008). This pathway is 

analogous to bacterial quorum sensing in that it depends on a signal produced by a cell 
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population. Spores will only germinate if they detect a muropeptide signal released by cells. 

Even though the PrkC pathway has only been studied in B. subtilis and B. anthracis, prkC genes 

are found in over 75 bacterial species (Paredes-Sabja, Setlow et al. 2011). The third pathway, the 

non-nutrient germination pathway, is triggered by high concentrations of calcium-dipicolinic 

acid (Ca-DPA), surfactants, lysozyme, and high pressure. For example, 60 mM Ca-DPA is 

required to trigger B. subtilis spore germination. In biological systems DPA is only found in the 

spore of spore-forming microorganisms (Snyder, Thornton et al. 1998). Thus the rarity of the 

non-nutrient pathway triggers suggests that it may not play a role in nature (Paredes-Sabja, 

Setlow et al. 2011). The number of germination pathways available to a spore-forming 

organisms has profound effects on the ability of bacterial spores to exit dormancy.  

 Several studies have shown that the Ger and PrkC spore germination pathways may 

interact (Caipo, Duffy et al. 2002, Llaudes, Zhao et al. 2001, Paredes-Sabja, Torres 2010, Zhao, 

Montville et al. 2006, Zhao, Montville et al. 2000, Zhang, Garner et al. 2011, Webb, Stringer et 

al. 2012). The environments that spores occupy potentially contain mixtures of nutrient and 

muropeptide signals. The integration of two environmental signals compared to one 

environmental signal will allow spores to germinate more rapidly. Synergism between the 

germination pathways could explain the differences in ability of spores to germinate in vitro and 

in vivo (Caipo, Duffy et al. 2002, Llaudes, Zhao et al. 2001, Paredes-Sabja, Torres 2010, Zhao, 

Montville et al. 2006, Zhao, Montville et al. 2000, Zhang, Garner et al. 2011, Webb, Stringer et 

al. 2012).  

Bacterial spore germination can be measured by following optical density over time 

(Powell 1950, Powell, Strange 1953, Vary, Halvorson 1965). The decrease in optical density is 

proportional to spore germination (Powell 1950). Spore germination curves have a sigmoidal 



 
 

14 
 

shaped with three separate stages: (i) lag phase, (ii) linear phase, and (iii) plateau phase. During 

the lag phase the spore binds the germinant and commits to germinate. In the linear phase, spore 

germination results in a significant decrease in turbidity over time. Finally, the germination 

curves plateau indicating no more spores will germinate. Germination curves can be further 

analyzed to characterize binding of germinant by spores. 

1.6 Rearing of honey bee larvae 

The life cycle of the honey bee is divided into four distinct stages (egg, larva, pupa, and 

adult) (Winston 1987). A queen lays eggs that will take approximately three days to eclose/hatch 

in the hexagonal wax cells. The subsequent honey bee larva lasts up to seven days and is 

characterized by distinct stages (instars). Nurse bees provide each larval instar specific food 

sources. During the first three instars which last 24 hours each, worker larvae are fed royal jelly. 

Larval instars 4 and 5 are fed a mixture of honey and pollen called bee bread. After seven days, 

larvae reach their full growth and enter the pupal stage. During the pupal stage the honey bee 

undergoes metamorphosis into an adult (Winston 1987).  

 The five developmental stages/instars of honey bee larvae have different susceptibility to 

AFB disease (Crailsheim, Riessberger-Galle 2001, Crailsheim, Brodschneider et al. 2013). First 

and second instar larvae are most susceptible to AFB infection, while older honey bee larvae are 

considered resistant to AFB disease. Thus, it is important to know the age of honey bee larvae 

used in experiments.  

As in the colony, honey bee larvae can be reared in the laboratory to obtain adults (Peng, 

Mussen et al. 1992, Wolfgang 1998, Brodsgaard, Ritter et al. 1998, Genersch, Ashiralieva et al. 

2005, Huang 2009, Crailsheim, Brodschneider et al. 2013). There are five crucial points for 

rearing larvae including caging of the queen, grafting, larval diet, incubation conditions, and 
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assessment of survival (Crailsheim, Brodschneider et al. 2013). Several protocols were adapted 

to rear honey bee larvae in our laboratory.  

To start larval rearing and ensure a synchronous aged population the first step is to trap 

queens on empty cells and monitor oviposition/egg laying. Cages built with plastic queen 

excluders, a selective barrier that allows worker bees but not queens or drones to move through 

it, can be used to keep the queen on empty brood comb. The caged queen is placed within the 

brood chamber at the center of the hive. The brood chamber is inhabited by nurse bees and 

developing larvae (Huang 2009). Nurse bees can move through the queen excluders to care for 

the queen and comb, but due to its larger size the queen cannot leave the cage. After eggs have 

been laid, it can take between 66 and 93 hours for larvae to hatch. At this point the queen should 

be released from the cage to prevent the colony from developing problems (Crailsheim, 

Brodschneider et al. 2013).  

Grafting, transferring of recently hatched honey bee larvae, allows movement of larvae 

from the hive  to a semi-sterile environment (Crailsheim, Brodschneider et al. 2013). Larvae are 

scooped from combs to wells in plastic plates containing warm larval diet. Grafting tools can be 

made from paint brushes, spatulas, wires, bamboo, or flexible plastics. The grafting tool should 

be free of rough edges that could injure the larvae. During the grafting process, the orientation of 

larvae on the diet must be maintained to ensure that the breathing structures/spiracles are not 

blocked. If a larva is flipped over during the grafting process, it will drown in the liquid food. 

Additionally to ensure larval survival, grafting should not take more than 30 seconds per larva. If 

larvae are to be grafted from multiple combs, it is recommended that the combs are stored at 35° 

C and more than 60% relative humidity (Crailsheim, Brodschneider et al. 2013).  
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In the laboratory, larvae are fed artificial worker jelly composed of royal jelly, yeast 

extract, glucose, and fructose suspended in water (Rembold, Lackner 1981, Peng, Mussen et al. 

1992). This artificial worker jelly (AWJ) replaces the worker jelly produced by the 

hypopharyngeal and mandibular glands of nurse bees. Prior to artificial worker jelly, reared 

honey bee larvae were fed primarily royal jelly which resulted in a development of queens or 

queen-worker hybrids rather than worker bees. The development of artificial worker jelly by 

Rembold and Peng (1981 and 1992) was crucial to AFB research because this disease affects 

primarily worker larvae. Thus, we can now control the composition and amounts of artificial 

worker jelly in every larval stage (Crailsheim, Brodschneider et al. 2013).  

Test substances can be fed to honey bee larvae by supplementing the larval diet 

(Crailsheim, Brodschneider et al. 2013). It is recommended that compounds be dissolved in 

water or solvents like acetone and mixed with the larval diet. As a general rule the solvent used 

should not exceed 10% of the final larval diet volume. Pathogens can also be administered within 

larval diet to determine killing rates. Test substances can be administered once (acute exposure) 

or multiple (chronic exposure) times. It is recommended that preliminary dosage experiments be 

performed to determine how to apply test substances (Crailsheim, Brodschneider et al. 2013).  

Fluctuations in temperature and relative humidity decrease honey bee larvae survival. For 

proper development, the larvae must be incubated at 37°C and 95% relative humidity 

(Crailsheim, Brodschneider et al. 2013). Maintaining a constant temperature is achieved by using 

laboratory incubators, while relative humidity can be obtained by placing saturated salt or 

glycerol solutions inside the incubator. Temperature and humidity conditions should be verified 

using data loggers (Crailsheim, Brodschneider et al. 2013). 
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Larval survival can be determined with a stereo microscope (Crailsheim, Brodschneider 

et al. 2013). The primary sign of larval death is when respiration via the spiracles stops. Larvae 

breathe through spiracles, a series of external openings, which allow air to enter and leave the 

larval respiratory system. The second sign of larval death is color change. Healthy larvae are a 

pearly white color but change to dark brown (AFB disease), yellow (EFB disease), or watery 

(sacbrood) in appearance with disease. The color changes are the result of pathogen activity 

within the larvae (Shimanuki 1983). Another sign is that healthy honey bee larvae exhibit 

movement and are flexible. Existing protocols which rely on common laboratory equipment can 

be used to rear larvae in the laboratory with at least 80% survival and similar developmental 

trajectories to the hive (Peng, Mussen et al. 1992, Huang 2009, Crailsheim, Brodschneider et al. 

2013).  

1.7 Research aims 

American foulbrood disease (AFB) research has primarily focused on understanding the 

immune response of honey bee (Apis mellifera) larva and identifying growth inhibitors of 

Paenibacillus larvae, the causative agent of the disease (Genersch 2010b, Genersch 2010a, 

Genersch, Evans et al. 2010). As a result, AFB disease management relies on antibiotics, 

breeding, and natural products (Antúnez, Anido et al. 2012). However, there has been limited 

success using these treatments because of antibiotic resistance in bacteria and limited efficacy of 

natural alternatives. Therefore, new disease management tools for P. larvae are needed 

(Genersch 2010a).  

The goal of our project was to control the root of the problem by identifying cues that 

trigger or inhibit P. larvae spore germination. Establishing the relationship between the host 

environment and its pathogen is an important aim because it reveals what is necessary for the 
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disease to develop (Genersch, Evans et al. 2010). In Bacillus subtilis, Ger and PrkC germination 

pathways permit bacterial spores to germinate in favorable environments. Ger receptors bind to 

specific nutrient signals, and PrkC receptors bind to specific muropeptide fragments released by 

growing bacteria (Powell 1950, Paidhungat, Setlow 2000, Peter 2003, Shah, Laaberki et al. 

2008), however, a link between Ger and PrkC receptors and germination within a natural host 

remains to be studied. Our experiments sought to determine if Ger and PrkC germination 

pathways act independently or synergistically with each other.  The 3 aims of this dissertation 

were: 

Aim 1: To identify triggers/germinants and inhibitors of P. larvae spore germination 

in vitro. Our identification of compounds that trigger and inhibit P. larvae spore 

germination is described in chapters 2 & 4. 

Aim 2: To test if germinants and inhibitors of spore germination prevent AFB 

disease in laboratory-reared larvae. We determined the ability of five compounds to 

prevent AFB disease in laboratory-reared larvae reported in chapter 4. 

Aim 3: To identify P. larvae spore germination receptors. We used quantitative 

polymerase chain reactions to measure mRNA levels of germination receptors in vegetative 

cells and sporulating cultures. Our results are described in chapter 5. 
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Chapter 2: Requirements for in vitro germination of Paenibacillus larvae spores 

 

Previously published as: 

Alvarado, Israel, Andy Phui, Michelle M. Elekonich, and Ernesto Abel-Santos. 

Requirements for in vitro germination of Paenibacillus larvae spores. Journal of 

Bacteriology 195, no. 5 (2013): 1005-1011. 

Edited by Dr. Ernesto Abel-Santos and Dr. Michelle M. Elekonich 

2.1 Abstract 

Paenibacillus larvae is the causative agent of American foulbrood (AFB), a disease 

affecting honey bee larvae. First- and second instar larvae become infected when they ingest 

food contaminated with P. larvae spores. The spores then germinate into vegetative cells that 

proliferate in the midgut of the honey bee. Although AFB affects honey bees only in the larval 

stage, P. larvae spores can be distributed throughout the hive. Because spore germination is 

critical for AFB establishment, we analyzed the requirements for P. larvae spore germination in 

vitro. We found that P. larvae spores germinated only in response to L-tyrosine plus uric acid 

under physiologic pH and temperature conditions. This suggests that the simultaneous presence 

of these signals is necessary for spore germination in vivo. Furthermore, the germination profiles 

of environmentally derived spores were identical to those of spores from a biochemically typed 

strain. Because L-tyrosine and uric acid are the only required germinants in vitro, we screened 

amino acid and purine analogs for their ability to act as antagonists of P. larvae spore 

germination. Indole and phenol, the side chains of tyrosine and tryptophan, strongly inhibited P. 

larvae spore germination. Methylation of the N-1 (but not the C-3) position of indole eliminated 
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its ability to inhibit germination. Identification of the activators and inhibitors of P. larvae spore 

germination provides a basis for developing new tools to control AFB. 

2.2 Introduction 

American foulbrood (AFB) is a bacterial disease of honey bees that kills developing 

larvae (White 1906, Brodsgaard, Ritter et al. 1998). Paenibacillus larvae spores are the 

infectious agent for AFB, but it is the vegetative cells that cause disease (Tarr 1938, Genersch 

2010a). In 2005, a survey of almond pollinating bee colonies indicated 4% of colonies had 

significant AFB load (Eischen, Graham 2005). Once a beekeeping operation is contaminated, the 

bacterial spores are not easily removed (Shimanuki 1983). Although autoclaving and high 

concentrations of chemical disinfectants effectively kill spores, these treatments are not viable 

for the bee keeping industry (Dobbelaere, De Graaf et al. 2001). Traditionally, terramycin and 

other antibiotics have been used for treatment and prevention of AFB. However, the spore stage 

of P. larvae is not affected by antibiotic treatment and use of antibiotics leads to resistant strains 

(Lodesani, Costa 2005, Alippi, López et al. 2007). Presently, burning of infected colonies and 

beekeeping equipment is the only accepted practice for eradicating AFB from bee hives 

(Shimanuki 1983, Genersch 2010a). Because destroying hives is economically unfeasible for 

beekeepers, developing a new AFB control strategy is essential. 

AFB occurs when first or second instar larvae (within 48 hours after the egg hatches) 

ingest food contaminated with bacterial spores (Crailsheim, Riessberger-Galle 2001). Twelve 

hours after ingestion, P. larvae spores germinate and the new vegetative cells start proliferating 

inside the larval gut (Yue, Nordhoff et al. 2008). Several days post-infection, bacteremia causes 

the death of the honey bee larva (Davidson 1973, Genersch, Ashiralieva et al. 2005, Genersch, 

Forsgren et al. 2006). After nutrients are depleted, P. larvae cells stop dividing and sporulate. As 
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a result billions of spores are found in the remains of each bee larva (Sturtevant 1932, Lindström, 

Korpela et al. 2008). Within the colony, spores are transmitted by adult bees that eat larval 

remains (Fries, Camazine 2001, Gillard, Charriere et al. 2008). Additionally, robbing of honey 

from infected colonies by neighboring bees and contaminated beekeeping equipment help 

transmit P. larvae spores between colonies (Fries, Lindström et al. 2006). 

Because P. larvae spore germination is the first step in infection, controlling spore 

germination could lead to new approaches to prevent AFB (Alvarez, Abel-Santos 2007). 

However, little is known about the environmental cues required to trigger P. larvae spore 

germination. In Clostridia and Bacilli species, spores require metabolites including sugars, 

nucleosides, amino acids, and/or inorganic salts to stimulate germination (Paredes-Sabja, Setlow 

et al. 2011). The complexity of germination signals varies and commonly requires several types 

of germinants (Ross, Abel-Santos 2010a). Several labs including our own have also identified 

molecules that can inhibit spore germination (Akoachere, Squires et al. 2007, Cortezzo, Setlow 

et al. 2004, Yasuda-Yasaki, Namiki-Kanie et al. 1978, Setlow 2003, Howerton, Ramirez et al. 

2011, Alvarez, Abel-Santos 2007).  

Not knowing the requirements for P. larvae spore germination has limited AFB disease 

detection (Rose 1969, Hornitzky, Nicholls 1993, Goodwin, McBrydie et al. 2013, Forsgren, 

Laugen 2014). Culture based detection methods are superior than PCR based assays in 

identifying diseased colonies (Forsgren, Laugen 2014). PCR based methods are inferior to 

culture based methods because they depend on DNA extraction from complex hive samples that 

contain PCR inhibitors. However, one drawback of culture dependent techniques is that it 

requires P. larvae spores to germinate in laboratory media. The highest spore germination 

reported is approximately 2% on J agar. Incorporating larval and adult bee extracts to medium 



 
 

22 
 

can improve P. larvae spore germination (Goodwin, McBrydie et al. 2013). The triggers of P. 

larvae spore germination can replace bee extracts to help detect AFB diseased colonies. 

We tested the ability of metabolites to promote P. larvae spore germination. We found 

that P. larvae spores exclusively recognize L-tyrosine and uric acid as co-germinants. We 

determined the germination half maximal effective concentration (EC50) of L-tyrosine and uric 

acid. Because L-tyrosine and uric acid are strong germinants in vitro, we screened chemical 

analogs for their ability to inhibit spore germination. Indole and phenol, the side chains of 

tryptophan and tyrosine, were thus identified as germination inhibitors. Methylation of the N-1 

position of indole inactivates its inhibitory activity. In contrast, methylation of the C-3, C-5, or 

C-7 positions has no effect on indole`s inhibitory potential.   

2.3 Materials and Methods 

Materials: Chemicals were purchased from Sigma Aldrich Corporation (St. Louis, MO). 

Dehydrated culture media was purchased from BD Difco (Franklin Lakes, NJ).  

Paenibacillus larvae subsp. pulvifaciens B-3685/ATCC 49843 strains were purchased 

from the American Tissue Culture Collection (ATCC). Environmental American Foulbrood 

scales (the remains of infected larvae collected from infected hives) were kindly donated by Dr. 

Jay D. Evans at the USDA Bee Research Facility in Beltsville, MD. The environmental strain 

was identified as a strain of Paenibacillus larvae subsp. larvae based on its phenotypic 

characteristics and 16S rRNA analysis (Piccini, D'Alessandro et al. 2002). Paenibacillus larvae 

subsp. larvae strain B-3650/LMG 16245 was purchased from the Belgian Coordinated 

Collections of Microorganisms (BCCM) culture collection. 

Media preparation: Tryptic soy broth (TSB) consists of 15 g tryptone, 5 g soytone, 5 g 

sodium chloride per liter of medium (pH 7.3 ± 0.2). MYPGP broth consists of 10 g Mueller-
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Hinton broth, 15 g yeast extract, 3 g K2HPO4, 2 g glucose, and 1 g sodium pyruvate per liter of 

medium (pH 7.2 ± 0.2).  Our media was autoclaved at 121°C for a minimum sterilization time of 

30 minutes. Glucose was filtered sterilized and added to media prior to use. For solid media 

(TSA or MYPGP agar) we used 20 g of agar per liter of medium.  

UNLV P. larvae spore preparation: P. larvae cells from a glycerol stock were used to 

inoculate MYPGP agar plates. The plates were incubated for two days at 37 °C under aerobic 

conditions. Individual bacterial colonies were used to inoculate 5 ml of MYPGP broth. The 

liquid culture was incubated at 37 °C with shaking 200 rpm to obtain exponentially growing 

cultures. Each TSA plate was inoculated with 200 µl of exponentially growing cultures. P. 

larvae strains were grown on tryptic soy agar plates for 7 days in a 5% CO2 incubator at 37 °C. 

The resulting bacterial lawns were collected by flooding with ice-cold deionized water. Spores 

were pelleted by centrifugation at 8000 rpm at 4 °C for 5 minutes. The supernatant was discarded 

and the pellet was resuspended in fresh deionized water. After three washing steps, spores were 

separated from vegetative and partially sporulated forms by centrifugation at 11500 rpm at 4 °C 

for 35 minutes through a 20%-50% HistoDenz gradient. The spore pellet was washed five times 

with water and stored at 4 °C (Akoachere, Squires et al. 2007). Spore preparations were more 

than 90% pure as determined by microscopic observation of Schaeffer-Fulton stained samples 

(Schaeffer, Fulton 1933). 

Preparation of germinant solution: Sixteen complex media (MYPGP, TSB, BHI, 

Nutrient, LB, TMYGP, NZ amine, NZCYM, Lactobacillus, SOC, Bailey, Clostridium, Michael, 

Terrific, MD, and J broths) were prepared (Bailey, Lee 1962, Dingman, Stahly 1983, Zimbro 

2009). A defined medium was prepared as previously described (Ramirez, Abel-Santos 2010). 

An artificial worker jelly (AWJ) medium was prepared based on the published composition of 
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worker jelly (Rembold, Dietz 1966). For AWJ, the following stock solutions were prepared: 100 

mM inosine in 220 mM NaOH, 400 mM for each sugar (fructose, glucose, and arabinose) in 

water, 30 mM for each of the 20 proteinogenic L-amino acids in 0.36 N HCl, 100 mM uric acid 

in 220 mM NaOH and 0.2 mg/ml vitamins (thiamine, riboflavin, pyridoxine, β-alanine, para-

aminobenzoic acid, nicotinic acid, pantothenic acid, biotin, folic acid, and inositol) in water. To 

prepare AWJ, inosine, uric acid, sugars, and amino acids were dissolved to 3 mM final 

concentration in 0.1 M sodium phosphate buffer (0.06 mM Na2HPO4 and 0.04 mM NaH2PO4) 

and adjusted to pH 7.0.This solution was supplemented with vitamins to 1 µg/ml final 

concentration.  

Determination of germinants for P. larvae spores: The decrease in optical density 

(OD) is inversely proportional to spore germination (Powell 1950). Changes in light diffraction 

during spore germination were monitored at 580 nm (OD580) on a Biomate 5 (ThermoElectron 

Corporation, Waltham, MA) or a Tecan Infinite m200 (Tecan group, Männedorf, Switzerland) 

spectrophotometer. Experiments were carried out in 96-well plates (200 μL/well). In preparation 

for germination assays, P. larvae spore suspensions were washed three times with water. Spores 

were then heat activated at 70 °C for 30 minutes in water.  The heat-activated spores were 

allowed to reach room temperature and transferred to 0.1 M sodium phosphate buffer (pH 7.0) to 

an approximate OD580 of 0.70. Spores were monitored for auto-germination for 30 minutes. 

Germination experiments were carried out with spores that did not auto-germinate. Putative 

germinants were added individually or in combinations to a final concentration of 3 mM. 

Experiments were performed in triplicate with at least two different spore preparations. After 

germinant addition, OD580 of the spore suspension was measured every minute for up to two 

hours. Relative OD values were derived by dividing each OD580 reading by the initial OD580. 
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Spore germination rates (v) were calculated from the initial linear decrease in relative OD (23). 

Germination rates were set to 100% for P. larvae spores that had the fastest germination rate in 

an assay. Germination rates for other conditions were divided by the maximum germination rate 

for that condition and are reported as percent germination (Akoachere, Squires et al. 2007). 

Standard deviations were calculated from at least six independent measurements and are 

typically below 10%. Spore germination was confirmed in selected samples by microscope 

observation of Schaeffer-Fulton stained aliquots (Schaeffer, Fulton 1933).  

 Effect of temperature and pH on P. larvae germination: For temperature experiments, 

P. larvae spores were germinated in 3 mM L-tyrosine and 3 mM uric acid. Germination rates 

were determined as above, except that the germination temperature was varied between 25 and 

42°C. The germination rate was set to 100% for spores germinated at 42°C because at this 

temperature we measured the maximum germination. Germination rates for other conditions 

were divided by the maximum germination rate at 42°C and are reported as percent germination. 

Germination rate differences were analyzed using ANOVA followed by a Tukey-Kramer 

procedure (SigmaPlot v.9).  

For pH experiments, P. larvae spores were re-suspended in 0.1 M sodium phosphate, 

potassium/sodium phosphate, or citrate phosphate buffer. The pH of the buffers was adjusted 

between 3.0 and 9.0. Spores were germinated in the presence of 3 mM L-tyrosine and 3 mM uric 

acid. Germination rates were determined as above. Germination rate was set to 100% for spores 

germinated at pH 7.0. Germination rates for other conditions were divided by the maximum 

germination rate at pH 7 and are reported as percent germination. As above, germination rate 

differences were analyzed using ANOVA followed by a Tukey-Kramer procedure (SigmaPlot 

v.9).  
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 Activation of P. larvae spore germination by L-tyrosine and uric acid: P. larvae 

spore germination was tested with different combinations of L-tyrosine and uric acid. For L-

tyrosine titrations, spores were exposed to varying concentrations of L-tyrosine and a constant 3 

mM uric acid. For uric acid titrations, spores were exposed to varying concentrations of uric acid 

and a constant 3 mM L-tyrosine. Germination rates were determined as above. Germination rate 

was set to 100% for P. larvae spores germinated in the presence of 3 mM L-tyrosine/3 mM uric 

acid. Germination rates for other conditions were divided by the maximum germination rate 

obtained with 3 mM L-tyrosine/3 mM uric acid and are reported as percent germination. Percent 

germination was plotted against compound concentrations. The resulting sigmoidal curves were 

fitted using the four parameter logistic function of the SigmaPlot v.9 software to calculate EC50 

values (for enhancers of spore germination). EC50 is defined as the concentration of a germinant 

required to increase the germination rate to 50% of the maximal value (Rodbard, Lenox et al. 

1976, Sebaugh 2011).  

 The linear portion of germination curves can be used to calculate kinetic parameters. 

Germination rates can be calculated as the slope of linear portion of germination curves (optical 

density versus time). The rate of spore germination can be influenced by the concentration of 

germinants. A titration of the germinants can be performed to measure the half maximal effective 

concentration (EC50). The EC50 value indicates at what germinant concentration spore 

germination will be induced. The rate of spore germination can be altered by the presence of 

inhibitors. Calculation of the half maximal inhibit concentration (IC50) from germination rates 

allows us to compare the strength of inhibitors. 

 Agonists of P. larvae spore germination: To test for possible agonists of P. larvae spore 

germination, spores were individually supplemented with 3 mM of a purine analog and 3 mM L-
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tyrosine. Separately, P. larvae spores were incubated with 3 mM of an amino acid analog and 3 

mM uric acid. Spore germination was monitored as above. Germination rates for other 

conditions were divided by the maximum germination rate obtained with 3 mM L-tyrosine/3 mM 

uric acid and are reported as percent germination. 

 Antagonists of P. larvae spore germination: To test for possible antagonists of P. 

larvae spore germination, spores were individually supplemented with 3 mM of a purine analog 

or 3 mM of an amino acid analog. Spore suspensions were incubated for 15 min at room 

temperature while monitoring OD580. If no germination was detected, L-tyrosine and uric acid 

were added to 3 mM final concentrations and germination monitored as above. Germination rates 

for other conditions were divided by the uninhibited maximum germination rate obtained with 3 

mM L-tyrosine/3 mM uric acid and are reported as percent germination. 

 Inhibition of P. larvae spore germination by indole and phenol: P. larvae spores were 

individually incubated with varying concentrations of indole, phenol, 1-N-methylindole, 3-

mehtylindole, 5-methylindole, or 7-methylindole. After 15 minute incubation, spores were 

treated with 3 mM L-tyrosine/3 mM uric acid. Germination rate was set to 100% for P. larvae 

spores germinated in the absence of inhibitor. Germination rates for other conditions were 

divided by the uninhibited maximum germination rate obtained with 3 mM L-tyrosine/3 mM uric 

acid and are reported as percent germination. Percent germination was plotted against inhibitor 

concentrations. The resulting sigmoidal curves were fitted using the four parameter logistic 

function in SigmaPlot v.9 to calculate IC50 values. IC50 is the concentration of a germination 

inhibitor required to reduce the germination rate to 50% of the maximal value (Akoachere, 

Squires et al. 2007, Rodbard, Lenox et al. 1976).  
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 Heat resistance of germinated P. larvae spores: Loss of heat resistance occurs upon the 

germination of a spore suspension (Powell 1950). We determined the percentage of germinated 

spores by calculating heat resistant counts on MYPGP agar plates. Initially, spores were exposed 

to (1) sodium phosphate buffer, (2) MYPGPG broth, or (3) 3 mM L-tyrosine plus uric acid for 2 

hours at 37 °C. The spores were heated at 68°C for 30 minutes, diluted in buffer, and plated onto 

MYPGP agar. Plates with 30-300 colonies per plate were used to calculate the heat resistant 

spore counts per MYPGP plate used. Heat resistant counts were performed in triplicate with two 

different spore preparations.  

 Enhancing spore germination on MYPGP plates: The highest spore germination on 

agar plates is approximately 2% (Goodwin, McBrydie et al. 2013). We measured the ability of L-

tyrosine plus uric acid to enhance spore germination on MYPGP agar plates. P. larvae spore 

suspensions were washed 3 times with water. Spores were then heat activated at 70 °C for 30 

minutes, after they reached room temperature spores were transferred to 0.1 M sodium phosphate 

buffer (pH 7.0) to an OD580 of 0.40. The spore stocks were diluted in buffer and plated onto 

MYPGP agar with or without 3 mM L-tyrosine plus uric acid. Plates with 30-300 colonies per 

plate were used to calculate the heat resistant spore counts per MYPGP plate used. Heat resistant 

counts were performed in triplicate with two different spore preparations. 

2.4 Results  

We were unable to detect significant P. larvae spore germination in any of the 16 

different complex media tested even after 24 hour incubation. In comparison, spores of Bacillus 

anthracis and Bacillus cereus germinate within two hours in rich medium (Johnson, Nelson et al. 

1983, Sanz, Teel et al. 2008). Similarly, P. larvae spores failed to germinate in defined medium 
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containing metabolites commonly used as germinants by Bacillus and Clostridia species (Figure 

2.1). 

Honey bee larvae are fed royal or worker jelly that can be contaminated with P. larvae 

spores (Winston 1987). P. larvae spores were resuspended in a chemically defined medium 

(AWJ) that differ from worker jelly only in its pH values. The optical density of P. larvae spores 

suspended in AWJ decreased, indicating that the spores were germinating (Figure 2.1). Spore 

germination was confirmed by Schaeffer-Fulton staining (Schaeffer, Fulton 1933). 

 To determine compounds necessary to trigger P. larvae spore germination, groups of 

compounds were systematically left out of the AWJ medium. P. larvae spores germinated well in 

the absence of sugars and vitamins, suggesting that germination onset required uric acid and 

proteinogenic amino acid(s). Testing of individual amino acids showed that only L-tyrosine was 

able to synergize with uric acid to produce a strong germination response in P. larvae spores 

(Figure 2.2). A mixture of uric acid and the remaining 19 proteinogenic amino acids induced 

negligible germination response (data not shown).  

To determine the effects of temperature on P. larvae spore germination a range of 25-42 

°C was tested (Figure 2.3). At temperatures below 30°C, germination of P. larvae spores was 

slow. The maximal germination rates were at temperatures above 35°C.  

The ability of P. larvae spores to germinate was also tested at different pH values (Figure 

2.4). In acidic or basic conditions spores failed to germinate. Germination was optimal near 

neutral pH.  

 Titration of L-tyrosine at a saturating uric acid concentration yielded an EC50 of 1.2 mM 

for L-tyrosine activation of P. larvae spore germination (Figure 2.5). Our dose response assays 

resulted in sigmoidal curves that passed the Durbin-Watson statistical test for autocorrelation. 
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Titration of uric acid at a saturating L-tyrosine concentration yielded an EC50 of 0.2 mM 

for uric acid activation of P. larvae spore germination (Figure 2.6). Our dose response assays 

resulted in sigmoidal curves that passed the Durbin-Watson statistical test for autocorrelation. 

Uric acid is a degradation product of purine catabolism. Hence, we tested the ability of 

purine analogs to act as co-germinants of P. larvae spores. Since L-tyrosine is the only amino 

acid able to trigger P. larvae spore germination, we also tested its stereoisomer (D-tyrosine) and 

its side chain (phenol) as co-germinants with uric acid. None of the compounds tested was able 

to activate P. larvae spore germination (data not shown). 

 L-tyrosine and purine analogs were also tested for their ability to inhibit P. larvae 

germination. None of the purine analogs tested inhibited uric acid/L-tyrosine induced 

germination of P. larvae spores (data not shown). Similarly, D-tyrosine did not inhibit P. larvae 

spore germination.  

Of the compounds tested, indole (the side chain of tryptophan) and phenol (the side chain 

of tyrosine) were able to inhibit P. larvae spore germination. Titrations of indole yielded an IC50 

of 0.37 mM for indole (Figure 2.7) inhibition of P. larvae spore germination.  

Titrations of phenol yielded an IC50 of 0.46 mM for phenol (Figure 2.8) inhibition of P. 

larvae spore germination.  

3-methylindole, 5-methylindole and 7-methylindole retained inhibitory properties with an 

IC50 of 0.38, 0.37, and 0.28 mM, respectively (Table 2.1). In contrast, 1-N-methylindole did not 

activate nor inhibit P. larvae spore germination. All dose response assays resulted in sigmoidal 

curves that passed the Durbin-Watson statistical test for autocorrelation. 

To test the generality of P. larvae spore response, we prepared spores from the type strain 

P. larvae subsp. pulvifaciens strain ATCC 49843 and from an environmental AFB sample. Based 
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on phenotypic characteristics, this environmental sample was identified as P. larvae subsp. 

larvae (13, 14). Spores of both P. larvae sub-species responded identically to L-tyrosine and uric 

acid. Their germination was similarly inhibited by indole and phenol (data not shown).  

 Spores exposed to buffer, a complex medium, and L-tyrosine plus uric acid were heat 

treated (Figure 2.9). Although vegetative cells die from heat treatment, dormant spores are 

resistant to heat treatment (Forsgren, Stevanovic et al. 2008). We observed that buffer and 

complex medium did not initiate germination because the spores were not susceptible to heat 

killing. However, upon germination P. larvae spore were susceptible to heat killing. 

Approximately, 3% of the P. larvae spores exposed to germinants were not susceptible to heat 

treatment.  

AFB disease detection is performed by culture based methods that detect spores in bees 

and bee related products (Goodwin, McBrydie et al. 2013). Unfortunately, P. larvae spores do 

not germinate well on currently available media. Furthermore, the material inspected (bees or 

bee products) can alter germination rates. A paper recently found that adult bee and larval 

extracts improve P. larvae spore germination (Goodwin, McBrydie et al. 2013). The average 

number of colonies per plate was between 8-300 times greater than in conventional media. We 

incorporated L-tyrosine plus uric acid into medium to determine if we could enhance spore 

germination (Figure 2.10). Incorporating uric acid plus L-tyrosine enhance our ability to detect 

spores on laboratory media. For strain B-3650, we had approximately 3,000 times more colonies 

per plate when L-tyrosine plus uric acid were incorporated into medium. For strain B-3685, 

incorporation of germinants in medium enhanced spore germination approximately 60 times.  

2.5 Discussion  
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Bacterial spore germination is a critical step for infection onset in numerous hosts (Guidi-

Rontani, Weber-Levy et al. 1999, Guidi‐Rontani, Pereira et al. 2002). The nature of the spore 

germination signals have been widely studied in Bacilli and Clostridia (Paredes-Sabja, Setlow et 

al. 2011, Howerton, Ramirez et al. 2011, Alvarez, Lee et al. 2010, Barlass, Houston et al. 2002, 

Broussolle, Gauillard et al. 2008, Dodatko, Akoachere et al. 2009, Dodatko, Akoachere et al. 

2010, Huo, Yang et al. 2010, Smith, Sullivan 1989, Warren, Gould 1968), but the triggers for P. 

larvae spore germination have not been identified. In order to cultivate P. larvae, specialized 

media has been produced (White 1906, Bailey, Lee 1962, Nordstrom, Fries 1995, Alippi 1995, 

Hornitzky, Nicholls 1993). Under the best conditions fewer than 10 percent of P. larvae spores 

plated on complex laboratory media germinate (Shimanuki, Knox 2000). In this study, we show 

that P. larvae spores specifically recognize L-tyrosine and uric acid as germinants.  

 P. larvae spores germinate sluggishly at room temperature and thus could remain 

dormant on hive surfaces and beekeeping equipment for long periods. Honey bees are 

endothermic and use heat producing muscle contractions to actively keep the colony temperature 

in a narrow range around 35 °C (Winston 1987). To develop correctly in the laboratory, reared 

honey bee larvae are maintained at a constant temperature of 35-37 °C (Peng, Mussen et al. 

1992), which is also optimal for P. larvae spore germination. This means that P. larvae spores 

depend on multiple signals including temperature to escape from dormancy.  

 Maximal germination of P. larvae spores was observed between pH 5-7, which matches 

the intestinal pH of both adult bees (pH 5.6-6.3) and bee larvae (pH 6.8) (Colibar, Popovici et al. 

2010). Honey, nectar, pollen, and royal jelly are much more acidic (pH 3-4). We suggest that the 

acidity of these products will may prevent P. larvae spores from germinating prematurely 

outside the honey bee gut.  
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 Although the concentration of L-tyrosine in the bee larvae gut is not known, honey bee 

larvae are fed either worker or royal jelly that contains free L-tyrosine at approximately 0.11 mM 

(Liming, Jinhui et al. 2009). Royal jelly also contains proteins that, upon digestion, could 

increase the concentration of L-tyrosine to 22 mM (Liming, Jinhui et al. 2009). Thus, the P. 

larvae spores are exposed to saturating concentrations of L-tyrosine within the bee larvae.  

 Once metabolized, proteinaceous materials are converted to uric acid which is excreted as 

a waste product (Yadav 2003). Uric acid in the midgut of honey bee larvae must be at saturating 

concentrations because when larvae first defecate uric acid precipitates as large crystals (Yadav 

2003). In fact, the appearance of uric acid crystals has been used as a marker for pupation onset 

(Winston 1987) and insect infestation of stored grains (Jood, Kapoor 1993). 

 The Bacilli and Clostridia spore germination response results from complex interacting 

pathways (Foerster, Foster 1966, Peter 2003). Indeed, six different strategies have been described 

that integrate the multiple signals required for spore germination (Ross, Abel-Santos 2010a). We 

recently showed that active germination pathways in Bacillus can cooperate or interfere with 

each other (Luu, Akoachere et al. 2011). In contrast, the simplicity of signals required for P. 

larvae spore germination can be described as a single integrator logical gate (Ross, Abel-Santos 

2010a). By narrowing the germination signals to two germinants, P. larvae spores further ensure 

that germination only occurs in the larval gut where amino acids and uric acid are abundant. 

 The midgut and the hindgut of honey bee larvae are disconnected until the final larval 

molt. Hence, in the AFB-susceptible young larvae, food and waste products will co-localize in 

the midgut (Winston 1987). This will ensure that P. larvae spores are simultaneously exposed to 

high concentrations of uric acid and L-tyrosine, allowing for germination and infection onset. In 

contrast, in adult honey bees amino acids are thought to be absorbed in the midgut and uric acid 
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will only be present in the hindgut (Yadav 2003, Crailsheim 1988). The spatial and temporal 

separation between food and waste products in adult honey bees will preclude P. larvae spores 

from detecting both germination signals, thus preventing germination (Winston 1987). 

 Spore formers can have strain specific differences in their germination response. For 

example, while adenosine is a germinant for B. cereus strain 3711, it inhibits inosine-mediated 

germination in B. cereus strain 569 (Hornstra, De Vries et al. 2006, Abel-Santos, Dodatko 2007). 

P. larvae spores from both subspecies show identical germination response. Our result is 

consistent with polyphasic taxonomic studies that have found few differences between P. larvae 

strains (Genersch, Forsgren et al. 2006).  

 The spore germination response has been studied in other Paenibacillus species. Spores 

of P. polymyxa germinate in response to fructose and alanine (Huo, Yang et al. 2010). The 

difference in germination response between P. larvae and P. polymyxa was expected since P. 

polymyxa spores are associated with plant roots, where the concentration of uric acid is 

diminishingly small. Other members of the Paenibacillus genus are insect pathogens that 

specifically target the larval stage. Indeed, P. popilliae spores are sold commercially to control 

Japanese beetle infestation (McSpadden Gardener 2004). It is tempting to speculate that uric acid 

could serve as a general germination signal for insect larvae pathogens. Indeed, while there are 

no other reports of bacterial spores that germinate in response to uric acid and L-tyrosine, 

Bacillus fastidiosus spore germination occurs on medium containing only uric acid (Salas, Ellar 

1985), while Clostridium cylindrosporum spores germinate in medium containing bicarbonate, 

uric acid, and calcium (Smith, Sullivan 1989). Both of these bacteria are present in poultry litter 

and bird droppings where uric acid is abundant (Smith, Sullivan 1989, Bergey, Boone et al. 
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2009). The ability to recognize uric acid and a co-germinant could allow bacteria to select for 

specific hosts.  

 Although D-amino acids are strong spore germination inhibitors of Bacillus species 

(Romick, Tharrington 1997, Woese, Morowitz et al. 1958, O'Connor, Halvorson 1961, Fey, 

Gould et al. 1964, Hills 1949), D-tyrosine failed to inhibit P. larvae spore germination. Of the 

analogs tested only indole (the side chain of tryptophan) and phenol (the side chain of tyrosine) 

inhibited P. larvae spore germination.  

 Indole and phenol could inhibit P. larvae spore germination by non-specific binding to 

hydrophobic regions of the tyrosine or uric acid binding sites. Methylindole derivatives are more 

hydrophobic than indole, but none of these analogs show increased anti-germination activity. On 

the contrary, methylation at the N-1 position eliminates anti-germination activity, suggesting that 

the N-H group of indole forms an essential hydrogen bond with the tyrosine and/or uric acid 

binding sites.  

 Indole is the last intermediate in the biosynthesis of tryptophan in plants and bacteria 

(Radwanski, Last 1995). Indole also acts as intracellular and extracellular signal for virulence, 

biofilm formation, acid resistance, drug resistance, and sporulation in bacteria (Hirakawa, 

Kodama et al. 2009, Lee, Lee 2010, Lee, Jayaraman et al. 2007, Nikaido, Yamaguchi et al. 2008, 

Kim, Lee et al. 2011). Phenol, on the other hand, is toxic in its free form but is found as a 

functional group in many plant secondary metabolites (Karakaya, El et al. 2001). Since honey 

bees gather pollen and nectar that are very rich in phenolic compounds, it is possible that 

collected polyphenols and indole compounds could protect the honey bee larvae from infection. 

We have begun to study the use of spore germinants to reduce P. larvae resistant 

properties. Others have already demonstrated that germinated spores are susceptible to heat, 
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radiation, ethanol, and desiccation (Nerandzic, Donskey 2010). Indeed, we have shown that 

approximately 98% of spores exposed to germinants are killed by heat treatment. Furthermore, 

we have shown that inclusion of germinants on solid media enhances spore germination. 

Addition of germinants to media will enhance the limit of detection for P. larvae spores. Early 

detection of P. larvae spores will allow beekeepers to start preventative AFB treatments and 

quarantine diseased colonies.  

 In conclusion, we have found activators and inhibitors of P. larvae spore germination. 

We also presented evidence to suggest that P. larvae spores have evolved to germinate only in 

the gut of the larvae and to remain dormant in the food, exposed environments, and the adult bee.  
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Figure 2.1: P. larvae spores germinate in artificial worker jelly. P. larvae strain 

B-3685 spores were suspended in defined medium (●), artificial worker jelly (○), or 

uric acid plus L-tyrosine (▲). Data are shown for every 5 min for clarity. Spore 

germination was followed by decreases of the relative OD over time. Each error bar 

represents a standard deviation obtained from at least six independent 

measurements. 
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Figure 2.2: P. larvae spore germination is triggered by uric acid plus L-tyrosine. 

P. larvae strain B-3685 spores were suspended in the uric acid plus an L-amino acid. 

L-tyrosine plus uric acid was the only germinant combination that resulted in 

significant spore germination. Each error bar represents a standard deviation obtained 

from at least six independent measurements. 
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Figure 2.3: Effects of temperature on P. larvae spore germination. P. larvae 

spores were suspended in 3 mM L-tyrosine–3 mM uric acid and exposed 

individually to temperatures between 25 and 42°C. The maximum germination rate 

was set to 100% for spores germinated at 42°C. Percent germination for other 

conditions was calculated relative to 42°C. Each error bar represents a standard 

deviation obtained from at least six independent measurements. Columns that are 

labeled with different letters are statistically different (P > 0.05). 
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Figure 2.4: Effects of pH on P. larvae spore germination. P. larvae spores 

were suspended in 3 mM L-tyrosine–3 mM uric acid and were exposed 

individually to pH values between 3 and 9. The maximum germination rate was 

set to 100% for spores germinated at pH 7. Percent germination for other 

conditions was calculated relative to pH 7. Each error bar represents a standard 

deviation obtained from at least six independent measurements. Columns that are 

labeled with different letters are statistically different (P > 0.05). 
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Figure 2.5 Calculation of 50% effective concentration for L-tyrosine. Dose-

response curve of P. larvae spores germinated at a saturating concentration of 

uric acid and various concentrations of L-tyrosine. The EC50 for L-tyrosine was 

determined based on these data. 
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Figure 2.6 Calculation of 50% effective concentration for uric acid. Dose-

response curve of P. larvae spores germinated at a saturating concentration of L-

tyrosine and various concentrations of uric acid. The EC50 for uric acid was 

determined based on these data. 
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Figure 2.7: Calculation of 50% inhibitory concentration for indole. Dose-

response curve of P. larvae spores germinated with L-tyrosine–uric acid in the 

presence of various concentrations of indole. The IC50 for indole was determined 

based on these data.  
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Figure 2.8: Calculation of 50% inhibitory concentration for phenol. Dose-response 

curve of P. larvae spores germinated with L-tyrosine–uric acid in the presence of 

various concentrations of phenol. The IC50 for phenol was determined based on these 

data. 
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Figure 2.9: Measure of heat resistance in germinated spores. P. larvae strain B-3685 

spores were suspended in buffer, broth, or uric acid plus L-tyrosine. After incubation P. 

larvae spores were heat treated to measure the average number of heat resistant spores. 

Maximum heat viability was set to 100% for spores in sodium phosphate buffer. Error 

bars are standard deviations from at least 6 independent measurements. 
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Figure 2.10: L-tyrosine + uric acid enhance germination: Spores of P.larvae 

strain B-3685 were incubated on MYPGP plates with or without 3 mM uric acid 

plus L-tyrosine. The number of germinated spores was assessed by plating a 

stepwise dilutions of spores in water.  
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Table 2.1: Effects of indole methylation on P. larvae spore 

germination. P. larvae spores were incubated with various 

concentrations of indole analogs for 15 min prior to addition 

of 3 mM L-tyrosine–3 mM uric acid. IC50 was calculated by 

plotting percent germination versus indole analog 

concentration. Standard deviations are shown in parentheses. 

NA, no activity under the conditions tested. 

 

 

 

 

Indole Analog IC50 (mM) 

Indole 0.37 ± .02 

phenol 0.46 ± .02 

1-N-methylindole 0.38 ± .01 

5-methylindole 0.37 ± .02 

7-methylindole 0.28 ± .01 
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3.1 Abstract  

Paenibacillus larvae endospores are the infectious particles of the honey bee brood 

disease, American Foulbrood. We demonstrate that our previously published protocol (Alvarado, 

Phui et al. 2013) consistently yields higher numbers and purer preparations of P. larvae 

endospores, than previously described protocols, regardless of strain tested (B-3650, B-3554 or 

B-3685).  

3.2 Article 

The Gram-positive, spore-forming bacterium Paenibacillus larvae is the causal agent of 

American Foulbrood disease (White 1907). Honey bee larvae become infected when 

contaminated brood food containing infectious spores is fed to larvae by the “nurse” bees, which, 

like all adult honey bees, are resistant to AFB (William T. 1972). The spores of P. larvae are 



 
 

49 
 

highly resilient and can remain viable for at least 35 years (Haseman 1961). Eradication of P. 

larvae spores from infected hives is commonly achieved by burning the entire hive and all 

associated equipment, but this highly destructive solution increases the economic losses 

associated with this disease (Matheson 1993, Calderone 2001). Targeted biological approaches 

that eradicate spores from equipment have significant potential, but the development of such 

strategies requires large scale and pure preparations of P. larvae endospores.  

While three procedures for in vitro sporulation of P. larvae have been commonly used 

(Dingman 1983, Dingman, Stahly 1983, Genersch, Ashiralieva et al. 2005) and recently 

described in (de Graaf, Alippi et al. 2013), these methods do not yield large enough numbers of 

spores of sufficient purity for studies that seek to identify chemical inhibitors and/or germinants 

of P. larvae spores (Powell 1950, Akoachere, Squires et al. 2007, Alvarez, Abel-Santos 2007, 

Ramirez, Abel-Santos 2010, Howerton, Ramirez et al. 2011). Consequently, a new method was 

developed [“UNLV”; (Alvarado, Phui et al. 2013)]. Here, we present a comparison of the UNLV 

in vitro sporulation protocol (Alvarado, Phui et al. 2013) with a protocol (described in (de Graaf, 

Alippi et al. 2013)) that has traditionally yielded the highest number of spores (Dingman, The 

Connecticut Agricultural Experiment Station; personal communication). Notably, in both 

protocols spores are prepared from solid growth medium. 

  To account for strain differences, three different P. larvae strains were used in this 

comparative study (Table 1). In the first protocol (de Graaf, Alippi et al. 2013), spores were 

harvested from MYPGP agar inoculated with P. larvae. Since “sporulation efficiency can decline 

when high numbers of colonies are present on a plate” (de Graaf, Alippi et al. 2013), cultures 

were serially diluted using MYPGP broth to obtain both low (50-200) and high (1,000-5,000) 

CFU counts per MYPGP plate prior to spore preparation. This allowed a thorough comparison of 
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this protocol (de Graaf, Alippi et al. 2013) with the other (Alvarado, Phui et al. 2013). After 7 

days of incubation, spores were removed from MYPGP plates by gently scraping and washing 

the agar surface with sterile water three times. The spore suspension was concentrated via 

centrifugation at 12000 rpm/19800 g at 4 °C for 15 minutes, the supernatant was discarded and 

the remaining pellet was resuspended in sterile ice-cold water. Additional centrifugation and 

pellet resuspension steps were repeated four times to clean spores. Spore stocks produced in this 

manner were stored in sterile distilled water at 4°C. 

In contrast, the UNLV method utilized Tryptic Soy Agar (TSA) plates (supplied by 

Becton, Dickinson and Company) inoculated with 200 µl of an exponentially growing culture 

(about 1.2 x 108 colony forming units, CFUs) that were incubated for 7 days in a 5% CO2 

incubator at 37°C to produce lawns of P. larvae (Alvarado, Phui et al. 2013). The resulting 

spore-containing bacterial lawns were collected by flooding plates with ice-cold deionized water. 

Spores were pelleted by centrifugation at 8000 rpm/8820 g at 4 °C for 5 minutes and 

resuspended in fresh deionized water. After three washing steps, the spores were separated from 

their vegetative and partially sporulated forms by centrifugation at 11500 rpm/18200 g at 4 °C 

for 35 minutes through a 20-50% HistoDenz™ (Sigma Aldrich) gradient. Spore pellets were 

washed five times with sterile distilled water and stored at 4°C. 

To measure the concentration of viable spores in each spore stock, counts of heat 

resistant colony forming units were calculated from MYPGP agar plates (Dingman 1983). 

Briefly, spore stocks were normalized to an OD580 of 0.2, heated at 68°C for 15 minutes, diluted 

in water and plated onto MYPGP agar. Plates bearing about 30-300 colonies per plate were used 

to calculate the number of heat-resistant spores in each stock (Dingman 1983). Assays were 

performed in triplicate and average CFUs, standard deviations and statistically significant 
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differences (p < 0.05) for all pairs of mean heat resistant spore counts per stock were determined 

using a Student’s one-tailed t test assuming equal variances.  

As expected, spore yields varied from strain to strain regardless of the protocol was used. 

Consistent with previous findings, yields from B-3554 and B-3650 were higher when spores 

were harvested from plates with lower CFU density than higher; a trend not seen for B-3685. 

Importantly, regardless of the strain tested or whether the spores were isolated from either low or 

high density plates, the UNLV protocol (Alvarado, Phui et al. 2013) yielded significantly higher 

numbers of spores than the established MYPGP plate method (de Graaf, Alippi et al. 2013) 

(more than 385-fold higher for strain B-3554, 2.6-fold higher for strain B-3650 and 142-fold 

higher for strain B-3685; see Figure 3.1A), allowing us to conclude that the UNLV protocol 

routinely yields higher numbers of viable spores than the de Graaf protocol, regardless of the P. 

larvae strain used.  

The purity of spore stocks was next determined by microscopic analysis. Briefly, 10 µl of 

each spore stock was smeared onto a glass slide, air dried, and observed after Schaeffer-Fulton 

staining (Schaeffer, Fulton 1933). At least 10 images of each spore stock were randomly 

acquired and three random images were analyzed using image processing software (ImageJ, 

NIH). The purity of spore preparations viewed in these images was expressed as: (number of 

spores/number of spores and vegetative cells) X 100. Statistically significant differences (p < 

0.05) for all pairs of mean spore preparations or percent purity were determined using a 

Student’s two-tailed t test assuming equal variances. 

This analysis revealed that spore stocks prepared from strains B-3554 and B-3685 using 

the de Graaf protocols consisted of less than 20% spores (Figure 3.1B). Furthermore, spores 

prepared using this protocol, were frequently contaminated with cell debris, although the amount 
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was difficult to quantify by microscopy. For example, even though spore stocks generated from 

strain B-3650 were found to be 100% pure (did not contain any vegetative cells) cell debris could 

still be observed by microscopy (Figure 3.2A). These results indicate that four washes used in 

the previously reported protocols (Dingman, Stahly 1983, de Graaf, Alippi et al. 2013) were not 

sufficient to remove cell debris from the spore stocks. While it is possible to remove vegetative 

cells from spore stocks by heating, this approach is not recommended because muropeptides 

released from vegetative cells have been shown to trigger spore germination (Shah, Laaberki et 

al. 2008). In the UNLV protocol, this problem was solved by using a HistoDenz™ density 

gradient. This approach separated the spores from vegetative cells and cell debris and yielded 

virtually pure preparations of spores, regardless of the strain tested (Figure 3.2B).  

In sum, this comparative analysis demonstrates that the UNLV in vitro sporulation 

method is more effective at generating higher numbers of spores with greater purity than the 

established in vitro sporulation protocol (Dingman, Stahly 1983, de Graaf, Alippi et al. 2013). 

The use of a commercially available rich medium, TSA, facilitated spore production and 

streamlined media production compared to other protocols (Dingman 1983, Dingman, Stahly 

1983, Genersch, Ashiralieva et al. 2005, de Graaf, Alippi et al. 2013) and the use of a 

centrifugation density gradient ensured that a pure stock was obtained. Although, we 

acknowledge that similar results might be obtained if the numbers of plates and tubes were 

increased while following older protocols (Dingman 1983, Dingman, Stahly 1983, Genersch, 

Ashiralieva et al. 2005), a differential centrifugation step would still be required to increase the 

purity of the spores generated. This comparative analysis highlights the strengths and 

weaknesses of the currently published protocols for the in vitro preparation of P. larvae spores 

from solid medium (Alvarado, Phui et al. 2013, de Graaf, Alippi et al. 2013), and as such will 



 
 

53 
 

help those requiring large scale and pure preparations of P. larvae endospores and possibly other 

bacterial endospores.  
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Figure 3.1 - Effect of sporulation protocol on P. larvae strains spore production (A) 

Average number of heat resistant spores for P. larvae strains spore stocks produced by two 

methods. NOTE: log scale. The error bars represent standard deviations from the mean 

obtained from at least three independent measures of CFU ml-1. (B) P. larvae spore stock 

smears were analyzed via microscopy after Schaeffer-Fulton staining (Schaeffer, Fulton 1933). 

The error bars represent standard deviation obtained from the mean based on at least three 

independent measures of purity. In all cases, the number of spores collected using the UNLV 

protocol was significantly higher (p < 0.05) than those collected using the de Graaf protocol. 

Furthermore, the purity of the resulting spore samples was significantly higher when the UNLV 

protocol was used (p < 0.05) compared to the de Graaf protocol, with one notable exception; 

spores harvested from strain B-3650 using the UNLV protocol were quantified to be 

equivalently pure as spores harvested using the de Graaf protocol. 
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Figure 3.2 - Purity of spore stocks determined by microscopic analysis (A) Representative 

image of spore stocks stained using the Schaeffer-Fulton method prepared for strain B-3650 

(A) using the de Graaf protocol or (B) the UNLV protocol. Cell debris retained safranin-O dye 

while spores retained malachite green dye. The scale bars indicates 10 μm. 



 
 

56 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3.1: Strains of P. larvae used. 

Species 
ERIC 

classificationa 

Strain 

numberb 
Isolation 

P. 

larvae 
I 

NRRL B-

3650 

Isolated from diseased honey bee, RE 

Gordon 

P. 

larvae 
I 

NRRL B-

3554 
Isolated from diseased honey bee, NRRL 

P. 

larvae 
IV 

NRRL B-

3685/ATCC-

49843 

Powdery scale of honey bee larvae, RE 

Gordon 

aEvaluated at UNLV by Enterobacterial repetitive intergenic consensus sequence-based 

PCR.  
bStrain numbers sourced from the American Tissue Culture Collection (www.atcc.org) are 

prefixed with ATCC, those from the Agriculture Research Services (ARS) Culture 

Collection Database Server (nrrl.ncaur.usda.gov; formerly known as the Northern Regional 

Research Laboratories, NRRL) are prefixed with NRRL.  
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Chapter 4: The inhibitory effect of indole analogs against Paenibacillus larvae, the causal 

agent of American Foulbrood disease 

4.1 Abstract 

The antagonistic effects of indole and phenol structural analogs on the honey bee 

pathogen Paenibacillus larvae were evaluated. Indole structural analogs strongly inhibited L-

tyrosine plus uric acid mediated P. larvae spore germination and the inhibitory effect was 

observed in a medium capable of supporting growth. These results suggests that indole analogs 

could prevent P. larvae spore germination and cellular growth in vitro. Addition of indole 

analogs to larval diet significantly decreased AFB disease in laboratory-reared larvae. The 

identification of inhibitors of P. larvae spore germination provides a basis for new tools to 

control AFB disease.  

4.2 Introduction 

Honey bees are vital pollinators of agricultural and horticultural crops (Matheson 1993, 

Morse, R.A. & Calderone, N.W 2000). However, recent losses of managed honey bee colonies 

have compromised pollination of crops (Neumann, Carreck 2010). The decline in honey bees is 

the result of many maladies including virus, parasites, pesticides, and bacterial diseases. 

American Foulbrood (AFB) disease is a lethal disease for honey bee larvae and ultimately 

colonies (White 1920, Genersch 2010a).  

American Foulbrood (AFB) disease occurs in first or second instar larvae as newly 

germinated Paenibacillus larvae cells proliferate (Yue, Nordhoff et al. 2008). Extreme 

bacteremia causes the death of larvae several days after P. larvae spore infection (Yue, Nordhoff 

et al. 2008). As nutrients in honey bee larvae are depleted, P. larvae cells sporulate forming 

billions of spores. The infectious spores can be transmitted within the colony or amongst 
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colonies by bees and beekeeping practices (Lindström, Korpela et al. 2008, Sturtevant 1932). 

Because the infectious agent is the spore stage of Paenibacillus larvae and spores are hard to 

eradicate, AFB disease persists everywhere honey bees are found (Tarr 1938, Shimanuki 1983, 

Genersch 2010a). 

Eradication of AFB is difficult because the bacterium produces spores are resistant to 

high temperatures, desiccation, UV irradiation, and harsh chemicals (Dobbelaere, De Graaf et al. 

2001).  Moreover P. larvae spores can remain dormant in honey, pollen, wax, adult bees, and on 

hive surfaces (Adjlane, Haddad et al. 2014, Lindström, Korpela et al. 2008, Fries, Lindström et 

al. 2006). P. larvae spores are only known to germinate, exit dormancy, in the honey bee larvae. 

Terramycin and other antibiotics have been used to prevent AFB disease. However, overuse of 

antibiotics has led to resistant P. larvae strains. Furthermore, spores are not affected by 

antibiotics and can remain dormant long after the antibiotic treatment (Alippi, López et al. 2007, 

Peng, Mussen et al. 1992, Lodesani, Costa 2005). 

Because P. larvae spore germination is the first step of infection, preventing spore 

germination is a promising avenue to prevent AFB (Alvarez, Abel-Santos 2007). Inhibition of 

Clostridium difficile spore germination has been shown to be an effective means to prevent 

infection in rodent models (Howerton, Ramirez et al. 2011, Howerton, Patra et al. 2013b, 

Howerton, Patra et al. 2013a).  Previous research in our laboratory identified agonists (uric acid 

and L-tyrosine) and inhibitors (indole or phenol) of P. larvae spore germination (Alvarado, Phui 

et al. 2013). Because spores need to germinate to cause the disease, preventing spore germination 

could potentially protect honey bees from AFB disease.  

The aim of this work was to assess the efficiency of germination inhibition as a treatment 

strategy for AFB. First a series of indole and phenol analogs were tested as antagonists of uric 
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acid and L-tyrosine mediated germination of P. larvae spores. The half maximal inhibitory 

concentration (IC50) of the best inhibitory indole analogs was calculated. The effect of indole 

analogs on cellular outgrowth from spores and growth of P. larvae in vitro and the toxicity of 

indole inhibitors on honey bee larval development was tested. Finally, indole inhibitors were 

tested for their ability to protect honey bee larvae from AFB disease. 5-chloroindole was 

identified as strong inhibitor of spore germination, cell growth, and AFB disease development.  

4.3 Materials and Methods 

Materials. Chemicals were purchased from the Sigma-Aldrich Corporation (St. Louis, 

MO) and VWR International (Radnor, PA). The dehydrated culture medium components 

including yeast extract, Mueller-Hinton broth, tryptic soy agar were purchased from BD Difco 

(Franklin Lakes, NJ) and Amresco (Solon, OH). Paenibacillus larvae ERIC IV strain B-

3685/ATCC 49843 was obtained from the American Tissue Culture Collection (ATCC). 

Lyophilized royal jelly from GloryBee Foods (Eugene, OR) was stored at -20°C until used for 

diet preparation. 

P. larvae spore preparation. P. larvae strains were grown on BD tryptic soy agar plates 

for 7 days under 5% CO2 at 37°C. The resulting bacterial lawns were collected by flooding with 

ice-cold deionized water and scrapped from plates using a cell spreader. Spores were pelleted by 

centrifugation and resuspended in fresh deionized water. After three washing steps, the spores 

were separated from their vegetative and partially sporulated forms by centrifugation through a 

20%-50% HistoDenz density gradient. The spore pellet was washed five times with water and 

stored at 4°C. Spore preparations were 90% pure as determined by microscopic observation of 

Schaeffer-Fulton-stained samples as reported previously (Schaeffer, Fulton 1933, Alvarado, Phui 

et al. 2013).  
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Testing for antagonists of P. larvae spore germination. To test for possible antagonists 

of P. larvae spore germination, spores were resuspended in 0.1 M sodium phosphate buffer (pH 

7) to an average OD580 of 1.0 and individually supplemented with varying concentrations of 

individual indole or phenol analogs dissolved in dimethyl sulfoxide (DMSO) as a vehicle. Spore 

suspensions were incubated for 15 min at room temperature while monitoring the OD580. If no 

germination was detected, L-tyrosine and uric acid were added to final concentrations of 3 mM, 

and germination was monitored for 120 minutes. Germination rates for all conditions were 

divided by the uninhibited maximum germination rate obtained by treating spores with 3mM L-

tyrosine plus 3mM uric acid and are reported as percent germination. Percent germination was 

plotted against the log of inhibitor concentrations. The resulting sigmoidal curves were fitted 

using the four-parameter logistic function in SigmaPlot v.9 to calculate the half maximal 

germination inhibitory concentrations (IC50s). 

Artificial worker jelly preparation and larvae feeding regime. Artificial worker jelly 

was prepared using different concentrations of lyophilized royal jelly, D-glucose, D-fructose, 

yeast extract, and autoclaved double distilled water (Table 4.1) (Crailsheim, Brodschneider et al. 

2013).  All ingredients except lyophilized royal jelly were dissolved in autoclaved double 

distilled water. Lyophilized royal jelly was then added to this sugar-yeast extract solution and 

mixed thoroughly with a vortex mixer. Artificial worker jelly was prepared an hour prior to use 

for larval rearing. Larvae were fed daily in different amounts according to Table 4.1 (Crailsheim, 

Brodschneider et al. 2013). 

Acquisition of first instar larvae. First instar honey bee larvae were collected from two 

colonies headed by naturally mated queens (Honey Bee Genetics, Vacaville CA). Queens were 

confined in a queen excluder cage on empty frames (Crailsheim, Brodschneider et al. 2013). This 
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allows for the approximate time and place for the queen to lay the eggs to be controlled. After 24 

hours of being caged the queen was released and the eggs were incubated in the hive until first 

instar larvae could be collected. A group of similarly aged first instar larvae were transferred on 

to artificial worker jelly with a Chinese grafting tool (Amazon, Seattle WA).  

Incubation conditions. Plates containing grafted honey bee larvae were placed in a 304 

cm by 228 cm by 101 cm (l x w x h) plastic container fitted with a tight lid. To maintain 95% 

relative humidity, 500 ml of 20% glycerol was poured inside the container that was placed inside 

an incubator at 35° C (Segur 1953, Crailsheim, Brodschneider et al. 2013). Plates containing 

larvae were place on top of a plastic island above the glycerol. The desired relative humidity and 

temperature was verified with an iButton data logger (Maxim Integrated, San Jose CA). The 

plastic containers were decontaminated after bees pupated with dishwashing detergent followed 

by 70% ethanol. Plastic containers were irradiated with an ultraviolet lamp overnight.  

Toxicity assay. To determine if spore germination inhibitors would harm larvae, toxicity 

assays were performed. Each indole analog was dissolved in warm autoclaved water to provide a 

0.5 mM stock solution. The concentrations of indole analogs used in the toxicity assay were 

determined based on preliminary experiments with indole. D-glucose, D-fructose, and yeast 

extract were dissolved in the indole analog stock solution (Table 4.1). Lyophilized royal jelly 

was then added to this indole-sugar-yeast extract solution and mixed thoroughly via vortex 

mixer. Artificial diet was prepared an hour prior to use for larval rearing. Chronic feeding of 

indole analogs was performed to assess toxicity on first instar honey bee larvae (Figure 4.1). 

Larval survival was determined every 24 hours under a stereo microscope. Larvae that stopped 

breathing, showed a color change, or failed to pupate after 7 days were considered dead (Evans 
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2004, Genersch, Ashiralieva et al. 2005). Each experiment used three replicate trials with 30 

larvae, for a total of 90 larvae per treatment (Crailsheim, Brodschneider et al. 2013).  

Larval exposure assays. To determine if spore germination inhibitors would protect 

larvae, P. larvae spore exposure assays were performed. Each exposure assay consisted of: (1). 

negative control group fed normal diet, (2). positive control group fed one dose of spores, and 

(3). experimental groups fed one dose of spores and a diet including 0.5 mM of each individual 

indole analog. 

Initially, first instar larvae were brought into the laboratory and fed larval diet for a 24 

hour period (Figure 4.2). The experimental groups were fed diet including 0.5 mM of each 

individual indole analog. The negative and positive control groups were initially provided 

normal diet.  

During the next 24 hours, second instar larvae in the positive control and experimental 

groups were fed diets containing a defined number of P. larvae spores prepared as described 

previously (Alvarado, Phui et al. 2013). A stock spore suspension with an optical density of 1.0 

at 580 nm was prepared (4.4 x 108 spores per ml based on a microscopic count with a counting 

chamber). The stock spore suspension was diluted 1:100 times, and then 100 µl of the dilution 

was added to 5 ml larval diet. The larval diet containing P. larvae spores was mixed and then 

dispensed to 6 well plates (2.5 ml/well). Assuming that honey bee larvae consume 10 µl of larval 

diet during the 24 hours spore exposure period, then each larvae consumes approximately 880 

spores (Crailsheim, Brodschneider et al. 2013). Larvae in the negative control group continued to 

be fed normal diet. 
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On the third day, all honey bee larvae were removed from larval diets, cleaned using Kim 

wipes, and then moved to 48 well plates (one larva per well containing 250 μl larval diets 

without spores). Larval survival was determined daily by observing signs of respiration until the 

onset of pupation (approximately 5-7 days). Infected honey bee larvae developed a red color as 

P. larvae (a red pigmented bacterium) proliferated in the gut. Later on, decomposing larvae 

became characteristic brown to black color and soft appearance (Shimanuki 1983, Crailsheim, 

Riessberger-Galle 2001, Yue, Nordhoff et al. 2008, Crailsheim, Brodschneider et al. 2013). Each 

experiment used three replicate trials with 30 larvae, for a total of 90 larvae per treatment 

(Crailsheim, Brodschneider et al. 2013). 

Survival analysis. The larval survival data was analyzed using Kaplan-Meier Survival 

plot and the LogRank statistic in SigmaPlot. The LogRank test determines if there are significant 

differences between survival curves. The Holm-Sidak statistic method was used to identify pairs 

of survival curves that are significantly different (significance level = 0.05). 

5-chloroindole larval toxicity and exposure assays. Toxicity and exposure assays were 

performed as described above with different concentrations of 5-chloroindole. For larval toxicity 

assays, 0.5, 0.75, and 1.0 mM final concentration of 5-chloroindole was used to prepare larval 

diets. Larval exposure assays were conducted using a range of concentrations of 0.125-1.0 mM 

5-chloroindole to prepare larval diet.  

Testing for 5-chloroindole antibiotic activity against P. larvae cells and spore 

outgrowth. Overnight P. larvae cultures were diluted to an OD580 of 0.19. 5-chloroindole 

dissolved in DMSO was added to cells to a final concentration of 0.0, 0.5, 1.0, 1.5, or 2.0 mM in 

a 200 μl volume. Cultures were incubated at 37°C with shaking at 335 rpm every 15 minutes for 
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a 24 hour period. Optical density was measured every 15 minutes in a Tecan Infinite m200 

(Tecan group, Männedorf, Switzerland) spectrophotometer. Experiments were performed in 

triplicate with at least two different cultures in 96 well plates (200 μL/well). Relative OD values 

were derived by dividing each OD580 reading by its initial OD580 reading.  

The conversion of P. larvae spores to cells and subsequent growth was monitored over a 

24 hour period. P. larvae spores were diluted to an OD580 of 0.15. 5-chloroindole dissolved in 

DMSO was added to spores to a final concentration of 0.0, 0.5, 1.0, 1.5, or 2.0 mM. MYPGP 

broth was used to support the growth of P. larvae cells (40 μl). Cultures were incubated at 37°C 

with shaking at 335 rpm every 15 minutes for a 24 hour period. Optical density was measured 

every 15 minutes in a Tecan Infinite m200 (Tecan group, Männedorf, Switzerland) 

spectrophotometer. Experiments were performed in triplicate with at least two different cultures 

in 96 well plates (200 μL/well). Relative OD values were derived by dividing each OD580 

reading by its initial OD580 reading.  

4.4 Results 

It was previously demonstrated that indole (IC50 0.4 mM) and phenol (IC50 0.5 mM) 

inhibited P. larvae spore germination triggered by uric acid plus L-tyrosine (Alvarado, Phui et al. 

2013). To identify stronger inhibitors, the effect of 29 indole and phenol structural analogues on 

P. larvae spore germination in vitro was tested. The compounds were tested at a concentration of 

0.4 mM to identify germination inhibitors that are stronger than indole. We expected this 

compound screen to provide information regarding the functional groups that enhance inhibitor 

binding to germination receptor. 

Inhibition of P. larvae spore germination by indole and phenol analogs 
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Indole consists of a six carbon benzene ring fused to a heterocyclic five-member ring 

similar to uric acid an agonist of P. larvae spore germination. To identify indole analogs that 

inhibited P. larvae germination, spores were treated individual indole analogs and subsequently 

with uric acid plus L-tyrosine (Figure 4.3). The indole analogs tested differed from the original 

molecule by a couple atom or functional modifications.  

Substitution of the nitrogen in position 1 of indole with a sulfur group to form 

thionaphthene (compound 1) failed to significantly inhibit P. larvae spore germination. Addition 

of nitrogen to position 2 (compound 2), 2 + 3 (compound 3), 3 (compound 4), or 7 (compound 5) 

of indole also did not significantly reduce spore germination. Addition of a sulfur group to 

position 3 of indole did not significantly prevent P. larvae spore germination (compound 6). It 

was observed that position 1 of indole could only support nitrogen (compound 7, 13, and 19) and 

not any other atoms. In general, alterations to the atoms on the benzene or heterocyclic five-

member ring reduced the effectiveness of indole as an inhibitor of P. larvae spore germination 

(compound 8, 9, 10, 11, 12, and 20).  

It was previously shown that methylindole derivatives did not have improved anti-

germination activity of indole. In this work, we observed that the addition of a bulky group to 

indole as seen in 3-ethanamineindole did not enhance indole inhibition. Addition of electron 

donating groups (amino and hydroxyl) reduced the inhibitory effect indole has on P. larvae spore 

germination (compounds 24 and 26). 

P. larvae spore germination was significantly reduced by indole analogs with electron 

withdrawing groups (compounds 21-23, 25, 27, 28). Electron withdrawing groups (chloro, 

bromo, cyano, fluoro, and nitro) draw electrons from the benzene ring. Titrations of these indole 

analogues at saturating uric acid plus L-tyrosine concentrations were performed to obtain IC50 



 
 

66 
 

values (Table 4.2). The maximum effect on P. larvae spore germination was observed on indole 

with halide groups. With 5-chloroindole and 6-chloroindole having the lowest IC50 measured 

with P. larvae spores (Figure 4.4). As expected the dose response assays resulted in sigmoidal 

curves, which passed the Durbin-Watson statistical test for autocorrelation.  

None of the phenol analogs we tested inhibited P. larvae spore germination more than 

phenol (compounds 14, 15, 16, 17, and 18). In fact, any modification or addition to the benzene 

ring reduced P. larvae spore germination inhibition of phenol.  

Indole analogs do not alter honey bee larvae development 

Several standard methods were followed for rearing honey bee larvae in the laboratory 

(Peng, Mussen et al. 1992, Huang 2009, Crailsheim, Brodschneider et al. 2013). Larval 

survivorship was measured until the onset of pupation, i.e., after defecation was observed. In our 

hands, larvae fed worker jelly had mortality below 8%. The typical mortality for in vitro rearing 

reported by others is between 10-20% (Peng, Mussen et al. 1992, Huang 2009).  

To test for toxicity, honey bee larvae were fed artificial worker jelly (WJ) containing 0.5 

mM of each indole analog (Figure 4.5) through pupation. Larval survival was monitored every 

24 hours. Under our experimental conditions the larval phase lasted 7 days. By 7 days, honey bee 

larvae defecated uric acid crystals and stringy material. Any larvae that had not defecated by 7 

days were designated as dead. The only significant difference in survival curves was between 

larvae fed different 6-chloroindole (91%) and those fed the control diet (97%).  

Indole analogs protect honey bee larvae from AFB disease.  

Second instar larvae were fed approximately 880 spores during a 24 hour period. Honey 

bee larvae started dying two days after exposure to P. larvae spores (Figure 4.6). Honey bee 

larval survival was significantly higher for larvae fed spores (22%) than for larvae fed indole 

analogs plus spores (36-75%). The highest survival percentages were observed in larvae fed with 
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spores plus either 5-bromoindole (75%) or 5-chloroindole (65%).  However, honey bee larvae 

fed indole analogs plus had a significantly lower larval survival for larvae fed control diet (97%).  

5-chloroindole does not alter honey bee larvae development 

Among the indole analogues tested, we focused on 5-chloroindole because it had the 

lowest IC50 value, is inexpensive, and highly soluble in water. To determine the highest 

concentration of 5-chloroindole that larvae could tolerate, larvae were fed artificial worker jelly 

(WJ) containing 0.5, 0.75, 1.0, or 1.5 mM of 5-chloroindole (Figure 4.7) through pupation. There 

were no significant differences in survival between larvae fed 0.5-1.0 mM doses of 5-

chloroindole and those fed the control diet. However, at 1.5 mM 5-chloroindole 100% mortality 

was observed 24 hours after treatment (n=30).  

5-chloroindole protects honey bee larvae from AFB disease.  

Honey bee larval survival was significantly higher for larvae fed 5-chloroindole (27-

55%) plus spores than for larvae fed spores alone (8%). The highest survival percentages were 

observed in larvae fed with 0.5 (51%) and 0.75 (55%) mM 5-chloroindole.  However, honey bee 

larvae fed 5-chloroindole had a significantly lower larval survival than the larvae fed control diet 

(99%).  

Antimicrobial activity of 5-chloroindole on P. larvae cells and spores 

At 6, 12, 18, and 24 hours there were no significant differences in growth of P. larvae 

cells supplemented with the two controls, MYPGP or MYPGP plus dimethyl sulfoxide as a 

vehicle (DMSO). In the presence of 0.5 mM 5-chloroindole P. larvae cellular growth did not 

differ from MYPGP controls. However, P. larvae cellular growth decreased significantly when 

higher concentrations of 5-chloroindole (1.0, 1.5, 2.0 mM) were used. 5-chloroindole had an 

antagonistic effect of on P. larvae cells growing in MYPGP broth over a 24 hour period (Figure 

4.8). Hence, we conclude that 5-chloroindole prevented P. larvae cellular growth in vitro. 
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P. larvae spores converted to vegetative cells over a 24 hour period in a medium 

supporting growth (Figure 4.10). When P. larvae spores were exposed to 5-chloroindole over a 

24 hour period in complex medium no growth was obtained). After 18 hours, spores in MYPGP 

and MYPGP plus DMSO had significantly higher growth than other conditions. During the 24 

hour period, spores in any of the 5-chloroindole (0.5, 1.0, 1.5, 2.0 mM) concentrations tested 

failed to germinate and produce detectable cellular growth.  

4.5 Discussion 

Molecular analogs had been previously used to understand how germination receptors 

interact with germinants (Abel-Santos, Dodatko 2007, Dodatko, Akoachere et al. 2010, 

Howerton, Ramirez et al. 2011). The strongest inhibitors of P. larvae spore germination were 

indole analogs with electron withdrawing groups. Electron withdrawing groups may have 

improved receptor interaction by displaying a negatively charged atom similar to uric acid. Uric 

acid has hydroxyl groups at positions 2, 5, and 7 that provide a negative charge. To inhibit P. 

larvae spore germination further, indole analogs with multiple electron withdrawing atoms at 

positions 2, 5, and 7 should be tested.  

The majority of the compounds tested did not significantly reduce P. larvae spore 

germination in vitro. Changing the nitrogen or carbon atoms in indole rings with sulfur or 

nitrogen groups reduced the inhibitory effect of the molecule as a whole. Indeed, 13 of the 33 

compounds tested differed from indole only by two atoms but were unable to inhibit P. larvae 

spore germination. These results suggest that the carbon and nitrogen groups of indole are 

essential for binding the putative germinant binding site. 

When indole analogs are incorporated in worker jelly they are not toxic to honey bee 

larvae at a 0.5 mM final concentration. Furthermore, all of the indole analogs tested protected 
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honey bee larvae from AFB disease development. Thus, as previous studies suggest, indole and 

indole analogs can serve as protective compounds against infectious organisms (Ueno, Kihara et 

al. 2005, Kim, Lee et al. 2011). Unfortunately, none of the indole analogs tested completely 

prevented AFB in bee larvae. However, amongst the compounds identified in this compound 

screen 5-chloroindole had a strong effect against P. larvae.  

The antagonistic activity of 5-chloroindole against P. larvae was evaluated with 

additional toxicity and exposure assays. 5-chloroindole can be incorporated into worker jelly 

daily at a 0.5, 0.75, and 1.0 mM concentrations without altering larval development even at the 

highest concentration. We expected 5-chloroindole not to be toxic to honey bee larvae because of 

the low concentrations tested.   

The effect of indole analogues against the vegetative and spore stages of P. larvae in 

vitro was evaluated. Exogenous 5-chloroindole delayed P. larvae cellular growth during a 24 

hour period at a 1.0, 1.5, or 2.0 mM concentration. Addition of 5-chloroindole to P. larvae 

spores in complex medium prevented spore outgrowth over a 24 hour period. A complex 

medium was used instead of uric acid plus L-tyrosine to provide germinating cells nutrients to 

grow. Thus, complex medium served as a surrogate to the nutritious environment in the larval 

gut. The inhibitory effect observed in vitro could serve to protect honey bee larvae from AFB 

disease development.   

Developing a suitable inhibitor delivery system for honey bee colonies is the final step 

towards a potential disease treatment. Ideally the treatment substances would be ingested, be 

effective at low concentrations, and degrade prior to contaminating honey stores. Honey bees can 

be fed sugar water mixtures, sugar powder, or patties infused with treatments (Elzen, Westervelt 

et al. 2002, Yoder, Jajack et al. 2014). In the colony, both nectar and pollen are transferred from 
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foraging bees to bees performing nurse duties (Crailsheim, Schneider et al. 1992, Grüter, Farina 

2007). Once inside the nurse bees the compounds can spread similarly as P. larvae spores spread 

to honey bee larvae (Gillard, Charriere et al. 2008, Lindström, Korpela et al. 2008). The 

compounds identified need to work at low concentrations so that the AFB treatment remains cost 

effective. The half-life of the compounds needs to be limited to weeks so that no residue remains 

in wax, honey, or pollen (Frison, Breitkreitz et al. 1999, Bogdanov 2006, Lopez, Pettis et al. 

2008). Ultimately, in order to prevent AFB disease, compounds with lower toxicity and 

increased inhibitory effect on spore germination need to be synthesized.  
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Figure 4.1: Chronic feeding of indole analogs to honey bee larvae. Indole analogs 

were fed to honey bee larvae until the onset of pupation. The larval diet was prepared 

daily in order to ensure indole analogs remained in solution.  
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Figure 4.2: Honey bee larvae exposure assay. Second instar larvae were exposed to P. 

larvae spores during a 24 hour period. AFB disease development was monitored via 

microscopy. Larvae that developed AFB disease were consumed by P. larvae cells.  



 
 

73 
 

 

 

 

 

 

 

 
 

Figure 4.3: Compounds tested as antagonists of P. larvae spore germination. 1. 

Thionaphthene; 2. Indazole; 3. 1H-Benzotriazole; 4. Benzimidazole; 5. 7-Azaindole; 6. 

Benzothiazole; 7. 1H-Isoindol-3amine; 8. 2-aminobenzothiazole; 9. 2-

Hydroxybenzothiazole; 10. 2-Methylbenzothiazole; 11. 6-nitrobenzothiazole; 12. 

Allopurinol; 13. Saccharin; 14. 2-Aminophenol; 15. 2-Mercaptopyridine; 16. 2-

Mercaptopyrimidine; 17. 3-Aminophenol; 18. Nicotinic acid; 19. 1-Acetylindole; 20. 2-

oxoindole; 21. 3-Cyanoindole; 22. 4-Cyanoindole; 23. 5-Fluoroindole; 24. 5-

hydroxyindole; 25. 5-Chloroindole; 26. 6-Aminoindole; 27. 6-Chloroindole; 28. 6-

Fluoroindole; 29. 3-Ethanamineindole.  
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Figure 4.4: Calculation of 50% inhibitory concentration. Dose-response curve of P. 

larvae spores germinated with L-tyrosine–uric acid in the presence of various 

concentrations of indole analogs. The IC50 for indole analogs was determined based on 

these data. 
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Figure 4.5: Effects of indole analogs on larval survival. Survival curves of honey bee 

larvae fed larval diet supplemented with indole analogs did not differ from control diet (wj). 

Differences between survival curves were determined using Kaplan-Meier analysis, Log-

Rank test, and the Holm-Sidak method with significance level = 0.05. 
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Figure 4.6: Effects of indole analogs on AFB disease in larvae. Survival curves of honey 

bee larvae fed larval diet (wj) supplemented with different indole analogs and P. larvae 

spores. Differences survival curves were determined to be significant using the Holm-Sidak 

method with significance level = 0.05. 
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Figure 4.7: Maximum 5-chloroindole dosage larvae tolerate. Survival curves of honey 

bee larvae fed larval diet supplemented with different concentrations of 5-chloroindole did 

not differ from control diet (wj). Differences between survival curves were determined 

using Kaplan-Meier analysis, Log-Rank test, and the Holm-Sidak method with significance 

level = 0.05. 
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Figure 4.8: 5-chloroindole increases larval survival after P. larvae spore exposure. 

Survival curves of honey bee larvae fed larval diet (wj) supplemented with different 

concentrations of 5-Chloroindole and P. larvae spores. Differences between all 5-

chloroindole concentrations and the spore treatments survival curves were determined 

to be significant using the Holm-Sidak method with significance level = 0.05.  
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Fig. 4.9: Inhibition activity of 5-chloroindole on P. larvae cells. P. larvae cells 

were grown in medium containing different concentrations of 5-chloroindole. 

Cellular growth was monitored over a 24 hour period (A-D). Asterisks denote 

significant differences from the growth of medium control (Analysis of Variance, 

Log-rank test, p<0.05). Relative OD580 values are obtained by dividing each data 

point by the initial optical density (OD580 approximately = 0.19 at 0 hour). 
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Figure 4.10: Inhibition activity of 5-chloroindole on P. larvae spores. P. larvae 

spores were grown in medium containing different concentrations of 5-

chloroindole. Growth was monitored over a 24 hour period (A-D). Asterisks denote 

significant differences from the growth of the medium control (Analysis of 

Variance, Log-rank test, p<0.05). Relative OD580 values were obtained by dividing 

each data point by the initial optical density (OD580 approximately = 0.15 at 0 hour). 
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Table 4.1. Daily amounts and composition of artificial diet provided to larvae 

Day 

Amount 

per well 

(µl) 

Culture 

plates 

used 

(wells/

plate) 

Number 

of larvae 

(larvae/

well) 

% D-

glucose 

(w/v) 

% D-

fructose 

(w/v) 

% yeast 

extract 

(w/v) 

% royal 

jelly 

(w/v) 

1 2500 6 40 5.1 5.1 0.9 50 

2 2500 6 40 5.1 5.1 0.9 50 

3 250 48 1 6.4 6.4 1.3 50 

4 30 48 1 7.7 7.7 1.7 50 

5 40 48 1 7.7 7.7 1.7 50 

6 50 48 1 7.7 7.7 1.7 50 

7 60 48 1 7.7 7.7 1.7 50 
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Table 4.2: The effects of indole analogues on P. larvae spore germination. P. 

larvae spores were incubated with various concentrations of indole analogs for 15 

minutes prior to addition of 3 mM L-tyrosine and 3 mM uric acid. IC50 was 

calculated by plotting percent germination versus indole analog concentration. 

Error represents standard error from at least six independent measurements. 

 

 

 

 

Indole Analog IC50 (mM) 

Indole 0.37 ± .02 

4-cyanoindole 0.20 ± .02 

5-bromindole 0.06 ± .07 

5-chloroindole 0.03 ± .01 

5-fluoroindole 0.12 ± .02 

5-hydroxyindole 0.55 ± .17 

5-nitroindole 0.07 ± .01 

6-bromoindole 0.06 ± .06 

6-chloroindole 0.02 ± .00 

6-cyanoindole 0.11 ± .01 

6-fluoroindole 0.12 ± .01 
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Chapter 5: Expression of Paenibacillus larvae spore germination receptors 

5.1 Abstract 

Spores are dormant forms of bacteria resistant to extreme heat, desiccation and chemicals 

that are produced during the process of sporulation as a response to nutrient deprivation. During 

sporulation, germination receptors are incorporated within the inner membrane to allow spores to 

germinate and become active cells again under favorable environmental conditions. The genome 

of P. larvae strain B-3650 contains five loci with gene sequences that are similar to known B. 

subtilis ger and prkC germination receptors. The mRNA level of germination receptors in 

exponentially growing and sporulating cultures was measured. Germination receptor mRNAs for 

gerKA 3 and gerKA 4 were more abundant in sporulating than in growing cultures. Furthermore, 

no germination receptor mRNAs were detected in exponentially growing cultures. These results 

suggest that P. larvae spores exit dormancy due to detection of environmental cues via 

germination receptors. The identification of P. larvae spore germination receptors provides a 

basis for understanding how AFB disease begins in honey bee larvae. 

5.2 Introduction  

Sporulation, the differentiation of bacterial cells into dormant spores, occurs as a 

response to nutrient deprivation (Errington 1993, Errington 2003). Although sporulation has 

been studied in many species, the best understood model system for sporulation is B. subtilis. At 

the end of exponential growth of vegetative cells, the cells use accumulated resources to divide 

or form spores. Because sporulation occurs in conjoined cells, the execution of this process takes 

place in several phases. One cell provides resources for spore formation and is ultimately broken 

down, while the other cell is packed into a resistant coat, which is endowed with germination 

machinery. Finally, the cell enters dormancy. The physiological and biochemical properties of 
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the spore form during a period of several hours. To produce viable spores during this process, the 

transcriptional activation and deactivation of several gene sets is required. There are four sigma 

factors/proteins (σe, σf, σg, and σk) in B. subtilis that regulate transcription of sporulation specific 

genes. The expression of ger germination receptors and several other genes is regulated by the 

specialized sigma factor G (SigG/σg) protein, which is only active during sporulation. 

Localization of the germination receptors occurs during spore cortex formation (Errington 1993, 

Errington 2003). 

The process of germination allows for spores to convert to metabolically active cells 

(Moir, Corfe et al. 2002, Peter 2003, Moir 2006). Germination receptors respond to 

environmental cues, germinants, and initiate the conversion to metabolically active cells. Ger 

germination receptors genes are normally encoded in transcriptional units (operons) consisting of 

three genes/subunits designated A, B, and C. Although isolated monocistronic units are also 

found. For example, the first germination receptor described GerA is composed of GerAA, 

GerAB, and GerAC subunits. All three subunits are necessary for germination receptor 

formation. Fourteen phylogenetically distinct germination receptors have been described 

including GerA, GerB, GerG, GerH, GerI, GerQ, GerK, GerL, GerM, GerR, GerS, GerU, GerX, 

GerY (Ross, Abel-Santos 2010a, Ross, Abel-Santos 2010b).  

The PrkC receptor germination pathway, is triggered by the detection of muropeptides 

released from closely related growing bacteria (Shah, Laaberki et al. 2008). This pathway is 

analogous to bacterial quorum sensing in that it occurs in response to population density. Spores 

will only germinate if they detect a muropeptide signal released by cells. Even though the PrkC 

pathway has only been studied in B. subtilis and B. anthracis, PrkC proteins are found in over 75 
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bacterial species (Paredes-Sabja, Setlow et al. 2011). When chemical cues from the environment, 

i.e. germinants, bind to germination receptors it triggers spore germination.  

Spore germination, the conversion of dormant spores to actively dividing cells, results in 

a loss of spore specific characteristics. Initially, germinated spores lose their resistance to wet 

and dry heat that would not kill dormant spores. As germination continues the spore’s inner 

membrane becomes permeable to ions. Monovalent ions including H+, Na+, and K+ are released 

from the spore as the membrane permeability increases. Then the calcium-dipicolinic acid (Ca-

DPA) complex exits the spore core. Ca-DPA release activates hydrolysis of peptidoglycan in the 

spore cortex. Together movement of ions and hydrolysis of peptidoglycan allow for spore 

hydration (Peter 2003, Moir 2006, Paredes-Sabja, Setlow et al. 2011). In nature, the germination 

process is triggered by binding of nutrients to germination receptors.  

The ger and prkC receptor sequences in the P. larvae genome are assigned a name and 

function based on homology to B. subtilis proteins (Chan, Cornman et al. 2011). In B. subtilis 

germination proteins were identified by studying germination mutants (Sammons, Moir et al. 

1981). For example, mutations in any of the three genes in the gerA operon prevented B. subtilis 

spores from germinating in response to a known germinant, L-alanine. However, experimental 

tools to generate P. larvae gene mutants are not readily available. 

There are very few molecular tools available to study the germination receptors of P. 

larvae. The effect of overexpression of germination receptors on germination rates of P. larvae 

spores has not been studied because of a lack of expression plasmids. In B. subtilis, it has been 

shown that overexpression of germination receptors increases germination rates (Cabrera-

Martinez, Tovar-Rojo et al. 2003). Furthermore, only recently efficient introduction of plasmids 

into P. larvae cells has been improved through a new electroporation method (Murray, Aronstein 
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2008). The electroporation method replaced conjugation and polyethylene glycol based 

protoplast transformation methods that had low reported efficiencies (Bakhiet, Stahly 1985a). In 

2012, the TargeTron mutagenesis system was used to create the first P. larvae gene mutants 

(Zarschler, Janesch et al. 2009). This system has allowed researchers to study virulence genes in 

P. larvae. Unfortunately, none of the published works have the experimental criteria to satisfy all 

of Koch’s molecular postulates (Falkow 1988, Garcia‐Gonzalez, Müller et al. 2014a, Garcia‐

Gonzalez, Müller et al. 2014b, Hertlein, Müller et al. 2014, Fünfhaus, Poppinga et al. 2013). 

There is currently no molecular tool to show reversion or replacement of mutated genes in P. 

larvae. 

P. larvae sporulation is not as well characterized as it is in B. subtilis. However, the 

genome of P. larvae contains four putative ger and one prkC gene sequences that are 

homologous to ger genes in B. subtilis (Chan, Cornman et al. 2011). Because B. subtilis receptor 

production is regulated by the sigma factor (σg), we expect P. larvae sporulation to work in a 

similar fashion. If this is the case, P. larvae likely produces Ger and/or PrkC receptor proteins 

that allow spores to germinate. By measuring the mRNA levels of ger and prkC genes, we can 

infer which receptors are expressed during sporulation.  

In this work, methods necessary to study sporulation in P. larvae grown on MYPGP agar 

plates were developed. Germination receptor mRNAs were measured in growing and sporulating 

cultures via quantitative polymerase chain reaction (qPCR). The relative levels of two 

germination receptor mRNAs were higher in sporulating than in growing cultures. The 

expression of ger genes coincided with the expression of sporulation regulator sigG gene 

expression as expected.  

 

5.3 Materials and Methods 
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Materials. Chemicals were purchased from the Sigma-Aldrich Corporation (St. Louis, 

MO) and VWR International (Radnor, PA). The dehydrated culture media were purchased from 

BD Difco (Franklin Lakes, NJ). Paenibacillus larvae ERIC group I strain B-3650/LMG 16245 

was purchased from the Belgian Coordinated Collections of Microorganisms (BCCM).  

Experimental design. P. larvae protein sequences were analyzed via structure prediction 

software to identify key germination receptor structural features. Three replicate P. larvae 

cultures were used to inoculate MYPGP plates (4 plates per culture). The inoculated plates were 

incubated and their growth was monitored over a 96 hour period. RNA was isolated from three 

P. larvae plates after 24 hours of growth. Similarly, RNA was isolated from three sporulating P. 

larvae plates after 48, 72, and 96 hours of growth. Thus, qPCR could be used to compare mRNA 

levels between growing (24 hour) and sporulating (48, 72, and 96 hour) time points. The relative 

expression of five putative germination receptor genes (gerKA 1, gerKA 2, gerKA 3, gerKA 4, 

and prkC), a sporulation specific gene (sigG), and a housekeeping gene (rpoB) was measured. 

The qPCR workflow followed standard methods including: DNase I digest of gDNA, cDNA 

synthesis, primer design, primer PCR test, qPCR, and data analysis.  

Identification of P. larvae B-3650 germination receptors. P. larvae strain B-3650 was 

used because its genome had been sequenced previously (Chan, Cornman et al. 2011). The gene 

coding sequences (CDS) for this P. larvae strain have been deposited on Pathosystems Resource 

Integration Center (PATRIC) website (Wattam, Abraham et al. 2014). The P. larvae feature 

table was searched to identify CDS related to sporulation, germination, and housekeeping genes 

(Table 5.1). The sporulation specific sigma factor G (sigG) gene was identified using a BLAST 

search of P. larvae DNA sequences (Chan, Cornman et al. 2011). 
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Published BLAST searches of genomic DNA sequences of P. larvae resulted in the 

identification of four distinct Ger germination receptor sequences (Chan, Cornman et al. 2011). 

There are two genome sites that encode putative canonical tricistronic Ger operon (containing A, 

B, and C-subunits). There is also one orphan germination receptor A-subunit and a truncated 

orphan A-subunit in the P. larvae genome. Finally, a eukaryotic-like serine/threonine kinase 

(prkC) germination receptor was also identified using this published BLAST-based approach 

(Figure 5.1) (Chan, Cornman et al. 2011). The PrkC protein has a conserved kinase and 

penicillin-binding protein and serine/threonine kinase associated (PASTA) domain similar to the 

protein identified in B. subtilis (Shah, Laaberki et al. 2008). 

A BLAST search identified an RNA polymerase beta subunit (rpoB) gene within the P. 

larvae genome. In B. subtilis and C. difficile, the rpoB gene is considered a housekeeping gene 

whose expression should not change during sporulation (Fimlaid, Bond et al. 2013). Thus P. 

larvae sporulation and germination gene expression was normalized relative to rpoB.  

Amino acid sequences were pasted into OCTOPUS a program that predicts membrane 

protein topology and signal peptides (Viklund, Elofsson 2008). Furthermore, the amino acid 

sequences were uploaded to RaptorX a protein structure prediction server (Källberg, Wang et al. 

2012).  

Media preparation: TMYGP consists of 15 g yeast extract, 4 g glucose, 1 g sodium 

pyruvate, 7.1 g Tris-maleate per liter of medium (pH 7.0 ± 0.2). MYPGP broth consists of 10 g 

Mueller-Hinton broth, 15 g yeast extract, 3 g K2HPO4, 2 g glucose, and 1 g sodium pyruvate per 

liter of medium (pH 7.2 ± 0.2).  Media were autoclaved at 121°C and 15 PSI for a minimum 
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sterilization time of 30 minutes. Glucose was filtered sterilized and added to media prior to use. 

For solid media (MYPGP agar) 20 g of agar were used per liter of medium.  

P. larvae strain B-3650 sporulation in TMYGP broth. P. larvae B-3650 was grown 

aerobically on MYPGP agar plates for 2 days at 37°C. A single colony from the MYPGP plate 

was used to inoculate 8 ml of MYPGP broth and it was incubated overnight at 37°C and 195 

rpm. TMYGP broth medium was inoculated with a 10% inoculum of the overnight culture. The 

turbidity of the cultures was monitored by optical density readings at 580 nm. Spore formation in 

cultures was monitored using the Schaeffer-Fulton staining method (Schaeffer, Fulton 1933).  

P. larvae strain B-3650 sporulation on MYPGP agar plates. P. larvae B-3650 was 

grown aerobically on MYPGP agar plates for 2 days at 37°C. A single colony from the MYPGP 

plate was used to inoculate 2 ml MYPGP broth, then incubated over 4.5 hours at 37°C and 195 

rpm. MYPGP agar plates were spread plated with 100 µl of a culture with an approximate optical 

density A580 of 0.01. The inoculated plates were incubated for 5 days at 37°C in an incubator at 

5% CO2. Spore formation in cultures was monitored using the Schaeffer-Fulton staining. 

P. larvae RNA extraction with lysozyme/SDS/Trizol Reagent. Total RNA was isolated 

from three plate cultures at 24, 48, 72, and 96 hours after plating. A three step protocol was used 

to obtain total RNA from P. larvae grown on MYPGP agar plates (Ambion & Invitrogen 

protocols). Initially, sporulating bacterial lawns were collected from MYPGP plates by flooding 

with 5 ml of a solution of 10 mM Tris HCl and 0.1 mM EDTA in RNase free water (Ambion, 

Austin TX). Sporulating cells were pelleted by centrifugation at 3082 g for 10 minutes at 4°C. 

The supernatant was discarded and the pellet was resuspended in 1 ml of a lysis solution 

containing 10 mM Tris HCl, 0.1 mM EDTA, 10 mg/ml lysozyme, and 0.1% SDS in RNase free 
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water (Ambion, Austin TX). Cells were incubated with the lysozyme-SDS solution at room 

temperature for 5 minutes.  

Next, a 5 minute homogenization step using a pulsing vortex bead mixer (set to the 

maximum speed of 3200 rpm) was performed at room temperature in the presence of 200 mg 

100 µm zirconia beads and 1 ml Trizol reagent (Invitrogen, Carlsbad CA). The sample was 

incubated for 5 minutes at room temperature and 0.2 ml chloroform was added and mixed by 

inversion for 15 seconds. The sample was incubated for 3 minutes at room temperature and then 

centrifugation at 12,000 g for 10 minutes at 4°C. The centrifugation step allows for separation of 

the organic and aqueous phases. The aqueous phase was moved to a new tube and two additional 

chloroform extraction steps were performed. Afterwards, RNA was precipitated from the 

aqueous phase with one volume of isopropanol at room temperature. The RNA was pelleted by 

centrifugation at 12,000 g for 10 minutes and 4°C. One 70% ethanol wash step was performed to 

remove contaminants. RNA was resupended in RNA free water and stored at -82°C until use. 

DNase I treatment to remove genomic DNA contamination from RNA. The extracted 

RNA was treated with a Turbo DNA-free kit (Ambion, Austin TX). To each RNA sample, 0.1 

volume of Turbo DNase I buffer and 1-4 µl of DNase I were added. Samples were incubated at 

37°C for 30 minutes to remove contaminating DNA. After sample incubation 0.1-0.4 volumes of 

the Ambion inactivation reagent were used to remove divalent cations and DNase I enzyme. 

Centrifugation at 10,000 g for 1.5 minutes was performed to separate RNA from Turbo DNase I 

components. The supernatant containing RNA was transferred to a new tube and RNA was 

precipitated with 2.5 volumes of reagent ethanol and 0.1 volumes of 3 M sodium acetate (pH 

5.2). The pellet was washed with 70% ethanol to remove salts and contaminants. RNA was 

resuspended in RNase free water and stored at -82°C prior to use. 
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RNA quantification and quality control. The RNA concentration was determined using 

either a NanoView (GE, Piscataway NJ) or the NanoDrop 1000 (Nanodrop, Wilmington DE) 

spectrophotometer. The spectrophotometer provided RNA concentrations (ng/μl), A260/A280, and 

A260/A230 ratios. Quality RNA has an A260/A280 ratio of approximately 2.0 and an A260/A230 ratio 

ranging from 2.0-2.2 (Thermo Scientific, Wilmington DE).  

Minus reverse transcriptase (RT) PCR reactions were performed with 2.5 ng of DNase I 

treated RNA following the same qPCR reaction setup. A minus RT PCR reaction consisted of 5 

µl of RNA template at a final concentration of 0.5 ng/μl, 0.4 µM primer pairs, 12.5 µl EconoTaq 

DNA polymerase mix (Lucigen, Middleton WI), and water to a final volume of 25 µl. A 4 µl 

aliquot from the Minus RT PCR reaction was visualized using a 1% agarose gel stained with 

ethidium bromide (0.5 μg/ml). RNA contaminated with genomic DNA would yield a visible 

PCR product on an agarose gel. Only RNA free from genomic DNA was used for 

complementary DNA (cDNA) synthesis. 

cDNA synthesis from DNase I treated RNA. The qScript cDNA synthesis kit (Quanta 

Biosciences, Gaithersburg MD) was used for mRNA quantification using quantitative PCR. The 

cDNA synthesis kit contains random primers that allow for first-strand synthesis from a broad 

range of RNA templates. A maximum of one microgram of RNA was used in a reverse 

transcription reaction to produce first strand cDNA. The cDNA synthesis step was assumed to 

have 100% efficiency. Thus one microgram of RNA was assumed have converted to one 

microgram of cDNA. 

qPCR primer design. PrimerQuest, a program from Integrated DNA Technologies 

(IDT, Coralville IA), was used to design primers for qPCR. The sequence for the four gerA-

subunits, prkC, sigG, and rpoB genes were provided to the program. The amplicon size was 
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limited to below 200 bases as suggested by PerfeCta SYBR Green SuperMix instructions. The 

primer sequences were checked for specificity using NCBI’s Primer-Blast program. Primer-Blast 

determines if primer pairs will amplify more than one sequence in an organism’s genome. Primer 

specificity was also measured by conducting PCR with each primer pair using genomic DNA as 

a target. Amplified samples were detected on an agarose gel and visualized with ethidium 

bromide. The primers were approximately 20 bases long and had a melting temperature of 57-

58°C (Table 5.2).  

qPCR reaction setup. cDNA, genomic DNA, and water were used as templates for 

qPCR reactions (Figure 5.2). To measure mRNA abundance, 25 ng of cDNA was used as 

template for qPCR reactions. For positive controls, 0.125 ng of genomic DNA was used as 

template because this resulted in reliable amplification of genes of interest. For negative controls, 

nuclease free water was used as template. A qPCR reaction consisted of 5 µl of template, 0.4 µM 

of primer pairs, 12.5 µl PerfeCta SYBR Green SuperMix (Quanta Biosciences, Gaithersburg 

MD), and water to a final volume of 25 µl. mRNA abundance was measured during each time 

point in triplicate with at least three different RNA isolations. 

Bio-Rad iQ iCycler qPCR program. The Bio-Rad iQ iCycler qPCR program was setup 

using the PerfeCta SYBR Green SuperMix guidelines (Table 5.3). An initial heat activation step 

is required to denature the antibodies that maintain the AccuStart Taq DNA polymerase inactive 

(cycle 1). Next, 40 cycles of a standard three step (denaturation, annealing, and extension) PCR 

protocol were used to amplify cDNA (cycle 2). Fluorescence was measured during every 

extension step of PCR.  

A melt curve analysis was performed to measure the number of DNA fragments 

produced during PCR amplification (cycle 5). The temperature changed from 55° to 94°C by 
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0.5°C increments while relative fluorescence was measured. Initially, at 55° C all of the PCR 

products were bound by fluorescent dye (SYBR green) and maximum fluorescence is measured. 

As the temperature increased, the fluorescence detected decreased proportionally. After the melt 

curve analysis was completed the IQ iCycler qPCR program provides a delta fluorescence/delta 

temperature versus temperature graph. If the qPCR primers are specific, then a single peak is 

observed in the melt curve graph. 

P. larvae qPCR gene analysis. For each gene of interest, mRNA abundance in 12 RNA 

samples was measured via qPCR in triplicate. The presence of four ger and one prkC mRNA 

transcripts was analyzed. To confirm that the isolated RNA belonged to sporulating cultures the 

mRNA levels for sigma factor G (σg) were measured. The sigma factor G (σg) gene encodes for a 

protein that promotes transcription of sporulation specific genes.  SigG gene should be 

transcribed at approximately the same time as ger and prkC genes. The rpoB gene that encodes 

the β subunit of bacterial RNA polymerase was used to normalize the gene expression data 

generated.   

The qPCR results were analyzed via the delta-delta Ct method that assumes a real-time 

PCR reaction efficiency of 100% (Schmittgen, Livak 2008). Initially, the delta Ct for the 

experimental group is calculated (Ct target gene - Ct reference gene). Next, the delta Ct for the 

control group is calculated (Ct target gene - Ct reference gene). Finally, the fold change is 

calculated by comparing the delta Ct for the experimental and control groups (2-(Experimental delta Ct- 

Control delta Ct)). A one way ANOVA was used to detect statistical differences between experimental 

groups.  

5.4 Results 

Analysis of genes encoding germination receptors in P. larvae  
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Four sequences in the genome of P. larvae are related to the gerKA gene of the B. subtilis 

(Chan, Cornman et al. 2011). The GerKA subunit in B. subtilis and three of the GerKA P. larvae 

are predicted to have five or six membrane spanning domains along with N- and C-terminal 

hydrophilic domains (Ross, Abel-Santos 2010a). To predict protein structure and function of P. 

larvae GerKA subunits the amino acid sequences were analyzed using protein prediction 

websites.  

Initially, Octopus, a program that predicts membrane topology and signal peptides was 

used (Käll, Krogh et al. 2004, Viklund, Elofsson 2008). According to Octopus both P. larvae and 

B. subtilis germination receptors contain multiple transmembrane-helices. The GerKA subunit of 

B. subtilis and three of the P. larvae GerKA subunits are predicted to contain four 

transmembrane-helices and one predicted to contain five transmembrane-helices (Figure 5.3). All 

of the transmembrane-helices are located near the C-terminus of the protein. Additionally, 

Octopus predicted that the N- and C-terminal domains of the GerKA subunits analyzed can be 

found outside the membrane. In contrast to the other GerKA subunits analyzed, P. larvae GerKA 

3 appeared to be a truncated protein with a smaller soluble domain than other proteins analyzed. 

Together these Octopus results suggest P. larvae GerKA 1, 2, and 4 are intact proteins.  

The expected similarity between GerKA in B. subtilis and P. larvae proteins was also 

confirmed with RaptorX (Figure 5.4). The predicted 3D structures provided by RaptorX, indicate 

that all P. larvae GerKA subunits share a common shape with GerKA from B. subtilis. As 

Octopus indicated, all of the GerKA proteins have helices near the C-terminus that are buried in 

a membrane. However, RaptorX predicts that P. larvae and B. subtilis germination receptors 

have five helices instead of four as Octopus predicted. Moreover, at the C- and N- terminus 

GerKA proteins form structures that are exposed to the environment. These soluble domains are 
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absent in the truncated GerKA 3. Because P. larvae GerKA proteins contain similar domains as 

the B. subtilis GerKA protein they are likely to play a role in spore germination. 

P. larvae contains a gene that is similar by BLAST to a eukaryotic-like serine/threonine 

kinase gene (prkC) that codes for a protein that signals spores to exit dormancy in response to 

peptidoglycan fragments in B. subtilis. The P. larvae PrkC protein is predicted to contain an N-

terminal kinase domain, a membrane spanning domain, and three penicillin-binding protein and 

serine/threonine kinase associated (PASTA) domain. RaptorX and Octopus protein were used to 

analyze the B. subtilis and P. larvae PrkC amino acid sequences (Figure 5.5). Both PrkC protein 

sequences consist of two domains that are related to the serine/threonine kinase PrkC from 

Staphylococcus aureus. Octopus detected a membrane spanning domain characteristic of PrkC 

proteins studied. The cytoplasmic (N-terminus) and extracellular (C-terminus) domains of PrkC 

proteins were also detected correctly with Octopus. The results from RaptorX and Octopus 

protein prediction programs indicate that the PrkC protein is the P. larvae genome is likely 

functional.  

qPCR primer specificity 

 PCR amplification with the primers designed (Table 5.1) and genomic DNA template 

was performed. All of the designed primer sets produced one product as seen on an agarose gel 

(Figure 5.6). The PCR products were approximately 200 bp long as expected. A melt curve 

analysis was also performed to check PCR specificity. The melt curve for all of the genes 

analyzed was a single sharp peak indicating a single PCR product (Figure 5.7). No primer dimers 

were detected in the sample lacking template. 

P. larvae growth and sporulation in TMYGP broth 
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 To assess the expression of P. larvae strain B-3650 germination receptors, sporulation 

studies were first performed with TMYGP liquid cultures. P. larvae strain B-3650 had been 

previously shown that sporulate in TMYGP broth at a level of up to 1000 times more (5x108 

spores per milliliter) spores relative to previously used liquid media (Dingman 1983, Dingman, 

Stahly 1983). This corresponds to approximately 68% of the bacterial population being capable 

of sporulation.  

In our hands, less than 1% of cells were able to sporulate in TMYGP medium 

(determined by microscopic analysis of bacterial smears stained using Schaeffer Fulton method). 

One explanation for the sporulation efficiency differences could be medium composition. 

TMYGP is composed of three compounds (sodium pyruvate, glucose, tris-maleate) and yeast 

extract. The compounds purchased (sodium pyruvate, glucose, tris-maleate) had a percent purity 

above 99% based on manufacturer analyses indicating purity was not an issue. As previously 

observed in the Abel-Santos laboratory, the choice in yeast extract could alter sporulation in 

different species (data not shown). Four different brands of yeast extract were tested as 

supplements to TMYGP medium. However, changing yeast extract did not increase sporulation 

percentages in TMYGP medium.  

P. larvae growth and sporulation of on MYPGP agar plates 

P. larvae strain B-3650 grew and sporulated well on MYPGP agar plates when incubated 

in a 5% CO2 atmosphere. MYPGP plates were utilized instead of Tryptic Soy agar (Chapter 3) 

because P. larvae sporulation had been previously characterized using this medium (Dingman 

1983). P. larvae made confluent lawns on MYPGP agar. The Schaeffer-Fulton endospore 

staining method allowed us to follow the sporulation process by microscopy (Figure 5.8). At 24 

hours, only vegetative bacterial cells could be detected on MYPGP agar plates. At 48 hours, 
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sporulating cells could be detected along with vegetative cells. At 72 hours, the majority of the 

cells were sporulating. At 96 hours, the majority of the cell mass on plates were fully formed 

spores and very few cells.  

RNA extraction from P. larvae grown on MYPGP agar plates 

 The RNA extracted using the lysozyme, SDS, zirconium beads, and Trizol protocol was 

of high quality. The average 260/280 ratio was 1.98 indicating RNA samples were pure nucleic 

acids. The average 260/230 ratio was 1.57 which was lower than expected indicating RNA 

samples contained some chaotropic salts, organic molecules, or proteins. However, the 260/230 

ratio was high enough to conduct downstream analyses according to personal communication 

with UNLV genomics core. RNA samples were treated with DNase I following the rigorous 

treatment instructions. After DNase I digestion an RNA precipitation and an ethanol wash step 

was performed to remove PCR contaminants. For cDNA synthesis 500 ng and 1000 ng of RNA 

were then utilized.  

Quality control of RNA and cDNA from P. larvae grown on MYPGP agar plates 

 A quality control test with RNA and cDNA from P. larvae prior to conducting qPCR 

assays was performed. Using 2.5 ng of cDNA and RNA as a template PCR was performed with 

rpoB primers. PCR products were produced from cDNA template from the 24, 48, and 72 hour 

time points (Figure 5.9). However, PCR products were also detected in the RNA samples from 

the 48 hour time point indicating genomic DNA contamination (these RNA samples were not 

used). To remove genomic DNA contamination from RNA samples a rigorous DNase I treatment 

was performed. Eight units of the DNase I were used, capable of degrading 8 μg of DNA in 10 

minutes, to remove gDNA contamination from a new RNA aliquot. A second quality control test 
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with RNA and cDNA was performed after DNase I treatment. In the end, all of the RNA used 

was not contaminated by genomic DNA and was used to make cDNA.  

qPCR assays using cDNA from P. larvae grown on MYPGP agar plates 

qPCR assays were performed a with cDNA made from our cultures at 24, 48, 72, and 96 

hour time points. The PCR amplification vs cycle number graph and melt curve indicated our 

qPCR assays were successful. Amplification was seen amongst most technical replicates and in 

all positive controls. Furthermore, the melt curves indicate the amplification of a single product 

within each PCR reaction. qPCR data was analyzed using the delta delta Ct method to measure 

the target gene expression patterns (Schmittgen, Livak 2008). The 24 hour time point was used 

as the control group because only bacterial cells were observed during microscopic analysis of 

cultures. The 48, 72, and 96 hour time points were treated as the experimental groups. 

Sigma G is a protein responsible for the expression of many spore specific genes 

including germination receptors. The expression of sigG was greater in experimental groups (48, 

72, and 96 hours) than in the control group at 24 hours of growth (Figure 5.10). In fact, sigG 

expression was approximately 16-44 times greater in experimental cultures than in control 

cultures. SigG gene expression data correlates with the appearance of sporulating cells at 48, 72, 

and 96 hours but not in the 24 hour control culture as observed via microscopy.  

The relative abundance of germination receptor mRNAs was higher in experimental 

cultures than in control cultures (Figure 5.11). For P. larvae gerKA 1 and gerKA 2 receptors, the 

average fold change measured was approximately 1 indicating the mRNA levels did not change 

amongst cultures. The levels of gerKA 3 and gerKA 4 mRNA were 5-37 times higher in 

sporulating cultures than in control cultures. Thus, ger gene expression correlated with higher 

sigG mRNA expression in P. larvae.  
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The PrkC germination receptor allows B. subtilis spores to exit dormancy in response to 

muropeptide. The levels of PrkC germination receptor in growing and sporulating P. larvae 

cultures was examined. At the time points analyzed the expression of prkC was approximately 

equal to 1 indicating no transcription increase during sporulation (Figure 5.12).  

Discussion 

  Transitioning from cells to spores for P. larvae strain B-3650 did not occur readily in 

TMYGP broth as previously described (Dingman, Stahly 1983, Dingman 1983). This could be 

due to “domesticating” the organism to a laboratory setting. Indeed, another P. larvae strain 

obtained from a microbial stock center lost the ability to form spores after more than 30 years in 

the laboratory (Dingman 1983, Dingman, Stahly 1983). Nonetheless, the reason for the 

difference in sporulation efficiency observed for P. larvae strain B-3650 is not clear. 

The inability of P. larvae to form spores in liquid cultures limited this study. Comparison 

of this work to any previous sporulation studies that utilized liquid cultures was thus difficult 

(Dingman, Stahly 1983, Errington 1993, Igarashi, Setlow 2006). Additionally, the onset and 

abundance of sporulation gene mRNAs as previously determined using synchronized liquid 

cultures.  

 Sporulation of P. larvae on MYPGP agar plates was used because it proceeds as expected 

and with large number of spores produced. As expected, sigG was transcribed during 

sporulation. The levels of sigG in P. larvae were high as those seen in B. cereus (140 fold) (de 

Vries, Hornstra et al. 2004). Additional time points need to be made to monitor induction and 

loss of sigG mRNAs. The expression of sigG indicates the induction of germination receptor 

gene expression (Errington 1993, Errington 2003). 
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The levels of the five P. larvae germination receptors ranged between 1-37 fold in 

experimental versus control growing cultures. GerKA 3 expression was significantly higher in all 

experimental cultures than in the controls. GerKA 4 expression was significantly higher in 

experimental cultures (48 and 96 hours) than in controls. Transcription levels of P. larvae 

germination receptors are consistent with those seen in other studies (Igarashi, Setlow 2006, 

Madslien, Granum et al. 2014). The number of time points used here are not sufficient to detect 

changes in germination receptor mRNAs observed by other researchers (Igarashi, Setlow 2006). 

In B. subtilis the relative levels of germination receptor mRNAs fluctuate during the sporulation 

process. The initial peak in the levels of B. subtilis ger mRNAs have been shown to occur 3.5 

hours after the onset and prior to the end of sporulation based on dipicolinic acid (DPA) 

concentration. Thus, additional RNA extractions are required to determine P. larvae receptor 

mRNA levels during sporulation. The concentration of dipicolinic acid (DPA) will be measured 

to identify the start and end of sporulation.  

 In conclusion, the relative abundance of germination receptor mRNAs in P. larvae was 

measured via qPCR. Gene expression studies were conducted on RNA isolated from P. larvae 

grown on MYPGP plates. The expression of P. larvae germination receptors follows the 

developmental model first described in B. subtilis but our work is complicated by non-

synchronous growth of P. larvae on solid medium. Future work will focus on meeting MIQE 

guidelines for publication and determining the role of the highly expressed gerKA 4 gene in P. 

larvae spore germination (Huggett, Foy et al. 2013).  
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Figure 5.1: Genomic organization of P. larvae germination receptors. Related germination 

receptor subunits are shown in the same color. Proteins with non-germination related 

functional roles are shown in gray color.  
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Figure 5.2: qPCR assay plate setup. qPCR was used to measure mRNA abundance in 

growing and sporulating cultures (wells marked in gray). Each assay performed included 

positive and negative controls for the seven mRNA targets. Genomic DNA was use as a 

template for our positive qPCR control (wells marked in green). Similarly, water was 

used as a template for our negative qPCR control (wells marked red). Note that one qPCR 

plate was used to measure mRNA abundance for one culture.  
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Figure 5.3: Topology prediction for germination receptors. Results for B. subtilis and P. 

larvae germination receptor A-subunit indicate topology similarities. The transmembrane 

domains are shown in red and soluble domains are shown in brown and green. 
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Figure 5.4: Predicted structure of germination receptor subunit A. Protein prediction 

software indicates the genome of P. larvae contain sequences for germination receptors. 

There are no apparent differences in protein structure topology between canonical B. 

subtilis and putative P. larvae protein structures.  
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Figure 5.5: Predicted P. larvae prkC receptor. The PrkC protein in B. subtilis and P. larvae are 

predicted to have similar domains. Peptidoglycan fragments are thought to bind to PrkC proteins 

found in B. subtilis spores membrane via PASTA domains and trigger spore germination via the 

cytoplasmic kinase domain.  
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Figure 5.6: Specificity of qPCR primers. Agarose gel (1%) analysis of PCR 

products from qPCR primer and genomic DNA template. Lane 1: rpoB; Lane 3: prkC; 

Lane 6: sigG; Lane 9: gerKA 1; Lane 10: gerKA 2; Lane 11: gerKA 3; and Lane 12: 

gerKA 4.  
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Figure 5.7: Specificity of qPCR primers. After qPCR reactions we performed a melt curve 

analysis. A single peak in a melt curve analysis indicates a single PCR product. No primer dimers 

were detected in the positive and negative controls. 
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Figure 5.8: P. larvae sporulation in MYPGP broth. The growth of P. larvae in three 

cultures was followed during a 96 hour period via microscopy. At 24 hours, the cultures 

consisted of long growing bacilli chains. As time progressed the number of sporulating 

cells and spores increased. Cells are stained red and spores are stained green. P. larvae 

spores are approximately half the size of vegetative cells.  
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Figure 5.9: PCR products detected from cDNA and RNA templates. After 40 

PCR cycles, amplification products were detected using cDNA as a template. 

Genomic DNA contamination in 48 hour RNA samples was very noticeable. As a 

result only cDNA from the 24 and 72 hour time point was used for qPCR assays.  
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Figure 5.10: Relative abundance of P. larvae sigG sporulation gene. RNA was 

extracted from P. larvae cultures and mRNA levels quantified relative to rpoB. SigG 

expression was relatively higher in sporulating than in growing cultures. Each error 

bar represents a standard deviation obtained from at least nine independent 

measurements. There are no significant differences in sigG expression between 

sporulating cultures (p < 0.05). Each error bar represents a standard deviation 

obtained from at least nine independent measurements. 
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Figure 5.11: Relative abundance of P. larvae gerKA germination genes. We compared the 

relative abundance of gerKA mRNAs in growing and sporulating cultures. GerKA expression was 

relatively higher in sporulating than in growing cultures. Each error bar represents a standard 

deviation obtained from at least nine independent measurements. There are no significant 

differences in gerKA expression between sporulating cultures (p < 0.05). Note: the scales are not 

the same for each graph. Each error bar represents a standard deviation obtained from at least nine 

independent measurements. 
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Figure 5.12: Relative abundance of P. larvae prkC germination gene. The relative 

abundance of mRNA was compared in growing and sporulating cultures. The 

expression of prkC was similar in sporulating and growing cultures. Each error bar 

represents a standard deviation obtained from at least nine independent 

measurements. There are no significant differences in prkC expression between 

sporulating cultures (p < 0.05). Each error bar represents a standard deviation 

obtained from at least nine independent measurements. 
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Table 5.1: P. larvae genes of interest: Potential germination receptors, a sporulation specific 

gene, and a housekeeping genes of interest.  

Designation 

(Protein) 
Product Length 

AA 

Length 
Strand Protein ID 

GerKA 1 

GerKA 1428 475 + ZP_08055564.1 

GerSB 1101 366 + ZP_08055565.1 

GerSC 1131 376 + ZP_08055566.1 

GerKA 2 GerKA 1569 522 + ZP_08057011.1 

GerKA 3 GerKA 648 215 - ZP_08056748.1 

GerKA 4 

GerKA 1512 503 + ZP_08057959.1 

GerKB 1098 365 + ZP_08057960.1 

GerKC 1140 379 + ZP_08057961.1 

PrkC 
Serine/threonine protein 

kinase PrkC 
2070 689 - ZP_08058023.1 

SigG 

RNA polymerase 

sporulation specific sigma 

factor 

783 260 - ZP_08057830.1 

RpoB 
DNA-directed RNA 

polymerase beta subunit 
3537 1178 - ZP_08055137.1 
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Table 5.2: Primers designed for qPCR assay. Primer pairs produced one PCR product from 

P. larvae genomic DNA.  

Primer Bases Sequence 
Melting 

temperature °C 

 Forward gerKA 1 20 TAC AGC ATA CGC TGG CTT GT 57 

 Reverse gerKA 1 20 TCC CTG GAT TCC GCT ATG GA 58 

 Forward gerKA 2 20 TCC AGA GAA CGA GTC CCC TT 58 

 Reverse gerKA 2 20 GTT GCT GAC TAG TCC GGC TT 57 

 Forward gerKA 3 20 GTA TCT ACC GCA GCT GTC CC 57 

 Reverse gerKA 3 20 CCG TCA GAG CTT CTG GTC AA 57 

 Forward gerKA 4 20 GGC CCA TTT GAT GGA GGG AA 58 

 Reverse gerKA 4 20 AAA AAG CGG GAA GCG TTG TC 57 

 Forward prkC 20 ACC GTT ATG GCA GCA AGT GA 57 

 Reverse prkC 20 CGG CCA CAA GAA CCA AAA GG 57 

 Forward rpoB 20 AAA TCC ATG CCC GTT CCA CT 57 

 Reverse rpoB 20 AAG TCT TCA CAC GAC CGA CC 57 

 Forward sigG 20 CTC GCT TCG GGA TAT TGC CT 57 

 Reverse sigG 20 CGT AAA TCG GAT CTC CCC CG 57 
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Table 5.3: qPCR assay program. Summary of qPCR conditions used in this study.  

Cycle Step Temperature 
Duration 

(mm:ss) 
Comment 

Cycle  1: (  1X)       

  Step  1:  95.0ºC for 02:00   

          

Cycle  2: ( 40X)       

  Step  1:  95.0ºC for 00:15   

  Step  2:  58.0ºC for 00:30   

  Step  3:  72.0ºC for 00:30 Data collection enabled. 

          

Cycle  3: (  1X)       

  Step  1:  95.0ºC for 01:00   

          

Cycle  4: (  1X)       

  Step  1:  55.0ºC for 01:00   

          

Cycle  5: ( 80X)       

  Step  1:  55.0ºC for 00:10 Melt curve data collection and 

analysis enabled.  Increase setpoint temperature after cycle 2 by 0.5ºC 

          

          

Cycle  6: (  1X)       

  Step  1:   4.0ºC HOLD   
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Chapter 6: Conclusions and Future Directions 

6.1 Conclusions 

Although bacteria can inhabit several environments, most bacteria have a preferred 

environmental niche. The obligate pathogen, P. larvae, is only known flourish inside honey bee 

larvae. For P. larvae the conditions required for growth, sporulation, and germination have been 

poorly recreated in the laboratory. Dr. Douglas Dingman had previously shown that oxygen 

toxicity and possibly CO2 removal could alter P. larvae’s life cycle. We observed that aeration 

was crucial for adequate sporulation of P. larvae in the laboratory. In Chapter 2, we observed 

that microaerophilic conditions enhanced P. larvae sporulation in the laboratory.  

Environmental specificity is provided by germination receptors found in the inner spore 

membrane. In Chapter 3, we provide evidence supporting L-tyrosine plus uric acid as triggers of 

P. larvae spore germination. Exposure to one germinant molecule (L-tyrosine or uric acid) is not 

sufficient to trigger spore germination. As far as we know, in the colony L-tyrosine and uric acid 

are only found in the honey bee larvae. Thus, germination receptors allow for P. larvae to 

survive in an environment that is conducive for growth and only germinate when the target 

environment is available.  

Studies have shown that structural analogs of germinants can inhibit spore germination. 

Inhibitors of spore germination interact with germination receptors displacing the germinants. 

Studies have shown that spore germination is the most critical step in the life cycle of spore 

forming bacteria. Understanding P. larvae spore germination is important to prevent disease 

development in honey bee larvae. In Chapter 4, our data indicate that P. larvae germination 

inhibitors can be used to reduce AFB disease development. We used in vitro assays to measure 

the ability of 30 molecules to prevent P. larvae spore germination.  Five inhibitors of 
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germination were used in larval exposure assays. The presence of P. larvae germination 

inhibitors decreased AFB disease development in bee larvae. If we can synthesize stronger, yet 

non-toxic germination inhibitors, then we can protect honey bee larvae from AFB disease.  

Germination receptors allow spores to monitor and respond to their environments. Gene 

expression, protein quantification, and mutagenesis studies have shown the importance of 

germination receptors in spores exiting dormancy. It is believed that there are less than a dozen 

germination receptors in spores. Indeed the level of gene expression observed in sporulating 

cultures for germination receptor genes is insignificant. Consequently, mutation of any of the 

germination receptor subunits abolishes spores response to environmental cues. In Chapter 5 & 

6, we provide evidence for the role of five genes in P. larvae spore germination. Using qPCR we 

measured the relative abundance of the five germination related genes in growing and 

sporulating cultures. We found that the abundance of two germination receptor sequences was 

higher in sporulating cultures than in growing cultures. Furthermore, the expression of two 

germination sequences coincided with expression of a sporulation specific gene. In parallel, we 

attempted to disrupt germination receptor sequences and measure the effect on P. larvae spore 

germination. A clone containing a mutation in a germination receptor gene sequence was unable 

to be isolated. Additionally, P. larvae transformed with a plasmid that contained a germination 

receptor sequence failed to germinate faster. Our preliminary experiments will be validated in 

our future research.  

6.2 Significance 

Spore germination is a critical step in establishment of many diseases including anthrax, 

antibiotic associated colitis, gas gangrene, tetanus, botulism, and American Foulbrood disease. 

Controlling spore germination could provide a means of preventing disease establishment. 



 
 

118 
 

Triggering spore germination would induce the loss of spore-specific properties that permit the 

organisms to survive in harsh environments, while inhibition of spore germination would prevent 

the disease causing organism from exiting dormancy. Characterization of germination pathways 

is crucial for this disease management strategy to work. Identification of germinants is difficult 

because spore forming organisms inhabit nearly every environment. Thus the environmental 

signals that spores detect are unique and more complex than previously thought.  

Through in vitro and in vivo assays we learned about P. larvae spore germination and its 

influence on AFB disease in honey bee larvae. In the presence of L-tyrosine plus uric acid P. 

larvae spores exit dormancy and become as susceptible as vegetative cells.  Additionally, we 

have shown that inhibition of P. larvae spore germination alleviates AFB in laboratory-reared 

larvae. Stronger inhibitors of P. larvae spore germination need to be discovered to block the 

appearance of disease causing cells in honey bee larvae. Controlling spore germination will 

allow for the life cycle of P. larvae to be altered. Future studies will be conducted to measure the 

susceptibility of cells from germinated spores to alcohol based products, soaps, ultraviolet 

radiation, and environmental insults. 

6.3 Future studies 

The sigmoidal shape of P. larvae spore germination with uric acid plus L-tyrosine 

indicates cooperative binding to germinants (Chapter 2). The extent of cooperativity can be 

measured by double reciprocal plots (Lineweaver-Burke) or Hill plot of germination data (Neet 

2009). However, the inconsistency of uric acid plus L-tyrosine solubility must be resolved by 

identifying other solvents to obtain consistent germination data in order to measure 

cooperativity. Alternatively, we can measure the order of germinant binding via dilution 

experiments (Luu, Akoachere et al. 2011). It is possible that P. larvae binds to germinants in a 
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random or sequential order. Determining kinetic parameters is important because it allows us to 

understand how spores respond to germination cues in their environment. 

We have the opportunity to establish a connection between spore germination biology 

and disease development in the natural host. Development of a P. larvae germination receptor 

mutant will allow us to determine the role of germination pathways in disease development. It is 

possible that the interaction between the three germination pathways (ger, prkC, and non-

nutrient) is necessary for AFB disease development in honey bees. Isolation of ger or prkC gene 

receptor mutant is necessary to determine germination pathway interactions. If P. larvae depends 

on one germination pathway then that pathway will become the focus future projects.  

Additionally, creation of P. larvae germination receptor mutants can aid in the 

identification of indole target. If germination receptor mutants fail to grow in the presence of 

indoles, then Ger receptors are not the only site of inhibition. It is possible that P. larvae DNA 

replication and/or RNA transcription are also inhibited by indole and indole analogs.  Indole 

analogs have been shown to interfere with dNTP binding during DNA replication (Coggins, 

Maddukuri et al. 2013). Furthermore, indole analogs inhibit nucleotide synthesis by B. subtilis 

and E. coli RNA polymerase (Doan, Rickards et al. 2000, Doan, Stewart et al. 2001). Future 

studies are required to identify the mechanism(s) by which indole alters P. larvae spore 

germination and subsequent cellular growth.  

In vitro assays which exposed P. larvae to indole analogs in liquid and solid media 

showed great promise. However, when the same concentrations of germination inhibitors were 

used in larval exposure assays they failed to prevent AFB. It is possible that the germination 

inhibitors fall out of solution or are inactivated in the larval diet. Our fellow UNLV researchers, 

Dr. Helen Wing and Mrs. Jasmin Khilnani, found that the method used to measure antimicrobial 
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activity altered the effectiveness of compounds (manuscript in preparation). Thus, we need to 

determine and improve the solubility of the compounds used against P. larvae by synthesizing 

compounds with hydrophilic groups.  

The genetic tools that we are developing for P. larvae can be used by other researchers. A 

simple and cost effective means to perform gene inactivation in P. larvae would help the field. In 

Bacillus subtilis, mutagenesis via homologous recombination has been an effective means to 

study protein function since 1978. Development of genetic tools in P. larvae will allow us to 

utilize characteristics of the organism. For example, P. larvae is unique in that it produces 

antimicrobial compounds that eradicate competing organisms within honey bee larvae (Garcia‐

Gonzalez, Müller et al. 2014b).  

Our larval exposure assays do not fully represent the natural environment found in honey 

bee larvae. Because honey bees feed larvae through transfer of food by mouth the microbial 

community in our laboratory-reared larvae is incomplete. Field studies will allow us to test if 

germination inhibitors plus beneficial bacteria would prevent AFB disease development. It is 

also possible that the antimicrobial activity of our indole analogs might alter the larval 

microbiome. Future studies should examine the larval microbiome to understand the effect of 

germination inhibitors on the larval gut microbial community.  

Future studies must also measure the fate of germination inhibitors within the honey bee 

colony. For example, indole residues in bee wax can be detected using phase extractions and gas 

chromatography-mass spectroscopy (GC-MS). There are established methods for extracting 

residues in wax. Furthermore, the solvents used in testing wax for residues are compatible with a 

method for determination of indole. Initially, wax would be solubilized in hexane and 

centrifuged. The supernatant fraction containing indole would then be collected and 
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concentrated. A hexane plus aqueous acetonitrile mixture would then be added to the residue. A 

separation funnel would be used to collect the acetonitrile phase containing indole. GC-MS 

would then be used to detect traces of indole in honey bee wax. Determining the persistence of 

indole in honey bee wax is important because honey is deposited in wax cells.  

Previous studies indicate that germinated spores should have a survival rate similar to 

vegetative cells. Thus, for germinated P. larvae spores it would be important to know their 

susceptibility to environmental stress, disinfectants, and viability over time. We have already 

shown that germinated P. larvae spores are no longer heat resistant. Future experiments will 

need to measure the ability of germinating spores to survive pH, desiccation, and UV irradiation. 

In addition we can measure the susceptibility of germinated spores to alcohol, detergents, and 

other disinfectants. Lastly, it would be good to know the viability of germinated spores overtime. 

We expect that germinated P. larvae will lose the ability to survive in the environment with 

increasing time as observed when other types of spores germinated.  
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Appendix A 

 

Alvarado, Israel, and Ernesto Abel-Santos. How enteric pathogens know they hit the sweet spot. 

Future microbiology 9, no. 1 (2014): 13-16. 

 

This appendix is a primary paper evaluation by Dr. Ernesto Abel-Santos and myself of work 

conducted by: Ng, Katharine M., Jessica A. Ferreyra, Steven K. Higginbottom, Jonathan B. 

Lynch, Purna C. Kashyap, Smita Gopinath, Natasha Naidu et al. Microbiota-liberated host sugars 

facilitate post-antibiotic expansion of enteric pathogens. Nature 502, no. 7469 (2013): 96-99. 

 

My contribution to the paper evaluation was conducted under the direction of Dr. Ernesto Abel-

Santos. 
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This appendix was published in the journal of Future Microbiology. 

 

 

 

 

 

 

How enteric pathogens know they hit the sweet spot 

Summary 
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The human gut microbiota is a complex system of commensal microorganisms required for 

normal host physiology. Disruption of this protective barrier by antibiotics creates opportunities 

for enteric pathogens to establish infections. Although the correlation between the use of 

antibiotic and enteric infections have been known for some time, the specific signals that allow 

enteric pathogens to recognize a susceptible host have not been determined. In a recent article, 

Ng et al. showed that the expansion of both Salmonella typhimurium and Clostridium difficile 

infections is enhanced by the availability of host-specific sugars liberated from the intestinal 

mucus by commensal bacteria. These results show how antibiotic-removal of specific species 

from the gut microbiome allows a normal symbiotic function to be hijacked by pathogenic 

species. 

 

Keywords 

Microbiota, fucose, sialic acid, Salmonella typhimurium, Clostridium difficile, Bacteroides 

thetatiotaomicron 

 

Summary of methods and results 

 In order to study the effect of an antibiotic-depleted microbiota on intestinal infections, 

Ng et al. firstly developed a murine model that was monocolonized with Bacteroides 

thetatiotaomicron (Bt), a major component of the human GI microbiota. 

 Ng et al. used S. typhimurium as a model gram-negative enteric infection. In Bt-

monoassociated mice, S. typhimurium showed upregulation of genes needed to metabolize 

fucose and sialic acid. The presence of Bt-released monosaccharaides, however, did not provide 
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a growth advantage to S. typhimurium in the murine gut. This surprising result that was attributed 

to residual sialic acid shed normally in the intestinal tract. 

 To further determine the effect of mucus-derived monosaccharides in the infection 

process, Ng et al. created a S. typhimurium mutant that was unable to metabolize fucose and 

sialic acid.  This mutant was able to colonize Bt-monoassociated mice but was outcompeted by 

wild-type S. typhimurium. 

 C. difficile has the genetic machinery necessary to catabolize sialic acid but not fucose. 

Similar to S. typhimurium, C. difficile upregulated genes necessary for sialic acid catabolism in 

the presence of Bt. Even more, Bt provided a distinct advantage for C. difficile colonization of 

the mouse intestines.  

 Ng et al. showed that the levels of sialic acid and fucose are low in conventional mice but 

increase rapidly after antibiotic treatment. In conventional, antibiotic treated animals, wild type 

S. typhimurium is able to outcompete mutants that cannot degrade sialic acid. Similar results 

were observed for C. difficile. 

To further address the importance of Bt-mediated sialic acid release in enteric infections, Ng et 

al. created a Bt mutant that lacks sialidase activity. In the presence of this mutant, the 

upregulation of sialic acid degradation genes is lost in both S. typhimurium and C. difficile.  The 

colonization advantage provided to C. difficile by wild-type Bt was also lost in mice 

monocolonized with the Bt sialidase mutant but was rescued by feeding mice free sialic acid.   

 

Discussion 
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The mammalian gastrointestinal tract contains a complex and dense microbial ecosystem [1, 2]. 

This gut microbiota is important for the normal physiological functions of the host including 

digestion, vitamin production, and immune system development [3-6]. 

The gut microbiota is separated from intestinal epithelial cells by a thin protective barrier 

arranged in two layers. The innermost layer is the glycoalyx, a structure formed by glycan 

attached to the epithelial cells. The most external layer is formed by secreted mucus, mostly 

composed of host glycosylated mucins [7]. Some commensal bacteria can degrade mucus-

derived glycans and the resulting saccharides can be used by specialized microbial enteric 

species as food source [8].  

Members of the gut microbiota also synergize with host defenses to prevent colonization of the 

gut by pathogenic invaders [9]. The use of antibiotics weakens the defensive barrier. Disruption 

of the gut microbiome creates niches that pathogens can exploit [10, 11]. Two well-known 

opportunistic pathogens of the microbiome-depleted gut are S. typhimurium (a gram-negative 

facultative anaerobe) and C. difficile (a gram-positive, spore-forming, strict anaerobe). 

The genus Salmonella is one of the most common causes of food-borne illness in developed 

countries and diarrheal diseases in developing countries [12]. In the United States there are 

approximately 40,000 cases of salmonellosis reported each year. Although treatable, the 

mortality rate of salmonellosis can reach 24% for children living in developing countries. 

C. difficile is uniquely associated with antibiotic exposure since, unlike other enteric pathogens, 

antibiotic treatment is almost a prerequisite for disease. Hence, prior to the discovery of 

antibiotics, C. difficile infections were rare. C. difficile infection (CDI) is the major identifiable 

cause of antibiotic-associated diarrhea. In the U.S., there are over 500,000 cases of CDI annually, 

with mortality rate of up to 2.5% and costs up to $3.2 billion [13]. 
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Bacteroides thetatiotaomicron (Bt) plays a major role in the normal GI microbiota. Bt can 

hydrolyze non-digestible glycans but does not metabolize the released monosaccharaides [15]. 

Indeed, almost no host-derived monosaccharides were found in the feces of conventional mice. 

In contrast, Ng et al. found that high levels of mucus-derived sialic acid in the feces of Bt-

monoassociated mice. These results reinforce the notion that monosaccharides released from the 

mucus by Bt provide a carbon source for more-antibiotic sensitive microbial species [8, 16]. 

S. typhimurium and C. difficile showed increased transcription of genes needed to metabolize 

host-derived sugars in BT-monocolonized mice. The alterations of gene expression reveal 

adaptations of these pathogens to recognize the lower complexity environment found after 

antibiotic-induced microbiota disruption.  

Mucus-derived monosaccharide catabolism positively influenced C. difficile expansion in a 

susceptible host. These results show that Bt must provide C. difficile with assets not available 

through the normal diet or metabolism of mice. In contrast to C. difficile, excess host-derived 

monosaccharaides did no help the expansion of S. typhimurium in the host. These results suggest 

that while sialic acid is required for C. difficile expansion, other cues must be used by S. 

typhimurium. This is further supported since the colonization disadvantage of a S. typhimurium 

mutant unable to use host monosaccharaides disappeared in germ-free mice. Nevertheless, 

competition experiments showed that the utilization of fucose and sialic acid confer an 

evolutionary advantage to wild-type S. typhimurium. Taken together, these results suggest that 

the availability of host monosaccharaides is important in the dissemination of enteric infections 

of both gram-positive and gram-negative pathogens. 

The GI tract is a complex environment that contains nutrients and bacteria [17]. Commensal 

bacteria assist the host by processing ingested food. Absorption of foodstuff in the intestine 
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creates a low nutrient environment [18]. The resulting competition for scarce resources could 

create a hostile environment for invading organisms that do not have the adapted metabolic 

capabilities of the natural microbiota. Thinning of the dense commensal microbial community by 

antibiotics increases the nutrient rich environment that is likely to have a role in pathogen 

expansion [19].  

When microorganisms are exposed to a mixture of carbon sources there is a ranking in how the 

nutrients are utilized [20-24]. Not surprisingly, similar regulatory mechanisms are used by 

pathogenic organisms to control various steps of their infection process [25]. Pairing activation 

of metabolic processes with virulence factors is a common theme in bacterial pathogens. As an 

example, bacteria modify the transcription of carbohydrate utilization and virulence factor genes 

in response to environmental conditions in a susceptible host [26]. The efficient metabolism of a 

carbon source might serve as signal for proper fitness. Alternatively, the presence of a specific 

carbon source might indicate to bacterial cells the presence of a susceptible host and that specific 

virulence genes should be turned on or switched off. The availability of mucus-derived 

monosaccharides in antibiotic-treated guts, produce a rich environment that can be exploited by 

enteric pathogens for continuous proliferation 

 

Future perspectives 

The results obtained by Ng et al. suggest that there are universal molecular beacons that signal a 

disrupted gut microbiota. Enteric pathogens can take advantage of these signals to identify 

susceptible hosts. Once we understand how these beacons are detected, we could use it to our 

advantage. Targeting the fucose and/or sialic acid degradation pathways of enteric pathogens 

could contain infections. Alternatively, replenishing the intestines with sialic acid and/or fucose 
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degrading commensal microbes will deny pathogens the necessary resources to expand the 

infectious process.  

The results of Ng et al are tantalizing and lead to a number of intriguing questions. Determining 

whether increased fucose and/or sialic acid concentrations are sensed by other intestinal 

pathogens (including eukaryotic parasites) could lead to a general mechanism for the recognition 

of antibiotic-depleted microbiome.  Even more, it would be interesting to determine whether 

commensal produced, host-derived metabolites are signals of stressed in other commonly 

colonized tissues (e.g. mouth, vaginal tract, skin). This could lead to a general understanding on 

the role of commensal species in the promotion of infections. Finally, a link could be made 

between host metabolite utilization and the virulence of a pathogen. Answer to these questions 

could improve our understanding how pathogens recognize a susceptible host. In turn, these 

general mechanisms could be used as new anti-infective targets. 

  

Executive summary 

Objectives 

To determine adaptations enteric pathogens use to expand in the gastrointestinal tract.  

To confirm carbohydrate concentrations increases in infected mice and associate them with 

enteric pathogen virulence. 

Methods 

Germ free mice and Bt-monoassociated mice were infected with enteric pathogens to identify 

virulence genes.  

Enteric pathogens unable to upregulate virulence genes were analyzed by in in vitro and in vivo 

studies.  
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Nutrient levels during pathogen infection in the mouse intestinal tract were measured in germ 

free mice and Bt-monoassociated mice. 

Results 

S. typhimurium and C. difficile both upregulate carbohydrate metabolism genes during their 

expansion in the mouse gastrointestinal tract. 

Levels of free carbohydrates increase after antibiotic-induced disruption of microbiota. 

Enteric pathogens unable to utilize free carbohydrates have a competitive disadvantage when 

competing with wild-type pathogens in Bt-monoassociated mice.  

Enteric pathogens expansion is promoted by free carbohydrates and inhibited by competition 

with bacteria that catabolize free carbohydrates. 

Conclusion 

Infecting enteric pathogens encounter a gut environment that is low in nutrients.  

The ability of enteric pathogens to expand within the host gut depends on the detection and 

utilization of carbohydrates. 
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VITA 

 

Israel Alvarado 

Education 

 Ph.D.- Integrative Physiology, University of Nevada Las Vegas, 2015 

o Committee: Michelle M. Elekonich (Chair), Ernesto Abel-Santos (Co-Chair), Penny Amy, 

Helen Wing, Martin Schiller, Jefferson Kinney. 

 B.S.- Biology. California State University San Marcos, 2006. 

 A.A.- University studies- MiraCosta College, 2003. 

Awards and Honors 

 UNLV GPSA travel grant 

 UNLV Hermsen Fellowship 

 UNLV Strategic Plan Graduate Research Assistant Award 

 CSUSM RISE scholarship from the Office of Biomedical Research and Training  

 CSUSM MARC scholarship from the Office of Biomedical Research and Training  

Publications 

 Alvarado, Israel et al. Requirements for in vitro germination of Paenibacillus larvae spores. 

Journal of Bacteriology 195.5 (2013): 1005-1011. 

 Alvarado, Israel and Ernesto Abel-Santos. How enteric pathogens know they hit the sweet 

spot. Future Microbiology 9, no. 1 (2014): 13-16. 

 In preparation: Alvarado, Israel et al. Methods for developing treatment strategies against the 

honeybee pathogen Paenibacillus larvae, the causal agent of American Foulbrood disease. 

BMC Microbiology. 

 Technical report phase 1: Fernando Flores-Mendes, Israel Alvarado, and Ernesto Abel-

Santos. Requirements for Germination of Bacillus species Spores In Vitro. Novozymes 

 Technical report phase 2: Fernando Flores-Mendes, Israel Alvarado, and Ernesto Abel-

Santos. Requirements for Germination of Bacillus species Spores In Vitro. Novozymes 

Presentations and Outreach  

 Presented a poster at the 55th Annual Wind River Conference which focuses on prokaryotic 

and lower eukaryotic research. The conference provided exposure to bacterial pathogenesis 

experts in the field. 

 ASM Student Chapter Outreach:  

o Oral presentation on the structure of eukaryotic and prokaryotic cells, Natural History 

Museum, North Las Vegas, NV, March 24 2013.  

o Oral presentation on the structure of eukaryotic and prokaryotic cells, Natural History 

Museum, North Las Vegas, NV, April 7 2013.  

o Oral presentation for high school students on the value of scientific research, Northwest 

Technical and Career Academy, North Las Vegas, NV, December 6 2013.  

 3rd Grade classroom oral presentation on the importance of honey bees and science, Tartan 

Elementary School, North Las Vegas, NV, 2012 
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 4th Grade classroom oral presentation on the importance of honey bees and science, Tartan 

Elementary School, North Las Vegas, NV, 2012 

 5th Grade classroom oral presentation on the importance of honey bees and science, Green 

Valley Christian Academy, Henderson, NV, 2012 

 Oral Presentation for adults focusing on the importance of honey bees and science. Whole 

Foods, Las Vegas, NV, 2012 

 Oral Presentation for adults focusing on the importance of honey bees and science. Whole 

Foods, Henderson, NV, 2012 

 Introductory beekeeping class assistance and honey bee research presentation. UNLV 

extension Orchard, North Las Vegas, NV, 2011 

 Introductory beekeeping class assistance and honey bee research presentation. UNLV 

extension Orchard, North Las Vegas, NV, 2012 

 2nd Grade classroom oral presentation on the importance of honey bees and science, 

International Christian Academy, Las Vegas, NV, 2012 

 5th Grade classroom oral presentation on the importance of honey bees and science, Green 

Valley Christian Academy, Henderson, NV, 2014 

 1st Grade classroom oral presentation on the importance of honey bees and science, Doral 

Academy of Nevada- Cactus Campus, Las Vegas, NV, 2015 

 Springs Preserve ScoutQuest Insect Study presentation on the importance of insects, honey 

bees, and science, Springs Preserve, Las Vegas, NV, 2015 

 Outreach event for the Clark High School Science Club. Helped host 15 students to show the 

importance of education, science, and the role of UNLV researchers, UNLV, Las Vegas, NV, 

2015. 


