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Abstract 

 

Control of cell proliferation is greatly diminished in cancer cells.  In order to understand 

how to prevent the uncontrolled proliferation of cancer cells, it is first important to 

understand how cells normally control proliferation.  Stathmin, a microtubule regulatory 

protein, is over-expressed in many cancers and required for survival of several cancer 

lines. In a study of breast cancer cell lines, Alli et al. (Oncogene. 26:1003-12) proposed 

that stathmin is required for survival of cells lacking p53, but this hypothesis was not 

tested directly. Here we tested their hypothesis by examining cell survival in cells 

depleted of stathmin, p53 or both proteins. Comparing HCT116 colon cancer cell lines 

differing in TP53 genotype, stathmin depletion resulted in significant cell cycle delay and 

death only in cells lacking p53. As a second experimental system, we compared the 

effects of stathmin depletion from HeLa cells, which normally lack detectable levels of 

p53 due to expression of the HPV E6 protein. Stathmin depletion caused a large 

percentage of HeLa cells to both delay in the cell cycle and then die via apoptosis. 

Restoring p53, by depletion of HPV E6, rescued HeLa cells from stathmin-depletion 

induced delay and death. The stathmin-dependent survival of cells lacking p53 was not 

confined to cancerous cells because both proteins were required for survival of normal 

human fibroblasts. 

 

P53 and stathmin depletion leads to a G2 cell cycle delay, however, it is still unclear as to 

why we see this synergy.  We hypothesize that stathmin depletion relays a signal via 

stabilization of the microtubule cytoskeleton, specifically in cells lacking p53. 
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Alternatively, stathmin could have a function separate from its microtubule regulatory 

activity, and loss of this additional function could lead to cell cycle delay. As a test of our 

hypothesis, we examined whether microtubule stability is greatest in cells lacking both 

stathmin and p53.  Results showed that HeLa cells depleted of both stathmin and p53 

showed a large increase in both acetylated microtubule content (a marker of microtubule 

stability) and rate of microtubule nucleation.  Restoring p53 in stathmin-depleted cells 

reduces both the amount of acetylated microtubules and the microtubule nucleation rate.  

To further test the link between stathmin depletion in cells lacking p53 and microtubules, 

the microtubule network was manipulated by either nocodazole-dependent 

depolymerization or by restoring the microtubule network to control levels by over-

expressing stathmin truncations (full-length stathmin or stathmin Δ101-149).  Both of 

these treatments allowed cells to escape the G2 delay, while over-expression of a 

stathmin truncation that does not affect the microtubule array (stathmin Δ5-25) did not 

affect the G2 delay. 

 

Our results demonstrate that stathmin is required for cell survival in cells lacking p53, 

suggesting that stathmin depletion could be used therapeutically to induce a G2 cell cycle 

delay and apoptosis in tumors without functional p53.  Our results also indicate that the 

interphase microtubule cytoskeleton is a novel target for control of cell proliferation, 

particularly for the greater than 50% of human cancers that lack p53 because of either 

inactivating mutations or viral infection.  Together the results described in this 

dissertation could lead to new methods to treat and kill cancer cells that specifically lack 

p53, while leaving healthy cells relatively unaffected. 
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Chapter 1:  Introduction 

 

Researchers have been trying to find a cure for cancer for decades.  The American Cancer 

Society estimates cancers affect 11.7 million people in the United States alone (in 2007), 

but to date treatments have many side effects and are not effective against certain types of 

cancers.  On a cellular level, cancers can and do have mutations to genes encoding many 

different proteins that affect numerous cellular pathways.  Cancer cells that lack the p53 

protein, for example, are among the most malignant and lethal, and account for about 

fifty percent of all human cancers (Wallace-Brodeur and Lowe, 1999). These types of 

cancer cells can no longer repair damaged DNA, or send apoptotic signals if the damage 

is beyond repair. 

 

Alli et al (2007) and others have suggested that depleting stathmin from cells lacking p53  

can lead to apoptosis, bypassing the natural role of p53 in apoptotic signaling.  However, 

apoptotic death by stathmin depletion is only correlated with p53 status; it is not yet clear 

whether p53 must be absent for stathmin depletion to induce cell death.  If the Alli et al 

(2007) hypothesis is correct, how does stathmin depletion accomplish the reactivation of 

the apoptotic-signaling pathway?  Could stathmin’s effects on the microtubule network, 

and therefore the microtubule network itself, be important in this signaling pathway?  By 

answering these questions we can open up new avenues for possible advancements in 

finding novel targets for cancer therapies.  These questions are addressed in this 

dissertation.  The following sections introduce the critical cellular components and 

processes studied during the dissertation research. 
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Cytoskeleton 

Actin filaments (F-actin), intermediate filaments (IF), and microtubules (MTs) make up 

the cytoskeleton of a eukaryotic cell.  These components work together to affect and 

establish many of the cell’s characteristics, including maintaining its shape, creating 

polarity, and allowing motility.  Although these filaments work together to form the 

whole of the cytoskeleton network, each has its own specific responsibilities in the cell.  

MTs in particular are responsible for cell division, vesicle trafficking, and cell movement 

via flagella.  These processes all require the MT arrays within the cell to be both dynamic 

and static, depending on the function to which each array is being used.  The nucleation 

(formation) rates and relative dynamics must therefore be controlled at all times. 

Microtubule-associating proteins (MAPs) function to create, maintain, and destroy the 

various MT arrays that are present in the cell in order to regulate the dynamics. 

 

Microtubule Structure 

The structure of a microtubule is an essential part of what allows these filaments to 

function as they do in cells.  Each filament is made of thirteen protofilaments that are 

noncovalently linked together to form the microtubule (Desai and Mitchison, 1997). 

These protofilaments connect together to form a hollow tube (Aldaz et al., 2005) with a 

25nm diameter, and a 14nm gap in the center (Figure 1.1a). The tubulin dimer’s ability to 

form longitudinal, as well as lateral bonds (Meurer-Grob et al., 2001; Nogales, 2000), and 

its unique shape gives the filament its sturdy (McGrath, 2006), yet flexible characteristic 

that makes it optimal for producing arrays that can bend but not break (Figure 1.1a).  
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Each protofilament is made of heterodimers of alpha tubulin (α-tb) and beta tubulin (β-

tb) that connect together in a head-to-tail fashion to form the protofilament (Meurer-Grob 

et al., 2001). Although they are never found in their monomeric form, both α-tb and β-tb 

have a molecular weight of approximately 50 kDa, and are 451 and 442 amino acids in 

length, respectively (McKean et al., 2001). 

 

Microtubule Dynamics 

The heterodimeric properties of these filaments allow for them to have polarity.  In this 

case, the α-tb is exposed at the “minus” end, while the β-tb is exposed at the “plus” end 

(Mitchison, 1993).  Polarity forms because of the head to tail alignment of the dimers.  

The GTP bound to α-tb is trapped in the heterodimer and is therefore non-exchangeable 

and unable to hydrolyze. The GTP on the β-tb, on the other hand, is able to rapidly 

hydrolyze GTP to GDP making the dimer’s connection with the other heterodimers 

unstable (Mitchison, 1993; Nogales et al., 1998).  It is the β-tb bound GTP that gives 

MTs their dynamic nature.  This fragile stability is what allows for the rapid dissociation 

of these structures.  As long as a GTP is bound to β-tb, each protofilament will remain 

straight and stiff (Meurer-Grob et al., 2001).  When GTP is hydrolyzed to GDP at the MT 

tip, the protofilament begins to bend and the protofilaments fray apart (Figure 1.1b).  The 

loss of tb-GTP allows for the lateral connections to be disturbed causing the filament to 

depolymerize (Aldaz et al., 2005).  In order to prevent this depolymerization, the tubulin 

subunits that are most recently added retain their GTP and form a “GTP cap” (Erickson 

and O'Brien, 1992). The GTP that is not at the end of the filament can be hydrolyzed, 

while the presence of a GTP cap at the plus end of the MT allows each protofilament to 
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remain in a straight conformation trapping the rest of the MT together despite the reduced 

strength of the lateral bonds between protofilaments (Figure 1.1c).  Without this cap, the 

MT is no longer stable and cannot grow longer.  Therefore, polymerization can only 

occur in the presence of the GTP cap.  Tubulin subunits are added and lost from the plus 

end of the MT much faster than they are from the minus end (Moritz et al., 1995; 

Vorobjev et al., 1999).  The gain and loss of a GTP cap is what allows the MT to quickly 

shift from a growth phase to a shortening phase and vice versa, in a process known as 

dynamic instability (Mitchison and Kirschner, 1984).  The loss of the protective GTP cap 

leads to a rapid switch between growth and shortening, known as a catastrophe.  A rescue 

event can occur if the MT stops shortening and begins to grow again.  The exact 

mechanism of how these switches occur is not well understood.  All that is known is that 

the GTP cap must be reformed if growth is to occur and must be lost for shortening to 

begin. 

 

Assembly of Microtubules 

Microtubules can self-assemble at a slow rate in vitro depending on tb concentration.  

However, this process produces very unstable microtubules.  Tubulin starts to polymerize 

into small fragments, but cannot remain in a polymerized form until the polymer becomes 

larger and more stable.  Once a stable protofilament starts to form, which can take a long 

time, elongation can finally occur.  After elongation begins, MTs quickly move towards a 

state where the proportion of free tubulin to MT polymer is constant.  In animal cells, the 

assembly of MTs is not a spontaneous process unless tubulin concentration is high 
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enough; therefore growing MTs usually require other proteins to assemble properly 

(Moritz et al., 1995). 

 

In vivo, assembly needs to be much more controlled and nucleation needs to be much 

faster.  For this to happen, minus ends of MTs are bound to γ-tubulin ring complexes 

(γTuRCs).  γ-tubulin ring complexes are packed together in a highly organized complex 

called a microtubule organizing center (MTOC).  The MTOC contains γ TuRC, γ tubulin 

(γ-tb), a pair of centrioles, and many additional proteins (Desai and Mitchison, 1997; 

Dictenberg et al., 1998).  The MTOC forms a scaffold, where rapid MT nucleation 

occurs, since the dimers polymerize from the γ TuRC, and MTs radiate out into the cell.  

In mitosis, a centrosome (a MTOC) is at each spindle pole and allows MTs to radiate into 

the center and capture chromosomes.  Nucleation sites orient the dynamic plus end away 

from nucleation sites, while the minus end is always anchored to this site (Becker and 

Cassimeris, 2005).  In the life of any MT, multiple catastrophes and rescues events can 

frequently occur (Komarova et al., 2002).   

 

The MT network plays an important role in vesicle and chromosome trafficking in the 

cell as well.  The MT network is involved in transporting cargo into and out of the cell.  

Microtubule motor proteins, such as kinesin and dynein, attach to MTs and walk along 

the filament with its attached cargo (Hirokawa and Takemura, 2004; Vershinin et al., 

2008).  This cargo is then shuttled throughout the cell until it reaches its destination 

where the cargo is released from the motor protein. 
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The formation of a microtubule network throughout the cell also allows for MTs to play 

an essential role in cellular signaling.  Acetylation, for instance, is a marker of more 

stable MTs and leads to greater binding of kinesin motors.  These acetylated MTs are 

both remarkably stable and significantly less dynamic then other MTs.  The increased 

affinity of motors to acetylated MTs leads to a higher level of selective transport of 

vesicles throughout the cell (Bulinski, 2007; Reed et al., 2006).  Polyglutamylation of α-

tb was proposed to be important in the interaction of tb with MAPs (Edde et al., 1990; 

Kann et al., 2003).  Other modifications such as detyrosination, phosphorylation, and 

polyglucylation are suggested to play a role in stabilizing MTs (Gundersen et al., 1984; 

Lin et al., 2002).  Such post-translational modifications are also suggested to allow 

signals to be sent throughout the cell.  This signaling function could be accomplished by 

using the MTs as a scaffold from which other proteins can bind or be transported along 

the MT in order to propagate the signal (Bulinski, 2007; Larsson et al., 1999). 

 

Microtubule Associated Proteins (MAPs) 

Microtubule associated proteins (MAPs) are used to regulate assembly and either 

stabilize or destabilize the growing MT depending on the type of MAP that is active 

(Desai and Mitchison, 1997).  The activity states of these proteins determine the turnover 

rate of a given MT.  There are two general MAPs, those that stabilize MTs and those that 

destabilize them.  Certain MAPs act to destabilize MTs by binding to tubulin dimers, 

sequestering them away from the growing MTs, while other types of destabilizing MAPs 

can bind to the tip of growing protofilaments and halt dynamics and promote 

catastrophes.  MAPs can also act by binding along the side of the MT, both stabilizing 
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and cross linking them, or they can bind at the tips of the MTs promoting polymerization 

and further growth.  The more stabilizing MAPs that are present on a MT, the longer the 

MT will grow.  Many MAPs are activated or deactivated based on their phosphorylation 

state (Cassimeris and Spittle, 2001).  MAP phosphorylation sites allow for a 

conformational change in the protein depending on whether the site is phosphorylated or 

not. 

 

Drugs, such as paclitaxel (Taxol), can also stabilize the MT cytoskeleton.  Taxol 

stabilizes MTs and leads to accumulation of polymer in the cell, preventing the 

completion of mitosis, resulting in a block during M phase.  If the cell cycle is not 

allowed to continue, the cell will eventually begin apoptosis (Donaldson et al., 1994; 

Gascoigne and Taylor, 2009). 

 

Stathmin/Oncoprotein 18 

Stathmin/Oncoprotein 18 (STMN) is a MAP that destabilizes MTs (Belmont and 

Mitchison, 1996; Cassimeris and Spittle, 2001).  This 18 kDa (149 amino acid) protein 

functions to both sequester tubulin and promote catastrophes (Howell et al., 1999b; 

Larsson et al., 1999).  In vitro, at a pH of 6.8, stathmin binds and sequesters two tubulin 

dimers (Figure 1.2) forming a T2S complex and removes tubulin from the polymer-

forming tubulin pool (Cassimeris, 2002).  While at a higher pH (7.5), stathmin promotes 

catastrophes possibly by attaching to a growing MT end (Howell et al., 1999a).  

Truncated versions of this protein show that the N-terminal sequence of stathmin is 

important for catastrophe promoting function.  While the C-terminal sequence is 
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responsible for sequestering tubulin (Clement et al., 2005; Howell et al., 1999a; Howell 

et al., 1999b).  Larsson et al (1999) showed that the C-terminal sequence activity of the 

stathmin protein is not required to disrupt the MT network in cells. 

 

Stathmin is active in its unphosphorylated state.  However, stathmin has four serine 

residues (S16, S25, S38, and S63) that can be phosphorylated (Cassimeris, 2002).  The  

tubulin binding efficiency in vitro of this MAP decreases with the addition of phosphate 

groups and is completely off during mitosis when it is fully phosphorylated (Larsson et 

al., 1997; Larsson et al., 1995).  Phosphorylation at serine 16 and 63 causes stathmin to 

bind weakly to tubulin.  Phosphorylation at these sites suppresses stathmin to a much 

greater extent than at serine 25 and 38 (Cassimeris, 2002).  PKA, MAP kinases, and 

CDKs are just a few of the kinases that are responsible for phophorylating stathmin 

(Cassimeris and Spittle, 2001; Gradin et al., 1998; Marklund et al., 1996).  

 

Along with its role in MT destabilization, stathmin is also involved in cell signaling, 

however, with the exception of crosstalk with actin via MTs (Wittmann et al., 2004), this 

signaling is not well understood.  Despite the fact that little is known about this signaling 

function, it has been suggested that these signals play a pivotal role in both the cell cycle 

and cell differentiation (Sobel, 1991).  Stathmin has been shown to be a target of 

numerous signal cascades which lead to phosphorylation of stathmin, allowing both cell 

division and differentiation to occur (Sobel, 1991). 
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Recently stathmin has been shown to have additional sources of regulation that do not 

involve phosphorylation.  P27Kip1, a cyclin dependent kinase (CDK) inhibitor 

(Baldassarre et al., 2005), and STAT3, a transcription factor (Ng et al., 2006), have been 

shown to bind to stathmin's C-terminal amino acids (Baldassarre et al., 2005; Ng et al., 

2006).  Binding of STAT3 to stathmin has been shown to block the ability of stahmin to 

bind and destabilize MTs (Ng et al., 2006). The CKI, p27kip1 also binds stathmin's C-

terminus and inhibits its MT destabilizing activity (Baldassarre et al., 2005).  The binding 

of these proteins to stathmin suggests stathmin may play a greater role in signal 

transduction then was originally thought.  Both p27kip1 and STAT3 have also been 

implicated in tumor cell migration and therefore have important roles in metastasis and 

cancer progression (Baldassarre et al., 2005; Ng et al., 2006).   

 

Stathmin is overexpressed in many cancers. This phenotype exists in leukemia (Melhem 

et al., 1997), lymphoma (Nylander et al., 1995), multiple carcinomas (Kouzu et al., 2006; 

Nakashima et al., 2006; Nishio et al., 2001; Yuan et al., 2006),  adenocarcinoma (Chen et 

al., 2003; Friedrich et al., 1995), prostate cancer (Mistry et al., 2005), breast cancer 

(Bieche et al., 1998; Brattsand, 2000), and ovarian cancer (Price et al., 2000). Because 

stathmin is associated with so many cancers, stathmin targeted treatments have started to 

be considered for cancer therapies (Kouzu et al., 2006; Mistry et al., 2005).  Cancers 

where stathmin is overexpressed have a high malignancy phenotype, which leads to 

generally poor prognosis (Chen et al., 2003; Mistry et al., 2005). 
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The removal of stathmin from cells (or animals, such as mice) leads to organisms whose 

cell cycles seem normal throughout development.  At the cellular level, transient removal 

of stathmin leads to an increase in MT concentration (Holmfeldt et al., 2006; Howell et 

al., 1999b; Ringhoff and Cassimeris, 2009b; Sellin et al., 2008).  However, mice were 

stathmin has been knocked out produce viable embryos that mature and reproduce 

relatively normally (Schubart et al., 1996).  Although mice develop normally without 

stathmin, an age-dependent axonopathy of the central and perpheral nervous system does 

occur (Liedtke et al., 2002).  Stathmin also plays an essential role in regulating innate and 

learned fear in these mice (Shumyatsky et al., 2005), indicating that stathmin participates 

non-redundantly in spinal neuronal processes, but these processes are not sufficient to 

compromise viability in knockout mice. 

 

Recent research has shown that while the removal of stathmin from healthy cells has no 

effect on the cell cycle, the removal of stathmin from certain cancer cell lines leads to cell 

death within as little as 24-48 hours (Alli et al., 2007; Mistry et al., 2005; Wang et al., 

2007; Zhang et al., 2006).  In each study, a slowing of cell proliferation rate was observed 

prior to apoptosis, but the literature shows conflicting evidence over whether it is a G1 or 

G2/M block.  In either case, it has also been shown that this cell cycle block leads to an 

increase in apoptosis (Alli et al., 2007; Mistry et al., 2005; Zhang et al., 2006).  While the 

removal of stathmin causes apoptosis in some cancer cell lines, other cancer lines have 

shown no such phenotype.  Alli et al (2007) compared seven breast cancer cell lines 

differing in p53 status.  The five cancer lines that lacked functional p53 showed an 

increase in cells with 4N DNA content and induction of apoptosis when stathmin was 
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depleted.  However, these cancer cell lines have numerous other differences that could 

make them more susceptible to apoptosis due to stathmin depletion.  Also one of the plus-

p53 cell lines that did not die, MCF7, has a mutation in caspase 3, which would prevent 

apoptosis in this cell line.  A successful knockdown of stathmin in cells with wild type 

p53 was not included in their study.  Therefore, while it has been hypothesized that 

decreased stathmin level leads to apoptosis only in cells lacking p53, this hypothesis has 

not been tested directly (Alli et al., 2007).  We tested this hypothesis using matched 

cancer cell lines that only differ in their p53 status (Chapter 2). 

 

Cell Cycle 

In order for cells to grow and divide, they must proceed through the cell cycle.  During 

the cell cycle certain events, like chromosomal duplication, must happen at specific 

places at specific times.  Because of this, the processes of the cell cycle must be highly 

controlled.  In its simplest form the cell cycle consists of two stages: interphase, where 

the cell grows and replicates its DNA, and mitosis, where the cell divides creating two 

identical daughter cells.  Interphase consists of two gap (growth) phases, G1 and G2, 

which occur on either side of S phase, where DNA is replicated.  In order to transition 

from one stage to another, many conditions or checkpoints must be met.  The main 

controls of the cell cycle are a set of proteins called cyclins and cyclin-dependent kinases 

(CDKs).  During the cell cycle, the cyclin proteins fluctuate in abundance and depending 

on which cyclins are present, at any given time, they allow the cell to proceed from one 

stage to another by interacting with CDKs to phosphorylate a wide array of proteins 

involved in each step of the cycle. (Morgan, 1997) 
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For stathmin-depleted cells, the focus is primarily on the transition from G2 to M phase 

of the cell cycle.  Here, cyclin B levels rise significantly following DNA replication.  

Cyclin B binds CDK1, but is quickly made inactive by the inhibitory phosphoylation 

placed on CDK1, by Wee1, at two specific sites on the protein (Thr14 and Tyr15).  To 

further control the activity of CDK1, CAK adds an additional phosphorylation at Thr167, 

priming the complex for activation as soon as the inhibitory phosphorylation is removed.  

These phosphorylation events prevent entrance in mitosis until the cell is ready, the 

environment is favorable, and all the DNA has been replicated.  When all these 

checkpoints have been reached the inhibitory phosphorylation of CDK1 is reversed by 

the activity of Cdc25, which removes the phosphorylation and inactivates Wee1 activity, 

thereby activating the CDK1/cyclin B complex.  This kinase activation allows for the 

phosphorylation of many mitotic proteins and drives progression into mitosis.  If these 

checkpoints are not met the cell cycle will fail to progress until all necessary conditions 

have been met and satisfied. (Morgan, 1997) 

 

Apoptosis 

Organisms need their cells to be able to sacrifice themselves for the benefit of the whole 

organism.  Cells have developed a way to commit suicide or programmed cell death if 

their lack of health endangers the cells around it.  This process, apoptosis, involves 

complex pathways that terminate the cell if the damage cannot be repaired.  Cells have 

developed two specific mechanisms to transmit this death signal, an intrinsic and an 

extrinsic pathway. 
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In the intrinsic pathway, DNA damage or absence of survival signals, such as growth 

factor or hormone, lead to the start of apoptosis.  As an example, if DNA damage is 

sensed by p53, the p53 protein is then activated.  P53 is activated by its release from 

MDM2, which is phosphorylated in response to the damage.  P53 then functions as a 

transcription factor and promotes the transcription of Bcl-2 proteins (such as Bax and 

Bad), which move to the mitochondria and disrupt its membrane.  This causes the 

mitochondria to release cytochrome c.  Cytochrome c binds with Apaf-1 and procaspase 

9 to form the apoptosome, the formation of this complex leads to the cleavage of 

procaspase 9 into the functional component Caspase 9.  Caspase 9 starts a cascade that 

activates caspase 3.  Caspase 3 releases CAD from the ICAD-CAD protein complex.  

CAD enters the nucleus and with the help of poly ADP ribose polymerase (PARP), which 

is cleaved by caspase 3, cleaves DNA and causes the cell to die (Figure 1.3b). (Elmore, 

2007) 

 

In the extrinsic pathway, an external source activates the apoptotic pathway.  As an 

example, a FAS ligand, released from a neighboring cell, binds to the FAS receptor of the 

apoptotic cell.  The binding of the FAS ligand activates the receptor, which is recruits and 

binds FADD.  This transmembrane protein complex cleaves procaspase 8 into the 

protein’s active form, caspase 8.  Caspase 8 then activates caspase 3, which then follows 

the same pathway as the intrinsic pathway leading to cellular death (Figure 1.3a). 

(Elmore, 2007) 
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Cancer cells must avoid apoptosis to survive and proliferate.  In order to survive, the 

pathways that would normally activate apoptosis in response to chromosomal defects and 

other cellular damage must be blocked (Elmore, 2007).  For example, cells with a 

mutation in p53 are more likely to proliferate because p53 normally halts the cell cycle 

until DNA damage is repaired (Elledge, 1996).  Therefore without functional p53, cells 

pass through the cell cycle even if there is significant damage to the DNA, allowing 

mutations to accumulate (Elledge, 1996). 

 

P53: a DNA damage checkpoint protein 

The tumor suppressor, p53, is a protein that responds to DNA damage.  When the protein 

is functioning normally, in a healthy cell, p53 is quickly bound to MDM2 and 

ubiquitinated and destroyed by the cell keeping its levels low (Caspari, 2000; Kelly and 

Brown, 2000).  However, if DNA damage occurs, a serine/threonine kinase (ATM or 

ATR) phosphorylates p53 (at serine 15) causing it to release from MDM2 and results in 

increased p53 levels (Caspari, 2000).  P53 then acts by initiating a pathway that stalls the 

cell cycle until repairs have been made or apoptosis begins.  If DNA has not yet been 

replicated (G1), once p53 is released it binds to the regulatory region of the p21 gene 

(Ahn et al., 1999).  This acts as a transcription factor, which leads it to increase the 

concentration of p21 (a cyclin dependent kinase inhibitor) protein in the cell (Figure 1.4).  

P21 acts by binding to an active cyclin/CDK complex and prevents it from advancing the 

cell cycle by causing a G1 arrest (Elledge, 1996; Kelly and Brown, 2000).  If the damage 

cannot be repaired, the cell will enter apoptosis, leading to cell death (Caspari, 2000).   
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In about fifty percent of cancers, p53 is malfunctioning in some way (Caspari, 2000; 

Hollstein et al., 1991).  Whether it is destroyed, sequestered, or just non-functional via a 

mutation, the inability of p53 to do its job can lead to numerous additional mutations or 

severe chromosomal alterations if the DNA is damaged.  Mutations in p53 can prevent it 

from releasing from MDM2 or making it otherwise ineffective.  The human 

papillomavirus, specifically, uses two viral proteins (E6 and E7 respectively) to sequester 

the host cell’s p53 and Rb, another protein that can halt the cell cycle.  The HPV E6 

protein binds to p53 and targets it for ubiquitination and destruction, thus reducing p53 

concentration to a very low level.  Koivosalo et al (2005; 2006) showed that by utilizing 

RNA interference against the E6 protein, it is possible to restore p53 in HeLa cells. 

 

Cells lacking functional p53 can no longer stop the cell cycle which leads to the damaged 

DNA being passed to the next generation before it can be repaired (Elledge, 1996).  

Cancers lacking p53 are some of the worst and have poor prognosis (Wallace-Brodeur 

and Lowe, 1999).  The reason for this poor prognosis is because once the DNA damage 

checkpoint is bypassed it leads to genomic instability and more mutations thereby 

causing the mutation rate to increase exponentially (Elledge, 1996). 

 

Dissertation Summary 

Chapter 2 explores whether or not the removal of stathmin from cancer cells only kills 

cancers that have a malfunctioning p53.  We showed that stathmin depletion both causes 

a G2 delay and apoptosis in a p53-independent manner.  We tested this by using two 

model systems; the first was a set of matched cancer cell lines, HCT116WTp53 and 
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HCT116p53-/-, in which one member lacks functional p53.  As a second system, we 

restored p53 to HeLa cells to see if we could reverse the phenotype.  Both models 

confirmed that both stathmin and p53 must be depleted for cells delay in G2 of the cell 

cycle and initiate apoptosis. 

 

Experiments in chapter 3 addresses stathmin’s specific role in the cell cycle delay 

pathway and determined if this signaling uses the microtubule network or stathmin’s 

other binding partners, p27kip1 and STAT3.  We showed that there is a significant 

difference in the MT networks of cancer cells where stathmin was depleted when p53 

was absent, when compared to the depletion of either protein alone. By destabilizing the 

MT network, we determined that changes to the MT cytoskeleton can bypass stathmin’s 

role in the pathway and that MTs are therefore required for the signal to be relayed.  

Using truncated versions of the stathmin protein, we further confirmed that stathmin 

relays a cell cycle delay signal using the MTs and that p27kip1 and/or STAT3 play little 

role, if any, in this signaling. 
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Figures: 

 

Figure 1.1:  Microtubule structure.  (A) A MT forms when 13 protofilaments align 

laterally to form a hollow tube.  Red dots represent the lateral and longitudinal bonds 

between adjacent tubulin dimers.  (B) When bonds between adjacent protofilaments are 

disturbed the MT frays and begins to lose stability.  (C) The loss of bonds associated with 

a fraying MT is due to the loss of the GTP-cap that is found on the end of a growing MT.  

When the GTP is hydrolyzed to GDP, the MT begins to depolymerize. 
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Figure 1.2:  Stathmin binding tubulin.  (A) A model of stathmin (black) binding to two 

tubulin heterodimers forming a T2S complex, thereby sequestering tubulin away from 

polymerizing MTs.  (B) A 3.5 Å resolution X-ray crystal structure of the stathmin domain 

of the related protein, RB3, binding to two tubulin heterodimers (Steinmetz, 2007). 
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Figure 1.3:  Apoptosis signaling pathway.  (A) The extrinsic apoptotic pathway begins 

when an external source signals a cell to die.  A signal enters the cell via cell-cell 

communication. The signal causes procaspase 8 to be cleaved to form caspase 8, which 

starts a signal cascade leading to apoptosis.  (B) The intrinsic apoptotic pathway begins 

when an internal signal is detected (such as DNA damage).  This signal leads the eventual 

disturbance of the mitochondrial inner membrane causing the release of cytochrome c.  

Cytochrome c forms a complex with procaspase 9 and Apaf-1, which causes the cleavage 

of procaspase 9 to caspase 9.  Caspase 9 starts a signaling cascade leading to apoptosis. 
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Figure 1.4:  p53’s role in the cell.  Under normal conditions, p53 is immediately bound 

by MDM2 and marked for destruction by ubiquitin.  This ubiquitinated protein is sent to 

the proteosome where it is degraded.  When DNA damage occurs p53 is phosphorylated 

and released from mdm2.  p53 then moves to the nucleus where it acts as a transcription 

factor for many different genes (p21 is shown as an example).  These genes cause cell 

cycle arrest while DNA damage is repaired or can cause the cell to begin apoptosis. 
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Chapter 2 

 

 

Stathmin/Oncoprotein 18, a microtubule regulatory protein, is required 

for survival of both normal and cancer cell lines lacking the tumor 

suppressor, p53 
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Introduction 

 

Microtubules are dynamic polymers of α/ß tubulin dimer subunits that contribute to a 

number of cell processes including chromosome movement and mitosis. Several 

successful chemotherapies, including paclitaxel and vinblastine, are thought to act by 

targeting microtubules or their tubulin subunits, disrupting mitotic spindle function, 

activating the spindle assembly checkpoint and inducing cell death (Jordan and Kamath, 

2007; Rieder and Maiato, 2004; Weaver and Cleveland, 2005). While microtubules have 

been a successful target for chemotherapy development (Jordan and Kamath, 2007), 

accessory proteins that regulate microtubule assembly and disassembly are also targets 

for novel chemotherapeutics (Bhat and Setaluri, 2007; Chin and Herbst, 2006). Of these 

regulatory proteins, stathmin/oncoprotein 18, a microtubule destabilizing protein, has 

received attention recently as a potential target for cancer therapy (Kouzu et al., 2006; 

Mistry et al., 2005; Rana et al., 2008). 

 

Stathmin is overexpressed in many cancers including leukemia (Melhem et al., 1997), 

lymphoma (Nylander et al., 1995), oral squamous-cell (Kouzu et al., 2006), adenoid 

cystic (Nakashima et al., 2006), lung (Nishio et al., 2001), and hepatocellular carcinomas 

(Yuan et al., 2006), adenocarcinoma (Chen et al., 2003; Friedrich et al., 1995), prostate 

cancer (Mistry et al., 2005), sarcomas (Belletti et al., 2008), glioma (Ngo et al., 2007), 

breast cancer (Bieche et al., 1998; Brattsand, 2000), and ovarian cancer (Price et al., 

2000). Cancers where stathmin is overexpressed have been shown to have a high 

malignancy phenotype, which leads to generally poor prognosis, supporting the use of 
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stathmin expression as a biomarker for cancer stage progression (Chen et al., 2003; 

Mistry et al., 2005).  

 

While stathmin level may serve as a biomarker in many cancers, several studies have 

demonstrated that stathmin depletion may also have therapeutic value; in a number of 

cancer cell lines stathmin depletion results in cell cycle arrest and apoptosis. Mistry et al. 

(Mistry et al., 2005) found that expression of anti-stathmin ribozymes depleted stathmin 

and resulted in apoptosis in the androgen-independent prostate cancer cell line LNCaP. 

Depletion of stathmin by siRNA or shRNA in HeLa cells (Zhang et al., 2006), 

osteosarcoma cell lines (Wang et al., 2007) and several breast cancer cell lines (Alli et al., 

2007) also demonstrated reduced cell proliferation and apoptosis after stathmin reduction. 

In contrast to these cancer cell lines, stathmin knockout mice are viable (Schubart et al., 

1996). These results have raised interest in stathmin reduction as a potential cancer 

therapy, possibly active only in cancerous cells. 

 

It is currently not known why even partial stathmin depletion is sufficient to induce 

apoptosis in several cancer cell lines. Most studies have indicated that stathmin depletion 

results in a G2/M block (Mistry et al., 2005; Wang et al., 2009; Zhang et al., 2006), but 

normally stathmin is inactivated by phosphorylation at entry into mitosis (Larsson et al., 

1997; Larsson et al., 1995; Marklund et al., 1996) and does not have a detectable 

microtubule destabilizing activity during mitosis (Ringhoff and Cassimeris, 2009b). 

These latter data strongly suggest that stathmin depletion does not lead to apoptosis by 

inducing a mitotic block. An alternative mechanism was suggested by Alli et al. (Alli et 
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al., 2007), who noted that those cell lines requiring stathmin for survival also expressed 

mutant p53. This intriguing hypothesis was not tested directly because Alli et al. (Alli et 

al., 2007) were unable to deplete stathmin from cell lines expressing wildtype p53. 

Further complicating analysis, some of the breast cancer cell lines used by Alli et al. (Alli 

et al., 2007) have additional mutations targeting other tumor suppressor genes, including 

Rb and PTEN (DeGraffenried et al., 2004; Wang et al., 1993). 

 

Here we used several experimental systems to test whether stathmin is specifically 

required for survival of those cells lacking p53. First, we compared cell proliferation and 

death after stathmin depletion from matched colon cancer cell lines (HCT116) differing 

in p53 genotype. As an alternate approach, we restored p53 to HeLa cells by depletion of 

the human papillomavirus (HPV) E6 protein, which normally binds p53 and marks it for 

destruction. Finally, we depleted stathmin and/or p53 from normal human foreskin 

fibroblasts (HFF cells) to address whether stathmin is specifically required for cancer cell 

survival. We found that stathmin is required for the survival of both cancerous and non-

cancerous derived cell lines, but only in the absence of p53.  In cells lacking both 

stathmin and p53, cells arrest or delay at G2 of the cell cycle.  

 

Methods 

 

Cell Culture:  

Cells were grown at 37ºC in a humidified atmosphere of 5% CO2.  HCT116 and HFF 

cells were grown in DMEM (GIBCO) supplemented with 3.7g/L sodium bicarbonate, 1X 
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antibiotic/antimycotic (Sigma), 1% sodium pyruvate, and 10% fetal bovine serum (FBS) 

(GIBCO-Invitrogen).  HeLa cells were grown in MEM (GIBCO) supplemented with 

2.2g/L sodium bicarbonate, 1X antibiotic/antimycotic, and 10% FBS. 

 

Drugs:   

Doxorubicin was added to cells to induce DNA damage and stabilize p53, facilitating its 

detection by western blot. When used, doxorubicin (0.5 µM) was added to cells for the 

last 24 hours of an experimental treatment. Doxorubicin was never used in experiments to 

measure cell proliferation or cell death. Some cells were treated with the caspase 

inhibitor, Z-VAD-FMK (10 µm; Sigma-Aldrich) or DMSO as a vehicle control. Z-VAD-

FMK was added to cells 24 hours prior to any other treatment and remained for the 

duration of the experiment. 

 

RNA interference and shRNA transfections:  

RNA interference (RNAi) was achieved using GeneSilencer reagents following the 

manufacturer’s protocol. Cells were grown on 35 mm dishes for 1-2 days before the 

addition of siRNA. Cells were serum starved 30 minutes pre-transfection and 4 hours 

post-transfection to improve transfection efficiency. RNAi oligonucleotides (Dharmacon) 

used included: SMTN1 (Op18-443),  5’- CGUUUGCGAGAGAAGGAUAdtdt-

3’(Holmfeldt et al., 2007) and HPV E6 (18E6-385),  5’-

CUAACACUGGGUUAUACAAdtdt-3’ (Koivusalo et al., 2005).  SiGlo Risc-Free 

siRNA (Dharmacon) was used as a control siRNA sequence for these experiments. A 

stathmin shRNA plasmid and control plasmid were obtained from Superarray Bioscience 
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Corporation and used to confirm results from siRNA.  Cells were grown similarly to 

those treated with RNAi except that Fugene 6 was used to transfect cells with shRNA 

plasmids.  The shRNA (manufacturer's #4) used recognizes 607-627 of exon 4 of the 

stathmin gene. Some cells were also transfected with TransSilent empty vector or 

TransSilent p53 shRNA plasmids (Panomics;(Giono and Manfredi, 2007)) using Fugene 

6 (Piehl and Cassimeris, 2003; Warren et al., 2006). 

 

Cell growth and death measurements:  

Cells were grown for 1-5 days post-transfection with siRNA or shRNA, trypsinized, 

stained with Trypan Blue (0.4%) and counted using a hemocytometer.  Cell viability was 

assessed by Trypan Blue exclusion. Live and dead cells were counted, averaged and 

pooled for 3 separate experiments for each cell line and treatment. Data shown are means 

± standard deviations. 

 

Groups of cells were also followed over time by plating cells on grid-etched coverslips 

attached to the bottoms of 35 mm dishes (MatTek Corporation). Cells were plated and 

incubated for 24 hrs before transfection of siRNAs. Cells were allowed to grow for an 

additional 24 hrs and then observed using a 20X objective on an inverted microscope 

(Nikon TE2000E) equipped with phase contrast optics and MetaVu image acquisition 

software.  Ten grid squares were chosen randomly and images were acquired from these 

squares each day for up to 5 days. Three separate imaging time course experiments were 

performed and representative images are shown in Figures 2.1 and 2.3. 
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Statistical analysis of cell counts, including those determined after immunofluorescent 

staining (below), were performed using Paired t-tests in Microsoft Excel or GraphPad 

Software (www.graphpad.com/quickcalcs/ttest1.cfm). 

 

Indirect Immunofluorescence and confocal microscopy:   

Cells were fixed and imaged as described previously (Piehl and Cassimeris, 2003).  

Primary antibodies used were mouse monoclonal α-tubulin (B512; Sigma-Aldrich), 

rabbit anti-TPX2 (Garrett et al., 2002) (Gift from Duane Compton, Dartmouth Medical 

School), rabbit anti-cyclin B1 (Sigma-Aldrich), rabbit anti-phospho-CDK1 (Tyr 15) (Cell 

Signaling Technology) and mouse anti-cleaved PARP (ASP214) (Cell Signaling 

Technology). Goat anti-mouse or rabbit Alexa Fluor 488 or 563 (Invitrogen) were used as 

the secondary antibodies in these experiments. Confocal microscopy was used to image 

stained cells as described previously (Warren et al., 2006).  Images were acquired using a 

40X/1.3NA objective.  Image stacks were converted to maximum intensity projections, 

exported as TIFF files and assembled using Photoshop.  

 

Protein Isolation and Western Blotting:   

Soluble cell extracts were prepared for SDS-polyacrylamide gel electrophoresis as 

described previously (Ringhoff and Cassimeris, 2009b).  Protein concentrations were 

measured by Bradford assay (Bradford, 1976). Membranes were probed and imaged as 

previously described (Ringhoff and Cassimeris, 2009b) using primary antibodies mouse 

anti-p53 (Vision Bio Systems), rabbit anti-stathmin (Sigma-Aldrich), or rabbit anti-actin 

(Sigma-Aldrich) followed by goat anti-mouse or rabbit horseradish peroxidase-linked 
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IgG (Sigma-Aldrich). Protein depletions were estimated by comparison of western blot 

signals to those generated by serial dilution of the control-treated cell lysate. 

 

Results 

 

Depletion of stathmin from HCT116 colon cancer cell lines 

To test directly whether p53 is required for survival of cells depleted of stathmin, we used 

HCT116 colon cancer cell lines differing in TP53 genotype. The HCT116p53 -/- line was 

developed by knocking out both copies of the TP53 gene from the parental HCT116 line 

(HCT116WTp53; (Bunz et al., 1998)). We first examined the extent and time course of 

stathmin depletion after siRNA transfection, compared to cells transfected with siGlo, a 

non-targeting control siRNA (Dharmacon). For HCT116p53-/- cells, stathmin was depleted 

by approximately 75% within 24 hours after transfection and remained low for 5 days 

(Figure 2.1A). We found that stathmin depletion was more difficult in HCT116WTp53, 

consistent with a previous study of breast cancer cell lines (Alli et al., 2007).  By 72 hrs 

after siRNA transfection, stathmin protein level was reduced by approximately 50% in 

HCT116WTp53 (Figure 2.1B). Stathmin level often returned at later time points (not 

shown), but a second siRNA transfection at 72 hours kept the stathmin level low at day 5 

(time after the first transfection, Figure 2.1B) and up to 7 days after the initial 

transfection (not shown).  These results demonstrate that stathmin can be successfully 

knocked down in HCT116 matched cell lines. 

 

Stathmin is required for cell survival in HCT116 cells lacking p53  
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The HCT116 cell lines were depleted of stathmin using the conditions described above 

and were observed for up to five days post-siRNA transfection to observe the effect of 

stathmin depletion on cell proliferation and death.  First, we followed living cells by 

imaging the same regions of coverslips over a 4 - 5 day time course. For HCT116WTp53 

cells, either expressing stathmin or depleted of stathmin, cell density increased over time, 

reaching near confluency by day 4 - 5 (Figure 2.1C). The same growth characteristics 

were observed for the HCT116p53-/- cell line transfected with a control siRNA. In contrast, 

depletion of stathmin from the HCT116p53-/- line significantly reduced the increase in cell 

number over time (Figure 2.1C). 

 

Following living cells over time suggested that stathmin depletion slowed cell 

proliferation and/or led to cell death only in the HCT116p53-/- cell line. To examine cell 

growth and death more directly, we measured both cell proliferation, by counting the 

number of living cells, and cell death, by counting the percentage of trypan blue positive 

cells over a 5 day time course. HCT116 cells expressing wildtype p53 and depleted of 

stathmin proliferated at a slower rate than cells transfected with a control RNA (solid 

lines, Figure 2.2A).  Although the stathmin depleted HCT116WTp53 cells grew more 

slowly, they remained viable, as measured by trypan blue exclusion (Figure 2.2B). 

Stathmin depletion from HCT116p53-/- cells showed very slow proliferation over a 5 day 

time course (Figure 2.2A, see also Figure 2.1C) and these cells died at a much greater 

rate than HCT116WTp53 cells depleted of stathmin, or either of the HCT116 cell lines 

transfected with a control RNA (Figure 2.2B). There was a high variability in the 

percentage of dead cells in HCT116p53-/- cells depleted of stathmin, as seen by the large 
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standard deviations. At this time we do not know the reason for the inter-experiment 

variability. To confirm that the difference in means was significant, we compared the 

mean percentages of dead cells for control and stathmin-depleted cells within each 

HCT116 cell line at the 5 day time point. The difference in the mean percentage of dead 

cells in HCT116p53-/- control and stathmin-depleted cells was highly significant (p<0.001), 

while the means were not significantly different in HCT116WTp53 cells and HCT116WTp53 

cells depleted of stathmin. Taken together, these results provide strong evidence that 

stathmin is required for cell survival only in cells lacking p53, but the differences in time 

course of stathmin knockdown in cells differing in TP53 genotype complicates analysis. 

 

Restoration of p53 in HeLa cells rescues cells from stathmin-depletion induced 

death 

To further test whether stathmin is required for survival of cells lacking p53, we used 

HeLa cells, which are wildtype for the TP53 gene, but fail to maintain p53 protein level 

because they stably express the human papillomavirus (HPV) E6 protein. The HPV E6 

protein binds p53 and marks it for destruction (Koivusalo et al., 2005). The ability to 

deplete the HPV E6 protein by RNAi (Koivusalo et al., 2005) provides a mechanism to 

restore p53 in HeLa cells, allowing comparison of cells depleted of stathmin in the 

presence and absence of p53. 

 

We first confirmed the results of Koivusalo et al (Koivusalo et al., 2005) that E6 

depletion restores p53 in HeLa cells. Where noted, cells were treated with the DNA-

damaging agent doxorubicin for the 24 hours prior to gel sample preparation to stabilize 
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p53 and enhance its detection. As shown in Figure 2.3A, HeLa cells have a very low 

level of p53, even after doxorubicin treatment. Depletion of E6 by siRNA results in a 

significant increase in p53 level, which is also detectable in cells depleted of both 

stathmin and E6 (Figure 2.3A). 

 

Stathmin was also readily depleted from HeLa cells, as shown in Figure 2.3B. At 72 

hours after siRNA transfection, stathmin was reduced by at least 75%, independent of 

whether cells were also depleted of E6 (p53 restored). Stathmin level was also reduced, 

although to a lesser extent, in cells depleted only of E6. In this latter case, reduced 

stathmin level may reflect the ability of p53 to negatively regulate stathmin expression 

when p53 level is transiently increased (Ahn et al., 1999; Johnsen et al., 2000). 

 

We next examined cell density over time, similar to the experiments performed with 

HCT116 cell lines. Stathmin depletion from HeLa cells reduced the increase in cell 

number over time observed in control-siRNA treated cells (Figure 2.3C). Restoring p53 

(E6 depletion), in the absence or presence of stathmin depletion, resulted in slower cell 

growth compared to control cells, but not nearly as significant an inhibition as that 

observed in stathmin depleted HeLa cells (Figure 2.3C). We then measured both cell 

proliferation (live cell number over time) and the percent dead cells (trypan blue positive) 

for these experimental conditions.  Figure 2.4 shows that stathmin depletion from HeLa 

cells (lacking p53) resulted in both reduced cell proliferation and a large increase in the 

percentage of dead cells.  Comparison of mean percentages of dead cells at day 5 showed 

that stathmin depletion signicantly increased the percentage of dead cells over that 
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measured in control siRNA treated cells (p<0.001). Treatment of cells with siRNA to 

deplete both stathmin and HPV E6 (restoring p53) reversed the effects of stathmin 

depletion alone; cells showed proliferation rates and percentages of dead cells 

comparable to control-treated or HPV E6 siRNA-treated cells.  Finally, we confirmed the 

siRNA results by transfecting cells with a plasmid encoding an shRNA directed against a 

different sequence in the stathmin mRNA (see Methods).  As shown in Figure 2.4 C for 

cells examined 72 hours after transfection, shRNA depletion of stathmin significantly 

increased the percentage of dead cells, compared to cells transfected with a control 

plasmid. Together with the results from HCT116 cell lines, these results provide strong 

evidence that stathmin is required for cell survival only in the absence of p53. 

  

In the above experiments, we used trypan blue exclusion as a simple assay to 

differientiate living and dead cells. It is likely that stathmin depletion results in death by 

apoptosis, as others have demonstrated previously (Alli et al., 2007; Mistry et al., 2005; 

Wang et al., 2009; Zhang et al., 2006). To confirm that cells die via apoptosis we 

examined whether stathmin-depletion induced cell death was inhibited by the capsase 

inhibitor Z-VAD-FMK. As expected, Z-VAD-FMK significantly blocked the death of 

HeLa cells depleted of stathmin (Figure 2.5A,B). Stathmin depleted cells treated with Z-

VAD-FMK also showed cell proliferation rates intermediate between control-treated and 

stathmin-siRNA treated cells. In additional experiments, we found increased levels of 

cleaved poly-ADP ribose polymerase (PARP) in stathmin-depleted HCT116p53-/- cells 

(Figure 2.5C,D), but not in stathmin-depleted HCT116WTp53 cells. These results confirm 
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previous results of others (Alli et al., 2007; Mistry et al., 2005; Wang et al., 2009; Zhang 

et al., 2006) that stathmin depletion initiates apoptotic death in cells lacking p53. 

 

Depletion of p53 and stathmin from non-cancerous cells leads to cell death 

The experiments above, along with previous results of others (Alli et al., 2007; Mistry et 

al., 2005; Zhang et al., 2006), demonstrated that stathmin depletion from cancer cell lines 

results in cell death by apoptosis. We next asked whether non-cancerous cells also require 

stathmin for survival using human foreskin fibroblasts (HFF) as a model non-cancerous 

cell line. To deplete p53 from these cells, we transfected cells with a plasmid for 

expression of an shRNA targeting p53 (Giono and Manfredi, 2007). A successful 

knockdown of both stathmin and p53 was achieved using RNAi and shRNA respectively 

(Figure 2.6A, B).  A 50% knockdown of stathmin was seen as early as day 3 and 

continued to approximately 75% knockdown by day 5. By day 2, p53 showed a 

significant knockdown as well.  Note that the only cells treated with doxorubucin were 

those used to prepare gel samples for p53 detection (as noted in Figure 2.6B).  Depletion 

of stathmin or p53 alone did not inhibit cell proliferation rate and did not increase cell 

death compared to cells transfected with control siRNA or the empty vector used for 

shRNA delivery (Figure 2.6C, D).  Interestingly, however, depleting both stathmin and 

p53 together resulted in significant cell death (p<0.001 at day 5) and a lack of cell 

proliferation (Figure 2.6C, D). These data demonstrate that stathmin is required for cell 

survival in both human cancerous and non-cancerous cell lines lacking p53. 

 

Cells arrest in G2 of the Cell Cycle prior to Apoptosis 
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Both the over-expression of wildtype p53 (Johnsen et al., 2000) and the absence of p53 

(Sur et al., 2009) have been shown to cause cell cycle arrest, at least under some 

experimental conditions. To address whether stathmin depletion leads to a unique cell 

cycle arrest that is dependent upon p53 status, we examined cell cycle distributions in 

HCT116 matched cells depleted of stathmin and HeLa cells depleted of stathmin, HPV 

E6 (restoring p53) or both proteins. Others have previously followed DNA levels and 

identified a G2/M cell cycle arrest after stathmin depletion in cancer-derived cell lines 

(Alli et al., 2007; Mistry et al., 2005), but these studies measured DNA content and 

cannot differentiate between G2 and M phases. Therefore, we used an alternative 

protocol, by staining fixed cells with antibodies to TPX2 (present in the nuclei of S and 

G2 cells and bound to the mitotic spindle microtubules in M phase (Brito and Rieder, 

2006)), Cyclin B (present in the cytoplasm of G2 cells and associated with the mitotic 

spindle until anaphase onset during M phase (Clute and Pines, 1999)), and CDK1 

phosphosphorylated on Tyr15 (Phospho-CDK1(Y15); inhibitory phosphorylation on 

CDK1 present during G2 and removed at entry into mitosis (Borgne and Meijer, 1996)). 

Cells were co-stained with antibodies to tubulin (Figure 2.7 and 2.8), allowing visual 

classification of cells in M phase. Using these staining conditions and counting all cells 

within multiple images, we found that HCT116p53-/- cells depleted of stathmin showed a 

significant (p < 0.05) increase in non-mitotic cells staining positively for TPX2 (Figure 

2.7A, B) or Cyclin B (Figure 2.7C, D) 48 hours post transfection. This result was most 

pronounced in TPX2 stained samples. The mitotic index was approximately equal among 

the two HCT116 lines whether stathmin was depleted or not. 
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We then extended these staining protocols to HeLa cells. Depletion of stathmin from 

HeLa cells also increased the percentage of non-mitotic TPX2 positive cells (Figure 2.8 

A,B) and concomitantly significantly decreased the percentage of cells not recognized as 

TPX2 positive. Untreated HeLa cells, cells treated with a non-targeting siRNA or 

depleted or E6 to restore p53 showed a much smaller percentage of non-mitotic cells 

staining positive for TPX2. As a second marker for cells in G2, we also stained HeLa 

cells with antibodies recognizing phospho-CDK1(Y15), one of the two inhibitory 

phosphorylations holding CDK1 inactive until entry into M phase (Borgne and Meijer, 

1996). Consistent with results from TPX2 staining, HeLa cells depleted of stathmin 

showed a significant increase (p < 0.05) in non-mitotic cells stained positive for phospho-

CDK1(Y15) (Figure 2.8 C,D). Cells depleted of E6 or of E6 and stathmin did not show 

significant changes in the percentage of non-mitotic, phospho-CDK1(Y15) positive cells. 

We confirmed these results by transfecting HeLa cells with a control plasmid or a 

plasmid expressing an shRNA directed against stathmin and again found an increase in 

non-mitotic phospho-CDK1(Y15) positive cells in stathmin-depleted cells (Figure 2.8E). 

From these data, it is evident that stathmin depletion disrupts cell cycle progression, 

leading to an increase in cells positive for G2 markers, but only in the absence of p53. 

Given that others have reported a G2/M block in stathmin depleted cells, based on 

analysis of DNA content, and our results indicate a G2 block, it most likely that cells are 

blocked or delayed in G2, prior to entry into mitosis. Depletion of either stathmin or p53 

alone is not sufficient to delay progression through the cell cycle. 
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Discussion 

 

In the results presented here we demonstrated that stathmin is required for the survival of 

cell lines lacking p53, whether those lines are derived from cancerous or normal tissues. 

Stathmin depletion from HCT116p53-/- and HeLa cells showed significantly reduced 

proliferation rates and an increased percentage of dead cells, while depletion of stathmin 

had little effect on the viability of HCT116WTp53 cells or of HeLa cells expressing p53. 

These observations were not confined to cancer-derived cell lines since normal human 

fibroblasts (HFFs) also required stathmin for proliferation and survival, but only in the 

absence of p53. For both HCT116WTp53 and HPV E6-depleted HeLa cells, stathmin 

depletion slowed cell proliferation somewhat, but did not result in cell death and did not 

impose a cell cycle block. Our results provide direct support for the model proposed by 

Alli et al. (Alli et al., 2007), demonstrating that stathmin is required for survival in cells 

lacking p53.  

  

Several groups have previously reported slowing of cell proliferation and cell death after 

stathmin depletion, but these studies did not address a stathmin requirement for cell 

survival in non-cancerous cells. Zhang et al. (Zhang et al., 2006) developed a method for 

expression of stathmin shRNA driven by the survivin promoter, limiting shRNA 

expression to those cells expressing survivin. Since normal differentiated cells do not 

express survivin, it is unclear whether the survivin promoter would be active, and thus 

expressing stathmin shRNA, in the endothelial cells used as controls. Alli et al. (Alli et 

al., 2007) were unable to deplete stathmin from breast cancer lines expressing p53, 
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making it unclear whether stathmin was required for survival of these cells. Wang et al. 

(Wang et al., 2007) and Mistry et al. (Mistry et al., 2005) examined stathmin depletion in 

cancer cell lines and did not test stathmin's requirement for survival of non-cancerous 

cells. 

 

Our finding that stathmin and p53 depletions from normal human fibroblasts results in 

significantly reduced cell proliferation and increased cell death contrasts with the 

reported viability of mice with both copies of the stathmin and p53 genes knocked out 

(Schubart et al., 1996). It is possible that these mice compensate through increased or 

decreased expression of other proteins allowing normal development and survival in 

these mice. 

 

Stathmin and p53 are required for cell cycle progression 

To address why stathmin is required for cell survival only in cells lacking p53, we 

examined cell cycle distributions in HCT116 cell lines depleted of stathmin and in HeLa 

cells expressing stathmin and p53, either protein alone, or depleted of both proteins. We 

found that cells depleted of both stathmin and p53 show a delay in G2 (based on staining 

for TPX2, cyclin B, phospho-CDK1(Y15) and tubulin) while others have reported a 

G2/M delay in cancer cells depleted of stathmin (Alli et al., 2007; Mistry et al., 2005; 

Wang et al., 2009; Zhang et al., 2006). As discussed above, we think it is likely that cells 

depleted of stathmin and p53 are blocked in G2, prior to entry into mitosis. It is 

interesting that induced expression of p53 both represses stathmin expression and induces 
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a G2/M block (Johnsen et al., 2000). Thus, it is likely that the levels of stathmin and p53, 

rather than simply their presence or absence, contribute to G2/M cell cycle progression.  

 

It is not yet clear why both stathmin and p53 are required for cell cycle progression 

through G2 or for entry into M phase. Stathmin is phosphorylated during mitosis, 

resulting in loss of its microtubule destabilizing activity (Holmfeldt et al., 2006; Larsson 

et al., 1997). Stathmin inactivation is required for proper assembly of the mitotic spindle 

(Holmfeldt et al., 2006; Larsson et al., 1997) and stathmin depletion does not impact 

microtubule formation in the spindle (Ringhoff and Cassimeris, 2009b). Because 

stathmin is normally turned off at entry into mitosis and is not required for spindle 

assembly, it is unlikely that stathmin depletion would prevent entry into mitosis by 

disrupting microtubule assembly and turnover.  

 

Activation of p53, typically in response to DNA damage, primarily induces a G1 block, 

but a G2 block is also possible under some conditions (O'Connell and Cimprich, 2005).  

It is intriguing that many proteins functioning in the G2/M checkpoint, including p53, are 

associated with the centrosome (Wang et al., 2009) and we recently found that stathmin 

regulates microtubule nucleation from the centrosome during interphase (Ringhoff and 

Cassimeris, 2009b). These data suggest that depletion of both stathmin and p53 may 

influence either centrosome function or the function(s) of G2/M checkpoint proteins at 

the centrosome to cause a cell cycle delay during G2. An alternative model is also 

possible, where loss of p53 and stathmin impact separate pathways that together function 

synergistically to slow cell cycle progression. 
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A role for p53, or loss of p53, in regulating G2/M progression was also identified 

recently by comparing transcriptome differences between matched cell lines differing in 

p53 status, including the HCT116 colon cancer cells used here. Cells lacking p53 

upregulated expression of genes functioning in G2/M and were sensitive to treatment 

with a Plk (polo-like kinase) inhibitor (Plk functions in G2 to M progression) (Sur et al., 

2009). In terms of cell proliferation, stathmin depletion acts similarly to Plk inhibition, 

since each treatment slows proliferation of cells lacking p53. Stathmin is one target of 

Plk, but this phosphorylation inhibits stathmin's microtubule regulatory activity (Budde et 

al., 2001). Thus inhibiting Plk will keep stathmin in an active form, which could 

contribute to a G2/M block by preventing proper spindle assembly (Larsson et al., 1997; 

Larsson et al., 1995). It is not clear why stathmin depletion acts similarly to Plk inhibition 

to slow G2/M progression; possibly a balance of stathmin and p53 functions are 

necessary to pass through G2. 

 

Conclusions 

 

Stathmin depletion is required for cell proliferation and survival of those cells lacking 

p53.  Given that p53 is mutated in at least 50% of human cancers, mechanisms to 

specifically target these cells for death hold great promise in treatment of a wide range of 

cancers (Wiman, 2007). Although the cellular mechanism responsible is unknown, our 

data add stathmin depletion to the handful of strategies available to block proliferation of 

those cells lacking a functional p53. Given that nitrosoureas appear to target stathmin and 
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control glioma cell migration (Liang et al., 2008), these compounds may be useful agents 

to induce apoptosis in a mutant p53 background. 
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Figures: 

 

Figure 2.1: Stathmin depletion from HCT116p53WT and HCT116p53-/- cell lines. Matched 

lines of HCT116 cells differing in p53 genotype were treated with siRNA targeting 

stathmin. (A) Stathmin depletion from HCT116p53-/- cells was clearly detectable 24 hrs 

after transfection and stayed low for at least 5 days post transfection. (B) siRNA 

depletion of stathmin from HCT116WTp53 cells. The sample shown at 5 days included a 

second siRNA transfection, 72 hrs after the initial siRNA transfection, which was 

necessary to keep stathmin level low. Samples at 1 and 3 days are from a single siRNA 

transfection. In both (A) and (B), the lysates from non-targeting siRNA treated cells were 

loaded in a dilution series to estimate the extent of depletion by stathmin siRNA. Blots 

were re-probed for actin as an indicator of equal loading between control (100% load) 
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and stathmin-depleted samples. (C) Low magnification phase contrast images of living 

cells acquired at the times given after transfection with control or stathmin siRNA. The 

same field is shown within an experimental condition over 4 - 5 days. HCT116p53-/- cells 

depleted of stathmin remain relatively sparse over the time course while cells grow to 

near confluency in the other experimental conditions. Data shown are representative of 3 

separate experiments. 
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 Figure 2.2:  Stathmin is required for survival of HCT116p53-/- cells.  HCT116 cell lines 

were treated with non-targeting control or stathmin RNAi. At the indicated time points, 

cells were trypsinized, incubated in Trypan Blue to identify dead cells, and numbers of 

living and dead cells counted. Cell proliferation rates (A) and the percentage of dead cells 

(B) represent the means of 3 independent experiments ±SD. 
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Figure 2.3:  Restoring p53 in HeLa cells.  (A) HeLa cells were treated with control or 

siRNA targeting HPV E6 for 72 hrs and exposed to 0.5 µM doxorubicin for the final 24 

hrs to induce DNA damage and stabilize p53, facilitating its detection by immunoblot. In 

control-treated HeLa cells, p53 is present at a very low level, even in the presence of 

doxorubicin. Depletion of HPV E6 restored p53. (B) HeLa cells were treated with siGlo 

control siRNA (or empty vector controls) or siRNAs targeting stathmin, HPV E6 or both 

mRNAs.  Anti-stathmin immunoblot of cell lysates were collected 72 hrs after siRNA 

transfection. Stathmin was depleted by at least 75% after treatment with siRNA targeting 

stathmin or stathmin and HPV E6. Depletion of HPV E6 also caused a reduction in 
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stathmin level, possibly by p53-mediated repression of stathmin expression (Ahn et al., 

1999; Johnsen et al., 2000). For both A and B, blots were re-probed for actin as a marker 

of equal loading between control (100%) and siRNA samples. (C) Low magnification 

phase contrast images of living cells acquired at the times given after transfection with 

control or siRNAs targeting stathmin, HPV E6 or both mRNAs. The same field is shown 

for each experimental condition over 4 - 5 days.  HeLa cells depleted of E6 or stathmin 

and E6 grow slightly slower than control siRNA treated cells, while stathmin depleted 

cells show minimal growth. Data shown are representative of 3 separate experiments. 
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Figure 2.4: Restoring p53 rescues HeLa cells from stathmin-depletion induced death. Cell 

proliferation rates and the percentage of dead cells were measured as described in Figure 

2.2. (A,B) Stathmin depletion slows cell proliferation and increases the percentage of 

dead (trypan blue positive) cells. Depletion of HPV E6 (restoring p53) alone or in 

combination with stathmin depletion does not lead to significant cell death. (C) 

Transfection of cells with an shRNA targeting stathmin resulted in stathmin depletion 

(top) and a significant increase in the percentage of dead cells at 72 hours post-

transfection. Controls were transfected with the negative control plasmid provided by the 

manufacturer. * denotes p<0.05. All data represent the means of 3 independent 

experiments ±SD. 
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Figure 2.5:  Stathmin-depletion induced cell death likely occurs via apoptosis. (A) The 

caspase inhibitor Z-VAD-FMK blocks stathmin-depletion induced cell death in HeLa 

cells. HeLa cells were treated with 10 µm Z-VAD-FMK for 24 hrs prior to transfection 

with either siGlo control siRNA (or empty vector controls) or RNAi against stathmin. 

Plots of cell proliferation rates (A) and the percentage of dead cells (B) represent the 

means of three independent experiments ±SD.  (C) HCT116 matched cell lines were 

transfected with control or stathmin RNAi, fixed 72 hrs later and stained for cleaved 

PARP. The percentage of cells positive for cleaved PARP are plotted. Only HCT116p53-/- 

cells depleted of stathmin show a signficant increase in cells positive for cleaved PARP. 

Data shown are the means ± SD of 3 independent experiments and a total of ~200 cells 



 50 

per treatment. (D) Representative image from HCT116p53-/- cells depleted of stathmin and 

staining positive for cleaved PARP in the nucleus (arrow). Several weakly stained cells 

(counted as negative) are also included. Scale bar = 10 µm. 
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Figure 2.6:  Depleting both p53 and stathmin from normal human fibroblast (HFFs) cells 

leads to cell death.  HFF cells were transfected with TransSilent empty vector, p53 

shRNA plasmid and/or siRNA targeting stathmin as indicated. (A) Anti-stathmin 

immunoblot from cell lysates were isolated 3 days after transfection. A knockdown of 

>75% was observed for both stathmin siRNA alone or when used in combination with 

shRNA against p53. (B) Anti-p53 immunoblot from cell lysates isolated at the times 

indicated. When present, doxorubucin was included for the final 24 hrs of incubation. 

The level of p53 is detectably reduced 1 day after shRNA transfection, but is more 

significantly depleted by 2-3 days after transfection. (C,D) Plots of HFF cell proliferation 

rates (C) and the percentage of dead cells (D) represent the means of 3 independent 

experiments ±SD. 
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Figure 2.7:  Stathmin depletion from HCT116p53-/- cells delays G2 of the cell cycle. 

Matched HCT116 cell lines were treated with either siGlo control siRNA or siRNA 

targeting stathmin mRNAs. (A, B) HCT116 cells were fixed 48 hrs after siRNA 

transfection and stained with antibodies against α-tubulin (green in merged images) and 

TPX2 (red in merged images). TPX2 is present in S/G2 and M phases of the cell cycle 

(Brito and Rieder, 2006). The numbers of TPX2 positive, negative and mitotic cells were 

counted, and the percentage of cells in each group are shown in A.  Images shown in (B) 

are from a representative field of cells transfected with stathmin siRNA. Negative cells 

were identified by their array of interphase microtubules and their lack of TPX2 staining.  

Cells in interphase staining positively for TPX2 were scored as positive.  Mitotic cells 
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were identified by the presence of a mitotic spindle (tubulin staining). Scale bar = 25 µm.  

(C,D) HCT116 cell lines were fixed 48 hrs after siRNA transfections and stained with 

antibodies against α-tubulin (green in merged images) and cyclin B (red in merged 

images). Cytoplasmic cyclin B is a marker of G2 cells (Clute and Pines, 1999). The 

percentage of non-mitotic cyclin B positive and negative cells are shown in (C). Images 

shown in (D) are from representative cells fixed 48 hrs after stathmin siRNA transfection.  

Scale bar = 25 µm. The data represent the means of 3 (C) or 4 (A) independent 

experiments,  each including ~1000 cells ±SD for each treatment group. * denotes p < 

0.05. 
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Figure 2.8:  Stathmin depletion from HeLa cells delays G2 of the cell cycle. HeLa cells 

were transfected with either siGlo control siRNA or siRNA targeting stathmin, HPV E6 

or both mRNAs. (A, B) HeLa cells were fixed and stained with antibodies against α-

tubulin (green in merged images) and TPX2 (red in merged images). Cells were then 

counted as described in Figure 2.7A, and the percent cells in each group are shown in 

Figure 2.8A.  Images shown (B) are from representative cells fixed 48 hrs after siRNA 

transfections. Arrows in the merged image denote several TPX2 positive cells. Scale bar 

= 50 µm. (C,D) HeLa cells were fixed and stained with antibodies against α-tubulin (red 
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in merged images) and phospho-CDK1(Y15) (green in merged images; this inhibitory 

phosphorylation must be removed for entry into M phase). The percentage of non-mitotic 

cells staining positive for phospho-CDK1(Y15) is shown in (C).  Representative images 

from phospho-CDK1(Y15) stained cells are shown in (D). Arrows in the merged image 

denote phospho-CDK1(Y15) positive cells. Scale bar = 50 µm. (E) Depletion of stathmin 

by shRNA also increased the percentage of phospho-CDK1(Y15) positive non-mitotic 

cells at 48 hours after transfection. Each plot represents the mean of 3 independent 

experiments ± SD including ~ 1000 cells per treatment. * denotes p < 0.05. 
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Chapter 3 

 

Increasing Stable Microtubules Leads to G2 Delay in Human Cell Lines 

Lacking p53 
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Introduction: 

 

Stathmin/Oncoprotein 18 is a microtubule (MT) destabilizing protein that is highly over-

expressed in many cancers (Belletti et al., 2008; Bieche et al., 1998; Brattsand, 2000; 

Chen et al., 2003; Friedrich et al., 1995; Kouzu et al., 2006; Melhem et al., 1997; 

Nakashima et al., 2006; Ngo et al., 2007; Nishio et al., 2001; Nylander et al., 1995; Price 

et al., 2000; Yuan et al., 2006).  We and others have recently shown that depleting 

stathmin in certain cancer cells leads to apoptosis (Alli et al., 2007; Carney and 

Cassimeris, 2010; Mistry et al., 2005; Wang et al., 2009; Zhang et al., 2006).  While our 

results confirmed previous observations, we also showed that only when depleting both 

stathmin and p53, a tumor suppressor protein, do cells delay in G2 of the cell cycle and 

activate apoptosis.  What is unknown, however, is whether it is the absence of stathmin’s 

MT destabilizing activity that is causing the cells to delay during G2 and die, or whether 

it is the changes in stathmin’s affects on its other known binding partners that are causing 

these detrimental phenotypes.  Stathmin is best known as a MT destabilizer, but two other 

binding partners, the transcription factor STAT3 and the cyclin-dependent kinase 

inhibitor p27Kip1, could also be responsible for relaying signals downstream of stathmin 

depletion. 

 

Because stathmin is a MT destabilizer, its reduction increases MT polymer (Holmfeldt et 

al., 2006; Howell et al., 1999a; Ringhoff and Cassimeris, 2009b; Sellin et al., 2008), 

inhibits MT dynamic turnover (Howell et al., 1999a; Howell et al., 1999b; Ringhoff and 

Cassimeris, 2009b), and increases MT nucleation from centrosomes (Ringhoff and 
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Cassimeris, 2009b).  P53 also contributes to MT dynamics, although reduced p53 level 

has a relatively minor impact on MT dynamic turnover (Galmarini et al., 2003). To date, 

the effect of stathmin depletion on MT stability has only been measured in cells 

expressing p53 (Belletti et al.; Holmfeldt et al., 2007; Ringhoff and Cassimeris, 2009b) 

and it is not known whether reducing both stathmin and p53 levels will synergize to 

provide a more robust stabilization of the MT cytoskeleton.  If MT stability acts 

downstream of stathmin depletion to slow G2 progression and induce apoptosis, then MT 

stability must be greatest when stathmin is depleted from cells expressing very low levels 

of p53.  

 

Whether MT stability regulates cell cycle progression outside of M phase is 

controversial.  Some have previously suggested that the MT cytoskeleton is necessary for 

interphase cell cycle progression, particularly G2 progression (Balestra and Jimenez, 

2008; Blajeski et al., 2002; Rieder and Cole, 2000), but Uetake and Sluder (Uetake and 

Sluder, 2007) have argued that an interphase MT integrity checkpoint does not exist; 

rather it is the length of the previous mitosis that matters.  It is possible that a MT-

dependent interphase checkpoint is much more robust and detectable only in synergy 

with another factor, such as loss of p53.  Alternatively, it is possible that stathmin level 

controls more than MT stability as discussed next. 

 

Although stathmin’s interactions with tubulin and MTs are well known, they are not the 

only proteins known to interact with stathmin.  P27Kip1, a CDK inhibitor (Baldassarre et 

al., 2005), and STAT3, a transcription factor (Ng et al., 2006), have also been shown to 
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bind to stathmin's C terminal 50 amino acids (Baldassarre et al., 2005; Ng et al., 2006).  

Binding of STAT3 to stathmin has been shown to block stathmin's MT destabilizing 

activity (Ng et al., 2006).  Stathmin depletion does not activate STAT3 (Ng et al., 2006) 

making it unlikely that stathmin depletion signals a cell cycle delay via STAT3 

activation. The CKI, p27kip1 also binds stathmin's C terminus and inhibits its MT 

destabilizing activity.  p27kip1 has recently been shown to cause a G2 delay in addition to 

its known function in G1 (Stacey, 2010).  But, whether stathmin depletion could free 

cytoplasmic p27Kip1, allowing it to enter the nucleus and inhibit cell cycle progression in 

G2 has not been tested, but such a scenario could generate the observed cell cycle delay.  

 

Here we examine whether stathmin depletion relays a cell cycle inhibitory signal through 

stabilization of interphase MTs or through its other binding partners p27Kip1 and STAT3. 

We show that stathmin depletion induces greater MT stability in combination with 

negligible p53 levels.  Additionally, MT depolymerization by incubation in nocodazole is 

sufficient to abrogate the G2 delay and push cells into mitosis.  Finally, we show over-

expression of either GFP-tagged full-length stathmin or stathmin Δ101-149 is sufficient 

to relieve the cell cycle delay. Each of these constructs is active as a MT destabilizer. In 

contrast, signaling via STAT3 or p27Kip1 would be reversed by expression of stathmin 

Δ5-25, and this was not observed. These results indicate that MT stability relays signals 

that can delay the cell cycle in G2. 

 

Methods: 
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Cell Culture: 

Cells were grown at 37ºC in a humidified atmosphere of 5% CO2.  HeLa cells were 

grown in either MEM (GIBCO) supplemented with 2.2g/L sodium bicarbonate, 1X 

antibiotic/antimycotic (Sigma), and 10% fetal bovine serum (FBS) (GIBCO-Invitrogen), 

or DMEM (Sigma) supplemented with 1X antibiotic/antimycotic, 1% L-Glutamine 

(Sigma), and 10% FBS.  HCT116p53-/- cells were grown in the same DMEM as HeLa 

cells. 

 

RNA Interference and Transient Transfection: 

RNA interference (RNAi) was achieved using GeneSilencer reagents following the 

manufacturer’s protocol. Cells were grown on 35 mm dishes for 1-2 days before the 

addition of siRNA. Cells were serum starved 30 minutes pre-transfection and 4 hours 

post-transfection to improve transfection efficiency. RNAi oligonucleotides (Dharmacon) 

used included: SMTN1 (Op18-443), 5’- CGUUUGCGAGAGAAGGAUAdtdt-3’, 

(Holmfeldt et al., 2007) STMN1-5’-UTR (only when specified, removes only 

endogenous stathmin mRNA): 5’- CCCAGUUGAUUGUGCAGAAUU-3’and HPV E6 

(18E6-385), 5’-CUAACACUGGGUUAUACAAdtdt-3’ (restores p53 by depleting the 

HPV E6 protein) (Koivusalo et al., 2005).  SiGlo Risc-Free siRNA (Dharmacon) was 

used as a control siRNA sequence for these experiments. 

 

For plasmid transfection, cells were grown similarly to those treated with RNAi except 

that Fugene 6 (Piehl and Cassimeris, 2003; Warren et al., 2006) or X-tremeGene HP was 

used to transfect cells with plasmids.  Cells were transfected with EB1-GFP (Piehl and 
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Cassimeris, 2003) and stathmin-GFP (Ringhoff and Cassimeris, 2009b) as previously 

described (Piehl and Cassimeris, 2003) as well as with two new stathmin truncations (see 

next section). 

 

DNA Constructs of Truncated Stathmin: 

Stathmin truncations lacking either the N-terminus (Δ5-25) or the C-terminus (Δ101-149) 

were constructed using the pEGFP-N1 expression vector.  Full-length stathmin-GFP 

(Ringhoff and Cassimeris, 2009b) was modified using PCR primers to remove the 

desired regions.  Stathmin Δ5-25 was made in a two-step PCR reaction where the 

extreme N-terminal region (1-5) and the 25-149 region were amplified separately and 

then combined in the second reaction (using overhangs designed into the primers) to 

make a full length product where the 5-25 region was removed.  In the first reaction, the 

primers used were: F1 (see below) and R2 to make the N-terminal region and F3 and R4 

to make the 25-149 region.  In the second reaction, the products from the previous 

reactions were combined with primers F1 and R4 to make the full-length truncated 

stathmin product. Stathmin Δ101-149 was made using a single PCR reaction using 

primers F1 and R5 to remove the C-terminus.  Both of these products were then 

digested using BamHI and HindIII and ligated into the pEGFP-N1 expression vector.  

These new constructs were then verified using restriction digestions and sequencing. 

 

Primers: 

 

F1:  5’-GATCCCAAGCTTATGGCTTCT-3’ 
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R2:  5’-TTCTTTTGACCGAGGATCAGAAGAAGCCAT-3’ 

F3:  5’-ATGGCTTCTTCTGATCCTCGGTCAAAAGAA-3’ 

R4:  5’-TCCGGTGGATCCAAGTCAGCTTCAGTCTCGTC-3’ 

R5:  5’-TCCGGTGGATCCAATTTCTCTTCTGCCATTTT-3’ 

 

Indirect immunofluorescence and confocal microscopy: 

Cells were fixed, stained and imaged as described previously (Carney and Cassimeris, 

2010; Piehl and Cassimeris, 2003; Ringhoff and Cassimeris, 2009b).  Primary antibodies 

used were mouse anti-acetylated-tubulin (Clone 6-11B-1; Sigma-Aldrich), rabbit anti-

TPX2 (Garrett et al., 2002) (Gift from Duane Compton, Dartmouth Medical School), 

rabbit anti-phospho-CDK1 (Tyr 15) (Cell Signaling Technology), and rabbit anti-p27 

Kip1 (D69C12; Cell signaling Technology. Goat anti-mouse or rabbit Alexa Fluor 488 or 

563 (Invitrogen) were used as the secondary antibodies in these experiments. Confocal 

microscopy was used to image stained cells as described previously (Carney and 

Cassimeris, 2010; Warren et al., 2006).  Images were acquired using a 40X/1.3NA 

objective.  Image stacks were converted to maximum intensity projections, exported as 

TIFF files and assembled using Photoshop.  For all cell cycle markers, we counted 

interphase cells as stained or unstained, and did not count mitotic cells on most 

experiments. 

 

Relative intensity was measured using MetaMorph software (Universal Imaging, 

Downington, PA).  Cells were fixed and stained for α-tubulin.  Images were taken of 

microtubules at the cell periphery and then compared between the treatments. 
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Live Cell Imaging of EB1-GFP: 

Confocal microscopy was used to image live cells as described previously (Warren et al., 

2006).  Using EB1-GFP (Piehl and Cassimeris, 2003; Warren et al., 2006) to measure 

nucleation rates, images were taken every 2 seconds for up to 2 minutes.  EB1-GFP 

comets were counted as they emerged from the centrosome and used as a measure of 

nucleation rate. 

 

Protein Isolation and Western Blotting: 

Soluble cell extracts were prepared for SDS-polyacrylamide gel electrophoresis as 

described previously (Carney and Cassimeris, 2010).  Protein concentrations were 

measured by Bradford assay (Bradford, 1976). Membranes were probed and imaged as 

previously described (Carney and Cassimeris, 2010) using primary antibodies rabbit anti-

stathmin (Sigma-Aldrich or Cell Signaling Technology), mouse anti-acetylated-tubulin 

(Clone 6-11B-1; Sigma-Aldrich), or goat anti-GAPDH (Abcam) followed by goat anti-

mouse or rabbit horseradish peroxidase-linked IgG (Sigma-Aldrich) or rabbit anti-goat 

IgG HRP (Abcam). 

 

Statistics: 

Statistical analysis of cell counts and intensity readings, including those determined after 

immunofluorescent staining (above), were performed using unpaired t-tests in Microsoft 

Excel or GraphPad Software (www.graphpad.com/quickcalcs/ttest1.cfm). 
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Results: 

 

Microtubule stability and nucleation increase following stathmin depletion only 

when p53 is lacking. 

Stathmin depletion from cells lacking p53 results in a G2 cell cycle delay (Carney and 

Cassimeris, 2010; Caruso, V. and Cassimeris, unpublished), and restoring p53 is 

sufficient to abrogate this delay (Carney and Cassimeris, 2010). If stathmin depletion is 

relaying a signal via increased MT stability, we predict that interphase MT stability will 

be greatest when both stathmin and p53 are reduced. We tested this prediction using 

HeLa cells because we previously demonstrated that we could lower stathmn by siRNA 

and restore p53 by depleting the HPV E6 protein, which normally targets p53 for 

destruction in these cells (Carney and Cassimeris, 2010). We examined two 

characteristics of MTs that are known to change when stathmin is depleted:  the levels of 

acetylated α-tubulin, which serves as a marker of stable MTs (Belletti et al., 2008; 

Cambray-Deakin and Burgoyne, 1987; Perdiz et al.; Schulze et al., 1987), and 

centrosomal MT nucleation rate, which is dependent on stathmin level (Ringhoff and 

Cassimeris, 2009b). 

 

In order to look for a change in the amount of stable MTs, we used the presence of 

acetylated tubulin as a marker.  HeLa cells were depleted of either stathmin, HPV E6 

(restoring p53), or both stathmin and HPV E6 and then allowed to grow for 72 hours post 

transfection (Carney and Cassimeris, 2010).  Western blotting showed a significant rise in 

acetylated tubulin when stathmin is depleted alone, but not when p53 is restored (Figure 
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3.1A).  When both stathmin and E6 are depleted, no significant change in acetylated 

tubulin level is observed (Figure 3.1A).  Using confocal microscopy, we observe the 

same effect (Figure 3.1B).  Only when stathmin is depleted from cells lacking p53 does 

the presence of acetylated tubulin increase.  Restoring p53 reverses the effect of stathmin 

depletion on acetylated tubulin. We also observed an increase in the presence of 

acetylated tubulin in HCT116p53-/- cells when stathmin was depleted; while HCT116 cells 

depleted of stathmin showed no change compared to control treated cells (Figure 3.8). 

 

Experiments in mouse embryo fibroblasts derived from wild-type and stathmin knockout 

mice showed that stathmin knockout significantly increased the rate of MT nucleation 

from centrosomes with less dramatic effects on MT dynamic instability (Ringhoff and 

Cassimeris, 2009b).  Therefore, we used MT nucleation as a measure of MT stability in 

HeLa cells depleted of stathmin to determine if there was a change in MT dynamics.  To 

measure centrosomal MT nucleation rate we observed live cells expressing EB1-GFP 

(Piehl et al., 2004).  Cells were depleted of stathmin, HPV E6, or both proteins and then 

allowed to grow for 24 hours.  EB1-GFP plasmid was then transfected into the cells, 

which then continued to grow for an additional 48 hours.  Using live cell imaging, MT 

nucleation rate was determined by observing the number of EB1 comets emerging from 

the centrosome per minute.  Depletion of stathmin increased nucleation rate significantly 

compared to siGlo treated controls, while restoring p53 had no effect on MT nucleation 

rate compared to control levels (Figure 3.1C).  Depletion of both stathmin and HPV E6 

(restoring p53) caused nucleation rate to return to control levels.  Taken together, these 
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data provide strong evidence that there is indeed an increase in MT stability when 

stathmin is depleted, but only in combination with negligible levels of p53.  

 

Removing MTs with nocodazole allows p53 null cells to escape the G2 block induced 

by stathmin depletion. 

The results shown above demonstrated that MT stability is increased significantly when 

both stathmin and p53 levels are very low, but do not address whether stathmin depletion 

induces a G2 delay via increased MT stability.  To establish whether MT stability is 

necessary for the G2 delay in stathmin-depleted cells, we asked whether nocodazole-

induced MT depolymerization could eliminate the cell cycle delay.  Cells were grown for 

40-48 hours post transfection with siRNA directed against stathmin and then incubated in 

33µM nocodazole for 3 - 5 hours prior to fixation.  After 3 - 5 hours of exposure to 

nocodazole, the MT network was depolymerized to near completion (Figure 3.9).  Cells 

were also stained with several markers to identify cells in G2.  Although MTs were no 

longer present, interphase and mitotic cells were still easily differentiated by cell 

morphology (not shown). 

 

Consistent with our previous results (Carney and Cassimeris, 2010), HeLa cells depleted 

of stathmin showed about a 2 fold increase in the percent of interphase cells staining 

positively for TPX2, a protein expressed in the nucleus in late S and G2 (Brito and 

Rieder, 2006), when compared to control treated cells (Figure 3.2A).  The percent of 

TPX2 positive cells returned to control levels when cells were also treated with 

nocodazole (Figure 3.2A).  Using phospho-CDK1(Y15) (Borgne and Meijer, 1996), as a 
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second marker of G2 cells, we saw a similar effect, where nocodazole treatment reduced 

the percent of stathmin-depleted cells staining positive for this marker (Figure 3.2B).  

Although the percent of positively stained cells was not statistically significant between 

stathmin depleted cells treated with nocodozale or not, the results showed the same 

pattern as TPX2 localizations, where nocodazole reduces the percent of cells in G2.  Cells 

that normally delay in G2 following stathmin depletion should proceed into mitosis after 

MT disruption by the addition of nocodazole. The previous counts considered only 

interphase cells. Therefore, we also measured the mitotic index and found as expected, 

nocodazole treatment also increased the mitotic index (Figure 3.10). 

 

We repeated this experimental protocol, using HCT116p53-/- cells, as a second model 

system in which to test whether the removal of MTs was sufficient to bypass a stathmin-

depletion induced G2 delay.  Using TPX2 as a marker and following the same procedure 

as above, we saw a statistically significant increase in the percent of TPX2 positive 

interphase cells after stathmin depletion.  This is consist with our previous results using 

this marker in HCT116p53-/- cells (Carney and Cassimeris, 2010).  Following the addition 

of nocodazole, stathmin depleted cells staining positive for TPX2 returned to a 

percentage of the total interphase population equivalent to controls (Figure 3.2C). Taken 

together, these data demonstrate that MT depolymerization is sufficient to abrogate a G2 

cell cycle delay caused by stathmin depletion. 

 

Over-expression of truncated stathmin proteins, after the depletion of endogenous 

stathmin, can change whether the cells delay in G2 of the cell cycle. 
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The above results support a model where increased MT stability relays a signal that 

delays cell cycle progression during G2. To confirm this conclusion, and to test whether 

either STAT3 or p27Kip1 could contribute to signals generated by stathmin depletion, we 

examined whether expression of stathmin, or stathmin truncations, could alleviate the G2 

delay.  Plasmids for expression of GFP-tagged stathmin truncations were designed to 

delete either the N- (Δ5-25) or C- (Δ101-149) terminus (Figure 3.3A).  The Δ5-25 

truncation should not depolymerize MTs (Larsson et al., 1999), but should bind both 

STAT3 and p27Kip1(Baldassarre et al., 2005; Ng et al., 2006). The Δ101-149 truncation 

should depolymerize MTs (Larsson et al., 1999) but lacks the region necessary to bind 

STAT3 or p27Kip1. Truncations were expressed in cells and each was expressed at the 

correct molecular weight for a fusion protein with GFP (Figure 3.3B). 

 

The microtubule cytoskeleton was then examined in cells over-expressing these 

truncations as well as full-length stathmin fused to GFP.  Over-expression of either full 

length-stathmin or stathmin Δ101-149 caused a decrease in the MTs and this was most 

easily seen at the cell periphery.  Image intensity measurements confirmed the decrease 

in MT polymer in these cells (Figure 3.4B).  Expression of stathmin Δ5-25 did not 

change the MT network when compared to control treated cells (Figure 3.4). As expected 

based on previous results (Holmfeldt et al., 2006; Howell et al., 1999a; Ringhoff and 

Cassimeris, 2009b; Sellin et al., 2008), stathmin depletion increased the amount of MT 

polymer, as measured at the cell periphery (Fig 3.4A). 
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To knockdown endogenous stathmin mRNA while allowing expression of GFP-tagged 

proteins, an siRNA against the 5-UTR of endogenous stathmin was used. This siRNA 

was as effective as those targeting the coding sequence in reducing stathmin level (Figure 

3.3B) and was also as effective in causing a G2 cell cycle delay (Figure 3.5).  Following 

endogenous stathmin depletion, cells were transfected with plasmids for expression of 

GFP or GFP- fused to stathmin, stathmin Δ5-25, or stathmin Δ101-149.  This method 

allowed depletion of endogenous stathmin, while all three stathmin versions were 

expressed (Figure 3.3B).  These cells were allowed to grow for 48 hours after transfection 

before being fixed and stained. 

 

Expression of GFP-tagged stathmin truncations were then used to test whether either 

protein could rescue the G2 delay caused by stathmin depletion.  If MT stability is the 

critical signal relay downstream of stathmin depletion, then over-expression of stathmin-

GFP or stathmin Δ101-149 should abrogate the delay, but expression of the stathmin Δ5-

25 truncation should not change the delay. 

 

Cells expressing stathmin-GFP and depleted of the endogenous protein, showed a 

reversal of the G2 delay and had a percentage of cells in G2 similar to control levels.  

Stathmin Δ5-25 expression did not change the percent of cells delayed in G2.  Similar to 

stathmin depletion alone, this treatment had about a two-fold increase in the percent of 

TPX2 positive interphase cells when compared to controls.  Over-expression of stathmin 

Δ101-149, on the other hand, resulted in a percentage of TPX2 positive interphase cells 
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similar to control cells and thus successfully rescued the cell cycle delay observed when 

stathmin is depleted (Figure 3.5A). 

 

We observed a similar effect after these transfections when phospho-CDK1 was used as a 

marker of cells in G2.  Cells that normally delay in G2 following stathmin depletion 

escaped the delay only when MTs were altered by the expression of either WT-stathmin 

or stathmin Δ101-149.  As previously shown, when stathmin Δ5-25 is reintroduced, the 

percentage of interphase cells positive for phosphorylated CDK1 remains at an elevated 

level compared to control treated cells (Figure 3.5B).  These results suggest that cells can 

only escape the G2 cell cycle delay when the MT network is depolymerized (using full-

length stathmin or stathmin Δ101-149) following stathmin depletion.   

 

Expression of stathmin truncations also allows us to establish what, if any, roles p27kip1 

and STAT3 might play in the cell cycle arrest that is observed following stathmin 

depletion.  Both p27kip1 and STAT3 bind to the C-terminus of stathmin (Baldassarre et 

al., 2005; Gao and Bromberg, 2006; Ng et al., 2006). If stathmin binding contributes to 

their localization in the cytoplasm, where they are inactive, then expression of full-length 

stathmin or stathmin Δ5-25 could bind and sequester either of these two proteins in the 

cytoplasm, preventing their nuclear entry.  On the other hand, stathmin Δ101-149 would 

not be able to bind either p27kip1 or STAT3 and they would be free to move to the nucleus 

and possibly delay the cell cycle.  Figure 3.5 shows that this model is highly unlikely 

because our observations are directly opposite of what this model would propose. 
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Specifically, it is the expression of the Δ101-149 truncation that rescues the stathmin-

depletion induced cell cycle delay and not the expression of the Δ5-25 truncation. 

 

P27kip1 localization does not change when stathmin is depleted. 

As described above, stathmin has two identified binding partners in addition to tubulin 

that could contribute to a G2 cell cycle delay. Previous data from Ng et al (2006) showed 

that STAT3 is not activated following stathmin depletion and our results from expression 

of stathmin truncations further confirmed that stathmin depletion is not relaying signals 

via STAT3 activation.  The expression of stathmin truncations and the rescue of a G2 cell 

cycle delay by the Δ101-149 truncation also did not support involvement of p27Kip1. To 

further exclude p27kip1 involvement, we tested whether stathmin depletion activated 

p27Kip1, as measured by p27 localization to the nucleus.  HeLa cells were depleted of 

stathmin for 48 hours after which they were fixed and stained for p27kip1.  The protein 

showed no increase in the percent of interphase cells scored positive for nuclear p27Kip1 

after stathmin depletion (Figure 3.6).  As a positive control, MG132 (a proteosome 

inhibitor) was used to stabilize p27kip1 and this stabilization significantly increased the 

percentage of interphase cells scored positive for nuclear p27Kip1.  Therefore, these results 

do not support a role for p27Kip1 in mediating the G2 delay observed after stathmin 

depletion. 

 

Discussion: 
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We explored the signal downstream of stathmin depletion sufficient to cause a G2 cell 

cycle delay and found that increased MT stability is the likely source of delayed cell 

cycle progression.  In stathmin-depleted cells, MT depolymerization by nocodazole 

treatment was sufficient to abrogate the G2 cell cycle delay. These data indicate that MT 

stability acts downstream of stathmin depletion to cause the delay since depolymerizing 

MTs allows cell to escape into mitosis. Additional support for MT stability acting 

downstream of stathmin depletion comes from experiments to rescue the G2 delay by 

expression of stathmin truncations. Expression of GFP-tagged full-length stathmin or 

stathmin Δ101-149, after depletion of endogenous stathmin, both decreased MTs and 

reduced the population of cells in G2 to that measured in cells transfected with control 

siRNA.  Over-expressing stathmin Δ5-25, which has no effect on MTs, however, did not 

affect the percentage of cells in G2.  Taken together, these experiments also indicate that 

neither p27kip1 nor STAT3, alternative binding partners of stathmin, is responsible for 

relaying a cell cycle delay downstream of stathmin depletion, since they bind to 

stathmin’s C-terminus and over-expressing stathmin Δ101-149 still rescues the delay.  

Instead, our results provide strong evidence that excess MT stability can delay the cell 

cycle during interphase.  Based on these results, it is evident that a stathmin-dependent 

change in the MT network leads to a cell cycle delay and not an alternative function of 

stathmin's via its other binding partners, STAT3 and p27kip1. 

 

The MT phenotypes, observed after lowering stathmin level, like increased nucleation 

rate and higher polymer level, have been shown in cells expressing p53 (Belletti et al.; 

Holmfeldt et al., 2007; Ringhoff and Cassimeris, 2009b), so why do we only see these 
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effects on MTs when both p53 and stathmin are depleted?  Although we do observe slight 

increases in both nucleation rate and stable MTs when stathmin is depleted in p53-

positive cells, they are not significant and are much lower then previously published 

results.  The differences we observe here may be due to the fact that we are transiently 

restoring p53 thereby altering its level in the cell compared to other experiments where 

the cells constitutively express wild-type p53.  Stathmin depletion changes the expression 

of many genes (Ringhoff and Cassimeris, 2009a), and these changes could differ in a 

p53-dependent fashion.  These differences in gene expression may complicate 

comparisons.  Taken together, these may account for the disparity we observe here. 

 

While the depletion of stathmin leading to a G2 delay might seem logical because 

increased MT stability reduces the ability of a cell to form a spindle, this is not the case 

when cells are exposed to paclitaxel (Taxol).  Although treatment with taxol has been 

shown to significantly increase mitotic duration due to a mitotic block (Gascoigne and 

Taylor, 2009), it does not change interphase duration (Uetake and Sluder, 2007).  This 

differs greatly from what we see when stathmin is depleted, suggesting that the two cells 

differ in how they enter mitosis.  In taxol treated cells, MTs reorganized uniquely leading 

to the formation of a bizarre state where nucleation sites accumulate at the cell periphery 

leading to improper spindle formation (Hornick et al., 2008).  Since stathmin is turned off 

in mitosis due to phosphorylation of the protein (Larsson et al., 1997; Larsson et al., 

1995), stathmin-depleted cells may not develop the odd phenotype associated with taxol 

treatment and delay in G2 until a proper spindle can form.  Nguyen et al (1997) also 

observed an increase in interphase duration and a G2 delay when MAP4 (a MT stabilizer) 
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is over-expressed, further supporting the idea that stathmin depletion acts outside of 

mitosis and generates a more natural state of stability, since stathmin and MAP4 act 

antagonistically and therefore differently then taxol. 

 

However, as we stated earlier, MT stability’s role in regulating cell cycle progression 

outside of M phase has been controversial. Rieder and others suggested that the MT 

cytoskeleton is necessary for cell cycle progression through G2 in numerous cell types 

(Balestra and Jimenez, 2008; Blajeski et al., 2002; Rieder and Cole, 2000).  They suggest 

the presence of “MT integrity checkpoint” which must be met before the cell can escape 

G2 and enter mitosis. Uetake and Sluder (2007) disagreed, instead suggesting that it is the 

length of the previous mitosis that matters.  In their experiments, Uetake and Sluder used 

taxol to stabilize MTs and showed that there is no change in the interphase duration, 

however the unique MT phenotype resulting from taxol exposure could, however, be 

responsible for the observed effects.  Unpublished data from our lab shows that depletion 

of stathmin has no effect on mitotic duration when compared to controls (Caruso, V. and 

Cassimeris, unpublished), indicating that our observed G2 delay is not the result of a 

previous slowed mitosis.  Our results support the idea of a “MT integrity sensor” which 

monitors the state of the MT network before the cell can enter mitosis or slows the 

kinetics of mitotic entry during the transition form G2 to M.   

 

The question still remains as to why the G2 delay only occurs when both stathmin and 

p53 are absent. Although loss of p53 only has a minor effect on MT dynamic turnover 

(Galmarini et al., 2003), p53 has been shown to localize to the centrosome (Tarapore and 
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Fukasawa, 2002).  P53’s localization to the centrosome turns out to be important in 

amplification of the centrosome itself (Fukasawa, 2008; Tarapore and Fukasawa, 2002).  

When p53 is absent, cells show an increase in both centrosome number and the rate of 

chromosome mis-segregation (Tarapore and Fukasawa, 2002).  This change in 

centrosome structure could also account for the changes in MT dynamics observed by 

Galmarini et al (2003).  If this is the case, any additional disruption to the MT network 

when p53 is absent, such as stathmin depletion, may intensify changes to MT dynamics 

including the stability of MTs thereby signaling the cell to stall the cell cycle.  

Previously, Ringhoff and Cassimeris (2009b) showed an increased nucleation at the 

centrosome in MEF cells where stathmin has been knocked out and for HeLa cells where 

stathmin had been depleted, we found this increased nucleation rate only when combined 

with negligible levels of p53.  The ability of p53 and stathmin to impact centrosome 

structure or function may place centrosomes as the critical signal integrator.  The 

increased MT stability and nucleation rate could also lead to both difficulties breaking 

down the MT array before the cell enters mitosis, as well as disruptions or alterations to 

signal transduction via MTs (discussed below). 

 

Microtubule stability transduces signals to delay cells in G2. 

Before the cell can enter mitosis, the interphase MT array must break down and 

reorganize to form the mitotic spindle (Figure 3.7A).  During prophase, centrosomes 

separate and astral arrays form with long MTs, as polymer level remains constant.  A 

steep drop in polymer level occurs near the time of nuclear envelope breakdown despite a 

dramatic increase in nucleation (Zhai et al., 1996).  This shift occurs rapidly and is 
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accomplished by disassembly of individual MTs from a change in dynamic instability 

favoring disassembly and by shuttling of MT bundles by cytoplasmic dynein toward the 

nuclear envelope (Rusan et al., 2002).  Increased stability of MTs at this point would 

likely hinder the reorganization process.  We hypothesize that delayed mitotic entry 

results from disrupted reorganization of the interphase MT array (Figure 3.7B), and may 

act as a physical signal to delay the cell cycle.  However, increased stabilization of MTs 

may also affect other more conventional signaling pathways as well. 

 

Microtubules’ acting to relay signals is not a novel idea, but is an area that has not been 

well studied.  MTs have been proposed to be involved in not only signaling to control the 

cell cycle and differentiation (Sobel, 1991), but they are also believed to be important in 

many other signal cascades (Gundersen and Cook, 1999).  Therefore, changes to the MT 

network can drastically alter these signals affecting not only the cell cycle, but many 

other cell functions, as well.  MTs are also known to sequester many proteins, including 

GEF-H1, an activator of RhoA (Chang et al., 2008), as well as to act as docks for other 

signaling scaffolds, such as those in MAPK pathway (Gundersen and Cook, 1999) and 

the glycolytic pathway (Durrieu et al., 1987; Knull and Walsh, 1992; Lehotzky et al., 

1993; Vertessy et al., 1997).  When stathmin is depleted and the amount of stable MTs 

increases, this changes the way such scaffolds function, by changing not only scaffolding 

but delivery, sequestration, and the release of many proteins that both directly and 

indirectly interact with the MTs (Gundersen and Cook, 1999) (Figure 3.7C). 
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The glycolytic pathway, for example, can also bring the absence of p53 back into the 

picture, since this protein has been shown to have some control over metabolic regulation 

(Maddocks and Vousden).  When p53 is lacking the amount of glycolysis increases, 

promoting an amplification in the Warburg effect (high rate of aerobic glycolysis 

characteristic of cancer cells).  The ability of the cell to adapt metabolically also 

decreases and as a result cells become more sensitive to metabolic stress (Maddocks and 

Vousden).  Changes in MT stability, following stathmin depletion in p53 null cells, may 

provide additional stress, thereby activating stress pathways, leading to a delay in the cell 

cycle and apoptosis.   

 

Although we are not sure of the exact downstream mechanism, it is clear that MT 

stability plays an important role in G2 progression and mitotic entry.  It is also evident 

that the role of MTs is regulated in an unknown p53-dependent process in which it is 

likely that p53 suppresses the amount of stable MTs.  If MT stability increases and p53 is 

no longer present to prevent it, the cell proceeds to delay in the cell cycle. 

 

Conclusion: 

 

Stathmin depletion in p53 null cells leads to a significant increase in MT stability.  This 

stability activates an as yet unknown signal pathway that leads to a cell cycle delay and 

although not studied here most likely apoptosis as well.  This synergistic affect on the cell 

cycle when both p53 and stathmin are depleted could prove promising in the treatment on 

a wide array of cancers. 
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Figures: 

 

Figure 3.1:  Stathmin depletion from HeLa cells increases MT stability only when p53 is 

absent.  HeLa cells were transfected with siGlo control siRNA or siRNA targeting 

stathmin, HPV E6, or both mRNAs.  (A) Cells were fixed 72 hrs after transfection and 

then stained with antibodies against acetylated tubulin. Representative images of each 

treatment are presented here.  (B) Anti- acetylated tubulin immunoblot from cell lysates 

isolated 72 hrs after transfection.  (C) MT nucleation rates were determined by 

transfecting HeLa cells with EB1-GFP 24 hrs after siRNA treatment.  Live cell imaging 

at the centrosome was performed 48 hrs after EB1-GFP transfection.  Images were used 

to count the number EB1 comets emerging from the centrosome per minute.  Box plot 

represents the mean of 3 independent experiments. **denotes p<0.0001, °denotes 

outliers. 
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Figure 3.2:  Depolymerizing MTs with nocodazole allows cells to escape the G2 delay in 

both HeLa and HCT116p53-/- cells.  Cells were transfected with either siGlo control 

siRNA or siRNA targeting stathmin mRNA.  40-48 hrs after transfection, cells were 

treated with DMSO, as a control, or 33µM nocodazole for 3-5 hrs before fixation and 

staining.  (A) HeLa cells were stained with antibodies against α-tubulin and TPX2.  The 

numbers of TPX2 positive and negative cells were counted, and the percentage of 

interphase cells staining positive are shown in A.   (B) HeLa cells were stained with 

antibodies against α-tubulin and phospho-CDK1(Y15).  The numbers of phospho-

CDK1(Y15) positive and negative cells were counted, and the percentage of interphase 

cells staining positive are shown in B.  (C) HCT116p53-/- cells were stained with 
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antibodies against α-tubulin and TPX2.  The numbers of TPX2 positive and negative 

cells were counted, and the percentage of interphase cells staining positive are shown in 

C. Each plot represents the mean of 3 independent experiments ± SD. *denotes p<0.01 

and **denotes p<0.001. 
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Figure 3.3:  Stathmin truncations can be expressed in HeLa cells in the presence of 

siRNA against the 5’UTR region of stathmin mRNA.  (A) Represents the three stathmin-

GFP fusion proteins designed for these experiments.  (B) Cells where treated with either 

siGLO control siRNA or siRNA against the 5’UTR region of stathmin mRNA, to deplete 

only the endogenous stathmin.  Ten minutes after siRNA treatment cells were transfected 

with either GFP or one of the three stathmin-GFP fusion proteins.  Anti-stathmin 

immunoblots from cell lysates were isolated 72 hrs after the second round of transfection.  

In order to get a successful blot, two stathmin antibodies were used separately because 

the Sigma stathmin antibody recognizes the extreme C-terminus, and will not recognize 

all the truncations, while the Cell Signaling stathmin antibody (binds around S38) failed 

to recognize endogenous stathmin, but was able to recognize all the truncations. 
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Figure 3.4:  Stathmin truncations change MT polymer at the cell periphery.  Cells were 

transfected with GFP, one of three stathmin GFP fusion proteins, or siRNA against 

stathmin mRNA.  (A) Cells were fixed 72 hrs after transfection and then stained with 

antibodies against α-tubulin.  GFP expressing cells were imaged at the cell periphery in 

order to discern differences in MT polymer.  Representative images of two cells 

transfected with each construct are shown in A.  (B) Relative intensity data was collected 

from all images using Metamorph software.  Each plot represents the mean of 2 

independent experiments ± SD, consisting of  >10 cells for each treatment. ** denotes 

p<0.005. 
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Figure 3.5:  Over-expression of truncated stathmin can rescue the cells from a G2 delay 

following depletion of endogenous stathmin. Cells were transfected with either siGLO 

control siRNA or siRNA against the 5’UTR region of stathmin mRNA.  Ten minutes 

after siRNA treatment cells were transfected with either GFP or one of the three 

stathmin-GFP fusion proteins before fixation and staining.  (A) HeLa cells were stained 

with antibodies against α-tubulin and TPX2.  The numbers of TPX2 positive and 

negative cells were counted, and the percentage of interphase cells staining positive are 

shown in A.   (B) HeLa cells were stained with antibodies against α-tubulin and phospho-

CDK1(Y15).  The numbers of phospho-CDK1(Y15) positive and negative cells were 

counted, and the percentage of interphase cells staining positive are shown in B.  Each 

plot represents the mean of 3 (A) or 4 (B) independent experiments ± SD. *denotes 

p<0.05 and +denotes p<0.055. 
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Figure 3.6:  Stathmin depletion does not increase p27Kip1 localization in nucleus.  HeLa 

cells were transfected with either siGlo control siRNA or siRNA targeting stathmin 

mRNAs. 40-48 hrs after transfection, cells were fixed and stained.  As a positive control, 

cells were treated with MG132 (5µM), a proteosome inhibitor, for 5-6 hrs before fixation.  

Cells were stained with antibodies against α-tubulin and p27Kip1.  (A) The numbers of 

p27Kip1 positive and negative cells were counted, and the percentage of interphase cells 

staining positive are shown in A.  (B) Images shown are from a representative field of 

cells transfected with stathmin siRNA or the drug MG132.  The plot above represents one 

of two independent experiments, representing >200 cells per condition. 
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Figure 3.7:  Models for how stathmin depletion in p53 null cells leads to a G2 delay.  (A) 

Under normal conditions, the cell can depolymerize its MTs and form a proper spindle 

allowing entry into mitosis.  However, stathmin depletion in p53 null cells leads to a G2 

delay in a yet unknown mechanism.  (B) After stathmin depletion, cells could have an 

inability to properly depolymerize their MT arrays and successfully progress into mitosis.  

(C) Depleting stathmin could, on the other hand, cause a disruption of cellular signaling 

(in this case a change in the ratio of free/bound protein). 

 

 

 

 

 



 86 

 

Figure 3.8: Stathmin depletion from HCT116wt-p53 and HCT116p53-/- cells increases MT 

stability only when p53 is absent.  HCT116 cells were transfected with siGlo control 

siRNA or siRNA targeting stathmin mRNA.  Cells were fixed 72 hrs after transfection 

and then stained with antibodies against acetylated tubulin.  Representative images of 

each treatment are presented here. 
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Figure 3.9:  Nocodazole depolymerizes MTs in HeLa cells. Cells were treated with either 

DMSO or 33µM nocodazole for 3-5 hrs before fixation and staining. HeLa cells were 

stained with antibodies against α-tubulin and TPX2.  This treatment is sufficient to 

depolymerize MTs in these cells.  These are representative images of a field of cells for 

each treatment. 
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Figure 3.10:  Mitotic index increases when cells are treated with nocodazole independent 

of stathmin depletion. Cells were transfected with either siGlo control siRNA or siRNA 

targeting stathmin mRNA.  40-48 hrs after transfection, cells were treated with DMSO or 

33µM nocodazole for 3-5 hrs before fixation and staining.  (A) HeLa cells were stained 

with propidium iodide (PI) and mitotic index was determined. 
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Chapter 4 

 

 

Conclusions and Future Directions 
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Conclusions 

 

Stathmin has been known to play key roles in MT dynamics.  Stathmin’s functions in 

regulating dynamic instability (Holmfeldt et al., 2002; Howell et al., 1999a), tubulin 

sequestering (Howell et al., 1999b), and MT polymer content (Holmfeldt et al., 2007) are 

well established.  Stathmin has also been shown to be highly over-expressed in many 

cancers (Belletti et al., 2008; Bieche et al., 1998; Brattsand, 2000; Chen et al., 2003; 

Friedrich et al., 1995; Kouzu et al., 2006; Melhem et al., 1997; Mistry et al., 2005; Ngo et 

al., 2007; Nishio et al., 2001; Nylander et al., 1995; Price et al., 2000; Yuan et al., 2006) 

which constitute some of the most malignant and hardest to treat cancers.  Only recently 

has stathmin been shown to have a role in cell cycle delay and apoptosis (Alli et al., 

2007; Mistry et al., 2005; Wang et al., 2009; Zhang et al., 2006).  However, although Alli 

et al proposed the involvement of p53 in these pathways, it had not been tested directly.  

Here I tested Alli et al’s hypothesis directly (chapter 2) and determined how such a 

pathway might function (chapter 3). 

 

In chapter 2, I showed that only cells lacking both p53 and stathmin activate a G2 cell 

cycle delay and die via apoptosis, similar to what Alli et al (2007) hypothesized.  While 

the knockdown of either protein alone showed a slight slowing of the cell cycle, this type 

of depletion does not lead to a delay or apoptosis (Carney and Cassimeris, 2010).  

Restoring p53 to cells that normally lack a functional copy of the protein rescued both the 

delay and the apoptosis that is observed in their p53 lacking counterparts (Carney and 

Cassimeris, 2010).  This is the case for both cancer cell lines tested (HeLa and HCT116), 
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as well as a non-cancerous primary cell line (HFF).  Stathmin depletion could prove to be 

very effective as a means of selectively targeting for death only cells that have an absent 

or nonfunctional p53.  As a siRNA-based therapy, depletion of stathmin would allow for 

treatment of cancers lacking p53 that normally have a poor prognosis and are relatively 

hard to treat (Wallace-Brodeur and Lowe, 1999).  While depletion of stathmin would kill 

p53 null cells, it would be able to leave the surrounding cells relatively unaffected since 

depletion of stathmin from healthy cells not only fails to activate apoptosis (Carney and 

Cassimeris, 2010), but those same healthy cells can still grow and proliferate normally 

without the presence of stathmin (Schubart et al., 1996).  However, siRNA-based 

treatments are thus far unsuccessful or not optimal in animal models (Higuchi et al., 

2010; Kim et al., 2009).  Identifying the pathway where stathmin knockdown acts 

therefore could lead to other potential targets where it may be easier to design treatments 

until siRNA technology improves.  Which begs the question, what about stathmin’s 

depletion in these p53 null cells is leading to both the G2 delay and apoptosis? 

 

Chapter 3 answers how stathmin depletion leads to a cell cycle delay.  In the third chapter 

of this dissertation, I showed that it is the affect stathmin depletion has on MT stability 

that leads cells to stall in G2.  By depolymerizing or simply lowering the amount of 

stable MTs back to control levels, I was able to successfully alleviate the G2 delay that is 

normally associated with stathmin depletion in cells lacking p53 (Carney and Cassimeris, 

2010).  Based on our results, I was also able to eliminate p27kip1 and STAT3, stathmin’s 

other binding partners, as participating in delaying the cells in G2 since their involvement 

would have yielded the opposite results.  Changes in MT stability are less significant 
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when p53 is restored, supporting the idea that depletion of stathmin and p53 leads to a 

greater change in the MT network. 

 

The results above are consistent with what is observed with other known chemotherapies.  

For instance, paclitaxel causes tumor cell death in mitosis due to an inability to both 

rearrange the MT array and progress through the cell cycle (Xiao et al., 2006).  However, 

unlike paclitaxel, which leads to a cell cycle block in mitosis (Rieder and Maiato, 2004) 

and eventual apoptosis, the depletion of stathmin initiates a cell cycle delay in G2 

(Carney and Cassimeris, 2010).  In order to determine both what MT stability is 

effecting, as well as, what pathways are leading the cell to delay will need more 

experimentation. 

 

Future Directions 

 

In chapter 2, I demonstrated that stathmin depletion in the absence of p53 leads to both a 

G2 delay and apoptosis, but I did not test how, or if, these two outcomes are connected.  

Two days after stathmin depletion a significant increase in the population of G2 cells was 

observed, which begins to drop as cells proceed to day three (Carney, B. and Cassimeris, 

unpublished).  On the other hand, apoptosis does not reach a significant level until three 

days after stathmin depletion (Carney and Cassimeris, 2010).  Based on this time line of 

events, I assume that cells begin to delay in G2 24-48 hours after stathmin depletion and 

only after this delay is apoptosis initiated.  Cell death only occurs when p53 and stathmin 

are both depleted and leads to a model (Figure 4.1) where stathmin depletion increases 
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MT stability causing a G2 delay before activating apoptosis.  Evidence from Sur et al 

(2009) supports the model that a G2 delay is followed by apoptosis.  Using an inhibitor 

against a G2 cell cycle activator, polo-like kinase 1, they showed that cells lacking p53 

were more sensitive to death after a stress that follows the arrest.  For simplicity in 

chapter 3, I decided to look at only the G2 delay, but these same experiments should be 

able to determine if apoptosis is linked to MT stability and if apoptosis follows the G2 

delay.  By using stathmin truncations, one could look at longer time course experiments 

to see if manipulating MTs allows cells to escape apoptosis, as well as the delay.  A 

short-term MT depolymerization, with nocodazole, to alleviate a G2 delay could possibly 

address whether the G2 delay and apoptosis are linked.  Unpublished data from our lab 

(Cassimeris, L., unpublished) shows that cells can slip out of G2 and into the next cell 

cycle prior to apoptosis (Figure 4.2).  Synchronizing cells before stathmin depletion could 

increase the number of cells delayed in G2.  After the delay is established, adding 

nocodazole will allow cells to progress into mitosis.  In order for cells to continue into the 

next cell cycle, nocodozale must be washed out shortly afterwards (3-5 hours).  

Bypassing this delay should not change whether cells activate apoptosis if the two are not 

linked, but will allow cells to continue to grow and proliferate for a longer period of time 

if there is a link between the processes.   

 

Similar to the Sur et al (2009) experiments discussed above, hindering progression into M 

phase by using inhibitors against proteins that control the G2/M transtition could 

determine if there is a link between the processes of G2 delay and apoptosis that I 

observe here.  Assuming the block created using such inhibitors could be reversed, this 
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arrest would mimic the affect of stathmin depletion on cell cycle progression.  If the 

processes of G2 delay and apoptosis are linked, then cells should begin apoptosis 

assuming the cell cycle delay is equivalent to the one induced when stathmin is depleted. 

 

If the G2 delay and apoptosis are not linked it would suggest that in the absence of p53 

and stathmin more then one pathway is activated.  These pathways would likely be 

initiated in a similar manner (increased stable MTs) but lead to distinct downstream 

phenotypes.  If this is in fact the case determining what signals are activating each branch 

of the pathway would be the next logical step.  

 

After determining if there is a link between the G2 delay and apoptosis, one could go 

about testing the models discussed in chapter 3.  For instance, in order to test if the signal 

to delay and/or kill the cells is relayed through an inability to breakdown the MT array, 

live cell imaging of stathmin depleted cells can be used.  Using a fluorescent marker of 

cell cycle progression, one could observe the duration required for MT disassembly in 

stathmin-depleted cells, compared to control treated cells.  If the rate of MT disassembly 

does not change, it is likely that the G2 delay is occurring prior to the breakdown of the 

interphase MT array and may be caused by the signal sequestering model instead of due 

to an inability to breakdown the MT array. 

 

Another possible involvement of the MT array would be if the increase in acetylated MTs 

that was observed functions as a signal itself.  Acetylation of MTs changes the way 

certain motors and other proteins bind to the MTs and therefore may be responsible for 
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the phenotypes observed when stathmin is depleted in cells lacking p53.  To test this 

model, one could change the state of MT acetylation by over-expressing the proteins that 

deacetylate MTs (HDAC6) (Warren and Cassimeris, 2007).  By artificially decreasing 

acetylation of MTs, but leaving them otherwise stable, one could test if the delay in G2 

and apoptosis is due to the acetylation or just the presence of stable MTs.  If a delay is 

present when acetylation is removed it would suggest the involvement of the sequestering 

model independent of MT acetylation state. 

 

In order to determine players that may act as signals on MTs, it would also be beneficial 

to determine what signals are initiating the cell cycle delay observed in stathmin-depleted 

p53 null cells.  Determining the pathway could narrow down potential connections 

between cell cycle delay and increased MT stability.  One pathway that is already being 

tested in our lab is the Rho dependent pathway that drives mitotic entry (Figure 4.3).  

Preliminary data from the lab (Caruso, V. and Cassimeris, unpublished) shows a 

significant decrease in the level of phosphorylation of three important players in this 

pathway, Aurora A, PLK1, and PAK1, when stathmin is depleted in p53 null cells.  In 

contrast, Wee1 and signals from the DNA damage pathway (Chk1) remain unchanged.  

The decrease in activation of enzymes downstream of RhoA supports the Rho pathway a 

as possible link between MT stability and cell cycle delay.  Activators of this pathway 

that bind to MTs, like GEF-H1 (which is inactive when bound), are therefore possible 

candidates that are causing the G2 delay. Once we determine possible links between cell 

cycle delay and MT stability, they can be tested directly by altering their levels in the cell 

without depleting stathmin.  It would also be beneficial to observe if the phosphorylation 
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states of these proteins change in the presence of p53.  Restoring p53 to these cells would 

allow us to see if a p53-dependent pathway is also involved.  In the presence of p53, no 

delay occurs.  Thus the decrease in the phosphoration states of proteins, such as Auroa A, 

are unlikely to occur. Since these experiments are being done in HeLa cells, one could 

utilize the HPV E6 siRNA to restore p53 and observe if there is a difference in the 

phosphorylation states of proteins in the Rho pathway when p53 is present.  If a 

connection is found between MT stability, p53, and this signaling pathway it would 

suggest a change in MT scaffolding, sequestering, or delivery is responsible for the cell 

cycle delay and apoptosis that is observed. 

 

So far, most of the experiments discussed here look at pathways associated with 

stathmin’s affects on MTs, but it is important to remember that p53 is also involved in 

this synergy.  In a normal cell, p53 has been shown to interact with both stathmin and 

MAP4 by down-regulating their transcription when p53 is active (Ahn et al., 1999). 

Although, this interaction between p53 and stathmin only occurs when p53 is active, it 

still shows that these proteins can function together.  To better understand the synergy 

observed here it would be beneficial to futher explore this interaction.  Perhaps, p53 and 

stathmin have a yet unknown association whether direct, or indirect, that can explain the 

phenotype observed here.  Examining p53’s roles in transcription, at the centrosome, and 

in metabolism may allow us to determine what about p53 mutation is leading to the 

synergy. 
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One such pathway leading to a cell cycle delay that I discussed in chapter 3 was 

glycolysis.  We already know that due to the Warburg effect the amount of glycolysis 

increases and the rate of oxidative phosphoryaltion decreases when p53 is lacking 

(Maddocks and Vousden).  Coupling that to changes in microtubule scaffolding due to 

stathmin depletion could cause a failure in glycolysis leading to a starvation state and 

may promote cell cycle delay and/or apoptosis.  This model should be relatively easy to 

test due to an increase in anaerobic metabolism even in the presence of oxygen.  This 

increases the amount of lactic acid produced by the cell (Delgado et al., 2010) thereby 

increasing its presence in the media.  By collecting the media, lactic acid levels can be 

compared and it can be determined if there is a decrease when stathmin is depleted in p53 

lacking cells compared to cells with stathmin or p53.  If a significant change in lactic acid 

levels is observed, then this pathway may also be involved.  Obviously, additional 

experiments would be necessary to test a metabolic model for synergy between stathmin 

and p53 reduction. 

 

Once we determine which pathways are involved and how the signal is relayed, we can 

determine better ways to activate the same pathways in cancer cells leading to cell death.  

My research should provide a good starting point in this process and may lead to 

improvements in cancer treatment in the future. 
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Figures: 

 

 

Figure 4.1:  Depletion of stathmin leads to G2 delay followed by apoptosis only in p53 

lacking cells.  This is a proposed model of how increasing MT stability can lead to 

apoptosis.  We know that increased stability leads to a G2 delay only when p53 is lacking 

and that it is only about 72 hours after stathmin depletion that cells begin to activate 

apoptosis.  But we still do not know if apoptosis follows the delay or if it is activated in a 

different pathway.  Based on the timing of events this pathway seems most likely.   
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Figure 4.2:  Following the G2 delay, cells slip into the next cell cycle before activating 

apoptosis.  This graph tracks individual cells to determines how long after the previous 

mitosis it is before they die.  Based on data from Kulartz and Kipper (2004) it appears 

that a majority of the cells die in G1 or S phase of the following cell cycle, assuming the 

cell cycle continues at the normal rate even though these cells never enter the next 

mitosis. 
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Figure 4.3:  This flow chart shows the core enzymes involved in mitotic entry.  Based on 

preliminary data, the Rho family of enzymes is a likely link between the mitotic stability 

and G2 delay we observe when p53 is lacking based on significant decrease in the 

phosphorylation (activation) states of its downstream targets, PAK1, Aurora A, and 

PLK1.  
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