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ABSTRACT 

Assessing Minimal-Input Restoration Strategies for Desert Soil and Vegetation Restoration 

By 

Audrey J. Rader 

 
Dr. Scott Abella, Examination Committee Chair 

Assistant Professor 

University of Nevada, Las Vegas 

 
The Mojave and Sonoran Deserts have been negatively impacted by anthropogenic 

disturbances. Considering that these ecosystems may recover on millennial timescales, research 

has shown that restoration techniques can be fairly successful in initiating long-term recovery 

processes in these sensitive environments. However, uncertainty remains as to which techniques 

are effective in different circumstances, such as in different climates or across different soil 

properties, and which techniques may best avoid unintended consequences, such as facilitating 

non-native plants. To reduce fugitive dust as a human health hazard, increase soil stability, and 

enhance wildlife habitat, further work is necessary to develop restoration techniques for 

disturbed desert landscapes. The aims of this thesis were to examine the impacts of severe 

disturbances on soils of the Mojave and Sonoran Deserts and to investigate the efficacy of target 

restoration techniques within these ecoregions. Studies were conducted in the field, laboratory, 

and greenhouse to determine how anthropogenic disturbances impact soil characteristics and test 

the effectiveness of the three implemented restoration techniques. 

The target restoration techniques chosen for this study span varying levels of effort and 

financial cost to better understand how effective minimal-input restoration strategies are in 

contrast to costlier, more intensive strategies. The minimal-input techniques examined here 

included vertical mulch (placing dead branches upright in the soil to simulate the appearance of 
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dead shrubs), soil surface manipulations (such as surface de-compaction and contouring the soil 

to create water catchments), outplanting, and seeding with litter. My research analyzes the 

effectiveness of vertical mulch treatments, surface de-compaction, and seeding with litter in the 

Dead Mountains Wilderness Area located 18 km northwest of Needles, CA in the Mojave 

Desert. I analyzed the influence of vertical mulch, water catchments, and outplanting in four 

distinct study sites south of Joshua Tree National Park along the Devers Palo II Transmission 

Corridor from Indio, CA to Blythe, CA. I conducted laboratory analyses of soil conditions at 

each of the sites. Before establishing restoration treatments in both regions, soil conditions were 

characterized by a lack of natural recovery of native perennial vegetation, and lower vegetation 

cover in disturbed sites in comparison to undisturbed sites. 

Among the treatments at the Dead Mountains site, vertical mulch yielded the highest 

plant cover, soil moisture, soil stability, and lowest compaction in the Dead Mountains sites. 

During the wetter year of the survey, the surface de-compaction treatment had similar, less 

apparent results, indicating that surface de-compaction may be an alternative to vertical mulch if 

managers do not require vertical mulch structures to prevent public use of disturbed areas. These 

trends were not mirrored in the Devers Palo II Transmission Line sites, which had highly 

variable data, potentially due to the soil characteristics of each of the four sites. Each site had 

distinct bulk density, soil texture, pH, electrical conductivity, and C/N ratios that may have 

caused variability in the soil and plant responses to restoration treatments. The sites with the 

highest clay, silt, and organic matter had the highest plant cover and soil moisture whereas the 

site with the most mobile, well-drained soils had the lowest. Soil accumulation was highest in the 

vertical mulch treatments among all sites. Outplanting was largely unsuccessful due to the 

seedlings dying within four months of planting but may have had legacy effects, such as de- 
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compacting the soil, inputting nutrients, and forming vertical mulch. These findings suggest that 

soil conditions may have been a stronger driver of soil and vegetation variation than restoration 

treatments. 

The collected data suggest that the effects of vertical mulch surpass visual effects to 

include ecological ones. Vertical mulch and, to a lesser degree, soil de-compaction are a viable 

restoration treatments to reduce soil erosion and increase plant cover. However, the degree of 

restoration success depends upon soil conditions, indicating that a contextual understanding of 

study sites is necessary for overall success. This thesis can help inform restoration activities 

within arid lands, which are increasingly threatened by human-induced disturbances. 
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CHAPTER 1  

INTRODUCTION 

 
Purpose of Study 

In the Mojave and Sonoran Deserts of the southwestern United States, human 

disturbances are causing escalating, expanding degradation of arid landscapes. Off-road vehicle 

use, mining, extensive solar energy developments, and the construction of linear corridors, such 

as roadways and transmission lines, remove vegetation and topsoil and disturb biological soil 

communities. Land degradation associated with such land uses may reduce the ability of the 

ecosystem to provide ecosystem services and may be difficult or impossible to restore 

(Millennium Ecosystem Assessment, 2005). While natural vegetative recovery of total plant 

cover can occur within 50 years (Webb et al., 1987, 1988), natural recovery of species 

composition may take millennia (Web & Thomas, 2003). Confounding factors—including soil 

compaction retarding the establishment of perennial plants (Adams et al., 1982; Webb et al., 

1988), increased fugitive dust ablating and burying native vegetation (Okin, et al. 2001), lowered 

infiltration rates in soils stripped of organic crusts and litter (Webb & Wilshire, 1983), and the 

lack of rainfall that typifies desert ecosystems—slow natural recovery in disturbed desert 

landscapes. Restoration practices can aid in initiating recovery of degraded desert ecosystems. 

In many instances, the goal of restoration is not to restore an ecosystem for the sake of 

the ecosystem. Oftentimes, the over-arching goal of restoration is to protect off-site human 

populations from the adverse impacts of disturbance. One such goal from the Mojave and 

Sonoran Deserts is to reduce the incidence of airborne dust. Short-term exposure to dust particles 

negatively impacts human cardiovascular health and may have long-lasting respiratory health 

effects (U.S. EPA, 2009). Furthermore, Crooks et al. (2016) found that increases in non- 

accidental mortality are associated with dust storms in the states of Utah, Nevada, New Mexico, 
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California, and Arizona. Stabilizing disturbed desert soils may eliminate sources of airborne dust 

(Pointing & Belnap, 2014). This is but one example of how restoration is applied to the benefit 

of adjacent human populations. 

As evidenced by a lack of natural recovery in desert ecosystems and the adverse impact 

that disturbance has on human populations, restoration efforts are critical to salvage disturbed 

desert ecosystems. However, many restoration techniques, such as large-scale revegetation, are 

prohibitively expensive. An additional factor limiting the practice of some restoration techniques 

in desert ecosystems includes the amount of effort required for their success. Therefore, the 

development of minimal-input restoration techniques is necessary to effectively restore desert 

ecosystems. The objective of this research was to evaluate the success of minimal-input soil 

restoration techniques in restoring soil and vegetation function across diverse disturbances in the 

Mojave and Sonoran Deserts. This study also retroactively measured how mechanical 

manipulations of the soil (e.g., top soil removal, compaction fire, and pitting) affect soil 

properties to better inform restoration practices. 

 
Opportunity for Research 

The study areas addressed in this thesis are the Dead Mountains Wilderness Area 

(Mojave Desert) and the Devers Palo II Transmission Corridor between Blythe and Indio, 

California (Sonoran Desert). These sites span a biogeographic gradient from the Mojave and 

Sonoran Deserts that vary in climate, soils, and plant communities. Disturbances within these 

sites have included the construction of infrastructure such as roads and transmission lines, off- 

highway vehicular use, and recreational activities. The Dead Mountains Wilderness Area and 

Devers Palo II Transmission Line are characterized by a lack of natural recovery and 

disturbances have translated to soil compaction and a loss of soil stability, underscoring the need 
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for soil restoration. Understanding the best techniques to restore the soils in these study sites is 

the goal of this research project. These study areas provide diverse settings for testing candidate 

restoration techniques on public lands. 

Existing literature on ecological restoration techniques for the Mojave and Sonoran 

Desert landscapes are abundant and focus on techniques such as revegetation, biotic inoculations 

(surficial microbial communities also known as biological soil crusts or “biocrusts”), and 

emplacing abiotic materials (Abella & Smith, 2013; Bainbridge et al., 2009; Bashan et al., 2012; 

Belnap et al., 2001; Bowker, 2007; Elvidge & Iverson, 1983). However, soil restoration within 

this setting has been less studied, hindering the development of reliable soil restoration 

techniques especially in diverse landscape settings varying in soil conditions and climate. After 

an extensive literature search, few published papers were found that focus on soil restoration in 

North American deserts and little literature globally in drylands. 

The objectives of this research were to test key soil restoration techniques in disturbed 

regions of the Mojave and Sonoran Deserts. These restoration techniques were vertical mulch, 

soil surface manipulations, and revegetation in the form of outplanting. Vertical mulch, a 

restoration technique that simulates the above-ground appearance of native shrubs, may aid 

restoring soil functions and plant recruitment processes, while being low-cost (Abella & 

Chiquoine, 2019). While vertical mulch is used broadly by land managers and non-profit 

organizations to curtail the recreational use of sensitive locations, few studies have examined the 

efficacy of vertical mulch as a restoration treatment. Soil surface manipulations have been used 

by human populations since the dawn of civilization in the form of altering surface hydrology for 

irrigation purposes (Butzer, 1976). Soil manipulations alter fundamental properties of soil, such 

as the distribution of particle size, nutrient content, and porosity (Wilkinson et al., 2009). For the 
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purpose of this study, the soil surface manipulation techniques were (1) mounding the soil 

surface for increased organic material and water accumulation and (2) roughening the soil 

surface to lessen compaction and improve water availability for annual plants. Lastly, this study 

investigated the efficacy of outplanting in relation to the aforementioned techniques. In 

outplanting, plants are grown in the greenhouse and transplanted to disturbed sites. Outplanting 

is one of the major desert restoration techniques used to restore degraded soils. 

 
Thesis Objectives 

Understanding how best to restore disturbed desert soils is essential to reducing the 

incidence of airborne dust hazardous to human health, enhancing soil stability in drylands, and 

rehabilitating soils to provide vital ecosystem services to desert ecosystems. This research will 

evaluate the applicability of and extent to which key restoration techniques aid in restoring desert 

soils disturbed by compaction as well as top soil and vegetation removal. It will also address the 

impact of different disturbance types on soil physiochemical properties. Through field, 

laboratory, and greenhouse experiments, this thesis aimed to ameliorate the broad, 

disadvantageous impacts of disturbances within study sites of the Mojave and Sonoran Deserts. 

The following research questions drove the design and analysis of the study: 

1. How effective are minimal-input restoration treatments in improving soil and 

vegetation function compared to more intensive treatments? 

2. How do existing site conditions impact the relevance and success of restoration 

techniques? 

3. Does vertical mulch provide ecological benefits to disturbed landscapes in 

addition to visual benefits? 
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Chapter 2 is a literature review identifying the effect of disturbance on soil properties of 

the Mojave and Sonoran Deserts as well as effective restoration techniques. Chapter 3 assesses 

vertical mulch and translocating O horizon material as a restoration technique in the Mojave 

Desert while Chapter 4 investigates restoration techniques of varying intensity across a gradient 

of study sites in the Sonoran Desert. Chapter 5 concludes the thesis and provides a summary as 

well as opportunity for future research. 
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CHAPTER 2  

LITERATURE REVIEW 

 
Abstract 

Drylands are simultaneously home to 33% of the human population and highly 

susceptible to human-induced disturbances. The Mojave and Sonoran Deserts have been 

deleteriously impacted by the construction of roads and utility corridors, urbanization, military 

use, agriculture and grazing, off-highway vehicle use, fire, climate change, and the introduction 

of invasive plants. Due to limited resources and harsh climatic factors, deserts are poorly suited 

to recovering from disturbance. Disturbances often result in loss of soil stability, reduction of soil 

fauna, imbalanced element ratios within the soil, poor organic matter content, soil compaction, 

altered hydrology, and vegetation loss. As a result, ecosystems of the Mojave and Sonoran 

deserts are subject to widespread, expanding degradation and increased rates of erosion. It is 

preferable on both temporal and fiscal scales to avoid and/or limit the extent of human-induced 

disturbance in the Mojave and Sonoran Desert. In many cases, such as with military exercises or 

off highway use, disturbance is difficult to prevent. Considering that these ecosystems are 

marked by slow natural recovery that may take decades to centuries, it is vital for humans to 

assist in recovery to expedite these processes. Restoration activities achieve the goal of initiating 

long term recovery processes in disturbed desert ecosystems. However, restoration in the Mojave 

and Sonoran Deserts also poses a problem. Typical restoration practices, such as outplanting, are 

costly and require much manual labor. Others, such as seeding, are likely to fail in deserts, which 

do not provide the same weather inputs as more temperate regions do. In response to the need for 

cost-effective, minimal-input restoration techniques, techniques such as vertical mulching have 

been developed in sensitive, arid landscapes. 
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Introduction 

Deserts and the organisms that typify them are adapted to climatic and geographic 

extremes. The desert landscape consists of a wide range of adaptations, such as the pubescent 

leaves of brittlebush (Encelia farinosa) resisting UV radiation and water loss (Ehleringer et al. 

1976). Biotic and abiotic components of the desert are resilient to factors that would negate the 

possibility of life in other ecoregions, such as extreme high temperatures, little to no reprieve 

from solar radiation, xerophytic and phreatophytic vegetation due to limited moisture 

availability, and high levels of herbivory by animals and invertebrates (Bainbridge 2001; Lovich 

& Bainbridge 1999; Bainbridge & Virginia 1990). While resilient to these limiting factors, 

deserts are fragile and are sensitive to human-induced disturbance (Belnap 2001). 

Many soils of the Mojave and Sonoran deserts lack well-developed horizons and have 

thin A or V horizons sensitive to disturbance (McAuliffe 1994). Once disturbed, these soils may 

emit fugitive dust, have lowered plant productivity, and often lack diagnostic features of natural 

desert soils such as surface layers of biotic crusts and spatial patterning of islands of fertility, or 

the concentration of nutrient-enriched soils below shrubs (Bolling & Walker 2002). These 

disturbances may lead to negative impacts on human health, lessened resiliency to climate 

change, further susceptibility to disturbance and erosion, and loss of ecosystem services. 

Drylands compose of 47% of the Earth’s terrestrial surface and are a sink for 15% of the 

planet’s soil organic carbon pool, which is declining rapidly with further disturbance and 

desertification (Lal 2004). Due to limiting factors typical of desert ecosystems, deserts recover 

from disturbance on the time scale of decades to centuries with complete ecosystem renewal 

occurring over thousands of years (Belnap 1995; Cortina et al. 2011). Restoration efforts may 

accelerate recovery of deserts and assist in preventing further erosion/disturbance. Information 

on the topic of desert restoration and rehabilitation is limited as it is a comparatively emergent 



10  

field. Many restoration techniques that are successful in more temperate regions, such as large- 

scale revegetation, are less feasible in desert ecosystems. An additional factor limiting the 

practice of some restoration techniques in desert ecosystems includes the amount of effort 

required for their success. Cost-effective, minimal-input restoration techniques have been 

researched to determine best practices in desert landscapes. More research on this topic is 

necessary. 

Human-induced disturbance in North American deserts has been extensively documented 

by government agencies and academic researchers. In this review, I summarize disturbance types 

and effects in the Mojave and Sonoran deserts. In addition, I consider methods of promoting the 

restoration of disturbed soil, including revegetation, nutrient amendments, abiotic amendments, 

and biotic inoculation. 

 
Discussion 

 
Impacts of human-induced disturbances in the Mojave and Sonoran Deserts 

The history of human activities has been etched into North American deserts since Euro- 

American settlement. The Mojave and Sonoran Deserts have been bisected by linear 

disturbances through the construction of pipelines, roads, and transmission corridors. In World 

War II, these deserts were used for military operations including training exercises (Belnap & 

Patton 2002). European settlers introduced intensive grazing and agricultural practices to the arid 

landscape (Curtin et al. 2002). The Mojave and Sonoran Deserts have increased in impervious 

surfaces in large cities and through the construction and quick abandonment thereafter of towns 

during historical mining booms (Brown 2000). Invasive plants may increase in abundance in 

these desert ecosystems (Hunter 1991), as well as the potentially profound but poorly understood 
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influences of contemporary climate change. Human-induced disturbance within North American 

deserts has been documented by numerous studies of past and present events. 

Desert ecosystems deteriorate after human-induced disturbances have occurred. This 

deterioration can cause—and be amplified by—reduced soil fauna contribution to nutrient 

cycles, imbalance of element ratios, poor organic matter content, soil compaction, and water 

deficiency. Disturbances impact the landscape in different ways. The following sections 

overview these disturbances and their resultant effects on the environment. 

 
Off-Highway Vehicles 

Off-highway vehicles (OHV) have a multitude of far-reaching impacts on the 

environment. One of the predominate impacts of vehicles is soil compaction (Soane & 

Ouwerkerk 1998; Lei 2004; Nortje et al. 2012). Soil compaction is defined as: ‘‘the process by 

which the soil grains are rearranged to decrease void space and bring them into closer contact 

with one another, thereby increasing the bulk density’’ (Soil Science Society of America 1996). 

The extent of compacted soil is estimated worldwide at 68 million hectares of land from 

vehicular traffic alone (Flowers and Lal 1998). Soil compaction may make soils more susceptible 

to erosion, increase loss of soil communities, and lower infiltration rates (Horn & Fleige 2009). 

Compaction decreases desert soil porosity (i.e. increases bulk density) and limits the transport of 

water. In turn, this lessens soil water availability to plants and causes increased run-off, leading 

to erosion in increasing severity (Webb et al. 1978; Webb 1982; Wilshire 1983). Severe soil 

compaction may prevent roots from penetrating through compacted soil layers, making them 

shorter and—in some cases—thicker (Nortje et al. 2012). Due to these changes in plant root 

physiology, plants may have poorer nutrient uptake rates (Bennie & Laker 1975). Soil 

macrofauna populations, such as earthworms, may also decrease with increased compaction rates 
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in in semi-arid environments (Radford et al. 2001). Within the Mojave and Sonoran Deserts, 

continued OHV use of desert soils increases the compressional strength of soils and decreases 

soil permeability (Lovich and Bainbridge 1999). Desert soils are slow to recover after 

compaction has taken place because of decreased vegetation and low water availability. 

Depending on soil type, consistent OHV use in arid landscapes may destroy key desert 

soil stabilizers. OHVs decimate soil biocrust, dislodge the rock fragments associated with desert 

pavement which exposes the vesicular horizons to erosion (especially eolian) (Wilshire 1988). 

Often erosion removes unconsolidated soil horizons, exposing the bare petrocalcic horizon to the 

surface. These actions remove and impede the growth of vascular plants, which cannot take root 

in this environment (Webb 1982). Belnap (2003) posited that biological soil crust communities 

covered nearly 70% of dryland landscapes. Biocrust communities stabilize soil, aid in the 

retention and accumulation of fine soil materials, and fix nitrogen in plant interspaces (Lange et 

al. 1992; Belnap 1996; Evans and Ehleringer 1993). The destruction of biological soil crusts by 

OHV use represents a major loss to desert ecosystems on many levels. Pointing and Belnap 

(2014) outline a multitude of ways in which the destruction of biological soil crusts and increase 

in airborne dust particulates results in desertification, biodiversity loss, and lowered 

evapotranspiration rates. The removal of rock fragments from the soil surface also has long-term 

impacts as these rocks typically enhance infiltration and soil moisture retention (Belnap and 

Gardner 1993). Contrarily, vesicular horizons associated with desert pavement lower infiltration 

rates and increase run-off to regions where shrubs grow downslope (Wood et al. 2005). The 

destruction of desert pavement and associated V horizons may therefore divert water flow and 

de-couple shrubs from their water source. Undisturbed soils in desert ecosystems are vital to 

limiting the incidence of airborne dust, debris flow run off, and in controlling water infiltration 
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(Iverson et al. 1981). When soil stabilizers are removed from the soil, rates of erosion and die-off 

may increase within the Mojave and Sonoran Deserts. 

 
Agriculture and Grazing 

Prior to the last two centuries, the Mojave and Sonoran Deserts were not extensively used 

for agriculture and grazing. In the late 1800s to early 1900s, these practices reached 

unsustainable levels (Archer 1994; Miller et al. 1994; Bahre 1995). For millennia, Southwestern 

United States Deserts (with the exception of the Chihuahuan Desert) evolved without grazing 

(Mack & Thompson 1982). Deserts are poorly adapted to the disturbances associated with 

grazing and agricultural practices, especially when grazing and agriculture are practiced 

unsustainably. Over-grazing combined with climatic factors, such as drought, cause lowered 

plant productivity and threaten plant growth (Stoddard 1946). These practices lower plant 

productivity and impede growth. Both of these impacts have long-lasting effects on the 

environment. For instance, Brooks (1995) found that previously grazed areas had a higher 

incidence of invasive plants in comparison to areas that had not been grazed. Lowered native 

plant cover and richness may ultimately result in poor habitat forage for native animals of the 

Mojave and Sonoran Deserts, such as the desert tortoise (Gopherus agassizi) (Brooks et al. 2006; 

Keith et al 2008). 

Grazing also influences soil physiochemical properties and microbial communities. 

 

Heavy grazing may compact soils and remove surficial material/soil stabilizers (including desert 

pavement, algal crusts, lichens, fungi, and mechanical crusts as discussed in the OHV section) 

(Schlesinger et al. 1990). McGarry (2001) classified soil compaction as the most severe problem 

associated with agriculture. Within Mojave and Sonoran Deserts specifically, Lovich and 

Bainbridge (1999) found that regions with grazing had higher rates of soil compaction as 
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compared to ungrazed areas. The loss of porosity within the soil alters infiltration rates and 

lowers the water available to plants in the soil. Therefore, soil compaction may impede plant 

establishment and growth. Disturbances originating from animal hooves remove soil crust and 

prevent soil communities from recolonizing (Pointing & Belnap 2014). In instances where 

biological soil crusts recovered from trampling, the biomass was still low (Petraisiak et al. 2011). 

Soil crusts are an integral component to maintaining soil stability and capturing airborne dust. 

These forms of disturbance also alter the hydrology of a region by promoting run off and 

erosional processes (Caldwell et al. 2006). The loss of natural hydrological regimes indicates that 

natural recovery of areas disturbed by agriculture and grazing is unlikely within the decadal or 

even century time scale relevant to near-term desert management and conservation. 

 
Military 

Military exercises negatively impact dryland ecosystems in a variety of ways. World War 

II training operations in the Mojave Desert represent a unique opportunity to review the long- 

standing influences of military exercises in arid landscapes (Prose & Metzger 1985). These 

operations typically included foot traffic, vehicular traffic, and tent living quarters (Kade & 

Warren 2002). The aforementioned activities may compact soil, denude the soil surface of 

vegetation and soil crusts, and increase erosion. The impacts of U.S. military exercises offer the 

unique opportunity to measure these impacts in the Mojave and Sonoran Deserts over time. In 

the 1940s, military training camps were erected in the Mojave Desert. After 54 years, the streams 

in one such camp had still not recovered due to roads, the disturbance of surficial rock fragments, 

soil compaction, and soil smoothing (Nichols & Bierman 2001). Similar training exercises in 

WWII occurred in the Sonoran Desert. In Camp Laguna of southwestern Arizona, vegetative 

recovery was low to absent and soils were compacted (Kade & Warren 2002). Van Donk et al. 



15  

(2003) posit that disturbances, such as the aforementioned case studies, leave desert ecosystems 

prone to wind erosion. Sediment discharge was comparatively higher at sites disturbed by 

military exercises in WWII than at undisturbed sites (van Donk et al. 2003). These sites provide 

researchers with the chance to investigate how desert landscapes respond on biologic and 

geomorphic levels to past military disturbance. The consensus appears to be an overall lack of 

recovery with higher rates of erosion. 

 
Roads and Utility Corridors 

In the states of Arizona, Nevada, and California (where the Mojave and Sonoran Deserts 

are primarily located within the United States), highways, high-voltage transmission lines, and 

pipelines account for a combined 45,131,590 hectares of the land (Federal Highway 

Administration 2010; Western Area Power Administration 2016; Pipeline Safety Stakeholder 

Communications 2011). This accounts for 4.9% of the total area of the contiguous United States. 

The construction of roads and utility corridors is highly destructive to natural ecosystems of the 

Mojave and Sonoran Deserts. In order to create roads, topsoil and vegetation must effectively be 

cleared from the landscape. This land is then replaced with an impermeable surface or severely 

compacted to the point of near impermeability in the instance of unpaved roads. For utility 

corridors, not only must the land be destroyed, but it may also be trenched for pipelines or the 

installation of power lines. Utility corridors have the additional, associated disturbance of access 

road establishment. Staging areas for the heavy equipment required for these activities and the 

movement of the equipment is also destructive to the landscape. There may also be long term 

exposure effects of electromagnetic radiation. Vian et al. (2016) found that high frequency 

electromagnetic radiation may elicit a stress response in adjacent plant communities. Other 

studies show that electromagnetic fields may impact plant development, such as oxidative 
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damage to the roots of onions (Allium cepa) due to altered oxidative metabolisms (Chandel et al. 

2017) and thinner cell walls, smaller chloroplasts, and mitochondria in aromatic plants (Soran et 

al. 2014). 

The Mojave and Sonoran Deserts are susceptible to increased habitat fragmentation due 

to the construction of linear corridors. Linear corridors require the removal of plant populations, 

surround existing populations with impermeable surfaces or fully denuded ones, and may limit 

plant-pollinator interactions. Schlesinger and Jones (1984) implicitly recognized the importance 

of connectivity in desert ecosystems. Linear corridors (in the form of roads, utility corridors, or 

OHV trails that are often found adjacent to them) impede the distribution of resources across 

desert landscapes. They inhibit water transport across landscapes, often diverting it away from 

down-slope plant populations (Rowlands 1980). Fragmentation may also obstruct plant- 

pollinator relationships. Rathcke and Jules (1993) found that fragmentation resulted in a decline 

in pollinator abundance and diversity. As habitat is lost to fragmentation, so too are the animals 

that rely on those habitats. In the Sonoran Desert, the Baja California brush lizard (Urosaurus 

nigricaudus) went locally extinct due to their habitat growing increasingly fragmented 

(Munguia-Vega et al. 2013). With continued habitat loss, it is likely that the lizard will go 

extinct. Many animals of the Mojave and Sonoran Deserts face the same plight as the Baja 

California brush lizard as fragmentation impedes them from accessing vegetation, shade, and 

water. 

Linear corridors may act as conduits for invasive species, lowering biodiversity in desert 

ecosystems. In a region of the Mojave Desert disturbed by an aqueduct pipeline, natural recovery 

of plants was higher with distance from disturbance and was nearly absent at the heart of the 

disturbance site (Berry et al. 2015). The disturbance from the linear corridor left the site 
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vulnerable to invasive plants, which comprised 64-91% of the study site’s plant biomass at the 

time of monitoring (Berry et al. 2005). Vasek et al. (1975) also recorded reduced native plant 

cover and increased invasive plant cover along roads and utility corridors of the Mojave Desert 

after 12 years. The invasibility of these regions is likely a result of the destruction of the above 

ground material, removal of top oil, and reduction of the seed bank. 

 
Climate Change 

Changing weather conditions due to climate change may represent a threat to desert 

ecosystems. With regards to the Mojave and Sonoran Deserts, climate change can cause lessened 

carbon sequestration productivity in deserts and transform inert carbon to atmospherically active 

carbon (Verburg et al. 2013). Deserts sequester carbon. Pedogenic carbonate, soil organic matter, 

and plant biomass remove carbon from the carbon cycle (Schlesinger et al. 2008; Schlesinger 

1984). Climate change may alter precipitation patterns and lessen the ability of deserts to 

continue acting as carbon sinks. In the Mojave and Sonoran Deserts, vegetation and soil moisture 

are controlled by “pulses” of precipitation. Precipitation events are likely to increase in 

variability in coming decades (Fischer et al. 2013; Räisänen 2002). Plants of the Mojave Desert, 

well-adapted to current precipitation regimes, may not be able to survive with increasingly 

sporadic and irregular rain events. An overall lessened incidence of water input could likewise 

decrease soil functionality. Soil functionality, which includes the accumulation of fine 

particulates, is vital to other processes, such as soil respiration. Cable et al. (2008) found that soil 

respiration was higher on fine-textured soil as compared to coarse-textured soil and on vegetated 

versus bare soil. Biological soil crusts may also be significantly impacted by climate change. 

Increased, erratic summer precipitation patterns cause a lessened incidence of diversity and 

survival within biological soil crust communities (Barker et al., 2005; Ustin et al. 2009). As 
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biological soil crusts are one of the predominant organisms responsible for stabilizing desert 

surfaces, the loss of these communities may result in feedback loops. Climate change may 

exacerbate many feedback loops similarly, posing a large challenge to land managers moving 

forward. 

 
Invasive Plants 

Due to the breadth of interactions between invasive plants and the ecosystems they 

invade, invasive plants are classified as one of the primary threats to native ecosystems, second 

only to habitat destruction (The Nature Conservancy 1996). In the United States, invasive 

plants—and threats related to invasive plants—have caused nearly half of all federally threatened 

or endangered plants to have been listed (Brooks & Pyke 2002). Introduced advertently and 

inadvertently through ranchers seeking to increase forage, soil stabilization, and as ornamentals, 

invasive plants are often capable of outcompeting native vegetation. The high reproductive 

potential and competitiveness of invasive plants as compared to native desert plants lowers 

biodiversity by outcompeting native vegetation, altering fire regimes, and changing surface 

hydrology within southwestern desert ecosystems. 

In the Mojave and Sonoran Deserts, invasive grasses such as Bromus rubens (red brome) 

and Schismus arabicus (Arabian Mediterranean grass) exemplify how invasive plants alter the 

fire regime of desert ecosystems. B. rubens and S. arabicus grow densely across the typically 

mosaic scrubland landscape of the Mojave Desert (Brooks 1999; Brooks & Esque 2002; Brooks 

2009; Abella et al 2009) . The grasses sprout early in the spring, grow quickly, and then die and 

dry out. The Mojave and Sonoran Deserts have sparse vegetation that is widely spaced which 

inhibits the spread and severity of fire. Dense monocultures of dried grasses act as a fuel for fire 

in desert landscapes. The altered fire regime associated with invasive grasses may force desert 
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scrublands to becomegrasslands. While B. rubens and S. arabicus are prolific examples of how 

invasive plants alter natural ecosystems, issues related to invasive plants and changing fire 

regimes are common. 

In addition to altering fire regimes, invasive plants also alter surface hydrology in the 

Mojave and Sonoran Deserts, where water is already a limited resource. The introduction of 

Tamarix spp (salt cedar) to riparian areas and washes of the Mojave and Sonoran Deserts 

resulted in a wide dispersal of Tamarix spp and in Tamarix spp outcompeting native vegetation. 

Within Arizona, Nevada, Southern California, Southern Utah, Southwestern Colorado, and 

Western New Mexico, it is estimated that nearly 21% of the streams they assessed had Tamarix 

spp present (Ringold et al. 2008). Research suggests that Tamarix spp groves may alter the 

structure and flow dynamics of streams by trapping and stabilizing sediments (Ringold et al. 

2008). Trapping sediments increases overbank flooding and may create permanent sandbars in 

rivers. Sandbars, which reduce stream flow velocity, are often encouraged in heavily-channelized 

streams. In streams of the Mojave and Sonoran Desert, which often have more sediment than 

flow, additional sediment may decrease flow rate and the amount of water that reaches plants 

downstream. Less water may equate to less riparian vegetation and habitat. 

When considering the aforementioned case studies, it is important to note that invasive 

plants frequently have multiple, compounding influences on the landscape. For instance, while 

altering surface hydrology was discussed in conjunction with Tamarix spp., this invasive plant 

also produces high levels of foliage that act as fuels for fire, aggressively outcompetes native 

riparian vegetation due to high reproductive potential, and alters soil salinity. The presence of 

invasive plants regularly amplify other forms of disturbance. Lastly, invasive plants may be 

promoted by increasing CO2 levels in desert ecosystems during certain years in which water is 
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less limiting (Smith et al. 2000, 2014). Enhanced CO2 levels as a result of climate change may 

lend an even greater advantage to non-native invasive plants in outcompeting native vegetation. 

This may lead to further habitat degradation, less native biodiversity, and increased vegetative 

fuels for fire. 

 
Fire 

The Mojave and Sonoran Deserts are considered to be poorly adapted to fire. Due to a 

paucity of vegetation and relatively large distances between vegetation elements, deserts lack the 

requisite fuels for frequent fires. Within the last century, invasive plant cover and human 

encroachment have expanded in these deserts. As a result, the incidence and severity of fires 

have increased in deserts of the southwestern United States. Fire may lead to loss of plant 

material, reduction in canopy cover for the establishment of fertile islands, lessened soil stability, 

and a higher prevalence of invasive species cover (Abella et al. 2010; DeFalco et al. 2010; 

Lovich & Bainbridge 1999). These impacts may lead to further disturbance within the soil and 

plant community and positive feedback loops. 

Fire may be interrelated with a higher incidence of invasive plants. Invasive plants are 

typically ruderal and highly competitive. In other words, they are well adapted to colonizing 

post-fire landscapes, which are commonly denuded. In comparison, native vegetation typically 

requires nurse plants for successful establishment (DeFalco 2010). Therefore, post-fire 

landscapes may become dominated by invasive plants. In the instances of the most ubiquitous 

plants in the Mojave Desert, Schismus spp and Bromus rubens, the landscape is densely covered 

by a monoculture of dry plant biomass by the height of fire season. In turn, these landscapes are 

more susceptible to future fires. 



21  

Increased fire frequency and severity may also deleteriously influence desert soils. In one 

study, fire was found to increase soil pH (Certini 2005). Another study found that soil pH of the 

Mojave Desert remained unchanged following fire (Abella & Engel 2013). Knoepp and Swank 

(1993) recorded increased N mineralization and the oxidation of organic soil nitrogen after 

exposure to elevated temperatures. However, the literature on this topic continues to be 

contradictory in that it indicates variable responses of desert soil C and total N in response to fire 

(Allen et al. 2011). Amongst burned and unburned regions, N, K, and S were more abundant 

under canopies than open spaces (Mudrak et al. 2014). However, these nutrients are depleted 

with time underneath burned shrubs. Increased nutrients in the soil post-fire may aid in invasive 

plant establishment. Beginning in the early 1980s, increased fire frequency has been correlated 

with grass-fire cycles (Brooks 2007). This is a pressing issue in deserts. The Mojave and 

Sonoran Deserts have mosaic soils related to what is termed “the fertile island effect,” where 

nutrients concentrate around shrubs. If the shrub landscape is converted to a grassland, nutrients 

in the soil may be homogenized (Soulard et al. 2013). 

Fires caused by human activity and amplified by increased fuels in the form of invasive 

plants tend to have negative impacts on ecosystems due to disturbances related to fire. In 

particular, soil texture is consistently altered as a result of fire due to increased erosion and loss 

of structural support (Neary et al. 2005). Soil structural changes are not easily remedied. DeFalco 

et al. (2010) reports lessened compaction and higher infiltration (both resulting from structural 

changes) in surface soils due to erosional processes. Soils at a greater depth were still heavily 

compacted and exhibited low infiltration rates with little improvement, even decades later 

(DeFalco et al. 2010). Therefore, fire regimes may alter desert landscapes on a millennia scale. 
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The long-lasting impacts of altered fire regimes are compelling evidence for the need for 

restoration. 

 
Impacts of human-induced disturbances on human populations 

Nearly 40% of the human population lives in drylands, which are susceptible to 

degradation and recover slowly (Millennium Ecosystem Assessment 2005). The introduction of 

large human populations to the Mojave and Sonoran Deserts is one of stark contrasts. For 

instance, agricultural and ranching practices in the southwest (forever immortalized by the 

symbol of the cowboy) are both threatened by and cause desertification (Pointing and Belnap 

2014). Off-road vehicular use is a common recreational activity in the Mojave and Sonoran 

Deserts, resulting in increased dust emissions, sometimes containing heavy metals harmful to 

human health, such as arsenic (Goossens et al. 2015). Human-induced disturbances cause a broad 

range of detrimental impacts outside of the ecological ones previously explored, including high 

economic costs and negative influences on human health. 

The loss of desert ecosystems due to human-induced disturbance may represent a large 

economic loss. While the monetary valuation of ecosystem services is often subject to debate, it 

is generally acknowledged that all economic products are derived from natural materials or are 

the product of natural processes. Healthy ecosystems are essential to maintain our current 

standard of living and are not readily replaced by technology (Daily et al. 1997). The role of 

healthy ecosystems in the continued well-being of human populations is especially germane in 

arid lands, which are landscapes partially defined by limited resources. 

The economic benefits of healthy ecosystems are difficult to quantify but provide 

compelling evidence for conserving and restoring these ecosystems. Functional dryland 

ecosystems provide suitable substrates for crop production, erosion control, remediation of heavy 
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metals and other pollutants via soil microbial communities, and water provisioning (Millennium 

Ecosystem Assessment 2005). These ecosystem services would be extremely costly for humans 

to replicate. Some researchers attempt to estimate the beneficial cost of these services. Taylor et 

al. (2017) estimated that the Big Bend region of the Chihuahuan Desert provided over $1.6 

billion annually in ecosystem services such as water remediation, which was markedly lower 

than adjacent areas. Analyses such as these are beneficial for both the better understanding the 

financial necessity of conserving, and also for restoring arid lands and analyzing the negative 

financial impacts that disturbances may have on the human populations that rely on these lands. 

Natural areas are extraordinarily valuable to the tourism industry. Millions of tourists 

visit the Mojave and Sonoran Deserts on an annual basis. Le et al. (2004) found that, in 2003, 

visitors to Joshua Tree National Park (JOTR) typically spent $77 per person per day in and 

around the national park. There were over 1.2 million visitors to JOTR alone in 2003, indicating 

that over $98.8 million was spent in one park and its surrounding areas (Le et al. 2004). The 

conservation and maintenance of JOTR may be vital to sustaining the economy of towns 

adjacent to the park that rely on tourism. According to the National Park Service’s Integrated 

Resource Management Application, JOTR was only the 55th most visited national park in 2003, 

with other desert national parks, such as Lake Mead National Recreation Area in the Mojave 

Desert, visited 500% more (IRMA NPS 2018). This suggests that there are likely many locations 

across the desert that rely on natural, undisturbed landscapes for economic benefit. Additionally, 

the number of tourists in eco-tourism may be increasing. From 2003 to 2017, the number of park 

visitors to JOTR has more than doubled (IRMA NPS 2018). Statistics such as these emphasize 

the economic benefit of conserving and restoring natural spaces in order to continue promoting 

eco-tourism. This information also provides a compelling argument to conserve more natural 
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landscapes by designating more wilderness areas. Loomis and Richardson (2001) posited that the 

 

U.S. wilderness system generated $634 million of consumer surplus. These researchers observed 

that designating just one additional 4,000-ha wilderness area could yield an additional $436,000 

of surplus (Loomis and Richardson 2001). By merely minimizing human activities in a given 

natural area, it is possible that the United States could see economic benefits of hundreds of 

thousands of dollars. This economic surplus does not take into account the supplementary 

benefits of designating wilderness areas, such as air quality or biodiversity preservation 

mentioned in the prior paragraph. Desert landscapes economically benefit human populations 

through multiple avenues. 

The impact of fugitive dust from disturbed desert landscapes is especially germane to 

human health. According to Pointing & Belnap (2014), nearly all airborne dust is derived from 

deserts disturbed by human activities. Airborne particulate matter, such as the aforementioned 

fine dust particulates, may cause grave health problems for humans. For instance, approximately 

1.7% of deaths by lung cancer and cardio-pulmonary disease is caused by continued exposure to 

airborne desert dust (Giannadaki et al. 2013). Another study by Cao et al. (2016) similarly noted 

associations among dust, respiratory disease, and cancer. These studies indicate that populations 

continually subjected to dust storms may be at an amplified risk of death and disease. The 

relationship between human health problems and dust storms may be further exacerbated by 

proximity to the dust storm sources. In the states of Arizona, California, Nevada, New Mexico, 

and Utah, vehicular mortality increase by 7% and cardio-vascular mortality increase by 4% 

during dust storms (Chen et al. 2016). These statistics indicate a combined 11% increase in 

deaths associated with airborne dust events in the states that span the Mojave, Sonoran, and 

Chihuahuan Deserts. In addition to increased mortality, populations routinely exposed to dust 
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storms may contract diseases that lower their quality of life. Kanatani et al (2010) related higher 

incidences of asthma and asthma-related hospitalization in children to continued dust exposure. 

While not fatal, asthma can be a debilitating disease and is life-threatening without treatment. 

Even with treatment, those with asthma may face challenges navigating their daily lives when 

continually exposed to airborne dust. These statistics underscore the need for limiting activities 

that increase airborne dust in disturbed desert landscapes. Mitigating disturbed soils may also be 

a viable approach to preserving human life. 

Adverse effects associated with dust exposure may be augmented by dust acting as a 

vector for toxic metals and bacteria. Increased airborne particulates are of extreme interest in 

regions where concentrations of harmful minerals are present. Harmful minerals in dust, such as 

amphibolite (an asbestos mineral), may be responsible for further incidences of cancer, lung 

damage, or poisoning in humans (DeWitt et al. 2017). The presence of damaging minerals in 

dust multiplies the risk to human life. Airborne dust may also act as a vector for biotic materials. 

Bacteria and fungi are correspondingly capable of dust transport. An increased incidence of 

airborne dust may simultaneously increase the threat of the infectious diseases spreading (Griffin 

2007). It is important to stabilize soils so as to prevent them from transporting harmful materials 

from one population to the next. Conserving arid landscapes is significantly less costly than 

restoring them, but the cost of losing these landscapes to human-induced disturbance is the 

costliest option regarding human and economical welfare. 

 
Soil Restoration Techniques in Desert Environments 

The defining characteristics of desert landscapes, such as high temperatures, low water 

availability, and little reprieve from solar radiation, limit natural recovery in deserts. After severe 

disturbances have taken place, natural recovery will likely occur on a decadal to century scale 
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and may not result in desired functional benefits that undisturbed desert ecosystems provide 

(Lovich & Bainbridge 1999; Belnap 2002). In these instances, restoration must be considered a 

necessary practice. Restoration efforts aid in counterbalancing the severity of disturbance in 

North American Deserts. However, the same factors that limit natural recovery also tend to limit 

restoration success. While existing literature conveys that ecological restoration enhances 

recovery rates in desert regions, not all restoration techniques are financially feasible. The 

remainder of this review explores restoration techniques previously implemented in desert 

ecosystems, with emphasis being placed on the cost-effectiveness and effort required of said 

techniques. Some investigation into how these techniques influence soil properties will also be 

conducted. 

The primary methods of restoration in the Mojave, Sonoran, and Mojave-Sonoran 

transition zone deserts vary depending upon the fiscal resources available, extent of disturbance, 

geographic and climatic limitations, and type of disturbance. Regardless, the primary goals of 

soil restoration are generally to 1) stabilize the soil and 2) return functionality to the soil in order 

to provide ecosystem services to the landscape. 

 
Abiotic Materials 

One method to aid in stabilizing disturbed soils is to add abiotic materials, such as a straw 

checkerboard or rock cover. Abiotic materials have been implemented on a broad scale to great 

success with “checkerboards” 1 m2 in area with straw of 10-20 cm in height in China (Guo et al. 

2014). The checkerboards aided in fine dust accumulation and dune stability (Guo et al. 2014). 

The aboveground structure may trap airborne soil, acting as a seed source, and stabilizing the 

slope of the dune they were installed in. However, this technique may fragment the landscape. 

By creating a uniform array of aboveground structures, animals and seeds may be prevented 
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from traveling or dispersing through them. More research may be necessary to determine if 

stabilizing the soil to prevent aerosolized dust outweighs this potential harm to the habitat. 

Returning rock cover is another generally beneficial restoration technique. Rock cover 

requires little input after initial installment and utilizes on-site material. A study spanning the 

Mojave and Sonoran Deserts found that surface rock fragment cover reduced the probability of 

slope failure (Simanton et al. 1994). Rock fragments are an inexpensive option that generally 

uses material from donor sites. Re-introducing rock fragments into a degraded landscape has an 

additional benefit of not requiring ancillary efforts such as watering, as would revegetation. 

There is also precedent for re-introducing rock cover in regions reliant on prevalent surficial rock 

cover for hydrology prior to disturbance (Abrahams & Parsons 1990). In undisturbed desert 

landscapes, rock fragment cover lowers infiltration rates and diverts water downslope to patches 

of vegetation. Re-introducing rock fragment cover may aid in returning the landscape to a 

trajectory of recovery. 

 
Vertical Mulch 

Vertical mulching is placing dead and down woody plant material upright in the soil 

surface to simulate the appearance of defoliated shrubs (Bainbridge 1998). Oftentimes, this 

practice is used by land managers to dissuade public use of sensitive areas. It may also be 

implemented to act as a pseudo-fertile island by providing shade to plants, aiding in seed 

accumulation, and stabilizing soils. Recent research has revealed that vertical mulch may also 

have positive influences on annual plant abundance (Abella & Chiquoine 2019). 

In Joshua Tree National Park, vertical mulch was successfully installed as a restoration 

technique to promote the recovery of annual plants in denuded road-side study sites (Abella & 

Chiquoine 2019). Vertical mulch was one of the treatments used to restore roadside sites 
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disturbed by vehicles. While not as effective as outplanting, the vertical mulch treatment 

facilitated more native plant abundance than in interspaces (Abella & Chiquoine 2019). In this 

instance, vertical mulch is a viable, minimal-input approach to restoration. Unfortunately, the 

vertical mulch treatment also aided in the growth of non-native species (Abella & Chiquoine 

2019). It may be possible to limit the vertical mulch’s facilitation of non-native plants by 

applying herbicide early in the season to target B. rubens and S. arabicus or perhaps by 

mechanically removing the non-native species. 

Vertical mulch may also aid in returning soil functionality to disturbed desert sites. 

 

Ghidey & Alberts (1997) indicate that dead roots have a positive impact on soil stability. Perhaps 

the belowground structure of the “planted” vertical mulch branches may correspondingly 

promote soil stability. Vertical mulch has also been used in the past with a goal of aerating the 

soil, lessening compaction, and inoculating the root zone of plants with mycorrhizae (Bainbridge 

et al. 1996). This technique has been found to increase soil moisture and lessen temperature, 

although it has not been investigated within the realm of the Mojave and Sonoran Deserts 

(Bristow 1988). Vertical mulch likely lowers soil temperature by providing shade cover. Soil 

moisture may be increased by de-compacting the soil to “plant” the vertical mulch’s dead 

branches, allowing for water infiltration. Further work is necessary to fully determine the 

mechanisms by which vertical mulch improves these soil characteristics. In other cases, the 

restorative role of vertical mulch in the Mojave and Sonoran Deserts is clear. Mechanical 

manipulation in combination with vertical mulch both maximized vegetation establishment and 

reduced the rate of erosion in disturbed arid lands (Beggy 2016). This indicates that vertical 

mulch is a successful technique for future studies to address restoring soil and plant functionality 

in disturbed ecosystems. 



29  

Other mulches include wood chips or other abiotic materials, which may similarly benefit 

disturbed ecosystems. In a study involving restoring biological soil crusts, Chiquoine et al. 

(2016) found that the addition of wood chips likely stimulated the growth of soil crust 

communities. This methodology may have increased C content within the soil. In contrast, 

another study found that the addition of saw dust did little to aid in the restoration of a disturbed 

desert study site. Granted, this study was focused on vascular plants and found that saw dust did 

not impact the establishment of native over non-native vegetation (Corbin & D’Antonio 2004). 

The varied results of mulch amendments in these study sites illuminate the need to determine 

what the project’s restoration goals are in order to delineate best practices to get there. Studies 

conducted by Evenari et al. (1982) emphasize the benefit of using a combination of different soil 

mulch amendments. It may be beneficial to incorporate multiple techniques to attain a series of 

goals within the site. This multi-faceted approach is made easier when using on-site or 

inexpensive materials as is customary for abiotic materials. Mulching treatments are beneficial 

from an economic standpoint as they generally use on-site materials and do not require multiple 

trips for watering or additional adjustments. 

 
Soil Surface Manipulations 

The addition of organic amendments, nutrient amendments, and soil contouring may 

improve soil stability and functionality in disturbed, desert soils (Bowker 2007). Soil organic 

amendments incorporated into disturbed soils aid in lowering bulk density and compaction while 

promoting higher water retention and N and P contents. In a sandy soil site denuded for nearly 30 

years, the addition of sewage-sludge compost and manure greatly improved soil properties, 

ideally making the soil more beneficial to sustaining vegetation (Tester 1989). Organic 

amendments are commonly used in polluted or heavily degraded landscapes, such as quarries. 
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The addition of carbon may promote vegetation establishment. Other nutrient amendments focus 

on N, P, and K. Hobbs and Atkins (1988) found that nutrient addition significantly increased the 

incidence of native plants in disturbed communities and also increased plant establishment. In 

contrast, an earlier study found that the addition of N had no significance on the soil and that 

leaching likely did not occur in any treatment attempted (Westerman 1979). Therefore, further 

studies are necessary to constrain how nutrient amendments impact vegetation, especially in 

desert landscapes. Nutrient additions could benefit non-native plants as much as or more than 

native plants, as many non-native species thrive in nutrient-rich environments. Therefore, land 

managers should be cautious of incorporating nutrients such as N into a disturbed soil with non- 

native vegetation or the potential of being exposed to non-native vegetation. Other nutrient 

amendments, such as the addition of carbon, allow for soil microbes to fix nitrogen, potentially 

preventing nonnative plants from out-competing native vegetation (Blumenthal et al. 2003). C 

amendments may therefore benefit both soil communities and vascular plants. As this method 

could be achieved by simply incorporating sugar into the soil, it is both cost effective and low 

input. There is also potential for it to be broadcast from a helicopter as a sweeping restoration 

technique for non-native plant species. 

Soil contouring has long been used by human populations to stabilize soils and influence 

surface hydrology. Contouring soil may also assist in de-compacting the soil. Liu et al. (2014) 

investigated factors that cause slope failure and erosion, discovering that rainfall intensity and 

ridge height are the primary contributors to ridge failure. Contouring soils, such as in the case of 

water catchments, may alter surface hydrology and promote preferential water and litter 

accumulation. As soil contouring simply utilizes soil of the study site, it is relatively inexpensive 

aside from establishing it. 
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Revegetation 

Revegetation efforts are highly beneficial to degraded landscapes. Outplanting shrubs 

may initiate the process of the fertile island effect and facilitate annual plant cover (Abella & 

Chiquoine 2019; Grantz et al. 1998). Fertile islands are a characteristic feature of the desert 

wherein higher levels of soil moisture, soil nutrients, annual plants, and animal habitats are 

centered around shrubs (Bolling & Walker 2002). Promoting the establishment of fertile islands 

may initiate recovery on a landscape scale. Revegetation has also long been shown to prevent 

erosion by promoting soil stability (Burri et al. 2009). Outplanting increases soil aggregate 

stability and prevents shallow landslides via the structural support of the plant root systems. 

Additional benefits to disturbed desert landscapes may include increased seed input from 

successful outplantings (Abella et al. 2012). However, revegetation efforts in desert landscapes 

can be difficult. The lack of water availability and high UV insolation is prohibitive to plant 

establishment and growth. Around 50% survival in out-planting treatments is considered a 

success in desert ecosystems (Abella & Newton 2009). In addition, outplanting treatments often 

require protection from herbivory and supplemental watering, which increase costs and effort. 

The source of the outplants can be an economic challenge for land managers. Plants used 

for restoration efforts may either be salvaged from soon-to-be-disturbed areas or grown in 

greenhouses. Unless they are transplanted immediately, the salvaged plants will need to be stored 

and watered in a nursery or greenhouse until they may be planted. For plants grown in 

greenhouses or nurseries, resources that the plant will use while growing, such as soil, water, and 

overhead costs associated with a greenhouse or nursery must also be taken into account. 

In order to ensure the highest rate of survivability possible in outplants, land managers 

may employ certain tactics in tandem with planting. The age of the plant prior to planting can 

influence the success or failure of the restoration treatment. Bean et al. (2004) determined that 
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greenhouse plants should be allowed to grow for a year at minimum for best. This duration may 

allow for optimum root growth, which is necessary for the survival of many plants in desert 

landscapes with scarce water. Another way to promote root growth is by using taller containers. 

Lighter colored containers may lower the temperature of the soil in a warm, desert greenhouse 

and may promote roots and root symbionts (Bainbridge et al. 1995). Encouraging the growth of 

root symbionts may encourage plant growth and survival. Research on one such symbiont, 

mycorrhizae, has shown that it increases surface area of the root and encourages carbon storage. 

Incorporating rocks and protective structures such as plant collars are additional ways in which 

the success of re-vegetation efforts may be improved (Bainbridge et al. 1995; Allen 1989). 

With a relatively high success rate for facilitating annual plant growth and stabilizing 

soils, revegetation is an optimal restoration technique. However, the effort and money required 

for the success of this treatment may be prohibitive to some land managers. Growing and storing 

outplants is an initial, costly step. After establishing the plants, the plants will likely require 

repeat-watering. There are multiple options for this. One option is to install irrigation, which is 

very costly and requires maintenance. Another option is to water the plants using a volunteer 

force. While it may be cheaper to send volunteers to regularly water the outplants, this does take 

a lot of time and effort on the part of an unpaid work force. A final option is to use Driwater. 

Driwater is water held together in gel form by food grade ingredients (Newton 2001). 

Unfortunately, the company that produces it is now out of business. Some land managers may 

have Driwater stockpiled. For most, this option is eliminated. Therefore, the cost and effort 

required for successful revegetation efforts may outweigh the benefits of this treatment. 
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Seeding 

Seeding is the practice of introducing seeds to a denuded area in the hopes of restoring 

native plant cover. Seeding has been a successful restoration technique in the Mojave (Abella et 

al. 2009) and Sonoran Deserts (Cox et al. 1984), but has also failed completely, especially in the 

warm and dry climate (Abella et al. 2012). Seeding may also be a beneficial restoration 

technique when used in conjunction with other treatments. For instance, seeding in conjunction 

with vertical mulch may restore annual plants to a disturbed desert location. In general, however, 

seeding treatments are less successful in desert ecosystems than other restoration techniques 

(Abella et al. 2012). This may be due to the reliance of seeds on precipitation events and low 

granivory, both of which are variable and difficult to prevent in desert ecosystems. Typical 

methods of seeding include hydro-seeding, creating seed balls, and broadcasting the seed by 

hand or, occasionally, by plane. Some techniques to aid in the success of this restoration 

treatment are to time seeding events with rain events and to use protective materials such as 

mulches, as discussed in previous sections (Brown et al. 1979). The protective materials may 

both protect the seed from granivores and assist in retaining moisture should precipitation events 

be few and far between (Jones et al. 2014). Should the timing be right, seeding may be a 

minimal-input restoration technique that may prove effective in optimal conditions. 

 
Biological Soil Crusts 

Biological soil crusts (biocrusts) are communities of fungi, lichens, cyanobacteria, 

mosses, and algae that compose about 70% of dryland soil surface (Belnap 2003). These soil 

communities fulfill various ecological and functional roles in desert ecosystems. Biocrusts, 

which inhabit only the upper several mm of the soil surface, promote soil stability (Pointing & 

Belnap 2012), sequester carbon (Maestre & Cortina 2003), fix nitrogen (Belnap 2002; Castillo- 
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Monroy et al. 2020), and have mixed influences on runoff and infiltration, depending on the 

aridity of the region (Belnap 2006). These soil communities are ubiquitous across the desert soil 

surface and are integral to arid landscapes. Biocrusts inoculated on the soil surface eventually 

coalesce and form a cohesive structure (McKenna Neuman et al. 1996). The thin surface that 

biocrusts form across the landscape aids in reducing the incidence of air borne dust particulates 

and promotes stability. Consequently, biocrusts may be an excellent initial approach to restoring 

a disturbed landscape. Biocrusts may also aid in initiating successional processes for vascular 

plants (Bowker 2007). These findings encourage the use of biocrusts as a restoration technique 

as they may catalyze long-term recovery processes in the desert. Experimental disturbance 

treatments reveal that biocrusts are highly sensitive to disturbance. Faist et al. (2017) recorded 

biocrust response to trampling and scraping in comparison to undisturbed biocrusts. After 

disturbance, the biocrusts had lower biomass, lower stability, and higher runoff (Faist et al, 

2017). Therefore, it is desirable to restore biocrusts where possible to further the resiliency of not 

only the soil community but the entire ecosystem for desert sites where biocrusts form a major 

natural soil component. 

Best practices for biocrust inoculation treatments are still being researched. The process 

generally involves salvaging and storing biocrusts or propagating biocrusts in the greenhouse. 

The biocrust is then incorporated with the soil surface, ideally to encourage biocrust recovery 

and soil fertility and stability thereafter (Chiquoine et al. 2016). The biocrust inoculant 

treatments were successful in increasing the rate of recovery for biocrusts in disturbed areas, 

returning to them nearly to pre-disturbance levels (Chiquoine et al. 2016). Other studies 

demonstrate the success of biocrust restoration for utilities such as increasing soil stability and 

fertility (Maestre et al. 2006; Bowker 2007; Delgado-Baquerizo 2018). This is a minimal-input, 
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cost-effective restoration technique. It utilizes salvaged, native materials that do not have high 

storage or upkeep requirements, does not require high effort to inoculate in disturbed areas, and 

does not require consistent watering after establishment. 

 
Conclusion 

The body of work investigating human-induced disturbance within the Mojave and 

Sonoran Deserts is broad. There is a wide range of literature that details the disturbances that 

have occurred within the Mojave and Sonoran Deserts, as well as the influence of these 

disturbances on their respective ecosystems. Findings have consistently shown that 1) desert 

ecosystems recover from severe disturbances on decadal to centurial scales without intervention, 

2) human-induced disturbance is primarily responsible for the degradation of these systems, and 

 

3) restoration techniques may aid these landscapes in a recovery trajectory and potentially 

prevent feedback loops. Techniques for the ecological restoration that have been used in Mojave 

and Sonoran desert landscapes are multitudinous and include abiotic materials, vertical mulch, 

soil surface manipulations, revegetation, seeding, and biocrust inoculations. 

In general, soils recover on time scales outside of the average human lifespan. While 

some restoration methods can kick-start long term recovery processes, it is difficult to quantify 

the efficacy of soil restoration techniques due to time constraints. Even so, little research 

examining short-term results and retrospective analyses have been published on the topic. The 

lack of studies centering on soil restoration has hindered the development of reliable soil 

restoration techniques, especially in diverse desert landscape settings varying in soil conditions 

and climate. Few published papers focus solely on soil restoration in North American deserts. 

Restoration techniques, and the influence of these techniques on the soil, should be 

evaluated further in arid lands. Optimal techniques may include vertical mulch or revegetation 
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using native desert plants to restore fertile island structure, inoculation with biocrust materials to 

improve soil stability, contouring the soil surface, and the emplacement of abiotic materials such 

as rock cover to restore ecological structure related to soil formation processes. Specific 

emphasis should be placed on the soil responses to these treatments, such as soil temperature, 

soil moisture, soil accumulation, soil stability, and recruitment of native annual plants to 

determine success. These variables are useful as they can change quickly during restoration and 

indicate initiation of longer-term processes of ecosystem recovery in disturbed desert landscapes. 
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CHAPTER 3 

ASSESSING VERTICAL MULCH AND TRANSLOCATED ORGANIC MATERIAL AS A 

MINIMAL-INPUT RESTORATION TECHNIQUE 

 
Abstract 

To reduce fugitive dust as a human health hazard, increase soil stability, and enhance 

wildlife habitat, further work is necessary to develop restoration techniques for disturbed desert 

landscapes. Human-induced disturbances can degrade soil integrity, especially in arid lands with 

weakly developed soil horizons. Vertical mulch, a low-cost restoration technique that simulates 

the above-ground appearance of native shrubs, may help restore soil function and plant 

recruitment. My research analyzed the effectiveness of vertical mulch in the Dead Mountains 

Wilderness Area located 18 km from Needles, California in the Mojave Desert. Large-scale 

disturbances compacted the soil and removed top soil and vegetation. The Bureau of Land 

Management conducted pitting, seeding, and vertical mulching activities in the area two years 

before this study, presenting the opportunity to research the effect of microsite and seeding with 

litter more specifically. In 2017, I installed experimental plots testing the effect of surface de- 

compaction with and without vertical mulch treatments in two blocks. One block also received a 

organic material addition gathered from 90 shrubs up to 1 km from the study area. Native plant 

cover was six times higher under vertical mulch structures than in control interspaces both 

observation periods. Non-native cover also increased under vertical mulch. These trends were 

mirrored in the BLM restoration site. Soil properties were also altered by the installation of 

vertical mulch, with significant decreases in compaction and increases in both soil moisture and 

soil stability. Results suggest that vertical mulch is a useful technique to enhance annual 

vegetation cover and promote soil function, although considerations must be made to limit non- 
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native plant response. Combining vertical mulch with additional restoration treatments, such as 

litter addition, would be a viable approach, and should be further studied. 

 
Introduction 

As human-induced disturbances continue to degrade desert landscapes, effective 

restoration techniques must be developed to return landscapes to trajectories of recovery. Once 

disturbed, desert ecosystems may emit fugitive dust, have lowered plant productivity, and often 

lack diagnostic desert features such as surface layers of biotic crusts and spatial patterning of 

“islands of fertility,” or nutrient-enriched soils below shrubs (Belnap, 1995; Abella et al., 2012; 

Maestre et al., 2012). These disturbances may lead to negative impacts on human health by 

increasing the harmful release of dust and allergens (Pointing & Belnap, 2014), lessened 

resiliency to climate change (Maestre et al., 2012), further susceptibility to disturbance and 

erosion (Belnap, 1995; Bainbridge, 2007), and loss of ecosystem services (Cortina et al., 2011). 

Restoration efforts may aid in ecosystem recovery. Due to extreme environmental conditions, the 

amount of cost and effort often preclude the practice of some restoration techniques in desert 

ecosystems. Cost-effective, minimal-input restoration techniques are vital to efficiently restoring 

desert landscapes. 

Developing restoration techniques is challenging in arid regions as high temperatures and 

limited water often impede cost-effective restoration efforts. Revegetation is costly and is 

generally considered successful if 50% of outplants (greenhouse-grown seedlings placed at field 

sites) survive (Abella & Newton, 2009). While less costly than revegetation, seeding treatments 

yield a lower success rate and may not germinate at all in years with low rainfall and in areas 

with intensive granivory (Abella et al., 2012; Maestre et al., 2012). In spite of limiting factors, 

seeding has been successful in the Mojave (Abella et al., 2009) and Sonoran (Cox et al., 1984) 
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Deserts. In some circumstances, using litter from surrounding areas may enhance vegetative 

cover without a high degree of effort or expense. Translocating O horizon material into disturbed 

areas introduces seeds and organic matter with minimal expense as it uses on-site materials. 

Other techniques, such as mechanically manipulating the soil of disturbed areas, can be 

expensive and may permanently alter the appearance of the landscape. As a result, alternative 

restoration techniques such as vertical mulch are increasingly viewed as a visually acceptable, 

cost-effective option for restoration. Vertical mulch, the “planting” of dead woody material to 

simulate the aboveground appearance of plants, is increasingly used by governmental, private, 

and non-profit agencies as a cost-effective, minimal-input solution to human-induced disturbance 

(Figure 1). Most commonly, vertical mulch is installed to dissuade public use of sensitive areas 

as it acts as a visual and physical barrier (Bainbridge, 1996). Ecosystem functional benefits, such 

as improved annual plant recruitment (Abella & Chiquoine, 2018), increased water retention, 

seedling protection, and seed accumulation (Bainbridge 1996), have been less explored. In the 

semi-arid to arid Iberian Peninsula, branch piles increased seed rain by attracting frugivorous 

birds (Castillo-Escrivà et al., 2018). Some of these ecosystem functional benefits, such as seed 

accumulation and de-compaction, may arise from roughening the soil surface to install the 

vertical mulch structures. There is also evidence to suggest that vertical mulch may not be as 

effective for restoring ecosystem functions. For instance, studies have found that vertical mulch 

has little to no impact on soil moisture (Jalota & Prihar, 1998) and little influence on plant 

recruitment during years with low water availability (Bainbridge, 2001). More research is 

necessary to understand the ecological influence of vertical mulch as a restoration technique. 

At the Dead Mountains Wilderness Area (Bureau of Land Management 1994) in the 

Mojave Desert, a former unpaved road was decommissioned in 1994 when this area was 
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designated as wilderness and later treated in 2015. For treatment, the road was pitted 

mechanically and a portion of the former road received a vertical mulch and seeding with litter 

treatment. To better understand the effects of de-compaction, vertical mulch, and seeding using 

litter, I conducted a focused study in an adjacent, disturbed area. I hypothesized that: (1) de- 

compacting compacted surface material, vertical mulch, and translocating organic material 

would all independently result in greater plant recruitment, and (2) the combination of these 

treatments would result in the greatest plant recruitment. 

Materials & Methods 

Study Area 

I conducted this study in the Dead Mountains Wilderness Area (35° 2'1.82"N 

114°41'56.27"W; Bureau of Land Management; BLM,), 18 km northwest of Needles, San 

Bernardino County, California, USA. Prior to the area’s wilderness designation in 1994, the site 

was used as a recreational vehicle area and RV campground. A road (~1000 m in length) led 

from a powerline corridor to the RV campground. In 2015, to dissuade unauthorized use of the 

area and this road, the BLM ripped and pitted (0.5 m × 0.5 m × 0.5 m depressions) along the 

entire length of the road to the campground using large earth-moving equipment, then installed 

vertical mulch along the approximately the first 500 m of the pitted treatment. Vertical mulch 

consisted of dead and down Larrea tridentata (DC.) Coville (creosote bush) branches inserted to 

mimic the structure of a creosote bush. Additionally, in the area that received a vertical mulch 

treatment, litter was incorporated into the surface area around the vertical mulch. Litter was 

collected from adjacent undisturbed creosote microsites where litter, which contained seed, 

accumulated. A spur road to the west of these restoration treatments was not restored and 

presented the opportunity to test the effects vertical mulch in a scientifically rigorous manner. 
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The Dead Mountains Wilderness Area is a granitic mountain range bordered by the 

Colorado River to the east and Piute Valley to the west. Topography of the region includes 

jagged mountains and sweeping bajadas with pristine desert pavement surfaces. The soil parent 

materials are granite, gneiss, and schist. Soil profiles are skeletal and show weak differentiation 

throughout (personal observations). Vegetation consists of L. tridentata and Ambrosia dumosa 

(A. Gray) Payne (white bursage with sparse stands of Senegalia greggii (A. Gray) (catclaw 

acacia) Britton & Rose and Hyptus emoryi (Torr.) (desert lavender) in surrounding washes. 

Portions of the area provide critical habitat to the desert tortoise (Gopherus agassizi). 

 

The nearest weather station (Needles, CA, 18 km from the study site) reported average 

high temperatures of 43°C in July 2018 and a low of 11°C in February 2019 over the course of 

the study. Precipitation ranged around 24 mm for the 2017-2018 hydrologic year (November 

2017-April 2018) and 33 mm for the 2018-2019 hydrologic year (November 2019-April 2019) 

(2017-2019; Needles, CA, 271.3 m in elevation, 34°46’3” N, 114°37’7.68” W, 18 km from the 

study site; data from National Oceanic and Atmospheric Administration). During this study 

period, there was 57% of the average precipitation in 2018 and 66% of the average precipitation 

in 2019 (Figure 2). Conditions were abnormally dry for the study area, especially in 2018. 

 
Implementation 

I installed two 48 m × 3 m experimental blocks with one designated as a litter addition 

block (Figure 3). Within blocks, three microsite treatments were installed, N=8, (1) surface de- 

compaction (SD), (2) surface de-compaction with vertical mulch (VM), and (3) no treatment 

control (CON), for a total of 24 microsites per block, or 48 total microsites among blocks (Figure 

3). Microsites were 1 m × 1 m, evenly spaced across blocks with microsite types alternating 

across blocks, and at least 1 m from any other microsite. Surface de-compaction treatments 
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consisted of using rock hammers and hand rakes to loosen the top 5-10-cm of compacted surface 

material. Vertical mulch consisted of inserting at least ten dead creosote branches per microsite 

at least 10-cm deep into the soil in the center of microsites to appear as erect dead shrubs. Dead 

branches were collected from beneath live creosote individuals from nearby sites. After 

microsites were constructed, in the seeding block only, litter collected from beneath 90 shrubs 

(Larrea tridentata, Encelia farinosa) in a 0.5 km radius around blocks, and homogenized was to 

incorporate in the upper 10-cm of soil in the SD and VM microsites. To determine viability of 

seeds in litter, we conducted an assay with a portion of the litter material over the course of three 

months using the emergence method (Thompson et al., 1997). Using the same volume of litter 

per microsite (3785 cm3), litter was applied 5 cm deep onto sterilized soil in 15-cm diameter 1- 

gal nursery pots. Pots were watered three times a day and monitored weekly. As seedlings were 

identified to species, seedlings were removed. 

 
Data Collection 

To determine how vertical mulch influenced environmental factors and soil properties, I 

measured air and soil temperature, soil stability, soil compaction, and soil moisture. To monitor 

soil temperatures, in March 2018 (three months after treatment) I installed eight Onset U23-004 

HOBO Pro v2 Temperature/6 ft External Temperature Climate Sensors (Bourne, Massachusetts, 

USA) with the external probe 5 cm below the surface soil with a secondary probe set at 25 cm 

above surface to monitor air temperatures. The internal soil sensors were buried 5 cm below the 

soil surface to capture annual plant and perennial seedling root-zone temperatures. In January 

2019, 13 months after installing the treatments, I measured compaction using an AMS G 281 E- 

280 Pocket Penetrometer (American Falls, Idaho, USA). Following Herrick et al. (2001) soil 

stability was measured using 3 peds per microsite. Soil moisture was measured gravimetrically in 
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March 2019, 15 months after treatment. Vegetation was monitored within experimental 

microsites in both blocks in April 2018 (four months after treatments) and March 2019 (sixteen 

months after treatments). The areal cover per species was estimated using cover classes: 1= 0- 

1%, 2 = 1-2%, 3 = 2-5%, 4 = 5-10%, 5 = 10-25%, 6 = 25-50%, 7 = 50-75%, 8 =75-95%, and 9 = 

>95% (modified from Peet et al. 1998). Within 0.5 km radius from experimental blocks, I also 

sampled undisturbed interspace microsites (areas >1 m or more away from perennial plant 

canopy) and below mature L. tridentata shrubs using the same cover class and quadrat size (1 m 

× 1 m) to use as reference to compare with experimental treatment microsites. Undisturbed 

microsites were measured at the same time as experimental blocks. 

To compare the 2015 de-commissioned road treatment to experimental treatments, 

microsites were assessed along the two different treatment section of the decommissioned and 

treated road. Along the treated road and adjacent undisturbed area (<100 m from road), random 

points were generated in ArcGIS v9.4. In the two road treatment blocks, (1) the pitted and 

vertical mulch treatment block and (2) the pitted only treatment block, the closest interspace 

(pitted only), live Larrea, or vertical mulch (where applicable) microsite to the random point 

were selected for survey within a 1 m x 1 m quadrat. Twelve of each applicable microsites were 

sampled per the two treatment blocks (pitted only, N=12 pitted interspace, N=12 live Larrea; 

pitted with vertical mulch, N=12 vertical mulch, N=12 pitted interspace, N=12 live Larrea). On 

either side of the road, along the entire length, twelve live Larrea and twelve interspace 

microsites were also surveyed. Areal cover for all species present were estimated using cover 

classes as described above. All Larrea plants were expected to have been established after the 

2015 road treatments, but the year the plants germinated since 2015 is uncertain. 
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Data Analysis 

The experimental design for the 2017 site was a repeated measures (two years) factorial, 

two-factor, randomized complete block, with microsite type (three levels: surface de- 

compaction, surface de-compaction with vertical mulch and no treatment control) and organic 

material addition (two levels, present or absent) and their interaction set as fixed effects. 

Vegetation and soil analyses were performed using PROC MIXED in SAS version 9.4. I also 

regressed each environmental variable (soil stability, soil compaction, and gravimetric soil 

moisture), averaged for each sampled microsite, with 2018 and 2019 native plant cover. The 

relationship between soil properties and native plant cover varied with r2 values of 0.98 

(stability), 0.88 (moisture) and 0.73 (compaction) (CI=95%). The 2015 road restoration 

treatment vegetation surveys data were analyzed using a similar design above. 

 
Results 

 
Plant response to 2017 experimental treatment 

Compared to disturbed but un-manipulated and surface de-compacted microsites, the 

vertical mulch microsite type yielded higher plant cover percentages. Plant cover in the vertical 

mulch microsites was higher in all categories: exotic annual cover, native annual cover, and 

native perennial cover (Figure 4a-d). However, through microsite × year interactions, exotic and 

native perennial cover were higher in 2019 in the vertical mulch microsite than in 2018 (Figure 

4a-d). Native perennial plant cover and exotic annual cover were significantly higher in the 

vertical mulch microsite type as compared to surface de-compaction microsite types and control 

sites (Figure 4a,b). While there were interactions in native annual plant cover between microsite 

type and year, this relationship was not as strong in exotic plant cover. Both native and exotic 

plant cover were significantly higher in 2019 than 2018. 
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Retrospective assessment of 2015 restoration treatments 

The 2015 microsites supported the general trends shown in the experimental restoration 

plots (Figure 5a). Exotic cover was significantly higher below vertical mulch as compared to 

interspaces (Figure 5b). Cover for native plants was not significantly higher in vertical mulch 

treatments, although cover was significantly higher in 2019 than 2018. 

For the 2015 restoration treatments, microsites differed between years and among 

treatments or between treatments and undisturbed microsites (Figure 5). In pitted only 

microsites, interspace and Larrea microsites did not differ within year from each other but did 

differ between years. Native annual cover was greater in 2019. In pitted with vertical mulch 

microsites, in 2018 Larrea microsites did not differ from vertical mulch microsites, but did differ 

from interspace microsites. Larrea microsites had the lowest native annual cover in 2018. In 

2019, Larrea microsites in the pitted with vertical mulch sites also had the lowest cover of the 

three microsites surveyed, similar to 2018 results. Interspace and vertical mulch microsites did 

not differ from each other in 2019. Compared to undisturbed microsites, treatment microsites 

tended not to significantly differ in 2018 in most cases. However, in 2019, undisturbed 

microsites had significantly higher native annual cover compared to all treatment microsites. 

Exotic plant cover, which primarily consisted of Schismus cover, did not differ among any of the 

microsite types or between years. Among microsites each year, exotic annuals contributed <1 % 

cover among all plots. Both perennial forbs and shrubs were analyzed separately because Larrea 

was expected to contribute significantly to both shrub and total perennial cover. Perennial forbs 

differed between years, although only contributed to <1 % cover both years. For shrubs, as 

expected, Larrea microsites had the highest shrub cover among microsites both years and 

undisturbed microsites also had the highest shrub cover both years. 
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Soil response to 2017 experimental treatment 

The restoration treatments also influenced soil properties. Soil stability, soil compaction, 

and soil moisture had strong interactions among microsite types (Figure 6a-c). Soil in the vertical 

mulch microsite was 3.5 times more stable than the experimental control sites and significantly 

more stable than both the experimental control and surface de-compaction microsite types. Both 

the vertical mulch and surface de-compaction microsite types had significantly greater 

gravimetric soil moisture than the experimental control microsite types across both the seeded 

and non-seeded blocks (Figure 6a). The experimental control sites were significantly more 

compacted than the vertical mulch and surface de-compaction microsite types. Air and soil 

temperatures also differed among the microsites (Figure 7). Vertical mulch had temperatures 

averaging 2-4°C lower than the other microsite types in both categories. 

 
Discussion 

In this study, I found that vertical mulch is a beneficial technique for restoring disturbed 

desert landscapes. Vertical mulch significantly increased native cover and altered soil properties 

in ways that appear favorable to plant establishment. The relationships between vertical mulch, 

plant abundance, and erosion control investigated in this study indicate that vertical mulch is not 

only a visual aid but also an ecological one. Adding organic material to vertical mulch treatments 

was a low effort way to increase plant cover to reference conditions, although there was no 

significant difference in cover between seeded and non-seeded vertical mulch sites. To a lesser 

degree, de-compaction also aided in enhancing plant cover and may be a lower effort alternative 

to vertical mulch depending on management goals. 

The response of annual plants and soil to vertical mulch structures indicates that vertical 

mulch may behave similarly to a dead fertile island. Across all plant categories, vertical mulch 
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had significantly higher plant cover percentages than experimental control sites. I also found that 

vertical mulch sites had higher soil moisture, greater soil stability, and were the least compacted, 

which likely provided preferable conditions for plant establishment. The aboveground structure 

of vertical mulch may be providing canopy protection and aid in seed accumulation. This 

increased accumulation may be a mechanism by which seeds and nutrients accrete in the vertical 

mulch treatment. Both the canopy protection and increased accumulation are features of fertile 

islands in desert systems. As temperatures were lower in vertical mulch microsites than the other 

microsites, vertical mulch also appears to buffer microsite conditions, especially during the 

hottest months of the year (Figure 7). 

The lack of significant differences in plant cover between the surface de-compaction 

microsite and the vertical mulch microsite suggests that the act of installing vertical mulch is not 

solely responsible for vegetation and soil response. During years of higher precipitation, de- 

compacting the soil alone may increase plant cover. 

Translocating the O horizon material had less of an influence on plant cover than the 

microsites, suggesting that it may not be worth the extra effort. For instance, there was no 

significant difference between the vertical mulch treatments with and without translocated O 

horizon material. However, when compared to the undisturbed reference sites, the vertical mulch 

treatments with translocated O horizon material yielded plant cover percentages more similar to 

the reference sites than vertical mulch treatments without translocated O horizon material. 

Vertical mulch microsites with translocated O horizon material yielded ratios of 97% (2019) and 

59% (2018) of native plant cover to reference interspace whereas the vertical mulch structures 

without it had ratios of 79% (2019) and 22% (2018) (Figure 8). In comparison to the control 

sites, both vertical mulch structures with and without translocated O horizon material had much 
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higher native plant cover relative to the reference sites (control site cover ratios were closer to 

22% [2019] and 2% [2018], respectively). Translocating O horizon material may be a beneficial 

extra step to promote higher cover (up to twice as much plant cover in dry years as compared to 

wet years). 

The significant difference in native plant cover between 2018 and 2019 may have been 

driven by environmental factors. In the hydrologic year (November 2017-April 2018) preceding 

the 2018 growing season, Needles, CA received 15 mm of precipitation. In the hydrologic year 

preceding the 2019 data collection (November 2018-March 2019), Needles, CA received 89 mm 

of precipitation. The lower plant response during the drier year is consistent with findings of 

Bainbridge (2001) that vertical mulch is less effective in drought years. The vertical mulch may 

also have increased cover by buffering seedlings from extreme temperatures. During the hottest 

months of the year, the vertical mulch microsites had air and soil temperatures several degrees 

lower than the other microsite types (Figure 7). This may have aided in keeping perennial plants 

alive over the summer, as perennial plant cover was significantly higher in 2019 than 2018. The 

less severe temperatures may have also aided in plant recruitment. 

The variation in precipitation had less influence on exotic plant cover. Exotic grasses had 

strong interactions between microsite types in both years of the study. In 2018, the drier of the 

two study years, vertical mulch had five times as much native plant cover as control sites (Figure 

4a). During the wetter year of 2019, exotic plants utilized the vertical mulch significantly more 

than the control sites (Figure 4c). Therefore, precipitation may not have as strong of an effect on 

exotic plants as native plants with regards to vertical mulch treatments. The increased abundance 

of both native and non-native vegetation supports the findings of Abella & Chiquoine (2019). 

Vertical mulch may have the unintended consequence of facilitating exotic species. Additional 
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exotic plant treatments in conjunction with vertical mulch may be necessary to provide 

opportunity for native plants to establish and compete. Based on these findings, we propose that, 

while vertical mulch is a beneficial technique for enhancing vegetative recovery, exotic plants 

warrant consideration. 

The longer-term plant response of the 2015 restoration sites support the apparent trends 

in the shorter-term experimental data. The vertical mulch sites had 33% (2019) and 36% (2018) 

of the native cover of undisturbed reference interspaces whereas the microsites with no vertical 

mulch had ratios of 48% (2018) and 17% (2019). There was more variability in the 2015 

restoration sites during the drier study year likely due to longer establishment. As evidenced by 

both the experimental vertical mulch established in 2017 and the 2015 restoration site, vertical 

mulch and de-compaction have both immediate and long-term influences on plant response. 

Considering that the vertical mulch structures of this study have remained upright for the 

duration of the study period, it may be concluded that the vertical mulch treatments will continue 

to have long-lasting influences on an ecosystem. In their study, Abella and Chiquoine (2019) 

found that their vertical mulch persisted for nearly a decade with minimal structures breaking or 

tipping over, unless the structures were outright removed by humans. Given that woody material 

in the deserts have been found to disintegrate on decadal scales (e.g. Ebert & Ebert 2006), 

vertical mulch may be a viable restoration technique on longer time scales. 

My findings indicate that vertical mulch is a suitable restoration technique to ameliorate 

soil disturbance. Bainbridge (1996) suggested that vertical mulch improved soil stability and 

may improve seed and soil accumulation. This study bolsters this conjecture as vertical mulching 

and soil de-compaction activities improved soil stability, soil moisture, and soil compaction. The 

soil of vertical mulch microsites was over three-fold more stable than the soil of control sites. 
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Both the installation of vertical mulch and soil surface de-compactions de-compacted soil 

significantly more than control sites. Contrary to the findings of Jalota and Prihar (1998), soil 

moisture was higher in vertical mulch sites than control sites. This may be due to geographic 

differences between this study site and Jalota and Prihar’s study site, which was located in the 

central Great Plains of North America. Considering that the vertical mulch sites also had lower 

air and soil temperatures by up to 5°C, structures could have enhanced moisture retention (Figure 

7). This may be investigated further with humidity sensors and soil moisture meters. 

Future research is necessary to assess the efficacy of vertical mulch in simulating the 

fertile island effect. While this study addressed the ability of vertical mulch to enhance plant 

recruitment, determining the mechanisms by which vertical mulch may have interacted with 

plant recruitment processes, such as trapping seeds or protecting seedlings, was beyond the scope 

of this study and warrants further research. Continuing to track environmental processes around 

the vertical mulch structures may provide insight into potential longer-term dynamics. For 

example, in their study examining seed accumulation in branch piles, Castillo-Escrivà et al. 

(2018) noted less litter cover under the branch piles than under shrubs after four years. 

Understanding which mechanisms (wind, etc.) drive seed accumulation under vertical mulch 

structures would further analogs between vertical mulch and simulating a fertile island effect. 

Understanding how vertical mulch influences these longer-term properties may further illuminate 

the factors underlying increased cover beneath vertical mulch as compared to control sites and 

how vertical mulch may compare to other, more costly treatments. 

This study illuminated the need to study vertical mulch further. Our findings suggest that 

incorporating O horizon material with vertical mulch structures resulted in comparatively high 

percentages of plant cover. Vertical mulch can likely be paired with other treatments for different 
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management goals. For instance, pairing vertical mulch with treatments to lower non-native plant 

cover may prove viable. This may eliminate the apparent downside of vertical mulch facilitating 

these species. Herbicide may be one such treatment, especially considering that typical 

considerations of applying herbicide around nurse plants may not be a concern for the already 

dead vertical mulch material. Applying Fusilade II eliminated non-native grasses and shrubs 

from a burned portion of the Sonoran Desert and doubled native plant cover (Schutzenhofer & 

Valone, 2006; Steers & Allen, 2010). Scoles-Sculla et al. (2014) found minimal impact on 

outplanted shrubs after their four year study on herbicide application on annuals surrounding 

outplants. These findings may also be influenced by application timing, weather, and secondary 

invasion. Another approach to limiting non-native cover may be manually removing non-native 

plant species in specific microsites and at specific times to strategically employ this labor- 

intensive but potentially effective strategy. Brooks (2000) found that thinning non-native grasses 

did not change native biomass in a dry year but doubled it in a wet year. Similarly, removing 

Erodium circutarium, a non-native forb, nearly doubled native annual cover and richness in the 

Chihuauan Desert (Schutzenhofer & Valone, 2006). These treatment combinations may be 

modified to yield the highest native plant cover and lowest exotic plant cover. Other treatments 

may be combined to potentially increase percentages of plant cover. Amending the soil surface 

with organic material may promote higher plant cover beneath vertical mulch. In the Mojave 

Desert, killing a shrub and placing the canopy on fertile soil yielded annual plant biomass similar 

to that of below live shrubs (Holzapfel & Mahall, 1999). Given the success of incorporating 

native litter to this study, it may also be beneficial to study seeding with regard to vertical mulch. 

Our study indicates that vertical mulch is a promising restoration technique for both 

vegetation and soil, particularly if combined with another treatment that may suppress non-native 
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plant. In some cases, merely manipulating the soil surface can yield good results. Environmental 

variables, such as precipitation, compaction, and soil moisture, may drive trends in abundance 

and facilitate higher cover. Exotic plants appeared to thrive in years of both above and below 

average precipitation. As desert ecosystems are increasingly threatened by human use and plant 

invasion, it is vital to develop effective restoration techniques. Many restoration projects lack 

ample funding and rely on volunteer work to carry out restoration projects. Vertical mulch is a 

cost-effective, minimal-input technique that may promote annual and perennial plant recruitment 

in denuded areas, promote plant retention through improved soil moisture, stabilize disturbed 

soils, and de-compact heavily compacted soils such as the ones in this study. 



63  

References 

Abella, S.R. and Chiquoine, L.P. 2019. The good with the bad: when ecological restoration 

facilitates native and non-native species. Restoration Ecology. 36:284-294 

 
Abella, S.R. and Newton, A.C. 2009. A systematic review of species performance and treatment 

effectiveness for revegetation in the Mojave Desert, USA. Arid Environments and Wind Erosion. 

45-74 

 
Bainbridge, D.A. 1996. Vertical mulch for site protection and revegetation. Restoration and 

Management Notes. 14(1): 72 

 
Bainbridge, D.A., Tizler, J. MacAller, R., Allen, M.A. 2001. Irrigation and Mulch Effects on 

Desert Shrub Transplant Establishment. Native Plants Journal. 2(1): 25-29 

 
Belnap, J. 1995. Surface disturbances: their role in accelerating desertification. Environmental 

Monitoring and Assessment. 37: 39-57 

 
Brooks, M.L. 2000. Competition between alien annual grasses and native annual plants in the 

Mojave Desert. American Midland Naturalist 144:92-108 

 
Castiollo-Escrivà, A., López-Iborra, G.M., Cortina, J., Tormo, J. 2018. The use of branch piles to 

assist in the restoration of degraded semi-arid steppes. Restoration Ecology. 

 
Cortina, J., Amat, B., Castillo, V., Fuentes, D., Maestre, F.T., Padilla, F.M., Rojo, L. 2011. The 

restoration of vegetation cover in the semi-arid Iberian southeast. Journal of Arid Environments. 

75: 1377-1384 

 
Ebert, T.A., Ebert TA. 2006. Decomposition rate of ocotillo (Foquieria splendens) wood in the 

desert of southern California and its use in estimating adult survival by life-cycle graph analysis. 

Plant Ecology. 186: 177-187 

 
Jalota, S.K. and S.S Prihar. 1998. Reducing Soil Water Evaporation with Tillage and Mulching. 

Iowa State University Press, Ames, IA. 142 

 
Maestre, F.T., Salguero-Gómez, R., Quero, J.L. 2012. It’s getting hotter in here: determining and 

projecting the impacts of global change on drylands. Philospical Transactions of the Royal 

Society B. 367: 3062-3075 

 
Peet, RK., Wentworth, T.R., White, P.S. 1998. A flexible, multipurpose method for recording 

vegetation composition and structure. Castanea. 63: 262-274 



64  

 

Shutzenhofer, M.R., Valone, T.J. 2006. Positive and negative effects of exotic Erodium 

cicutarium on an arid ecosystem. Biological Conservation. 132:376-381 

 
Scoles-Sciulla, S.J, DeFalco, L.A., Esque, T.C. 2014. Contrasting long-term survival of two 

outplanted Mojave Desert perennials for post-fire revegetation. Arid Land Research and 

Management. 29: 110-124 

 
Thompson, K., Bakker, J.P. & Bekker, R.M. 1997. The Soil Seed Banks of North West Europe: 

Methodology, Density and Longevity. Cambridge University Press, Cambridge. 



65  

 
 

Figure 1. An example of the vertical mulch (VM), surface de-compaction (SD), and 

control (CON) microsite types along 48 m × 3 m Block 2 of the 2017 experiment, which 

received a litter treatment. The photo on the left is from March 2018 and the photo on the 

right was taken one year later in March 2019. Note the large perennial shrub Encelia 

farinosa in the first vertical mulch structure of the right-hand photo. Photos by A. J. 

Rader. 
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Figure 2. Precipitation and temperature data at the study sites in the 2017-2018 and 

2018-2019 hydrologic years. Actual data from the National Oceanic and Atmospheric 

Administration Needles, CA and average data from Western Regional Climate Center. 
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Figure 3. The study design for the experimental 2017 restoration blocks. Each block is 48 m x 3 

m in size. Three microsite treatments (n=8) are in each plot: the vertical mulch microsite type, 

the surface de-compaction microsite type, and the control microsite type. Block 2, the 

northernmost block, also received a litter with seeding treatment wherein translocated O horizon 

material was incorporated into the microsite soil surfaces. 
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Figure 4. Significant effects for mean (a) exotic annual plant cover, (b) native 

perennial cover, (c) native annual cover, and (d) total native cover among microsite 

types (CON=control, SD=surface de-compaction, VM=vertical mulch) among 

seeded and non-seeded experimental blocks in the 2017 experiment. Data are shown 

according to whether year × microsite or microsite were significant. Error bars are 

one SEM. Letters indicate statistically significant groups (p<0.05). 
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Figure 5. Significant treatment effects on (a) native annual cover and (b) exotic 

annual cover in the 2015 restoration microsites in the Dead Mountains 

Wilderness Area, Mojave Desert, California. The microsite types are PITT 

INTSPA= pitted interspace, PITT LARTR= pitted Larrea tridentata, PITTVM 

INTSPA=pitted vertical mulch interspace, PITTVM LARTRI=pitted vertical 

mulch with Larrea tridentata, PITTVM VM= pitted vertical mulch with vertical 

mulch, UND INTSPA=undisturbed interspace, and UND LARTRI=undisturbed 

Larrea tridentata. Values are means and error bars are one standard error of 
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SD 

 
Figure 6. (a) Soil moisture, (b) compaction, and (c) stability 

organized by microsite type (CON=control, SD=surface de- 

compaction, VM=vertical mulch) in the 2017 experiment. 

Different letters within a graph indicate statistically significant 

differences for the variable (P<0.05). Error bars are one 

standard error of means. 

 

 

 

 
 

 
 

Figure 6. Monthly values for air temperature and soil temperature in vertical mulch (VM), 

surface de-compaction (SD), and control (CON) microsites during eleven months of the 

study during 2018 and early 2019 in the Dead Mountains Wilderness Area, Mojave Desert, 

California. Values are averaged from data points taken every thirty minutes. 
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Figure 7. Dissimilarity in native (a) and exotic (b) plant cover between the seeded, non-seeded, 

and reference sites in the 2017 experiment. Different letters indicate statistically significant 

differences for the variable (P<0.05). Part c shows the relative ratio of each microsite type’s 

native plant cover to reference interspace native plant cover, divided by year (CONnosee=control 

microsite without litter addition, CONsee=control microsite with litter addition, 

SMnoseed=surface de-compaction microsite without litter addition, SMseed=surface de- 

cmpaction microsite with litter addition, VMnoseed=vertical mulch microsite without litter 

addition, VMseed=vertical mulch microsite with litter addition). The closer the ratio is to 1, the 

more similar the cover between the microsite types. If the ratios are less than 1, there is 

indication that the treated areas have lower richness than the undisturbed areas. 
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CHAPTER 4 

ASSESSING RESTORATION TECHNIQUES ACROSS VARYING SOIL CONDITIONS OF 

THE SONORAN DESERT 

 
Abstract 

Ecological restoration mitigates the impacts of human-induced disturbances in deserts 

with varying levels of success. To determine how site characteristics may influence restoration 

success, I measured plant cover, soil moisture, soil compaction, soil stability, and soil 

accumulation in response to three restoration-created microsite types—outplanting, vertical 

mulch, and water catchments—across four Sonoran Desert study sites with different soil 

properties and degrees of disturbance. I hypothesized that restoration techniques would enhance 

vegetative cover and improve soil functional properties (stability, moisture, de-compaction, and 

accumulation) across all study sites, with the level of success dependent upon soil substrate and 

extent of disturbance. The microsite type influence was not as evident as predicted. Plant cover 

was consistently highest in the study site with the most favorable soil conditions, regardless of 

microsite type. Soil stability and moisture yielded similar trends whereas soil accumulation was 

significantly highest in the vertical mulch microsite type, regardless of study site. Soil 

compaction was lower in microsite types with outplanting than within microsite types without. 

These findings suggest that returning disturbed landscapes to trajectories of recovery is highly 

dependent on existing soil characteristics. Developing a contextual understanding of how certain 

site conditions influence restoration success is essential to developing effective projects and 

predicting their success. 

 
Introduction 

Arid desert ecosystems are increasingly imperiled by human development and 

recreational use. Disturbances such as the construction transmission lines and off-highway 
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vehicle use remove vegetation and soil, compact soil, and introduce invasive plant species 

(Webb & Wilshire, 1983; Wilshire, 1983). In desert dune systems, transmission corridors may 

also act as a ground-level boundary that prevents soil transport (Yu et al., 2004). As a 

consequence, dune systems lose more soil than they accumulate. Adjacent human populations 

experience the undesirable repercussions of these disturbances. According to Pointing & Belnap 

(2014), most airborne dust is derived from deserts disturbed by human activities. Human 

populations living adjacent to sources of airborne sand may be at a higher risk for vehicular and 

cardiovascular death during dust storms (Crooks et al., 2016). Continued exposure to dust may 

result in higher incidences of asthma and asthma-related hospitalization in children (Kantani et 

al., 2010). It is vital to stabilize soils and prevent soil loss in disturbed desert systems. Land 

managers and researchers have developed restoration techniques to mitigate the impacts of 

human-caused land degradation. The success of these restoration treatments varies, and it is often 

difficult to pinpoint reasons for this variation. 

Common restoration techniques range from soil contouring such as water catchments, 

vertical mulch, and using on-site materials to protect plants to more intensive treatments such as 

revegetation efforts via outplanting (greenhouse-grown seedlings placed at field sites) or 

transplanting (relocating plants from one area to the area of interest) (Abella & Newton, 2009; 

Bainbridge, 2007). In the Mojave and Sonoran Deserts, vertical mulch treatments may enhance 

annual plant cover (Abella & Chiquoine, 2019), promote seed accumulation (Castillo-Escrivà et 

al., 2018), and stabilize soils (Bainbridge, 1996). Contrarily, vertical mulch treatments may also 

be ineffective in years of low water availability (Bainbridge, 2001), facilitate non-native plant 

cover (Abella & Chiquoine, 2019), and have little to no impact on soil moisture (Jalota & Prihar, 
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1998). In the arid Southwest of the United States of America, revegetation efforts are considered 

successful if 50% of the outplants survive (Abella & Newton, 2009). 

The limited success of these treatments is largely due to the limiting factors typical of 

desert systems: climactic variability and the extreme environmental conditions (Ehleringer, 

1985; Smith et al., 1997; Abella et al., 2012; Maestre et al., 2012) but existing site conditions 

may be an additional, but less understood, factor. The spatial heterogeneity of soils has long been 

linked to the plant distribution in desert systems (McAuliffe, 1994; McAuliffe, 1999). In the 

Mojave Desert, Ambrosia dumosa density increased with soil horizon development whereas 

Larrea tridentata shrubs were more prevalent and longer lived on younger soils (Hamerlynck et 

al., 2002). McAuliffe & Hamerlynck (2010) found that soil texture and parent material 

influenced plant response to multi-year drought in the Mojave and Sonoran Deserts. Similarly, 

site conditions determined the recovery of soil and vegetation of Mojave Desert ghost towns 

(Webb & Newman, 1982). The well documented relationship between soil, water, and plants in 

arid landscapes may be mirrored in how plants and soils respond to restoration treatments. 

In the 1980-90s, the installation of a transmission corridor between Blythe, California and 

Indio, California in the Sonoran Desert resulted in severe surface disturbances, including the 

removal of the top layer of soil and vegetation. These disturbances rendered these areas 

vulnerable to further loss of surface materials. The purpose of this study was to understand how a 

range of candidate restoration treatments varying in cost and resources influence soil and plant 

response in different soil substrates and disturbance levels. I installed vertical mulch, water 

catchments, and outplants in four sites along the transmission line. I hypothesized that: (1) the 

target restoration treatments would improve soil conditions across the four distinct study sites, 

(2) the target restoration treatments would have the highest plant cover compared to control sites, 
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and (3) the degree of success of these treatments would fluctuate in accordance with the existing 

soil condition of the sites. 

Materials and Methods 

Study Area 

I conducted this study along 64 km of the Devers-Palo Verde II Transmission Corridor 

(33°39’55.422”, 115°39’,15.3664” through 33°35’37.9176”, 114°59’33.4959”). The installation 

of the transmission corridor during the 1980s-1990s resulted in severe surface disturbances, 

including the removal of the top layer of soil and vegetation. Prior to study installation, site 

conditions were characterized by a lack of natural recovery of native perennial vegetation and 

lower vegetation in disturbed sites compared to undisturbed sites. The area supports a series of 

sand dune habitats reliant upon aeolian and—to a lesser extent—fluvial sources. When the 

transmission line was constructed, it is possible that the dunes were decoupled from their soil 

source. Some dune systems show evidence of being deflated but it is hard to discern the validity 

of this observation without repeat photography. Airborne dust particulates from the transmission 

line area limit visibility during dust storms, often resulting in air quality and traffic warnings for 

the nearby I-10 freeway. The right-of-way provided for transmission line maintenance is 

frequently used by off-highway-vehicle use (OHV). 

The study area has relatively flat topography, possibly due to the ground being leveled 

for the construction of the transmission corridor, with an average slope of 4 to 6 degrees. 

Elevation ranges around 200 m. The soils of these regions are composed of granite and gneiss 

alluvium, weakly developed (lacked the presence of V horizons and petrocalcic layers), and 

somewhat excessively drained. Predominant vegetation types were creosote bush (Larrea 
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tridentata) shrubland which frequently form coppice dunes. The washes are dominated by big 

galleta (Hilaria rigida). 

The nearest weather station reported an average precipitation of 5.3 mm/year for the 

duration of the study period (2017-March 2019; Desert Center, CA, 200 m in elevation, 69.2 km 

from study areas; data from National Oceanic and Atmospheric Administration, Desert Center, 

California) (Figure 8). This was 5% of the average precipitation (1913-2016; WRCC accessed 7 

April 2019). During this study period, the annual maximum temperature was 29°C, which was 

cooler than the historic annual maximum temperature of 31°C whereas the annual minimum 

temperature was 14 °C was hotter than the historic annual minimum temperature of 13°C (Figure 

8). 

In December 2017, restoration treatments were installed in four blocks along the 

transmission line with varied soil properties (Table 1, Table 2a,b, Figure 9). Blocks were labelled 

Block 1, Block 2, Block 3, and Block 4 in accordance with severity of disturbance (1 being the 

most severe and 4 being the least, with all transmission line construction disturbances 

approximately 25 year old). At all blocks, vegetation was absent. Block 1 (33°39’55.422”, 

115°39’,15.3664”) was a staging area for the transmission line and was used for unauthorized 

off-highway vehicle use for the duration of the study. After the construction of the transmission 

line, the study area was ripped (mechanically breaking up soil layers tines that penetrate 35-50 

cm), which churned up cobble-sized clasts and may have broken up subsoil layers, preventing 

the retention of subsoil moisture. Block 2 (33°39’57.2760”, 155°36’11.3346”) had the highest 

biological soil crust and surface clast cover. Distinct vehicle tracks bisected this plot, removing 

the biological soil crust cover. Evidence of consistent OHV use was also consistent in Block 3 

(33°40’9.1848”, 115°34’11.7830”) throughout the study, including two-tracks adjacent to the 
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microsites and directions to the freeway in the soil. Unlike in Block 2, these disturbances were 

not observed to interact with microsites. Block 4 (33°35’37.9176”, 114°59’33.4959”) had the 

most mobile soils, making it difficult to determine what disturbances, if any, had occurred. 

 
Implementation 

I installed four 24 m × 14 m experimental blocks in disturbed plots in the transmission 

line staging area (Block 1) or adjacent to the transmission line (Blocks 2-4) (Figure 9). Within 

blocks, six microsite treatments were installed, N=4, (1) water catchment with outplanting, (2) 

water catchment without outplanting, (3) vertical mulch with outplanting, (4) vertical mulch 

without outplanting, (5) no treatment with outplanting, and (6) no treatment, for a total of 24 

microsites per block, or 96 total microsites among blocks (Figure 9). Microsites were 0.5 m × 0.5 

m, and randomly placed throughout the blocks on a grid, with at least 2 m between each 

microsite. Water catchment treatments consisted of contouring the soil surface into a circle with 

a diameter of 0.5 m. The center of the catchment was lower than the contoured surface to 

potentially accumulate water, soil, and seed. Vertical mulch consisted of digging a moat 0.5 m in 

diameter, pressing shoots of big galleta (Hilaria rigida) collected from nearby washes into the 

moat, and backfilling the moat to ensure the big galleta shoots remained upright. After microsites 

were constructed, three target species of plants were installed in the outplanting microsite types. 

The species were: brittlebush (Encelia farinosa), cheesebush (Bebbia juncea), and big galleta 

(Hilaria rigida). The outplantings were watered one liter of water at the time of planting and 

once two months later to simulate a low-cost treatment. 
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Data Collection 

Plant cover 

I monitored the vegetation response to the treatment combinations in each of the 96 

microsite types sixteen months after microsite installation. Using a 0.5 × 0.5 quadrat centered on 

each microsite, I estimated areal percent cover of annual, perennial, native, and exotic plant 

species using cover classes 1 = 0-1%, 2 = 1-2%, 3 = 2-5%, 4 = 5-10%, 5 = 10-25%, 6 = 25-50%, 

7 = 50-75%, 8 = 75-95%, and 9 = > 95% (modified from Peet et al. 1998). Outplants were 

monitored by survival one, three, and six months after installation, at which time monitoring 

stopped because all outplants had died by the third month (confirmed at the six month 

monitoring mark). 

 
Soil properties 

I collected and analyzed soils from each of the four blocks to characterize the existing 

soil conditions. Prior to installing treatments, I obtained four soil samples (10-cm diameter; 5-cm 

deep) from the four corners of each block and composited them. I analyzed these samples for 

bulk density by weighing oven-dry soil with volume determined via water displacement 

(Grossman & Reinsch, 2002), texture using the hydrometer method (Gee & Or, 2002), electrical 

conductivity using the saturated paste method (Rhoades et al., 1989), pH using a glass electrode 

in a 1:1 soil: water and 1:0.25 soil: CaCl2 suspension (Sims, 1996; Sikora, 2006), and soil 

organic carbon using a dry combustion analyzer (Nelson & Sommers, 1996). 

Sixteen months after treatment installation, I also measured soil response to the 

treatments at a microsite level. I measured compressive soil strength with an AMS G 281 E-280 

Pocket Penetrometer (American Falls, Idaho, USA). I took three compaction measurements at 

each microsite and averaged them. To measure soil accumulation, I placed a ruler at each 

cardinal direction of each microsite type and measured the accumulated soil over time. The 
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values of the four rulers were averaged per microsite. I measured soil aggregate stability using a 

Jornada soil stability kit (Herrick et al., 2001). Three peds were gathered from each microsite, 

placed in individual sieves, and dipped in water. The percentage of the ped remaining on the 

sieve correlated to the aggregate strength, with higher strength correlated to higher values on a 

scale of 1-6. Median values were taken for the three peds taken at each microsite. Soil moisture 

samples were collected from each microsite type in March 2019 (10-cm diameter; 5-cm deep) 

and measured using the gravimetric method via oven drying the sample at 105°C for 24 hours. 

The percentage of soil moisture within the sample was calculated with the following formula: 

 

 
 

Data Analysis 

The experimental design was a factorial, two factor, randomized complete block, with 

microsite type (water catchment, vertical mulch, and no treatment control) and outplanting (two 

levels, present or absent) and their interaction as fixed effects. Vegetation and soil analyses were 

performed using PROC GLIMMIX (SAS Institute 2009). 

 
Results 

 
Plant cover and outplanting 

Plant cover varied significantly among the different study blocks. Block 3 (site with the 

highest silt, clay, and total organic material) had the highest exotic plant cover by 30-fold, exotic 

annual forb cover by 25-fold, and native perennial cover by six-fold (Figure 10b, d, e). Native 

plant cover, native annual cover, and native annual forb cover were highest in Blocks 2 (site with 

the highest biological soil crust and surficial gravel cover) and 3 (Figure 10a, c, f). Blocks 1 (site 
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with the highest degree of disturbance and most coarse clast fragments) and 4 (site with the most 

mobile, sandy soils) had the lowest native plant cover, native annual cover, exotic annual forb 

cover, native perennial cover, and native annual forb cover among all the blocks (Figure 10a-f). 

Blocks 2 and 3 also had the most cover when examining block × microsite type 

interactions. Native annual cover was highest among all microsite types in Blocks 2 and 3 

(Figure 11b). While there was no significance between microsite types within blocks, general 

trends of the data show that native annual cover and shrub cover was higher in either the water 

catchment or the vertical mulch microsite types than the control (Figure 11b, c). However, 

whether the water catchment microsite type or vertical mulch microsite type had higher cover 

than the control microsite type was not consistent (Figure 11b, c). This trend is mirrored in the 

percentages of exotic annual graminoid cover among microsite types and blocks, aside from 

Block 4 (Figure 11a). Block 4 had higher exotic annual graminoid cover in control microsite 

types (Figure 11c). The outplants did not survive past three months regardless of block or 

microsite type. 

 
Soil response 

Soil responses and properties also varied across the study blocks (Table 2). The two 

geographically closest sites, Blocks 2 and 3, were sandy loams with bulk densities of 1.5 and 1.0 

gm/cm3 and pH of 8 and 7.7, respectively (Table 1). Blocks 1 and 4 were dissimilar from both 

Blocks 2 and 3 and each other (Table 1). Block 1, a loamy sand, had the highest bulk density and 

electrical conductivity of all of the sites (Table 1). The soils of Block 4 were sand, had the lowest 

electrical conductivity, pH, and a bulk density of 1.7 gm/cm3, which is common in coarse- 

grained, sandy soils (Table 1). 
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Similar to vegetation, the soil response to restoration treatments was varied strongly 

among blocks. Blocks 2 and 3 had the highest median stability values and Block 4, the dune site, 

was the least (Figure 12a). This trend was mirrored in the soil moisture data (Figure 12b). 

Compaction had block × microsite type × outplanting interactions (Figure 14a, b). Despite 

100% mortality, outplanting decreased compaction across all microsite types and blocks but 

this finding was not significant (Figure 14b). The control microsite types had the highest 

compaction in Blocks 1 and 4. Among the microsite types that did not have outplanting, 

vertical much had less compaction than both water catchment and control microsite types 

(Figure 14a). This trend was not as clear in the outplant microsite types. 

Contrary to the other soil measurements, soil accumulation was significantly different 

across the main effect of microsite (Figure 13). Vertical mulch accumulated significantly more 

soil than the control and water catchment microsite types. The control microsite type lost 0.5 cm 

of soil on average whereas the vertical mulch microsite type gained on average 2.3 cm/16 

months of soil. 

 
Discussion 

 
Plant response to restoration treatments 

The variation in plant response to the restoration treatments deviated from my prediction 

that restoration treatments would increase vegetative cover. Plant cover trends among microsite 

type varied depending upon the plant category of interest. For Block 4, the dune site, plant cover 

was only significantly higher in the vertical mulch microsite type in the shrub category (Figure 

11c). This trend was reflected in Block 3 but not to a significant degree (Figure 11c). While not 

significant owing to high variability among blocks, there were trends that indicated that the water 

catchment and vertical mulch microsite types had higher plant cover in the native annual plant 
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cover and exotic annual graminoid categories (Figure 11a, b). Conversely, plant cover had 

significant trends among blocks (Figure 10a-e). Blocks 2 and 3 had the most native plant cover, 

native annual cover, and native annual forb cover (Figure 11a, c, f). Block 3 had the most native 

perennial cover, exotic plant cover, and exotic annual forb cover (Figure 11b, d, e). These data 

do not support the hypothesis that vertical mulch and water catchment microsite types enhance 

vegetative cover but do indicate that plant response varies markedly between different soils. 

Much of the variability in plant cover may be understood in terms of different soil 

conditions and disturbances among the blocks. For instance, the greater Ambrosia dumosa 

seedling colonization at the vertical mulch microsite type of Block 4 may be attributed to the 

vertical mulch treatment capturing wind-blown material at this highly mobile sand sheet site. It is 

likely that Block 4’s sandy, well-drained soils were less suitable for plant establishment than the 

soils of the other blocks. Conversely, the preferable soil conditions of Block 2 and 3 may be 

responsible for the higher plant cover. These sites are geographically closest and have a balance 

of sand, silt, clay, and organic material (Table 1, Table 2) more desirable for plant establishment 

and growth. The higher soil moisture and stability likely made these sites more conducive to 

native plant establishment. Block 1 yielded the lowest cover percentages of all of the blocks. 

Block 1 also had a higher amount of cobble sized clasts at the soil surface and throughout the 

profile, perhaps as a result of the clasts being churned up with ripping activities. The continual, 

harsh disturbances may have caused a structural crust (5-10 mm in thickness, common across the 

study site) atop the soil surface that was difficult to penetrate. These combined soil qualities may 

have restricted root penetration and plant establishment in Block 1. 

While all of the outplants died within the first three months of planting regardless of 

microsite type pairing, the outplanting treatment may have had legacy effects. The greenhouse- 
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grown outplants had soil with higher organic matter than that of the study sites, which could 

have contributed nutrients in the soil. Installing the outplants likely aided in further de- 

compacting the microsite types, as evidenced by the lower compaction levels in microsite types 

with outplants than those without. 

 
Soil response to restoration treatments 

The site conditions and degree of disturbance also influenced soil response. As with plant 

response, Blocks 2 and 3 largely had the most preferable soil responses. Median stability was 

significantly higher in Blocks 2 and 3 than Blocks 1 and 4, indicating that these sites have 

stronger soil aggregate strength and are more resilient to further degradation (Figure 12a). 

Considering that Block 2 had both the highest biological soil crust cover and surficial gravel 

cover, it is perhaps unsurprising that this site had the most stable soils after restoration treatment 

installation. Correspondingly, Block 3 soils had higher silt and clay content and higher organic 

matter content than the other blocks, all of which are properties that promote soil aggregate 

strength. The continued OHV use nearby Block 1 and the mobile, sandy soils of Block 4 likely 

lowered the lower median stability of these sites. Soil moisture followed the same trend as 

stability, likely for the same reasons (Figure 12b). The biological soil crusts and surface clasts at 

Block 2 may prevent the depletion of shallow soil moisture, making it more available to annual 

plants and perennial seedlings. The sandy loam soils and high organic matter content of Block 3 

could retain more water than the sandier soils of Blocks 1 and 4. Due to the ripping in Block 1 

and the dry condition of the study years, it is also possible that there was no stored subsoil 

moisture. Of all the measured soil responses, none exemplified the variance among blocks and 

microsite type as much as compaction. The primary trend evident among blocks was that 

outplanted microsite types were less compacted than the microsite types without an outplant 
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(Figure 14a-b). No other trends were clear among blocks although there were some trends 

within blocks. The vertical mulch and water catchment microsite types lowered compaction in 

Block 1 more than the control microsite type (Figure 14a-b). Block 4 also had lower 

compaction in the vertical mulch and water catchment microsite types that did not receive an 

outplant, although neither of these trends were significant (Figure 14a). In both Blocks 2 and 3, 

the water catchment microsite type had the highest compaction followed by control (Figure 

14a). This trend did not hold in the outplanting microsite types (Figure 14b). 

 
Implications for restoration 

The variation of both plant and soil response among microsite types and blocks indicate 

that site conditions and level of disturbance have a large role in restoration success. Depending 

upon the study site’s starting conditions, desired level of effort, and goals, this may be used to 

researcher’s and land manager’s advantage. For example, Block 1 was continually subjected to 

harsh disturbances and showed the least amount of natural recovery. The soil conditions were 

poor and potentially limiting to plant establishment. While Block 1 had some of the lowest cover 

percentages compared to other blocks, installing the restoration treatments lead to higher plant 

cover (when compared to controls). The installation of restoration treatments also lowered 

compaction and prevented soil loss. For a site with very little cover and poor existing soil 

conditions, this is not insignificant. Restoration treatments can also be modified for best success. 

In Block 3, native annual cover was not significantly influenced among microsite types. 

However, exotic annual graminoid cover was significantly different among microsite types. 

Disturbances caused by installing the restoration treatments may have enhanced exotic cover. If 

managers desired to use the treatments to promote soil accumulation and stability without also 

increasing exotic plant cover, the vertical mulch or water catchment treatments may be used in 
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conjunction with an herbicide. Steers & Allen (2010) found that herbicide application within the 

Sonoran Desert would promote native cover and lower non-native cover if applied at the optimal 

time. A thorough understanding of the environmental factors influencing the study site will result 

in a more informed approach to restoration treatments and a more accurate understanding of final 

results. 

My findings indicate that plant and soil response to restoration practices are strongly 

dependent on soil conditions. Understanding pertinent landscape characteristics and soil 

properties of a given restoration site lends a framework to both decipher results and install the 

most successful treatments. It may also indicate that treatments may not be successful in certain 

sites without additional effort. Future studies pairing soil properties and restoration treatments 

may further illuminate the role of site conditions in restoration success. 
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Figure 8. Precipitation and temperature data at the study sites in the 2017-2018 and 2018-2019 

hydrologic years. Actual data from the National Oceanic and Atmospheric Administration Desert 

Center, CA and average data from Western Regional Climate Center. 
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Figure 9. The study design for the restoration study blocks. Each block is 14 m x 20 m in size. 

Six microsite types were randomly placed throughout the block on a standardized grid. The 

microsite treatments (n=4) were outplant only, control, water catchment with outplant, water 

catchment only, vertical mulch with outplant, and vertical mulch only. 
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Block 
Percent 

Sand 

Percent 

Silt 

Percent 

Clay 

Electrical 

Conductivity 

(uS/cm) 

Total 

Nitrogen 

(%) 

Total 

Carbon 

(%) 

 
pH 

Bulk 

Density 

(g/cm3) 

Block 1 

Block 2 

Block 3 

Block 4 

84.9 15.1 0 895 0.01671 0.24727 7.9 1.8 

77.4 19 3.6 701 0.01709 0.15857 8.0 1.5 

71.3 13.2 15.5 881 0.02801 0.4062 7.7 1.0 

94.2 5.7 0.1 537 0.01894 0.22183 7.8 1.7 
 

 

Table 1. Raw values for soil properties at the disturbed study blocks in which ecological 

restoration treatments were implemented to stabilize soils and enhance habitat in the Sonoran 

Desert, USA. Soil values represent the 0-5 cm mineral soil. 



 

 

 

 

 

 

 

93 

 
 

Table 2. Soil pit characterizations for the study blocks. Site descriptions were conducted for each of the study blocks. 

Pits were dug to one meter depth and characterized for moist color, structure, rock fragment percentage, texture, 

presence of soil crusts, and effervescence. 
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Figure 10. Significant effects for mean (a) native plant cover, (b) exotic plant cover, (c) 

native annual cover, (d) exotic annual forb cover, (e) native perennial cover, and (f) native 

annual forb cover among blocks. Letters indicate statistically significant groups (p<0.05). 

Error bars +1 SEM. 
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WC 

 

 

WC WC WC WC 

Figure 11. Significant block × microsite type interactions on (a) exotic annual 
graminoid cover, (b) native annual cover, and (c) shrub cover. The microsite 

types are No=no treatment, WC=water catchment, VM=vertical mulch. Values 

are means and error bars +1 SEM. Letters indicate statistically significant 

groups (p<0.05). 



96  

 

 

 
 

 
 

 

Figure 12. Significant effects for median stability (a) and mean soil 

moisture percent (b) organized by block. Error bars are Error bars ±1 SEM. 

Letters indicate statistically significant groups (p<0.05). 

(a) Soil aggregate stability 

(b) Soil moisture 
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Figure 13. Significant effects for mean soil accumulation among microsite types (NO=no 

treatment, WC=water catchment, VM=vertical mulch). Error bars ±1 SEM. Letters indicate 

statistically significant groups (p<0.05). 
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WC 

Figure 14. Significant treatment effects on compaction on microsite types (a) without outplanting and (b) with outplanting. 

The microsite types are No trt=no treatment, WC=water catchment, and VM=vertical mulch. Values are mean kg/cm2 of soil 

compressional strength. Error bars ±1 SEM. Letters indicate statistically significant groups (p<0.05). 
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CHAPTER 5  

CONCLUSION 

 
Healthy desert ecosystems are vital to erosion resistance, the native flora and fauna, 

carbon sequestration, and the 33% of human populations that live and thrive there. Due to 

limiting factors such as low levels of precipitation, depauperate vegetation, and high 

temperatures, desert ecosystems are sensitive to human-induced disturbances. In addition, desert 

ecosystems may take centuries to millennia to recover naturally after severe disturbances. As a 

result, there is high incentive for land managers to effectively restore disturbed desert 

ecosystems. Revegetation, seeding, and soil surface manipulations are all viable options for 

restoration efforts with varying levels of success. 

This thesis developed and investigated cost-effective restoration techniques to address the 

need for minimal-input restoration techniques in disturbed desert ecosystems. My study found 

that vertical mulch enhanced plant cover, soil moisture, and soil stability. De-compacting the soil 

also followed these trends in comparison to the experimental controls during the wet study year, 

meaning that it may also be a viable restoration technique. However, solely de-compacting the 

soil would provide none of the visual benefits of vertical mulch. The vertical mulch structure 

also lowered soil compaction and ambient air and soil temperatures. Therefore, vertical mulch 

may have a buffer effect on microsites. Vertical mulch may potentially behave as a dead fertile 

island shrub. Seeding with litter in conjunction with vertical mulch did not yield significantly 

higher plant cover than in non-seeded sites. However, the seeded vertical mulch sites had plant 

cover values more similar to reference sites. Combining vertical mulch with other treatments 

may yield the best results, depending upon restoration goals. The results of this study suggest 

that vertical mulch is a viable restoration treatment and should be investigated further. 
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This thesis also aimed to determine the most successful restoration techniques across a 

gradient of soil types and disturbances. Whereas soil accumulation was highest at the vertical 

mulch microsite type, plant cover, soil compaction, soil stability, and soil moisture mostly had 

significant trends on a block level. These findings suggest that soil and site conditions may have 

a larger role in restoration success than previously thought. Plant and soil responses were more 

favorable in sites with higher silt and clay content and C/N ratios. Where disturbances were more 

severe and continued, plant cover and stability were lower. However, in the most disturbed site, 

the restoration treatments had the most distinct influence. This is most evident in the compaction 

levels, which was significant on a microsite level. Thus, while restoration treatment success 

varies greatly among different soil types and disturbance levels, it still improved site conditions. 

Further developing this contextual framework for restoration practices may assist in 

understanding variability in restoration success and developing optimal restoration techniques. 

The data suggest that vertical mulch provides both visual and ecological benefits to 

disturbed ecosystems. Vertical mulch and, to a lesser degree, soil de-compaction are viable 

restoration treatments to improve soil’s ability to resist erosion and provide ecosystem services 

to vegetation over time. Vertical mulch may be combined with other minimal-input restoration 

treatments, such as seeding with litter, or more intensive treatments, such as applying herbicide, 

to achieve desired goals for the area of interest. Before installing restoration treatments, it may 

be beneficial to first investigate the conditions of the site of interest. In order to fully understand 

how minimal input restoration techniques such as vertical mulch influence soil properties and 

perennial vegetation, long term monitoring of vertical mulch is necessary. While the studies 

associated with this thesis investigated short term responses that indicate the initiation of long 

term recovery, it found short-term results within two years, which encapsulated different weather 
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conditions. Further research should be conducted on seeding with litter, de-compacting the soil 

surface, and vertical mulch across a series of soil and disturbance gradients to determine the 

ecological role of these techniques in disturbed soils. 



102  

CURRICULUM VITAE 

 

 

 
EDUCATION 

Audrey Rader 

Email: audreyjeanrader@gmail.com 

 

University of Nevada, Las Vegas Aug 2017 – May 2019 

MSc Biology-Ecology and Evolution  4.0 GPA 

University of Nevada, Las Vegas Aug 2012 – May 2017 

BSc Geoscience 

 

PROFESSIONAL EXPERIENCE 

 

Graduate Research Assistant Aug 2017 – May 2019 

University of Nevada, Las Vegas 

 Designed, established, and monitored restoration projects to address anthropogenic 

disturbance concerns 

 Conducted greenhouse studies, laboratory analyses, literature reviews, and outreach to 

educate public 

 Published research findings and scientific data at conferences and in peer-reviewed journals 

 

Research Associate/Ecological Monitoring Technician May 2018 – Aug 2018 

Great Basin Institute (GBI) and Bureau of Land Management (BLM) 

 Made observations and recorded botanical and soil data using federal protocols; performed 

computer data entry, quality assurance/quality control, editing, and retrieval tasks to verify 

scientific data. 

 Prepared weekly and monthly reports for scientific data information requests for BLM and 

GBI 

 Used GIS, ENVI, and Google Earth to create maps to navigate to randomly generated plot 

coordinates 

 

Research Assistant May 2016 –Aug 2017 

University of Nevada, Las Vegas 

 Assisted in the implementation and monitoring of restoration projects in the Sonoran and 

Mojave Deserts; analyzed soils collected from the research group’s study sites; analyzed 

findings 

 Assisted with soil media inoculation studies for the purpose of developing treatments for 

restoring biological soil crusts and stabilizing soils; propagated microbial soil communities in 

the greenhouse 

 

Research Assistant Mar 2016 –May 2017 

University of Nevada, Las Vegas 
 Used geospatial imaging software to better understand the geologic sources and distribution 

of natural background radiation 

mailto:audreyjeanrader@gmail.com


103  

 Mapped radiation, elevation, and drainage elevation models using ArcGIS, ENVI, and 

remote imaging sources; digitized maps and produced quarterly reports for the Department of 

Energy 

 

Student Worker Mar 2015 –May 2016 

USDA-FS & Forest Inventory and Analysis Program 
 Conducted research and developed user documentation for a national forest and grassland 

monitoring and analysis program 

 Gained proficiency in the suite of Design and Analysis Toolkit for Inventory and Monitoring 

(DATIM) programs, including Spatial Intersection Tool plugin for ArcGIS, Analysis Tool 

for Inventory and Monitoring, and DATIM Compilation System 

 

PUBLICATIONS 

 

Rader, A., Abella, S. Assessing vertical mulch as a minimal-input strategy for restoring desert 

soil functions. [abstract]. Proceedings of Ecological Restoration Conference; Sept 12-14; 

Flagstaff (AZ): SER; 2018. 

 

Rader, A., Are we getting hotter with age?: Correlating land development and temperature in the 

Las Vegas Valley. [abstract]. University of Nevada, Las Vegas Geosymposium Conference; 

April 28; Las Vegas (NV): Geosymposium; UNLV; 2017. 

 

David, W.; Andrew, G.; Pollard, J.; Brand, G.; Rader, A.; Negovschi, M. 2017. Design and 

Analysis Toolkit for Inventory and Monitoring (DATIM): User Guide version 7.0.1. U.S. 

Department of Agriculture, Forest Service. 308 p. 

 

Rader, A., Chiquoine L, Abella, S. Comparing disturbed and undisturbed soils as a basis for 

developing soil rehabilitation techniques in arid landscapes. [abstract]. Proceedings of the 

Society of Ecological Restoration Conference; Nov 9-11; Las Vegas (NV): SER; 2016. Abstract 

nr 9. 

 

VOLUNTEER WORK 

 

2018| Glen Canyon National Recreation Area Volunteer (applied restoration ecology), Clark 

County Wetlands Park Volunteer (educational outreach), Meow or Never Cat Rescue Volunteer 

2017| Spring Monitoring Volunteer (data collection), Keep Las Vegas Beautiful Clean Up 

Volunteer (homelessness outreach), Clark County Wetlands Park Volunteer (outreach), Meow or 

Never Cat Rescue Volunteer 

2016| Keep Las Vegas Beautiful Clean Up Volunteer (homelessness outreach) 

2015|Grand Canyon National Park Service Conservation Volunteer (restoration), Habitat for 

Humanity ReStore Volunteer 

 

TRAININGS AND SKILLS 

 

 Proficient in the Spanish language 



104  

 Three months of experience with Assessment, Inventory, and Monitoring (AIM) and Habitat 

Assessment Framework (HAF) Protocols. 

 Wilderness First Aid Certified through the National Outdoor Leadership School (NOLS) 

 Possess working knowledge of soil taxonomy, soil morphology, soil chemistry, botany of 

North American plant families and genera and the species of the Intermountain West and 

Desert Southwest 

 Trained in experimental design, data collection QA/QC, navigating and logging points using 

GPS, field safety, off-road driving, backcountry camping, Leave No Trace principles, and 

integrated pest control 

 Experience in drafting reports, statistical analyses, and writing manuscripts 
 Proficient in Microsoft Office Suite (Excel, Access, Word, PowerPoint), MiniTab, R, SPSS, 

SAS, ENVI, GPS, Google Earth Pro, BaseCamp, ArcMap products, and Adobe Illustrator 

 

GRANTS AND AWARDS 

 

University of Nevada, Las Vegas 
 Alumni Association Scholarship, 2018, 2019 

 Farouk El-Baz Scholarship, 2019 

 First Place: Geosymposium Conference Poster Presentation Contest, 2017 

 UNLV Grant, 2013, 2014, 2015, 2016, 2017 

 Bernarda French Grant, 2015, 2016, 2017 

 Anne Fenton Wyman Scholarship, 2016, 2017 

 Rebel Achievement Scholarship, 20 

 Second Place: Society for Ecological Restoration Conference Poster Presentation Contest, 2016 

 Bob Davis Scholarship, 2013, 2014, 2015 

 Honorary Commendation for Academic Excellence, 2014 

 Nevada Gear Up Grant, 2012, 2013, 2014, 2015, 2016, 2017 

 

MEMBERSHIPS 

 

2017-2018| Founder of the UNLV Botany Club (2017-2018) 

2016-2017| Secretary of the UNLV GeoClub (2016-2017) 
2016-2019| Member of Sigma Xi Scientific Research Honor Society, Society for Ecological 

Restoration, Association of Environmental & Engineering Geologists- Southern Nevada Chapter, 

American Society of Agronomy, Geological Society of America, Soil Science Society of 

America, UNLV Wilderness Club 


	Assessing Minimal-Input Restoration Strategies for Desert Soil and Vegetation Restoration
	Repository Citation

	tmp.1573766642.pdf.xbHm_

