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ABSTRACT 

 

Isolation and Characterization of Paenibacillus larvae Bacteriophage for Use as a Potential 

Treatment of American Foulbrood Disease in Honeybees 

 

By 

 

Diane G. Yost 

Dr. Penny Amy, Examination Committee Chair 

Professor of Biological Sciences 

University of Nevada, Las Vegas 

 

 American foulbrood disease is a destructive honeybee illness cause by the bacterial 

pathogen, Paenibacillus larvae.  Current methods of treatment are either destructive or do not 

completely eradicate the infection, and as such, undertaking further research to determine the 

effectiveness of alternate treatment methods is of consequence. 

 The therapeutic use of bacteriophage that are capable of lysing host bacterial cells, or 

phage therapy, is one such potential treatment.  Phage are viruses that infect bacteria, and are 

generally very host-specific.  As such, targeting a pathogen would require obtaining phage 

specific for P. larvae.  Therefore, obtaining P. larvae phage requires screening environmental 

samples likely to have phage capable of infecting P. larvae, enriching samples with P. larvae, 

isolating any phage present, and characterizing the phage.  After host range characterization, the 

phage with the broadest host ranges of P. larvae strains but inability to target other species of 

bacteria would be selected for use in a multi-phage cocktail.  This cocktail would be used in 

experimental treatments to determine the effectiveness of phage therapy in increasing survival of 

honeybee larvae infected with P. larvae and eradication of AFB in an infected honeybee hive. 
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CHAPTER 1 

 

INTRODUCTION 

Honeybees, Apis mellifera, are affected by a multitude of diseases including colony 

collapse disorder, nosema, varroa mites, wax moth infestations, viral infections, and chalkbrood, 

among others (Shimanuki and Knox, 2000).  Such a variety of diseases is causing a decline in 

honeybee populations (vanEngelsdorp and Meixner, 2010), a devastating reality for agriculture.  

Honeybees pollinate approximately 35% of food crops worldwide (Klein et al., 2007) and 

provide the agricultural industry in the United States an economic value of approximately $9 

billion (Delaplane and Mayer, 2000).  A decline in bee populations leads to a decline in 

pollination, crop yield, and food supply (Potts et al., 2010). Hence, researching these diseases, 

including potential treatments and preventative measures, is beneficial to the agricultural industry 

and conservation strategies in general.   

One honeybee infection, American Foulbrood disease (AFB), is caused by the bacterium, 

Paenibacillus larvae (Shimanuki and Knox, 2000).  This Gram-positive, rod-shaped bacterium is 

capable of forming spores which are picked up by adult bees and brought back to the hive 

(Genersch, 2010).  Adult bees are resistant to the bacterial disease; however, they are vectors that 

transmit the infectious agent to larvae that are susceptible (Hitchcock et al., 1979; Wilson, 1971).  

Spores are resistant to antibiotics and heat; studies have shown that the spores of Paenibacillus 

larvae in particular can persist for at least several decades (Genersch, 2010), which makes 

eradication of this disease difficult.  As few as 10 spores can cause the disease in a larva 

(Woodrow, 1942; Woodrow and Holst, 1942).  Once spores enter the gut of larvae, they 

germinate and become vegetative bacterial cells (Bamrick, 1967) that proceed to grow and divide 

in the larvae.  In doing so, however, they compete with the larvae for nutrients, as well as 

propagating to the point of rupturing the midgut lumen (Yue et al., 2008).  The larvae disintegrate 
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into ropey masses, which deteriorate into scales; this condition is a characteristic trait of larvae 

killed by this particular disease (Genersch, 2010).  The death of one larva can produce millions of 

spores which are then released in the hive (Sturtevant, 1932).  As the larvae of a hive succumb to 

the disease, and fewer bees are able to reach adulthood, the hive collapses as it is unable to 

maintain its population.  Currently, methods of treatment include the direct use of antibiotics in 

hives as well as burning infected hives (Genersch, 2010).  The former method has caused 

increased antibiotic resistance in strains of P. larvae (Evans, 2003), as well as residual antibiotics 

in honey that is sold for human consumption (Ortelli et al., 2004; Saridaki-Papakonstadinou et 

al., 2006).  Additionally, there is evidence of decreased hive immunity to protect the bees from 

future recurrence of AFB following antibiotic treatment (Hawthorne and Dively, 2011).  The 

latter method of treating the disease is incredibly costly to the beekeeping community and results 

in the decrease of hive materials, equipment, and productive hives, leading to significant 

economic loss (Genersch, 2010).  Therefore, the prevalence and seriousness of the AFB, 

combined with the lack of effective and safe methods of treatment, has created the need for 

research into alternate methods of treatment. 

One potential method of treatment is bacteriophage, or simply phage, therapy.  Phage 

therapy is the therapeutic use of viruses, or phage.  Phage are capable of infecting and lysing 

bacteria (Carlton, 1999), with specificity for targeting certain bacterial species.  Having a specific 

host range means the bacteriophage can lyse the species of interest without killing even closely 

related species, ensuring the survival of beneficial or harmless bacteria.  A phage cocktail, 

capable of infecting P. larvae but specific to this species, would potentially treat a beehive 

infected with AFB without harming the native fauna or beneficial microbiota of the hive.  

Previous work has explored the characteristics of single phage isolated from lysogenic strains of 

P. larvae with the intent of developing a potential treatment strategy for AFB (Gochnauer, 1955; 

Gochnauer, 1970; Drobnikova and Ludvik, 1982, Popova et al., 1976; Valerianov et al., 1976; 
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Dingman et al., 1984; Bakheit and Stahly, 1988; Campana et al., 1991); however, none of the 

previous research led to a treatment regime for AFB.  Bacteriophage are natural entities that 

already exist in the environment, are not genetically modified, are self-propagating, would 

decrease the need for chemicals, and would be harmless to bees or humans.  Therefore, 

researching the potential for use of phage therapy in treating AFB is of interest. 

Because no recent isolates of phage to infect P. larvae are available, the first step in 

developing a potential AFB phage therapy treatment is conducting an environmental search for 

phage capable of lysing P. larvae.  An extensive environmental search for P. larvae phage has 

neither been done nor is available; therefore, conducting an environmental search should include 

investigating both materials related and unrelated to beehives to discover where appropriate 

phage are found in nature and how prevalent they are.  Noting the prevalence and sources for any 

phage found would be useful for phage ecology, and preserving such phage would be crucial in 

testing the ability for phage therapy.  Therefore, in this research, both environmental and 

commercial materials will be screened for P. larvae phage, any positive samples will be 

characterized, and then these isolates will be used for experimental treatments. 

Characterization of the phage is important to determine if multiple isolates might be 

several different phage or are actually the same phage isolated from different sources, meaning 

that a single phage could be ubiquitous.  Characterization could also help to determine if newly 

isolated phage have previously been characterized by other researchers as well as to evaluate the 

potential for treating AFB.  A spot test can be used to access the lytic capabilities of each phage 

on as many strains of P. larvae as possible.  This would allow the host range of each individual 

phage to be determined and allow the patterns of lytic capabilities between phage to be compared.  

Transmission electron microscopy will be utilized to visualize individual phage for the purpose of 

comparing the morphologies of each. 
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After phage characterization, a preliminary experimental treatment needs to be 

conducted.  Honeybee larvae will be infected with the spores of P. larvae, as described by 

Gochnauer and L’Arrivee (1969) and by Brodsgaard et al. (1998).  Treatments will include: a 

negative control without either spore infection or phage treatment, a positive control with spore 

infection only, a positive control with phage treatment only, an experimental treatment with 

phage cocktails administered after spore infection, and an experimental treatment with phage 

cocktails administered prior to spore infection.  The survival rates of larvae with phage therapy 

will be compared to survival rates of the controls.  Additionally, it will be useful to determine the 

ability of phage cocktails to prevent infection of AFB by introducing phage prior to infection.  

Because germination of spores occurs in the gut of the larvae, both spores and phage will be 

added to their food for ingestion. 

Ultimately, the goal of the project is to determine the possible effectiveness and 

feasibility of utilizing newly isolated bacteriophage from natural sources as a means to treat 

American Foulbrood Disease in honeybees. 
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CHAPTER 2 

 

 

METHODS FOR DEVELOPING TREATMENT STRATEGIES AGAINST THE HONEYBEE 

PATHOGEN PAENIBACILLUS LARVAE, THE CAUSAL AGENT OF AMERICAN 

FOULBROOD DISEASE 

 

 

FORWARD 

 This chapter is a compilation of work conducted by multiple research labs.  Ms. Jasmin 

Khilnani is responsible for the work concerning low abundance compounds under the direction of 

Dr. Helen Wing and Mr. Israel Alvarado is responsible for the work concerning endospore 

formation and collection under the direction of Dr. Ernesto Abel-Santos.  Dr. Helen Wing is 

responsible for extensive writing and editing of this manuscript.  I do not take credit for the 

research presented nor the written text in the aforementioned sections other than my own.  My 

contribution to the research of this manuscript was conducted under the direction of Dr. Penny 

Amy and is solely the research concerning bacteriophage acquisition, Figure 4, Table 2, and 

Table 3. 

 This chapter is formatted for submission to BMC Microbiology. 
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Abstract  

Background   

Paenibacillus larvae is a Gram-positive, spore-forming bacterium that is the causal agent of 

American Foulbrood (AFB), a disease which affects honeybee larvae. AFB leads to significant 

losses in honeybee populations, which drastically affects the agricultural economy each year. 

Consequently, there is a pressing need to develop new treatment strategies against P. larvae and 

the disease it causes.  

Results  

The methods described in this report were developed as a first step in the investigation of new 

treatment strategies against P. larvae. Three methodological advances are described and 

compared to current methods, where they exist. A protocol is described that consistently yields 

higher numbers of P. larvae spores than previously described protocols, regardless of the strain 

tested. Furthermore, microscopic examination of the spore preparations reveals that the newly 

devised protocol yields purer spores than previously described protocols. Secondly, two enhanced 

protocols that test the antimicrobial activity of low abundance compounds found naturally in 

resistant adult honeybees are presented. The advantages of these protocols are discussed. Thirdly, 

protocols to isolate, enrich and purify bacteriophage that specifically kill vegetative cells of P. 

larvae are fully described.  

Conclusions 

We anticipate that this new collection of methods will assist others working to investigate the 

biology of and develop treatment strategies against P. larvae. 

 

 

Background 

According to a recent survey of American bee keepers, one-third of the country’s honeybee 

(Apis mellifera) colonies did not make it through the 2012-2013 winter season (Charles, 2013 and 
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Spleen et al., 2013). This decrease in honeybee populations is alarming considering the role that 

honeybees play in the pollination of many major crops and the potential impact they have on the 

global economy (Crailsheim and Riessberger-Galle, 2001; Morse, 2000; and Breeze et al., 2011). 

American Foulbrood Disease (AFB) is a contributing factor to the decline in honeybee 

populations (Evans and Schwarz, 2011). AFB is the most widespread and destructive of the bee 

brood diseases and, despite its name, is found worldwide wherever honeybees are kept 

(Matheson, 1993 and Calderone, 2001).  The Gram-positive, spore-forming bacterium 

Paenibacillus larvae was found to be the causal agent of American Foulbrood Disease (AFB) in 

1907 (White, 1907).  The spores of this bacterium infect honeybee larvae within 72 h of eclosion 

(hatching from the egg). This typically occurs when brood food contaminated with infectious 

spores is fed to larvae by the nurse bees, which, like all adult honeybees, are resistant to AFB 

(Wilson, 1971).  

Paenibacillus larvae was originally classified in the genus Bacillus but was reclassified as a 

separate genus in 1993 (Ash et al., 1993).  Formerly, two subspecies, P. larvae pulvifaciens and 

P. larvae larvae (Heyndrickx et al., 1996) were described, but more recently the sub-species 

classification has been removed (Genersch et al., 2006).  

The infectious spores of P. larvae are known to remain viable for at least 35 years (Haseman, 

1961). Currently, eradication of P. larvae from infected hives can only be achieved by burning 

the entire hive and all associated equipment (Matheson, 1993 and Calderone, 2001). However, 

this highly destructive solution increases the economic losses associated with the disease. In some 

cases, antibiotics offer an effective prophylactic treatment (Calderone, 2001), but antibiotics are 

not recommended for the treatment of hives that are actively infected. This is because antibiotics 

can select for resistant strains of P. larvae (Murray et al., 2007) and do not completely clear the 

pathogen from the hive. Instead, vegetative P. larvae cells sporulate and remain quiescent until 

antibiotic levels drop, at which time a new infection will occur (Calderone, 2001). The hives may 
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appear healthy until there is a new stressor, such as onset of winter, at which time the disease 

reoccurs (Karen Bean, personal communication). In addition, antibiotic use has the potential to 

lead to traces of the antibiotic in the honey of treated hives. For these reasons, the registered use 

of antibiotics in the treatment of AFB has been withdrawn in many countries (Chan et al., 2011). 

Clearly, there is a pressing need to improve upon the current strategies used to decrease the 

incidence of this disease.  

The methods described in this report were developed as a first step in the investigation of new 

treatment strategies against P. larvae. Three methodological advances are described; 1) an 

improved protocol that yields a significantly higher number and purity of P. larvae spores, the 

infectious form of P. larvae, 2) enhanced protocols that test the antimicrobial activity of low 

abundance compounds found naturally in resistant adult honey bees, and 3) the isolation, 

enrichment and purification of bacteriophage isolates that specifically kill vegetative cells of P. 

larvae. We anticipate that this new set of methods will assist others working on P. larvae. 

 

Results & Discussion 

An improved protocol for the development and collection of P. larvae endospores 

Three procedures for in vitro sporulation of P. larvae are commonly used (Dingman, 

1983; Dingman and Stahly, 1983; and Genersch et al., 2005) and described in de Graaf et al. 

(2013). Traditional infection studies do not require large numbers of spores because the infectious 

dose of P. larvae spores is extremely low (<10 spores per larva [Woodrow, 1942 and Woodrow 

and Holst, 1942]). However, our in vitro and in vivo P. larvae germination assays required 

abundant and highly purified spore preparations (Akoachere et al., 2007; Alvarado et al., 2013; 

Howerton et al., 2011; Powell, 1950; Ramirez and Abel-Santos, 2010; Alvarez et al., 2010).  In 

our experience, the published protocols (described in [de Graaf et al., 2013]) do not yield 

sufficient numbers of P. larvae spores for such studies. Consequently, a new method was 
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developed that reproducibly yields higher numbers of spores from different strains with greater 

purity. Here, we present a comparison of our newly devised protocol with the protocol (de Graaf 

et al., 2013) that has traditionally yielded the highest number of spores (Dingman; personal 

communication).  

For this comparative study of in vitro sporulation, three P. larvae type strains (B-3554, 

B-3650, and B-3685; see Table 1) were chosen because reports indicate sporulation rates vary 

from strain to strain depending on the conditions used. Using the previously published method 

(Dingman, 1983 and de Graaf et al., 2013), the three P. larvae strains were induced to sporulate 

on MYPGP solid growth medium. Previous reports indicate that sporulation efficiency declines 

when high numbers of colonies are present on a plate (Dingman and Stahly, 1983 and de Graaf et 

al., 2013), therefore spores were isolated from MYPGP plates with either low (50-200 colonies 

per plate) or high (colony 1000-5000 colonies) colony densities after 7 days of incubation at 

37°C. The resulting spores were repeatedly washed and pelleted as previously described  

(Dingman and Stahly, 1983 and de Graaf et al., 2013). In contrast, using the newly devised 

protocol, P. larvae strains were induced to sporulate on Tryptic Soy Agar (TSA) that was 

incubated for 7 days at 37°C in 5% CO2. Each TSA plate was inoculated with 200 µl of an 

exponentially growing culture (approximately 1.2 x 108 colony forming units, CFUs). P. larvae 

strains produced lawns on TSA medium. A HistoDenz™ density gradient was used to harvest 

spores from vegetative cells and cell debris (Akoachere et al., 2007).  

The yield of viable spores from each protocol was determined after the spore-containing 

sample was heated (to kill any remaining vegetative cells), serially diluted and plated on MYPGP. 

The resulting number of CFUs represents an estimate of the number of viable spores present in 

each sample (Figure 1A). Regardless of the strain or whether the spores were isolated from either 

high or low density plates, the newly developed sporulation protocol yielded significantly higher 

numbers of spores per TSA plate than the established MYPGP plate method (for strain B-3554, 
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4.66 x 109 CFU per TSA plate versus 3.12 x 102-1.21 x 107 CFU per MYPGP plate; for strain B-

3650, 9.73 x 106 CFU per TSA plate versus 9.08 x 105-3.61 x 106 CFU per MYPGP plated; and 

for strain B-3685, 6.06 x 108 CFU per TSA plate versus 6.64 x 105-4.27 x 106 CFU per MYPGP 

plate). Limiting the number of colonies per MYPGP plate increased spore yield over those 

harvested from MYPGP plates with high colony densities for P. larvae strains for B-3554 and B-

3650, but not for strain B-3685. These data demonstrate that regardless of the strain used, the 

newly developed protocol routinely yielded higher numbers of viable spores.  

The purity of spore stocks was next determined by microscopic analysis of spore smears 

stained via the Schaeffer-Fulton method. Percent purity was defined as the ratio of spores to total 

count of vegetative cells and spores in a sample (Figure 1B). Microscopic analysis of spore stocks 

prepared for strains B-3554 and B-3685 on MYPGP plates consisted of less than 20% spores. In 

addition the spores, prepared using the MYPGP protocol, were frequently contaminated with cell 

debris, although the amount of debris was difficult to quantify by microscopy. For example, spore 

stocks generated from strain B-3650 had 100% purity, even though cell debris could be observed 

by microscopy (Figure 2A). These results indicate that multiple washes used in the previously 

reported protocol  (Dingman and Stahly, 1983 and de Graaf et al., 2013) are not sufficient to 

remove vegetative cells and cell debris from the spore stocks. Furthermore, lysis of bacterial cells 

in spores stocks by heating is not recommended because nutrient release from vegetative cells has 

been shown to trigger spore germination (Shah et al., 2008). In contrast, spores isolated using a 

HistoDenz™ density gradient to separate the spores from vegetative cells and cell debris, worked 

exceptionally well and yielded virtually pure preparations of spores (Figure 2B). We therefore 

recommend the use of a HistoDenz™ density gradient to purify spores because of the ease and 

non-disruptive nature of the procedure.  

These experiments demonstrate that our newly devised in vitro sporulation method is 

more effective than established protocols  (Dingman and Stahly, 1983 and de Graaf et al., 2013). 
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While we obtained significantly more spores using our method with multiple P. larvae strains, the 

use of a density gradient during spore preparation ensured that we also obtained a pure spore 

stock. Furthermore, use of a commercially available medium, TSA, facilitated spore production 

since other protocols describe the use of specialized media that often require extensive 

preparation and may not support the growth of all P. larvae strains. In sum, the newly devised in 

vitro sporulation experiments described above will facilitate research into identifying alternative 

treatments for American Foulbrood Disease in honey bee larvae. They are already being used to 

generate spores for spore germination assays (Alvarado et al., 2013), larval exposure assays, and 

spore decontamination studies (work in progress).  

Assays to measure antibacterial activity of low abundance compounds against P. larvae 

Typically, the susceptibility/resistance of P. larvae to antimicrobial agents is measured 

using either disk diffusion assays or by determining the minimal inhibitory concentration (MIC) 

on a series of agar plates (agar dilution) or in broth (broth dilution) which contain different 

concentrations of the antimicrobial agents (as described in de Graaf et al., 2013). The primary 

drawback of each of these methods is that large amounts of the candidate compound are required 

for testing. To test the antibacterial activity of low abundance compounds against P. larvae, two 

new methods were developed.  

The first protocol is a modified zone of inhibition assay. Two microliters of low abundance 

compounds were applied to a small hole punched into the center of a 3x R2 agar (described in 

Methods) inoculated with P. larvae. The plates were incubated at 37°C and observed zones of 

inhibition were measured after 24 and 48 h. By adding the candidate antibacterial compound 

directly to the agar, diffusion was unimpeded, which does not always happen when molecules are 

applied to paper disks. To aid diffusion of the compound through the agar plates, the 

concentration of agar was lowered from 2% (w/v), which is traditionally used in disk diffusion 

assays on P. larvae (de Graaf et al., 2013), to 1.5% (w/v). Rather than using MYPGP agar for the 
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zone of inhibition assays, 3x R2 agar medium was chosen because; 1) P. larvae grows well on 

this medium, 2) it is commercially available, 3) it has similar composition to MYPGP, which has 

been  used previously for similar assays (de Graaf et al., 2013) and 4) unlike other commonly 

used broths, such as Brain Heart Infusion (BHI) medium, it does not contain sodium chloride, 

which has been shown to inhibit the function of honeybee antimicrobial peptides (AMPs) 

(Caseels et al., 1990; Chi et al., 2003; and Suttle and Fhurman, 2010).   The primary advantage of 

these protocol adjustments over currently published methods is that small aliquots of test 

compounds can be applied to the inoculated agar, allowing compounds that are in low supply or 

otherwise prohibitively expensive to be tested.  

The second protocol developed is a 96-well plate assay. Briefly, 5 µl aliquots of the 

compound, at varying concentrations, were incubated with 95 µl of P. larvae culture grown to 

logarithmic growth phase in 3x R2 broth (R2B). Samples were incubated for 24 h and optical 

density measurements were taken over time. Use of 3x R2B in these assays was found to decrease 

P. larvae cell aggregates that are typically seen when this bacterium is grown in BHI broth, thus 

eliminating inconsistencies in optical density readings. These protocol adaptations generated an 

assay that is as quantitative as the MIC assay but uses much less compound than currently 

published methods (de Graaf et al., 2013). These advances will allow large numbers of MIC tests 

to be run under identical conditions, making these methods more suitable for low abundance or 

expensive compounds.  

Using these approaches, two active AMPs found in adult honeybees, apidaecin and abaecin, 

were tested against P. larvae strain B-3554 and Escherichia coli strain MC4100. Previous reports 

have indicated that each of these compounds is active against E. coli strains in liquid assays. The 

inclusion of E. coli in our assays, therefore, provided a useful positive control (Caseels et al., 

1990 and Chi et al., 2003).  
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First, E. coli was tested using both the zone of inhibition and the 96-well plate assays. 

Strikingly, in the zone of inhibition assay that uses semi-solid media, apidaecin was the only 

AMP to exhibit antibacterial activity (a zone of clearance 8 mm in diameter was observed for 

apidaecin versus none for abaecin; Figure 3, A & C). Conversely, in our 96-well plate assays 

using liquid media, both apidaecin and abaecin show modest, although statistically significant, 

inhibition of E. coli growth over a 24 h incubation period (Figure 3, E & G) These observations 

suggest that the 96-well plate assay is more sensitive for the detection of antibacterial activity of 

low abundance compounds than the zone of inhibition assay for our control organism, E. coli.  

We next tested the antibacterial activity of apidaecin and abaecin against P. larvae, to 

determine whether our newly devised assays would be sensitive enough to screen low abundance 

compounds for antibacterial activity against P. larvae. For P. larvae, both apidaecin and abaecin 

were seen to display antibacterial activity in the 96-well plate assay using liquid media at the 12 

and 18 h time points (Figure 3, F & H), but neither AMP showed any observable antibacterial 

activity in the zone of inhibition assays (Figure 3, B & D). These data, once again, indicate that 

the 96-well plate assay using liquid media is more sensitive than the zone of inhibition assay for 

the detection of antibacterial activity of low abundance compounds. While we recognized that the 

zone of inhibition assays, described above, are simple to set up, require cheaper supplies and do 

not require expensive technical equipment to collect the experimental data (plate reader/ 

incubator), it is clear from the data collected that the 96-well plate assays provide greater 

sensitivity and generate quantitative data that can be used to determine the potential of low 

abundance compounds to be used as antibacterial treatments to inhibit the growth of P. larvae 

populations. These findings also demonstrate that the antibacterial activity of a compound may be 

masked when tested on semi-solid media, even though the agar concentration had been decreased 

to 1.5% from the 2% agar concentration typically recommended for disk diffusion assays. This 
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observation is worthy of consideration and has not been discussed in other protocol descriptions 

to date (de Graaf et al., 2013; Caseels et al., 1990; Chi et al., 2003). 

Acquisition, enrichment and isolation of bacteriophage that specifically lyse vegetative P. 

larvae 

Bacteriophage are highly specific to their host bacteria and are extremely abundant in nature 

(Suttle and Fuhrman, 1984). Lytic phage enter bacterial cells, replicate and kill their host cell by 

degrading the bacterial cell wall (lysis). In contrast, lysogenic phage reside within bacterial cells 

in a quiescent state, but may become activated to enter a lytic cycle under certain conditions. 

Bacteriophage capable of lysing P. larvae strains undoubtedly exist in nature and are likely to be 

found in environments (soil, water) in and around infected beehives and in compounds derived 

from honeybee products. To determine whether P. larvae specific phage have the potential to be 

used as novel treatment strategies for AFB, protocols that specifically allow the isolation, 

amplification, screening and purification of bacteriophage specific for P. larvae were developed.  

Acquisition: To induce lysogenic bacteriophage from P. larvae, procedures adapted from 

those described by Dingman et al. (Dingman et al., 1984) were used. Although it is common to 

induce lysogenic phage to enter the lytic cycle using environmental stressors such as ultraviolet 

radiation or chemicals (Mayer et al., 1969), in our experience these stressors were not necessary 

for inducing lysogenic P. larvae phage. Cultures of various P. larvae strains were simply grown 

overnight in liquid medium and pelleted by centrifugation. The growth medium was then filtered 

to remove any remaining cells and the resulting filtrate containing liberated bacteriophage was 

used as the starting material for phage enrichment.  

To acquire phage from environmental and commercial samples derived from honeybee 

products, a protocol was adapted from a method designed to isolate bacteriophage from soil 

(Hurst and Reymolds, 2002). This method described agitating a 50 g soil sample in 50 ml of 10% 

beef extract solution for 30 minutes. Since our environmental and commercial samples ranged in 
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mass from 1 g to 5 g, we chose to incubate our samples in 10 ml of phosphate buffered saline 

(PBS) pH 7.1 overnight. PBS buffer was used to facilitate the liberation of phage bound to 

particulates in the sample without extensive growth of microorganisms. After 18-24 h, bacterial 

cells and debris were pelleted by centrifugation and the supernatant was collected. Although the 

original protocol (Hurst and Reymolds, 2002) suggested using a series of stacked filters to 

remove bacterial cells from the samples, we filtered supernatants through 0.45 µm sterile syringe 

filters. If samples of filtrates were discovered to contain contaminating bacteria upon plating, the 

remaining sample was re-filtered using 0.2 µm sterile syringe filters. Filtrates free from bacterial 

contamination were used as the starting material for enrichment of bacteriophage capable of 

lysing P. larvae. 

Enrichment: To enrich for P. larvae-specific bacteriophage, a P. larvae host strain free of 

phage was required. Strain B-2605 (Table 1) was found to be phage-free after testing it for 

lysogenic phage in our studies, and it was also used as a host strain in previous phage research 

(Dingman, 1983). To test for the presence of phage from environmental and commercial samples, 

portions of each filtrate were added to exponentially growing P. larvae strain B-2605 and the 

mixtures were incubated at 37°C overnight. The following day, the supernatants containing 

putative lytic phage were collected and once again filtered.  

Screening & Isolation: To isolate independent isolates of phage, material from single 

plaques was obtained from mBHI (modified BHI; see Methods) agar plates overlain with a soft 

agar containing P. larvae strain B-2605 mixed with the filtrates described above. After overnight 

incubation, plaques were clearly visible on plates, which contained filtrates positive for 

bacteriophage capable of lysing P. larvae (Figure 4).  This technique is similar to that described 

by Hurst & Reynolds (2002), but uses a double-pass procedure similar to that described by 

Bakhiet and Stahly [38]. Each isolated plaque sample and 1 ml of overnight culture of P. larvae 

B-2605 was used to inoculate a 20 ml mBHI broth. After overnight incubation at 37°C, the 
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supernatant containing the amplified bacteriophage was harvested and filtered. This procedure 

was then repeated to ensure that independent pure isolates of bacteriophage were obtained 

(Bakhiet and Stahly, 1988). 

Using these protocols, a combined total of 157 P. larvae strains, environmental samples, 

and commercial samples were screened for bacteriophage capable of lysing the pathogen. Of the 

157 samples, 32 (20%) were found to contain viral particles capable of lysing P. larvae. More 

than half of these independent phage isolates came from samples taken in and around beehives 

(53%). Nineteen percent of phage were isolated from P. larvae lysogenic strains and the 

remaining isolates were obtained from either commercial products containing honey or royal jelly 

or other environmental samples (Table 2).  

The original titers of 13 of these 32 pure isolates ranged from 10 plaque forming units (pfu) 

per ml to 1.55 x 104 pfu per ml. These 13 (described in Table 3) were selected for additional 

amplification to aid further characterization of the pure lysates (summarized in Figure 3). Using 

the amplification protocol, titers typically increased by ≥99%. The maximum increase was 1 x 

108 fold and the minimum was 1 x 106 fold.  

 

Conclusions 

The three sets of methods described above were developed as an initial step to aid the 

investigation of new treatment strategies against P. larvae and the honeybee disease, AFB.  

The first set of methods increase the efficiency of in vitro sporulation and harvesting of P. 

larvae spores compared to current protocols. These advances will aid those studying the disease 

process itself, because the spore is the infectious unit, but will also facilitate those attempting to 

block infection by targeting the endospores specifically, either by inhibiting or triggering their 

germination. The latter approach is currently being investigated (Alvarado et al., 2013).  
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The second set of methods focuses on adapting existing protocols that allow the MIC of 

particular compounds to be tested on P. larvae, so that low abundance compounds or compounds 

that are prohibitively expensive for pilot testing can have their MIC established. Since adult 

honeybees are resistant to AFB, it is likely that compounds found in adult honeybees but absent 

from larvae will prove to be effective antibacterial compounds against P. larvae. This line of 

investigation is the subject of ongoing research in our laboratories.  

The third set of methods center on the premise that phage therapy can be used to eradicate P. 

larvae from contaminated hives and equipment. Using the newly described protocols, naturally 

occurring bacteriophage that are specific for P. larvae can be isolated, enriched and purified from 

a variety of environmental and commercial sources as well as P. larvae lysogens. Using these 

approaches, 13 pure phage isolates at titers of over 105 pfu ml-1 have been collected and are being 

fully characterized to determine their potential to be used as naturally occurring phage 

therapeutics against P. larvae.  

We share these methods because we believe that these methodological advances will 

facilitate research that is targeted towards the development of novel treatment strategies for P. 

larvae and the devastating AFB disease of honeybees.  

 

Methods 

Preparation of P. larvae spores 

 Two methods for producing a large number of spores were compared. Method 1: A P. 

larvae culture was serially diluted using MYPGP broth to obtain low (50-200 and high (1,000-

5,00) CFU per MYPGP plate. Sporulation on solid growth medium was performed as described 

previously (Dingman, 1983; Dingman and Stahly, 1983; and de Graaf et al., 2013). Briefly, after 

7 days of incubation, spores were removed from MYPGP plates by gently scrapping and washing 

the agar surface with sterile water three times. The spore suspension was concentrated via 
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centrifugation, the supernatant was discarded, and the remaining pellet resuspended in ice cold 

water. Alternate centrifugation and pellet suspension steps were performed to clean spores. Spore 

stocks produced in this manner were stored in sterile water at 4°C. Method 2: P. larvae strains 

were grown on Tryptic Soy Agar (TSA; supplied by BD) for 7 days in a 5% CO2 incubator at 

37°C (Akoachere et al., 2007 and Alvarado et al., 2013). The resulting bacterial lawns containing 

spores were collected by flooding with ice-cold deionized water. Spores were pelleted by 

centrifugation and resuspended in fresh deionized water. After three washing steps, the spores 

were separated from their vegetative and partially sporulated forms by centrifugation through a 

20%-to-50% HistoDenz™ gradient. The spore pellet was washed five times with water and stored 

at 4°C. 

Viability Assessment of Spores: The concentration of viable spores in each spore stock 

was measured by heat resistant counts on MYPGP agar plates (Dingman, 1983). We diluted every 

spore stock to an OD580 of 0.2 as a way to normalize the starting concentration of spores. The 

diluted spore stocks were heated at 68°C for 15 minutes, diluted in water, and plated onto 

MYPGP agar. Plates with 30-300 colonies per plate were used to calculate the heat resistant spore 

counts per MYPGP plate used (Dingman, 1983). Heat-resistant counts were performed in 

triplicate with two different spore preparations. Statistically significant differences (P<0.05) for 

all pairs of mean heat resistant spore counts per plate were determined using a Student’s one-

tailed t test assuming equal variances.  

Purity Assessment of Spores: Samples (10µl) of each spore stock were smeared onto 

glass slides, air dried, and observed after Schaeffer-Fulton staining (Schaeffer and Fulton, 1933). 

At least 10 images of each spore stock were acquired randomly, and three random images were 

analyzed using image processing software (ImageJ). Purity of spore preparations was expressed 

as: (number of spores/number of spores and vegetative cells in images) X 100. Statistically 
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significant differences (P<0.05) for all pairs of mean spore preparations or percent purity were 

determined using a Student’s one-tailed t test assuming equal variances. 

Assays to measure antibacterial activity of low abundance compounds against P. larvae 

Growth of bacterial strains: To prepare P. larvae inocula for each of our growth 

inhibition assays, cultures of strain B-3554 were prepared by scraping frozen glycerol stocks 

(20% v/v glycerol) with a sterile wooden stick and placing it in 5 ml 3x R2B. Cultures were 

routinely grown for 16 h at 37°C with orbital shaking (MaxQ 4000 Thermo Scientific) at 325 

rpm. These cultures were then sub-cultured (1:20) and subsequently grown using the conditions 

described above because this was found to minimize cell aggregation in liquid culture. E. coli 

strain MC4100 controls were streaked onto a 3x R2 broth with 1.5% w/v agar (3x R2 agar) and 

incubated at 37°C overnight. Subsequently, a single colony of each strain was used to inoculate 5 

ml 3x R2B. The liquid cultures of E. coli were grown at 37°C overnight with orbital shaking at 

325 rpm. 

Zone of inhibition assay: 500 µl aliquots of the P. larvae overnight culture were 

harvested and centrifuged at 16,100 x g for 2 min. The supernatant was discarded and the cells 

were resuspended in 150 µl of fresh 3x R2B. Each 3x R2 agar plate was spread with a 150 µl 

aliquot of the resuspended P. larvae cells to ensure the growth of a robust bacterial lawn. After 

the inoculum had been fully absorbed by the agar, a hole was punched into the agar using a 

sterile, pre-cut pipet tip, and 2 µl of either honeybee AMP at a concentration of 250 mg ml-1 

(Apidaecin or Abaecin (purchased from AnaSpec and GenScript, respectively)), antibiotic or 

distilled water was added to the hole. The plates were sealed with Parafilm® to retain moisture 

and incubated at 37°C for up to 48 h. The diameters of the zones of inhibition were measured 

after 24 and 48 h of treatment. E. coli samples were prepared similarly; except that 250 µl of an 

overnight culture was used to form the bacterial lawns. 
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96-well plate assay: Overnight cultures of P. larvae were diluted, approximately 10 fold, 

in 3x R2B liquid medium to an optical density at 600 nm (OD600) of approx. 0.2. The inner wells 

of a clear, flat-bottomed, 96-well plate (Greiner Bio-One) were filled with 95 µl of inoculum 

treated with 5 µl of either the AMP at varying concentrations, antibiotic or distilled water 

controls. The outermost wells were filled with 100 µl water in order to minimize evaporation and 

other edge effects. Each plate was incubated for 24 h at 37°C in a Tecan m200 plate reader, which 

shook the plate in orbital mode at 335.8 rpm for 5 min every 15 min (amplitude of 1.5 mm). Five 

absorbance scans at 600 nm were taken for each well every 15 minutes and the average was 

reported. Each condition was tested in five wells and tests were repeated three times. Growth 

curves were plotted and used to determine whether the AMP and/or the antibiotic controls 

affected cell growth by comparing the antimicrobial-treated samples to the water-treated controls. 

Protocols for the enrichment, isolation and amplification of P. larvae specific bacteriophage 

Growth of Bacterial Strains: The following stock cultures of P. larvae were used: B-

2605, B-3554, ATCC-25747, ATCC-25748, ATCC-49843, ATCC-25368, B-3688, and ATCC-

25367 (Table 1). In addition, two natural cultures isolated from infected hives were used: 2188 

and 2231. P. larvae strains were routinely grown in BHI broth modified with the addition of 1 

mM CaCl2 and 1 mM MgCl2 (mBHI), to enhance viral attachment in our assays (Hurst and 

Reynolds, 2002). Soft agar overlays of 3 ml mBHI with 0.95% (w/v) agar and 1% (w/v) yeast 

extract were used for phage screenings and titer platings. Yeast extract was added to enhance the 

clarity of plaques that formed on the surface of an overlay (Gochnauer, 1970). Agar mBHI plates 

with 1.5% (w/v) agar were used for experimental platings. Either mBHI or R2A plates were used 

to maintain stock cultures. Although the P. larvae strains took 3 days to grow on R2A at 37°C, 

the duration of viability of the bacterium on this medium was longer than on mBHI plates. Broth 

cultures of P. larvae were grown at 37°C and shaken at 100 rpm in an environmental shaker 
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(Barnstead LabLine MaxQ 4000) for 24-48 h to obtain a maximum density (OD600 ≈ 0.7). Plates 

(both mBHI and R2A) were incubated at 37°C in a NapCo E Series Model 303 Incubator. 

Isolation of Lysogenic Phage: To isolate lysogenic bacteriophage capable of infecting P. 

larvae, procedures similar to those described by Dingman et al. (Dingman et al., 1984) were 

used. Cultures of P. larvae were grown in mBHI broth at 37°C and shaken at 100 rpm overnight. 

These were pelleted by centrifugation at 3,220 x g for 10 minutes (Eppendorf Centrifuge 5810) to 

remove bacterial cells. Supernatants from the cultures were filtered through 0.45 µm sterile 

syringe filters with cellulose acetate membranes (VWR) to remove any remaining cells. The 

filtrate served as the starting material for phage enrichment. 

Isolation of Phage from Environmental and Honeybee Products: To isolate bacteriophage 

from environmental (such as soil, beehive propolis, beehive wax, etc.) or commercial samples 

(such as lip balm containing beeswax or lotion containing royal jelly), samples ranging in mass 

from 1 g to 5 g were weighed and placed in 10 ml phosphate buffered saline (PBS) pH 7.1. The 

mixtures were then shaken in 37°C and 100 rpm overnight. The mixtures were spun at 3,220 x g 

for 15 minutes and the supernatant was collected. Occasionally, hive materials were found to float 

on the top of the supernatant. Under these circumstances, a needle and syringe were used to 

puncture the wax or propolis to extract the supernatant underneath. Supernatants were filtered 

through 0.45 µm sterile syringe filters to remove any remaining cells. If, upon plating, filtrates 

were discovered to contain contaminating bacteria, they were re-filtered using 0.2 µm sterile 

syringe filters. Cell-free filtrates were enriched for phage capable of lysing P. larvae. 

Enrichment of Isolated Phage Samples: Bacteriophage enrichment was achieved using 

standard techniques, as described by Hurst and Reynolds (2002). Briefly, aliquots of cell-free 

lysates were added to 1 ml of a freshly grown, overnight culture of P. larvae B-2605. Samples 

were then shaken in an environmental shaker at 100 rpm in 37°C overnight. The resulting 
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supernatants containing propagated phage were centrifuged at 3,220 x g for 15 minutes and 

filtered with a 0.45 µm sterile syringe filter.  

Screening of Bacteriophage: To screen for bacteriophage, supernatants of the enriched 

samples were plated onto mBHI plates using a soft agar overlay technique (Hurst and Reynolds, 

2002). Phage lysates, lysate dilutions (mBHI), and mBHI agar plates were all warmed to 37°C 

prior to plating to prevent premature solidification of the agar. Soft agar tubes were melted in a 

beaker of boiling water, and molten agar was cooled to 60°C prior to use. A volume of 1 ml from 

an overnight culture of P. larvae B-2605 and 1 ml of an enriched filtrate were combined in the 

molten soft agar overlay, poured onto the surface of an mBHI plate, and it was evenly distributed 

over the surface. After the overlays solidified, the plates were inverted and incubated overnight at 

37°C (representative plate shown in Figure 4). Individual plaques were necessary to ensure a pure 

phage type had been isolated. 

Purification of phage isolates: Individual isolated plaques were scooped from the soft 

agar overlay with a sterile wooden stick. The plaque and 1 ml of a freshly grown P. larvae culture 

were used to inoculate 20 ml sterile mBHI broth. The bacterial cells from this overnight 

enrichment were pelleted by centrifugation at 3,220 x g for 10 minutes, and the supernatant was 

filtered using 0.45 µm sterile syringe filters. Whenever complete clearing of an overlay was 

observed, higher dilutions of the filtrate were added to additional soft agar overlays in order to 

visualize individual plaques. To ensure complete isolation and purification of each phage, a single 

plaque was picked after a second round of plating and amplified again using the procedure 

described above. This double pass procedure allowed pure independent isolates of bacteriophage 

to be amplified in the lysate.  

Further Amplification of Purified Phage Isolates: Individual broth cultures of 20 ml of 

mBHI were inoculated with B-2605, B-3554, and ATCC-25748, incubated overnight at 37°C and 

shaken at 100 rpm. On each day of the following 10 day process, 1 ml of each overnight culture 
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was transferred to a fresh 20 ml of broth followed by incubation under the same conditions 

described above. Each day, the cells in the remaining overnight broth culture were pelleted by 

centrifugation at 3,220 x g for 15 min, the supernatant removed and the cell pellets resuspended 

together in 15 ml of fresh mBHI broth. This cell mixture was distributed in 1.0 ml aliquots into 

phage lysates on day 1 as well as each subsequent day for the 10 day period. The amplifying 

phage lysate was, by this process, supplied with fresh cells of three bacterial strains daily to 

further the amplification process. At the end of the 10 day amplification period, phage/bacterial 

mixtures were centrifuged under the same conditions and the supernatant containing phage was 

collected and filtered through 0.45 um sterile filters to remove cells and cell debris. Phage titers 

were determined using the soft agar overlay method, as described previously.  

Quantification of phage titers: To calculate the phage titer in a lysate, dilutions of the 

starting lysate were plated in duplicate using the soft agar overlay technique (Hurst and Reynolds, 

2002). The two plates from a dilution with numbers ranging from 30-300 were selected to ensure 

statistical accuracy when counting. Plaques from the chosen dilution were then counted, counts 

were averaged, and titers were calculated based on the dilution (Miller, 1998).  
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Figure 1 - Effect of sporulation protocol on P. larvae strains spore production (A) Average number of heat 

resistant spores for P. larvae strains spore stocks produced by two methods. The error bars represent standard 

deviations from the mean obtained from at least three independent measures of CFU ml-1. (B) P. larvae spore stock 

smears were analyzed via microscopy after Schaeffer-Fulton staining [39]. The error bars represent standard deviation 

obtained from the mean based on at least three independent measures of purity. In all cases, the number of spores 

collected using the new protocol was significantly higher (P < 0.05) than those collected using the old protocol. 

Furthermore, the purity of the resulting spore samples was significantly higher when the new protocol was used (P < 

0.05) compared to the old protocol, with one notable exception; spores harvested from strain B-3650 using the new 

protocol were quantified to be equivalently pure as spores harvested using the old protocol. 
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Figure 2 - Purity of spore stocks determined by microscopic analysis (A) Representative image of spore stocks 

stained using the Schaeffer-Fulton method [39] prepared for strain B-3650 (A) on MYPGP or (B) the new protocol. 

Cell debris retained safranin-O dye while spores retained malachite green dye. The scale bars indicates 10 micrometers. 
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Figure 3 - Comparison of assays used to measure the antibacterial activity of honeybee AMPs. Representative 

images from zone of inhibition assays (A-D) or data from 96-well plate assays (E-H). Results obtained with the 

honeybee AMP apidaecin (top four panels). Results obtained with the honeybee AMP abaecin (bottom four panels). 

Bacterial strains used were E. coli, strain MC4100 (A, E, C & G) and P. larvae, strain B-3554 (B, F, D & H). Images of 

zone of inhibition assays (A-D) were taken after 22 h of growth. For the 96-well plate assays (E-H), all samples had an 

OD600 of 0.2 at time 0 (data not shown). Error bars represent standard deviations from the mean for five replicate 

samples and statistical significance between each AMP-treated sample and the water-treated (0) sample was determined 

using a Student’s t-test assuming equal variance. Stars (*) indicate p-values of p ≤ 0.05. 
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Figure 4 - Representative plate of a soft agar overlay with a bacteriophage capable of lysing P. larvae. The image 

shows a lawn of bacteria containing plaques. This demonstrates that bacteriophage capable of lysing P. larvae were 

present in the filtrate added to the soft agar overlay. 
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TABLE 1: Strains of P. larvae used. 

Species 

Previous 

subspecies 

classification 

Source &Strain 

numbera 
Isolationa 

Distinguishing 

featuresb 

P. larvae larvae NRRL B-2605/ 

ATCC-9545 

Isolated from insect, EC 

Holst 

Non-sporeformer 

P. larvae larvae ATCC-25748 Isolated from insect, H 

Shimanuki 

N.D. 

P. larvae larvae ATCC-25747 Isolated from insect, H 

Shimanuki 

N.D. 

P. larvae larvae NRRL B-3650 Isolated from diseased 

honeybee, RE Gordon 

Spore-former 

P. larvae larvae NRRL B-3554 Isolated from diseased 

honeybee larvae, NRRL 

Spore-former 

P. larvae larvae Designated 2188 Isolated from larvae 

scales, courtesy of Jay D 

Evans (USDA) 

Spore-former 

P. larvae larvae Designated 2231 Isolated from larvae 

scales, courtesy of Jay D 

Evans (USDA) 

Spore-former 

P. larvae pulvifaciens NRRL B-

3685/ATCC-49843 

Powdery scale of 

honeybee larvae, RE 

Gordon 

Spore-former, virulent 

P. larvae pulvifaciens ATCC-25368/ 

24027 

GW Skyring N.D. 

P. larvae pulvifaciens ATCC-25367/ 

24026 

GW Skyring N.D. 

P. larvae pulvifaciens NRRL B-

3688/ATCC 13537 

Isolated from diseased 

honeybee, RE Gordon 

N.D. 

aInfo obtained from American Tissue Culture Collection (www.atcc.org), Agriculture Research Services (ARS) Culture 

Collection Database Server (nrrl.ncaur.usda.gov; formerly known as the Northern Regional Research Laboratories, 

NRRL) and straininfo.net. bEvaluated in house. N.D., none determined 

 

 

 

 

 

 

 
TABLE 2: General characterization of final phage isolates 

Category of Sources 
Total Number of Isolates in Each 

Category 

Percentage Found in Each 

Category 

Soil around beehives 9 28.13 

Beehive materials 8 25 

Lysogenic phage from P. larvae 

strains 
6 18.75 

Other 9 28.12 

Totals: 32  100 
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TABLE 3: Bacteriophage titers 

Purified Phage Lysate 

(Isolate #) 

Titer Before 

Amplification (ml-1) 

Titer After 5-day Amplification 

Procedure (ml-1) 

1 495  1.66 x 108  

2 57  6.00 x 106  

3 20  4.30 x 107  

4 38  1.04 x 107  

5 1750  1.84 x 108  

6 400  3.40 x 105  

7 150  3.66 x 107  

8 15,000 3.97 x 106  

9 10  1.59 x 107  

10 15,500  1.17 x 107  

11 500  9.40 x 106  

12 795  7.45 x 107  

13 22  1.29 x 107  
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CHAPTER 3 

 

SOURCES OF BACTERIOPHAGE CAPABLE OF INFECTING PAENIBACILLUS LARVAE, 

THE CAUSATIVE AGENT OF AMERICAN FOULBROOD DISEASE IN HONEYBEES 

 

This chapter is formatted for submission to Applied and Environmental Microbiology. 
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Abstract 

American Foulbrood Disease (AFB) is caused by an infection of honeybees with the bacterium, 

Paenibacillus larvae.  To date, there are no nondestructive, effective treatments for this disease; 

hives and associated equipment are burned as an extreme measure to prevent contamination.  This 

practice threatens agricultural productivity by both destroying the honeybees that are essential for 

pollination of crops and, to a lesser degree, by destroying costly equipment.  One potential 

solution to control the pathogen and its spread is the use of bacteriophage that infect P. larvae.  

To find and describe environmental bacteriophage, 157 samples were obtained from many 

diverse sources including: P. larvae strains harboring prophage; various soils; wax, honey, royal 

jelly and propolis; cosmetics containing products derived from beehives; plants and flowers; 

compost; water and air samples.  Bacteriophage were screened on BHI plates using soft agar 

overlays containing additional salts and yeast extract (mBHI). High titer lysates were prepared in 

mBHI broth containing P. larvae and a bacteriophage.  Of the 157 samples, 30 were positive for 

at least one bacteriophage capable of growing on P. larvae strain 2605 for a total of 32; two 

sources produced two phage isolates each.  The following indicate the percentage of phage-

positive samples within each category: lysogens, 54.5%, cosmetics, 22.7%, soil under hives, 

18.8%, beehive materials, 15.9%, and other environmental sources, 14.8%.  After isolation, 

bacterial host ranges were analyzed for further characterization. 

 

Introduction 

One of many diseases affecting honeybees, Apis mellifera, is American Foulbrood 

disease (AFB) which is caused by the bacterium, Paenibacillus larvae (Shimanuki and Knox, 

2000).  This Gram-positive, rod-shaped bacterium produces spores, which are inadvertently 

picked up by adult bees and transported back to hives (Genersch, 2010).  While adults are 

resistant to the disease, they are vectors that transmit the infective agent to larvae, which are 
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susceptible (Hitchcock  et al., 1979 and Wilson, 1971).  Spores, in general, are resistant to 

antibiotics and heat, and studies have shown that the spores of P. larvae in particular can persist 

for at least several decades (Genersch, 2010), making eradication of this disease difficult.  

Furthermore, following infection and death of one larva, millions of spores can be produced and 

released in the hive (Sturtevant, 1932).  Susceptibility of honeybee larvae to P. larvae infection is 

during the first 36 h after hatching (Genersch, 2010).  As the larvae of a hive succumb to the 

disease, and fewer bees are able to reach adulthood, the hive collapses as it is unable to maintain 

its population.  Currently, the only viable method of treatment is the application of powdered 

antibiotics directly applied and the current extreme measure to control the spread of the disease is 

burning infected hives (Genersch, 2010).  The antibiotic treatment method has caused increased 

resistance in strains of P. larvae (Evans, 2003), as well as produced residual antibiotics in honey 

that is sold for human consumption (Ortelli et al., 2004 and Saridaki-Papakonstadinou et al., 

2006).  The method of burning infected hives to treat the disease is costly to the beekeeping 

community, resulting in loss of hive materials, productive hives, and producing significant 

economic loss (Genersch, 2010).  Therefore, the prevalence and seriousness of AFB, combined 

with the lack of effective and safe methods of treatment, has created a need for alternative 

methods of treatment. 

One potential method of treatment is phage therapy.  Phage therapy is the therapeutic use 

of viruses, or bacteriophage (also called phage) to kill bacterial cells.  Phage are capable of 

infecting and lysing bacteria (Carlton, 1999), with specificity for targeting certain bacterial 

species.  Previous studies have explored the characteristics of single phage isolated from 

lysogenic strains of P. larvae.  Several have suggested using phage as a potential treatment 

strategy for AFB (Bakheit and Stahly, 1988; Campana et al., 1991; Dingman et al., 1984; 

Drobnikova and Ludvik, 1982; Gochnauer, 1955; Gochnauer, 1970; and Valerianov et al., 1976); 

however, no significant treatment strategies using phage have been reported. 



36 

 

Bacteriophage are abundant in many natural environments (Suttle and Furhman, 2010).  

Further, they are self-propagating only when host bacteria are present as well as being very 

specific for targeted bacterial species.  Phage, if used against P. larvae, would decrease the need 

for chemical treatment of the hives and would not be harmful to bees, humans, or other microbes.  

Therefore, researching the potential use of phage therapy in treating AFB is of interest in 

economics and environmental health.  Unfortunately, no ready repository of P. larvae phage is 

available for use; therefore, various environments were screened for the presence of P. larvae-

specific bacteriophage for use as a treatment strategy for AFB. 

 

Materials and Methods 

Growth of bacterial strains 

 The following strains of Paenibacillus larvae were used: NRRL B-2605, NRRL B-3554, 

NRRL B-3650, ATCC-25748, ATCC-25747, ATCC-49843, ATCC-25367, ATCC-25368, 

ATCC-3688.  In addition, two naturally occurring cultures isolated from infected hives were 

used: 2188 and 2231.  Bacteria were grown for phage propagation under the same conditions as 

described by Alvarado et al. (2014, submitted for publication) in a modification of Brain Heart 

Infusion broth (BHI).  

Environmental sampling technique 

Environmental samples were obtained using alcohol flame-sterilized metal spoons and 

placed into sterile Whirlpac bags.  Samples were also collected remotely by individuals in other 

locations using the same sampling methods.  After collection, samples were stored at 4 °C until 

shipment to UNLV. 

Sample sources 

Lysogenic phage were obtained  by screening all 11 strains of P. larvae.  Procedures 

adapted from Dingman et al. (1984) were used.  No special methods were needed to induce 
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prophage as suggested by Mayer et al. (Mayer et al., 1969) from P. larvae strains because 

sufficient numbers of phage became lytic during the growth of their host bacteria.  Cells were 

grown as described by Alvarado et al. (2014, submitted for publication). The presence of phage 

was determined by plaque formation on a bacterial lawn of P. larvae 2605 using a soft agar 

overlay method (Hurst and Reynolds, 2002). 

Environmental phage were obtained from screening various soil samples, air samples, 

cosmetics containing materials derived from beehives, and materials directly from beehives such 

as royal jelly, wax, propolis, and honey.  These samples were obtained from the following 

geographic locations:  Nevada, Washington, New Mexico, Oregon, Pennsylvania, New York, and 

Iowa.  Cosmetic sample sources, obtained from traditional retail settings, included various brands 

of lip balms with or without honeybee derived additions.  A combined total of 157 samples were 

screened.  Methods for preparing environmental samples are fully described in Alvarado et al. 

(2014, submitted for publication).  Filtrates free from bacterial contamination were used as the 

starting material for enrichment of lytic bacteriophage capable of lysing P. larvae.   

Phage enrichment, screening and isolation 

Bacteriophage enrichment was achieved using standard techniques as described by Hurst 

and Reynolds (Hurst and Reynolds, 2002).  To enrich for P. larvae-specific bacteriophage, the P. 

larvae host strain 2605 was used.  This strain was utilized because it was phage-free after testing 

for lysogeny using the technique described above, and it was previously used as a host strain in 

phage research (Woodrow, 1942). Details of phage enrichment, screening and isolation are fully 

described in Alvarado et al. (2014, submitted for publication). 

Amplification of phage and determination of phage titers 

Phage titers were determined by following the soft agar overlay technique described above.  

Standard methods using two plates from a dilution with resulting plaque numbers ranging from 
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30-300 were selected to ensure statistical accuracy.  Plaques from the chosen dilution were then 

counted, counts were averaged, and titers were calculated based on the dilution (Miller, 1998). 

Soft agar overlay spot test 

After amplification, each lysate was tested to determine its ability to form plaques on each P. 

larvae strain and other bacterial species including:  Paenibacillus polymyxa, Paenibacillus alvei, 

Paenibacillus lentimorbus, Paenibacillus popillae, Escherichia coli, Shigella flexneri, Bacillus 

cereus, Bacillus subtilis, Bacillus anthracis, Bacillus circulans, and Chromohalobacter sp.  A 1 

ml aliquot of sterile broth and 1 ml of an overnight culture of a single bacterial strain were added 

to a tube of melted GmBHI agar (0.95%) containing 37 g BHI (Difco), 4g dextrose (Sigma), 1 

mM of each CaCl2 and MgCl2 in 1L ddH2O.  This mixture was then poured over a GmBHI agar 

(1.5%) plate to create a bacterial lawn.  Plates were divided into quadrants with 10 μl of a single 

lysate spotted onto the surface of each quadrant creating quadruplicate testing.  The ability to lyse 

a P. larvae bacterial strain was measured by clearing.  Each phage isolate was tested against each 

bacterial strain using a scale from no evidence of lysis to complete clearing (Figure 1). All host 

range results were recorded by the same individual for consistency. The phage with the broadest 

host range and highest intensity of lysis were of interest as a potential treatment for hives infected 

with AFB.  Therefore, these phage were selected for further characterization.  An exception was 

made for a pair of phage with the same host range pattern but which were isolated from very 

different sources.  Determination of the similarity within these pairs was of interest because they 

might give some indication of geographic distribution. 

EM grid preparation 

To prepare a highly concentrated phage lysate, 20 identical soft agar overlay plates were 

prepared by mixing P. larvae strain 2605 with sufficient phage to result in complete lysis of 

bacterial cells. Plates were prepared with GmBHI  (0.4% Difco glucose was added to mBHI) 
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containing 1.5% agarose and overlays were made of GmBHI with 0.95% agarose.  These plates 

were incubated overnight at 37 °C.   

Agarose removal and filtration:  Five ml of PBS pH 7.1 was added to the surface of each 

plate and was allowed to sit for 20 minutes.  The top layer of the agarose overlay was then 

scraped off using a sterile pipette tip, making sure the underlying medium was not disturbed.  The 

scraped agarose plus PBS was collected and transferred to a funnel lined with four layers of 

cheesecloth to remove the agarose particles.  The resulting liquid was then filtered through a 

sterile 0.2 µm filter (Sartorus) using vacuum filtration to remove bacterial cells.  

Concentration of phage:  The filtrate was distributed into 50 ml polysulfone centrifuge tubes 

(VWR) and phage were pelleted by centrifugation for 15 hours at 4 °C and 18,000 x g (Beckman 

J2-HS).  The supernatant was removed and the centrifuge tubes were briefly inverted, being 

careful to prevent the phage pellet from completely drying.  The phage pellet was gently 

resuspended in 1.0 ml of phage buffer, pH 7.5 with a composition of 10 mM Tris-HCl, 10 mM 

MgSO4, and 68 mM NaCl (Dr. Malcom Zellars, personal communication), using a cut-off 1 ml 

sterile, disposable pipette tip, then removed from the centrifuge tube and transferred to a 1.5 ml 

microcentrifuge tube.  The starting volume of approximately 100 ml was concentrated to a final 

volume of 3 ml.  This concentrated phage preparation was used to prepare grids for TEM 

imaging. 

Grid preparation:  Using a carbon-coated copper grid (Ted Pella), 10 µl of each concentrated 

preparation was placed onto the carbon surface and allowed to sit for 10 min prior to wicking 

away the liquid with Whatman 541 paper wedges.  The grid was rinsed (2X) for 2 min with 

sterile filtered ddH2O, and the liquid was wicked away.  The grid was stained for 2 min with 10 

µl 2% uranyl acetate (pH 4.4), and the stain was wicked away before allowing the grid to air dry.  

Grids were sent to the CAMCOR facilities at the University of Oregon for imaging. 
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Results 

Composition of phage and proportion of positive samples from each category 

A total of 157 samples were screened, 32 of which were positive for viral particles. Table 

1 displays the proportion of positive samples and Table 2 displays isolate sources. 

 

Table 1.  Proportion of samples found to contain P. larvae phage from each category. 

Category 
Screened Samples 

(#) 

Samples Positive for Phage 

Isolates (#) 

Samples Containing 

Phage (%) 

Lysogenic Phage 11 6 54.5 

Cosmetics 22 5 22.7 

Soil Underneath Beehives 53 10 18.8 

Hive Samples 44 7 15.9 

Other Environmental Samples 27 4 14.8 
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Table 2.  Sources, descriptions, and current designations of the 32 phage isolates. 

Category Source Phage Designation 

Cosmetics 

Hand cream (contains beeswax and honey) 

Body wash (contains royal jelly) β 

Lipbalm #1 IV 

Lipbalm #2 V 

Lipbalm #3 VIII 

Hive Samples 

Scale from infected hive XIII 

Hive sample from Iowa HU 

Hive sample from Iowa (honey and wax) YH/W 

Propolis from beehive - Gilcrease Orchards, Nevada H1P 

Propolis from beehive - Gilcrease Orchards, Nevada H2P 

Propolis from beehive - Gilcrease Orchards, Nevada H3P 

Propolis from beehive - Gilcrease Orchards, Nevada H5P 

Soil Underneath 

Beehives 

Soil underneath beehive - Gilcrease Orchards, Nevada H1S 

Soil underneath beehive - Gilcrease Orchards, Nevada H2S 

Soil underneath beehive - Gilcrease Orchards, Nevada H3S 

Soil underneath beehive - Gilcrease Orchards, Nevada H4S 

Soil underneath beehive - Gilcrease Orchards, Nevada H5S 

Soil underneath beehive - Pennsylvania PAIIS1 fl 

Soil underneath beehive - Pennsylvania PAIS2 fl 

Soil underneath beehive - Pennsylvania PAIS2 med. cl. 

Soil underneath beehive - UNLV, Nevada III 

Soil underneath beehive - Washington WA 

Other 

Environmental 

Samples 

Garden soil - Summerlin, Las Vegas, Nevada I 

Garden soil - Summerlin, Las Vegas, Nevada II 

Air sample (gravity plates) - Las Vegas, Nevada VI 

Air sample (gravity plates) - Las Vegas, Nevada VII 

Lysogenic Phage 

Phage from ATCC-49843 A 

Phage from ATCC-25368 B 

Phage from ATCC-25367 C 

Phage from ATCC-25747 D 

Phage from ATCC-49843 E 

Phage from wild strain 2231 F 
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Plaque morphology 

Individual phage filtrates produced plaques in soft agar overlays, which were observed 

and described based on size and morphology (Table 3).  Plaques were classified based on sizes 

and clarity.   Plaque morphologies of the phage were as follows:  4 large, clear; 4 medium, clear; 

3 small-medium, clear; 1 small, clear; 1 pinpoint, clear; 1 small, turbid; and 5 pinpoint, turbid.  

Although there was a distribution of sizes, in general, there were more large, clear plaques than 

small, clear plaques and more small, turbid plaques than large, turbid plaques. 

 

Table 3.  Morphology of plaques of each phage observed in soft agar overlays.  Asterisk* formed plaques with a turbid 

halo around a clear plaque center.  Sizes ranged and were described using set plaque diameters in the following 

classifications:  pinpoint (<0.1 mm), small (0.1 mm – 0.5 mm), medium (0.5 mm – 1.0 mm), and large (>1.0 mm). 

 

Phage 

Designation 

Plaque Morphology 

Size Clarity 

XIII Large Clear 

H1P Pinpoint Turbid 

WA Medium Clear 

HIS Pinpoint Clear 

F Large Clear 

V* Large Clear 

H2S Small-medium Clear 

H3S Medium Clear 

E Pinpoint Turbid 

H5S Medium Clear 

VII Pinpoint Turbid 

D Large Clear 

PA1S2 - fl. Pinpoint Turbid 

B Pinpoint Turbid 

VIII Small Turbid 

PAIS2 - med. cl. Medium Clear 

Sigma Small Clear 

IV Small-medium Clear 

VI Small-medium Clear 

 

Host range distribution 

The host range of each of the 32 isolated phage on each of 27 different bacterial strains 

was conducted by spot test experiments (as described in the methods) to determine how specific 
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each of the isolated phage are to the genus Paenibacillus and more specifically the species P. 

larvae.   The data is presented in Figure 1. 

None of the isolated bacteriophage caused lysis on the following strains:  Paenibacillus 

polymyxa, P. alvei, P. lentimorbus, P. popilliae, Escherichia coli C600, E. coli W3104, E. coli 

MC4100, Shigella flexneri AWY3, S. flexneri BS103, Bacillus subtilis, B. anthracis, B. circulans, 

and Chromohalobacter sp, indicating host specificity to the genus Paenibacillus as well as the 

species P. larvae. 

Three phage, H1P, WA, and H1S, lysed all P. larvae strains tested, and F lysed all strains 

with the exception of its host strain, 2231.  In addition, these phage with broad host ranges on P. 

larvae were also highly lytic on multiple strains (+++).  One exception was XIII, which was 

highly lytic on only four P. larvae strains.  The isolated lysogenic phage were generally not 

capable of lysing the host strain from which they were isolated, with the exception of D and A, 

and these only produced a +/- result. 

There is no apparent correlation between the source and the effectiveness of the phage 

against P. larvae strains. 
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Figure 1.  Host range of 32 isolated P. larvae bacteriophage determined by soft agar overlay spot tests. Results are 

interpreted on a scale from no lysis (blank cell) to complete lysis (black cell).  Phage are designated by letters and 

numbers, corresponding to the source from which they were isolated.    The bacterial species are represented across the 

top and are ranked from left to right in order of susceptibility to lysis by the 32 phage.  The isolated phage are listed on 

the left side of the table and are ranked from top to bottom in order of the percentage of P. larvae strains they are 

capable of lysing. 
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Figure 1 Key.  Range of spot test descriptions 

observed in the host range experiment.  The host range 

results are interpreted on a scale from no clearing to 

complete clearing.  Plated examples show 

representative images of phage lysis on a bacterial 

lawn. 

 

Description 
Color 

Code 

Result 

Scale 

Plated 

Examples 

No clearing   -  

 

Faint outline 

where lysate 

was placed 

  +/-  

 

Visible 

clearing 
  +  

 Entire area has 

been lysed but 

still turbidity 

within plaque 

  ++  

 Entire area is 

completely 

lysed; no 

turbidity 

  +++  
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Susceptibility of phage lysis on former P. larvae subspecies larvae and P. larvae subspecies 

pulvifaciens 

There is a distinct difference between the susceptibility to the 32 isolated phage of strains 

formerly designated as P. larvae larvae and P. larvae pulvifaciens. Sample variances of P. larvae 

pulvifaciens and P. larvae larvae were 0.0237 and 0.0046, respectively. Using Welch’s t-test, 

t=4.169,  degrees of freedom ~5.727, and p=0.0087.  Assuming ≤ 0.01, there is a significant 

difference between the susceptibility that each group of former P. larvae subspecies has to the P. 

larvae bacteriophage. The two strains that were isolated from an infected hive were not classified 

under the same former subspecies as the repository strains, and were therefore not included in this 

calculation. 

 

Figure 2.  Proportion of susceptibility to isolated phage of P. larvae strains, which are grouped by former subspecies.  

Bacterial strains are listed from back to front. 
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Comparison of phage morphology using TEM. 

Results for 16 phage that were confidently imaged are given based on morphological 

descriptions only, the following are the possible families of these isolated phage:  13 

Siphoviridae, 1 Podoviridae, 1 potential Inoviridae, and 1 potential Tectoviridae (Table 4).  Even 

among phage potentially classified under the same family, there are size variations of heads and 

tails.  Sample images are presented in Figure 3. 

 

Table 4.  Morphologies of chosen phage determined from TEM images.  Images were provided by the CAMCOR 

facilities at the University of Oregon.  Measurements are based on the averages of 2-4 images.  Question mark indicates 

uncertainty of classification based on rarity of the family.  Family classifications are based on descriptions of 

morphology only. 

 

Phage 

Designation 

EM Imaging Comparison 

Head Shape 
~Head Length 

(nm) 

~Head 

Width (nm) 

~Tail 

Length (nm) 

Possible 

Family 

H1P Elongated icosahedron 109 55 227 Siphoviridae 

A Elongated icosahedron 114 71 212 Siphoviridae 

WA Elongated icosahedron 80 35 125 Siphoviridae 

H2S Spherical icosahedron 50 50 200 Siphoviridae 

F Elongated icosahedron 115 65 120 Siphoviridae 

H3S Elongated icosahedron 120 61 138 Siphoviridae 

PA1S2 - fl. Elongated icosahedron 87 41 190 Siphoviridae 

D Elongated icosahedron 94 47 106 Siphoviridae 

PAIS2 - med. cl. Elongated icosahedron 148 74 185 Siphoviridae 

V Spherical icosahedron 56 61 157 Siphoviridae 

VIII Spherical icosahedron ND ND ND Siphoviridae 

H5S Spherical icosahedron 150 150 225 Siphoviridae 

Sigma Spherical icosahedron 128 109 309 Siphoviridae 

HIS Spherical icosahedron 70 84 40 Podoviridae 

E No evident heads     200-500 Inoviridae? 

III Spherical icosahedron 110 110 
No evident 

tails 
Tectoviridae? 
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Figure 3.  TEM images of phage are labeled as follows: A, A; B, H3S; and C, H1P.  Scale bars are in the bottom black 

border, and are 50 nm for A, but 100 nm for H3S and H1P.

 
 

Discussion 

 

A total of 32 phage were isolated from 157 sources, suggesting that approximately 20% 

of the sources screened could yield phage capable of lysing P. larvae.    While the majority of the 

isolated phage were obtained from soil under and around beehives, the proportion of isolated 

phage was highest from lysogenic incorporation in strains of P. larvae.  However, since a 

bacterium is likely to be immune to its own lysogenic phage (Lindahl et al., 1970), as supported 

by the host range table of this work, it would be more beneficial to isolate lytic environmental 

phage with the broadest host ranges for potential phage therapy.  Although the proportion of 

positive samples from soil was not as high as some other categories, the soil around beehives is 

easily available and was a reliable source of lytic phage that lysed all or nearly all of the 11 P. 

larvae strains tested.  A higher proportion of phage was isolated from cosmetic samples with bee-

related ingredients; however, the use of phage isolated from cosmetic sources might entail legal 

ramifications. Phage appear to be present in hives and soil surrounding hives begging the 

question of whether they routinely keep P. larvae infections in check until either spore numbers 

overwhelm the hive or environmental stressors such as cold winter temperatures make the bees 

more susceptible.   

A B C
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Two potentially different lytic phage were isolated from the same soil sample (PAIS2 fl. 

and PAIS2 med. cl.) and two potentially different lysogenic phage were isolated from a single 

strain of P. larvae ATCC 49843.  After using transmission electron microscopy to visualize the 

phage, it is clear that PA1S2 fl. and PA1S2 med. cl. do not have the same phage morphology and, 

are therefore, unlikely to be the same phage despite isolation from the same source.  As with the 

first pair, phage A and E, both lysogenic for ATCC 49843, have different phage morphologies 

determined by EM imaging. 

Host range experiments were completed to provide information about the ability of the 

isolated phage to lyse a broad range of P. larvae strains.  However, host range can be affected by 

bacterial receptors (Lindberg, 1973).  Therefore, host range is not necessarily an indicator of 

relatedness, but is useful to determine effective phage for potential AFB treatment.  Additionally, 

plaque morphology distinguishes phage and enables isolation, but is not a characteristic that 

determines relatedness either.  Two isolates, IV and VI, have the same spot test lysis pattern when 

compared to one another.  The plaque morphology of these two isolates is both medium size and 

clear, indicating the possibility of these two phage being the same, although they were isolated at 

different times from different sources.  DNA sequence comparisons of these and the other phage 

of interest will need to be made to confirm identity and relatedness.  Future work will include 

DNA characterization of these isolated phage to determine their relatedness as well as whether a 

single phage was isolated several times from various sources across different geographic 

locations. 

Genersch et al. reclassified the former P. larvae subspecies as P. larvae without 

subspecies (2006).  Host range data (Figure 1) demonstrated a distinct difference between the two 

former Paenibacillus larvae subspecies by susceptibility to P. larvae bacteriophage.  Former P. 

larvae pulvifaciens (indicated by the numbers 367, 843, 3688, and 368 in the host range table) 

have a significantly lower susceptibility to the bacteriophage isolates.  P. larvae former 
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subspecies larvae is significantly more susceptible to lysis by the isolated phage that P. larvae 

former subspecies pulvifaciens and, therefore, it would be beneficial to isolate phage on a former 

pulvifaciens strain to ensure effective treatment using a phage cocktail.  The fact that there is a 

significant difference between the proportion of phage susceptibility with each bacterial (former) 

subspecies, indicates the possibility that there are differences between the two former subspecies 

not associated with growth or bacterial biochemistry but in biological function in the 

environment.  It may also be that since the phage were all originally isolated using P. larvae 2605 

(previously classified as P. larvae larvae) as the host strain, the phage are more capable of lysing 

strains from this subspecies.  Additional isolates could be obtained using a strain of P. larvae 

former subspecies pulvifaciens to ensure that a cocktail would include phage capable of lysing 

such strains, should an AFB diseased hive be infected with P. larvae former subspecies 

pulvifaciens. 

In the host range results, the lack of clearing on other genera or species other than P. 

larvae, indicates high host specificity.  As a potential treatment for AFB, such severe host 

specificity is encouraging because the microbial ecology of the hive is not well understood, and it 

undoubtedly cause problems to harm microbes not intentionally targeted with P. larvae phage.  A 

spot test should be undertaken in future work to specifically test phage on the individual 

microbiota of the natural honeybee microbiota. 

By using the most effective phage with the broadest host range on the 11 P. larvae 

strains, a cocktail that is capable of lysing 100% of the strains could be created using as few as 

the top three isolated phage, H1P, WA, and H1S.  A more robust cocktail could be designed by 

testing the lysing capabilities of these isolated phage on additional strains of P. larvae.  The use 

of a cocktail of multiple phage, rather than a single phage, reduces the potential for development 

of phage resistance (Dr. Vincent Fischetti, personal communication). Therefore, determining 

selection criteria for the most suitable phage is important.  If an arbitrary proportion of strains 
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lysed is chosen, for example 8 out of the 11, a phage cocktail capable of lysing all 11 strains with 

multiple phage capable of infecting each of the strains could be designed using 14 phage. 

Determining the effectiveness of a cocktail consisting of the top ranked 4 isolated phage will be 

the subject of future work in developing phage therapy as a potential treatment for American 

Foulbrood Disease. 
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Figure Legends 

Table 1.  Proportion of samples found to contain P. larvae phage from each category. 

Table 2.  Sources, descriptions, and current designations of the 32 phage isolates. 

Table 3.  Morphology of plaques of each phage observed in soft agar overlays.  Asterisk* formed 

plaques with a turbid halo around a clear plaque center.  Sizes ranged and were described using 

set plaque diameters in the following classifications:  pinpoint (<0.1 mm), small (0.1 mm – 0.5 

mm), medium (0.5 mm – 1.0 mm), and large (>1.0 mm). 

Figure 1.  Host range of 32 isolated P. larvae bacteriophage determined by soft agar overlay spot 

tests. Results are interpreted on a scale from no lysis (blank cell) to complete lysis (black cell).  

Phage are designated by letters and numbers, corresponding to the source from which they were 

isolated.    The bacterial species are represented across the top and are ranked from left to right in 

order of susceptibility to lysis by the 32 phage.  The isolated phage are listed on the left side of 

the table and are ranked from top to bottom in order of the percentage of P. larvae strains they are 

capable of lysing.  Figure 1 Key.  Range of spot test descriptions observed in the host range 

experiment.  The host range results are interpreted on a scale from no clearing to complete 

clearing.  Plated examples show representative images of phage lysis on a bacterial lawn. 

Figure 2.  Proportion of susceptibility to isolated phage of P. larvae strains, which are grouped 

by former subspecies.  Bacterial strains are listed from back to front. 

Table 4.  Morphologies of chosen phage determined from TEM images.  Images were provided 

by the CAMCOR facilities at the University of Oregon.  Measurements are based on the averages 

of 2-4 images.  Question mark indicates uncertainty of classification based on rarity of the family.  

Family classifications are based on descriptions of morphology only. 

Figure 3.  TEM images of phage are labeled as follows: A, A; B, H3S; and C, H1P.  Scale bars 

are in the bottom black border, and are 50 nm for A, but 100 nm for H3S and H1P. 
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CHAPTER 4 

 

EXPERIMENTAL TREATMENT OF APIS MELLIFERA AFFECTED BY AMERICAN 

FOULBROOD DISEASE USING PHAGE THERAPY 

 

This chapter is formatted for submission to the Journal of Invertebrate Pathology. 
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Abstract 

American Foulbrood disease (AFB) is caused by an infection of the bacterium Paenibacillus 

larvae in European honeybees, Apis mellifera.  Due to the economic and potential environmental 

losses of this disease, sustainable treatment regimens should be considered; in particular, phage 

therapy, or the therapeutic use of bacteriophage that are capable of lysing P. larvae.  Previously 

isolated bacteriophage were combined to produce a phage cocktail, then administered to bees 

under both of the following conditions:  lab-reared honeybee larvae infected with cells and spores 

of P. larvae; and a hive infected with AFB located in the state of Washington, USA.  The lab-

reared larvae were treated with two different phage cocktails, one with a higher number of phage 

types than the other, as both a prophylactic treatment prior to infection with spores and as a post-

infection treatment after infection with spores.  Results of the lab-reared  larval experiments 

indicate an increase in survival of infected larvae given phage compared to the survival of 

infected larvae without treatment.  Results of the field experiment are promising as a preliminary 

study on which to base additional treatments, but are inconclusive because of the unavailability of 

more than one hive at the time of treatment. 

 

Key words: Paenibacillus larvae, American Foulbrood Disease, bacteriophage, Apis mellifera  

 

Abbreviations 

American foulbrood disease (AFB) 

Modified brain heart infusion with glucose (GmBHI) 
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Graphical Abstract 

  

 

Introduction (1) 

The bacterium, Paenibacillus larvae, causes American Foulbrood disease (AFB), one of 

many diseases affecting honeybees, Apis mellifera, (Shimanuki and Knox, 2000).  It is recognized 

worldwide as an important cause of honeybee death and loss of viable hives (Matheson, 1993; 
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Calderone, 2001).  This Gram-positive, rod-shaped bacterium produces spores and it was 

identified as AFB’s causative agent in 1907(White, 1907) .  Adults are resistant to the disease, but 

they are vectors that transmit the infective agent (spores) to susceptible larvae (Hitchcock et al., 

1979, Wilson, 1971); the larvae are susceptible during the first 36 h after hatching (Genersch, 

2010).  In general, spores are resistant to antibiotics, heat and drying, and P. larvae spores in 

particular can remain viable for almost four decades (Haseman, 1961).  Following a P. larvae 

infection that results in the death of one larva, millions of spores can be released in the hive 

(Sturtevant, 1932).  As the larvae of a hive succumb to the disease, and fewer bees are able to 

reach adulthood, the hive collapses as it is unable to maintain its population.  These 

characteristics make eradication of this disease difficult, and currently, the only viable method for 

curing the hive is the direct application of powdered antibiotics , which is not recommended 

because antibiotics do not completely eradicate the disease (Calderone, 2001), while an extreme 

measure to control the spread of the disease is burning infected hives (Genersch, 2010).  

Unfortunately, antibiotic treatment selects for resistant strains of P. larvae (Evans, 2003;Murray 

et al., 2007) and is also linked to traces of the antibiotic found in the honey of treated hives 

(Oretelli, 2004; Saridaki-Papakonstadinou, 2006).  Because of increased resistance and 

contaminated commercial products, many countries have ceased antibiotic treatment of AFB 

(Chan et al., 2011).  Additionally, the burning of hives to prevent spread of the disease results in 

significant economic loss to the beekeeping community (Genersch, 2010).    Therefore, the 

occurrence and significance of AFB, combined with the lack of safe treatment methods, has 

created a need for alternative strategies to address AFB. 

A potential method of treatment is phage therapy, or the therapeutic use of bacteriophage 

(also called phage) to kill bacterial cells.  Phage infect and lyse bacteria (Carlton, 1999), and are 

generally specific for target bacterial species.  Characteristics of single phage isolated from 

lysogenic strains of P. larvae have been explored in previous studies, and several have suggested 
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using phage as a potential treatment strategy for AFB (Bakheit and Stahly, 1988; Camana et al., 

1991; Dingman et al., 1984; Drobnikova and Ludvik, 1982; Gochnauer, 1955; Gochnauer, 1970; 

Valerianov et al., 1976); however, no significant treatment strategies using phage have been 

reported. 

Bacteriophage are very abundant in many natural environments (Suttle and Furhman, 

2010).  Further, they are only self-propagating when host bacteria are present and are very 

specific for their host bacterial species.  Phage, if used against P. larvae, would decrease the need 

for chemical treatment of the hives and would not be harmful to organisms other than their 

bacterial host.  Therefore, researching the potential use of phage therapy in treating AFB is of 

interest for economic and environmental health.  Unfortunately, no ready repository of P. larvae 

phage is available for use; therefore, various environments were screened for the presence of P. 

larvae-specific bacteriophage, phage were isolated and characterized, and further experimental 

treatments of infected larvae and an infected hive are described in this study to evaluate the 

potential use of phage therapy as a strategy to treat AFB. 

 

Materials and Methods (2) 

Bacterial strains and phage isolates (2.1) 

The following strains of P. larvae were used: NRRL B-2605, NRRL B-3554, NRRL B-

3650, ATCC-25748, ATCC-25747, ATCC-49843, ATCC-25367, ATCC-25368, ATCC-3688.  In 

addition, two naturally occurring cultures isolated from infected hives were used: 2188 and 2231.  

Bacterial cultures were grown with the same media and under the same conditions described in 

the phage isolation methods from Alvarado et al. (2014) (submitted).  The phage used in this 

research had been previously isolated as described in Alvardo et al. (2014) (submitted) and were 

selected from a pool of 32 total isolates based on the broadest host range of P. larvae strains 

(Yost and Amy, 2014) (unpublished data). 
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Amplification and quantification of phage titers (2.2) 

Phage isolates were amplified prior to use in the experimental treatments.  The 

procedures for amplification and quantification of phage titers were the same as those described 

by Alvarado et al. (2014) (submitted). 

Larvae experiments (2.3) 

Bacterial cell and spore harvesting (2.3.1):  Eleven strains of Paenibacillus larvae were 

grown in 20 ml of GmBHI at 37 °C and shaking at 100 rpm.  After overnight incubation, the 

turbid culture was pelleted by centrifugation, the supernatant discarded, and the cells resuspended 

in 200 µl sterile GmBHI broth.  The concentrated cells were plated in serial dilutions using 

GmBHI agar plates and GmBHI sterile broth dilution blanks, and then colonies were counted to 

determine the colony forming units (CFU) of the concentrate.  A volume of 200 µl of the 

concentrate was added to 1 ml of prepared larvae food, resulting in a titer of 105 cells per total 

volume.  Food was mixed by vortexing, then fed to larvae on a daily basis.  New food was 

prepared with freshly grown bacterial cultures daily.  Approximate numbers of CFUs being fed to 

each larva were calculated according to the final titers in the larvae food and amount of food fed 

to each larva per day (Table 1).  Spores were prepared by first inducing sporulation then 

harvesting spores as described by the spore methods in Alvarado et al. (2014, submitted) with the 

exception of replacing the HistoDenz (Sigma) density gradient with d-Sorbitol of the same 

concentrations.  Spore concentration was calculated by serial dilution and plating of the final 

product.  Calculations of spore load fed to each larva per day are given in Table 1. 

Phage cocktail preparation (2.3.2):  Titers per ml of the amplified single phage lysates 

were determined as previously described and are as follows: H1P, 5 x 104; WA, 3 x 106; F, 5 x 

106; V, 4 x 105; H2S, 104; H3S, 4 x 105; XIII, 4 x 106; E, 104; H5S, 9 x 103; VII, 2 x 106; D, 106; 

PAIS2 fl, 9 x 102; and B, 5 x 106.  Two separate cocktails were made, the first (phage cocktail #1 

or PC1) containing the following 7 phage: H1P, WA, F, V, H2S, H3S, and XIII; and the second 



59 

 

(phage cocktail #2 or PC2) containing all 13 phage; however, in both cases the final titer of 

combined phage was approximately the same (phage cocktail #1, 1.8 x 106; phage cocktail #2, 1.6 

x 106).  Phage cocktail makeup was determined based on host range capabilities, and represents 

the broadest range of lysing capability on 11 different strains of P. larvae (Chapter 3).  A volume 

of 1 ml of each lysate was combined for the final phage cocktail.  The final phage concentration 

was both calculated from initial titers and confirmed by soft agar overlay platings done in serial 

dilution after combination.  A volume of 200 µL of each cocktail was added to 1 ml of prepared 

larvae food prior to feeding to larvae.  Calculated PFUs fed to each larva per day are listed in 

Table 1. 

 

Table 1 Volumes of food and titers of phage, bacteria and spores fed to larvae daily. 

Days after Grafting Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 

Volume of Larvae 

Food (µl) 
10 10 20 30 40 50 50 60 0 

Calculated # of CFUs 

(any strain) 
800 800 1600 2400 3200 4000 4000 4800 0 

Calculated # ATCC 

49843 Spores 
100 100 200 300 400 500 500 600 0 

Calculated # NRRL 

B-3554 Spores 
90 90 180 270 360 450 450 540 0 

Calculated # Isolated 

2188 Spores 
90 90 180 270 360 450 450 540 0 

Calculated Number 

of PFUs in PC1 
3.003 3.003 6.003 9.003 1.204 1.504 1.504 1.804 0 

Calculated Number 

of PFUs in PC2 
2.673 2.673 5.333 8.003 1.074 1.334 1.334 1.604 0 

 

Larvae food preparation and treatment (2.3.3):  Larvae food consisted of the following: 

14.4 ml sterile, distilled water, 4.2 g royal jelly powder (Glory Bee), 0.6 g glucose (Difco), 0.6 g 

fructose (Difco), and 0.2 g yeast extract (Difco) as described by Peng et al. (1992).  The sugars 

and yeast extract were added to the water, this mixture was filtered, and then UV treated for 1 h. 

The royal jelly powder (4.2 g) was aseptically added to the water mixture but was otherwise 
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untreated.  The mixture was made homogenous by vortexing to ensure complete dispersion of the 

royal jelly.  Food was prepared and stored at -20 °C until needed.  Larvae were fed increasing 

amounts of food each day (Crailsheim et al., 2012), as indicated in Table 1.  As a negative 

control, larvae were fed larvae food without amendments while all other larvae were fed a 

mixture of food with treatment additives.  In each case, 200 µL of concentrated spores, cells, or 

phage cocktails were added to 1 ml of larvae food as described above.  Larvae were given the 

following treatments:  negative control = food with no additives, broth control = food with 

GmBHI broth added to the same dilution as other additives, water control = food amended with 

200 ul sterile water, food containing NRRL B-3554 vegetative cells, food amended with ATCC 

49843 vegetative cells, food amended with isolated 2188 vegetative cells, food amended with 

NRRL B-3554 spores, food amended with ATCC 49843 spores, food amended with 2188 spores, 

prophylactic phage therapy treatments and post-infection phage therapy treatments (food 

amended with 200 ul phage cocktail #1 or #2).  All larvae in the experimental phage cocktail 

treatments were infected with spores from P. larvae 2188.  Two phage cocktails, phage cocktail 

#1 and phage cocktail #2 were tested in both the prophylactic and post-infection treatment 

experiments. 

Larvae rearing (2.3.4):  Larvae were reared by methods similar to those described by 

Crailsheim et al. (2012).  Queens were caged using plastic or metal wire mesh approximately one 

week prior to the intended date of grafting larvae.  While the queens were confined, the age and 

location of larvae in the frame were ensured.  Eggs, turned to a horizontal position shortly before 

hatching, were then closely observed and the hatched larvae were grafted from the frames within 

a day after hatching.  Each treatment included a corresponding negative control consisting of 

larvae taken from the same frame on the same day.  Preliminary experiments were conducted by 

placing the grafted larvae into 96-well plates, but later were conducted by placing grafted larvae 

into sterile petri dishes (VWR) because survival rates were higher in larvae reared with more 
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space.  It appeared that higher survival rates were observed because the larvae food was not 

confined leading to a lower chance of larval drowning. Incubation microcosms were created by 

placing 1 L of 10% glycerol in the bottom of plastic containers followed by a layer of plastic 

support on which sat the well plates or petri dishes.  The boxes were closed with loosely fitting 

plastic lids, this allowed the humidity to be maintained at 90% within the microcosms.  Metal 

trays filled with water were placed on the bottom of the incubator to maintain humidity within the 

incubator’s interior at 80%.  The temperature was kept at 34 °C.  Larvae were fed daily with the 

amount of food indicated in Table 1.  On the eighth day after grafting, larvae were removed from 

the petri dishes and placed on sterile filter paper in new petri dishes outside the microcosms for 

pupation. 

For the larvae controls, larvae were fed either unamended food, food diluted with 

GmBHI, or food diluted with water (Figure 1). The negative control data represent 3 replicates 

with n=20, 21, and 15,   the GmBHI data represent 2 replicates with n=20 each, and the water 

data represents 2 replicates with n=22 and 21. 

Each experimental treatment also had a corresponding negative control prepared on the 

same day from the same frame and fed unamended food.  Negative control data for Figures 2-6 

represent the average of 10 control replicates with n=12 or 13.  The average of all negative 

controls was determined rather than using individual negative controls because of the small 

sample sizes, which were limited due to the number of larvae in the hives.  During the vegetative 

cell infection treatments, two replicates for each strain with samples sizes from 32 to 49 (mean 

size of 45 larvae) were prepared. 

Larvae were fed ATCC 49843 and NRRL B-3554 spores daily.  Two different treatments 

with 2188 spores were conducted; one in which larvae were fed spores daily and one in which 

only one dose of spores was administered on the first day.  Spore treatment sample sizes ranged 

from 48-53 with a mean size of 50 and all spore infection treatments were conducted in duplicate.   
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Phage preparations were administered to larvae by adding the phage cocktails suspended 

in GmBHI to the larvae food (as previously described).  Phage cocktail experiments were 

conducted in duplicate and all phage cocktail treatments ranged from 48- 55 with a mean value of 

51.   Disparate sample sizes were due to larvae available to graft on any given day. 

Daily observations (2.3.5):  Larvae were viewed under a dissecting microscope (Nikon) 

daily and observed for signs of life: opening and closing spiracles or food consumption.  In the 

event that no movement could be seen for the first 2 days, larvae were kept until day 3 in the 

event that larvae were alive but not producing easily visualized movement.  On the third day, if 

no growth or movement was observed, larvae were assumed dead and removed.  Samples of dead 

larvae were kept at -20 C in 20% glycerol stocks for PCR analysis in order to determine presence 

of bacterial DNA.  The number of surviving larvae was recorded daily. 

Field experiment (2.4) 

Lyophilization of phage cocktails (2.4.1):  Between 10 and 15 ml of individual amplified 

phage lysates were lyophilized separately  (LabConco Lyophilizer).  Samples were allowed to 

completely dry overnight; once all liquid was removed, samples were weighed and equal amounts 

(0.02 g) of each powdered phage preparation was combined.  This powdered mixture was easily 

transported to the field site.  Experiments to ensure phage viability after lyophilization were 

conducted with reconstituted the lyophilized phage.  Powdered phage mixtures were resuspended 

in either water or sugar syrup (8.75 g sucrose/10 ml water) and plated to determine phage 

viability in diluents proposed for field study. 

Field resuspension of phage and spray treatment on hives (2.4.2):  Lyophilized phage 

preparations were taken to the field site near Bellingham, WA, reconstituted with 10 ml of water, 

and then poured into 400 ml of sugar syrup.  After shaking to homogenize the mixture, the entire 

volume was sprayed directly on alternating frames in the infected beehive.  The following day, 

the sugar syrup mixture had been cleaned by the nurse bees and was no longer visible.  
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Treatments occurred on 6/26, 6/28, 7/10, 7/23, and 8/6 in the summer of 2013.  The first two 

treatments were administered in the presence of the beekeeper and the remaining three were 

conducted by the beekeeper.  On each date, either odd or even numbered frames were sprayed 

with the sugar syrup/phage preparation.  

Hive observations (2.4.3):  Frames were selected on the first treatment day for qualitative 

visualization of the extent of the infection and were photographed on the first day as well as at 

each subsequent treatment.  Gross comparisons of the frames were made over time, but detailed 

results were difficult to determine based on visualizations only.  Additionally, the beekeeper 

reported the general state of the treated hive on a regular basis until the end of the treatments. 

Post-treatment actions and related observations (2.4.4):  One month after the last phage 

treatment was administered, the beekeeper removed the worst of the diseased frames and replaced 

them with fresh, uninfected, and unpopulated frames.  By October 11, 2013, the beekeeper 

reported no evidence of AFB in the hive, and as of January 2014, no recurrence has been 

reported. 

Statistical analysis (2.5) 

Student T tests were performed on all treatments and controls to determine the statistical 

significance of their comparisons.  A significance value of α >  0.05 was used throughout this 

study. 

 

Results (3) 

Lab experiments (3.1) 

Results obtained from the control experiments are shown in Figure 1. There is a 

significant difference between both the survival of the negative control and the water control 

(p=0.002) and between the GmBHI broth control and the water control (p=0.034), but not 

between the negative control and the GmBHI broth control (p=0.347).  
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Figure 1 Larvae Survival - Controls.  Displays the mean proportion of larvae survival from the following treatments: 

negative control, food with GmBHI added, and food with water added.  Error bars represent the standard deviation. 

 

 

 

Results from the vegetative cell infection treatments are shown in Figure 2. There is a 

significant difference in the larvae survival by day 8 between the negative control larvae and 

those infected with P. larvae ATCC 49843 (p=0.000548) as well as between the negative control 

larvae and those infected with P. larvae 2188 (p=0.00560) but not with larvae infected with 

NRRL B-3554 vegetative cells (p=0.139).  The larvae infected with NRRL B-3554 that survived 

until pupation were incubated until pupation was complete, and the body mass was recorded for 

each fully pupated bee.  Compared to the control bees, the mass of the infected bees was 

significantly lower (p=0.0035). 
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Figure 2 Larvae Survival with Vegetative Cell Infections. Larvae infected with vegetative cells from P. larvae 

ATCC 49843, NRRL B-3554, and isolated 2188.  Error bars represent the standard deviation.   
 

 

 

Spore infection experiments indicate a significant decrease in survival of larvae infected 

with spores from any of the three bacterial strains compared to the control (Figure 3). There is a 

significant difference between the survival rates of the larvae infected with any of the spores and 

the negative control larvae ATTC 49843 (p=1.99E-8; NRRL B-3554 (p=1.79E-8) and the one 

dose spore infection with 2188 (p=4.97E-7) ; however, there is not a significant difference in the 

survival rates of larvae fed only one dose of 2188 spores when compared to larvae fed daily doses 

of 2188 spores (p=0.102). 
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Figure 3 Larvae Survival of Spore Infections.  Data represent the proportion of surviving larvae after infection with 

P. larvae spores from the following strains: ATCC 49843, NRRL B-3554, and isolated 2188.  Two infections using 

spores from 2188 were conducted; one with daily doses of spores and one with a single dose on the first day.  Error 

bars represent the standard deviation. 
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p=0.077).  There is a significant difference between the survival of larvae given phage cocktail 

versus infected with spores of 2188(p=0.045).  There is also a significant difference in survival 

rates between both forms of phage treatment (either administered prior to (p=0.010) or after 

(p=0.031) infection) and infected larvae without treatment, but not between the survival of the 

treatments themselves (p=0.293). 

 
Figure 4 Larvae Survival of Phage Cocktail #1 Treatments. Phage cocktail #1 treatments.  Larvae were fed spores, 

phage cocktail, spores and then phage cocktail, or phage and then spores.  Error bars represent the standard deviation. 
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prophylaxis regimens (p=0.024).  The decrease in survival is most likely due to compromised 

larvae that were grafted on that day, as the corresponding negative control larvae had a much 

lower survival than the overall average of all of the negative control experiments.  There is a 

significant difference between the prophylaxis and the treatment regimens using phage cocktail 

#2 (p=0.044).  The survival of larvae treated with the phage cocktail prior to infection increased 

by 70%, and was comparable with the survival rates of the phage cocktail controls. 

 

Figure 5 Larvae Survival of Phage Cocktail #2 Treatments.  Data represents experiments with phage cocktail #2 

treatments.  Larvae were fed spores, phage cocktail, spores and then phage, or phage and then spores.  Error bars 

represent standard deviation. 
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Assuming  < 0.05, there is a significant difference between the different phage cocktails when 

used as a treatment, but not when used as a prophylaxis. 

Figure 6 displays the proportion of deceased larvae that tested positive for P. larvae DNA 

by PCR and gel electrophoresis (Piccini et al., 2002).  Larvae obtained from negative control and 

phage cocktail control experiments (both of which had no bacteria added) showed no evidence of 

P. larvae DNA.  Approximately 40% of the larvae taken from vegetative cell experiments were 

positive for DNA.  Approximately 25% of the larvae taken from spore experiments were positive 

for DNA.  The average proportion of larvae positive for P. larvae DNA from phage cocktail 

treatments, regardless of whether phage was administered prior to or after spore infection, was 

slightly lower at 20%. 

 
Figure 6 Samples Positive for P. larvae DNA Detected Using PCR and Gel Electrophoresis. The proportion of 

deceased larvae positive for P. larvae DNA identified by P. larvae-specific primers and gel electrophoresis. 
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Field experiment (3.2) 

Experiments to determine phage viability after lyophilization were conducted to 

determine whether powered phage lysates were a practical option to use in a field setting.  Prior to 

lyophilization, the average titer of multiple phage lysates was approximately 108/ml.  After 

lyophilization, the cocktails were resuspended in either sugar syrup or sterile water and the 

average of the resuspended cocktails was approximately 105/ml.  The resuspended phage 

cocktails were maintained at 4 °C for one month, then titers were determined to be approximately 

104/ml. 

Pictures were taken of the same frames each time a treatment occurred, and observations 

were determined by the beekeeper.  Pictures revealed a slight visual improvement during the 

treatment process, but not a complete eradication of the disease.  The comb was both darker and 

has more sunken capped cells (both characteristics of AFB) in the image taken on the first day of 

treatment.  The beekeeper reported removing the diseased frames and replacing them with virgin, 

unpopulated frames after treatments had ended.  Four months after the initial treatment, the 

beekeeper reported no visible sign of infection (Karen Bean, personal communication).  

Samples were obtained after the treatment regimen ceased, and the procedures to isolate 

phage as previously described (Chapter 2) were conducted.  It was determined that the phage 

from the administered phage cocktails were present in the hive after the 5 treatments had ended. 

 

Discussion (4) 

Lab experiments (4.1) 

Results from the control experiments (Figure 1) indicate that dilution of the larvae food 

with water decreases the nutrients to the point of starvation, leading to significant larval death 

after four days of incubation.  However, when GmBHI broth is used to dilute food, no significant 

decrease in larval survival was observed, possibly due to the addition of the nutrients in the 
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medium.  This preliminary experiment is important because phage, spores, and vegetative cells 

were added to the larvae food in GmBHI broth. 

Vegetative cell infection experiments (Figure 2) indicate that the survival of larvae 

infected with strains 2188 or ATCC 49843 resulted in similar low survival by the 8th day; 

however, infection with ATCC 49843 rapidly decreased larval survival by the first day after 

grafting.  Although the disease is transmitted by spores (Genersch, 2010) and previous work 

suggests that vegetative cells do not cause AFB in larvae (Tarr, 1937), our results showing the 

significant decrease in survival of larvae infected with vegetative cells of strains 2188 or ATCC 

49843 compared to the negative control indicate that the vegetative cell of P. larvae is also an 

infective agent.  Additionally, although the larvae infected with NRRL B-3554 maintained 

viability until they entered pupation, the size and weight of the pupae after pupation were 

significantly smaller than that of the negative control.  This indicates the possibility that although 

bees survived infection with vegetative cells, their development was compromised and begs the 

question of whether these smaller bees would even be accepted within the hive. 

There was a significant decrease in survival of larvae infected with spores from any of 

the three bacterial strains compared to the control (Figure 3), which is consistent with previous 

literature (Tarr, 1937; Toumanoff, 1929; Woodrow, 1941; Woodrow, 1942;).  The results also 

demonstrate that there is not a significant difference between the proportion of larval survival 

when infected with one dose of spores on the first day compared to comparable doses 

administered each day with the same strain (2188).   This indicates a single exposure of P. larvae 

spores causes the same mortality as multiple exposures, which supports the claim that low doses 

of spores can cause infection of AFB in honeybee larvae (Woodrow, 1942). 

Comparisons between data represented in Figures2 and 3 indicate that the efficacy of 

spores in reducing larval survival is greater than that of the vegetative cells.  However, as 

previously stated, vegetative cells can also decrease larval survival as well as inhibit their 
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development.  This is demonstrated by the similar decreases in survival of larvae infected with 

spores or vegetative cells of 2188 and by the significantly lower body masses of the fully pupated 

bees infected with NRRL B-3554. 

The phage cocktail #1 control displays a small but insignificant decrease in survival 

compared to negative controls (Figure 4).  In each case using phage cocktail #1, whether 

administered prior to or following infection with 2188 spores, the larval survival was higher than 

the untreated infected larvae.  Although the survival of larvae under both treatment regimens 

were significantly lower than the survival of the negative controls, they were also significantly 

higher than the survival of the larvae infected with spores without treatment.  This indicates that 

the addition of phage cocktail #1 decreased mortality of infected larvae and might potentially be 

used in prophylaxis or treatment of AFB.  The phage cocktail #2 control displays a small but 

insignificant decrease in survival compared to negative control (Figure 5).  The prophylactic 

treatment using phage cocktail #2 increases survival above the infected larvae with no treatment, 

indicating it also might be an effective prophylaxis for AFB. 

Results of the PCR and gel electrophoresis experiments demonstrate that there was not 

cross contamination of samples during preparation nor incubation as none of the samples tested 

that had not received bacteria showed evidence of bacterial DNA (Figure 6).  The presence of 

bacterial DNA in the dead larvae from the vegetative cell experiments suggests that they likely 

died from a P. larvae infection.  The low percentage (40%) could be indicative of interference 

with the PCR process because 100% of the larvae were fed bacterial cells.  It is likely that larvae 

positive for P. larvae DNA taken from the spore infections also died from a P. larvae infection.  

The lower proportion of deceased larvae from phage-treated infected specimens that were 

positive for P. larvae DNA is consistent with treated larvae having a lower mortality rate than 

untreated infected larvae. 
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Field experiment (4.2)   

The opportunity to treat an infected hive presented itself when a beekeeper in the state of 

Washington, USA, contacted UNLV with questions regarding AFB.  She had previous experience 

dealing with multiple AFB-infected hives, and at the time of contact, had one infected hive.  The 

beekeeper was willing to allow an experimental treatment on her infected hive, and this was 

undertaken.  As such, the results of this study should only be considered as preliminary with clear 

necessity to carry out further field testing on more hives in the future.  Additionally, as the hive 

was already infected, the study is a post-infection treatment experiment only.  It was not deemed 

ethical to administer phage to a healthy hive prior to purposefully infecting it with P. larvae, so a 

prophylactic treatment regimen was not conducted outside of the lab. 

Planning included preparation of phage cocktails by lyophilization for the field 

experiment, which was a convenient method to store and transport phage.  Some loss of phage 

viability during the lyophilization and reconstitution procedures occurred as seen by reduced 

phage titers throughout the process. However, enough phage survived to use as a starting material 

for treatment of the infected hive.  Using a phage cocktail with a larger concentration prior to 

lyophilization would allow for a higher starting titer and perhaps more effective treatment of the 

hive.  The resuspended phage cocktails were maintained at 4 °C for one month, then titers were 

determined to be approximate 104, a loss of only10 fold during that time.  This indicates the 

lasting viability of resuspended, previously lyophilized phage in diluted form and is consistent 

with long-term storage of phage lysates at either 4 C or at 37 C (data not shown). 

Throughout the treatments, the infected hive improved but the disease was not eradicated.  

This could be because of, among other potential reasons, the severity of the disease in that hive, 

the need for a higher starting titer of phage cocktail, or the inability of phage to infect spores of P. 

larvae.  A combination of a spore germinant administered prior to phage treatment with a higher 

concentration of phage could be tested for effectiveness .  Although the disease was not 
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eradicated immediately after treatments, the beekeeper reported that at four months after the first 

treatment (late October 2013) there was no evidence of AFB in the treated hive, and no 

recurrence of the disease has been reported as of January 2014.  These results are based on the 

observations of the beekeeper, who is familiar with symptoms of AFB, and interpretation of the 

pictures of hive frames.  However, the lack of recurrence of AFB in the hive could be due to the 

removal of the infected frames by the beekeeper, the addition of the phage cocktail into the hive, 

or a combination of both.  More infected hives should be experimentally treated with phage 

cocktails to make this determination. 

 

Conclusions (5) 

The results of the lab experiments indicate an overall improvement in survival when 

phage cocktails are administered to infected larvae.  Prophylactic treatment  with phage cocktail 

#1 is slightly more effective than the post infection treatment, although not significantly so, while 

prophylactic treatment with phage cocktail #2 is significantly more effective at increasing larval 

survival than post-infection treatment.  This indicates a prophylactic regimen may be more 

effective at preventing the disease than a post-infection treatment once a hive was already 

infected. 

The higher survival of larvae that underwent prophylactic treatment with phage cocktail 

#2 than with phage cocktail #1 indicates that a cocktail with a greater number of different phage 

is more effective than a cocktail with fewer different phage. 

The slightly decreased survival, although not significantly so, of the larvae given food 

diluted with phage cocktails may be due to the same reason larvae survival is slightly decreased 

when fed larvae food diluted with GmBHI broth.  Experiments should be conducted to add more 

highly concentrated phage without diluting the food as much and maintaining the same 
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consistency as the negative control food to ensure that larval death is a result of the food dilution 

and not of the phage cocktails themselves. 

Only one hive was experimentally treated in the field, and confident conclusions cannot 

be reasonably drawn.   However, the fact that the hive has had no recurrence of AFB is 

promising.  More experiments should be conducted to determine whether the apparent 

disappearance of the disease is the result of phage treatment, the removal of infected frames, or a 

combination of both.  Prophylactic phage treatments on hives in a more natural setting would be 

useful, but would have to be undertaken careful control to ensure accidental spread of AFB after 

purposeful infection of an experimental hive would not occur. 

The results from these preliminary experiments indicate using phage therapy is a 

potential option to treat American Foulbrood disease. 
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Figure Legends 

Table 1 Volumes of food and titers of phage, bacteria and spores fed to larvae daily. 

Figure 1 Larvae Survival - Controls.  Displays the mean proportion of larvae survival from the 

following treatments: negative control, food with GmBHI added, and food with water added.  

Error bars represent the standard deviation. 

Figure 2 Larvae Survival with Vegetative Cell Infections. Larvae infected with vegetative 

cells from P. larvae ATCC 49843, NRRL B-3554, and isolated 2188.  Error bars represent the 

standard deviation.   

Figure 3 Larvae Survival of Spore Infections.  Data represent the proportion of surviving 

larvae after infection with P. larvae spores from the following strains: ATCC 49843, NRRL B-

3554, and isolated 2188.  Two infections using spores from 2188 were conducted; one with daily 

doses of spores and one with a single dose on the first day.  Error bars represent the standard 

deviation. 

Figure 4 Larvae Survival of Phage Cocktail #1 Treatments. Phage cocktail #1 treatments.  

Larvae were fed spores, phage cocktail, spores and then phage cocktail, or phage and then spores.  

Error bars represent the standard deviation. 

Figure 5 Larvae Survival of Phage Cocktail #2 Treatments.  Data represents experiments with 

phage cocktail #2 treatments.  Larvae were fed spores, phage cocktail, spores and then phage, or 

phage and then spores.  Error bars represent standard deviation. 

Figure 6 Samples Positive for P. larvae DNA Detected Using PCR and Gel Electrophoresis. 

The proportion of deceased larvae positive for P. larvae DNA identified by P. larvae-specific 

primers and gel electrophoresis. 
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CHAPTER 5 

 

GENERAL DISCUSSION 

The importance of the European honeybee, Apis mellifera, to agriculture, the economy, 

and environmental health are reasons to consider the overall well-being of the organism, 

especially when reflecting upon recent declines in honeybee populations (VanEngelsdorp et al., 

2013; Charles, 2013).  A major contributing factor to poor honeybee health is American 

Foulbrood disease (AFB) (Genersch, 2010), which is caused by the pathogen, Paenibacillus 

larvae, a gram-positive, spore-forming bacterium.  Extreme, destructive methods, such as burning 

hives and equipment, to prevent the spread of the disease coupled with the problems associated 

with antibiotic use for treating AFB, including increased bacterial resistance and contaminated 

honey, are reasons to consider research into alternate methods of treatment. 

For example, phage therapy is an alternative to antibiotics in human medicine (Fischetti 

et al., 2006), and has been proposed as an alternative for treatment of animal diseases, including 

AFB (Gochnauer, 1955; Gochnauer, 1970; Drobnikova and Ludvik, 1982, Popova et al., 1976; 

Valerianov et al., 1976; Dingman et al., 1984; Bakheit and Stahly, 1988; Campana et al., 1991).  

Phage therapy, or the therapeutic use of bacteriophage to target specific bacterial pathogens, 

would require phage that use the pathogen of AFB, Paenibacillus larvae, as its host.  The work 

presented here considered the development of methods to isolate such bacteriophage, the ease of 

obtaining P. larvae phage, phage characterization and selection for further research, and finally, 

the efficacy of phage cocktails in treating infected larvae and an infected beehive. 

Bacteriophage are extremely abundant in nature (Suttle and Fuhrman, 2010), and as such, 

phage capable of lysing P. larvae strains should exist in nature and isolation of such 

bacteriophage should be feasible.  Isolation of phage required acquisition of samples, enrichment 

with P. larvae NRRL B 2605 to allow propagation of phage capable of lysing the pathogen, 
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screening of each sample for bacteriophage, isolation to obtain pure phage lysates, and 

amplification of isolated phage (Chapter 2).  After screening 157 samples for phage capable of 

lysing P. larvae, 32 phage isolates were found (20%).  Completion of the environmental 

screening revealed that P. larvae phage are abundant in easily accessible environmental sources 

and can be successfully isolated.  Such ease of acquiring the phage would be useful to obtain 

more phage should future researchers decide to pursue phage therapy as an option for AFB 

treatment. 

Chapter 3 reviewed the sources and characterization of the isolated P. larvae phage.  The 

majority of the isolated phage were obtained from soil under and around beehives, as indicated by 

the results outlined in Chapter 3, and lytic environmental phage with broad host ranges on many 

P. larvae strains have potential for phage therapy.  The soil around beehives is easily available 

and was a reliable source of lytic phage that lysed all or nearly all of the 11 P. larvae strains 

tested. 

The lack of lysis of other genera and only one incidence of slight clearing on a 

Paenibacillus sp. indicates high host specificity.  This is encouraging because it would be 

undesirable to cause lysis of bacterial species other than the targeted pathogen.  This is also 

important since the natural microbiota is often necessary to maintain both bee gut health and the 

overall health of the hive (Olosfsson and Vásquez, 2008).   

It was not known whether the 32 isolated phage represented one phage type isolated 32 

times, 32 different phage, or some combination of isolation of identical phage and new ones from 

different samples.  The phage isolated in this study were characterized by plaque morphology, 

host range on various bacterial species and by electron microscopy.  Since host range can be 

affected by bacterial receptors (Lindberg, 1973), it is not a very reliable indicator of relatedness, 

but it is useful to choose effective phage for potential AFB treatment.  DNA sequence 

comparisons of the phage of interest has begun and will need to be further investigated to confirm 
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identity and relatedness.  The methods described in Appendix A outline the procedures required 

for isolating and purifying the phage DNA. In addition to bacterial species host range data, there 

is a significant difference between the susceptibility of two former subspecies of P. larvae, larvae 

and pulvifaciens, to the isolated bacteriophage.  The phage isolated using as a host a former P. 

larvae larvae strain had a greater success rate in lysing bacterial strains of that former subspecies 

compared to the P. larvae pulvifaciens strains.  Despite the reclassification of these two former 

subspecies into a single species without subspecies (Genersch et al., 2006), this could indicate 

differences between the two former subspecies that are potentially distinct enough to reconsider 

classification.  Even if this is not considered, it should be pointed out that in order to create a 

phage cocktail fully capable of efficiently infecting a broad host range of all P. larvae strains that 

cause AFB, phage isolated by enriching samples with former P. larvae pulvifaciens would ensure 

a more robust cocktail. 

The characterization of the isolates in Chapter 3 led to the selection of specific phage for 

use in both lab and field experimental treatments.  Chapter 4 describes the protocols used to 

determine the efficacy of the selected phage as a phage therapy treatment regimen for infected 

larvae and an infected hive. 

An increase in survival of larvae was observed when phage were administered in 

conjunction with spore infection compared to spore infection alone (Chapter 4).   Dilution of food 

with water decreased survival of larvae significantly, while dilution of food with media that 

contained considerable nutrients (GmBHI) decreased survival slightly but not significantly, 

indicating future experimental design should concentrate any food additives in order to avoid 

dilution. 

Results from experiments feeding vegetative cells to larvae indicate that although 

mortality was not as high as when larvae are fed spores of the same bacterial strain, there is a 

significant decrease in survival compared to the negative control for at least two of the strains 
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tested.  Additionally, the strain that did not significantly decrease larvae survival did significantly 

decrease adult bee body mass after pupation, indicating that although they survived, the larval 

development was compromised.  Comparison of data from vegetative cell infections and spore 

infections indicate that the efficacy of spores in reducing larval survival is considerably greater.  

Spore infection experiments indicate a single dose of spores (# of spores) is sufficient to cause a 

significant decrease in survival of larvae.  

Use of phage cocktails (combinations of those phage that can effectively lyse the 

broadest range of P. larvae strains) in larvae infected with P. larvae spores increased survival in 

comparison to the larvae infected with spores only, with the exception of the post-infection 

treatment which had a corresponding negative control with a low survival.  This suggests the 

ingestion of phage either before or after infection with P. larvae spores is beneficial to the 

survival of the larvae.  In particular, the larvae given phage cocktail #2 prior to infection 

maintained survival so dramatically that it was statistically insignificant from larvae survival in 

the phage cocktail #2 control.  These experiments need to be repeated to affirm their validity. 

When the opportunity to treat an infected hive presented itself, an experiment was 

designed around field practicality to administer a phage cocktail.  Through experimentation, it 

was determined that lyophilization is a feasible way to preserve phage in a convenient form, and 

that phage retain most of their viability through this process.  A high starting phage titer would 

ensure that the loss of phage viability seen through lyophilization would not be too great as to 

diminish the effectiveness of the treatment.  Although complete eradication of AFB was not 

witnessed throughout the duration of the field treatment, the hive was reported to be clear of signs 

of the disease four months after the initial dose of phage was administered, and reoccurrence has 

not been reported.  However, since the beekeeper removed the hive frames with the most severe 

symptoms, whether the lack of disease is due to the phage, the frame removal, or a combination 

of both is uncertain at this time.  Additional research should be conducted to determine this 
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question.  As such, this study should only be considered a preliminary experiment conducted as a 

precursor to testing on a larger scale in the future.  Furthermore, only one hive was available for 

this experimental treatment, but should additional infected hives become available for testing, 

supplementary experiments should be conducted. 

The body of this work describes methods to acquire pure isolates of phage capable of 

lysing P. larvae, the causative agent of AFB.  Such phage, when combined, are useful to increase 

the survival of larvae infected with the pathogen under lab conditions, and potentially to help 

alleviate the disease in the field.  Although more experimental field and lab treatments should be 

conducted, results from the experiments presented here suggest phage therapy is a viable 

treatment option to of American Foulbrood disease. 
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APPENDIX A 

 

DNA ISOLATION, CHARACTERIZATION, AND SEQUENCE COMPARISON OF 

ISOLATED  BACTERIOPHAGE CAPABLE OF INFECTING THE CAUSATIVE AGENT OF 

AMERICAN FOULBROOD DISEASE, PAENIBACILLUS LARVAE 

 

FORWARD 

The following methods described were those used to prepare phage isolates for DNA 

analysis.  Preparation from raw samples was completed by Diane Yost.  After DNA samples were 

amplified with Phi29 polymerase, they were sent to Andrew Krohn at Northern Arizona 

University for sequencing procedures.  Raw sequence data was analyzed by Philippos Tsourkas.  

Results are still being fully analyzed  and as such, are not presented here. 

 

Materials and Methods 

Amplification of Isolated Bacteriophage. 

Previous studies were conducted to isolate bacteriophage that are capable of lysing strains 

of Paenibacillus larvae from environmental and commercial sources (Chapter 2 and 3).  Based on 

characterizations conducted that were described in Chapter 3, 18 isolates were chosen for further 

DNA characterization.  Bacteriophage lysates were prepared by inoculation of 50 ml log phase 

bacterial cultures of Paenibacillus larvae 2605 (NRRL) with 1 ml of individual phage isolates 

and shaking at 100 rpm and 37 °C overnight.  Following centrifugation (3220 x g for 10 min), the 

lysates were filter sterilized using 0.45 um sterile cellulose nitrate filter cartridges (VWR) to 

remove bacterial cells and debris.  This lysate was used to prepare a highly concentrated phage 

lysate by plating 20 identical soft agar overlay plates.  P. larvae strain 2605 was mixed with each 

isolate with sufficient phage to result in complete lysis of bacterial cells. Plates were prepared 
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with GmBHI  (0.4% Difco glucose was added to mBHI) containing 1.5% agarose and overlays 

were made of GmBHI with 0.95% agarose.  These plates were incubated overnight at 37 °C 

(NapCo E Series Model 303 Incubator).   Five ml of PBS pH 7.1 was added to the surface of each 

plate and was allowed to sit for 20 minutes.  The top layer of the agarose overlay was then 

scraped off using a sterile pipette tip, making sure the underlying medium was not disturbed.  The 

scraped agarose plus PBS was collected and transferred to a funnel lined with four layers of 

cheesecloth to remove the agarose particles.  The resulting liquid was then filtered through a 

sterile 0.2 µm filter (Sartorus) using vacuum filtration to remove bacterial cells. 

Phage DNA Precipitation and Resuspension 

The filtrates described above were poured into sterile 50 mL polysulfone centrifuge tubes 

(Thermo Scientific) and phage were pelleted by centrifugation for 15 hours at 4 °C and 18,000 x 

g (Beckman J2-HS).  The supernatant was carefully decanted from the phage pellet (a thin, 

transparent film), the tubes were inverted and then allowed to drain for 1-2 minutes but not 

allowed to completely dry.   The phage pellet was gently resuspended in 1.0 ml of phage buffer, 

pH 7.5 with a composition of 10 mM Tris-HCl, 10 mM MgSO4, and 68 mM NaCl (Dr. Malcom 

Zellars, personal communication), using a cut-off 1 ml sterile, disposable pipette tip, then 

removed from the centrifuge tube and transferred to a 1.5 ml microcentrifuge tube.  The starting 

volume of approximately 100 ml was concentrated to a final volume of 3 ml and gently mixed by 

slowly inverting the tubes 2-3 times.  

DNase Treatment 

One mL of the concentrated phage lysates were put into 2 mL sterile microcentrifuge 

tubes (4 tubes per phage isolate).   The tubes were incubated at room temperature for 15 min after 

the addition of 20 µL (40 units total) of DNase to each tube.  During incubation, the tubes were 

carefully inverted 2-3 times every 5 min.  The DNase was then heat inactivated by incubation at 

75 °C for 20 min before placement on ice for 10 min.  
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Protein Coat Degradation 

 To the DNAse treated phage preparations (now in microcentrifuge tubes) was added 20 

µL of 20 mg/mL Proteinase K per 1 ml of original lysate and incubated at 55 °C for 2 hours.  The 

tubes were gently inverted several times every 15 min during incubation, then again after 

incubation prior to starting the DNA extraction procedure. 

Extraction and Purification 

Each bacteriophage isolate was prepared using two DNA extraction kits.  Both Qiagen 

(DNeasy Blood and Tissue Kit, Cat# 69581) and Norgen (Phage DNA Isolation Kit, Cat# 46700) 

spin column kits were used according to the manufacturer’s instructions.  Extracted DNA was 

stored at -20 °C until further use.  

Phi29 Polymerase Amplification 

If the concentrations of purified DNA were over 10 µg/µL, the samples were directly 

sequenced by Illumina sequencing.  If they were below 10 µg/µL, the samples were amplified 

using a GE Healthcare illustra Ready-To-Go GenomiPhi V3 DNA Amplification Kit by 

following the manufacturer’s instructions. 

Illumina Sequencing 

Prepared purified DNA was sent to Andrew Krohn at Northern Arizona University for 

sequencing. 

Data Analysis 

Data obtained from Illumina sequencing is being fully analyzed  by Philippos Tsourkas 

using Geneious, a software program specifically for DNA and protein sequence analysis. 
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APPENDIX B 

 

RAPID CHARACTERIZATION OF PAENIBACILLUS SPP. BY MATRIX-ASSISTED 

LASER DESORPTION/IONIZATION TIME-OF-FLIGHT 

MASS SPECTROMETRY (MALDI-TOF MS) 

 

FORWARD 

 This appendix is a compilation of work conducted by multiple individuals: Beau M. 

Grothendick, Lin Zhang, Drs. Penny Amy and Todd Sandrin, and myself.  I do not take credit for 

the research presented other than my own.  My contribution to the research of this manuscript 

was conducted under the direction of Dr. Penny Amy and is solely the isolation and culturing of 

Paenibacillus species sent to Dr. Todd Sandrin for further analysis. 

 This appendix is formatted for submission to Microbiological Research. 
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Abstract 

Characterizing Paenibacillus species using biochemical tests and molecular methods is 

time-consuming and cannot effectively control the quick spread of the honey bee disease.  

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) 

has been successfully used to characterize many bacteria at the species, and in some cases, strain 

levels, suggesting that MALDI-TOF MS is a promising tool to rapidly characterize Paenibacillus.  

Thus, the aims of this work were to: 1) develop a method to characterize Paenibacillus using 

MALDI-TOF MS and 2) identify potential biomarkers that afford resolution of Paenibacillus at 

the species and strain levels.  Mass spectra from 18 isolates, 12 of which were P. larvae strains, 

were collected and clustered to examine the similarity between isolates.  16S rDNA sequencing 

was conducted for selected isolates to compare taxonomic resolution of MALDI to PCR-based 

approaches.  Results show that MALDI-TOF MS can generate highly reproducible mass spectra 

with an average reproducibility of 98.6%.  Spectra clustered at the species and strain levels, with 

the exception of three isolates.  In contrast, individual strains were not discernible based on 16S 

rDNA sequences.  Potential biomarkers were identified in three species, including: P. larvae, P. 

lentimorbus, P. polymyxa, and one previously defined subspecies, P. larvae pulvifaciens.  Our 

results suggest that MALDI-TOF MS based characterization is an effective tool to rapidly 

characterize Paenibacillus, and affords higher taxonomic resolution than traditional PCR-based 

methods.  

 

 

Keywords: Bacterial characterization, strain, biomarkers, mass spectrometry, Paenibacillus, 

foulbrood disease 
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Introduction 

Paenibacillus are found in a wide array of environments, including soil, water, vegetable 

matter, and insect larvae (Antúnez et al, 2004; Genersch, 2007; McSpadden, 2004; Rieg et al, 

2010), some of which are pathogens.  For example, Paenibacillus larvae, a gram-positive spore 

forming bacterium, is the causative agent of American Foulbrood disease (AFB) (Genersch 

2008).  AFB is a severe honey bee disease that often kills the hive brood (Lindstrom et al, 2008a, 

2008b).  The spores are the infectious agent of P. larvae, which cannot be treated with antibiotics 

and are resistant to heat (Hamdi et al, 2013).  Once the hive is infected, the spores are not easily 

removed and thus they spread between hives quickly.  Infected hives and beekeeping equipment 

are usually burned to control the spread of AFB (de Graaf et al, 2006), causing massive financial 

destruction to apicultural industries (Antúnez et al, 2004; Hamdi et al, 2011).  Moreover, 

emergent strains with varied virulence and antibiotic resistance have appeared throughout history 

in different regions of the world (Genersch et al, 2005; Rieg et al, 2010; Tian et al, 2012).  The 

genetic diversity of P. larvae strains makes the control of AFB even more difficult.  

To properly diagnose AFB, many methods have been developed to identify P. larvae and 

differentiate it with respect to related Paenibacillus species.  These methods include catalase test, 

REP-PCR using BOX primers, and 16S rRNA gene sequencing (Alippi et al, 1998; Genersch et 

al, 2006; Govan et al, 1999).  These methods are effective to identify P. larvae at the species level 

and, in some cases, type the diversity of intra-species.  However, they are extremely time-

consuming.  Honey bee larvae are fed royal jelly contaminated with P. larvae spores; the spores 

germinate within 12 hours of consumption.  Obviously, these traditional biochemical and 

molecular methods cannot be applied in a timely manner to diagnose AFB, since none of them 

can be easily completed in 12 hours. 

A promising technique that can be used to rapidly identify and differentiate P. larvae is 

matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) fingerprint-based 
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methods.  In the past decade, MALDI-TOF mass spectrometry (MS) has been incrementally and 

successfully utilized to characterize many bacteria at the species, subspecies, and in some cases, 

strain levels, including Bacillus which is closely related to Paenibacillus  (Diekmann et al, 2010; 

Mazzeo et al, 2006; Sandrin et al, 2013; Teramoto et al, 2007).  Unique fingerprints in the form of 

mass spectra can be obtained from intact cells or the extracted proteins of pure cultures following 

previously published protocols (Friewald and Sauer, 2009).  The preparation techniques are 

simple and do not require large amounts of biological materials to perform.  The resulting spectra 

are highly reproducible and can be used to characterize, discriminate, identify, and track bacteria.  

The entire procedure can acquire only a few minutes, which enables the possibility of analyzing a 

great number of samples within a short time.  Studies also suggest that MALDI-TOF 

fingerprinting methods have better taxonomic resolution than traditional molecular methods 

(Böhme et al, 2013; Fujinami et al, 2011).  These advantages engendered our interest in applying 

MALDI-TOF MS to characterize Paenibacillus species.  Our hypothesis was that with proper 

protocols, MALDI-TOF MS can rapidly and reliably characterize Paenibacillus species and 

perhaps strains.  

As a result, the objectives of this study were to 1) develop and evaluate a method to 

characterize isolates of Paenibacillus using MALDI-TOF MS and 2) identify potential 

biomarkers that afford resolution of Paenibacillus isolates at the species, subspecies, and strain 

levels.  In this work, MALDI-TOF MS was applied to 18 Paenibacillus isolates, including 3 

species, P. lentimorbus, P. polymyxa and P. larvae, and two previously defined subspecies, P. 

larvae larvae and P larvae pulvifaciens, using a protein extraction sample preparation method.  A 

dendrogram was built based on the resulting mass spectra to examine the relationship between 

species and previously defined subspecies.  The resulting spectra were further analyzed for 

potential species and strain discriminating biomarkers.  Results suggest that MALDI-TOF 

fingerprinting can successfully characterize Paenibacillus at the species level.  For the previously 
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defined subspecies level, results suggest that MALDI-TOF fingerprinting is successful, with the 

exception of a single misidentified isolate. 

 

Materials and Methods 

Paenibacillus isolates and culture conditions 

A collection of 18 Paenibacillus isolates representing three species and two previously 

defined subspecies were used in this study (Table 1).  Isolates were stored at -80°C in a 20% 

glycerol/ R2B medium.  Isolates were cultured on R2A plates (Difco, BD Diagnostics, Sparks, 

MD, USA) at 37°C for 48 h.  Single colonies were selected to inoculate R2B (Difco, BD 

Diagnostics, MD, USA).  Inoculated broth was incubated at 37°C for 24 to 48 h (due to differing 

growth rates) on an orbital shaker at 200 rpm. 

Sample preparation 

A protein extraction sample preparation method was used (Friewald and Sauer, 2009).  Cells 

from R2B cultures were pelleted by centrifugation (17,000 × g for 5 min) and washed with sterile 

double-distilled water (ddH2O) (Millipore Corp.; Bedford, MA, USA) to remove pigment.  Cells 

were re-suspended in sterile ddH2O and the cell density of each suspension was adjusted to 1.0 ± 

0.1 OD600.  Each cell suspension was pelleted by centrifugation (17,000 × g for 5 min) and the 

supernatant was carefully removed.  Cell pellets were inactivated in 450 µL of absolute ethanol 

(200 proof) and 150 µL sterile ddH2O.  Each sample was centrifuged (17,000 × g for 5 min) and 

the resulting supernatant was discarded.  Five microliter of 70% formic acid (Sigma-Aldrich, St. 

Louis, MO, USA) and 5µL of acetonitrile (Alfa Aesar, Ward Hill, MA, USA) were mixed with 

the pellet by pipetting thoroughly.  Each sample was centrifuged (17,000 × g for 5 min), and the 

supernatant was transferred into a sterile 1.5 mL microcentrifuge tube.  Protein extract (0.5 µL) 

was pipetted onto a polished steel 96-well MALDI target plate (Bruker Daltonics) and allowed to 

air-dry for ten minutes.  Samples were spotted on predetermined, randomly distributed locations 
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on the target plate and were coded numerically.  After the sample had dried, it was overlaid with 

0.5 µL of α-cyano-4-hydroxycinnamic acid (ACROS, Fair Lawn, NJ, USA) matrix supplemented 

with 2.5% trifluoroacetic acid (ACROS, Fair Lawn, NJ, USA).  Each isolate was spotted in 

triplicate. 

MALDI-TOF MS data acquisition  

MALDI-TOF MS analyses were performed using a Bruker Microflex LRF MALDI-TOF 

mass spectrometer (Bruker Daltonics; Billerica, MA) equipped with a nitrogen laser (337 nm) 

under the control of FlexControl software (version 3; Bruker Daltonics).  Each spectrum was 

obtained in a linear positive mode and calibrated externally using Angiotensin II (1046.54 Da), 

ACTH (1-17) (2094.427Da), ACTH (18-39) (2466.681 Da), Insulin oxidized B (3494.651 Da), 

Insulin (5734.518 Da), Cytochrome C (1236.974 Da), and Myoglobin (16952.306 Da).  Five 

hundred shots were collected manually in 100 shot steps for each spot within a mass range from 2 

to 20 kDa.  Laser power was set to the necessary minimum for ionization of selected samples 

before starting the analyses.  After each round of 100 shots, the operator added the spectrum to 

the sum buffer only if the base peak of the resulting spectrum had an intensity of approximately 

1,000 a.u. or greater.  

Spectrum cluster analysis 

Mass spectra contained in .txt files were extracted from FlexAnalysis (version 3.0; 

Bruker Daltonics) and then imported into Bionumerics (version 7.1; Applied Maths).  Spectra 

were pre-processed using the following settings:  baseline subtraction (rolling disc; disc width 

201 points), smoothing (Kaiser Window filter; Window size: 20, Beta: 20), peak detection (CWT 

Ridges algorithm; minimum wavelet scale: 2, maximum wavelet scale: 16, minimum local ridge 

length: 2 scale, minimum total ridge length: 12 scale, max number of ridge gaps: 3, edge 

enhancement), and peak filtering (S:N ratio of 10).  Reproducibility of triplicate spectra within a 

sample was calculated as previously described (Schumaker et al, 2012).  Then, the triplicate 
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spectra were condensed into a single composite (summary) spectrum.  For cluster analysis, the 

composite spectra were further processed using 1% curve smoothing and the Pearson correlation 

coefficient between composite spectra was calculated.  A dendrogram was generated using an 

unweighted pair group method with an arithmetic mean (UPGMA) algorithm based on the 

Pearson correlation coefficients.  Multidimensional scaling (MDS) analysis was performed as 

previously described to visualize the similarity between composite spectra (Goldstein et al, 2013).  

Jackknife analysis was performed using maximum similarities to further quantify the rates of 

correct classification between species and subspecies.   

16S rDNA sequencing 

Genomic DNA was isolated by freezing and thawing cell cultures three consecutive times.  

The cells were centrifuged (17,000 × g for 5 min) and the resulting supernatant was transferred to 

a new sterile microcentrifuge tube.  The primers used for 16S rDNA sequencing were 27f (5’ 

AGA GTT TGA TCC TGG CTC AG 3’) and 1492r (5’ TAC GGT TAC CTT GTT ACG ACT T 

3’).  Each 20-µl reaction contained 0.5 µM of each primer, 0.2 mM of each dNTP, 1X phusion 

HF buffering consisting of 10mM Tris-HCL, 50mM KCL, 2.0 mM MgCL (PH 8.3), 3% DMS0, 

0.02 U/µL of taq DNA polymerase, and 10.8 µL UV sterilized ddH2O.  The amplification cycle 

was 95°C for 5 min, followed by 30 cycles of 98°C for 10 sec, 55°C for 30 sec, and 72°C for 30 

sec, and a final extension at 72°C for 10 min.  PCR products were purified using a QIAquick 

PCR Purification Kit (QIAGEN) as recommended by the manufacturer and sent to Arizona State 

University DNA lab for sequencing.  The sequenced products were proofread using FinchTV 

(Geospiza, Seattle WA).  All DNA sequences were assembled and aligned in Bionumerics 

(version 7.1; Applied Maths).  Similarity searches for sequences were performed using BLAST 

analysis.  A pairwise alignment of about 700 base pairs of each isolate was performed (Open gap 

penalty: 100%, Unit gap penalty: 0%) and a tree was constructed based on alignment scores using 
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single linkage network creation algorithm with Jukes and Cantor correction (Gap Penalty: 2%).  

The root was determined using the maximum branch length. 

Identification of potential biomarkers 

Raw mass spectra were imported into FlexAnalysis software (version 3.0; Bruker Daltonics), 

and baseline subtraction was applied using the TOPHAT algorithms.  Peaks were picked using 

the following parameters: masses from 2 to 20 kDa, minimum peak resolution at 400 Da, 

minimum signal to noise at 2, minimum intensity threshold at 100.  The picked peaks were 

manually organized in a list of highest to lowest intensity.  Replicate peaks (i.e., potential 

biomarkers) found unique and exclusively reoccurring in one species, subspecies, or strain were 

identified and their collective m/z was averaged.  The average peak m/z was compared against the 

individual minimum and maximum m/z values within the exclusive species, subspecies, or strain.  

If the difference of values was less than or equal to ±2.0 m/z, the potential biomarker was 

recorded.  If the difference was greater than ±2.0 m/z, or a similar peak was found outside of the 

specific species, subspecies, or strain, the potential biomarker was not recorded. 

 

Results and Discussion 

Paenibacillus species, for example, P. larvae, are pathogens that cause severe disease (AFB) 

of honey bees, which results in a huge economic loss in agricultural industries.  MALDI-TOF MS 

is rapid and easy to perform, offering an alternative method to traditional PCR-based methods, 

which may contribute to rapidly identifying P. larvae and limiting the spread of AFB.  As a 

result, the purpose of this study was to evaluate the possibility of MALDI-TOF MS rapidly 

characterizing the Paenibacillus species using a model of eighteen Paenibacillus isolates.  These 

isolates were either isolated from larvae scales or purchased from culture collection centers 

(Table 1).  The wild type isolates were identified using specific Paenibacillus primers (Piccini et 

al, 2002) (Table 1). 
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Method development 

MALDI-TOF MS spectra were generated from protein extracts of Paenibacillus isolates 

with three technical replicates for each isolate.  While intact cell methods are more favorable than 

protein extraction for rapid characterization, preliminary experiments using ethanol to inactivate 

bacterial whole cells failed.  Significant colony growth was observed from treated cells streaked 

onto R2A plates within a period of five days (data not shown).  This may be due to that 

Paenibacillus species are spore-forming bacteria and ethanol was not able to kill all the spores.  

Other inactivation methods, such as increasing inactivation time, using acetonitrile instead of 

ethanol, and using low pressure plasma, may be used in the future to facilitate the use of more 

rapid intact cell methods to further increase the efficiency of MALDI-TOF-based characterization 

of Paenibacillus.  

Cultivation times for each environmental isolate were not uniform.  Visible growth was 

not apparent in New Mexico strains, NW1 and NW2 (Table 1), for up to five days.  P. larvae 

pulvifaciens and P. polymxa cultures consistently showed visible growth after a 24 h period, 

while P. larvae larvae and P. lentimorbus cultures varied dramatically in time required for visible 

growth (24h – 72h).  Some studies suggest that cultivation time affects the resulting mass 

fingerprints and this may affect reproducibility of replicates (Šedo et al, 2013).  However, 

environmental isolates often have heterogeneous growth rate.  To minimize the effect of 

cultivation time on spectrum reproducibility, the average rate of each isolate’s growth, which 

ranged from 24 h to 120 h, was charted to sync cultivation of cells for MALDI-TOF MS.  

Specifically, each isolate had visible turbidity after the following estimated times: NM1, NM2, 

WA (120 h); 16425 (96 h); P. lentimorbus 1, P. lentimborbus 2, 2605 (72 h); 3554 (48 h); P. 

polymyxa, 232, 367, 368, 747, 748, 843, 2231, 2188, 3688 (24 h). 
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Representative mass spectra 

Previous studies indicate that manual data acquisition can generate more reproducible 

mass spectra than automated data acquisition (Schumaker et al, 2012).  Reproducibility of mass 

spectra is a very important factor to evaluate the performance of MALDI-TOF MS in bacterial 

characterization, and high reproducibility is critically important, especially at the strain level 

(Sandrin et al, 2013).  Thus, in this study, manual data acquisition was used to maximize the 

reproducibility of Paenibacillus mass spectra to better evaluate the ability of MALDI-TOF MS to 

differentiate P. larvae strains.  The minimum reproducibility of each triplicate across all isolates 

was 96.4% and the maximum reproducibility was 99.9%.  The averaged reproducibility of all 

technical replicates was 98.6% (± 0.98).  The resulting reproducibility was comparable to or 

better than those reported in other MALDI-TOF fingerprint studies (Schumaker et al, 2012; 

Goldstein et al, 2013; Wunschel et al, 2005), suggesting that MALDI-TOF MS can generate 

highly reproducible mass spectra of Paenibacillus by using a protein extraction method with 

manual data acquisition.  Our model system contained only 18 isolates.  In case of large number 

of samples, the automated data acquisition is more favorable and applicable with automated 

parameter optimization.    

Representative mass spectra of P. polymyxa, P. lentimorbus, and two previously defined 

subspecies, P. larvae larvae and P. larvae pulvifaciens, are displayed in Figure 1.  Spectra 

produced by different Paenibacillus species were readily distinguished from one another based on 

their mass ranges and base peaks.  Specifically, P. polymyxa yielded spectra with most peaks in 

the range of 2,000 – 11,200 Da (Fig. 1A); P. lentimorbus yielded spectra with most peaks below 

9,800 Da (Fig. 1B); P. larvae yielded peaks in a similar mass range, 2000 – 10,300 Da, to that of 

P. polymyxa, but less peaks were shown above 10,000 Da than that of P. polymyxa (Fig. 1C and 

D).  With regards to strain level characterization, P. larvae larvae and P. larvae pulvifaciens 

showed similar mass profiles at first glance, but P. larvae pulvifaciens has a high intensity peak 
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(8517.1 Da) in the mass range of 8,000 to 9,000 Da, while no peaks or very low intensity peaks 

were observed in this range in the mass profiles of P larvae larvae (Fig. 1C and D).  This 

suggests that MALDI-TOF MS can support the strain level differentiation of P. larvae based on 

specific peaks or the potential biomarkers.  With regards to the base peak, each examined was 

found to be unique to its taxon.  At the species level, the base peaks of P. polymyxa, and P. larvae 

were 4298.8 Da and 4285.3 Da, respectively (Fig. 1).  Interestingly, the base peak of P. 

lentimorbus shifted depending on the spectrum analyzed.  Its base peak can either be 4289.7 Da 

or 5106.4 Da (Fig. 1B).  This may be due to the protein expression variability during cultivation.  

At the strain level, the same base peak was observed for P larvae larvae and P. larvae 

pulvifaciens (Fig. 1 C and D).  These data indicate that, in our model system, MALDI-TOF MS 

can rapidly distinguish Paenibacillus at the species and the strain levels based on the whole mass 

profiles and/or potential biomarker peaks. 

Mass spectra cluster analysis  

A dendrogram of mass spectra of Paenibacillus was constructed to examine the similarity 

between isolates.  Isolates with similar spectra were grouped together as one cluster (Fig. 2).  

Each mass spectrum is also represented in a gel-view format (Fig. 2).  As shown in Figure 2, most 

of the species are clearly differentiated by MALDI.  Specifically, P. larvae, P. lentimorbus and 

the New Mexico isolates (identified as P. lautus) formed distinct clusters in the dendrogram (Fig. 

2).  The P. polymyxa isolate was not clustered with any of these groups, suggesting that this 

species can be distinguished from other Paenibacillus species (Fig. 2).  Closely related strains, P. 

larvae larvae and P. larvae pulvifaciens are also separated as two clusters, suggesting that 

MALDI-TOF MS is potentially able to characterize P. larvae at the strain level (Fig. 2).  

However, outliers were also observed in the MS data.  P. larvae larvae isolates 2231, 3554, 2188, 

748, and 747 grouped together consistently, while P. larvae larvae 2605 and the Washington 

isolate grouped together as outliers (Fig. 2).  The gel views of these two isolates show different 



97 

 

profiles compared with gel representations of other P. larvae isolates (Fig. 2).  To eliminate the 

possibility that these two isolates were not P. larvae species, 16S rDNA sequencing was 

conducted and BLAST analysis confirmed that these two isolates belonged to P .larvae (Table 2).  

Similarly, P. larvae pulvifaciens isolates 367, 368, and 843 grouped together consistently, while 

P. larvae pulvifaciens 3688 grouped together with P. larvae larvae isolates (Fig. 2).  The 

appearance of outlier isolates indicates that other parameters may affect the correct identification 

and classification of P. larvae.  It is important to note that the clustering analysis of mass spectra 

does not establish phylogenetic relationships.  The appearance of outliers may be due to the mass 

shifts of group-specific peaks resulting from amino acid exchanges in the respective proteins 

(Dieckmann et al, 2005).  Another possible explanation is that these two isolates required longer 

cultivation time than other P. larvae isolates and lengthy cultivation times may affect strain 

classification (Šedo et al, 2013).  In addition, studies indicate that processing criteria of mass 

spectra may affect bacterial identification (Ford and Burnham, 2013).  Our preliminary 

experiments also showed that raw mass spectra processing parameters affected the clustering 

pattern (data not shown).  Future experiments to optimize cultivation conditions and processing 

parameters are of great interest in our lab to further improve the taxonomic resolving power of 

MALDI-TOF MS for P. larvae.  

The Jackknife method was performed to more rigorously evaluate the ability of MALDI-

TOF MS to distinguish P. larvae larvae and P. larvae pulvifaciens.  The principle of the 

Jackknife analysis is to take out one “isolate” and develop a classification function using the 

remaining isolates.  The omitted isolate is then “classified” into one group (in our case, defined as 

P. larvae larvae or P. larvae pulvifaciens) using the classification function constructed.  This 

procedure was repeated for all P. larvae strains, and a 100% identification score means no 

mismatch.  The jackknife maximum similarity analysis between previously defined subspecies 

larvae and pulvifaciens resulted in a 100% match between P. larvae larvae isolates and a 75% 
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match between P. larvae pulvifaciens (Fig.2), indicating that P. larvae pulvifaciens 3688 

consistently clustered with P. larvae larvae under our experimental condition. 

A multi-dimensional scaled model (MDS) was used to further examine the similarity of 

each isolate resulting in a visual cue of differences between outliers and grouped isolates (Fig. 3).  

Similar to the results of cluster analysis, P. larvae pulvifaciens 3688 (A) can be seen clustering 

closer to P. larvae larvae isolates and farther away from other P. larvae pulvifaciens isolates (Fig. 

3).  P. larvae 2605 (B) and WA (C) have a large difference in space compared to both P. larvae 

subspecies, suggesting these two isolates are outliers (Fig. 3).  Both New Mexico isolates have a 

considerable difference of space between their optimized positions, suggesting that though these 

two isolates clustered as one group, they show a relatively high variability in their mass profiles.  

In contrast, both P. lentimorbus isolates overlap each other’s optimized positions, suggesting a 

high degree of similarity between the two strains (Fig. 3). 

Phylogenetic analysis of 16S rDNA sequences 

To compare the taxonomic resolution of MALDI-based and PCR-based approaches for 

Paenibacillus species and strains, the 16S rRNA genes of selected isolates were partially 

sequenced.  BLAST analysis shows that all selected P. larvae isolates could be correctly 

identified at the species level (Table 2).  P. lentimorbus was only correctly identified at the genus 

level (Table 2).  P. polymyxa was identified as Bacillus genus (Table 2).  This may be due to that 

Paenibacillus was originally included within the genus Bacillus.  The representative (NM2) of 

New Mexico isolates was identified as P. lautus (100%), which explained the mass spectra 

clustering result that these two isolates clustered together but separately from other groups (Table 

2, Figure 2).  With regard to the strain level identification, P. larvae larvae and P. larvae 

pulvifaciens were indistinguishable from each other based on BLAST analysis (Table 2).   

Thirteen representative isolates were chosen for pairwise alignment cluster analysis, and 

constructed into a tree using 16S rDNA sequences (628–897 bp).  As shown in Figure 4, there is 
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no differentiation between P. larvae larvae and P. larvae pulvifaciens (Fig. 4).  All P. larvae 

strains were grouped together with no marginal differences in species identity.  P. polymyxa, P. 

lentimorbus, and NM2 have a greater distance from P. larvae.  The taxonomic resolution was 

lower than that of MALDI-TOF mass spectrometry in all regards. 

Potential Biomarkers 

 Since outliers were observed in the case of some P. larvae larvae and P. larvae 

pulvifaciens strains, we further screened entire spectra for species/strain-identifying biomarkers.  

Species-specific potential biomarkers were recorded for P. polymyxa, P. lentimorbus, and P. 

larvae, which are shown in Figure 5 and tabulated in Table 3.  Specifically, P. polymyxa has five 

distinguishing potential biomarkers at 3686.0, 4298.5, 4344.7, 6607.7, and 9809.0 Da (Fig. 5A, 

Table 3).  P. lentimorbus has five distinguishing potential biomarkers at 3313.3, 4290.0, 5130.7, 

5963.4, and 6444.5 Da, three at relative low intensity (<1,000 a.u.) (Fig. 5B, Table 3).  P. larvae 

has five distinguishing potential biomarkers at 3018.6, 4286.0, 5172.2, 7519.3, and 9614.6 Da, 

one at relative low intensity (<1,000 a.u.) (Fig. 5C, Table 3).  The subspecies P. larvae larvae 

exhibited no distinguishing potential biomarkers (Table 3).  P. larvae larvae has previously been 

reported to show a range of virulence dependent on the genotype (Genersch E, 2005), which 

suggests different protein profiles. This may account for the lack of subspecies specific potential 

biomarkers.  The lack of more strain specific potential biomarkers may also be attributed to 

gradual shifts in mass, affected by distances in preparation time (Keys CJ et al, 2004) over several 

runs.  The subspecies P. larvae pulvifaciens has five more distinguishing potential biomarkers 

beside the potential biomarkers of P. larvae at 2675.17, 6134.0, 6347.4, 7311.2, and 7398.5 Da 

(Figure 5D, Table 3).  Four of the potential biomarkers are of relatively low intensity (<1,000 

a.u.).   

P. larvae pulvifaciens 3688 was an outlier.  Its mass spectrum was clustered with the 

mass spectra of P. larvae larvae isolates (Fig. 2).  Examination of potential biomarkers showed 



100 

 

that this isolate only had one distinguishing potential biomarker, 6347.4 Da, for identifying it as 

P. larvae pulvifaciens.  It lacked the other potential biomarkers that have denoted 75% of all other 

P. larvae pulvifaciens isolates.  The lack of potential biomarkers similar to those of P. larvae 

pulvifaciens may explain the misclassification of strain 3688 with P. l. larvae.  With regard to the 

two other outliers, P. larvae larvae 2605 and WA, each was identified as P. larvae larvae using 

potential biomarkers. 

 

Conclusion 

The main objective of this study was to evaluate the ability of MALDI-TOF MS to 

characterize Paenibacillus at the species and strain levels.  Results showed that each 

Paenibacillus species yielded highly reproducible spectra and individual characteristic traits using 

the protein extraction sample preparation method.  Based on the spectra, isolates were clustered 

and differentiated according to their species and subspecies, though outliers were also observed.  

In contrast, 16S rDNA sequencing only identified the isolates at the genus and species level.  

Potential biomarkers have been examined for individual species and subspecies to further 

facilitate the characterization.  Our results suggest that MALDI-TOF MS is much more rapid and 

affords a higher resolution characterization of Paenibacillus than PCR-based methods.  To our 

knowledge, this is the first study to use MALDI-TOF MS to characterize Paenibacillus at the 

species, subspecies, and strain levels.  Future studies to construct and optimize a more diverse 

Paenibacillus database for discriminating and identifying unknown Paenibacillus isolates, as well 

as typing and tracking P. larvae outbreaks are of great interest.  
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Table 1 Paenibacillus isolates used in this study 

Species 

Previous 

subspecies 

classification 

Designated 

ID 
Isolationb Pigmentation 

P. larvae larvae 747 ATCC 25747, isolated from insect, OH, USA - 

P. larvae larvae 748 ATCC 25748, isolated from insect, VA, USA - 

P. larvae larvae 2188a 
Isolated from larvae scales, courtesy of Jay D 

Evans (USDA) 
- 

P. larvae larvae 2231a 
Isolated from larvae scales, courtesy of Jay D 

Evans (USDA) 
- 

P. larvae larvae 2605 ATCC 9545, isolated from insect - 

P. larvae larvae 3554 
NRRL B-3554, isolated from diseased 

honeybee larvae 
- 

P. larvae larvae 16425 Isolated from larvae scales, Belgium - 

P. larvae larvae WAa Isolated from larvae scales, Washington State - 

P. larvae pulvifaciens 367 ATCC 25367 + 

P. larvae pulvifaciens 368 ATCC 25368 + 

P. larvae pulvifaciens 843 ATCC 49843, isolated from honeybee larvae + 

P. larvae pulvifaciens 3688 
ATCC 13537, isolated from diseased 

honeybee 
+ 

P. sp. N/A NM1 Isolated from larvae scales, New Mexico - 

P. sp. N/A NM2 Isolated from larvae scales, New Mexico - 

P. sp. N/A 232 Wild strain - 

P. lentimorbus N/A 
P. 

lentimorbus1 
ATCC strain 

- 

P. lentimorbus N/A 
P. 

lentimorbus2 
ATCC strain 

- 

P. polymxya N/A P. polymxya ATCC strain - 

a Positive with P. larvae specific primers 
b Information obtained from ATCC website, ARS Culture Collection (NRRL) Database Server, and straininfo.net 

N/A: not applicable/available
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Table 2 Nearest relatives of selected Paenibacillus isolates by 16S rDNA sequencing 

a Based on a BLAST search of the NCBI database 
b Forward and reverse sequences only available for identification; no assembled sequence available 

 
 

Table 3 Potential biomarker peaks of Paenibacillus  

Paenibacillus species/subspecies Mass of potential biomarker (Da) 

P. polymyxa 3686.0, 4298.5a, 4344.7, 6607.7, 9809.0  

P. lentimorbus 3313.3b, 4290.0a, 5130.7, 5963.4b, 6444.5b 

P. larvae 3018.6b, 4286.0a, 5172.2, 7519.3, 9614.6 

P. larvae larvae N/A 

P. larvae pulvifaciens 2675.2, 6134.0, 6347.4b, 7311.2, 7398.5   
a Base peak in the mass spectra of the corresponding Paenibacillus species and subspecies 
b Peak intensity lower than 1,000 a. u. 

N/A: not available

Designated ID 
Nearest relative (Accession 

#) a 
% Similarity Representative of group 

747 AB073205.1 99 P. larvae larvae 

748 DQ07623.1 99 P. larvae larvae 

2188 AB073205.1 99 P. larvae larvae 

2231 AY530294.1 99 P. larvae larvae 

3554 AB073205.1 99 P. larvae larvae 

16425 DQ07623.1 99 P. larvae larvae 

WA AY530294.1 99 P. larvae larvae 

367 AY030080.1 100 P. larvae pulvifaciens 

843 AY530294.1 99 P. larvae pulvifaciens 

3688 AB680856.1 99 P. larvae pulvifaciens 

NM2b FR775438.1 99 P. lautus 

P. polymyxa KF512664.1 100 P. polymyxa 

P. lentimorbus1 AB073200.1 99 P. lentimorbus  
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Figure 1. Representative MALDI-TOF mass spectra of A) Paenibacillus polymyxa, B) Paenibacillus lentimorbus, C) 

Paenibacilllus larvae larvae and D) Paenibacillus larvae pulvifaciens 
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Figure 2. Dendrogram of Paenibacillus isolates.  Each mass spectrum is represented in a gel-view format.  The 

dendrogram was constructed using the UPGMA method from calculated distances using Pearson correlation similarity 

matrix in BioNumerics software.  The coding colors are P. polymyxa (yellow), P. lentimorbus (light blue), P. larvae 

larvae (green), P. larvae pulvifaciens (red), New Mexico isolates (P. lautus) (purple), and P. sp. 232 (dark blue). 
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Figure 3. Multi-dimensional scaling (MDS) representation of composite-spectra.  The coding colors are P. polymyxa 

(yellow), P. lentimorbus (light blue), P. larvae larvae (green), P. larvae pulvifaciens (red), New Mexico isolates (P. 

lautus) (purple), and P. sp. 232 (dark blue). 
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Figure 4. Phylogenetic tree of Paenibacillus isolates based on partial 16S rRNA gene sequences. The tree was 

generated using the single linkage method from calculated distances using Pairwise alignment similarity matrix in 

BioNumerics software. The coding colors are P. polymyxa (yellow), P. lentimorbus (light blue), P. larvae larvae 

(green), P. larvae pulvifaciens (red), New Mexico isolates (P. lautus) (purple), and P. sp. 232 (dark blue). 
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Figure 5. Species/subspecies-specific potential biomarkers (depicted with asterisks) of A) Paenibacillus polymyxa, B) 

Paenibacillus lentimorbus, C) Paenibacillus larvae larvae and D) Paenibacillus larvae pulvifaciens  
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