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ABSTRACT 

INCOMPLETE DENITRIFICATION IN THERMUS SPECIES 

by  

Chrisabelle Cempron 

 

Brian Hedlund, PhD, Committee Chair 

Professor of Biology  

University of Nevada, Las Vegas  

 

Members the bacterial genus Thermus have been shown to be incomplete denitrifiers, terminating 

with nitrite or nitrous oxide (N2O). However, the ability to carry out denitrification and the 

evolution of nitrogen oxide reductase genes in Thermus remains poorly understood. This study 

tests the hypothesis that incomplete denitrification is common in Thermus and seeks to uncover 

patterns in the evolution of denitrification pathways in Thermus. Denitrification capacity was 

determined in a collection of 25 strains representing ten species of Thermus and phylogenetic 

analysis was performed to determine whether denitrification genes evolved horizontally in 

Thermus. No strains in this study reduced nitrate to dinitrogen (N2). Terminal products were nitrite, 

nitric oxide (NO), or nitrous oxide (N2O), with most strains ending with N2O as a final product. In 

most cases, denitrification phenotypes were consistent with the presence of denitrification genes 

and strains of the same species typically had the same denitrification phenotypes. Phylogenetic 

analysis and the pattern of extant nitrogen oxide reductases showed evidence for horizontal gene 

transfer (HGT) and gene loss/gain within Thermus. These results show that incomplete 

denitrification is prominent in the genus Thermus, which suggests Thermus may play a role in 

consortial denitrification at high temperatures.  
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CHAPTER 1  

 

INTRODUCTION 

1.1 The nitrogen cycle  

Microbial ecology concerns the relationship of microbes with one another and their 

environment. This includes the study of microbes and their roles in the cycling of nitrogen. The 

nitrogen cycle is the process by which nitrogen is converted between its different physical and 

chemical forms (Fig. 1) (Madigan et al. 2012). These transformations are often facilitated by 

microbial processes in an effort to accumulate nitrogen for growth or harvest energy. Assimilatory 

processes of the nitrogen cycle include dinitrogen (N2) fixation, in which nitrogen is combined 

with hydrogen other elements to form ammonia to incorporate into proteins. Ammonification 

describes the pathway by which ammonia is released from the decomposition of organic nitrogen 

compounds. Dissimilatory processes of the nitrogen cycle include dissimilatory nitrate reduction 

to ammonia (DNRA), nitrification, anaerobic ammonia oxidation (anammox), and denitrification. 

DNRA is the direct reduction of nitrate to ammonia and can occur in anoxic environments when 

nitrate is limiting. Nitrification is the process by which microbes sequentially oxidize ammonia to 

nitrite then nitrate as a final product. In anammox, ammonia is oxidized with nitrite as an electron 

acceptor and forms N2 as a final product. Denitrification is the process by which microorganisms 

sequentially reduce nitrate or nitrite to the gaseous products nitric oxide (NO), nitrous oxide (N2O), 

or N2 through anaerobic respiration (Madigan et al. 2012) (Fig. 2). Denitrification will be discussed 

in greater detail in Section 1.3.  
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Figure 1. The nitrogen cycle (Madigan et al. 2012) 

 

 

 

 

 

Figure 2. Complete denitrification pathway and corresponding reductase genes 
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1.2 High-temperature nitrogen cycling  

Having an understanding of the biogeochemical cycles in high-temperature habitats is 

crucial to learning about the diversity of life at high temperatures. However, there is limited 

knowledge about the nitrogen cycle at high temperatures. Only recently has research begun to 

focus on the nitrogen cycle in various geothermal environments. For example, evidence N2 fixation 

to ammonia in cultures of Methanocaldococcus jannaschii at 90°C has been shown using 15N2 

isotope tracer assays and expression experiments with nifH messenger RNA (Metha et al. 2006). 

Anammox has been detected in deep-sea hydrothermal vents using amplification of 16S rRNA 

gene sequences related to known anammox bacteria, ladderane lipids analysis, and 14N15N 

dinitrogen isotope-pairing experiments at 60°C and 85°C (Bryne et al. 2009). Other nitrogen 

cycling activities have been reported in terrestrial hot spring environments such as anammox, 

nitrite oxidation, N2 fixation, and archaeal ammonia oxidation (Lebedeva et al. 2005; 

Hatzenpichler et al. 2008; de la Torre et al. 2008; Jaeschke et al. 2009; Hamilton et al. 2011; 

Edwards et al. 2013). Nitrite oxidation has been found in a pure culture of Nitrolancetus 

hollandicus cultivated on nitrite at ~63°C (Sorokin et al. 2012). DNRA has also been reported at 

113°C in Pyrolobus fumarii (Blöchl et al. 1997). Interestingly, the collection of studies showing 

evidence for ammonia oxidizing archaea and nitrite oxidizing bacteria indicate that N2 fixation and 

nitrification may decouple at high temperatures. These data show that both assimilatory and 

dissimilatory nitrogen cycling is active in geothermal environments. However, there does appear 

to be temperature limits for nitrogen cycle processes to occur due to changes in microbial diversity 

and energetics at high temperatures (Price and Sowers 2008; Cole et al. 2013a; Sharp et al. 2014), 

making geothermal system very different from all other habitat on Earth.  Altogether, these studies 
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show the nitrogen cycle is an important process at extreme temperatures and should be carefully 

considered in the study of high temperature life.  

 

1.3 Denitrification  

Denitrification is an important part of the nitrogen cycle and is significant ecologically 

because it leads to the loss of nitrogen as a gaseous product from an ecosystem. Denitrification is 

the ecologically opposite pathway of N2 fixation coupled with nitrification. The former consumes 

nitrate, while the latter produces nitrate. Thus, denitrification is a vital process, balancing the 

nitrogen budget of the biosphere by converting nitrate to N2. Though nitrate is a key plant nutrient 

and is not toxic in small amounts, it is a possible pollutant of drinking water and its reduction to 

nitrite can be toxic at high levels. Nitrite can reduce ferrous iron to ferric iron in hemoglobin, 

converting hemoglobin to methemoglobin. Methemoglobin has decreased ability to carry oxygen, 

leading to tissue hypoxia (Kim-Shapiro et al. 2004). Marine and freshwater ecosystems, livestock, 

and humans are all subject to nitrate toxicity. N2O, as an intermediate of denitrification, is also of 

great concern. Atmospheric N2O has increased over time from wastewater treatment plants (Otte 

et al. 1996) and fertilizer denitrification (Metz B et al. 2007), with microbes playing the large part 

in these changes. As a greenhouse gas, N2O absorbs and emits radiation within the thermal 

infrared range, trapping heat within the surface-troposphere system that causes changes in the 

Earth’s climate. Additionally, N2O can be photochemically oxidized to NO, which then reacts with 

ozone in the upper atmosphere forming holes in the protective ozone layer. This increases the 

amount of UV radiation to the Earth’s surface. Furthermore, the reaction between NO and ozone 

forms nitrite and returns to the Earth as nitric acid, or acid rain (Reddy and DeLaune 2008). In 

turn, this lowers the pH of soil leading to changes in microbial community structures and soil 
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fertility (Reddy and DeLaune 2008), and acidification of surface waters in poorly buffered areas( 

Lawrence 2002). These concerns increase efforts to understand denitrification and the role 

microbes have in this process.  

 

1.4 Denitrification at high temperatures 

 When oxygen is plentiful, aerobic respiration can occur. However, oxygen solubility 

decreases as temperature increases. Thus, the need for organisms to carry out anaerobic respiration 

at high temperatures is vital for survival. In aerobic respiration, molecular oxygen serves as a 

terminal electron acceptor, accepting electron from electron carriers by way of an electron 

transport chain. Anaerobic respiration employs alternative terminal electron acceptors when 

oxygen is less abundant or absent. Anaerobic respiration, such as denitrification, is less energy 

efficient than aerobic respiration. Fewer protons are pumped across the membrane than when 

oxygen is the terminal electron acceptor; therefore, fewer ATP is produced from ATP synthase 

and the proton motive force generated. Alternative terminal electron acceptors, like nitrate, are less 

efficient electron acceptors than oxygen, but are still energetically favorable and makes respiration 

possible in environments where oxygen is absent. Thus, if nitrate is available, denitrification is a 

viable option to aerobic respiration at high temperatures. 

 High temperatures increase challenges for life to occur and influences microbial growth, 

maintenance, and survival. There is a greater energetic demand for life at high temperatures. The 

maintenance energy, or energy required for functions other than the production of new cell material 

(Pirt 1965), increases with temperature (Price and Sowers 2004) and could influence metabolic rates in 

microbes. Additionally, as temperature increases the rate at which proteins denature and molecules 

degrade increases. Together, this influences microbial diversity and composition in terrestrial 

geothermal environments. Previous work has shown a negative relationship between temperature 
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and sediment microbial community richness in geothermal sediment samples from Great Boiling 

Springs (Cole et al. 2013a). More recent work demonstrates temperature strongly impacts 

microbial community diversity and richness, and accounts for the variability in alpha diversity 

across several geothermal areas in Canada and New Zealand (Sharp et al. 2014). Moreover, 

temperature can play a selective pressure on denitrification, where some denitrifiers are observed 

in specific temperature ranges. In Great Boiling Spring, T. thermophilus was most abundant at 

76°C and 79°C sites, but was replaced by other Thermus species, primarily T. scotoductus, at lower 

temperature. However, the low-temperature sites likely hosted other denitrifiers as well (Cole et 

al. 2013a). Additionally, high fluxes of N2O in sites at or above 80⁰C in Great Boiling Spring are 

consistent with the presence of incomplete denitrifiers, such as T. thermophilus and T. oshimai 

(Hedlund et al. 2011). These studies indicate denitrification may be common in high temperature 

environments. 

 Although denitrification has been shown to take place at a range of temperatures in diverse 

groups of microorganisms (Zumft 1997), this work focuses on denitrification at high temperatures. 

Though there have only been a few studies that closely examine denitrification at high 

temperatures, previous work has shown denitrifiers to be present in terrestrial geothermal 

environments. Terrestrial geothermal environments host an array of thermophiles with differing 

nitrate reducing activities (Völkl et al. 1993; Cabello et al. 2004; Poli et al. 2009; Hedlund et al. 

2015a; Hemp et al. 2015). Nitrate reduction is better known among thermophilic members of 

bacterial phyla, such as Thermales. Thermales species in the bacterial genus Thermus are widely 

distributed in geothermal systems and some species have been studied as models of thermophilic 

nitrate reduction and incomplete denitrification (Cava et al. 2009). Moreover, several genetic and 

genomic studies have shed light on nitrate reduction and denitrification pathways in a few Thermus 
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species (Ramirez-Arcos et al. 1998; Brüggemann et al. 2006; César et al. 2011 Gounder et al. 

2011; Murugapiran et al. 2013a; Murugapiran et al. 2013b; Zhou et al. 2016; Mefferd et al. 2016). 

However, the capacity for denitrification in the genus as a whole has not been well characterized.  

 

1.5 Incomplete denitrification in Thermus 

Bacteria, archaea, and some microbial eukaryotes are capable of denitrification, most of 

which carry out complete denitrification by reducing nitrate to N2 as the terminal product (Zumft 

and Kroneck 2007). However, microbes with truncated or incomplete denitrification pathways are 

also known to exist (Hart et al. 1965; Hemp and Gennis 2008; Sanford et al. 2012; Refojo et al. 

2012 Hemp et al. 2015). It is possible that incomplete denitrification pathways may be an 

important factor in the nitrogen cycle in geothermal systems (Hedlund et al. 2011). Incomplete 

denitrification pathways may promote N-cycling within hot spring systems, slowing the rate at 

which nitrogen is removed from the system. Incomplete denitrification has been shown in some 

Thermus (Hedlund et al. 2011), but it is unknown whether this common across the entire genus. 

The goal of this study was to characterize denitrification pathways in Thermus and 

determine the evolutionary forces driving denitrification potential across the genus. To determine 

the terminal denitrification products in Thermus species, a collection of 25 strains representing ten 

species of Thermus from hot springs in Yunnan Province, China, were grown under denitrifying 

conditions and nitrogenous products were measured to evaluate their denitrification capacity. 

Additionally, to determine the distribution of denitrification genes in the genus Thermus, 

denitrification genes were recovered from new and existing genomes and by PCR using Thermus-

specific primers designed in this study. Finally, phylogenetic analyses and patterns of gene 

loss/gain used to untangle the impacts of vertical and horizontal evolution on denitrification genes 
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in Thermus. Results show that incomplete denitrification pathways are common in Thermus 

species; more specifically, nitrate reduction to either nitrite, NO, or N2O as terminal products and 

the variable presence of nitrogen oxide reductase genes indicates varying denitrification 

capabilities within Thermus. Moreover, tree topologies from phylogenetic analyses of nitrogen 

oxide reductase genes show some evidence that HGT shaped the evolution and presence of 

denitrification genes in the genus Thermus.  
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CHAPTER 2 

 

MATERIALS AND METHODS 

Screen for nitrate reduction phenotype 

The sources of Thermus strains are described in Table S1, Appendix. All strains were 

isolated from hot springs in Yunnan Province, with the exception of T. arciformis JCM15153, a 

type strain isolated from Guangxi Autonomous Region, China, which was included to increase 

taxonomic coverage. Thermus strains were revived from frozen stocks on Castenholtz Medium D 

(CMD) agar plates amended with 9 mM nitrate and supplemented with 0.1% yeast extract and 

0.1% tryptone adjusted to a pH of 8.2 (Castenholtz 1969; Hedlund et al. 2011).  

Thermus strains were grown and screened for nitrate reduction phenotype by testing for the 

ability to grow in anaerobic liquid CMD. Each strain was grown in anaerobic CMD amended with 

4.5 mM nitrate. Nitrate, nitrite, and N2O were then assayed after 96 hours using the methods 

described below. To detect N2 gas production, Thermus cultures were screened for the ability to 

reduce nitrate to N2 by testing their capability to produce N2 gas in Durham vials in 25 mL glass 

Balch tubes with the same medium after 96 hours. All strains were capable of nitrate reduction and 

robust growth in the medium used for this work except strains T. brockianus YIM 77709, T. 

caliditerrae YIM77777, T. scotoductus YIM 77398, and T. tengchongensis YIM 77427, which 

were subsequently dropped from the study (Table S1, Appendix). All Thermus strains were tested 

in triplicate and data presented are from replicates with a final cell concentration of ≥ 1x106 

cells/mL 
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Cultivation of Thermus isolates for nitrate reduction experiments 

 For all nitrate reduction experiments, isolates were grown in liquid CMD supplemented 

with 4.5 mM nitrate, 0.1% yeast extract, and 0.1% tryptone and adjusted to a pH of 8.2. The 

medium was sparged with He for 45 min to remove oxygen and distributed into glass serum bottles, 

or Balch tubes with Durham vials, in a Coy Type B anaerobic chamber (Coy Laboratory Products 

Inc., Grass Lake, MI, USA) containing an atmosphere of N2 (~90%), CO2 (~5%), and H2 (~5%). 

The culture bottles were sealed with butyl rubber stoppers and aluminum crimps and the headspace 

was exchanged prior to autoclaving by 5 cycles of evacuation (30 sec) and filling to 1 atm with 

99.999% He.  

A pure colony of each strain was suspended and grown in 10 mL of anaerobic medium in 

25 mL glass serum bottles to serve as a starter culture. To dilute contaminating N2 and ensure 

denitrification pathways were active, cells were grown to early stationary phase and passed using 

He-rinsed syringes with a 1:50 inoculum into pre-warmed medium twice before a final transfer 

into experimental bottles. 160 mL glass serum bottles containing 40 mL of liquid CMD described 

above, or Balch tubes with Durham vials with 10 mL of liquid CMD were used for the final 

transfer. Cultures in serum bottles were incubated in the dark at 60°C with rotary shaking at 100 

rpm with serum bottles in a horizontal position to maximize gas equilibration. Cultures in Balch 

tubes were incubated in the dark at 60°C in a static incubator. Unless otherwise noted, cell density 

was measured using a Petroff-Hausser counting chamber on an Olympus BX-51 phase-contrast 

microscope with brightness and contrast optimized by using PictureFrame software (Optronics, 

Goleta, CA, USA). 
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Detection of terminal denitrification nitrogen products 

 To measure aqueous nitrate and nitrite concentrations, approximately 6 mL of liquid 

medium was sampled after a 96 hour endpoint, filtered through a 0.2 μm filters (28145-501 VWR, 

Radnor, PA, USA), stored at 4°C, and later analyzed by colorimetric methods or ion 

chromatography (IC) analysis. Nitrite concentrations were measured by diazotization with 

sulfanilamide, followed by coupling with N-(1-naphthyl)-ethylenediamine dihydrochloride 

(LaMotte, Chestertown, MD, USA). For nitrate measurements, powdered cadmium was used to 

reduce nitrate to nitrite prior to diazotization (LaMotte, Chestertown, MD, USA). To confirm 

colorimetric measurements, IC analysis was performed on samples from a subset of experiments 

as previously described (Hou et al. 2013) using a Dionex DX-500 Chromatograph with an AS22 

anion exchange column with a 4.5 mM Na2CO3/0.8 mM NaHCO3 eluent. To measure N2O, 

headspace gas samples were collected from culture bottles at a 96 hour endpoint for gas 

chromatography (C2014 Shimadzu GC) analysis. Headspace N2O concentration was measured by 

injecting a 2 mL headspace gas sample into a GC-2014 Nitrous Oxide Analyzer (Shimadzu, 

Moorpark, CA, USA) operated as described previously (Dodsworth et al. 2011a; Dodsworth et al. 

2011b). To detect N2 gas production, Thermus cultures were screened for the ability to grow and 

reduce nitrate to N2 by testing their capability to produce N2 gas in Durham vials in 25 mL glass 

Balch tubes after 96 hours.  Statistical significance was calculated using a Student's T-test in R.  

 

 

 

DNA extraction, PCR amplification of 16S rRNA genes, and DNA sequencing 
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DNA was extracted from Thermus cell pellets by using the FastDNA Spin Kit for Soil (MP 

Biomedicals) according to the manufacturer’s protocol. 16S rRNA genes were amplified with PCR 

using primers specific for bacteria: 9bF (Eder et al. 1999) and 1512uR (Eder et al. 2001). The 25 

μL PCR mixture contained 1 μL DNA extract, 200 nM of each primer, 200 μM each dNTP 

(Promega, Madison, WI, USA), 1.5 mM MgCl2, 0.625 U of GoTaq DNA polymerase (Promega), 

and 1x GoTaq buffer (Promega). Cycling conditions were as follows: denaturation at 95°C for 4 

min followed by 30 cycles of denaturation (30 sec at 95°C), annealing (1 min at 55°C), and 

elongation (2  min at 72°C), with a final elongation step (7 min at 72°C). PCR products were 

sequenced using the Sanger method at Functional Biosciences, Madison, WI, using the forward 

and reverse PCR primer. 

 

Design of PCR primers and amplification of nitrogen oxide reductase genes 

Conserved regions for narG, nirK, nirS, and norB in Thermus species were chosen to 

design the primers used in this study. Existing primers for nitrogen oxide reductases (Braker et al. 

1998; Phillippot et al. 2002; Throbäck et al. 2004) were shown or predicted to be ineffective with 

Thermus genes. Thermus denitrification gene sequences were harvested from genomes (Gounder 

et al. 2011; Murugapiran et al. 2013b; Zhou et al. 2016; Mefferd et al. 2016) available at the Joint 

Genome Institute’s Integrated Microbial Genomes (IMG) website (Markowitz et al. 2013) and 

RAST (Aziz et al. 2008; Overbeek et al. 2014) and used for alignment. For each gene, the available 

sequences were aligned by using default parameters using MUSCLE (Edgar et al. 2004; Dereeper 

et al. 2008). Conserved regions used for primer designe were chosen manually and were predicted 

to give PCR products of ~1000 bp and include conserved functional domains. 
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To optimize annealing temperatures for each primer set, the annealing temperature for 

gradient PCR amplification ranged from ±5°C from the mean of the calculated melting temperature 

for each primer set. Primer combinations and optimal annealing temperatures can be found in 

Table S2, Appendix. The sequences and locations of the binding sites of the primers are shown in 

Table 1. 

 
Table. 1 Primer sequences and positions to amplify fragments from nitrogen oxide reductases 

Target Gene  Primera Positionb Primer Sequence (5'-3') 

narG narGn2F_CC (F) 1013249-1013269 ACCACCCACGGGGTGAACTGC 

  narGn6R_CC (R) 1012013-1012030 CTGGGCCATGAGGAGGTC 

  narGn7R_CC (R) 1012025-1012042 GAGGTCAAAGACGGTGGC 

nirK nirKn3F (F) 1025543-1025559 ATGTACCACTGCGCCCC 

  nirKn3R (R) 1024599-1024615 GGGTGGATGCTGCAGATG 

nirS nirSn1F (F) 1023891-1023910 GCCACCCACATCCTGCGCT 

  nirSn4R (R) 1022835-1022857 GCGGTGTTGTACACGTTGAACTT 

  nirSn1FB (F) 1023891-1023910 GCCACCCACATCTTGCGCT 

  nirSn925RB (R) 1023408-1023425 GCGTTGGCCGCCACAATG 

norB norBF1F_CC (F) 1028097-1028080 GCCCTYTGGTACTTCTGG 

  norBn9R (R) 1026906-1026927 GCTCCACCATGGTYTGGGTGAA 

  norBn925 (F) 1027686-1027703 CGGTGATGGTTATCTTCC 
a Forward and reverse primers are indicated by the letters F and R, respectively 
b Nucleotide positions in the Thermus oshimai JL-2 genome 

 

Hot start PCR for amplification of narG, nirK, nirS, and norB was performed with DNA 

from each Thermus strain as template. The 25 μL PCR mixture contained 10-125 ng DNA, 200 

nM of each primer, 1.5 mM MgCl2, 200 μM each dNTP, 0.625 U of GoTaq DNA Polymerase, and 

1x Green GoTaq Reaction Buffer. Cycling conditions were as follows: denaturation at 95°C for 4 

min followed by 35 cycles of denaturation (2.5 min at 95°C), annealing (1 min, see Table S2 for 

temperatures, Appendix), and elongation (2.5  min at 72°C), with a final elongation step at 72°C 

for 7 mins. PCR products were sequenced using the Sanger method at Functional Biosciences, 

Madison, WI, using the forward and reverse PCR primer. 
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Determining the evolutionary relationship in denitrification pathways in  Thermus 

To determine the evolutionary relationships among denitrification genes in Thermus, 

phylogenetic trees were constructed for each denitrification gene and compared to a reference tree 

with appropriate taxa constructed based on the 16S rRNA genes. For each denitrification gene, 

multiple sequence alignments were obtained using CLUSTAL_X (Thompson et al. 1997) taking 

into account the corresponding amino acid alignment. For 16S rRNA genes, multiple sequence 

alignments were obtained using mothur (Schloss et al. 2009) and bacterial and archaeal reference 

alignments from SILVA (Quast et al. 2013). Alignments also included the application of a SILVA-

compatible lane mask sequence filter and manual editing to visually identify positions with 

uncertain alignment to be corrected for analysis. Maximum-likelihood analyses and tree 

construction was performed using the DNA model with the lowest Bayesian Information Criterion 

(BIC) score obtained for each gene using MEGA 5.02 (Tamura et al. 2011). Bootstrap analysis 

was performed using 1000 replications.  

The Shimodaira-Hasegawa Test (SH-test) was performed to infer events of HGT and to 

detect phylogenetic incongruence in the topology of the gene trees (trees based on nitrogen oxide 

reductases) compared to the reference tree (tree based on 16S rRNA gene sequences). The SH-test 

finds the best topology between the gene tree and reference tree, compares the log-likelihood 

values of each candidate to the tree with the best topology, and determines p-values associated 

with the differences in those trees. In this study the SH-test was performed using pruned trees 

based on appropriate 16S rRNA and nitrogen oxide reductase gene sequences; if a given nitrogen 

oxide reductase gene was not found in a given taxon, then that taxon was removed from the 

reference tree for the SH-test. Additionally, to improve resolution of the trees, input for this 

analysis included taxa that would best represent visual signs of discordance. Only one strain was 
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used to represent a given Thermus species, unless there were visual signs of HGT. If visual 

evidence of HGT existed, the taxa suspected to have undergone HGT and another Thermus of the 

same species was included in the analysis.  
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Graduate Student’s Involvement and General Background 

            This chapter represents a draft manuscript to be submitted for publication in a peer-

reviewed scientific journal within the next few months. The research detailed in this chapter was 

conducted by me, other Hedlund lab members, and collaborators for my graduate thesis work 

during my tenure as a Master’s student at the University of Nevada, Las Vegas. Specifically, the 

work conducted to determine the terminal nitrogen product of denitrification in the Thermus strains 

used in this research, detect denitrification genes by mining Thermus genomes and using PCR, and 

perform phylogenetic analysis was done by myself. Experiments were designed by myself, 

Williams, and Hedlund. Experiments were performed by myself, Bernardo, Srivasta, Williams, 

and Hedlund. The data was analyzed by myself and Bernardo.  Reagents, materials, analysis tools, 

and isolates were provided by Zhou, Srivasta, Li, and Hedlund. The manuscript was written by 

myself. This manuscript highlights the denitrification capacity and phylogenetic analysis of 

nitrogen oxide reductase genes in a collection of 25 strains and ten species of Thermus from hot 

springs in Yunnan Province, China on several discrete sampling trips conducted in 2010 and 2011. 
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ABSTRACT 

Members the bacterial genus Thermus have been shown to be incomplete denitrifiers, 

terminating with nitrite or nitrous oxide (N2O). However, the ability to carry out denitrification 

and the evolution of nitrogen oxide reductase genes in Thermus remains poorly understood. This 

study tests the hypothesis that incomplete denitrification is common in Thermus and seeks to 

uncover patterns in the evolution of denitrification pathways in Thermus. Denitrification capacity 

was determined in a collection of 25 strains and ten species of Thermus and phylogenetic analysis 

was performed to determine whether denitrification genes evolved horizontally. Terminal products 

were nitrite, nitric oxide (NO), or nitrous oxide (N2O), with most stains ending with N2O as a final 

product. In most cases, denitrification phenotypes were consistent with the presence of 

denitrification genes and strains of the same species typically had the same denitrification 

phenotypes. Phylogenetic analysis and the pattern of extant nitrogen oxide reductases showed 

evidence for horizontal gene transfer (HGT) and gene loss/gain within Thermus. These results 

show that incomplete denitrification is prominent in the genus Thermus, which suggests Thermus 

may play a role in consortial denitrification at high temperatures. 

 

INTRODUCTION  

Denitrification is the process by which microorganisms sequentially reduce nitrate or 

nitrite to the gaseous products nitric oxide (NO), nitrous oxide (N2O), or dinitrogen (N2) through 

anaerobic respiration. Bacteria, archaea, and some eukaryotes are capable of denitrification, most 

of which carry out complete denitrification by reducing nitrate to N2 as the terminal product (Zumft 

and Kroneck 2007). However, microbes with truncated or incomplete denitrification pathways are 

also known to exist. Some microbes have missing nar and nir genes, which code for nitrate and 
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nitrite reductases, but contain atypical N2O reductase (nosZ) genes for N2O reductases (Sanford et 

al. 2012). Some do not appear to have a cytochrome bc1 complex needed from N2O reduction to 

N2, but have the alternative complex III (ACIII), which performs the same function as the bc 

complex by transferring electrons from the quinol pool to N2O (Refojo et al. 2012). Other microbes 

contain novel, putative NO reductase genes, sNOR, eNOR, and gNOR, instead of norB, which 

likely encode the enzymes that reduce NO to N2O (Hemp and Gennis 2008; Hemp et al. 2015). 

Others carry out incomplete denitrification ending with N2O (Hart et al. 1965). This can occur for 

several reasons such as mutations in the nosZ gene (Zumft and Kroneck 2007), or absence of nos 

genes (Murugapiran et al.  2013a).  

Terrestrial geothermal environments host an array of thermophiles with differing nitrate 

reducing abilities. Nitrate and nitrite reductase have been found in sequenced genomes of members 

of archaeal phyla such as Crenarchaeota (Aeropyrum, Sulfolobus, and Pyrobaculum) and 

Euryarchaeota (Archaeoglobus) (Cabello et al. 2004). However, nitrate reduction is better known 

in thermophilic members of several bacterial phyla, such as the Aquificae (Hedlund et al. 2015a), 

Chloroflexi (Hemp et al. 2015), Firmicutes (Poli et al. 2009), and Thermales. In particular, 

Thermales species of the bacterial genus Thermus are widely distributed in geothermal systems 

and have been studied as models of thermophilic nitrate reduction and denitrification (Cava et al. 

2009). Some strains of Thermus thermophilus reduce nitrate to nitrite (Cava et al. 2008b), while 

some work shows that other isolates of T. thermophilus and T. oshimai are incomplete denitrifiers 

that terminate with N2O as a final nitrogen product (Hedlund et al. 2011). Some species of 

Thermus, such as T. brockianus, T. antranikianii, and T. scotoductus, are known nitrate reducers 

(da Costa et al. 2006), but their capacity for denitrification has not been well characterized.  
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Several genetic and genomic studies have shed light on nitrate reduction and denitrification 

pathways in Thermus. Genes for nitrate reduction are found within the nar gene cluster and 

neighboring genes code for nitrogen oxide reductases responsible for denitrification (Gounder et 

al. 2011, Murugapiran et al. 2013a; Murugapiran et al. 2013b, Zhou et al. 2016, Mefferd et al. 

2016).  Thermus denitrification genes are sometimes present on a plasmid (Ramirez-Arcos et al. 

1998; Brüggemann et al. 2006; Murugapiran et al. 2013b). For example, genes encoding the ability 

to reduce nitrate to nitrite in T. thermophilus HB8 and NAR1 comprise three adjacent gene clusters, 

nar, nrc, and dnr, which are located on a megaplasmid, termed the nitrate conjugative element 

(NCE). The megaplasmid carrying the NCE can be transferred among T. thermophilus strains by 

conjugation (Ramirez-Arcos et al. 1998), implicating horizontal gene transfer (HGT) of the NCE 

is possible in Thermus. Other nitrogen oxide reductases can also be found on megaplasmids. Such 

is the case with T. oshimai JL-2 and T. thermophilus JL-18 whose megaplasmids, approximately 

0.27 Mb and 0.26 Mb respectively, contain a gene cluster for the reduction of nitrate to N2O 

(Murugapiran et al. 2013b). Additionally, in some Thermus, the megaplasmid has much lower 

genetic stability than the genome and appears to be evolving faster than the chromosome 

(Brüggemann et al. 2006; Murugapiran et al. 2013a). The possibility of HGT of denitrification 

genes is further supported by research done using Thermus species as models for thermophilic 

HGT. For instance, whole-genome studies of T. scotoductus SA-01 (Gounder et al. 2011) and T. 

thermophilus HB8 and HB27 (Kumwenda et al. 2014) have uncovered evidence for large-scale 

genetic loss, acquisition, and rearrangement. T. thermophilus HB27 is naturally competent, 

containing many proteins associated with compentence and conjugation (Averhoff 2009), and can 

take up DNA at any stage during growth (Hidaka et al. 1994; César et al. 2011).  
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These studies have shed some light on denitrification pathways and nitrogen oxide 

reductase gene evolution in Thermus. However, these studies only encompass a few species of 

Thermus and do not provide a comprehensive characterization of the distribution and evolution of 

denitrification genes in the genus as a whole.  The goal of this study was to characterize 

denitrification pathways in Thermus to gain insight into their potential roles in the nitrogen cycle 

in high-temperature environments and to determine the evolutionary forces driving denitrification 

potential across the genus Thermus. To determine the terminal denitrification products in Thermus 

species, a collection of 25 strains representing ten species of Thermus from hot springs in Yunnan 

Province, China, were grown under denitrifying conditions and nitrogenous products were 

measured to evaluate their denitrification capacity. Additionally, to determine the distribution of 

denitrification genes in the genus Thermus, denitrification genes were recovered from new and 

existing genomes and by PCR using Thermus-specific primers designed in this study. Finally, 

phylogenetic analyses and gene loss/gain studies were performed in an effort to untangle the 

impacts of vertical and horizontal evolution of denitrification genes in Thermus. Results show that 

incomplete denitrification pathways are common in Thermus species. These pathways terminate 

with nitrite, NO, or N2O as terminal products of nitrate reduction, as evidenced by both growth 

experiments and the variable presence of nitrogen oxide reductase genes in Thermus genomes.  

Moreover, the resulting tree topologies and patterns of gene presence/absence show some evidence 

that HGT and loss/gain shaped the evolution of denitrification genes in the genus Thermus.  

 

RESULTS AND DISCUSSION  

Determination of nitrate reduction intermediates and terminal products 
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For this study, 29 Thermus strains were tested initially. T. caliditerrae YIM77777 did not 

reduce nitrate. T. brockianus YIM 77709, T. scotoductus YIM 77398, and T. tengchongensis YIM 

77427 grew poorly on the medium used in this study. These four strains were removed from the 

remaining work. The remaining 25 Thermus included in this study reduced nitrate and failed to 

produce N2 in Balch tubes with Durham vials within 96 hours of cultivation with 4.5 mM nitrate 

as the sole terminal electron acceptor. Activity of detected nitrogen oxide reductases varied among 

the isolates (Table 2), though generally strains of the same species of Thermus showed the same 

activity. For example, all T. arciformis, T antranikianii, and T. tengchongensis strains appeared to 

be incomplete denitrifiers terminating with N2O. By comparison, all T. caliditerrae, T. igniterrae, 

and T. scotoductus strains reduced nitrate to nitrite as a final product. This trend was not seen, 

however, in T. amyloliquefaciens, T. brockianus, T. oshimai and T. thermophilus, where different 

strains terminated with different intermediates of denitrification (Table 2). To confirm the nitrate 

reduction phenotype in Thermus in more detail, T. arciformis JCM15153 was selected for further 

analysis based on its consistent growth phenotype in several replicates (Fig. 3). In this strain, there 

was a long lag phase until exponential growth was detected after 36 hours. The results of this 

experiment were consistent with those found in the end point experiments, where N2O 

accumulated in cultures over time as a final product of denitrification. Results also showed a near-

stoichiometric conversion of nitrate to N2O with transient production of nitrite and no production 

of N2.  

NO was not assayed with the methods used in this work, however, NO production can be 

inferred to be a terminal product in several cases. Nitrite reduction to NO is the probable terminal 

product for T. brockianus YIM 77420.2, T. brockianus YIM 77904, T. brockianus YIM 77927, T. 

oshimai YIM 77923.2, and T. thermophilus YIM 77318. In these cultures, nitrate was removed 
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during anaerobic growth with nitrate as the sole terminal electron acceptor, yet neither nitrite, N2O, 

nor N2 were detected. This phenotype, in combination with the presence of narG and nirK/S, and 

apparent absence of nor and nos (Table 2) point to NO as the most likely denitrification product 

in these strains.   

 Together, these results strongly suggest that incomplete denitrification pathways are 

common in Thermus species. Consistent with the incomplete denitrification phenotype found in 

other Thermus strains (Hedlund et al. 2011), nitrate reduction to either nitrite, NO, or N2O as 

terminal products indicates varying denitrification capabilities within Thermus, with most strains 

ending with N2O as a final product. These results point to important ecological implications to 

consider and test further. These data support the idea that Thermus in geothermal areas may serve 

as a source of N2O, a strong greenhouse gas and stratospheric reactant, as has been measured in 

geothermal springs in the U.S. Great Basin (Hedlund et al. 2011). Incomplete denitrification 

pathways to N2O may promote N-cycling within hot spring systems, slowing the rate at which N 

is removed from the system. However, single-cell genomic analysis of 'Aigarchaeota’ in GBS 

show this microbial dark matter group is a predicted N2O reducers (Rinke et al. 2013; Hedlund et 

al. 2015b) and is a possible metabolic partner of Thermus. More research is required to test this 

idea.  
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Table. 2 Measured reductase activity and gene amplification 

 Measured Activity Amplified 

Strain  Nar Nir Nor Nos Genes 

T. amyloliquefaciens YIM 77409 + (+) + - narG, nirS, norB 

T. amyloliquefaciens YIM 77735.1 + - - - narG, norB 

T. antranikianii YIM 77311.1 + (+) + - narG 

T. antranikianii YIM 77430.1 {+} (+) + - narG, nirK 

T. antranikianii YIM 77730 + (+) + - narG, nirK 

T. arciformisJCM15153 + (+) + - narG, nirS, norB 

T. brockianus YIM 77420.2 + (+) - - narG, nirS 

T. brockianus YIM 77904 + (+) - - narG, nirK, nirS 

T. brockianus YIM77927 + (+) - - narG, nirK, nirS 

T. brockianus YIM 779134 + (+) + - narG, nirK, nirS 

T. caliditerrae YIM77925 + - - - narG, nirS, norB 

T. igniterrae YIM 77777.1 + - - - narG 

T. oshimai YIM 77359  + (+) + - narG, nirK, nirS, norB 

T. oshimai YIM 77838.1 + (+) - - narG, nirK, nirS, norB 

T. oshimai YIM 77923.2 + (+) - - narG, nirK, nirS 

T. scotoductus YIM 77445.2 + - - - narG 

T. tengchongensis YIM 77357 + (+) + - narG, nirS, norB 

T. tengchongensis YIM 77392 + (+) + - narG, nirS, norB 

T. tengchongensis YIM 77392.1 + (+) + - narG, norB 

T. tengchongensis YIM 77401 + (+) [+] - narG, nirS, norB 

T. tengchongensis YIM 77410 + (+) + - narG, nirS, norB 

T. tengchongensis YIM 77727 + (+) + - narG, norB 

T. tengchongensis YIM 77924 + (+) + - narG, nirS, norB 

T. thermophilus YIM 77318 + (+) - - narG, nirK 

T. thermophilus YIM 77430.2 + - - - norB 

Statistical significance was calculated using a Student's T-test in R.  
+, Statistically significant decrease in a starting substrate (nitrate) and increase in product compared to 
uninoculated negative controls (p ≤ 0.1). 
(+), Inferred Nir activity due to a significant decrease in nitrite and significant increase in N2O compared 
to negative controls, or presence of nir genes (p ≤ 0.1). 
[+], Incomplete denitrifier that produces ≥ 1 mM of N2O in at least two replicates in multiple assays. 
{+}, Decrease in nitrate and increase in nitrite compared to an uninoculated negative control (p ≤ 0.102). 
-, No reductase activity detected.  
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Figure 3. Near-stoichiometric conversion of nitrate to N2O during growth. Thermus arciformis 

JCM15153 cells were grown with 9 mM NO3
--amended CMD and sampled periodically for 

quantification of cell density using a Genesys 10 Series Spectrophotometer (Thermo, Madison, 

WI, USA) and possible denitrification intermediates (i.e. nitrite and N2O). Reduction of nitrate to 

N2 was never detected in Balch tubes with Durham vials. Data are representative of triplicate 

experiments; data from replicate experiments can be found in Figure S1, Appendix.  

 

Presence and arrangement of denitrification gene clusters 

 

Denitrification genes were recovered from new genomes of T. arciformis JCM15153, T. 

brockianus YIM 77927, T. caliditerrae YIM 77925, and T. tengchongensis YIM 77924, and 

previously available genomes of T. amyloliquefaciens YIM 77409 (Zhou et al. 2016) and T. 

tengchongensis YIM 77401 (Mefferd et al. 2016) (Fig. 4). The genome of T. caliditerrae 

YIM77777 did not contain nitrogen oxide reductase genes, consistent with the absence of growth 

in nitrate reduction experiments (Mefferd et al. 2016). The other six strains contained a complete 

nitrate reductase operon (narGHJIK) and two nitrate/nitrite transporters (narK1 and narK2). Genes 
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encoding nitrite reductase (nirS) and nitric oxide reductase (norB and norC) were also found in 

proximity to the nitrate reductase operon, with the exception of strain T. brockianus YIM 77927, 

which contained two nitrite reductases (nirK and nirS) and was missing nor genes. As noted 

previously (Murugapiran et al.  2013a, Zhou et al. 2016; Mefferd et al. 2016), nitrous oxide 

reductase (nos) genes were absent in all six Thermus strains examined. Nitrogen oxide reductase 

genes are co-localized and appear to have shared synteny, consistent with other Thermus genomes 

(Gounder et al. 2011; Murugapiran et al. 2013a; Murugapiran et al. 2013b). This suggests nitrogen 

oxide reductase genes in different species of Thermus have descended from the same ancestor and 

recombination events did not separate these loci.  

It should be noted that the genome of T. caliditerrae YIM 77925 appears to contain C-

terminal truncations in NirS and NorB (Fig. 4). T. caliditerrae YIM 77925 is also missing norC, 

an essential periplasmic nor subunit that shuttles electrons to the catalytic subunit norB 

(Thorndycroft et al. 2007; Hino et al. 2010). Together, this may explain why there was no detected 

activity of nirS and norB in T. caliditerrae YIM 77925 cultures (Table 2). Interestingly, there is 

no indication that truncations in nirS and norB include binding sites or amino acid residues of 

known functional importance (Figure S2 and Figure S3, Appendix; Rees et al.  1997; Watmough 

et al. 1999; Hemp and Gennis et al. 2008).  

All 16S rRNA gene PCR amplicons were most closely related to known Thermus species, 

with DNA identities of 98-99% (Fig. 5). These data confirm the identity of the strains used in this 

work as Thermus species. All nitrogen oxide reductase PCR amplicons were most closely related 

to those from other Thermus species, with DNA identities of 82-99% (Fig. 6A-6D). Putative narG 

fragments were amplified from DNA extracts of all Thermus strains tested, except T. thermophilus 

YIM 77430.2. The presence of nir and nor gene fragments varied among the Thermus strains used 
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in this study. However, strains of the same species of Thermus showed similar genetic capacity for 

denitrification and some general patterns can be described (Table 2). For T. antranikianii, narG 

and nirK were detected in most strains. narG, nirK, and nirS were detected in most T. brockianus 

strains. In most T. oshimai strains, narG, nirK, nirS, and norB were detected. narG, nirS, and norB 

were amplified in most T. tengchongensis strains. The presence/absence of nitrogen oxide 

reductase genes in these strains is generally consistent with phenotypes observed in these strains; 

however, there are instances where the detected reductase activity and the presence of a given 

denitrification gene did not agree (Table 2). nar genes were not found in T. thermophilus YIM 

77430.2 using primers for this study, but nitrate reductase activity was detected. nir genes were 

not detected for T. antranikianii YIM 77311.1 and T. tengchongensis YIM 77392.1, though there 

was measured nitrite reductase activity. Finally, nor genes were not detected in all T. antranikianii 

strains and T. brockianus YIM 7779134, though NO reduction to N2O was detected. In these cases, 

inconsistencies can be attributed to the limited sensitivity of the PCR primers used in this work. 

Future work will be needed to design primers with better coverage within the Thermales, perhaps 

using the sequences similar to those in this work that include degenerate positions, or by 

incorporating alignments with denitrification gene sequences from other published genomes.  
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Figure 4. Map showing nar operon and neighboring genes involved in denitrification located on the 

chromosome of T. amyloliquefaciens YIM 77409, T. arciformis JCM15153 and T. tengchongensis YIM 

77924. Numbers below genes indicate provisional ORF numbers found in RAST and IMG (indicated by †) 

for T. tengchongensis YIM 77401 (BS84DRAFT_1309) and T. terrae YIM 77409 (BS74DRAFT_1484). 

The locations in the chromosome are indicated below in purple text. nar: nitrate reductase; nir: nitrite 

reductase; nor: nitric oxide reductase; dnr: denitrification regulator. Figure modified from Murugapiran et 

al. 2013a. 
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Figure 5. Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences of Thermus strains 

isolated from the Chinese geothermal areas. Bar indicates 0.02 substitutions per nucleotide position. 

Bootstrap values ≥80 are represented by filled circles. Constructed using the Tamura-Nei DNA substitution 

model (4031.6 BIC score). Only Thermus strains that have nitrogen oxide reductase genes were included. 
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Figure 6A. Maximum-likelihood phylogenetic tree showing the relationships of the narG nucleotide 

sequences from Thermus strains.  Bar indicates 0.05 substitutions per nucleotide position. Bootstrap values 

≥80 are represented by filled circles. Constructed using the Tamura 3-parameter DNA substitution model 

with 5 gamma distributions (7124.6 BIC score).  
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Figure 6B. Preliminary maximum-likelihood phylogenetic tree showing the relationships of the nirK 

nucleotide sequences from Thermus strains. Bar indicates 0.02 substitutions per nucleotide position. 

Bootstrap values ≥80 are represented by filled circles. Constructed using the Tamura 3-parameter DNA 

substitution model (3595.1 BIC score).  
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Figure 6C. Maximum-likelihood phylogenetic tree showing the relationships of the nirS nucleotide 

sequences from Thermus strains. Bar indicates 0.05 substitutions per nucleotide position. Bootstrap values 

≥80 are represented by filled circles. Constructed using the Jukes-Cantor DNA substitution model (740.3 

BIC score).  
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Figure 6D. Maximum-likelihood phylogenetic tree showing the relationships of the norB nucleotide 

sequences from Thermus strains. Bar indicates 0.02 substitutions per nucleotide position. Bootstrap values 

≥80 are represented by filled circles. Constructed using the Hasegawa-Kishino-Yano DNA substitution 

model (4841.1 BIC score). 
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Phylogenetic analysis and inferring horizontal gene transfer 

HGT can be inferred through visual observation of phylogenetic trees showing the 

relationship between nitrogen oxide reductase genes (Fig. 6A-6D). To illustrate, examples exist 

where the topology of the 16S rRNA reference tree (Fig. 5) is discordant with the trees based on 

nitrogen oxide reductase genes.  From the topology of the narG genes, it appears that the T. 

brockianus YIM 77420.2 nitrate reductase is more closely related to that in T. amyloliquefaciens 

YIM77409. Likewise, the T. scotoductus YIM 77445.2 nitrate reductase is more closely related to 

that of T. thermophilus strains. Furthermore, the T. brockianus YIM 77420.2 nirS is more closely 

related to the T. thermophilus JL-18. From the topology of the norB genes, T. thermophilus YIM 

77430.2 NO reductase is more closely related to that from T. tengchongensis strains. Discordance 

appeared more frequently in some species than in others, specifically, in T. brockianus, T. 

thermophilus, and T. scotoductus strains.  On the other hand, some species showed no evidence of 

HGT, such as T. oshimai, where all nitrogen oxide reductase genes branched together in every tree.  

Another method to assess HGT is to perform similarity searches using BLAST to find 

relatives of a given gene among a selection of available genomes. Phyletic patterns, differences in 

gene absence/presence in organisms and relatives, can be detected in this way. The most similar 

sequences found in genomes in the database can then be used to infer HGT (Zhaxybayeva 2009). 

A blastx search was performed to search for genes closely related to T. oshimai JL-2 nirK in 

sequenced genomes found in GenBank. With the exception of other Thermus species, T. oshimai 

JL-2 nirK relatives were not found in other members of the phylum Deinococcus-Thermus. 

However, genes related to the T. oshimai JL-2 nirK were present in diverse members the bacterial 

phylum Fimicutes (e.g., Geobacillus, Paenibacillus, and Caldalkalibacillus species), with related 

genes also in the genus Thioalkalivibrio in the Proteobacteria and "Candidatus Caldiarchaeum 
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subterraneum" in the candidate archaeal phylum "Aigarchaeota". Together, these data suggest 

Thermus, Thioalkalivibrio, and "Candidatus Caldiarchaeum subterraneum" may have inherited 

nirK from Firmicutes; for example, Thermus and "Candidatus Caldiarchaeum subterraneum" may 

have received nirK genes from Geobacillus, which cohabitates in terrestrial geothermal systems 

(Cole et al. 2013a; Cole et al. 2013b). However, this approach of using phyletic patterns and top-

scoring BLAST hits to infer HGT is not the most reliable and relies on how broadly certain groups 

of organisms are represented in the database. Future analysis is required to more meaningfully map 

the evolutionary history of nirK in Thermus.  

SH-test was performed to infer events of HGT. A statistically significant difference (p < 

0.0001) was observed between the topology of the reference tree (tree based on 16S gene 

sequences) and gene trees based on nirK, nirS, and norB. Possible explanations for the differences 

in tree topology indicated by the SH-test include gene duplication, gene loss, or HGT (Dávalos et 

al. 2012; Ravenhall et al. 2015). When there are multiple copies of a gene, paralogs could result 

in significantly incongruent trees. In this case, a gene copy in one taxon is not orthologous to those 

of others and could have a different gene history. This can cause significant differences in the 

topology of the candidate trees.  However, gene duplication in Thermus denitrification genes has 

not been reported and can therefore be eliminated as a possible source of discordance. Gene loss 

would result in missing branches of a gene tree, thus showing a significantly different topology 

from the reference tree. However, in this study the SH-test was performed using pruned trees. 

Thus, the discordance is not likely explained by gene loss, suggesting HGT represents the most 

likely cause of the differences in the topology trees based on the 16S rRNA and nitrogen oxide 

reductase gene sequences. Unfortunately, identifying all instances of HGT is quite difficult using 

the SH-test alone. It is difficult to use the SH-test to infer HGT between closely neighboring taxa, 
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as this type of transfer event cannot be easily detected with this method (Zhaxybayeva 2009). It is 

also possible a weak phylogenetic signal, or tree with insufficient bootstrap support in some 

branches, cannot be resolved sufficiently by this test. This may have been the case with the tree 

based on Thermus narG sequences, as the SH-test for this data set never came to completion. 

However, future work using methods such as ancestral state reconstruction (Carmel et al. 2010) 

and identification of differences nucleotide word usage patterns (Monier et al. 2007) can improve 

the work done in this study.  

 From the construction of phylogenetic trees (Fig. 6A-6D) and the physiological data 

(Table 2), some conclusions can be made on about gene loss and gain, especially in the case of 

nitrite reductase genes. nirK genes were detected in deeper lineages of Thermus, specifically in T. 

antranikianii. nirS genes were detected in more recent lineages of Thermus, specifically in T. 

amyloliquefaciens and T. tengchongensis. Interestingly, both nirK and nirS were detected in T. 

brockianus and T. oshimai strains, which appear to have evolved in the middle of old and recent 

lineages of Thermus. These observations can indicate that NirK is a protein found in Thermus 

ancestors and is lost in more recent lineages, while nirS is gained later in the evolutionary history 

of Thermus.  The question regarding these observations of gene loss/gain of denitrification genes 

in Thermus remains open, and further phylogenetic analyses to model these changes will focus on 

this vital question.  
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CHAPTER 4 

 

MANUSCRIPT FOR GENOME ANNOUNCEMENTS 

 

High Quality Draft Genomes from Thermus caliditerrae YIM 77777 and T. tengchongensis 

YIM 77401 Isolates from Tengchong, China 

Published in Genome Announcements (doi: 10.1128/genomeA.00312-16) 

Chrisabelle C. Mefferda, En-Min Zhoua,b,c, Tian-Tian Yuc, Hong Mingc, Senthil K. Murugapirana, 

Marcel Huntemannd, Alicia Clumd, Manoj Pillayd, Krishnaveni Palaniappand, Neha Varghesed, 

Natalia Mikhailovad, Dimitrios Stamatisd, T.B.K. Reddyd, Chew Yee Ngand, Chris Daumd, Kecia 

Duffyd, Nicole Shapirod, Victor Markowitzd, Natalia Ivanovad, Nikos Kyrpidesd, Amanda J. 

Williamsa,e, Tanja Woyked, Wen-Jun Lib,c*, Brian P. Hedlunda,f* 

 

Graduate Student’s Involvement and General Background 

            This chapter represents a manuscript published in Genome Announcements. The research 

detailed in this chapter was conducted by me, Hedlund lab members, JGI representatives and 

researchers, and collaborators for my graduate thesis work during my tenure as a Master’s student 

at the University of Nevada, Las Vegas. Experiments were designed by Zhou and Hedlund. 

Genomic prep was performed by Williams. Experiments and genome sequencing were performed 

by the team at JGI. The data was analyzed by myself, Zhou, Murugapiran, and the team at JGI.  

Reagents, materials, analysis tools, and isolates were provided by JGI, Zhou, Li, and Hedlund. The 

manuscript was written and prepared  by myself. Work highlighting the denitrification capacity 

and nitrogen oxide reductase genes in the genomes of T. tengchongensis YIM 77401 and Thermus 

caliditerrae YIM 77777 was conducted by myself. 
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ABSTRACT: The draft genomes of T. tengchongensis (Tt) YIM 77401 and Thermus caliditerrae 

YIM 77777 are 2,562,314 and 2,218,114 bp and encode 2,726 and 2,305 predicted genes, 

respectively. Gene content and growth experiments demonstrate broad metabolic capacity, 

including starch hydrolysis, thiosulfate oxidation, arsenite oxidation (Tt), incomplete 

denitrification (Tt), and polysulfide reduction.  

 

Bacterial strains YIM 77401 and YIM 77777, members of the order Thermales, class Deinococci, 

were isolated from Frog Mouth Spring (Hamazui), Rehai National Park, Tengchong County, 

Yunnan Province, China (Ming et al. 2014). The draft genomes of the two strains were generated 

at the DOE Joint Genome Institute (JGI), Walnut Creek, CA, USA using Pacific Biosciences 

(PacBio) technology. A PacBio SMRTbell™ library was created and sequenced using the PacBio 

RS platform, which generated 191,522 filtered subreads totaling 522 Mbp for strain YIM 77401 

and 280,439 filtered subreads totaling 626 Mbp for strain YIM 77777. HGAP (version: 2.0.0) 

(Chin et al. 2013) was used to assemble raw reads. Genome annotation was performed using the 

JGI Prokaryotic Automatic Annotation Pipeline (Huntemann et al. 2015) with manual curation 

using GenePRIMP (Pati et al. 2010) and additional manual review using the Integrated Microbial 

Genomes - Expert Review (IMG-ER) platform (Markowitz et al. 2009). JGI’s library construction 

and sequencing protocols can be found at http://www.jgi.doe.gov.  

 

The strain YIM 77401 genome encoded 2,726 predicted genes in 5 contigs, including 47 tRNA-

encoding genes, and 3 rRNA operons, and the strain YIM 77777 genome encoded 2,305 predicted 

genes in 4 contigs, including 50 tRNA-encoding genes, and 3 rRNA operons. Both genomes 

included at least one megaplasmid (>100 kb), based on the presence of plasmid replicon domains 

http://www.jgi.doe.gov/
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(Jorgensen et al. 2014). Analysis of carbohydrate-active enzymes (CAZymes) found in strains 

YIM 77401 and YIM 77777 genomes revealed 39 and 32 CAZymes, respectively. Among these 

were 11 and 9 glycoside hydrolases (GHs) in strains YIM 77401 and YIM 77777, respectively, 

including GHs predicted for starch hydrolysis (GH13 and GH57) in both strains. This is consistent 

with amylase activity observed in both isolates. The genome of YIM 77401 featured genes 

involved in arsenite oxidation (aioAB), consistent with arsenite oxidation activity observed in this 

isolate. Both genomes contained a sox gene cluster comprised of 10 genes (soxABCDFVWXYZ), 

predicted for thiosulfate oxidation (Friedrich et al. 2005), similar to other Thermus species 

(Gounder et al. 2011; Murugapiran et al. 2013a; Skirnisdottir et al. 2001); however, thiosulfate 

oxidation activity was only detected in YIM 77777.  

 

Strain YIM 77401 contained a chromosomally encoded nitrate reductase gene cluster (narGHJIK) 

and two nitrate/nitrite transporters (narK1 and narK2), similar to other Thermus species 

(Murugapiran et al. 2013a). Genes encoding the catalytic subunit of a cd-cytochrome nitrite 

reductase (nirS) and nitric oxide reductase (norBC) were also found in this genome. However, 

nitrous oxide reductase (nos) genes, which catalyze the reduction of nitrous oxide to dinitrogen, 

were absent, consistent with the incomplete denitrification phenotype found in several Thermus 

species (Murugapiran et al. 2013a; Hedlund et al. 2011) and the production of N2O as the terminal 

denitrification product by YIM 77401. Additionally, YIM 77401 and YIM 77777 contained genes 

for polysulfide reduction (psrABC), which is similar to other Thermus genomes (Murugapiran et 

al. 2013a) and consistent with polysulfide reductase activity in both isolates. 
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NUCLEOTIDE SEQUENCE AND ACESSION NUMBERS: These Whole Genome Shotgun 

projects have been deposited in Genbank under accession nos. JQNC01000001-JQNC01000004 

(YIM77777) and JQLK01000001-JQLK01000005 (YIM77401). The genome sequence is 

available from Genbank (NZ_JQNC00000000; GI: 740207912) for Thermus caliditerrae 

YIM77777, and from Genbank (NZ_JQLK00000000; GI:740202250) for T. tengchongensis 

YIM77401. The data are also available at the Joint Genome Institute (JGI) Integrated Microbial 

Genomes (IMG) system (Markowitz et al. 2013).  
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CHAPTER 5 

 

CONCLUSION 

 

The genus Thermus is characterized by incomplete denitrification to nitrite, NO, or N2O, 

with no strains producing N2 as a terminal product and most strains ending with N2O. These data 

suggest a model where denitrification in Thermus terminating with N2O is common at high 

temperatures. This is consistent with the demand for energy at high temperatures (Price and Sowers 

2004). Denitrification to N2O allows for the production of protons without the energetic cost of the 

expression of Nos. Varying terminal denitrification products and the varying presence of detected 

genes for nitrogen oxide reductases indicate differing denitrification capabilities within Thermus. 

Some patterns could be observed, where denitrification phenotypes were consistent with the 

presence of denitrification genes in Thermus and strains of the same species appeared to have the 

same denitrification phenotypes. This work suggests both nitrate reducers and incomplete 

denitrifiers may be present in high temperature sites.  

The data reported here suggest denitrification may be decoupled at high temperatures. 

Denitrification has an optimal temperature ranging from 20-60°C and declines rapidly above this 

temperature (Dawson and Murphy 1972; Knowles et al. 1982). Thermophilic organisms, like 

Thermus, are responsible for activity above this temperature. Unfavorable kinetic conditions at 

high temperatures could be responsible for the decoupling of denitrification in Thermus, with the 

reduction of N2O to N2 carried out by predicted N2O reducers such as 'Aigarchaeota’ (Rinke et al. 

2013; Hedlund et al. 2015b), Thermoflexus (unpublished data), and Fervidibacteria (Rinke et al. 

2013). High temperature life has a high demand for maintenance energy. This could result in a 

greater proportion of organic carbon being mineralized, resulting in lower amounts of organic 
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carbon left in the system. Both a supply of nitrate and an organic carbon source is necessary for 

denitrification to occur (Dincer and Kargi 2000). Having a metabolic partner to split the need for 

organic carbon sources decreases this demand. A partner organism reducing only N2O to N2 (ΔG° 

= -339.5 kJ/mol) still gains an energetically comparable amount of free energy compared to the 

reduction of NO to N2O (ΔG° = -306.3 kJ/mol) (Zumft 1997). For these reasons, it is possible 

incomplete denitrification at high temperature may be more common than complete denitrification 

to N2. 

Moreover, observations made from constructed phylogenetic trees showed evidence for 

HGT, especially in T. brockianus and T. scotoductus strains, and gene loss/gain of nitrite reductase 

genes in Thermus. This is evident in the resulting topologies of the phylogenetic trees based on the 

DNA sequences of the PCR amplicons from this study. Rearrangements and loss of nitrogen oxide 

reductase genes has been shown in Thermus found in high-temperature environments (Gounder et 

al. 2011, Murugapiran et al. 2013a) as a means to lose/acquire genes to sustain life in variable 

conditions. Consistent with this, the work done here demonstrates a possible energy-conserving 

and survival strategy in Thermus. Loss of genes (i.e. nir and nos) prevents the cost of making 

proteins that are not necessary and genes that provide respiratory options when oxygen is low and 

conditions are stressful, such as those in geothermal regions in Yunnan, are kept.  

Despite a few inconsistencies between detected reductase activity and amplified genes, this 

study provides a broad description of denitrification capabilities and the evolution of 

denitrification pathways in the genus Thermus as a whole. Incomplete denitrification to N2O by 

Thermus may be a source of N2O, which may be further reduced to N2 by other organisms or be 

released to the atmosphere. Additionally, phylogenetic observations made from this study point to 

the importance of gene loss/gain and HGT as a means of bacterial adaption at high temperatures. 
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Overall, the results of this work provide greater insight in thermophilic denitrification and nitrogen 

cycling in geothermal environments. 
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Figure S1. Near-stoichiometric conversion of nitrate to N2O during growth. Thermus arciformis 

JCM15153 cells were grown with 9 mM NO3
- amended CMD and sampled periodically for 

quantification of cell density using a Genesys 10 Series Spectrophotometer (Thermo, Madison, 

WI, USA) and possible denitrification intermediates (i.e. nitrite and N2O). Reduction of nitrate to 

N2 was never detected in Balch tubes with Durham vials. *Replicate B was determined to be 

most representative of the data.  
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PAO1    60 EFNEAKQIYFQRCAGCHGVLRKGATGKPLTPDITQQR-------------GQQYLEALIT 

JM300   35 EKEAAKKIYFERCAGCHGVLRKGATGKNLEPHWEKTE-DGKKIEGGTLKLGTKRLENIIA 

Ps632   35 EKEASKQIYFERCAGCHGVLRKGATGKNLEPHWSKTEADGKKTEGGTLNLGTKRLENIIA 

409     29 EREEAAKIYFDRCAGCHGVLRKGATGPALDPKKMAEK-------------GLEYLKAVIF 

153     18 EKERASQIYFDRCAGCHGVLRKGATGPALDPKKMAER-------------GVEYLKAVIF 

927     29 ERERASQIYFDRCAGCHGVLRKGATGPALEPRRMAER-------------GLEYLKAVIF 

925     29 EKEEAAKIYFDRCAGCHGVLRKGATGPALDPKKMAEK-------------GVEYLKAAIF 

401     14 EKEEAAKIYFDRCAGCHGVLRKGATGPALDPKKMAEK-------------GVEYLKAVIF 

924     29 EKEEAAKIYFDRCAGCHGVLRKGATGPALDPKKMAEK-------------GVEYLKAVIF 

 

 

PAO1   107 YGTPLGMPNWGSSGELSKEQITLMAKYIQHTPPQPPEWGMPEMRESWKVLVKPEDRPKKQ 

JM300   94 FGTEGGMVNYDD--ILTAEEINLMARYIQHTPDIPPEFSLQDMKDSWNLIVPVAERPKKQ 

Ps632   95 YGTEGGMVNYDD--ILTKEEINMMARYIQHTPDIPPEFSLQDMKDSWNLIVPVEKRVTKQ 

409     76 GGLPGGMPDWGRQGILSEKDTELMARFLLEEPPAPPVLTFEDIRKTWKVHVPPEKRPTKP 

153     65 GGLPGGMPDWGRQGILSEKDTELMARFLLEEPPTPPIPSYEEIRKTWKVYVPPEKRPKKP 

927     76 GGLPGGMPDWGRQGILSEKDTELVARFLLEEPPAPPIPSFEEVKKTWKVYVPPEKRPNRP 

925     76 GGLPGGMPDWGRQGILKEKDIELVARFLLEQPPAPPVPTFEEIKKTWKVQVPPEKRPTKP 

401     61 GGLPGGMPDWGRQGILKEKDIELVARFLLEQPPAPPVPTFEEIKKTWKVQVPPEKRPTKP 

924     76 GGLPGGMPDWGRQGILKEKDIELVARFLLEQPPAPPVPTFEEIKKTWKVQVPPEKRPTKP 

 

Figure S2. Amino acid sequences of NirS from Pseudomonas aeruginosa PAO1 (PAO1), P. stutzeri JM300 

(JM300), P. stutzeri  ZoBell 632 (Ps632), T. amyloliquefaciens YIM 77409 (409), T. arciformis 

JCM15153 (15153), T. brockianus YIM 77927 (927), T. caliditerrae YIM 77925 (925), T. 

tengchongensis YIM 77401 (401), and T. tengchongensis YIM 77924 (924) were aligned using 

ClustalW (Thompson et al. 1994). Methionine residues in green and residues in yellow indicate 

putative the heme c-binding sites. 
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Psd   202 WWWVVHLWVEGVWELIMGSMLAFVLIKITGVDREVVEKWLYVIIAMA--LITGIIGTGHH 

409   202 WWWVVHLWVEATWEVLVGSIMAMALMHLLGTPRRIVETWLYLEVALV--FGTGILGLGHH 

15153 202 WWWVVHLWVEATWEVLVGSIMAMALMHLLGTPRRIVETWLYLEVALV--FGTGILGLGHH 

925   241 FQQFFWFYSHPTVYVMLLPYLGILAEVASTFSRKPLFGYKQMVWAQMGIVVLGTMVWAHH 

401   202 WWWVVHLWVEATWEVLVGSIMAMALMHLLGTPRRIVETWLYLEVALV--FGTGILGLGHH 

924   241 FQQFFWFYSHPTVYVMLLPYLGILAEVASTFARKPLFGYKQMVWAQMGIVVLGTMVWAHH 

 

Figure S3. Amino acid sequences of NorB from Pseudomonas denitrification ATCC 13867 (Psd), T. 

amyloliquefaciens YIM 77409 (409), T. arciformis JCM15153 (15153), T. caliditerrae YIM 

77925 (925), T. tengchongensis YIM 77401 (401), and T. tengchongensis YIM 77924 (924) were 

aligned using ClustalW (Thompson et al. 1994). Residues in pink indicate putative FeB ligands.  
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Table S1. Thermus master list and isolation source. 

Strain  Hot Spring - Isolation  source GPS Coordinates 

T. amyloliquefaciens YIM77409 Nuijiea ancient hot spring N 15.02333 E 99.98944 

T. amyloliquefaciens  YIM 77735.1 soil sample, near Shuirebaoza N 24.95002  E 98.43742 

T. antranikianii YIM 77311.1 soil sample near Shuirebaoza N 24.95002 E 98.43742 

T. antranikianii YIM 77430.1 soil sample near Shuirebaoza N 24.95002 E 98.43742 

T. antranikianii YIM 77730 soil sample near Shuirebaoza N 24.95002 E 98.43742 

T. arciformis JCM15153 Type strain N 23.97111 E 109.75472 

T. brockianus YIM 77420.2 Nuijiea ancient hot spring N 15.02333 E 99.98944 

T. brockianus YIM 77709a soil sample near Shuirebaoza N 24.95002 E 98.43742 

T. brockianus YIM77904 Gongxiaoshe N 25.44012 E 98.44081 

T. brockianusYIM77927 Hehua  N 23.65489 E 97.87011 

T. brockianus YIM79134 Shuirebaoza N 24.95014 E 98.43743 

T. caliditerrae YIM77925 Shuirebaozha N 24.95014 E 98.43743 

T. caliditerrae YIM 77777a Hamazui 2 N 24.95006 E 98.4380 

T. igniterrae YIM 77777.1 Gongxiaoshe N 25.44012 E 98.44081 

T. oshimai YIM 77359  Hamazui 4 N 24.95006 E 98.4380 

 T. oshimai YIM 77838.1 Xianrendong N 25.46721 E 98.49097 

T. oshimai YIM 77923.2 Hehua  N 23.65489 E 97.87011 

T. scotoductus YIM 77445.2 Hamazui 4 N 24.95006 E 98.43805 

T. scotoductus YIM 77398a  Nuijiea ancient hot spring N 15.02333 E 99.98944 

T. tengchongensis YIM 77357 Shuirebaoza N 24.95002  E 98.43742 

T. tengchongensis YIM 77392 Shuirebaoza N 24.95002  E 98.43742 

T. tengchongensis YIM 77392.1 Shuirebaoza N 24.95002  E 98.43742 

T. tengchongensis YIM 77401 Hamazui 2 N 24.95006 E 98.4380 

T. tengchongensis YIM 77410 Hamazui 2 N 24.95006 E 98.4380 

T. tengchongensis YIM 77427a Hamazui 2 N 24.95006 E 98.4380 

T. tengchongensis YIM 77727 Hamazui 2 N 24.95006 E 98.4380 

T. tengchongensis YIM77924 soil sample near Shuirebaoza N 24.95002 E 98.43742 

T. thermophilus YIM 77318 Shuirebaoza N 24.95014 E 98.43743  

T. thermophilus YIM 77430.2 soil sample near Shuirebaoza N 24.95002 E 98.43742 
aremoved from this study 
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Table S1. Thermus master list and isolation source (con’t) 

Strain  Spring Temp./pH Date of sample collection 

T. amyloliquefaciens YIM77409 84 °C / 7.4 03/2010 

T. amyloliquefaciens  YIM 77735.1 73 °C / 7.0 03/2010 

T. antranikianii YIM 77311.1 73 °C / 7.0 03/2010 

T. antranikianii YIM 77430.1 73 °C / 7.0 03/2010 

T. antranikianii YIM 77730 73 °C / 7.0 03/2010 

T. arciformis JCM15153 N/A N/A 

T. brockianus YIM 77420.2 84 °C / 7.4 03/2010 

T. brockianus YIM 77709a 73 °C / 7.0 03/2010 

T. brockianus YIM77904 73.8 °C / 7.29 06/2011 

T. brockianusYIM77927 73 °C / 7.0 06/2011 

T. brockianus YIM79134 79.8 °C / 7.5 06/2011 

T. caliditerrae YIM77925 79.8 °C / 7.5 06/2011 

T. caliditerrae YIM 77777a 85 °C / 8.0 03/2010 

T. igniterrae YIM 77777.1 73.8 °C / 7.29 01/2011 

T. oshimai YIM 77359  64 °C / 8.0 03/2010 

 T. oshimai YIM 77838.1 73 °C / 8.0 06/2011 

T. oshimai YIM 77923.2 73 °C / 7.0 06/2011 

T. scotoductus YIM 77445.2 64 °C / 8.0 03/2010 

T. scotoductus YIM 77398a  84 °C / 7.4 03/2010 

T. tengchongensis YIM 77357 70 °C / 8.0 03/2010 

T. tengchongensis YIM 77392 70 °C / 8.0 03/2010 

T. tengchongensis YIM 77392.1 70 °C / 8.0 03/2010 

T. tengchongensis YIM 77401 85 °C / 8.0 03/2010 

T. tengchongensis YIM 77410 85 °C / 8.0 03/2010 

T. tengchongensis YIM 77427a 86 °C / 8.0 03/2011 

T. tengchongensis YIM 77727 85 °C / 8.0 03/2010 

T. tengchongensis YIM77924 82 °C / 7.5 06/2011 

T. thermophilus YIM 77318 70 °C / 8.0 03/2010 

T. thermophilus YIM 77430.2 73 °C / 7.0 03/2010 
a Removed from this study 
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Table S1. Thermus master list and isolation source (con’t) 

Strain  Enrichment - Lab or field? Enrichment 

T. amyloliquefaciens YIM77409 Lab-serial dilution technique aerobic 

T. amyloliquefaciens  YIM 77735.1 Lab-serial dilution technique aerobic 

T. antranikianii YIM 77311.1 Lab-serial dilution technique aerobic 

T. antranikianii YIM 77430.1 Lab-serial dilution technique aerobic 

T. antranikianii YIM 77730 Lab-serial dilution technique aerobic 

T. arciformis JCM15153 N/A aerobic 

T. brockianus YIM 77420.2 Lab-serial dilution technique aerobic 

T. brockianus YIM 77709a Lab-serial dilution technique aerobic 

T. brockianus YIM77904 Lab-serial dilution technique aerobic 

T. brockianusYIM77927 Lab-serial dilution technique aerobic 

T. brockianus YIM79134 Field-Enrichment aerobic 

T. caliditerrae YIM77925 Field-Enrichment aerobic 

T. caliditerrae YIM 77777a Lab-serial dilution technique aerobic 

T. igniterrae YIM 77777.1 Lab-serial dilution technique aerobic 

T. oshimai YIM 77359  Lab-serial dilution technique aerobic 

 T. oshimai YIM 77838.1 Lab-serial dilution technique aerobic 

T. oshimai YIM 77923.2 Lab-serial dilution technique aerobic 

T. scotoductus YIM 77445.2 Lab-serial dilution technique aerobic 

T. scotoductus YIM 77398a  Lab-serial dilution technique aerobic 

T. tengchongensis YIM 77357 Lab-serial dilution technique aerobic 

T. tengchongensis YIM 77392 Lab-serial dilution technique aerobic 

T. tengchongensis YIM 77392.1 Lab-serial dilution technique aerobic 

T. tengchongensis YIM 77401 Lab-serial dilution technique aerobic 

T. tengchongensis YIM 77410 Lab-serial dilution technique aerobic 

T. tengchongensis YIM 77427a Lab-serial dilution technique aerobic 

T. tengchongensis YIM 77727 Lab-serial dilution technique aerobic 

T. tengchongensis YIM77924 Lab-serial dilution technique aerobic 

T. thermophilus YIM 77318 Lab-serial dilution technique aerobic 

T. thermophilus YIM 77430.2 Lab-serial dilution technique aerobic 
a Removed from this study 
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Table S1. Thermus master list and isolation source (con’t) 

Strain  Enrichment nutrient source?  Reference 

T. amyloliquefaciens YIM77409 T5 Yu 2015,Song 2014 

T. amyloliquefaciens  YIM 77735.1 T5 This study 

T. antranikianii YIM 77311.1 T5 This study 

T. antranikianii YIM 77430.1 T5 This study 

T. antranikianii YIM 77730 T5 This study 
T. arciformis JCM15153 
 

autoclaved spring water, 
tryptone, and yeast extract 

Zhang 2010 
 

T. brockianus YIM 77420.2 T5 Yu 2015,Song 2014 

T. brockianus YIM 77709a T5 This study 

T. brockianus YIM77904 R2A This study 

T. brockianusYIM77927 R2A This study 

T. brockianus YIM79134 T5 Ming, 2014 

T. caliditerrae YIM77925 T5 Ming, 2014 

T. caliditerrae YIM 77777a T5 This study 

T. igniterrae YIM 77777.1 R2A This study 

T. oshimai YIM 77359  R2A This study 

 T. oshimai YIM 77838.1 R2A This study 

T. oshimai YIM 77923.2 R2A This study 

T. scotoductus YIM 77445.2 R2A This study 

T. scotoductus YIM 77398a  T5 Yu 2015,Song 2014 

T. tengchongensis YIM 77357 T5 This study 

T. tengchongensis YIM 77392 T5 This study 

T. tengchongensis YIM 77392.1 T5 This study 

T. tengchongensis YIM 77401 T5 This study 

T. tengchongensis YIM 77410 T5 This study 

T. tengchongensis YIM 77427a T6 This study 

T. tengchongensis YIM 77727 T5 This study 

T. tengchongensis YIM77924 R2A Yu, 2012 

T. thermophilus YIM 77318 T5 This study 

T. thermophilus YIM 77430.2 T5 This study 
a Removed from this study 
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Table S2. Primers for PCR amplification and annealing temperatures 

Primer (forward/reverse) Target Gene  Annealing Temperature 

narGn2F_CC/narGn6R_CC narG 61.3°C 

narGn2F_CC/narGn7R_CC narG (strain 318) 59.6°C 

nirKn3F/nirKn3R nirK 57.2°C 

nirSn1F/nirSn4R nirS 60.9°C 

nirSn1FB/nirSn925RB nirS(strain 925) 64.1°C 

norBnF1F_CC/norBn9R norB 54.9°C 

norBn925/norBn9R norB (strain 925) 55.4°C 
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Copyright Approval 

 

Genome Announcements 

Creative Commons Attribution 4.0 International Public License 

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions 

of this Creative Commons Attribution 4.0 International Public License ("Public License"). To the extent this Public 

License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance 

of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor 

receives from making the Licensed Material available under these terms and conditions. 

Section 1 – Definitions. 

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based 

upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, 

transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar 

Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical 

work, performance, or sound recording, Adapted Material is always produced where the Licensed Material 

is synched in timed relation with a moving image. 

b. Adapter's License means the license You apply to Your Copyright and Similar Rights in Your 

contributions to Adapted Material in accordance with the terms and conditions of this Public License. 

c. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright 

including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, 

without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights 

specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights. 

d. Effective Technological Measures means those measures that, in the absence of proper authority, may not 

be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted 

on December 20, 1996, and/or similar international agreements. 

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to 

Copyright and Similar Rights that applies to Your use of the Licensed Material. 

f. Licensed Material means the artistic or literary work, database, or other material to which the Licensor 

applied this Public License. 

g. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public 

License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed 

Material and that the Licensor has authority to license. 

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License. 

i. Share means to provide material to the public by any means or process that requires permission under the 

Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, 

communication, or importation, and to make material available to the public including in ways that 

members of the public may access the material from a place and at a time individually chosen by them. 

j. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the 

European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended 

and/or succeeded, as well as other essentially equivalent rights anywhere in the world. 

k. You means the individual or entity exercising the Licensed Rights under this Public License. Your has a 

corresponding meaning. 

https://creativecommons.org/licenses/by/4.0/legalcode#s2b
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Section 2 – Scope. 

a. License grant. 

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a 

worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the 

Licensed Rights in the Licensed Material to: 

A. reproduce and Share the Licensed Material, in whole or in part; and 

B. produce, reproduce, and Share Adapted Material. 

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply 

to Your use, this Public License does not apply, and You do not need to comply with its terms and 

conditions. 

3. Term. The term of this Public License is specified in Section 6(a). 

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the 

Licensed Rights in all media and formats whether now known or hereafter created, and to make 

technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any 

right or authority to forbid You from making technical modifications necessary to exercise the 

Licensed Rights, including technical modifications necessary to circumvent Effective 

Technological Measures. For purposes of this Public License, simply making modifications 

authorized by this Section 2(a)(4) never produces Adapted Material. 

5. Downstream recipients. 

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material 

automatically receives an offer from the Licensor to exercise the Licensed Rights under 

the terms and conditions of this Public License. 

B. No downstream restrictions. You may not offer or impose any additional or different 

terms or conditions on, or apply any Effective Technological Measures to, the Licensed 

Material if doing so restricts exercise of the Licensed Rights by any recipient of the 

Licensed Material. 

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission to 

assert or imply that You are, or that Your use of the Licensed Material is, connected with, or 

sponsored, endorsed, or granted official status by, the Licensor or others designated to receive 

attribution as provided in Section 3(a)(1)(A)(i). 

b. Other rights. 

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are 

publicity, privacy, and/or other similar personality rights; however, to the extent possible, the 

Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited 

extent necessary to allow You to exercise the Licensed Rights, but not otherwise. 

2. Patent and trademark rights are not licensed under this Public License. 

3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise 

of the Licensed Rights, whether directly or through a collecting society under any voluntary or 

waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly 

reserves any right to collect such royalties. 

Section 3 – License Conditions. 

Your exercise of the Licensed Rights is expressly made subject to the following conditions. 

https://creativecommons.org/licenses/by/4.0/legalcode#s6a
https://creativecommons.org/licenses/by/4.0/legalcode#s2a4
https://creativecommons.org/licenses/by/4.0/legalcode#s3a1Ai
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a. Attribution. 

1. If You Share the Licensed Material (including in modified form), You must: 

A. retain the following if it is supplied by the Licensor with the Licensed Material: 

i. identification of the creator(s) of the Licensed Material and any others 

designated to receive attribution, in any reasonable manner requested by the 

Licensor (including by pseudonym if designated); 

ii. a copyright notice; 

iii. a notice that refers to this Public License; 

iv. a notice that refers to the disclaimer of warranties; 

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable; 

B. indicate if You modified the Licensed Material and retain an indication of any previous 

modifications; and 

C. indicate the Licensed Material is licensed under this Public License, and include the text 

of, or the URI or hyperlink to, this Public License. 

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, 

means, and context in which You Share the Licensed Material. For example, it may be reasonable 

to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required 

information. 

3. If requested by the Licensor, You must remove any of the information required by 

Section 3(a)(1)(A) to the extent reasonably practicable. 

4. If You Share Adapted Material You produce, the Adapter's License You apply must not prevent 

recipients of the Adapted Material from complying with this Public License. 

Section 4 – Sui Generis Database Rights. 

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material: 

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all 

or a substantial portion of the contents of the database; 

b. if You include all or a substantial portion of the database contents in a database in which You have Sui 

Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its 

individual contents) is Adapted Material; and 

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the 

contents of the database. 

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public 

License where the Licensed Rights include other Copyright and Similar Rights. 

Section 5 – Disclaimer of Warranties and Limitation of Liability. 

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers 

the Licensed Material as-is and as-available, and makes no representations or warranties of any kind 

concerning the Licensed Material, whether express, implied, statutory, or other. This includes, 

without limitation, warranties of title, merchantability, fitness for a particular purpose, non-

infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, 

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in 

part, this disclaimer may not apply to You. 

https://creativecommons.org/licenses/by/4.0/legalcode#s3a1
https://creativecommons.org/licenses/by/4.0/legalcode#s3a1A
https://creativecommons.org/licenses/by/4.0/legalcode#s2a1
https://creativecommons.org/licenses/by/4.0/legalcode#s3a
https://creativecommons.org/licenses/by/4.0/legalcode#s4
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b. To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, 

without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, 

punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or 

use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, 

costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this 

limitation may not apply to You. 

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, 

to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability. 

Section 6 – Term and Termination. 

a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if 

You fail to comply with this Public License, then Your rights under this Public License terminate 

automatically. 

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates: 

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your 

discovery of the violation; or 

2. upon express reinstatement by the Licensor. 

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek 

remedies for Your violations of this Public License. 

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or 

conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this 

Public License. 

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License. 

Section 7 – Other Terms and Conditions. 

a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You 

unless expressly agreed. 

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are 

separate from and independent of the terms and conditions of this Public License. 

Section 8 – Interpretation. 

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, 

restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without 

permission under this Public License. 

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be 

automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be 

reformed, it shall be severed from this Public License without affecting the enforceability of the remaining 

terms and conditions. 

c. No term or condition of this Public License will be waived and no failure to comply consented to unless 

expressly agreed to by the Licensor. 

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any 

privileges and immunities that apply to the Licensor or You, including from the legal processes of any 

jurisdiction or authority. 

https://creativecommons.org/licenses/by/4.0/legalcode#s6a
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to 

apply one of its public licenses to material it publishes and in those instances will be considered the 

“Licensor.” The text of the Creative Commons public licenses is dedicated to the public domain under 

the CC0 Public Domain Dedication. Except for the limited purpose of indicating that material is shared 

under a Creative Commons public license or as otherwise permitted by the Creative Commons policies 

published at creativecommons.org/policies, Creative Commons does not authorize the use of the 

trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior 

written consent including, without limitation, in connection with any unauthorized modifications to any of 

its public licenses or any other arrangements, understandings, or agreements concerning use of licensed 

material. For the avoidance of doubt, this paragraph does not form part of the public licenses. 

 

Creative Commons may be contacted at creativecommons.org. 
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