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Abbreviatons Used: 

 

AGJ = annular gap junction 

AP-2 = adaptor protein complex-2 

CHC = clathrin heavy chain 

CHX = cycloheximide 

CME = clathrin-mediated endocytosis 

Cx = connexin 

Dab2 = Disabled-2 

EGF = epidermal growth factor  

GFP = green fluorescent protein 

GJ = gap junction 

GJIC = gap junction intercellular communication 

MAPK = mitogen activated protein kinase 

MEF = mouse embryonic fibroblast 

mESC = mouse embryonic stem cell 

PBS = phosphate buffer saline 

PCR = polymerase chain reaction 

PKC = protein kinase C 

PM = plasma membrane 

SDS-PAGE = sodium dodecyl sulfate poly arcrylamide gel electrophoresis    

TBS = tris buffered saline 
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Abstract 

A gap junction (GJ) is formed when two hemi-channels from two apposed 

cells dock in the extracellular space. GJs mediate cell-cell communication by 

allowing direct transfer of molecules (<1.5 kDa) from one cell to the other 

through these channels. Direct intercellular communication mediated by gap 

junction channels is a hallmark of normal cell and tissue physiology. In addition, 

GJs are likely to significantly contribute to physical cell-cell coupling. Clearly, 

these cellular functions require precise modulation. Defects in GJ intercellular 

communication lead to serious illnesses. Interestingly, docked GJ channels cannot 

be separated under physiological conditions. We previously described that cells 

efficiently internalize their GJs in a clathrin-mediated endocytic process to form 

double-membrane vesicles termed annular gap junctions (AGJs) or connexosomes 

(Baker et al., 2008; Gumpert et al., 2008; Piehl et al., 2007). How this complex 

process is achieved mechanistically in a cell is still unclear. In this dissertation, 

(1) I elucidate the signals and molecular mechanisms that are involved in GJ 

internalization. By mutagenesis, I identified two functional tyrosine-based sorting 

signals (YXX) in the Cx43 (a GJ protein) C-terminal domain that interact with 

the classical clathrin adaptor protein, adaptor protein complex-2 (AP-2), to recruit 

clathrin to the plasma membrane (PM), followed by GJ endocytosis. Mutating 

these two YXX sorting motifs results in inhibition of AP-2 binding, increased 

accumulation of GJ channels in the PM, impairment of GJ internalization, and 

increased Cx43 protein half-life. (2) In order to understand the Cx43 protein 

modifications that initiate GJ endocytosis, I treated mouse embryonic stem cells 
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(mES) with epidermal growth factor (EGF) and analyzed Cx43 phosphorylation. I 

found that EGF activates MAPK and PKC to phosphorylate Cx43 at Ser262, 

Ser279/282, and Ser368. These phosphorylation events induce inhibition of GJIC 

and trigger GJ internalization. Pharmacological inhibition of MAPK counteracts 

with EGF to maintain GJIC and to inhibit EGF-induced GJ internalization. Work 

conducted during my PhD contributed to three primary research papers (two 

published, one submitted) and three review articles.   
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Chapter 1: 

Introduction 

 

1.1.Connexins and gap junctions 

In general, cells do not function as an individual (except solitary cells such 

as red blood cells, sperm, etc.) in multi-cellular organisms. They tend to come 

together to form tissues and organs. In a tissue, many cells of the same type are 

linked to each other via cell-cell junctions and cell-matrix interactions. The four 

major cell junctions that are well described include adherens junctions, tight 

junctions, gap junctions, and desmosomes. Among those cell-cell junctions, gap 

junctions (GJs) are the only junction type that allows direct cell-cell 

communication via the transfer of molecules between cells. 

Connexins (Cxs) are the four spanning trans-membrane proteins that form 

gap junction (GJ) channels. A Cx protein consists of 4 trans-membrane domains, 

2 extracellular loops, and 1 intracellular loop. Both the N- terminus and C-

terminus of Cxs are located in the cytosol. Cx genes are highly conserved. 

Twenty-one different Cx isoforms have been identified in humans and twenty Cx 

isoforms have been identified in mouse. They are named Cx, followed by the 

predicted molecular weight of the protein. They are structurally conserved; the 

main difference is the size of the C-terminus – an example of Cx43 topology is 

shown in (Figure 1). Like most of the trans-membrane proteins, Cxs are 

synthesized and inserted co-translationally by endoplasmic reticulum (ER) bound 

ribosomes. Comparable isoforms of Cxs are oligomerized either in the ER or 
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Golgi to form hemichannels (also termed connexons). Misfolded Cx polypeptides 

will be degraded in the proteosome, while correctly oligomerized connexons will 

be trafficked to the plasma membrane (PM) along microtubules via the secretory 

pathway. The first ten to fifteen residues of the C-terminus adjacent to the fourth 

trans-membrane domain have been shown to play a crucial role in connexon 

trafficking to the PM. Mutating or truncating these amino acids will severely 

inhibit GJ formation. Connexons from two apposed cells can recognize each other 

and dock in the extracellular space to form complete GJ channels. (reviewed in 

Segretain and Falk, 2004) (Figure 4). Among all Cx isoforms, Cx43 is the most 

abundant and most studied Cx type. The Cx43 C-terminus can interact with many 

different proteins via different domains to regulate many different functions 

(reviewed in Thevenin et al., 2013). A few examples of these binding partners 

include adaptor protein complex-2 (AP-2), kinases, zonula occludens-1 (ZO-1) 

and other scaffolding proteins, microtubules, etc. Cx43 is a phospho-protein. 

Many of its serine and tyrosine residues in the C-terminal domain can be 

phosphorylated by CK1, PKA, and Akt to increase gap junction intercellular 

communication (GJIC), whereas, PKC, MAPKs, Src, and CDC2 are known to 

phosphorylate Cx43 to reduce GJIC. A more detailed discussion of Cx43 

phosphorylation by MAPK to reduce GJIC and induce GJ internalization is given 

in chapter 3. 

As described earlier, six Cx polypeptides oligomerize to form a hemi-

channel (termed connexon). Recent findings indicate that connexons might 

function on their own as channels in the non-junctional region of the PM 
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(Carnarius et al., 2012). One study reported that connexons might have a 

physiological function in modulation of cell volume by regulating extracellular 

calcium-dependent isomotic volume (Quist et al., 2000). In addition, ATP and 

glutamate have been reported to be released through connexons, which can serve 

as transmitters between cells (Bennett 2012). Complete double-membrane 

spanning GJ channels are formed when two connexons of apposed cells dock 

head-on in the extracellular space (Figure 2). It is possible that adherens junctions 

play a role in bringing the two PMs close together to enhance connexon docking. 

Published evidences suggest that GJ assembly and disassembly may be regulated 

by signals that are initiated by E-cadherin and N-cadherin, respectively 

(Govindarajan et al., 2010). Typically tens to many thousands of GJ channels 

cluster together to form an arrays of channels, termed GJ plaques. GJ plaque size 

is known to be regulated by interaction of ZO-1 to the PDZ domain of Cx43 C-

terminus (Hunter et al., 2005; Rhett et al., 2011). Cx43-GFP fusion proteins have 

been shown to inhibit ZO-1 binding, which results in unusually large GJ plaques 

(Hunter et al., 2003). GJs, based on their tightly sealed, double-membrane 

spanning configuration are likely to also significantly contribute to physical cell-

to-cell adhesion. 

 

1.2. Gap junction intercellular communication (GJIC) 

GJ channels electrically and chemically couple neighboring cells and 

mediate intercellular communication (GJIC) by allowing direct transfer of small 

hydrophilic molecules (less than 1.5k Da, e.g. second messengers such as cAMP 
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and IP3, ions, metabolites, and potentially small functional RNA molecules) to 

pass through the channels via passive diffusion. Gap junction intercellular 

communication (GJIC) has been shown to play a crucial role for all aspects of 

multi-cellular life, including embryonic development, tissue functions and cellular 

homeostasis. For example, Cx proteins are found in early embryos, and during all 

stages of their development. Functional GJIC was observed as early as the eight-

cell stage (De Sousa et al., 1993; Lo and Gilula, 1979), and was demonstrated in 

blastocysts (Houghton, 2005) of which embryonic stem cells are derived. GJIC 

has also been described in mouse and human ES cells by (Huettner et al., 2006; 

Worsdorfer et al., 2008), respectively. Recently, GJIC has been shown to play a 

very important role in maintaining ES cells in their pluripotent state (Kim et al., 

2013; Todorova et al., 2008), also Ke et al., 2013 demonstrated that GJIC is 

required for the generation of induced pluripotent stem cells (iPS) from 

fibroblasts (Ke et al., 2013) . Mutations in Cxs have been linked to a number of 

severe diseases. For example, mutations in the GJB2 gene (which encodes for 

Cx26) are one of the major causes for inherited and sporadic nonsyndromic 

hearing impairment (Kenneson et al., 2002; Morell et al., 1998). Many mutations 

of the GJB1 gene (which encodes for Cx32) were found in X-Linked-Charcot-

Marie-Tooth syndrome (CMTX) neuropathy patients (Lee et al., 2002). Mutations 

in Cx46 and Cx50 cause eye-lens cataracts (Gong et al., 1997; White et al., 1998). 

In the cardiovascular system, functional GJ channels are important in mediating 

the spread of electrical impulses that trigger synchronized contraction of the 

cardiac chambers. In mammalian heart, GJs are built of Cx40, Cx43, and Cx45, in 
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which Cx43 is the predominant Cx type. Mutations in GJA1 (which encodes for 

Cx43) lead to serious cardiac diseases, such as hypertrophy, ischemia, and heart 

failure (Fontes et al., 2012), as well as cranio-facial bone defects 

(oculodentodigital dysplasia, ODDD syndrome) and a number of acute skin 

disorders (reviewed in (Batra et al., 2012; Xu and Nicholson, 2013)), supporting 

the crucial role of GJIC in multi-cellular life. Clearly, all these examples illustrate 

that GJ channel assembly and degradation needs to be regulated precisely to 

ensure accurate physiological functions. 

 

1.3.Gap junction internalization and degradation 

Elegant studies by Goodenough and Gilula, and Ghoshroy et al. revealed 

that docked GJ channels are inseparable into hemi-channels under physiological 

conditions (Ghoshroy et al., 1995; Goodenough and Gilula, 1974). Yet, actively 

proliferating cells, including embryonic and somatic stem cells, are known to un-

couple from their neighbors in order to undergo mitosis (Boassa et al., 2011); and 

modulation of cellular uncoupling and re-coupling plays an important role in 

many additional physiological and pathological conditions, such as cell migration 

during development and wound healing, apoptosis, leukocyte extravasation, 

ischemia, hemorrhage, edema, and cancer metastasis.  Furthermore, channels of 

GJ plaques have been shown to be constitutively endocytosed (Falk et al., 2009), 

correlating with the short half-life of 1-5 hours reported for Cx proteins and GJs 

(Beardslee et al., 1998; Falk et al., 2009; Fallon and Goodenough, 1981). How 

then are GJs endocytosed? We and others previously showed that GJ 
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internalization resembles a clathrin-mediated endocytosis (CME) process that 

involves the coat-protein, clathrin itself, the classical PM clathrin-adaptor, AP-2 

(adaptor protein complex-2), the alternative clathrin adaptor protein, Dab2 

(Disabled-2), the GTPase dynamin2, the retrograde actin motor, myosin-VI, and 

actin filament assembly (Baker et al., 2008; Gilleron et al., 2011; Gilleron et al., 

2008; Gumpert et al., 2008; Johnson et al., 2013b; Piehl et al., 2007). Clathrin 

normally does not bind directly to its cargo (here the Cx43 protein). Instead, it 

requires adaptor proteins to link the cargo to the clathrin coat. A schematic 

representation to illustrate the classical CME process is shown in Figure 3. Both, 

AP-2 and Dab2, have been shown previously to be involved in GJ internalization, 

and knocking down AP-2 and Dab2 protein levels using RNAi technology 

significantly reduced GJ internalization (Gumpert et al., 2008; Piehl et al., 2007). 

To better understand how clathrin and clathrin-adaptors may internalize GJs, we 

analyzed the Cx43 amino acid sequence for potential AP-2 and Dab2 interaction 

sites, mutated putative sites by generating a set of amino acid exchange and 

deletion constructs, and analyzed their impact on GJ internalization. We found 

that apparently two separate AP-2 binding sites located in the Cx43 C-terminus 

interact with and recruit AP-2, Dab2, and clathrin to the Cx43 C-terminus. A 

more detailed description of AP-2 dependent clathrin mediated Cx43 GJ 

endocytosis will be presented in chapter 2. 

 GJ endocytosis generates cytoplasmic double-membrane vesicles termed 

annular gap junctions (AGJs) or connexosomes  (Falk et al., 2009; Gaietta et al., 

2002; Jordan et al., 2001; Lauf et al., 2002; Piehl et al., 2007). Degradation of 



  

            9 

 

these double-membrane vesicles is a complex process for the cell. There are three 

known degradation pathways in cells that are described in the literature: 

proteosomal, endo-/lysosomal, and autophagosomal pathways. Proteosomal 

degradation in general degrades short-lived, misfolded, and unwanted 

polypeptides, while endo-/lysosomal and autophagosomal degradation pathways 

allow the degradation of more complex protein structures that are either 

endocytosed from the PM, or are present in the cytoplasm. In both endo-

/lysosomal as well as autophagosomal degradation pathways, lysosomal fusion 

plays a key role in mediating final degradation. In addition, autophagy is known 

to be the pathway for a cell to maintain its minimal source of nutrients for 

survival by degrading its own organelles under starvation conditions. GJ proteins 

have been shown to be degraded by the ubiquitin proteosome pathway (Laing and 

Beyer, 1995; Qin et al., 2003). However, considering the size and complexity of 

GJ and AGJs, it is unlikely that AGJs will be degraded in proteosome; while 

misfolded Cx polypeptides and endocytosed connexons are more likely to be 

degraded in proteosomes and endo-/lysosome, respectively.  

AGJs subsequent to internalization were found to be degraded by endo-

/lysosomal pathways in cells that were treated with phorbol ester 12-o-

tetradecanonylphorbol-13-acetate (TPA), an analog of secondary messenger 

diacylglyrecrol (Fykerud et al., 2012; Leithe et al., 2009). In these studies, authors 

reported that TPA induced Cx43 hyper-ubiquitination and to remain ubiquitinated 

while being trafficked to the endosome. A HECT E3 ubiquitin ligase smad 

ubiquitination regulatory factor-s (Smurf2) was found to be recruited to Cx43 GJs 
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in response to TPA treatment, suggesting a role of Smurf2 in Cx43 ubiquitination. 

Two proteins: ubiquitin-binding protein Hrs (hepatocyte growth factor-regulated 

tyrosine kinase substrate) and Tsg101 (tumor susceptibility gene 101) were 

identified to play a crucial role in Cx43 ubiquitination and phosphorylation to 

regulate trafficking of AGJs to the lysosome. These findings provide insight to 

understand how AGJs are degraded in the lysosome. However, an important 

question arises: How is it possible for a double membrane vesicle that consists of 

tightly bonded membrane layers and densely packed GJ channels to fuse with a 

single-membrane endosome? Interestingly, by electron microscopy, we found that 

AGJ may include a small domain where the two membranes are void of GJ 

channels – single membrane domain (reviewed in Falk et al., 2012). We postulate 

that this nonjuntional membrane domain allows fusion of double-membrane AGJ 

and single membrane endosomes that then may be followed by endo-/lysosomal 

degradation (reviewed in Falk et al., 2012).      

Note that lysosomal inhibitors (leupeptin, chloroquine, NH4Cl, and E-64) 

that have been used in earlier studies investigating GJ degradation (Berthoud et 

al., 2004; Laing et al., 1997; Musil et al., 2000; Qin et al., 2003) will inhibit both 

endo-/lysosomal as well as autophagic degradation pathway (Figure 4B). 

Therefore, obtained results do not specify target endo-/lysosomal versus 

autophagosomal pathways. We and others have recently described that, 

internalized AGJs are degraded by autophagy (Bejarano et al., 2012; Fong et al., 

2012; Hesketh et al., 2010; Lichtenstein et al., 2011). Robust colocalization of 

Cx43 and autophagic markers (LC3/Atg8, Rab5, p62/SQSTM1) but only 
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insignificantly colocalization of Cx43 and endosomal markers (EEA1, Rab7) 

were demonstrated by Fong et al., 2012 (Fong et al., 2012). Depleting these 

autophagosomal markers either by RNAi knock down or inhibiting autophagy 

using pharmacological inhibitors resulted in a significant increase in the level of 

Cx43 protein, and a significantly increased accumulation of cytoplasmic AGJs. 

Together, multiple lines of evidence from different laboratories suggest that 

autophagy is a more logical, and likely default pathway for AGJ degradation. 

Base on current published knowledge, it is possible that cells may utilize either 

endo-/lysosomal or autophagosomal degradation pathways (Figure 4B). When 

cells respond to distinct stimuli or extracellular cues, potential sorting signals that 

may result from protein modifications of the cargo (phophorylation, 

ubiquitination, etc.) may determine which degradation pathway the cells will be 

committed to. However, at steady state, autophagy appears to be the default AGJ 

degradation pathway that regulates GJs turnover. Under physiological conditions, 

internalized AGJs, similar to cellular organelles, cytoplasmic protein aggregates, 

and other macromolecular protein-complexes, such as the mitotic ring, are cleared 

from the cytoplasm and degraded by autophagy.   
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1.4 Figures 

 

 

 

Figure 1:  Cx43 amino acid sequence and topology (Giepmans et al., 2004). Cx43 

is a four spanning trans-membrane protein in which both N-terminus and C-

terminus are in the cytosol. Cx43 can interact with many different proteins, such 

as AP-2, Kinases, ZO-1, etc. to regulate functions. Many serines and tyrosine 
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residues in the C-terminus can be phosphorylated or dephosphorylated to regulate 

gap junction intercellular communication and gap junction turnover.  
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Figure 2: Schematic representation of connexins, connexons, and gap junctions 

(adopted from Wong et al., 2008). 
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Figure 3: Schematic representation of classical clathrin-mediated endocytosis 

During vesicle initiation, adaptor proteins (AP-2) are re-localized to the plasma 

membrane through interacting with PI(4,5)P2. AP-2 interacts with the cargo via 

dileucine or tyrosine-based sorting signals. AP-2 also interacts and recruits other 

accessory proteins (Dab2, Eps15, etc.) and clathrin to the site of vesicle 

formation. The GTPase – dynamin – is required to pinch off the coated vesicle 

from the plasma membrane. (Adopted from McPherson et al. 2009 modified 

http://www.bumc.bu.edu/biochemistry/files/2012/05/model-CME.jpg) 

 

http://www.bumc.bu.edu/biochemistry/files/2012/05/model-CME.jpg
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A

 

 

B 

 



  

            17 

 

Figure 4: (A) Schematic representation of gap junction formation and 

degradation. (Falk et al., 2009; Gumpert et al., 2008; Segretain and Falk, 2004 

modified). (B) Schematic representation of phago-/lysomal and endo-/lysosomal 

cellular degradation pathways and respective marker proteins (Falk et al., 2002; 

Fong et al., 2012 modified). 
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Chapter 2: 

Two tyrosine-based sorting signals in the Cx43 C-

terminus cooperate to mediate gap junction endocytosis 

(Fong et al. 2013, Mol Biol Cell, 24(18), p. 2834-48) 

 

2.1. Abstract 

Gap junction (GJ) channels, that electrically and chemically couple 

neighboring cells, are formed when two hemi-channels (connexons) of apposed 

cells dock head-on in the extracellular space. Remarkably, docked connexons are 

inseparable under physiological conditions and we, and others have shown that 

GJs are internalized in whole utilizing the endocytic clathrin machinery. 

Endocytosis generates double-membrane vesicles (annular GJs or connexosomes) 

in the cytoplasm of one of the apposed cells that are degraded by autophagosomal 

and potentially endo-/lysosomal pathways. Here we investigated the structural 

motifs that mediate Cx43 GJ endocytosis. We identified three canonical tyrosine-

based sorting signals of the type ‘YXX’ in the Cx43 C-terminus, two of which 

function cooperatively as AP-2 binding sites. We generated a set of GFP-tagged 

and untagged Cx43 mutants that either targeted these two sites individually or 

together.  Mutating both sites completely abolished Cx43-AP-2/Dab2/clathrin 

interaction, resulted in increased GJ plaque size, longer Cx43 protein half-lives, 

and impaired GJ internalization.  Interestingly, Dab2, an accessory clathrin-



  

            19 

 

adaptor found earlier to be important for GJ endocytosis, interacts indirectly with 

Cx43 via AP-2, permitting the recruitment of up to four clathrin-complexes per 

Cx43 protein. Our analyses provide a mechanistic model for clathrin to efficiently 

internalize large PM structures such as GJs. 

 

2.2. Introduction 

As mentioned in the Introduction section, elegant studies by Goodenough 

and Gilula, and Ghoshroy et al. revealed that connexons once docked cannot be 

separated back into connexons under physiological conditions (Ghoshroy et al., 

1995; Goodenough and Gilula, 1974). Furthermore, channels of GJ plaques have 

been shown to be constitutively endocytosed to form AGJs (Falk et al., 2009), 

correlating with the short half-life of 1-5 hours reported for Cx proteins and GJs 

(Beardslee et al., 1998; Falk et al., 2009; Fallon and Goodenough, 1981). 

However, the signals and mechanisms that trigger GJ endocytosis remain unclear. 

We and others found that cells remove their GJ plaques from the plasma 

membrane (PM) by an endocytic process that resembles clathrin-mediated 

endocytosis (CME) and involves the coat-protein clathrin itself, the classical PM 

clathrin-adaptor AP-2 (adaptor protein complex-2), the alternative clathrin 

adaptor protein Dab2 (Disabled-2), the GTPase dynamin2, the retrograde actin 

motor myosin-VI, and actin filament assembly (Baker et al., 2008; Gilleron et al., 

2011; Gilleron et al., 2008; Gumpert et al., 2008; Johnson et al., 2013a; Piehl et 

al., 2007). To better understand how clathrin and clathrin-adaptors may 

internalize GJs, we analyzed the Cx43 amino acid sequence for potential AP-2 
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and Dab2 interaction sites, mutated putative sites by generating a set of amino 

acid exchange and deletion constructs, and analyzed their impact on GJ 

internalization. We found that two separate AP-2 binding sites located in the 

Cx43 C-terminus interact with and recruit AP-2, Dab2, and clathrin to the Cx43 

C-terminus, and that deletion or mutation of these sites impaired GJ 

internalization if only one site was mutated or completely abolished it if both sites 

were mutated together. Interestingly, our analyses revealed the potential 

recruitment of up to four clathrin triskelia per Cx43 polypeptide, suggesting a 

potential molecular mechanism for the efficient CME of large PM structures such 

as GJs. 

 

2.3. Results 

2.3.1. Design and construction of Cx43 mutants that interfere with AP-

2/clathrin binding. 

GJ internalization was found to utilize the clathrin-mediated endocytosis 

(CME) machinery (Gumpert et al., 2008; Johnson et al., 2013a; Piehl et al., 2007), 

correlating with earlier observations of clathrin colocalizing with vesicular, 

cytoplasmic GJ structures (Larsen et al., 1979). Clathrin typically does not 

interact directly with its cargo (here the Cx43 protein), but instead requires 

adaptor proteins to link the cargo to the clathrin coat. As noted above, both 

clathrin adaptors, AP-2 and Dab2 have been shown previously to be involved in 

GJ internalization, and knocking down AP-2 and Dab2 protein levels using RNAi 

technology significantly reduced GJ internalization (Gumpert et al., 2008; Piehl et 
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al., 2007). AP-2 is a well-characterized CME adaptor protein complex consisting 

of -Adaptin, 2, 2, and 2-subunits that is known to bind to PM-localized 

cargo proteins via three different binding motifs: two types of tyrosine-based 

sorting signals with either (1) YXX (where Y is tyrosine, an essential residue 

which cannot be substituted even by structurally related phenylalanine or 

phospho-tyrosine residues, X which can be any amino acid, and  which is an 

amino acid with a bulky hydrophobic side chain such as F, M, L, I, or V) or (2) 

NPXY-sequence (where N is asparagine, P is proline, X is any amino acid, Y is 

tyrosine) that bind to the 2-subunit, or (3) via a di-leucine based sorting signal 

[D/E]XXXL[L/I] that can bind to both, 2 and 2 subunits (reviewed in 

Bonifacino and Traub, 2003). Dab2 is also known to bind to NPXY sequences 

(Mishra et al., 2002; Morris and Cooper, 2001; Motley et al., 2003). We did not 

find any NPXY signals in the Cx43 sequence suggesting that Dab2 may interact 

indirectly with Cx43 (see Results in section 2.3.3 below), and consistent with the 

observation that NPXY motifs are typically only present in single-spanning 

membrane proteins (reviewed in Bonifacino and Traub, 2003). We also did not 

find any di-leucine based sorting signals in the Cx43 sequence, however di-

leucine based sorting signals are present in the C-terminus of a number of other 

Cxs (reviewed in Thevenin et al., 2013).  We found three conserved YXX 

consensus sequences in the Cx43 C-terminus located at positions Y
230

VFF, 

Y
265

AYF, and Y
286

KLV. These sites were named sorting signals, S1, S2, and S3, 

respectively (Figure 5A). Endocytic YXX signals normally are located at least 

10 amino acid residues away from a transmembrane domain to allow sufficient 



  

            22 

 

space for AP-2 access (Collins et al., 2002; reviewed in Bonifacino and Traub, 

2003). Sorting signal S1 (Y
230

VFF) is located immediately adjacent to 

transmembrane domain 4 (TM4), which makes it unlikely that S1 would serve as 

a functional AP-2 binding site. Indeed, we did not gain any evidence that suggests 

that this site in Cx43 interacts with AP-2 (see results of mutants with sites S2 and 

S3 [S2+3] mutated/deleted presented below). We generated over 20 different 

Cx43 mutants (all either untagged or tagged with GFP on the C-terminus) 

including, 15 point mutations (Y to H; or F to A), 7 small (3-7 amino acids) and 2 

large (36 and 128 amino acids) deletion mutants that targeted the putative S1, S2 

and S3 AP-2 binding sites and rendered them non-functional. Both deletion as 

well as point mutants were constructed and tested to reduce the potential impact 

of side effects.  Selected constructs characterized here are shown in Figure 5A. 

Note, that the sorting signal S3 is a portion of a larger, previously identified 

regulatory sequence (termed proline-rich region) that consists of the S3 signal and 

a directly upstream, overlapping PY motif that both were found to influence GJ 

stability, however without additive effect (Thomas et al., 2003) (see Discussion 

for further detail). To avoid potential interference of these two signals, 7 amino 

acid residues including the PY-motif and the S3 sorting signal were deleted in S3 

and S2+3 mutants (mutants 6. to 8. in Figure 5A). Also note, that the Y286 

(knocking out both signals) was mutated in the S3 motif, while F268 of the S2 

motif was mutated (mutants 2., 4., and 5. in Figure 5A). The Y265 in the S2 

motif is a well-known c-Src phosphorylation site (Postma et al., 1998; Solan and 

Lampe, 2008; reviewed in Thevenin et al., 2013), and mutation of this amino acid 
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residue was expected to generate severe site-effects. Mutating either Y or  of the 

canonical YXX motif was found to abolish its function (reviewed in 

(Bonifacino and Traub, 2003)).  When transfected into HeLa cells, all constructs 

produced Cx43 proteins that migrated on SDS-polyacrylamide gels according to 

their predicted molecular weight (shown for GFP-tagged constructs in Figure 

5B). Also, all constructs assembled into GJ plaques in apposing membranes of 

transfected cells, as shown for selected constructs in Figures 7, 8, 9, and 11. 

 

2.3.2. Cx43 mutants with both AP-2 binding sites (S2+3) mutated no longer 

co-precipitate clathrin and clathrin-adaptors. 

In order to test for protein/protein interactions between Cx43 and CME-

components, co-immunoprecipitation assays were performed, both with GFP-

tagged and untagged Cx43 mutants (Figure 6A, B). Wild type Cx43, as well as 

Cx43 constructs with sorting signals S2, S3, S2+3, and S1+2+3 mutated were 

transfected into HeLa cells. Cx43 was immunoprecipitated using anti-GFP 

(Figure 6A) or anti-Cx43 magnetic beads (Figure 6B). Cx43 binding partners 

were detected by Western blot analyses using respective antibodies. 

Representative immunoprecipitations for selected constructs are shown on the left 

(lanes 1-7), and quantitative analyses of three independent experiments each are 

shown on the right. Results show that wt Cx43 co-precipitated AP-2 (using anti 

-Adaptin subunit antibodies), Dab2, and clathrin (using anti clathrin heavy chain 

[CHC] antibodies) (Figure 6, A and B, lane 1), consistent with previously 

published observations (Gumpert et al., 2008; Piehl et al., 2007). Cx43 constructs 
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with either binding motif S2 or S3 mutated also co-precipitated these endocytic 

proteins (Figure 6, A and B, lanes 2, 3), although only to about 50% of wt, while 

mutants with both (S2+3, lanes 4, 5), or all three binding motifs mutated (S1+2+3, 

lanes 6, 7) no longer co-precipitated any, or only minor amounts (≤10  8% 

compared to wt) of these endocytic proteins.  Thus, abolishing Cx43-AP-2 

binding also abolished Dab2 and clathrin binding.  No detectable differences in 

co-precipitation efficiencies were found between GFP-tagged and untagged Cx43 

constructs, or between mutants with all three, or only binding sites S2+3 mutated, 

indicating that the GFP-tag did not significantly affect Cx43-endocytic protein 

interaction, and that the binding motif S1 does not bind AP-2 or recruit these 

endocytic proteins. HeLa cell lysates and immunobeads only were analyzed in 

control (Figure 6, A and B, lanes 8, 9), and -tubulin was analyzed as lysate 

input and loading control.  Note that the amount of precipitated Cx43 proteins 

increases with one (S2 or S3) or two (S2+3) AP-2 binding motifs mutated (Figure 

6, A and B rows 1), correlating with the increased half-live of these mutants (see 

Results in section 2.3.6 below and Figure 10).  Unexpectedly, a weak protein 

band was detected in the HeLa cell lysates using Cx43 antibodies under our 

experimental conditions (Figure 6B, lane 9, top row), suggesting that small 

amounts of endogenous Cx43 were present in the CCL-2 HeLa cell clone that we 

purchased from ATCC for these analyses. Quantitative analyses indicated that the 

content of endogenous Cx43 is minor, only amounting to about 1-2% compared to 

a 100% efficient exogenous (transient or stable) expression (see Figure S1). 

Taken together, these results identify the tyrosine-based sorting signals, S2 
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(Y
265

AYF) and S3 (Y
286

KLV) in the Cx43 C-terminus as direct AP-2 binding 

sites. Both sites can interact with AP-2 and may work jointly to recruit AP-2 

adaptors to the Cx43 C-terminus.  Both Dab2 and clathrin neither bind, nor 

interact with Cx43 directly but appear to require the AP-2 complex for their 

indirect interaction with Cx43. 

 

2.3.3. Cx43/Dab2 interaction is indirect and mediated via AP-2. 

Disabled-2 (Dab2), an alternative clathrin adaptor that initially was 

characterized in AP-2 depleted cells (Mishra et al., 2002; Morris and Cooper, 

2001; Motley et al., 2003; Traub, 2003), was also found to play a role in Cx43 GJ 

internalization (Gumpert et al., 2008; Piehl et al., 2007). As mentioned above, 

Dab2 interacts with its cargo (such as LDL receptor) via a minimal sequence 

motif that conforms to tyrosine-based sorting signals of the NPXY type (Mishra et 

al., 2002; Morris and Cooper, 2001; Traub, 2003; Traub, 2005). However, we did 

not find any NPXY motifs in Cx43, only cryptic ‘PXY’ sequences (two in the rat, 

one in the human Cx43 sequence) (Piehl et al., 2007), making a direct interaction 

between Dab2 and Cx43 unlikely (reviewed in Thevenin et al., 2013).  Yet, Dab2 

was found previously by immunofluorescence staining to robustly colocalize with 

Cx43, both in GJ plaques as well as in AGJs, even in cell lines that express very 

little amounts of Dab2 (Piehl et al., 2007); and Dab2 was shown by RNAi-

knockdown to play a considerable role in GJ internalization (Gumpert et al., 

2008). In addition, as found in this study and shown in Figure 6 above, Dab2 

robustly co-immunoprecipitated with GFP-tagged and untagged Cx43 when 
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expressed in HeLa cells, while its co-immunoprecipitation was reduced or lost 

when AP-2 binding sites were mutated. Dab2 is known to be able to interact with 

the -subunit of AP-2 and the C-terminal domain of clathrin heavy chain 

(reviewed in Bonifacino and Traub, 2003), further suggesting that the interaction 

between Dab2 and Cx43 is indirect and mediated via AP-2. To substantiate this 

hypothesis further we performed Duolink® in-cell colocalization assays (Figure 

7). The Duolink-assay allows for visualization of protein/protein interactions, as 

long as the two proteins are within 40 nm of each other inside fixed cells 

(Gullberg M., 2011). Results obtained with wt Cx43, and the S2+3 mutants 

Cx43L
254-290

-GFP and Cx43L
254-CT

-GFP are shown. Cx43 and Dab2 antibodies 

were utilized for the Duolink colocalization reaction (red fluorescent puncta in wt 

Cx43 and in the Cx43L
254-290 

construct, Figure 7A, panels a, b). Note that the 

used Cx43 antibody is directed against a C-terminally located sequence and 

therefore does not recognize the Cx43
254-CT

-GFP mutant protein, thus serving as 

a negative Duolink control (no red puncta in Figure 7A, panel c). GJs were 

visualized by their Cx43-GFP fluorescence. Duolink-based Cx43/Dab2 

colocalization was quantified by comparative red-channel pixel intensity analyses. 

Results show that the AP-2 binding deficient Cx43L
254-290

-GFP (S2+3) mutant, 

as expected does not colocalize significantly with Dab2 inside cells when 

compared to wild type Cx43 (reduced to 27%, SEM  16.4, n = 25, p < 0.0001) 

(Figure 7B). As for results presented in Figures S1, 2, and 7 (below), a small 

amount of Duolink® signal detected in S2+3 mutant expressing cells (av. ~27%, 

middle bar in Figure 7B) may be generated by small amounts of endogenous wt 
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Cx43 that may have hetero-oligomerized with the mutant Cx43 and thus recruited 

some AP-2 to these heteromeric connexons. Together, data presented here using 

in situ Duolink colocalization assays and co-immunoprecipitation assays 

presented above (Figure 6, A and B) firmly support the conclusion that the 

interaction between Cx43 and Dab2 is indirect and mediated via the classical 

clathrin-adaptor, AP-2. 

 

2.3.4. Cells expressing Cx43 with AP-2/clathrin binding sites mutated have 

more GJ channels in their apposing plasma membranes. 

Since GJ plaque-size has been reported to be regulated by binding of the 

scaffolding protein, ZO-1 (Hunter et al., 2005; Rhett et al., 2011), and GFP-

tagged Cxs are unable to bind to ZO-1 (Hunter et al., 2003; Thevenin et al., 2013), 

untagged Cx43 wild type and mutants were transiently transfected into HeLa 

cells, followed by immunofluorescence staining using primary antibodies against 

Cx43 and Alexa488 (green)-labeled secondary antibodies. mCherry-tagged 

histone H2B (mCherry-H2B) (red) was co-transfected into the cells to identify 

transfected cell pairs. Of each group, over 30 cell pairs were imaged and 

analyzed. Representative images are shown in Figure 8A.  As fluorescence 

intensity above the threshold is directly proportional to the number of GJ channels 

in the PM, the number of channels (more channels correlate with larger GJ 

plaques) of each group was assessed by quantitatively measuring and comparing 

Alexa488 (GJ) pixel quantity and intensity located in the apposing PMs of 

transfected cell pairs (see Materials and Methods in section 2.5). Results indicate 
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that cells that expressed S2 and S3 mutants, in average had double as many GJ 

channels in their apposing PMs compared to wt Cx43 expressing cells, as 

indicated by the doubled pixel intensity (p < 0.0001; shown for F
268

A and Y
286

H 

mutants, Figure 4A, panels a-c, and 4B, blue and green bars); while cells 

expressing S2+3 double mutants (F
268

A+Y
286

H; Y
265

AY+P
283

PGYKLV) had 

about three times as many GJ channels in their apposing PMs (p ≤ 0.001; Figure 

8A, panels d, e and 8B, orange/red bars), indicating a significant internalization-

impairment of the AP-2 binding deficient Cx43 mutants. Taken together, these 

results again suggest that AP-2 is recruited to Cx43 GJs and that AP-2 regulates 

GJ endocytosis.  Since mutating sites S2 and S3 individually caused a less 

significant increase in PM GJ channel number compared to mutating both AP-2 

binding sites S2+3 together (either by mutating critical residues of the signal 

sequence or by deleting the signal), these results further support the conclusion 

that AP-2 interacts with both sites, S2 and S3, in Cx43 polypeptides.  

 

2.3.5. GJ plaques formed by AP-2/clathrin binding-deficient Cx43 mutants 

are internalization impaired. 

As shown in Figure 8 and described above, cells expressing AP-2/clathrin 

binding deficient Cx43 mutants exhibit increased amounts of GJ channels in their 

apposing PMs.  In order to examine whether this increase is indeed caused by 

inefficient GJ internalization, we investigated HeLa cells expressing wt and 

respective Cx43 mutants for extended time periods (up to 72 hours) by live-cell 

time-lapse microscopy. Representative image frame sequences are shown in 
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Figure 9A. Results indicate that wt Cx43-GFP expressing cells constitutively 

internalized/turned over their plaques with a time-constant of about 5 ± 1.0 hours 

(n = 16) counted from visual onset of GJ plaque formation to completion of GJ 

internalization (Figure 9A, column 1; B, green bar; Supplementary Table S1; 

Supplementary Movie S1).  Single AP-2 binding site mutants, S2 (F
268

A-GFP) 

and S3 (Y
286

H-GFP, and ΔP
283

PGYKLV-GFP) were still able to internalize their 

plaques, however at a much slower rate determined to be 18  3.7 (n = 7), and 19 

 1.3 (n = 17) hours (Figure 9A, columns 2, 3, shown for F
268

A-GFP and Y
286

H-

GFP; B, blue bars; Supplementary Table S1; Supplementary Movies S2, S3).  

S2+3 double-mutants (F
268

A+Y
286

H-GFP, ΔY
265

AY+ΔP
283

PGYKLV-GFP, and 

ΔL
254-290

-GFP, Cx43-ΔL
254-CT

-GFP) were found very inefficient/unable to 

internalize their plaques since they were present for 30  2.7 (n = 9), or even more 

hours in the case of the ΔL
254-CT

-GFP mutant (Figure 9A, columns 4, 5, shown 

for F
268

A+Y
286

H-GFP and ΔL
254-290

-GFP; B, red bar; Supplementary Table S1; 

Supplementary Movies S4, S5).  The fact that double-site mutants (S2+3) were 

observed to remove GJs at all, albeit only after prolonged time periods, again may 

be explained by small amounts of endogenously expressed Cx43 that may hetero-

oligomerized with the expressed mutant proteins. Alternatively, other yet 

uncharacterized cellular processes may have accommodated GJ removal under 

these conditions.  Together, these results indicate that GJ plaques assembled from 

AP-2/clathrin binding deficient Cx43 mutants are internalization-impaired. 
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2.3.6. AP-2/clathrin binding-deficient Cx43 mutant proteins exhibit longer 

half-lives. 

To further investigate whether impaired GJ plaque internalization 

correlates with extended mutant Cx43 protein half-life, we analyzed the half-lives 

of GFP-tagged and untagged wt and mutant Cx43 proteins in HeLa cells in which 

protein biosynthesis was blocked pharmacologically (Figure 10). Connexins in 

general are known to exhibit short half-lives of 1 to 5 hours (Beardslee et al., 

1998; Falk et al., 2009; Fallon and Goodenough, 1981). Channels in GJ plaques 

are dynamic and at steady state are constitutively internalized from plaque 

centers, while newly synthesized GJ channels are accrued along the outer edges of 

plaques (Falk et al., 2009; Gaietta et al., 2002; Lauf et al., 2002). HeLa cells were 

transfected with GFP-tagged and untagged wild-type Cx43, S2, S3, and double 

S2+3 mutants. The next day, cells were treated with cycloheximide, lysed at 

indicated times, and Cx protein levels were determined using GFP-antibodies and 

Western blot analyses. Representative blots for GFP-tagged and untagged wt and 

mutant constructs are shown (Figure 10A, C). Quantitative analyses (by stripping 

blots and re-probing for -tubulin) showed that wt Cx43-GFP exhibited a short 

half-life of about 1 hour (Figure 10A, B and C, D, green curve) consistent with 

previous results (Beardslee et al., 1998; Falk et al., 2009; Fallon and Goodenough, 

1981), whereas single site mutants, S2 and S3 exhibited extended half-lives of 

about 2 hours (Figure 10A, B and C, D, blue and purple curves), and about 4 

hours for the S2+3 double-site mutants (Figure 10A, B and C, D, orange and red 

curves), respectively. All protein half-life experiments were repeated at least 3 
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times. Although, no significant differences were observed between GFP-tagged 

and untagged constructs, untagged Cx43 proteins in general appeared somewhat 

more stable compared to GFP-tagged constructs.  Note that cycloheximide 

treatment in these experiments may generate considerable cytotoxic side effects 

that may have caused recorded Cx43 protein half-lives to be shorter compared to 

experiments performed in untreated cells (in Results 2.3.5). Together, these 

results further support our hypothesis that GJs are internalized in an AP-2 

dependent, clathrin-driven process. 

 

2.3.7. Cells expressing AP-2/clathrin binding deficient Cx43 mutants become 

donor cells when paired with wt Cx43 expressing cells. 

To further support our finding that mutating the AP-2 binding sites in 

Cx43 generates internalization impaired GJs, we paired cells expressing wt Cx43 

with cells expressing AP-2 binding site mutants. We transfected HeLa cells 

separately with wt Cx43-mApple (red fluorescence) and wt or mutant Cx43-GFP 

(green fluorescence) by electroporation as described in Materials and Methods. 

Transfected cells were mixed at a 1:1 ratio, seeded and co-cultured on glass cover 

slips overnight. Cells were fixed, analyzed and quantified for the location of 

heterotypic wt/mutant AGJs. Heterotypic GJs formed between Cx43-

mApple/Cx43-GFP expressing cell pairs were comprised of mApple-labeled 

connexons on one side, and GFP-labeled connexons on the other, resulting in GJ 

plaques exhibiting yellow fluorescence on the red and green overlay images 

(Figure 11A). Cytoplasmic AGJ vesicles formed by the internalization of these 
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heterotypic GJ plaques also appeared yellow (labeled with arrows in Figure 11A). 

Counting the number of heterotypic AGJs and recording their location allow for 

evaluation of how efficient the mutant expressing cells can internalize their 

plaques. In three independent experiments, when wt Cx43-GFP expressing cells 

were co-cultured with wt Cx43-mApple expressing cells, 46 cell pairs with a total 

of 249 heterotypic AGJ vesicles were analyzed. No overall bias in directionality 

of GJ internalization was observed in these cell pairs (50:50 ratio, Figure 11, A, 

panel a; and B, bar 1). In contrast, single (S2, S3) and double (S2+3) AP-2 

binding site mutant expressing cells were found to be significantly less efficient in 

internalizing the assembled heterotypic GJ plaques, and instead became donor 

cells (shown for Cx43-F
268

A-GFP, [S2]; Cx43-Y
286

H-GFP, [S3] and Cx43-

F
268

A+Y
286

H-GFP, [S2+3] in Figure 11, A, panels b-d; and B, bars 2-4).  In 

Cx43-F
268

A-GFP (S2) / wtCx43-mApple cell-pairing experiments, 72 cell pairs 

with a total of 475 heterotypic AGJ vesicles were analyzed. Only 130 (28% SEM 

 2.9, p = 0.0004) were found in the S2 mutant expressing cells.  In Cx43-Y
286

H-

GFP (S3) / wt Cx43-mApple cell-pairing experiments, 101 cell pairs with a total 

of 507 heterotypic AGJ vesicles were analyzed.  Only 148 (29%, SEM  1.5, p < 

0.001) were found in the S3 mutant expressing cells.  In Cx43-F
268

A+Y
286

H-GFP 

(S2+3) / Cx43-mApple cell-pairing experiments, 75 cell pairs with a total of 425 

AGJs were analyzed, and only 125 (21%, SEM  6.4, p = 0.003) were found in 

the S2+3 mutant expressing cells (Figure 11B). Note that small amounts of 

heterotypic AGJs detected in S2+3 mutant expressing cells (~20%, Figure 11B, 

bar 4) may again be generated by small amounts of endogenous wt Cx43 (see 
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Figure S1) that may have hetero-oligomerized with mutant Cx43, and/or may 

have been generated by potential other AP-2-independent internalization 

processes (see Discussion). The impaired ability of S2, S3, and S2+3 mutant 

expressing cells to endocytose these heterotypic GJ plaques further supports the 

conclusion that both sorting signals, S2 and S3 function in Cx43 GJ 

internalization, which is consistent with results obtained by other assays described 

above. 

 

2.4. Discussion 

In 2003, Thomas et al. identified a proline-rich region consisting of amino 

acid residues P
280

MSPPGYKLVTG
291

 in the Cx43 C-terminus that when mutated 

increased the steady-state pool and half-life of Cx43 (Thomas et al., 2003). Since 

then it was assumed that Cx43 GJ internalization and turnover is regulated by this 

sequence.  More recently, Wayakanon et al. (Wayakanon et al., 2012), using Cx43 

constructs with progressively truncated C-termini, identified critical regions in the 

Cx43 C-terminus that regulate plaque size (C
271

-N
302

) and direction of GJ 

internalization (T
325

-Q
342

) (Wayakanon et al., 2012). However, while these 

authors spatially located the region/s important for Cx43 GJ internalization, they 

did not provide any information on possible mechanisms that may lead to GJ 

internalization.  Here, we report the identification of three tyrosine-based sorting 

signals with the general consensus sequence YXX (Y
230

VFF, Y
265

AYF and 

Y
286

KLV) located in the Cx43 C-terminus that we termed sorting signals S1, S2 

and S3. YXX signals are known to bind physically to the 2 subunit of 
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phosphorylation-activated AP-2 complexes (Collins et al., 2002; Ohno et al., 

1995).  Sorting signal S3 (Y
286

KLV) is identical to the signal located within the 

proline-rich region that Thomas et al. identified previously. Sorting signals S1 or 

S2 at positions Y
230

VFF and Y
265

AYF that we identified in addition, have not 

been revealed by Thomas et al., and were not examined experimentally in their 

study (Thomas et al., 2003). We found that sorting signals S2 and S3 both recruit 

the classical PM clathrin adaptor complex AP-2, the alternative clathrin adaptor 

protein Dab2, and clathrin to mediate GJ endocytosis. A very recent study that 

examined Cx43/AP-2 binding by applying a yeast two-hybrid screen using the 

Cx43 C-terminus as bait and the AP-2 2-subunit as prey suggests that the Cx43 

C-terminus may require specific post-translational modifications (that did not 

occur in the yeast host) to render the S2 binding site accessible to AP-2 (Johnson 

et al., 2013a). Sorting signal S1, due to its close juxtaposed transmembrane 

domain 4 (TM4) location, and consistent with previously published findings 

(Collins et al., 2002; reviewed in Bonifacino and Traub, 2003), was not found to 

serve as an AP-2 interaction/recruitment site.  

We characterized the identified internalization motifs by generating and 

analyzing a set of Cx43 mutants comprised of large and small deletions and 

critical amino acid exchanges.  Cx43 mutants with both sorting signals S2 and S3 

(S2+3) mutated no longer co-precipitated AP-2, Dab2, or clathrin. These mutants 

formed more and/or larger GJ plaques, exhibited longer protein-half lives, and 

double-mutants exhibited severe impairment of GJ plaque internalization.  

Interestingly, mutants with only one of the two sorting signals mutated (either S2 
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or S3) were also internalization impaired. However, the internalization of these 

mutants was affected less severely (by approximately one-half when compared 

with the double S2+3 mutants) (Figures 6, 8-11). We also found that Dab2 

interacts with Cx43 indirectly via AP-2 (Figures 6, 7). Collectively, our results 

suggest that the Cx43 sorting signals S2 and S3, work together to endocytose 

Cx43 GJs; and they evoke a possible model for clathrin to achieve the efficient 

internalization of double-membrane spanning GJs.  Compared to other PM 

receptors such as transferrin-, LDL-, receptor-tyrosine kinases (EGF-, VEGF-, 

PDGF-), and G-protein coupled receptors (GPCRs) that are endocytosed by the 

clathrin machinery, GJs are large PM structures and their endocytosis may pose a 

greater challenge to the cellular endocytic machinery (reviewed in Pauly and 

Drubin, 2007) In our model, schemed in Figure 12, AP-2 interacts with the Cx43 

sorting signals S2 and S3 via its 2 subunit as the first step of Cx43 GJ 

endocytosis. Once Cx43 and AP-2 interaction has been established, AP-2 may 

either recruit clathrin directly via its 2-subunit appendage and/or clathrin-bound 

Dab2 via its  subunit appendage. In this model, the interaction between AP-2 

and Dab2 is an important step as recruitment of Dab2 to GJ plaques may allow 

multiple (up to four) clathrin triskelia to be recruited to a single Cx43 of a GJ 

plaque (Figure 12). AP-2, Dab2 and other clathrin adaptors have all been found 

to be present concurrently in endocytic clathrin-coated vesicles (Keyel et al., 

2006), suggesting that they play a cooperative/synergistic role in clathrin and 

clathrin-machinery component recruitment. Thus, recruitment of multiple 

adaptors and clathrin complexes per Cx43 cargo molecule may facilitate efficient 
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endocytosis of these large PM structures. Furthermore, acute GJ internalization in 

response to certain stimuli (Baker et al., 2008) might, in addition to AP-2, require 

extra clathrin adaptors (e.g. Dab2) to achieve highly efficient internalization, 

while constitutive GJ plaque turnover (Falk et al., 2009) may be achieved by AP-

2 alone.  This, for example is known to occur in GPCR endocytosis, where 

constitutive endocytosis of un-stimulated receptors is achieved via AP-2 binding, 

while rapid ligand-stimulated GPCR internalization requires AP-2 plus an 

additional clathrin adaptor, e.g. -arrestin or epsin-1 (Chen et al., 2011; Moore et 

al., 2007; Wolfe and Trejo, 2007).  Lastly, recent elegant studies from the 

Kirchhausen lab indicate that clathrin triskelia, to successfully initiate coat 

formation need to interact with two AP-2 complexes simultaneously. These 

interaction typically are mediated via PM-anchored PI-4,5-P2 (PIP2) interactions 

(Cocucci et al., 2012). However, significantly less, or even no PIP2 is present 

within GJ plaques, suggesting that Cx43 may have two AP-2 binding sites per 

Cx43 polypeptide to allow for efficient AP-2 binding/clathrin recruitment to 

successfully initiate clathrin coat formation and GJ internalization.  Future 

research will be needed to further address these exciting possibilities. 

Interestingly, the sequence SP
283

PGYKLV
289

 that Thomas et al. (2003) 

identified indeed consists of two overlapping signals, a proline-rich PY motif 

(XP
283

PXY
286

) and the YXX tyrosine-rich sorting signal S3 (Y
286

KLV
289

), and 

both may play discrete functions in clathrin-dependent and clathrin-independent 

GJ internalization mechanisms.  For example, in addition to clathrin-dependent 

internalization, clathrin-independent has been reported for EGF receptors. 
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Clathrin-independent EGF-receptor internalization is reliant on ubiquitination and 

is regulated by the amount of stimulated receptors that are present in the PM 

(Sigismund et al., 2005; reviewed in Aguilar and Wendland, 2005). The proline-

rich PY motif (XP
283

PXY
286

) in Cx43 has been reported to interact with the 

HECT E3 ubiquitin ligase, Nedd4, via its WW2 domain (Leykauf et al., 2006). 

Nedd4-mediated ubiquitination of Cx43 allows recruitment of Eps15, a multi-

functional ubiquitin-interacting endocytic protein to GJs (Catarino et al., 2011; 

Girao et al., 2009). Eps15 is a component of clathrin-coated pits and vesicles, and 

it has been reported to interact directly with AP-2 (Benmerah et al., 1998). 

However, Eps15 also performs an important function in coupling ubiquitinated 

cargo to clathrin-independent internalization (reviewed in (Aguilar and 

Wendland, 2005)). Thus, ubiquitinated Cx43 may also be recognized by Eps15 

through its ubiquitin-interacting motif, possibly resulting in Eps15-mediated 

clathrin-independent GJ endocytosis. Also, Leithe et al. identified Cx43 

ubiquitination as a potential signal for Cx43 GJ internalization (Leithe et al., 

2009), and Fykerud et al. recently identified another ubiquitin ligase, Smurf2, that 

ubiquitinates Cx43 and prepares GJs for internalization and endo-/lysosomal 

degradation in TPA-treated cells (Fykerud et al., 2012). We too found that cells 

that expressed the double-sorting signal mutants S2+3, eventually were able to 

remove their GJ plaques (Figure 9, Movies S1-5), while GJ internalization in the 

Cx43-L
254-CT

-GFP mutant was abolished entirely. However, GJ removal in these 

S2+3 mutants appeared very different and followed a different spatial and 

temporal pattern, potentially implying a different, yet uncharacterized cellular 
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mechanism. Together, these findings suggest that cells may utilize more than one 

pathway to remove GJ plaques. Different functional requirements and different 

upstream cell signaling events leading to different Cx43 modifications (e.g. 

phosphorylation, ubiquitination, SUMOylation, etc.) might dictate which cellular 

pathway eventually might be utilized (reviewed in (Falk et al., 2012; Thévenin et 

al., 2013). As stated above, the PY motif  (P
283

PXY
286

) that mediates Nedd4 

binding overlaps with the YXX-tyrosine-based sorting signal S3 (Y
286

KLV
289

) 

since the Y
286

 is essential for both signals. Thomas et al. (2003) separately 

mutated the XP
283

XXY
286

 and the Y
286

XXV
289

 signals by substituting P
283

 with 

leucine (L) and V
289

 with aspartic acid (D) and found that mutating the latter 

(YXX) signal resulted in a more significant increase in the steady state pool of 

Cx43 (3.5 versus 1.7 fold, respectively). When both, the PXXY and the YXX 

signals were mutated together by either mutating P
283 

to L and V
289

 to D, or by 

mutating Y
286

 to A, no additive effect was observed. The double mutants behaved 

similar to the single YXX mutant, suggesting a primarily AP-2 mediated CME-

based mechanism for GJ internalization.  

Several Cxs, including Cx43, Cx32, Cx36, and Cx46 were reported to 

interact with Caveolin-1 suggesting the possibility that Cx proteins can localize to 

lipid rafts (Lin et al., 2003; Schubert et al., 2002). However, the size of typical GJ 

plaques is much larger than the size of lipid rafts (about 50 nm) (Helms and 

Zurzolo, 2004; Yuan et al., 2002), making it unlikely for GJs to localize to and 

internalize utilizing a caveolae-dependent endocytosis mechanism. Caveolae-
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dependent endocytosis, however, may be utilized for the internalization of PM 

localized Cx hemichannels.   

In this study, we provide multiple lines of independent evidence that 

suggest a predominantly AP-2-and clathrin-driven pathway for the internalization 

of Cx43-based GJs. The alternative clathrin-adaptor Dab2 may also be recruited 

to Cx43 GJs via AP-2 interaction, most likely to enhance the efficacy of this 

endocytic process. Interestingly, our analyses uncovered two AP-2 binding sites 

in the Cx43 C-terminus that are both used to convey the binding of up to four 

clathrin triskelia per Cx43 polypeptide (via the binding of two AP-2 complexes 

and two Dab2 proteins), suggesting a potential molecular mechanism for clathrin 

to mediate the internalization of PM structures that can be 50-times larger than 

typical clathrin-coated vesicles. Future research will need to address which 

signals regulate access of AP-2 (and of other endocytic adaptors) to Cxs of 

endocytosis-primed GJs, and how many Cx polypeptides per connexon/GJ 

channel need to bind to AP-2 to successfully initiate GJ endocytosis.  Post-

translational modifications of Cx43, such as phosphorylation and ubiquitination 

that for example are required for GPCR endocytosis (Chen et al., 2011; Moore et 

al., 2007; Wolfe and Trejo, 2007), binding/release of regulatory proteins as 

observed for adherens junctions (Nanes et al., 2012), or conformational changes 

of the Cx43 C-terminus (Solan and Lampe, 2005) are all enticing possibilities. 

 

2.5. Materials and methods 

2.5.1. PCR mutagenesis and cDNA construction 
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Cx43-GFP mutants were generated by site-specific mutagenesis.  Full-

length rat Cx43-GFP (previously cloned into pEGFP-N1 vector as described in 

Falk, (2000) was used as a template for PCR mutagenesis. Primer sequences are 

listed below. Site-directed mutagenesis of the Cx43 sequence was performed 

using an overlap extension polymerase chain reaction (PCR) mutagenesis 

procedure (Figure 13) developed by Higuchi et al. (1988).  

 PCR mutagenesis reactions were done using proofreading Pfu Ultra II 

polymerase (Stratagene, Cat. No. 600670-51). PCR settings were as the 

following: 

 

 Stock [ ] Vol. used (l) Final [ ] 

Template DNA 0.5 g/l 1 0.5 g 

Pfu buffer 10 X 5 1 X 

Pfu Ultra II 

Polymerase 

 1  

Forward primer 1 mg/ml 0.5 500 ng 

Reverse Primer 1 mg/ml 0.5 500 ng 

dNTP 10 mM 1 200 M 

H2O  41  

Total  50  
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Mutated PCR-amplified cDNA fragments were restriction endonuclease-digested  

with EcoRI and BamHI , and ligated into the full length Cx43-GFP containing 

vector to replace the wild type sequence with the mutated sequence. 

Untagged Cx43 mutants were generated by QuikChange™ site-direct 

mutagenesis. Cx43-GFP mutants were used as templates for PCR amplification. A 

pair of mutagenic primers reintroducing the authentic Cx43 TAA STOP-codon 

behind the last Cx43 amino acid (I
382

) was used. PCR amplification (using 

proofreading Pfu Ultra II polymerase) (Stratagene, Cat. No. 600670-51) generated 

nicked, circular strands. Template DNA (methylated) was digested using DpnI 

restriction endonuclease.  Constructs were then transformed into DH5 

competent E. coli cells. Plasmids were purified using Qiagen Midi-/Maxiprep 

plasmid DNA purification kits (Qiagen, Cat. No. 12243, and 12163). All 

constructs were verified via DNA sequence analyses. Plasmids containing histone 

mCherry-H2B and Cx43-mApple (generous gifts of Michael W. Davidson, The 

Florida State University, Tallahassee, FL, USA) were used to identify Cx43-

cotransfected cell pairs (Figure 8), and in Cx43-GFP/Cx43-mApple co-culture 

experiments (Figure 11). 

 

2.5.2. Cell culture and transfections 

HeLa cells (ATCC, Cat. No. CCL2) were maintained under standard 

conditions in a humidified atmosphere containing 5% CO2 at 37
o
C in high glucose 

Dulbecco’s modified Eagles’s medium (DMEM). Media were supplemented for a 

final concentration of 10% with fetal bovine serum (FBS) (Atlanta Biologicals, 



  

            42 

 

Cat. No. S11050), 2mM L-glutamine (Thermo Scientific, Hyclone, Cat. No. 

SH30034.01, stock 200mM) and 50 I.U/ml penicillin and 50µg/ml streptomycin 

(Cellgro, Cat. No. 30-001-CI). Cells were passaged the day prior to transfection, 

cultured to 50-75% confluency and transfected with SuperFect® (Qiagen, Cat. 

No. 301307) transfection reagent according to manufacturer’s recommendations. 

 

2.5.3. Immunofluorescence microscopy and image analyses 

Cells were either grown in glass bottom dishes or on glass cover slips pre-

treated with poly L-lysine (Sigma, Cat. No. P8920).  Cells were fixed with 3.7% 

formaldehyde and permeabilized with 0.2% Triton X-100 in PBS. Cells were 

blocked with 10% FBS in PBS at room temperature for 1 hour. Cells were 

incubated with rabbit polyclonal anti-Cx43 primary antibodies (Cell Signaling 

Technology, Cat. No. 3512) at 1:500 dilution at 4
o
C overnight. Secondary 

antibodies (goat anti-rabbit Alexa488, Molecular Probes/Invitrogen, Cat. No. 

A11008) were used at 1:500 dilution at room temperature for 1 hour. Cell nuclei 

were stained with 1g/ml DAPI. Cells were mounted using Fluoromount-G™ 

(SouthernBiotech, Cat. No. 0100-01). 

Wide-field fluorescence microscopy was performed on a Nikon Eclipse 

TE 2000E inverted fluorescence microscope equipped with a 60x, NA 1.4, Plan 

Apochromat oil immersion objective. Images were acquired using MetaVue 

software version 6.1r5 (Molecular Devices, Sunnyvale, CA), Quantitative 

analyses were performed using ImageJ version 1.43u (National Institutes of 

Health, USA). Adobe Photoshop version 8.0 was used to process images. 
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2.5.4. Duolink® in situ protein co-localization assays 

HeLa cells were either transfected with wt Cx43-GFP, or with Cx43-

L
254-290

-GFP and Cx43-L
254-CT

-GFP constructs with putative AP-2 binding 

sites deleted. Cells were fixed, permeabilized, and blocked as described above. 

Cells were then incubated with mouse anti-Dab2 and rabbit anti-Cx43 antibodies 

at 1:500 dilution at 4
o
C overnight. Unbound primary antibodies were removed by 

washing 3 times with 1x PBS. Cells were incubated with secondary antibodies 

conjugated with PLA-specific oligonucleotide probes (Duolink in situ starter 

kit, Olink Bioscience, Uppsala, Sweden, Cat. No. 92101) at 37
o
C for 1 hour. 

Unbound antibodies were removed by washing 3 times with wash buffer A. 

Ligase enzyme and ligation buffer were added according to manufacturer’s 

recommendation in order to hybridize the two PLA-probes and to form a closed 

DNA circle, a reaction that according to the manufacturer can only occur if the 

two PLA-probes are located in close proximity to each other (≤ 40 nm). Samples 

were then washed 3 times with wash buffer A. Amplification solution containing 

deoxyribonucleotides and Texas Red-analogue fluorescent-labeled 

oligonucleotides (λex. 594 nm, λem. 624 nm) were added together with DNA 

polymerase. Amplification reactions were performed at 37
o
C for 90 minutes. This 

will initiate rolling-circle amplification reactions to occur that generate 

concatemeric DNA strands onto which the fluorescent-labeled oligonucleotide 

detection probes hybridize.  Unbound labeled oligonucleotides were removed by 
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washing the samples 3 times with buffer B before embedding samples in Duolink 

mounting medium and microscopic observation. 

 

2.5.5. Live-cell imaging 

HeLa cells were transfected with wild type Cx43-GFP, or with Cx43-GFP 

mutants as described above. Cells were analyzed 24 hours post-transfection, and 

extended live-cell recordings (up to 72 hours; phase contrast and fluorescence) as 

shown in Figure 4 were performed on a Nikon BioStation IM Cell-S1 system 

using a 40x air-objective and glass-bottom dishes. Images were acquired every 2 

or 5 minutes. Time-lapse image sequences were than annotated using NIS 

Elements AR 3.0, SP6, Hotfix 7. 

 

2.5.6. Western blot analyses 

Denatured protein samples derived from Cx43 wt and mutant-expressing 

HeLa cells were analyzed on 10% or 12% SDS-PAGE mini-gels (BioRad). 

Biotinylated protein ladder (Cell Signaling Technology, Cat. No. 7727S) was 

used as a molecular weight marker. Proteins were transferred onto nitrocellulose 

membranes (Whatman, Cat. No. 10439396) on ice at 120 V for 1 hour before 

blocking with 5% non-fat dry milk in TBST at room temperature for 1 hour. 

Membranes were then incubated with primary antibodies at 4
o
C overnight. 

Antibodies used were: mouse anti-Cx43 (Zymed, Cat. No. 138300) at 1:2000 

dilution, rabbit anti-Cx43 (Cell Signaling Technology, Cat. No. 3512) at 1:2500 

dilution, mouse anti--Adaptin (an AP-2 subunit) (BD Transduction Laboratories, 
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Cat. No. 610501) at 1:2000 dilution, mouse anti-Dab2 (p96) (BD Transduction 

Laboratories, Cat. No. 610501, 610464) at 1:2000 dilution, mouse anti-clathrin 

heavy chain (BD Transduction Laboratories, Cat. No. 610499), at 1:2000 dilution, 

mouse anti-dynamin2 (BD Transduction Laboratories, Cat. No. 610245) at 1:2000 

dilution, mouse anti-GFP-HRP (Miltenyi Biotec, Cat. No. 130-091-833) at 1:2500 

dilution, and mouse anti- -tubulin (Sigma, Cat. No. T9026) at 1:5000 dilution. 

Membranes were washed 3 times with TBST followed by incubation with HRP-

conjugated secondary antibodies at 1:5000 dilution (Zymed Laboratories, Cat. No. 

81-6520 or 81-6120) at room temperature for 1 hour. Proteins were detected with 

ECL plus (GE Healthcare, Cat. No. RPN2132). The NIH ImageJ software 

package was used to quantify intensity of protein bands. 

 

2.5.7. Co-immunoprecipitation assays 

Cx43 transfected HeLa cells were lysed with 1x SDS-free RIPA buffer 

(Cell Signaling Technology, Cat. No. 9806) supplemented with protease and 

phosphatase inhibitor cocktail (Cell Signaling Technology, Cat. No. 5872). 

Supernatants were incubated either with covalently linked anti-GFP magnetic 

beads (Miltenyi Biotec, Cat. No. 130-091-288), or with rabbit anti-Cx43 

antibodies together with Dynabeads® protein-G magnetic beads (Invitrogen, Cat. 

No.10003) at 4
o
C overnight, or at room temperature for 2 hours. Beads were 

washed 3 times with 1x TBS. Cx43 and bound proteins were eluted from the 

beads using hot SDS-PAGE sample buffer containing 50 mM DTT.  Samples 

were analyzed by Western blot as described above. 
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2.5.8. Cx43 protein half-life analyses 

HeLa cells were cultured and transfected with GFP-tagged wild type or 

mutant Cx43 constructs in multiple 3.5 cm dishes as described above. Cells were 

treated with 50ug/ml of cycloheximide (Sigma, Cat. No. C-6255) the following 

day to inhibit protein biosynthesis, and cells were lysed and harvested with 500 μl 

of 1x SDS-PAGE sample buffer at 15 and 30 minutes, 1, 2, and 4 hours post 

treatment. Samples were heated at 95
o
C for 5 minutes. Cx43 protein levels of 

each lysate were examined by Western blot analyses using mouse anti-GFP-HRP 

antibody as described above (15 μl of each protein sample was analyzed). 

Membranes were stripped with stripping buffer (Boston Bioproducts, Cat. No. 

BP-96) followed by a stringent wash in TBST before re-probing with mouse anti-

-tubulin antibody (Sigma, Cat. No. T9026). Protein amount of each band was 

quantified using NIH ImageJ. Cx43 amounts were corrected for uneven loading 

by comparing with the amount of -tubulin. 

 

2.5.9. Transfection and co-culture of cells expressing wt and mutant Cx43 

constructs  

HeLa cells were cultured to 70-80% confluency. Cells were dislocated 

using 0.25% trypsin/EDTA, washed 3 times with 1x PBS and pelleted. Cell 

pellets were re-suspended in electroporation buffer (Millipore, Cat. No. ES-003-

D), and transferred into 4 mm gap-size electroporation cuvettes. Electroporations 

were performed with 3x10
6
 cells and 20 g of DNA in a total volume of 750 μl at 
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250V and 500 F using a Gene Pulser Xcell
TM

 Total System (BioRad, Cat. No. 

165-2660). Cells were rested on ice for 10 minutes before seeding wild type and 

mutant Cx43 transfected cells at equal ratio onto poly-L-lysine coated glass 

coverslips. Cells were cultured for approximately 30 hours, fixed and stained with 

DAPI as described above before imaging. 

 

2.5.10. Statistical analyses 

Unpaired student t-tests were performed to analyze, percentage of AP-2, 

Dab2, and clathrin heavy chain co-precipitated with Cx43 (Figure 6); percentage 

of Cx43/Dab2 Duolink colocalization (Figure 7); average number of GJs/cell pair 

(Figure 8), average time periods required for GJ plaques to form and internalize 

(Figure 9); and number of heterotypic AGJs/cell type (Figure 11) using the 

GraphPad online software package (GraphPad Software, Inc. La Jolla, CA). Data 

are presented as mean  SEM. In all analyses, a p-value ≤ 0.05 (depicted with *, 

**, or ***) was considered statistically significant.  



  

            48 

 

2.6: Figures 

 

A 

 

B                                                           GFP-tagged 

 

 

Figure 5: Cx43 mutants that interfere with AP-2/clathrin binding.  (A) The Cx43 

C-terminus harbors three canonical tyrosine-based sorting signals of the type 

YXX at positions Y
230

VFF, Y
265

AYF, and Y
286

KLV that we named S1, S2, and 

S3 (shown in red) that can function as putative binding sites for the classical PM 

clathrin adaptor, AP-2. To test their role in recruiting AP-2 to Cx43, we generated 

a set of mutants that abolished the AP-2 binding capacity by mutating known 
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critical residues of the motifs (Y or F) into H or A, or by deleting the amino acid 

residues of the motifs, either partially (3 amino acid residue deletions), or entirely 

(≥7 amino acid deletions) (depicted with asterisks, see text for details).  Single, 

double, and triple-site mutants (depicted S1, S2, S3, S2+3, and S1+2+3) were 

constructed. Mutants 2 to 10 characterized in this work are shown.  (B) 

Immunoblot analysis (using anti-GFP antibodies) of wild type (lane 1) and mutant 

Cx43-GFP constructs (lanes 2-10). Wild type and mutants produced Cx43 

proteins that migrated on SDS-PAGE gels corresponding to their predicted 

molecular weight. M = Marker proteins. 
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A 

 

B 

 

Figure 6: Cx43 mutants with AP-2 binding sites S2 or S3 mutated, co-precipitate 

reduced amounts, while mutants with both (S2+3) or all three sites mutated 

(S1+2+3) no longer co-precipitate clathrin and clathrin accessory proteins.  HeLa 

cells were transfected with GFP-tagged (A) and untagged (B) Cx43 wt (lane 1); 

single F
268

A (S2), Y
286

H (S3) (lanes 2, 3); double F
268

A+Y
286

H (S2+3), 

Y
265

AY+P
283

PGYKLV (S2+3) (lanes 4, 5); and triple Y
230

H+F
268

A+Y
286

H 
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(S1+2+3), Y
230

H+Y
265

AY+P
283

PGYKLV (S1+2+3) (lanes 6, 7) mutants. Cells 

were lysed in SDS-free 1x RIPA buffer, and protein complexes were immuno-

precipitated using anti-GFP (in A) or anti-Cx43 (in B) magnetic beads. Bound and 

co-precipitated endocytic proteins were detected by Western blot analyses using 

antibodies specific for GFP (row 1 in A), anti-Cx43 (row 1 in B), -Adaptin (AP-

2, row 2), Dab2 (row 3), clathrin heavy chain (CHC, row 4), and -tubulin 

(loading control, row 5). Cx43-wt as well as single site mutants S2 and S3 co-

precipitated AP-2, Dab2, and clathrin, while double S2+3, and triple S1+2+3 

mutants did not.  HeLa cell lysates and beads only were analyzed in control (lanes 

8, 9).  Note that both single mutants S2 and S3 precipitated approximately one-

half amounts of clathrin and clathrin-adaptors compared to wt Cx43 (see 

quantitative graphed analyses on the right).  Representative blots are shown on the 

left, and averaged data of three independent experiments are shown on the right. 

Note that increasing amounts of Cx43 proteins were immunoprecipitated, 

correlating with the increasing stability of the mutant proteins (see Figure 6), and 

that a small amount of endogenous Cx43 was detected in overexposed membranes 

(row 1, lane 9 in B, quantified in Figure S1). Significant differences (p <0.05) are 

shown in this and following figures. Results corroborate that motif S1 is not a 

functional AP-2 binding site. 
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A 

 

B 

 

Figure 7: The accessory clathrin adaptor, Dab2, interacts indirectly with Cx43 via 

AP-2.  (A) HeLa cells were transfected with wt Cx43-GFP (panel a), Cx43-L
254-

290
-GFP (mutant S2+3, panel b), and Cx43-L

254-CT
-GFP (mutant S2+3, panel c), 

and GJ plaques and AGJ vesicles were detected by their emitted fluorescence 



  

            53 

 

(green).  In-cell protein colocalization assays between Cx43 and Dab2 were 

performed with mouse anti-Dab2 and rabbit anti-Cx43 antibodies using in situ 

Duolink® technology (red fluorescence). Cx43 wt AGJ-vesicles co-localized with 

Dab2, detectable as red/yellow puncta in the magnified views (panel a).  The 

Cx43-
L254-290

 mutant is unable to recruit AP-2 and also does not recruit Dab2 as 

indicated by the negative Duolink signal (panel b). The Cx43-L
254-CT

 mutant is 

also unable to interact with the Cx43 antibodies and served as a negative Duolink 

control (panel c).  Representative images are shown.  (B) Quantitative analyses of 

results described in (A) revealing the impaired ability of AP-2 binding-deficient 

Cx43 mutants to recruit Dab2. Results are consistent with co-immunoprecipitation 

results presented in Figure 6. 
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A 

 

B 
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Figure 8: AP-2 binding-deficient Cx43 mutants have more GJ channels in their 

apposed PMs.  (A) Untagged wt and S2, S3, and S2+3 Cx43 mutants were co-

transfected with mCherry-H2B (red) (to better reveal transfected cell pairs) into 

HeLa cells. Cx43 was stained for immunofluorescence analyses using primary 

rabbit anti-Cx43 and secondary goat anti-rabbit Alexa488 (green) labeled 

antibodies. Images of transfected cell pairs were acquired using a 60x oil 

immersion objective. Three representative images of each, wt (panel a) and 

selected mutants (F
268

A [S2], panel b; Y
286

H [S3], panel c; F
268

A+Y
286

H [S2+3], 

panel d; Y
265

AY+P
283

PGYKLV [S2+3], panel e) are shown.  (B) Quantitative 

analyses of the number of GJ channels present in apposed PMs (performed by 

measuring PM localized Alexa488 fluorescence intensity of wt and selected S2, 

S3, and S2+3 mutants) revealed a two-fold increase in Cx43-F
268

A (S2) and 

Cx43-Y
286

H (S3) mutants (blue bars), and a three-fold increase in Cx43-

F
268

A+Y
286

H-GFP, and Y
265

AY+P
283

PGYKLV (S2+3) mutants (orange/red 

bars) compared to wt Cx43 expressing cells (green bar). 
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A 

 

B 
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Figure 9: GJ plaques assembled by AP-2 binding-deficient Cx43 mutants are 

internalization impaired.  (A) HeLa cells were transfected with GFP-tagged wild-

type, S2, S3, and S2+3 mutant constructs and imaged every 2 or 5 minutes for up 

to 72 hours (phase contrast and green fluorescence channels).  GJ plaque 

formation, maturation, and endocytosis were captured (depicted by arrows). 

Selected merged image frames of GFP-tagged wide-type, F
268

A (S2), Y
286

H (S3), 

F
268

A+Y
286

H and L
254-290

 (S2+3) are shown (also see supplementary Movies S1-

5). (B) Quantitative analysis of time periods required for GJ plaques to 

constitutively turn over (form, mature, and be removed) revealed that GJ plaques 

assembled of wt Cx43, on average turned over in about 5 hours (green bar), while 

GJ plaques assembled from S2 and S3 mutants turned over in 18-19 hours (blue 

bars), and GJ plaques assembled from S2+3 double-mutants were removed after 

~30 hours (red bar) (see Table S1 for complete data set). 
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Figure 10: AP-2 binding deficient Cx43 mutant proteins exhibit longer half-lives.  

HeLa cells were transfected with GFP-tagged (A) or untagged (B) wt, S2, S3, and 

S2+3 Cx43 mutant constructs and treated with cycloheximide the following day 

to block protein biosynthesis. Cells were lysed at indicated time points post 

treatment and examined by SDS-PAGE and Western-blot analyses using anti-
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GFP (in A) and anti-Cx43 (in C) antibodies.  All membranes were stripped and 

re-probed with anti -tubulin antibodies as a loading control.  Representative 

Western blot analyses for Cx43 wt (panels a), F
268

A (S2, panels b), Y
286

H and 

P
283

PGYKLV (S3, panels c, d in A), F
268

A+Y
286

H and 

Y
265

AY+P
283

PGYKLV (S2+3, d in C and panels e, f in A) are shown.  (B and 

D) Normalized quantitative analyses of Cx43 protein that remained after the 

indicated times in three independent analyses indicates that S2 and S3 mutant 

proteins have approximately doubled half-lives (~2 hours, blue curves), while 

double S2+3 mutants again have about doubled half-lives (~4 hours, orange/red 

curves) when compared with wild-type Cx43 protein (estimated half-live of ~1 

hour, green curve). 



  

            60 

 

A 

 

B 

 



  

            61 

 

Figure 11: AP-2 binding-deficient Cx43 mutants become donor cells.  (A) HeLa 

cells were separately transfected with wt Cx43-mApple (red) or GFP-tagged wt, 

S2, S3, or S2+3 mutant constructs (green) and co-cultured. Cell pairs of wt Cx43-

mApple and mutant/wt-GFP expressing cells assemble heterotypic GJs (yellow in 

the overlays). Heterotypic AGJs (also appearing yellow) are depicted with arrows. 

Representative images of wt Cx43-GFP (panel a), F
268

A-GFP (S2, panel b), 

Y
286

H-GFP (S3, panel C), and F
268

A+Y
286

H-GFP (S2+3, panel d) expressing cells 

paired with wt Cx43-mApple expressing cells of three independent experiments 

are shown.  (B) Heterotypic AGJs were counted and their cellular location (either 

in wt Cx43-mApple expressing cells versus mutant Cx43-GFP expressing cells) 

was quantified. Cx43 wt/wt cell pairs exhibited an unbiased average ratio of 1:1 

(bar 1), while Cx43 mutants (S2, S3, or S2+3, bars 2-4) were progressively 

inefficient in internalizing their plaques.  Significance values between cell-pair 

groups, and between cell-types within groups compared to wt/wt pairs are shown 

above and within columns, respectively. 
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Figure 12:  Model of Cx43 recruiting clathrin and endocytic clathrin-adaptors.  

(Top panel) Cx43 encodes three canonical tyrosine-base sorting motifs of the 

type ‘YXX’ in its C-terminus (S1, S2 and S3). Sorting signals, S2 and S3 both 

can recruit the classical clathrin adaptor AP-2 to Cx43-GJs that are destined for 

internalization.  (Middle panel) Internalization-destined Cx43 binds the 2-

subunit of AP-2 via its Y
265

AYF (S2) and/or its Y
286

KLV (S3) motif. AP-2 then 

recruits clathrin either directly via its 2-subunit that binds to the terminal domain 

of clathrin heavy chain and/or it interacts via its -subunit with clathrin-bound 

Dab2.  (Bottom panel) As a consequence, one Cx43 polypeptide may recruit up 

to four clathrin molecules, potentially generating the principle molecular structure 

required for an efficient endocytosis of GJs. 
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A

 

B

 

Figure 13: Scheme of site-directed mutagenesis by PCR. (a) Primary PCRs were 

performed by using mutagenesis primers to amplify one strand of the mutant 

DNA; the two PCR products from the primary PCRs (with overlapping 

sequences) were used as templates for the secondary PCRs.  (See mutagenesis 

primers sequence in Appendix section). (b) Thermo cycler setting for PCR 

mutagenesis, 30 cycles of PCR amplifications were performed. 
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Chapter 3: 

Cx43 phosphorylation is the signal for gap junction 

internalization 

(A manuscript describing these results has been submitted to the journal 

FEBS Letters for review) 

 

3.1. Abstract 

Gap junction (GJ) channels bridge apposing membranes of neighboring 

cells to mediate intercellular communication by passive diffusion of signaling 

molecules. We have shown that GJs are internalized in whole, utilizing the 

endocytic clathrin machinery to form cytoplasmic double-membrane vesicles 

termed annular gap junctions or connexosomes. However, the signaling pathways 

and protein modifications that trigger GJ internalization are still unknown. Here, 

by treating mouse embryonic stem (mES) cells with epidermal growth factor 

(EGF), we found that EGF activates both MAPK and PKC signaling cascades to 

specifically phosphorylate the GJ protein Cx43, and that phosphorylation inhibits 

intercellular communication and induces GJ internalization. 

 

3.2. Introduction 

Direct intercellular communication by gap junction (GJ) channels is a 

hallmark of normal cell and tissue physiology. GJs are the only cell-cell junction 

type that allows direct cell-cell communication via the transfer of molecules 
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between cells. Examples include small metabolites such as glucose, amino acids, 

and ATP; ions such as Na
+
, Ca

2+
, and Cl

-
; cell signaling molecules such as IP3 

and cAMP; and potentially functional RNAs, such as miRNAs in glioma cells 

(Katakowski et al., 2010), and siRNAs in NRK cells (Valiunas et al., 2005;  

reviewed in Brink et al., 2012). In addition, based on their double-membrane 

configuration GJs likely contribute significantly to cell-cell adhesion. Clearly, 

these cellular functions require precise modulations. Complete double-membrane 

spanning GJ channels are formed when two hexameric hemi-channels 

(connexons) dock in the extracellular space. Remarkably, docked GJ channels 

cannot be separated into individual hemi-channels under physiological conditions 

(Ghoshroy et al., 1995; Goodenough and Gilula, 1974). Yet, actively proliferating 

cells as e.g. embryonic and somatic stem cells un-couple from their neighbors and 

internalize their GJs in order to undergo mitosis (Boassa et al., 2011). We have 

previously shown that GJs are internalized as a whole in a clathrin-mediated 

endocytic process (Baker et al., 2008; Fong et al., 2013; Gumpert et al., 2008; 

Piehl et al., 2007). However, the specific post-translational modifications such as 

phosphorylation, ubiquitination, etc. that render GJ protein (Connexins, Cxs) 

internalization competent are still poorly understood. 

Twenty Cx isoforms are found in mouse with Cx43 being the most 

prominent isoform. Cx43 is a well-known phospho-protein. Numerous serine 

residues in the Cx43 C-terminus are phosphorylated to up-regulate GJ mediated 

intercellular communication (GJIC) (Ser325, Ser328, Ser330, Ser364/365, and 

Ser373) or down-regulate GJIC (Ser255, Ser262, Ser279/282, and Ser368) 
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(reviewed in Thevenin et al., 2013). Protein kinase C (PKC) is thought to 

phosphorylate Cx43 at Ser368 to down-regulate GJIC (Lampe and Lau, 2000; 

Solan et al., 2007). Cx43 has also been shown to be a substrate of mitogen 

activated protein kinase (MAPK) that upon mitogen stimulation phosphorylates 

Cx43 at Ser255 and Ser279/Ser282 to down-regulate GJIC (Warn-Cramer et al., 

1996). Epidermal growth factor (EGF), a well-studied mitogen, can bind to the 

EGF receptor (a receptor tyrosine kinase [RTK] family member) to activate both 

the MAPK signaling cascade, and a PKC signaling pathway to promote cell 

proliferation. Mouse embryonic stem cells (mES cells) are actively proliferating 

cells with a relatively short cell cycle. They can infinitely self-renew while 

maintaining their pluripotency mediated via GJIC among the cells in the colony. 

In mES cells, expression of Cx31, Cx43, and Cx45 proteins has been described 

(Worsdorfer et al., 2008). However, the exact roles that GJs play in mES cell 

proliferation and differentiation are still unclear. In this study, we treated mES 

cells with EGF to induce proliferation and investigated signals, e.g. Cx43 

phosphorylation events that may lead to GJ internalization. 

 

3.3. Results 

3.3.1. EGF treatment inhibits GJIC in mES cells via activation of the MAPK 

signaling cascade 

Gap junction intercellular communication (GJIC) has been shown to play 

a crucial role in embryonic development, tissue function and cellular homeostasis 

(reviewed in Nagy et al., 2004; Wong et al., 2004). GJIC in pre-implantation 
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mouse embryos as early as at the 8-cell stage was described by Lo and Gilula 

(1979). Cx protein expression and GJIC in mES cells has also been described by 

the Willecke lab (Worsdorfer et al., 2008). However, regulation of GJIC in mES 

cells is not well understood. In 2008, inhibition of GJIC in mES cells treated with 

EGF has been described by (Park et al., 2008). However, the mechanisms that 

lead to GJIC-inhibition were not explored. EGF-induced inhibition of GJIC has 

also been shown in IAR20 rat liver epithelial cells (Leithe and Rivedal, 2004; 

Sirnes et al., 2009). Thus, to specifically examine the effects of EGF-treatment on 

Cx43, and to specifically test whether specific Cx43 phosphorylation events may 

be responsible for the inhibition of GJIC and/or GJ internalization, we pre-

incubated mES cells either with or without PD98059 (a specific MEK inhibitor) 

in serum free media before treating cells with EGF. To assess GJIC inhibition, 

standard scrape loading/dye transfer assays using the GJ-permeable dye, Lucifer 

Yellow (LY) were performed, and GJIC-efficiency in EGF-treated cells was 

compared to untreated cells. GJIC in EGF-treated cells was significantly reduced 

to 37% (n = 30, SEM ± 4, p < 0.0001) compared to untreated controls (Figure 

15A, B, columns 1 and 2). Cells that were pre-incubated with PD98059 exhibited 

a level of GJIC comparable to untreated control cells (89%, n = 36, SEM ± 4), 

suggesting that the MEK inhibitor abolished the GJIC inhibitory effect of EGF 

(Figure 15A, B, column 3). Together, these results indicate that EGF inhibits 

GJIC in mES cells by activating the MAPK signaling cascade. 
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3.3.2. EGF activates MAPK and PKC in mES cells to phosphorylate Cx43 at 

serines 262, 279/282, and 368 

In order to examine which serine residues in the Cx43 sequence might be 

phosphorylated in response to EGF treatment, we implemented phospho-specific 

antibodies to detect the level of Cx43 phosphorylation at specific serine residues. 

mES cells were cultured under feeder-free conditions and serum-starved as 

described, then lysed at 10, 20, 30, 45, and 60 minutes post EGF treatment. Levels 

of phospho-Cx43 were analyzed by Western blots and intensities of protein bands 

were quantified using NIH ImageJ. -tubulin was used as a loading control. 

Results indicate that EGF induces Cx43 phosphorylation at specific serine 

residues located in its C-terminus. Levels of pSer262, pSer279/282, and pSer368 

at 10, 20 and 30 minutes post EGF treatment were significantly higher than in the 

untreated control (Figure 16A, B). At later time points (45 and 60 min), serine 

phosphorylation levels dropped to levels which were not significantly different 

from untreated controls. No significant increase in phospho-Ser255, another Cx43 

MAPK substrate that is known to be phosphorylated in mitotic cells (Lampe et al., 

1998; Sirnes et al., 2009), was detected (see Discussion in section 3.4 below). 

 

3.3.3. EGF induces GJ endocytosis in mES cells 

Down regulation of GJIC in cells may be accomplished by channel closure 

(Spray and Burt, 1990). However, in order to uncouple from neighboring cells, GJ 

channels have to be removed. GJ channel endocytosis upon onset of mitosis in rat 

fibroblasts and NRK cells has been described by Boassa et al., (Boassa et al., 
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2011); and we have previously demonstrated that cells utilize the clathrin-

mediated endocytic machinery to endocytose GJs (Baker et al., 2008; Fong et al., 

2013; Gumpert et al., 2008; Piehl et al., 2007). Thus, to examine whether the 

EGF-induced Cx43 phosphorylation may also induce GJ internalization, mES 

cells were treated with EGF for 30 minutes and cultured together with appropriate 

untreated controls. Colonies were then fixed and stained with anti-Cx43, followed 

by Alexa488-conjugated secondary antibodies (Figure 3A, column 1). Alexa594-

conjugated wheat germ agglutinin (WGA) was used to stain cell plasma 

membranes (PMs) (Figure 17A, column 2). Images were acquired using a 40x oil 

immersion objective. An increased amount of cytoplasmically located punctate 

Cx43 structures (presumably AGJ vesicles) were detected in EGF-treated cells 

(Figure 17A, middle panel) when compared with untreated cells (Figure 17A, 

top panel). When cells were pre-incubated with PD98059 prior to EGF-treatment, 

significantly less AGJs were detected (Figure 17A, bottom panel). Note that ES 

cells only have a very small cytosolic volume and hence AGJs appear to reside in 

close proximity to the PM. 

To further support our conclusion that the cytoplasmic puncta indeed 

represent internalized AGJ vesicles, we treated cells with EGF or PD98059 

followed by EGF, then performed EM analyses in comparison with untreated 

cells. Typical GJs (depicted with arrow) besides adherens type cell-cell junctions 

(depicted with arrowhead) were detected in the PMs between mES cell pairs 

(Figure 17B, left panel). Consistent with our immunofluorescence data, we 

detected an increased number of AGJ vesicles in the cytoplasm of the EGF-
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treated cells (Figure 17B, middle panel). Note the typical, penta-laminar striped 

appearance of the AGJ vesicle ‘wall’ (depicted with arrow) that is representative 

of the double-membrane configuration of these structures. Also consistent, much 

less AGJs and more GJ plaques were detected in MEK-inhibitor and EGF-treated 

cells (Figure 17B, right panel). Taken together, our results suggest that EGF-

treatment induces GJ internalization in mES cells. Representative images from 4 

independent immunofluorescence experiments and 2 independent EM studies are 

shown. 

 

3.3.4. More clathrin is recruited to Cx43 in EGF induced GJ-endocytosis 

As described above (in chapter 2), cells utilize the clathrin endocytic 

mechinery to internalize their GJs (Baker et al., 2008; Fong et al., 2013; Gumpert 

et al., 2008; Piehl et al., 2007). Thus, the amount of clathrin that co-

immunoprecipitates with Cx43 can be used as a direct measurement to quantify 

GJ endocytosis. We thus pre-treated mES cells in serum free media for one hour 

with PD98059 and/or chelerythrine-Cl (a PKC inhibitor), followed by treatment 

with EGF, and immunoprecipitation of Cx43 protein using magnetic beads. 

Untreated mES, and Mardin Darby canine kidney (MDCK) cells, known to not 

express endogenous Cx43 protein (Dukes et al., 2011) were included as controls. 

Fractions of the cell lysates were collected for input analyses of Cx43 

phosphorylation, ERK1/2 activity, and protein loading (Figure 18A). Consistent 

with the results shown in Figure 16, Cx43 was highly phosphorylated at Ser262, 

Ser279/282, and Ser368 after 30 minutes post EGF treatment (Figure 18A, lanes 
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1 and 2). Note that the activity of the MAP kinase, ERK1/2, was significantly 

increased in EGF treated cells as indicated by the elevated levels of 

phosphorylated ERK that was detected with phospho-ERK-specific antibodies 

(Figure 18A, row 5, lane 2, 4). Also note that ERK1/2 activation/phosphorylation 

was effectively inhibited by PD98059 (Figure 18A, row 5, lane 3, 5). As a result 

and consistent with ERK1/2 inhibition, in PD98059 treated cells, Cx43 

phosphorylation at Ser262 and Ser279/282 (known Cx43 MAPK target sites, 

(Warn-Cramer et al., 1996)) was inhibited (Figure 18A, rows 2 and 3, lanes 3 and 

5). Likewise, in chelerythrine-Cl-treated cells a significant reduction of EGF-

induced Ser368 phosphorylation (a known Cx43 PKC target site (Lampe et al., 

2000)), was observed (Figure 18A, row 4, lanes 4, 5). 

Proteins that co-precipitated with Cx43 under these experimental 

conditions were analyzed by Western blot using antibodies specific for clathrin 

heavy chain (CHC) (Figure 18B). The amount of CHC that co-

immmunoprecipitated with Cx43 in EGF-treated mES cells was increased by 5.9 

fold (± 1.4) when compared to untreated cells (Figure 18B, compare lanes 1, 2), 

strongly supporting our earlier finding that EGF induces GJ internalization in 

mES cells.  Only slightly increased insignificant clathrin co-precipitation was 

observed in cells that were pre-incubated with PD98059 (2.7 fold ± 0.8; Figure 

18B, lane 3), or PD98059 and chelerythrine-Cl combined (2.8 ± 0.8, Figure 18B, 

lane 5), consistent with efficient but not complete blockage of respective kinase 

activity in these drug-treated cells.  Interestingly, when cells were pre-incubated 

with chelerythirne-Cl alone followed by EGF treatment, still a significant 4.9 fold 
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(± 1.3) increase in GJ internalization was observed (Figure 18B, lane 4). Thus, 

chelerythrine-Cl did not significantly inhibit EGF-induced GJ internalization, 

suggesting that PKC-mediated phosphorylation of Ser368 appears not to be 

sufficient to render Cx43-GJs internalization competent (see Discussion in section 

3.4). No Cx43 or clathrin was immunoprecipiated in MDCK negative control 

cells (Figure 18A, B, lanes 6).  

Taken together, our data (summarized in Figure 19) suggest that EGF 

induces activation of the MAPK signaling cascade (including MEK and ERK1/2), 

and of PKC to phosphorylate Cx43 at Ser262, Ser279/282, and Ser368. These 

specific phosphorylation events render Cx43 subunits in GJs clathrin-binding 

competent to initiate the endocytosis of GJs in mES cells. Inhibiting ERK1/2 

activation by treating cells with PD98059 inhibits Cx43 phosphorylation and in 

consequence GJ internalization. 

 

3.4. Discussion 

EGF-mediated inhibition of GJIC in mES cells has been observed by Park 

and colleagues (Park et al., 2008). However, no molecular mechanisms explaining 

this observation have been reported. In WB-F344 and T51B rat liver epithelial 

cells, EGF-induced inhibition of GJIC mediated by MAPK has been described 

(Abdelmohsen et al., 2007; Kanemitsu and Lau, 1993). In principle, down-

regulation of GJIC can be achieved by either GJ channel closure, or GJ 

endocytosis. Leithe and Rivedal reported evidence to suggests that by treating 

IAR20 rat liver epithelial cells in hypertonic medium, EGF-induced 
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internalization of Cx43-GJs may be mediated by a clathrin-driven endocytic 

process (Leithe and Rivedal, 2004). However, again detailed molecular signals 

that may be involved in this process have not been elucidated. In order to better 

understand the mechanism of EGF-induced GJIC-inhibition in mES cells, we 

examined specific serine residues located in the known regulatory Cx43 C-

terminus that respond to EGF treatment. Implementing phospho-specific 

antibodies and kinase inhibitors, we uncovered that activation of ERK1/2 (MAPK 

signaling pathway) by EGF is required for Cx43 phosphorylation at Ser262 and 

Ser279/282, whereas PKC activation is responsible for Ser368 phosphorylation 

(Figure 19). Recently, Johnson et al., reported that mutations in Ser279/282 

phosphorylation leads to GJ internalization deficiency in pancreatic cancer cells 

(Johnson et al., 2013a). Consistent with their findings, our data demonstrate that 

ERK1/2-mediated phosphorylation of Cx43 on Ser279/Ser282 is required for GJ 

internalization in mES cells. Interestingly, we did not find a significant increase in 

Ser255 phosphorylation (another MAPK Cx43 target site) in EGF-treated ES 

cells, as this was described to occur in TPA-treated epithelial IAR20 cells (Sirnes 

et al., 2009). TPA is a DAG-analog that is known to activate both MAPK and 

PKC signaling pathways and to hyper-phosphorylate and hyper-ubiquitinate Cx43 

(Fykerud et al., 2012; Sirnes et al., 2009). This might be due to different 

experimental conditions (e.g. EGF versus TPA specificity) or might be cell type 

specific (mES versus rat liver epithelial cells). In addition, besides its known cell-

proliferative activity, EGF might have significant yet to be characterized 

additional effects on mES cells that require cellular uncoupling as well as GJ 
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internalization (e.g. ES cell differentiation, migration, or channel-independent 

Cx43 signaling). In addition, our results show that EGF-receptor activation in 

mES cells also stimulates PKC to phosphorylate Cx43 at Ser368. However, 

inhibiting PKC-activation alone (by chelerythrine-Cl treatment) did not appear 

sufficient to inhibit EGF-induced GJ internalization, suggesting that activation of 

ERK1/2 (and the MAPK signaling cascade) may be more critical for EGF-

induced GJ endocytosis than activation of PKC. Further studies are required to 

fully understand a likely crosstalk between PKC and MAPK activation pathways 

in regulating GJIC and GJ internalization. Although in our study the exact order 

of Cx43 serine phosphorylation events that occur in mES cells in response to 

EGF-treatment could not be determined, we provide compelling evidence that 

suggests that EGF activates both the MAPK signaling pathway and PKC to inhibit 

GJIC and induce GJ internalization. We used PD98059, a MEK inhibitor, and 

monitored corresponding activation (phosphorylation) of ERK1/2 (upstream and 

downstream kinases of the MAPK signaling cascade) to inhibit EGF-induced 

GJIC.  

Activation of kinase signaling in ES cells to regulate self-renewal and 

proliferation while maintaining pluripotency is a complex matter. In recent years, 

the role of GJIC in mouse and human ES cell maintenance and differentiation, as 

well as its potential role in the reprogramming and differentiation of induced 

pluripotent stem (iPS) cells has attracted increasing attention. For example, it has 

been shown that GJIC is required for ES cells to maintain their pluripotent state 

(Todorova et al., 2008). In addition, Cx43 expression has recently been found to 
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be important for the generation of iPS cells (Ke et al., 2013). In 2008, Buehr et al., 

defined specific rat ES cell culture conditions that capture their authentic ES cell 

phenotype by using pharmacological inhibitors including MEK/ERK inhibitors 

(Buehr et al., 2008). Their findings together with our own results presented here 

indicate that ES cells utilize the EGF pathway to regulate self-renewal and 

proliferation by controlling GJIC within the colonies.  In this context, it is 

fascinating to comprehend how mES cells can rapidly endocytose their GJ 

channels to uncouple from their neighboring cells to undergo mitosis and/or to 

perform other functions, and then rapidly re-establish their GJs and GJIC to 

maintain pluripotency. A clear understanding of the molecular mechanisms that 

lead to growth factor-induced inhibition of GJIC and GJ endocytosis are therefore 

of eminent importance. 

 

3.5. Materials and Methods 

3.5.1. Cell culture 

E14TG2a mouse embryonic stem (mES) cells (ATCC, Cat. No. CRL-

1821) were thawed and seeded on mouse embryonic fibroblasts (MEFs) 

(Millipore, Cat. No. PMEF-NL). Cells were passaged and maintained in 0.1% 

gelatin-coated dishes (MEF-free) in humidified atmosphere containing 5% CO2 at 

37
o
C in KO DMEM (Gibco, Cat. No. 10829). Media were supplemented to a final 

concentration of 15% with KO serum replacement (Gibco, Cat. No. 10828), 3mM 

L-glutamine (Gibco, Cat. No. 25030 stock 200mM), 50 I.U/ml penicillin and 

50g/ml streptomycin (Gibco, Cat. No. 15070), 1mM sodium pyvurate (Gibco, 
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Cat. No. 11360 stock 100mM), 1x non-essential amino acids (Millipore, Cat. No. 

TMS-001-C), 1x -mercaptoethanol (Millipore, Cat. No. ES-007-E), and 1000 

U/ml ESGRO mLIF (Millpore, Cat. No. ESG1106, stock 10
6
U/ml) to prevent 

cells from differentiating. Prior to EGF treatment, media were replaced with 

serum free media (to starve cells of growth factors) supplemented either with 

50M PD98059 (MEK inhibitor; Sigma, Cat. No. P215), 500nM chelerythrine-Cl 

(PKC inhibitor; Cayman Chemical, Cat. No. 11314), or both for 1 hour and 

cultured under standard conditions. 

 

3.5.2. Dye transfer assays 

mES cells were cultured in 3.5 cm dishes for 2 days, then pre-incubated 

with serum free media as described above. Cells were treated with 100ng/ml of 

EGF (Sigma, Cat. No. E4127) in serum free media and cultured for 30 minutes. 

Media were replaced with 0.1% Lucifer Yellow (LY; Invitrogen, Cat. No. L682) 

in OPTIMEM (Gibco, Cat. No. 31985). mES cell colonies were cut with a sharp 

scalpel in the presence of LY. Cells were incubated at room temperature (RT) for 

2 minutes to allow dye to transfer to neighboring cells, then were washed 3 times 

with OPTIMEM followed by 3.7% paraformaldehyde fixation for 10 minutes. 

Paraformaldehyde was removed by washing 3 times with 1xPBS containing Ca
2+

 

and Mg
2+

. Fluorescence images were acquired using a 20x objective. Dye 

spreading from the injured cells to the farthermost receiving cells was measured 

using MetaVue software version 6.1r5 (Molecular Devices, Sunnyvale, CA), 

averaged and plotted. 
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3.5.3. Immunofluorescence microscopy and image analyses 

mES cell colonies were grown on glass cover slips pre-treated with 0.1% 

gelatin (Fisher Scientific, Cat. No. G-7); fixed and permeabilized in pure ice-cold 

ethanol for 10 minutes; blocked with 10% FBS in PBS at RT for 1 hour, and 

incubated with primary rabbit polyclonal anti-Cx43 antibodies (Cell Signaling 

Technology, Cat. No. 3512) at 1:500 dilution at 4
o
C overnight. Secondary 

antibodies (Alexa488-conjugated goat anti-rabbit, Molecular Probes/Invitrogen, 

Cat. No. A11008) were used at 1:500 dilution at room temperature for 1 hour. 

Plasma membranes were stained using 1 g/ml of Alexa594-conjugated wheat 

germ agglutinin (WGA; Molecular Probe/Invitrogen, Cat. No. W11262). Cell 

nuclei were stained with 1g/ml DAPI. Cells were mounted using Fluoromount-

G™ (SouthernBiotech, Cat. No. 0100-01). Wide-field fluorescence microscopy 

was performed on a Nikon Eclipse TE 2000E inverted fluorescence microscope 

equipped with a 40x, NA 1.4, Plan Apochromat oil immersion objective. Images 

were acquired using MetaVue software version 6.1r5, Quantitative analyses were 

performed using ImageJ version 1.43u (National Institutes of Health, USA). 

 

3.5.4. Electron microscopic analyses 

mES cells were cultured under feeder-free conditions in 3.5 cm diameter 

dishes, then fixed with 2.5% glutaraldehyde (Sigma cat. No. G7651) in 0.1M 

sodium cacodylate buffer at RT for 2 hours. Cells were washed, treated with 

tannic acid, dehydrated, uranyl acetate-stained and flat-embedded in the dishes as 
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described in Falk (2000). Embedded cells were mounted, trimmed, thin-sectioned 

and examined with a Phillips CM100 electron microscope. 

 

3.5.5. Western blot analyses 

Denatured protein samples derived from mES cell lysates were analyzed 

on 10% SDS-PAGE mini-gels (BioRad). Biotinylated protein ladder (Cell 

Signaling Technology, Cat. No. 7727S) was used as a molecular weight marker. 

Proteins were transferred onto nitrocellulose membranes (Whatman, Cat. No. 

10439396) on ice at 120 V for 1 hour before blocking with 5% non-fat dry milk, 

or 5% BSA in TBST at RT for 1 hour. Membranes were then incubated with 

primary antibodies at 4
o
C overnight. Antibodies used were: rabbit anti-Cx43 (Cell 

Signaling Technology, Cat. No. 3512) at 1:2500 dilution, phospho-specific rabbit 

anti-Cx43 Ser255 (Santa Cruz, Cat. No. sc-12899-R), phospho-specific rabbit 

anti-Cx43 Ser262 (Santa Cruz, Cat. No. sc-17219-R) both at 1:500, phospho-

specific rabbit anti-Cx43 Ser279/282 (Solan and Lampe, 2007) at 1:1000, 

phospho-specific rabbit anti-Cx43 Ser368 (Cell Signaling Technology, Cat  No. 

3511) at 1:2000, phospho-ERK1/2 (Cell Signaling Technology Cat. No. 9102) at 

1:3000, mouse anti-clathrin heavy chain (BD Transduction Laboratories, Cat. No. 

610499), at 1:2000 dilution, and mouse anti--tubulin (Sigma, Cat. No. T9026) at 

1:5000 dilution. Membranes were washed 3 times with TBST followed by 

incubation with HRP-conjugated secondary antibodies (Zymed Laboratories, Cat. 

No. 81-6520 or 81-6120) at 1:10,000 dilution at RT for 1 hour. Proteins were 
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detected with enhanced chemiluminescent (ECL) reagent. NIH ImageJ software 

was used to quantify intensity of protein bands. 

 

3.5.6. Co-immunoprecipitation assays 

mES cells were lysed with 1x SDS-free RIPA buffer (Cell Signaling 

Technology, Cat. No. 9806) supplemented with protease and phosphatase 

inhibitor cocktail (Cell Signaling Technology, Cat. No. 5872). Supernatants were 

incubated with rabbit anti-Cx43 antibodies (Cell Signaling Technology, Cat. No. 

3512) bound to protein-G magnetic beads (Dynabeads®, Invitrogen, Cat. 

No.10003) at 4
o
C overnight or at RT for 2 hours. Beads were washed 3 times with 

1x TBS. Cx43 and bound proteins were eluted from the beads using hot SDS-

PAGE sample buffer containing 50 mM DTT.  Samples were analyzed by 

Western blot as described above. 

 

3.5.7. Statistical analyses 

Unpaired student t-tests were performed to analyze the distance of dye 

transfer (GraphPad Software, Inc., La Jolla, CA). ANOVA with Dunnett’s post-

hoc tests were used to compare the levels of serine phosphorylation in Cx43, and 

the amount of co-precipitated clathrin heavy chains. Data are presented as mean ± 

SEM. In all analyses, a p-value ≤ 0.05 (depicted with *, **, or ***) was 

considered statistically significant. 
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3.6. Figures 

 

A                                                                                             B 

 

Figure 15:  EGF inhibits GJIC in mES cells. mES cell colonies were treated with 

EGF in the presence or absence of the MEK-inhibitor PD98059 followed by 

Lucifer yellow (LY) scrape loading dye transfer assays. Representative images 

(phase contrast and fluorescence overlays on the top, LY-fluorescence alone at the 

bottom) of three independent experiments are shown in (A), quantitative analyses 

of dye transfer (representative of GJIC) are shown in (B). EGF-treatment reduced 

GJIC to 37% (n = 30, SEM ± 4, p<0.0001), while PD98059 counteracted the 

inhibitory EGF effect and GJIC remained at 89% (n = 36, SEM ± 4). 
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                      A     

 

                     B 

 

Figure 16: EGF activates MAPK and PKC signaling cascades to phosphorylate 

Cx43 at serine residues 262, 279/282, and 368. mES cells were treated with EGF 

before cell lysates were prepared at indicated times. Phosphorylated Cx43 was 

detected using phopho-specific antibodies directed against Ser255, Ser262, 

Ser279/282, and Ser368. Membranes were stripped and re-probed with anti -
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tubulin antibodies as a loading control. Representative blots of four independent 

experiments are shown in (A), normalized quantitative analyses of phosphorylated 

Cx43 are shown in (B). EGF induced a significant 4-fold increase of Cx43 

phosphorylation at serines 262, 279/282 (MAPK sites), and 368 (PKC site), but 

not on Ser255 (another MAPK site). Phosphorylation peaked between 10-30 

minutes after EGF treatment. 
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A 

 

B 

 

Figure 17: EGF induces GJ endocytosis in mES cells. Cell colonies grown on 

cover glasses were fixed and stained using antibodies specific for Cx43 

(Alexa488-conjugated secondary antibodies, green). Alexa594–conjugated WGA 

(red) and DAPI (blue) were used to label PMs and cell nuclei, respectively. (A) 

Representative immunofluorescence micrographs from five independent 



  

            85 

 

experiments are shown. Separate channels of boxed areas are shown on the right. 

An increased number of cytoplasmic fluorescent puncta -indicative of internalized 

AGJ vesicles- were observed in EGF treated cells (column 1, panel 2). (B) 

Transmission electron micrographs of treated and untreated mES cell colonies 

revealed typically appearing, double-membrane (penta-laminar striped) GJs and 

AGJs, supporting the conclusion that cytoplasmic puncta in (A) indeed are 

endocytosed GJs. 
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Figure 18: Significantly increased amounts of clathrin, a direct indicator of GJ 

endocytosis, co-precipitates with Cx43 in EGF-treated mES cells. (A) Western 

blot analyses of EGF-treated cell lysates show increased activity of ERK 

(pERK1/2) and Cx43 phosphorylation at Ser262, Ser279/282, and Ser368 (lane 

2). PD98059 inhibited phosphorylation of Ser262 and Ser279/282 (lane 3, 5), 

while chelerythrine-Cl (PKC inhibitor) inhibited phosphorylation of Ser368 (lanes 

4, 5). Untreated mES cells and non-Cx43 expressing MDCK cells were analyzed 

in control (lanes 1, 6).  (B) Cx43 from lysates in (A) were immuno-precipitated, 

and co-precipitated clathrin (CHC) was detected by Western blot analyses and 

quantified. Cx43 from EGF treated cells co-precipitated 5.9 fold  (n = 3, SEM 

±1.5, p < 0.01) more clathrin than in untreated control cells (lanes 1, 2). PD98059 

counteracted EGF-induced GJ internalization by inhibiting ERK1/2 (lanes 3, 5). 

Moderately increased levels of clathrin (4.9 fold, n=3, SEM ± 1.3, p < 0.05) co-

precipitated in cells treated with chelerythrine-Cl alone (lane 4). No Cx43 or CHC 

was precipitated in MDCK control cells. 
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Figure 19: Schematic representation illustrating EGF-induced, MAPK/PKC-

mediated GJ internalization in mES cells. EGF binds to and activates its receptor 

(a RTK) in the PM of cells. Active EGF-receptor activates MAPK and PKC 

signaling cascades to phosphorylate Cx43 at Ser262, Ser279/282, and Ser368. 

Phosphorylated-Cx43 recruits clathrin and clathrin-adaptors to endocytose GJs. 
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Chapter 4: 

Conclusions and future perspectives 

 

     In chapter 2 of this dissertation, I have described that two AP-2 binding 

sites (S2 and S3) in the Cx43 C-terminus work cooperatively to mediate GJ 

internalization. In addition to Cx43 phosphorylation occurring in the C-terminal 

domain (described in chapter 3), other post-translational modifications that render 

the Cx43 C-terminus to become accessible to AP-2 may exist, such as 

ubiquitination, sumoylation, or acylation (palmitoylation, myristoylation). 

Palmitoylation is the addition of palmitate to a cysteine residue of a protein either 

through thioester linkage (S-palmitoylation) or amide linkage (N-palmitoylation). 

Protein palmitoylation (a reversible modification) has been shown to facilitate 

membrane interaction, trafficking, and protein-protein interaction (reviewed in 

(Smotrys and Linder, 2004)). Recently, two YXX motifs similar to the ones we 

identified in the C-terminus of Cx43 were identified in the C-terminus of the G-

protein coupled receptor, PAR1 (Protease-activated Receptor-1). Canto and Trejo 

reported that palmitoylation of the cysteine residue in the YSILCC motif (the 

proximal YXX motif in the PAR1 C-terminus) is the negative regulation factor 

for AP-2 binding (Canto and Trejo, 2013). Cells that express a palmitoylation-

deficient PAR1 mutant (CC/AA) exhibit a marked increase in internalization and 

lysosomal degradation. It is possible that the S2 motif in Cx43 is also regulated by 

palmitoylation, or by other forms of acylation such as myristoylation. There is no 

well-defined consensus sequence for palmitoylation other than the presence of 
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cysteine residues. The tyrosine-based sorting motif S2 in Cx43 also harbors a 

juxtaposed cysteine residue, which is situated two residues away from the YXX 

motif (Y
265

AYFNGC). It is quite likely that the availability of this S2 binding 

motif is regulated by palmitoylation. This could partially explain why the Mehta 

group did not detect interaction of AP-2 with Cx43 through the S2 motif using  a 

yeast-two hybrid assay (Johnson et al., 2013a), because yeast may not be able to 

perform this post-translational modification, at least not on the short Cx43 

segment that the group used as bait.  Future analyses are required to investigate 

the possibility of Cx43 being an acylated protein, and whether acylation may 

regulate clathrin access and GJ internalization. 

As described in chapter 2, when cells were transfected with the double 

mutants (S2+3), GJ plaques that formed among these cells exhibited a significant 

slower rate of turnover and eventually underwent apoptosis. However, 

occasionally these cells were still able to eliminate their GJ plaques after a 

prolonged period of time (Figure 9, and supplemental movies in Fong et al., 

2013). These observations suggest a potential uncharacterized mechanism for 

cells to remove ‘unwanted’ GJ plaques. Based on our findings that S2+3 Cx43 

mutants were unable to recruit AP-2 and clathrin, this pathway is likely clathrin 

independent. Recently, ubiquitination was described to be a signal for GJ 

internalization and degradation (Catarino et al., 2011; Girao et al., 2009). The 

proline-rich PY motif (XP
283

PXY) in the Cx43 C-terminal domain was reported 

to interact with the ubiquitin ligase Nedd4, via its WW domains. Once ubiquitin is 

conjugated to Cx43, ubiquitinated Cx43 is recognized by Esp15 through its 
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ubiquitin-interacting motif, proposed to result in its (clathrin-independent) 

internalization. A shift from CME to clathrin independent endocytosis has been 

described for the EGF receptor when the concentration of the ligand, EGF is 

increased (Sigismund et al., 2005; Traub and Lukacs, 2007). In our live-cell 

recordings of the Cx43 S2+3 mutants, we infrequently observed events in which 

cells appeared to “expel” their GJ plaques in order to un-couple from each other. 

This alternative pathway that might be related to exocytosis, membrane-blebbing 

and the initiation of apoptosis remains to be elucidated. 

In addition to AP-2 and Dab2, dyanamin2 (Dyn2) has been shown to be 

involved in GJ internalization (Gilleron et al., 2011; Gumpert et al., 2008; Piehl et 

al., 2007). Moreover, when Gumpert et al. knocked down Dyn2, a significant 

decrease in the number of AGJs and a significant increase in GJ plaques were 

observed (Gumpert et al., 2008). The known functions of the GTPase dynamin 

include membrane bending and pinching of the formed vesicle to release it from 

the PM (Schmid and Frolov, 2011). These internalized AGJs occasionally 

undergo fission to form smaller vesicles, but the molecular machinery needed for 

these fissions have not been described. Recently, dynamin has been reported to 

play a specific role in AGJ fission (Nickel et al., 2013). Inhibiting the functions of 

dynamin either by siRNA knock-down or pharmacological inhibition (using the 

drug dynasore) resulted in infrequently release of the GJ “buds” from the PM to 

form AGJs. In addition, a smaller number of AGJ vesicle fission per hour was 

observed. Alternative roles of Dyn2 remain to be explored. 



  

            92 

 

Filamentous actin attached to cytoplasmic AGJs has been observed by 

electron-microscopic analyses by our group (Piehl et al., 2007) and before by 

others (Larsen et al., 1979). In addition, Piehl et al. also observed co-localization 

of the retrograde actin motor, myosin VI, internalizing GJ plaques and 

cytoplasmic AGJ vesicles. Overexpression of a dominant-negative myosin VI 

mutant significantly reduced mean AGJ movement velocity and maximum 

distance AGJs traveled from their site of origin (on the PM) to the site of 

degradation (peri-nuclear cytoplasm) (Piehl et al., 2007), suggesting a specific 

role of myosin VI in cellular translocation of AGJs. Myosin VI can interact with 

the C-terminal serine residue and proline-rich region of Dab2 via its C-terminal 

globular tail (Piehl et al., 2007). In chapter 2 of this dissertation, I have described 

the indirect interaction between Dab2 and Cx43 via AP-2 (Fong et al., 2013). 

Thus, it is feasible to speculate that Cx43 recruits AP-2 via its YXX motifs to 

internalize GJ plaques, while Dab2 is recruited to GJ plaques by interacting with 

AP-2 to also recruit myosin VI for efficient transport of the formed AGJ vesicles 

to cellular degradation loci. Once AP-2/Dab2 and clathrin interactions are 

stabilized, dynamin is recruited to the clathrin coated pit to pinch off the “buds” 

from the PM to form AGJs. Overall, GJ internalization appears as a highly 

organized process in which –as in a symphony- each protein is recruited to the GJ 

plaque at exactly the right time and the right order to perform its role in the 

pathway. Clearly, cytoskeleton components play a role in the trafficking of the 

internalized AGJs to their targeted compartment in the cytoplasm. The signals that 

trigger actin remodeling in response to GJ internalization remain to be explored.    
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It has been shown that treatment of cells (epithelial, endothelial, 

embryonic stem cells, etc.) with mitogens, such as epidermal growth factor (EGF) 

and vascular endothelial growth factor (VEGF), or natural inflammatory 

mediators such as thrombin and endothelin results in a rapid and efficient 

inhibition of GJIC (Baker et al., 2008; Kevil et al., 1998; Park et al., 2008; 

Thuringer, 2004). Another intriguing finding in this dissertation work was that I 

identified the serine phosphorylation events (Ser262, Ser279/282, and Ser368) in 

the Cx43 C-terminal domain that play a crucial role in EGF-induced GJ 

internalization. EGF is a growth factor that is known to stimulate cell 

proliferation. In order to undergo mitosis, cells need to uncouple from their 

neighboring cells (Boassa et al., 2011). Thus all cell-cell junctions – including 

GJs – need to be removed from the PM. Inhibiting the MAPK cascade by using a 

pharmacological inhibitor resulted in inhibition of EGF-induced GJ 

internalization. Furthermore, we hypothesize that when cells are stimulated with 

EGF, the phosphorylation of these serine residues occurs in a sequential order. 

The phosphorylation of the first residue will cause a conformational change to the 

Cx43 C-terminal domain that leads to the phosphorylation of the next residue, and 

so on. However, the potential phosphorylation order of these serine residues is 

still under investigation. By mutagenesis, we can mutate these serine residues 

(Ser/Ala) individually, then analyze the potential defect on phosphorylation of the 

other residues. These analyses will allow us to map out the Cx43 phosphorylation 

sequence upon stimulation. Current data in our group indicate that Cx43 

phosphorylation upon stimuli is the initial event that then trigger poly-
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ubiquitination of Cx43 (Kells and Falk, unpublished data). We are also 

investigating internalization of other GJ Cxs GJ. Results from all these ongoing 

projects will provide a more comprehensive understanding of GJ turnover.   

The cell signals involved in EGF-induced GJ internalization are described 

in chapter 3. I have demonstrated that treating mES cells with MAPK inhibitor 

(PD98059) allows GJIC among mES cells in the colony. Interestingly, GJIC 

among mES cells in the colony is required to maintain their non-differentiated and 

proliferative state (Ke et al., 2013; Todorova et al., 2008). Moreover, it has 

recently been shown that GJIC between ES cells and fibroblast feeder cells is not 

required to maintain their pluripotent state (Kim et al., 2013). Taken together, we 

provide insights into possible mechanisms of how ES cells may maintain their 

pluripotent state (without the need for a feeder layer) by simply enhancing GJIC 

among ES cells in the colonies, e.g. supplementing culture media with MEK 

inhibitor to maintain GJIC in ES cells. In addition to inhibiting the MAPK 

cascade, other GJIC enhancing pathways should be explored. This information is 

helpful in defining novel ES cell culture conditions to generate new ES cell lines 

(rat ES cells) or iPS cells which can be applied to regenerative medicine. 

In conclusion, research presented in this dissertation provides evidence to 

elucidate and understand GJ internalization on the molecular level. The results in 

this dissertation are novel and have greatly contributed to GJ research to drive the 

field forward. I have identified two YXX motifs in the Cx43 C-terminus that 

can interact with AP-2 to recruit clathrin and other clathrin-adaptor proteins 

(Dab2). These findings help to explain mechanistically, how cells can endocytose 
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such large plasma membrane structures that can be 50 times larger than typical 

endocytic clathrin-coated vesicles. Since the amount of PIP2 in GJ plaques is very 

limited two AP-2 binding sites on the Cx43 polypeptide are likely required to 

initiate AP-2 stabilization and clathrin coat formation to successfully endocytose 

GJs. Alternative mechanisms are also possible and are discussed in chapter 3. 

This work also identified specific serine phosphorylation events in the Cx43 C-

terminus that are mediated by ERK1/2 (the MAPK signaling cascade) and PKC 

that lead to GJ internalization. PD98059 (a MEK inhibitor) inhibits the activation 

of ERK1/2 and also prevents Cx43 phosphorylation. As a result, EGF-induced GJ 

internalization is inhibited. Relevant findings of my work have been (and will be) 

published in three primary research articles and have contributed to three 

published review articles.  
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Supplemental Data 

 

Table S1: Time in hours required for GJ plaques assembled of wild type and AP-

2 binding-impaired Cx43 mutants (S2, S3, S2+3) to constitutively turn over 

(assemble, mature, and being removed). 

 

wt S2a S3b S2+3c 
2d 5 8 21 
2 5 8 24 
2 15 12 25 
2 19 12 25 
4 25 12 25 
4 25 17 27 
4 30 17 30 
4  17 33 
5e  20 40 
5  22 48 
6  22  
6  22  
6  22  
8  22  

10  25  
10  25  

  30  
    n         : 

16 7 17 10 

    Mean : 
5 18 19 30 

    SEM   : 
1.4 3.7 1.3 2.7 

a
S2 mutant: Cx43-F

268
A-GFP 

b
S3 mutants: Cx43-Y

286
H-GFP, Cx43-P

283
PGYKLV-GFP 

c
S2+3 mutants: Cx43-F

268
A+Y

286
H-GFP, Cx43-L

254-290
-GFP,  

  Cx43-L
254-CT

-GFP
 

d
Regular: GJ plaques already existed at start of imaging 

e
Bold: Recordings include GJ plaque formation and internalization 
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Figure S1: Basal levels of endogenous Cx43 were detected in HeLa cells (ATCC 

clone CCL-2). (A) HeLa cells were cultured in 3.5 cm diameter dishes and 

transfected with GFP-tagged and untagged wt Cx43 DNA constructs as described 

in Materials and Methods. Cells were lysed with 500 l of protein sample 

buffer/dish. Transfected and endogenous Cx43 proteins from 15 l of each 

sample (lysates of approximately 3000-6000 cells) were detected by Western 

blots using rabbit polyclonal antibodies (Cell Signaling Technology, Cat. No. 

3512) (A), or mouse monoclonal antibodies (Zymed, Cat. No. 138300) (B) 

directed against Cx43 as described in Materials and Methods. X-ray films were 

exposed to ECL in the dark for 5 minutes. Membranes were stripped and re-

probed with mouse monoclonal antibodies directed against -tubulin to control 
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for equal loading. Results indicate that total amount of endogenous Cx43 protein 

(lane 2) in the pools is ~10% (SEM ± 3, p < 0.0001) of the transfected Cx43 

protein (CMV promoter) (lane 2, 3). Transfection efficiency in these experiments 

was about 20-30%. If transfection efficiency were 100%, the amount of 

enodogenous Cx43 in the pool would have been 1-2% compared to transfected 

Cx43. (C) Immunofluorecence staining of enodogenous Cx43 in HeLa cells using 

respective rabbit and mouse Cx43 antibodies performed as described in Materials 

and Methods. Representative images acquired using a 20x long distance lens are 

shown. Some GJ-like puncta and intracellular fluorescence and were detected 

using respective rabbit and mouse antibodies. 
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Appendix 

7.1. Primers used for PCR mutagenesis 

Forward primer pEGFP : 5’-GGC GGT AGG CGT GTA CGG-3’ 

Back Primer pEGFP      : 5’-CGC CCT CGC CCT CGC CGG-3’ 

 

Cx43-Y
230

H 

Forward: 5’-CAT TGA GCT CTT CCA CGT GTT CTT CAA AGG C-3’ 

Reverse:  5’-GCC TTT GAA GAA CAC GTG GAA GAG CTC AAT G-3’ 

 

Cx43-F
268

A 

Forward: 5’-TCT CCA AAA TAT GCG TAC GCC AAT GGC TGC TCC TCA-3’ 

Reverse: 5’-TGA GGA GCA GCC ATT GGC GTA CGC ATA TTT TGG AGA -3’ 

 

Cx43-Y
286

H 

Forward: 5’-GTC TCC TCC TGG CCA CAA GCT GGT TAC TGG-3’ 

Reverse:  5’-CCA GTA ACC AGC TTG TGG CCA GGA GGA GAC-3’ 

 

Cx43-Y
265

AY 

Forward: 5’- TGC GGA TCT CCA AAA TTC AAT GGC TGC TCC-3’ 

Reverse:  5’- GGA GCA GCC ATT GAA TTT TGG AGA TCC GCA-3’  
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Cx43-P
283

PGKLV (generate ScaI site) 

Forward: 5’-CTC TCG CCT ATG AGT ACT GGT GAC AGA AAC-3’ 

Reverse:  5’-GTT TCT GTC ACC AGT ACT CAT AGG CGA GAG-3’ 

 

Cx43-L
254-290

 

Forward: 5’-GCC ACC ACT GGC CCA GGT GAC AGA AAC AAT-3’ 

Reverse:  5’-ATT GTT TCT GTC ACC TGG GCC AGT GGT GGC-3’ 

 

Cx43-L
254-CT

 

Forward: 5’-GCC ACC ACT GGC CCA GCG GAT CCA CCG GTC -3’ 

Reverse:  5’-GAC CGG TGG ATC CGC TGG GCC AGT GGT GGC-3’ 

 

Cx43-stop (BamHI site is also eliminated) 

Forward: 5’-CCT GAT GAC CTG GAG ATT TAA GAT CCA CCG GTC GCC ACC-3’ 

Reverse: 5’-GGT GGC GAC CGG TGG ATC TTA AAT CTC CAG GTC ATC AGG-3’
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7.2. pEGFP-N1 map 
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7.3. Buffers, solutions, and media used 

4X  SDS-sample buffer 

250 mM Tris-HCl, 8% SDS, 40% glycerol, 8% beta mercaptoethanol, and 0.02% 

bromophenol. 

 

SDS-PAGE running buffer 

25mM Tris base, 192mM glycine, 0.1% SDS, pH 8.4. 

 

Transfer buffer 

25mM Tris, 192 mM glycine, 20% CH3OH, pH 8.4 . 

 

Tris buffer saline (TBS) 

50 mM Tris, 150 mM NaCl, pH 7.4. 

 

Stripping buffer 

62.2 mM Tris, 2% SDS, and 0.6% beta mercaptoethanol, pH 6.8. 

 

Phosphate buffer saline (PBS) 

1 liter of PBS contain 8g of NaCl, 0.2 KCl, 0.268g Na2HPO4.3H2O, 0.24g 

KH2PO4,  pH 7.4. 
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Immunoprecipitation lysis buffer (RIPA) 

20mM Tris-HCl (pH 7.5), 150mM NaCl, 1 mM Na2EDTA, 1mM EGTA, 1% NP-

40, 1% sodium deoxycholate, 2.5mM sodium pyrophosphate, 1mM -

glycerophosphate, 1mM Na3VO4, 1 g/ml leupeptin. (additional protease and 

phosphatase inhibitor can be added). 

 

Gelatin solution 

0.1 % gelatin in PBS solution. Sterile by autoclave. 

 

LB media 

Dissolve 2.5 g of LB broth powder in 100ml of H2O, sterile by autoclave. 

 

HeLa and MEF cell culture media (prepared in sterile lamina flow hood) 

High glucose DMEM were supplemented for a final concentration of 10% FBS, 

2mM L-glutamine, and 1 I.U/ml penicillin and 50g/ml streptomycin. 

 

ES cells media (prepared in sterile lamina flow hood) 

KO DMEM (Invitrogen) were supplemented for a final concentration of 15% KO 

serum replacement, 3mM L-glutamine, 1 I.U/ml penicillin and 50g/ml 

streptomycin,  sodium pyruvate,  non-essential amino acids, cell culture graded -

mercaptoethanol, and LIF.  
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7.4. Antibodies Used 

Rb anti-Cx43 (Cell Signaling Technology, Cat. No. 3512) 

Mouse anti-Cx43 (Zymed Laboratories, Cat. No.  35-5000) 

Rb anti-Cx43 (pS255) (Santa Cruz Biotechnology, Cat. No. sc-12899-R) 

Rb anti-Cx43 (mouse pS262) (Santa Cruz Biotechnology, Cat. No. sc-17219-R) 

Rb anti-Cx43 (pS279/282) gift from Dr. Paul Lampe 

Rb anti-Cx43 (pS368) (Cell Signaling Technology, Cat. No.  

Mouse anti--Adaptin (BD Transduction Laboratories, Cat. No. 610501) 

Rb mAb anti-AP2M1 (Thr156) (Cell Signaling Technology, Cat. No. 7399) 

Mouse anti-Dab2/p96 (BD Transduction Laboratories, Cat. No. 610464) 

Rb anti-Dab2 (Cell Signaling Technology, Cat. No. 8582) 

Mouse anti-clathrin heavy chain (BD Transduction Laboratories, Cat. No. 

610499) 

Rb mAb anti-clathrin heavy chain (Cell Signaling Technology, Cat. No. 4796) 

Rb mAB anti-pERK1/2 (Cell Signaling Technology, Cat. No. 9102) 

Mouse anti-GFP-HRP (Miltenyi Biotec, Cat. No. 130-091-833) 

Mouse anti- tubulin (Sigma, Cat. No. T9026) 

HRP conjugated goat anti-mouse or anti-Rb (Zymed Laboratories, Cat. No. 81-

6520 or 81-6120) 
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2. John Fong and Matthias Falk (2011).”Molecular mechanism of gap junction internalization: 

involvement of the C-terminal domain of Cx43.” 51
th

 American Society for Cell Biology 

annual meeting. December 2011. Denver, CO 

3. John Fong and Matthias Falk (2010). “Cx43 C-terminal domains involved in gap junction 

internalization.” 50
th

 American Society for Cell Biology annual meeting. December 2010. 

Philadelphia, PA 

4. John Fong and Matthias Falk (2009). “Connexin43 domains involved in gap junction 

internalization.” 49
th

 American Society for Cell Biology annual meeting. December 2009. San 

Diego, CA 

 

Publications (peer-reviewed) 

1. John T. Fong, and Matthias Falk. EGF induces Cx43 gap junction endocytosis in mouse 

embryonic stem cells via phosphorylation of Ser262, Ser279/282, and Ser368. FEBS letter (in 

review). 

2. John T. Fong, Rachael M. Kells, and Matthias Falk. Two tyrosine-based sorting signals in 

the Cx43 C-terminus cooperate to mediate gap junction endocytosis. Molecular Biology of the 

Cell. July 2013; 24(18): 2834-48 . 

3. Anastasia F. Thévenin, Tia J. Kowal, John T. Fong, Rachael M. Kells, Charles G. Fisher, and 

Matthias M. Falk. Proteins and mechanisms regulating gap junction assembly, internalization 

and degradation. Physiology. March 2013; 28(2): 93-116. 

4. Matthias M. Falk, John T. Fong, Rachael M. Kells, Michael C. O’Laughlin, Tia J. Kowal, 

and Anastasia F. Thevenin. Degradation of endocytosed gap junctions by autophagosomal and 

endo-/lysosomal pathway: A perspective. J. Membr. Biol. August 2012; 245(8):465-76. 

5. John T. Fong, Rachael M. Kells, Anna M. Gumpert, Jutta Y. Marzillier,  Michael W. 

Davidson,  and Matthias M. Falk. Internalized gap junctions are degraded by autophagy. 

Autophagy. May 2012; 8(5): 794-811 

6. Lynne Cassimeris, Victoria Caruso Silva, Elizabeth Miller, Quynh Ton, Cody Molner, and 

John Fong. Fueled by Microtubules: Does tubulin dimer/polymer partitioning regulate 
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intracellular metabolism? Cytoskeleton (Hoboken). March 2012; 69(3):133-43. [Epub 2012 

Mar 5] 
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