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Abstract 

The zebrafish fin is composed of multiple bony fin rays. Each fin ray is comprised of 

multiple segments separated by joints. Regulatory mechanisms that control joint 

morphogenesis and ray segment length in zebrafish fins are not fully understood. We 

utilize the fin length mutants short fin (sof 
b123

) and another long fin (alf 
dty86

) to provide 

insight into these processes. The sof 
b123 

mutant has short fins and short segments due to 

a mutation in the gap junction protein gene connexin43 (cx43). In contrast, the alf 
dty86 

mutant has long fins, long segments, and over-expression of cx43. Thus, the two 

mutants exhibit two opposing phenotypes. For example, the sof 
b123 

mutant exhibits 

reduced cx43 mRNA and the alf 
dty86 

mutant exhibits increased cx43 mRNA. Cx43 

knockdown in alf 
dty86 

rescues the segment length phenotype suggesting that Cx43 

activity regulates joint formation. These data suggest that Cx43 is involved in two 

independent pathways: promoting cell division and suppressing joint formation. This 

thesis dissertation is a collection of my entire graduate work mainly focused on Cx43-

dependent events that coordinate cell proliferation and joint formation. Identification of 

genes acting downstream of cx43 revealed semaphorin3d (sema3d). Sema3d is a 

secreted ligand and is known to play various roles including axon guidance, vasculature 

patterning and cell proliferation. Here I found sema3d is functionally downstream of 

cx43 and mediates cx43-dependent pathways. Moreover, independent receptors of 

Sema3d were identified that may regulate cell proliferation and joint formation in 

zebrafish fin regeneration. I provide evidence that through Sema3d, Cx43 regulates an 
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evx1-dependent joint pathway to suppress joint differentiation. Additional data show 

that to permit the joint pathway, cx43 mRNA is transiently reduced. Continued studies 

on joint morphology and gene expression in the sof and alf mutants as well as 

characterization of the Cx43 protein will provide evidence whether Cx43 indeed 

regulates joint development. These future findings will ultimately provide us with keen 

insights into roles of Cx43 that are reflected via a specific time line of gene expression. 
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1.1 Regeneration background and history 

One of the features of most multicellular organisms is that they have the capacity 

to maintain their tissue integrity by either regenerating a new form or by replacing the 

lost or damaged tissue for a new tissue. For such processes, it is likely that multiple 

growth control mechanisms as well as cell proliferation and other cellular signaling 

pathways are required. However, the regulative processes of regeneration are far from 

being understood. It is interesting that some lower vertebrates have a major ability to 

maintain their bodies by which they reform and regenerate their body parts such as limbs 

and tails. Mammals such as human maintain the body architecture through the process of 

wound healing but largely cannot regenerate lost or damaged body parts.  

Humans have been aware of such differences in the regeneration capacities 

between mammals and lower vertebrates since ancient times. An example of this 

awareness is the story of Prometheus and his liver regeneration. Prometheus is known as 

an ancient Greek, a hero for humankind. He was punished by Zeus for stealing the secret 

of fire. Prometheus thus was chained and tormented by an eagle. The eagle preyed on his 

liver, which was regenerated as fast as it was devoured. However, it was not until 18
th

 

century when regeneration became more appreciated. The first scientist who made a 

major contribution in the regeneration field is Abraham Trembley. He discovered one of 

the first regenerative species Hydra in 1744 (Dinsmore, 1991). Followed shortly after his 

discovery, several scientists began to identify other species (i.e. salamander, newt) that 

have capability to regenerate their own lost body parts.  
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Currently, regenerative medicine is a relatively young field where our findings on 

regeneration (i.e. pluripotent stem cells or scaffolds for tissue repair) may be applied to 

benefit human health. Researchers have tried to understand how the process occurs in the 

regenerative species. Still, they have not fully understood the differences in the capacities 

between regenerative and non-regenerative animals.  They speculate that such differences 

in the capacities are due to gene loss during evolution or due to different enzymes or 

proteins that play an important role in tissue maintenance and tissue homeostasis (Ishida 

et al., 2010). Others hypothesize that regulatory genes required for regeneration become 

silenced in the organisms that have no regeneration capacity. For example, histone 

modifications may be necessary for regeneration activation (Stewart et al., 2009). 

Demethylation that causes the loss of histone function is activated during fin regeneration 

(Stewart et al., 2009). However, it is unclear what and how signals generated to regulate 

the demethylation process once the fin gets amputated. Thus, it is important to understand 

the fundamental mechanism at the molecular, cellular and genetic levels underlying tissue 

morphogenesis to answer the question why higher vertebrates have less opportunity to 

regenerate than lower vertebrates. Once the answer is found, we could have a better 

understanding about regeneration and could apply the knowledge to seek better treatment 

for many diseases and injuries that cause tissue damage or organ failure in order to 

improve the quality of human life. 

1.2 Zebrafish caudal fins provide advantages for studies in skeletogenesis 

For a decade, researchers have utilized zebrafish to study regeneration (reviewed 

in Kawakami, 2010). The zebrafish has the capacity to regenerate several organs 
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including retina, spinal cord and fin. The zebrafish fins are easily accessible mostly at 

every stage of development (from larvae to adult). The fin grows throughout its lifetime, 

is able to re-grow rapidly after being amputated, and is not required for viability. Thus, it 

is convenient for us to evaluate changes in cell proliferation and gene expression 

throughout the regeneration stages. Further, methods of targeted gene knockdown using 

anti-sense morpholino oligos have been successfully established in the regenerating fins 

(Thummel et al., 2006). Thus, several laboratories have routinely applied these methods 

to identify phenotypic effects due to changes in gene expression.  

The zebrafish fin also offers several advantages to the study of bone growth. The 

fin itself is comprised of an endoskeleton (inside the body wall) and an exoskeleton 

comprised of multiple segmented fin rays, where each segment is flanked by osteoblast-

free-regions (or fin ray joints or simply joints) (reviewed in Iovine 2007).  Each fin ray is 

formed of two hemirays of bone matrix surrounding a mesenchyme of undifferentiated 

cells as well as vasculature and neurons. Each hemiray at the distal end includes 

actinotrichia, which serves as a substrate for osteoblasts to align and secrete bone matrix 

(Becerra et al., 1983). Thus, osteoblasts are found laterally in association with the bone 

matrix, while the mesenchyme is located medially. During normal growth, differentiated 

osteoblasts never or rarely divide (Johnson and Bennett 1999). Moreover, fin grows in 

the proximal to distal direction and new segments and joints are continually added to the 

distal end of the fin ray. Once established, segments do not increase in length but rays 

increase in diameter (Iovine and Johnson, 2000; Sims et al., 2009) (Figure 1.1). Thus, the 

length of fin ray is maintained a constant proportion to the fish body. This constant 
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proportion is strictly followed even when the rate of growth slows down as fish matures, 

suggesting that growth is isometric growth with respect to body growth (Iovine and 

Johnson 2000).  

Following amputation, fin regenerates rapidly in proximal-distal direction and 

ceases approximately after one month when fin size and tissue pattern are restored. In 

addition, differentiated osteoblasts near the amputation plane become highly active 

(Johnson and Bennett 1999). Repeated amputation does not affect the regenerative 

capacity (Azevedo et al., 2011). Fin regeneration has been found to proceed through 

several discrete stages: (i) wound healing; (ii) blastema formation; and (iii) the fin ray 

formation/distal outgrowth (Akimenko et al., 2003; Poss et al., 2003; Figure 1.2). After 

amputation, the tissue initiates the wound healing process. Blood from the injured 

capillaries accumulates at the wound, to form a temporary closure called apical epithelial 

cap (AEC) (Becerra et al., 1996). Recent studies show that the cells of a different linage 

from the stump respond to the injury via dedifferention into a precursor cell type 

population. They proliferate and accumulate underneath the wound epithelium to form a 

blastema where later, under appropriate signals, these cells will re-differentiate into 

different cell types (Knopf et al., 2011; Singh et al., 2012; Sousa et al., 2011; Tu and 

Johnson 2011). Cells in the blastema are divided into two groups: the distal most 

blastema that is known to be slowly cycling (or none), and a large population of highly 

proliferative cells (Nechiporuk and Keating, 2002; Poss et al., 2002).  It has been known 

that the wound epidermis is required for the initiation of regeneration. Without the apical 

wound epidermis, regeneration is terminated (reviewed in Kawakami, 2010). Wound 
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healing and the establishment of wound epidermis require FGF and Wnt/β-catenin 

(reviewed in Stoick-Cooper et al., 2007). Likewise, FGF and Wnt/β-catenin signaling 

pathways are essential for blastema formation and the outgrowth process (reviewed in 

Stoick-Cooper et al., 2007). Moreover, a recent study shows that reactive oxygen species 

(ROS) specifically hydrogen peroxide (H2O2) play a critical role for blastema formation 

during the first 24 hpa (Gauron et al., 2013). 

Outgrowth follows and proceeds approximately 2-4 weeks. During the outgrowth 

stages, cells of the proximal blastema divide rapidly, move in the proximal direction to 

differentiate, replacing the lost tissue. One possibility is that the zone of negative 

proliferation in the distal-most blastema maintains directionality of the outgrowth to the 

cells of the proximal blastema. The basal layer of epidermis (i.e. the cell layer of the 

epidermis closest to the mesenchymal compartment) also appears to provide growth and 

patterning cues to the underlying mesenchyme (reviewed in Iovine, 2007). For example, 

sonic hedegehog (shh) is detected in a subset of cells in the lateral basal layer of the 

epidermis, where its expression has been suggested to determine some aspects of skeletal 

differentiation and patterning underlying the differentiating osteoblasts (Avaron et al., 

2000). Another example is bone morphogenetic protein 2b (bmp2b), expressed in the 

distal basal epidermal layer in a pattern similar to that of shh, as well as in the osteoblasts 

(Avaron et al., 2000). Wnt5b acts as a negative regulator during fin outgrowth (reviewed 

in Stoick-Copper et al., 2013). Recent studies show that osteoblasts and joint forming 

cells appear to be derived from a common lineage (Tu and Johnson 2011). When these 

cells start to re-differentiate, osteoblasts express their transcription factors (runx2a, 
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runx2b, and osx) (Brown et al., 2009), while joint forming cells express their 

transcription factor such as evx1.  Thus, we refer to cells in the distal-lateral mesenchyme 

collectively as “skeletal precursor cells.”  

1.3 Cx43 function is conserved during skeletal morphogenesis 

  Our lab is interested in the study of skeletal morphogenesis underlying regulation 

of growth and joint development during zebrafish fin regeneration. We took a genetic 

approach to identify genes contributing to skeletal morphogenesis by evaluating the 

recessive short fin (sof 
b123

) mutant. The sof 
b123

 mutant exhibits short fin length, short 

segment length, reduced cell proliferation, and is caused by a mutation in connexin43 

(cx43) (Iovine et al., 2005) (Figure 1.3). Due to the mutation, the sof 
b123

 mutant also 

exhibits reduced cx43 mRNA and protein without a lesion in the coding sequence 

(Hoptak-Solga et al., 2008; Iovine et al., 2005). In addition to sof 
b123

, three additional 

alleles (sof 
j7e1

, sof 
j7e2

, and sof 
j7e 3

) that were identified by non-complementation screen 

assay have reduced GJIC activity (Hoptak-Solga et al., 2007).  Importantly, morpholino-

mediated targeted gene knockdown of cx43 (i.e. causing reduced Cx43 protein) causes 

reduced fin length, reduced segment length and reduced cell proliferation, completely 

recapitulating the short fin phenotypes (Hoptak-Solga et al., 2008). Thus, any loss of 

Cx43 function (reduced mRNA, protein or GJIC) lead to the same set of phenotypes: 

reduced fin length, reduced segment length and reduced cell proliferation. 

Connexins are the subunits of gap junction channels that are believed to play a 

role in direct cell-cell communication of ions and metabolites that are ≤1200 Da. Each 

connexin is a four pass transmembrane spanning domain protein. Six of them oligomerize 
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to form a hemichannel called a connexon. One connexon at the plasma membrane will 

pair with another connexon from the adjacent to form a complete gap junction channel 

(Figure 1.4). Defective Cx43 function causes skeletal defects in human, mouse, chick, 

and zebrafish. Missense mutations in human CX43 result in an autosomal dominant 

disorder called oculodentodigital dysplasia (ODDD, Paznekas et al., 2003). Patients with 

ODDD exhibit major skeletal malformations and craniofacial abnormalities such as 

cranial hyperostosis and broad tubular bones. This disease has additional pleiotropic 

phenotypes including eye abnormalities leading to vision loss and dental anomalies 

(reviewed in Pfenniger et al., 2010). The range of phenotypes affecting multiple tissues is 

likely due to the fact that CX43 is expressed in most cell types. Similarly, the Gja1
jrt/+

 

mouse carries a mutation coding for a dominant missense mutation in the CX43 gene, and 

exhibits skeletal and pleiotropic phenotypes similar to those observed in human ODDD 

(Flenniken et al., 2005). Indeed, recently generated knock-in alleles, where human Cx43-

missense mutations replace the endogenous wild-type Cx43 allele in the mouse, also 

mimic human ODDD (Dobrowolski et al., 2008; Watkins et al., 2011). In contrast, the 

CX43 knockout mouse (CX43
-/- 

) dies prenatally due to defects in the heart outflow tract 

and reduced blood flow to tissues (Reaume et al., 1995). Continued investigation 

revealed that these mice exhibit delayed ossification of both the intramembranous and 

endochondral skeletons (Lecanda et al., 2000).  To further overcome the lethality of 

CX43
-/-

, conditional CX43 knockout mouse lines have been generated. While mice 

lacking Cx43 activity in osteoblasts are viable, they exhibit reduced bone mineral density 

throughout their skeletons, consistent with phenotypes observed in the complete 
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knockout (Chung et al., 2006; Watkins et al., 2011; Zhang et al., 2012; Bivi et al., 2012). 

Targeted gene knockdown of CX43 in adult chicks and in chick embryos results in facial 

defects and limb malformation, respectively (Makarenkova et al., 1999; McGonnell et al., 

2001). Finally, in the zebrafish, homozygous mutations in the cx43 gene cause the short 

fin (sof
 b123

) phenotype which primarily affects the fin skeleton. In addition, targeted gene 

knockdown of cx43 causes embryonic heart defects, suggesting cx43 is essential (Iovine 

et al., 2005). Collectively, these data demonstrate that Cx43 function is conserved from 

fish to man and is required for typical skeletal morphogenesis in vertebrates.  

1.4 Cx43 regulates two independent pathways in vivo 

Previous studies in the sof mutant from our lab suggest the likelihood of direct 

cell-cell communication from Cx43-dependent GJIC is required for growth of the boney 

fin ray segments. Prior work from our lab demonstrated that the three missense alleles of 

cx43 exhibit reduced levels of GJIC in heterologous assays (these alleles also appear to 

be capable of trafficking to the plasma membrane, Hoptak-Solga et al., 2007). Further, 

the severity of the segment length and cell proliferation phenotypes is correlated with the 

reduced level of GJIC (Iovine et al., 2005; Hoptak-Solga et al., 2008), strongly 

suggesting that reduced Cx43-based GJIC is responsible for the observed skeletal defects. 

In addition, we found another long fin (alf 
dty86

, van Eeden et al., 1996) mutant exhibits 

over-expression of cx43 mRNA. This mutant is known for long fins with irregular joint 

formation (Figure 1.3). Indeed, cx43 knockdown in alf 
dty86

 rescues irregular segment 

length (Sims et al., 2009), suggesting that the joint failure phenotype is the result of 

increased expression of cx43. Since the alf 
dty86

 mutant exhibits phenotypes opposite to 
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that of sof, and as cx43 knockdown rescues those phenotypes, we consider alf 
dty86

 to be a 

mimic of cx43 over-expression but we do know that the best way to utilize over-

expression phenotypes is to make a cx43 over-expression transgenic line.  

One could speculate that reduced cell proliferation of sof leads directly to its 

observed reduced segment length. However, manipulation of growth rate is not sufficient 

to alter segment length (Iovine and Johnson, 2000). Segment length is the same in 

similarly sized fins, regardless of their growth rate, suggesting that the rate of cell 

proliferation does not determine segment length. Further, changing cell proliferation is 

not sufficient to alter segment length. For example, inhibition of cell proliferation such as 

blocking Fgfr1 or Shh signaling pathways does affect fin growth but does not alter 

segment length (Lee et al., 2005; Quint et al., 2002). Together these findings suggest that 

segment length is a reflection of joint placement. Further, we propose that Cx43 has two 

activities: it promotes cell proliferation and suppresses joint formation.  

1.5 Hypotheses and Research Objectives 

Findings from the Iovine lab have suggested that Cx43 coordinates cell 

proliferation and joint formation to precisely regulate fin growth and segment length. 

Little is known mechanistically regarding how Cx43 regulates such events. Thus, the goal 

of my research was to identify the tangible events regulated by GJIC, specifically on the 

role of Cx43 in zebrafish.  

1) One hypothesis is that Cx43-based GJIC influences gene expression (Stains et al., 

2003). To identify global changes in gene expression occurring downstream of cx43, 

the Iovine lab utilized a microarray strategy, focusing on the subset of genes both 



 

13 

 
 

down-regulated in sof 
b123

 and up-regulated in alf 
dty86

 to enable the identification of 

cx43-dependent genes. To date, there are 15 genes that are validated to have cx43 

dependent functions. Among the 15 genes, I am interested in semaphorin3d (sema3d) 

since it is a secreted ligand which has a promising potential to provide insights into 

how Cx43 mediates cell proliferation and joint formation. Sema3d belongs to a 

Semaphorin family that first identified as guidance cues for axons (Kolodkin et al., 

1992).  More recently, roles of Semas have been discovered to play roles in cell 

proliferation, tissue pattering, cancer, immunity, and bone protection (reviewed in 

Roth et al., 2009). Class 3 Semas including Sema3d utilize transmembrane receptors 

Neuropilin (Nrps) and Plexins (Plxns) to transduce signals into the cell. Studies show 

that in some instances, Semas can provide different outcomes if they bind either Nrps 

or Plxns or both (Wolman et al., 2004).  It is interesting that sema3d is expressed in 

regenerating fins since there is no study reported any role of sema3d in fin 

regeneration. Thus, the identity of Sema3d, its receptors, and its downstream events 

need to be determined. This objective is presented as Chapter 2. I discovered that 

Sema3d utilizes Nrp2a and PlxA3 to mediate Cx43 dependent skeletal and patterning 

phenotypes (Ton and Iovine, 2012). 

2) Both cx43 mRNA and Cx43 protein are expressed throughout the medial 

mesenchyme, concentrated mostly in the blastema (Figure 1.5). This population is 

adjacent to the lateral populations of skeletal precursor cells. I hypothesize that there 

is communication between the medial cx43-positive mesenchyme and the lateral 

mesenchymal compartment. Previously, the Iovine lab showed that Cx43 suppresses 
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joint formation. Further, results from our lab show that cells expressing early genes 

for osteoblasts and joint-forming cells are located directly adjacent to the cx43-

positive mesenchymal cells (Brown et al., 2009).  It is possible that Cx43 suppresses 

joint differentiation by either suppressing a joint pathway and/or promoting an 

osteoblast pathway. Thus, a joint pathway/an osteoblast pathway that works 

downstream of cx43 needs to be defined and which pathway that Cx43 would favor 

needs to be determined. This objective is represented as Chapter 3. I discovered that 

there is an evx1-dependent joint pathway that is regulated by Cx43 activity which 

suggests that Cx43 may regulate joint formation by influencing the timing of evx1 

expression (Ton and Iovine, in revision).  

3) It is unclear how Cx43 activity is regulated to contribute to growth and patterning.  

One possibility is that cx43 levels fluctuate over time.  As a starting point, I chose to 

evaluate cx43 mRNA levels in concert with the initiation of new fin regenerating 

joints during regeneration. I notice that cx43 gene expression is transiently reduced 

when a new joint is initiated. In addition, Cx43 regulates joint formation by utilizing 

Sema3d signaling pathway which coordinates with gene expression in the evx1-

dependent joint pathway. However, it is unclear how Cx43-dependent GJIC in the 

blastemal cells influences sema3d gene expression in the adjacent skeletal precursor 

cells, thereby suppressing joint gene expression. These objectives are represented as 

Chapter 4 under the “remaining questions” section. Chapter 4 also highlights future 

directions in an attempt to reveal the initial Cx43-dependent event that regulates 



 

15 

 
 

changes in cellular function. Most of the highlights belong to the unpublished work 

and the published review paper: Ton and Iovine, 2013. 
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1.6 Figures 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The zebrafish fin is a model system for skeletal morphogenesis. The 

caudal fin is stained with calcein (detects bone matrix) revealing fin rays containing bony 

segments (bracket) separated by joints (arrow).  
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Figure 1.2: Fin regeneration stages. Wound healing, blastema formation and 

outgrowth. During wound healing, epithelial cells migrate distally to cover the wound by 

forming an apical epithelial cap (AEC). Cells in the blastema are divided into two 

subsets: distal most blastema that has slow cycling cells and cells that are highly 

proliferative. 
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Figure 1.3: Fin length mutants exhibit defects in skeletal morphogenesis. Top: wild-

type zebrafish. Middle: sof 
b123 

mutant. Bottom: alf 
dty86

 mutant. (Reviewed in Ton and 

Iovine, 2013).  
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Figure 1.4: Gap junction channels connect the cytoplasm of adjacent cells. Each 

connexin contains four transmembrane-spanning domains, with both the amino and 

carboxy ends located in the cytoplasm. Six connexins comprise a connexon, or 

hemichannel. Two connexons, one from each cell, dock together at the plasma membrane 

to make a single gap junction channel. IL, intracellular loop; EL, extracellular loop. 

(Reviewed in Ton and Iovine, 2013).  
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Figure 1.5: Longitudinal cryosections reveal fin compartments. (A) Cells of the 

epithelum are labeled with a pan cadherin antibody. Arrow points to basal layer of the 

epithelium (ble). (B) ZNS5 (green) labels skeletal precursor cells in the lateral 

compartment. Anti-Cx43 antibody (red) against Cx43 protein labels the mesenchyme. 

Arrowheads point to the doubly labeled joint. (C) The cx43 mRNA is in the medial 

mesenchyme, concentrated more in the blastema. Arrows identify bone matrix; m: 

mesenchyme; e: epithelium.  
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CHAPTER 2 

Semaphorin3d Mediates Cx43-Dependent Phenotypes During Fin Regeneration 
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2.1 Abstract 

Gap junctions are proteinaceous channels that reside at the plasma membrane 

and permit the exchange of ions, metabolites, and second messengers between 

neighboring cells. Connexin proteins are the subunits of gap junction channels. 

Mutations in zebrafish cx43 cause the short fin (sof 
b123

)
 phenotype which is 

characterized by short fins due to defects in length of the bony fin rays. Previous 

findings from our lab demonstrate that Cx43 is required for both cell proliferation and 

joint formation during fin regeneration. Here we demonstrate that semaphorin3d 

(sema3d) functions downstream of Cx43. Semas are secreted signaling molecules that 

have been implicated in diverse cellular functions such as axon guidance, cell 

migration, cell proliferation, and gene expression. We suggest that Sema3d mediates 

the Cx43-dependent functions on cell proliferation and joint formation. Using both in 

situ hybridization and quantitative RT-PCR, we validated that sema3d expression 

depends on Cx43 activity. Next, we found that knockdown of Sema3d recapitulates all 

of the sof 
b123

 
and cx43-knockdown phenotypes, providing functional evidence that 

Sema3d acts downstream of Cx43. To identify the potential Sema3d receptor(s), we 

evaluated gene expression of neuropilins and plexins. Of these, nrp2a, plxna1, and 

plxna3 are expressed in the regenerating fin. Morpholino-mediated knockdown of 

plxna1 did not cause cx43-specific defects, suggesting that PlexinA1 does not function 

in this pathway. In contrast, morpholino-mediated knockdown of nrp2a caused fin 

overgrowth and increased cell proliferation, but did not influence joint formation. 

Moreover, morpholino-mediated knockdown of plxna3 caused short segments, 
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influencing joint formation, but did not alter cell proliferation. Together, our findings 

reveal that Sema3d functions in a common molecular pathway with Cx43. 

Furthermore, functional evaluation of putative Sema3d receptors suggests that Cx43-

dependent cell proliferation and joint formation utilize independent membrane-bound 

receptors to mediate downstream cellular phenotypes. 
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2.2 Introduction 

Connexins are the subunits of gap junction channels that direct cell-cell 

communication of ions and metabolites (≤1200 Da). Each connexin is a four-pass 

transmembrane spanning domain protein. Six connexins oligomerize to form a 

hemichannel, or connexon. Two connexons dock at the plasma membrane of adjacent 

cells to form a complete gap junction channel. Gap junction intercellular 

communication (GJIC) contributes to numerous developmental processes, including 

skeletogenesis. For example, mutations in human CX43 result in oculodentodigital 

dysplasia (ODDD, Paznekas et al., 2003). ODDD is an autosomal dominant disease 

causing craniofacial bone deformities and limb abnormalities (Paznekas et al., 2003; 

Flenniken et al., 2005). Skeletal defects in the CX43
-/- 

knockout mouse include 

delayed ossification of the axial and craniofacial skeletons (Lecanda et al., 2000). 

However, the underlying mechanisms by which Cx43-based GJIC leads to skeletal 

disease phenotypes are largely unknown. 

Importantly, the function of Cx43 in skeletal morphogenesis is conserved. 

Indeed, our lab has found that mutations in zebrafish cx43 cause the short fin (sof 
b123

) 

phenotype (Iovine et al., 2005). The sof 
b123 

mutant is characterized by defects in the 

length of the bony fin ray segments, leading to short fins. The sof 
b123 

allele exhibits 

reduced cx43 mRNA levels without a lesion in the coding sequence (Iovine et al., 

2005). However, three additional alleles generated by non-complementation express 

missense mutations that cause reduced GJIC (Hoptak-Solga et al., 2007). During fin 

regeneration, the cx43 mRNA is up-regulated in the population of dividing cells. 
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Indeed, all four sof alleles exhibit reduced levels of cell proliferation in addition to 

short segments (Hoptak-Solga et al., 2008). Furthermore, morpholino-mediated cx43 

knockdown completely recapitulates the reduced fin length, reduced segment length, 

and reduced cell proliferation phenotypes observed in the sof alleles (Hoptak- Solga et 

al., 2008). Together, these data reveal that reduced mRNA expression (sof 
b123

), 

reduced protein expression (sof 
b123

and morpholino-mediated knockdown), or reduced 

Cx43-based GJIC (three missense alleles) cause the same set of phenotypes. Thus, we 

refer to any loss of Cx43 function as a loss of Cx43 activity. 

Given the observation that any loss of Cx43 activity leads to both reduced cell 

proliferation and short segments, it may be natural to speculate that reduced cell 

proliferation causes short segments. However, reduced signaling via the Shh or Fgfr1 

signaling pathways also causes reduced cell proliferation and reduced fin length, but 

does not influence segment length (Quint et al., 2002; Lee et al., 2005). Thus, reducing 

the level of cell proliferation is not sufficient to impact segment length. We suggest 

instead that Cx43 plays an additional role in the regulation of segment length, perhaps 

by regulating joint formation. Our analyses of the another long fin (alf 
dty86

) mutant 

supports this hypothesis. In contrast to sof, the alf 
dty86 

mutant exhibits fin overgrowth 

and stochastic joint failure/overlong segments (van Eeden et al., 1996), phenotypes 

opposite to sof. Interestingly, our analyses revealed that alf 
dty86 

mutants over-express 

cx43 mRNA (Sims et al., 2009). Furthermore, cx43- knockdown in alf 
dty86 

fins rescues 

overgrowth and segment length, suggesting that cx43 over-expression is responsible for 

the alf 
dty86 

phenotypes (Sims et al., 2009). Based on these loss-of-function and gain- 
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of-function phenotypes, we suggest that Cx43 activity promotes cell proliferation and 

suppresses joint formation, thereby coordinating bone growth and skeletal patterning. 

A long-standing question with regard to connexin mutations is, how do gap 

junctions influence tangible cellular outcomes such as cell proliferation and cell 

differentiation? One hypothesis is that Cx43-based GJIC influences gene expression 

(Stains et al., 2003). To identify global changes in gene expression occurring 

downstream of cx43, we utilized a novel microarray strategy. We focused on the 

subset of genes both down-regulated in sof 
b123 

and up-regulated in alf 
dty86 

to enable 

the identification of cx43-dependent genes. Here we provide molecular and 

functional validation of one gene identified by this microarray, semaphorin3d 

(sema3d). Semas comprise a large family of evolutionarily conserved signaling 

molecules initially found to provide axonal guidance cues during patterning of the 

central nervous system (Kolodkin et al., 1992). More recent studies have revealed 

that semaphorins are expressed in most cell types and, in addition to patterning the 

nervous system, also contribute to vasculature, heart, lung, kidney, bone and tooth 

development (reviewed in Roth et al., 2009). Class 3 Semas, such as Sema3d, are 

secreted ligands that interact with several possible cell surface receptors in order to 

mediate downstream cellular outcomes including cell adhesion, cell migration, cell 

proliferation, cell viability, and gene expression (reviewed in Yazdani and Terman, 

2006). Thus, the finding that a Semaphorin acts functionally downstream of Cx43 

provides tangible insights into how skeletal morphogenesis may be influenced by 

Cx43 activity. 
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2.3 Materials and Methods 

Fish maintenance 

Zebrafish were raised at constant temperature of 25 
o
C with 14 light: 10 dark 

photoperiod (Westerfield, 1993). Wild-type (C32), sof 
b123 

(Iovine and Johnson, 2000) 

and alf 
dyt86 

(van Eeden et al., 1996) were used in this study. 

RNA isolation, fluorescent cRNA synthesis and microarray hybridization 

Total RNA of wild-type, sof 
b123 

and alf 
dty86   

5 dpa regenerating fins were 

extracted using Trizol (Invitrogen, San Diego).  RNA quantity and quality were 

determined by nanodrop and Bioanalyzer 2100 (Agilent) analyses.  Only samples in 

yield higher than 50 ng/uL RNA, having sharp 60S and 40S rRNA peaks shown in the 

Bioanalyzer electropheretogram, and 260/280 ratios > 1.7 were used.  Fluorescent 

cRNAs were generated using the Agilent Low RNA Input Linear Amplification Kit and 

Qiagen RNeasy mini columns to purify the fluorescent target.  Experimental Cy5 

labeled samples (alf 
dty86

, sof 
b123

) were competitively hybridized against equal amounts 

of Cy3 labeled wild-type cRNAs on an Agilent 4x44K zebrafish 60-mer oligo 

microarray (G25190F-015064). After careful washing the microarray was scanned in 

an Agilent microarray scanner and red (Cy5) and green (Cy3) signal intensities were 

evaluated and processed with Agilent Feature Extraction software (v 7.5).  The relative 

expression value of a gene for two different samples was represented by base 2 log 

ratios of the two signal intensities. 

Further data normalization, transformation and filtering for differential gene expression 

were performed using Agilent Genespring GX (v7.5). 
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In situ hybridization 

Probes were prepared from linear DNA generated from PCR products where the 

reverse primer contained the binding site for the T7 RNA polymerase (see Table 2.1 for 

sequences). Five days post amputation (dpa) regenerating fins from wild-type, sof 
b123

, or 

alf 
dty86 

were fixed overnight with 4% paraformaldehyde in PBS and dehydrated in 100% 

methanol at -20 
o
C. Gradual aqueous washes were completed in methanol/PBST. Fins 

were then treated with 5 g/ml proteinase K for 45 minutes and re-fixed in 4% 

paraformaldehyde in PBS for 20 minutes. Extensive washes in PBST were followed by 

prehybridization process in HYB+ solution (HYB+ solution is consisted of 50% 

formamide, 5 X SSC, 10 mM citric acid, 0.1% Tween20, heparin and tRNA) at 65 
o
C 

for 30 minutes – 1 hour. Hybridization in the presence of digoxigenin-labeled antisense 

probes was completed overnight at 65 
o
C. The next day, the fins were washed gradually 

in HYB- to 2X SSC to 0.2X SSC and finally to PBST. Anti-digoxigenin Fab fragments 

(pre-absorbed against zebrafish tissue) were used at 1:5,000 overnight. On day 3, 

extensive washes in PBST were performed before three short washes in staining buffer 

(100 mM Tris, 9.5, 50 mM MgCl2, 100 mM NaCl, 0.1 % Tween20, pH 9.0). Fins were 

next transferred to staining solution (staining buffer plus NBT and BCIP) and 

development proceeded until a purple color was observed. For final result, fins were 

then washed with PBST, pre-fixed in 4% paraformaldehyde in PBS and mounted onto 

microscope slides. Labeled fins were examined on a Nikon Eclipse 80i microscope. 

Images were collected using a digital Nikon camera. 

Following whole mount in situ hybridization, fins were embedded in 1.5% 
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agarose/5% sucrose, and equilibrated overnight in 30% sucrose. Fins were mounted 

in OCT and cryosectioned (18–20 µm sections) using a Reichert-Jung 2800 Frigocut 

cryostat. Sections were collected on Superfrost Plus slides (Fisher) and mounted in 

100% glycerol. 

Morpholino Knockdown and Electroporation 

Injection and Electroporation experiments were performed as described 

(Thummel et al., 2006; Hoptak-Solga et al., 2008; Sims et al., 2009). Targeting 

morpholinos were targeted against the start codon and modified with fluorescein 

(Gene Tools, LLC) to provide a charge and for detection. Sequences for the targeting 

and control morpholinos can be found in Table 2.1. 

Adult fish were first anesthetized using Tricane-S. Fin amputation was 

performed under a dissecting microscope. At 3 dpa, morpholinos were injected using 

a Narishige IM 300 Microinjector. Approximately 50 nl of morpholino (i.e. targeting 

or control 5MM morpholinos) was injected per ray (5- 6 fin rays per fin, the other rays 

were uninjected control). Immediately following injection, both dorsal and ventral 

halves were electroporated using a CUY21 Square Wave Electroporator (Protech 

International, Inc.). The following parameters were used: ten 50-ms pulses of 15 V 

with a 1 s pause between pulses. At 24 hpe (hours post electroporation), success was 

evaluated by monitoring fluorescein uptake under fluorescence microscope. Fins were 

harvested either at 1 dpe for H3P detection and for qRT-PCR or at 4 dpe for ZNS5 

detection. Three to five fins were injected per morpholino (i.e. targeting or mismatch); 

the un-injected side served as an independent control. Each morpholino was tested in 
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at least three independent experiments to ensure reproducibility. The graphs in Figure 

2.2 are based combined data from two comparable experiments (n = 7). Statistical 

significance was determined using the student’s t-test (p<0.05). 

Immunofluorescence 

Fins were harvested after morpholino knockdown experiments (for ZNS5 

detection staining, fins were harvested 4 dpe; for H3P detection staining, fins were 

harvested 1 dpe). Fins were then fixed in 4% paraformaldehyde in PBS for 2 hours at 

RT and then dehydrated in methanol. During processing, fins were washed gradually 

in methanol/PBS followed by 3 washes in block solution (50 ml PBS, 1 g BSA, 250 

µl triton). Either the mouse ZNS5 (Zebrafish International Resource Center: 

http://zebrafish.org/zirc/home/guide.php, 1:200) or the rabbit antibody against 

histone-3-phosphate (anti-H3P, Millipore, 1:100) were incubated with fins overnight 

at 4 
o
C. Next day, antibodies were removed and fins were washed in block solution 

3x10 minutes. Secondary antibodies (i.e. anti-mouse Alexa 488 for ZNS5 detection 

or anti-rabbit Alexa 546 for H3P detection) were diluted in 1:200 blocking solution 

and incubated overnight at 4 
o
C. Following 3x10 minutes treatment in blocking 

solution, fins were washed in PBS and then mounted onto slides in glycerol. Labeled 

fins were examined on a Nikon Eclipse 80i microscope. Images were collected using 

a digital Nikon camera. 

Measurements 

Fins were imaged on a Nikon SMZ1500 dissecting microscope at 4X 

(regenerate length) or 10X (segment length or the number of dividing cells). 

http://zebrafish.org/zirc/home/guide.php
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Photographs were taken using a Nikon DXM1200 digital camera. For regenerate 

length, segment length, and the number of dividing cells, all measurements were 

taken from only the longest fin rays (i.e. the third ray from either the dorsal or 

ventral end) since that was previously established as a standard (Iovine and Johnson, 

2000). Student’s t- tests were performed in Excel to determine if experimental 

conditions were significantly different from control conditions. 

Regenerate and segment length was measured using ImagePro software. 

Fin ray length was measured from the amputation plane (clearly visible in bright 

field) to the end of the fin. Segment length is measured as the distance between two 

joints where joints are identified (i.e. and clearly distinguished from breaks) following 

ZNS5 staining (Sims et al., 2009). 

The mitotic cells were first detected by H3P staining as described above 

(i.e. Histone-3 is phosphorylated on Ser10 only during mitosis, Wei et al., 1999). 

H3P positive cells were counted from within the distal-most 250 μm of each ray 

(Hoptak-Solga et al., 2008). 

qRT-PCR Analysis 

qRT-PCR analysis was performed as described (Sims et al., 2009). In brief, 

Trizol reagent was used to isolate mRNA from 5 dpa wild-type, sof 
b123

, or alf 
dty86 

regenerating fins and 1 dpe (i.e. cx43- knockdown fins) (5 fins per pool). First strand 

cDNA was synthesized using oligodT (12-15) and reverse transcriptase. Dilution of 

template cDNA (1:10) was prepared. Oligos flanking introns were designed for sema3d 

(F-5’ TGGATGAGGAGAGAAGCCGAT 3’; R-5’ GCAGGCCAGCTCAACTTTTT 
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3’) using Primer Express software (primers for cx43 and keratin4 can be found in 

Sims et al., 2009). The sema3d, cx43, and keratin4 amplicons were amplified 

independently using the Power SYBR green PCR master mix (Applied Biosystems). 

Samples were run in triplicate on the ABI7300 Real Time PCR system and the 

average cycle number (CT) was determined for each amplicon. Delta CT (ΔCT) 

values represent normalized sema3d levels with respect to keratin4, the internal 

control. The relative level of gene expression was determined using the delta delta 

CT (ΔΔCT) method (i.e. 2
−ΔΔCT

). A minimum of three trials were run to ensure the 

reproducibility of the results. 
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2.4 Results 

sema3d functions downstream of cx43 

We completed a novel microarray strategy designed to identify genes acting 

downstream of cx43. We took advantage of our findings that cx43 expression is 

reduced in sof 
b123   

and increased in alf 
dty86 

in order to identify a group of genes that 

are both down-regulated when cx43 is down-regulated (i.e. in sof 
b123

) and up-

regulated when cx43 is up-regulated (i.e. in alf 
dty86

). Importantly, the cx43 gene is 

found among the top 50 genes identified using this strategy, strongly suggesting that 

this approach identified relevant genes of interest. Another gene found in the top half 

of the microarray was sema3d. Given the importance of semaphorins in a diversity of 

signaling pathways, we were intrigued at the possibility that Sema3d signaling 

mediates Cx43 activities. 

In order to validate sema3d as a downstream target of cx43, we first examined 

sema3d expression in wild-type, sof 
b123 

and alf 
dty86 

regenerating fins by whole mount 

in situ hybridization. As anticipated, sema3d mRNA expression appeared down-

regulated in sof 
b123 

and up-regulated in alf 
dty86 

(Figure 2.1). Next, we determined the 

tissue-specific expression of sema3d as revealed by cryosectioning. The outer cell 

layers of the fin are epidermis; the basal layer of the epidermis is identified as a row of 

cuboidal-shaped cells closest to the mesenchymal compartment. Within the 

mesenchyme, the skeletal precursor cells (i.e. pre-osteoblasts and pre-joint-forming 

cells) are located laterally. The regeneration blastema, the specialized population of 

dividing cells contributing to new fin outgrowth, is medially adjacent to the skeletal 
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precursors. This population of cells up-regulates cx43 expression during fin 

regeneration (Hoptak-Solga et al., 2008). In contrast, cryosectioning of stained 

sema3d-positive fins revealed that sema3d is expressed in both the lateral skeletal 

precursor cells and in the lateral basal layer of the epidermis (Figure 2.1). Since 

sema3d expression is not up-regulated in the cx43-positive cells, sema3d appars not to 

be a direct target of Cx43 activity. 

To confirm the observed qualitative differences in sema3d expression we 

performed quantitative RT-PCR (qRT-PCR). We find that sema3d is reduced in sof 
b123 

and increased in alf 
dty86 

(Table 2.2). Moreover, we find that sema3d expression is 

reduced in wild-type fins treated for cx43-knockdown, providing independent evidence 

that sema3d expression is influenced by Cx43 activity. Together, these data support the 

hypothesis that sema3d expression is regulated by the level of Cx43. 

Sema3d mediates Cx43-dependent cell proliferation and joint formation 

To determine if sema3d mediates Cx43-dependent phenotypes, we 

completed morpholino- mediated gene knockdown of sema3d (as described for cx43 

knockdown in Hoptak-Solga et al., 2008 and in Sims et al., 2009). Briefly, fins were 

injected with either a gene-specific targeting morpholino (MO) or with an altered 

morpholino that includes five mismatches (MM) to the target sequence. Following 

injection into the distal region of the regenerate, fins were electroporated to permit 

cellular uptake. Morpholinos were modified with fluorescein, which both provides a 

requisite charge for electroporation and provides a method to confirm cellular 

uptake. Interestingly, we find that sema3d-knockdown exhibits all of the same loss-
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of-function phenotypes as sof 
b123 

mutants (Iovine et al., 2005;Hoptak-Solga et al., 

2008) and as cx43-knockdown (Hoptak-Solga et al., 2008; Sims et al., 2009). Thus, 

sema3d knockdown fins exhibit reduced fin length, reduced segment length, and 

reduced cell proliferation (Figure 2.2 A-C and Figure 2.3 for representative images). 

The level of cell proliferation was evaluated by counting the number of cells in 

mitosis, detected using an antibody against histone-3- phosphate (i.e. H3P). These 

data demonstrate that sema3d mediates cx43-dependent fin phenotypes influencing 

growth and joint formation. To provide additional evidence that sema3d functions in 

a common pathway with cx43, we next attempted to rescue the joint formation 

phenotype of alf 
dty86

. 

Indeed, sema3d knockdown rescued the joint failure phenotype of alf 
dty86

, 

causing reduced segment length (Figure 2.2D). Until now, only reduced cx43 function 

has been associated with segment length phenotypes and with rescue of joint formation 

in alf 
dty86

. Therefore, the finding that sema3d knockdown caused short segments in 

wild-type and rescued segment length in alf 
dty86

is striking. Together these data indicate 

that cx43 and sema3d function in a common pathway to regulate cell proliferation and 

joint formation. Thus, Sema3d signaling mediates Cx43-specific effects. 

Identification of putative Sema3d receptors 

Neuropilins (Nrps) and Plexins (Plxns) are likely receptors for Semaphorin 

signaling (reviewed in Zhou et al., 2008). Indeed, Nrps and Plxns may hetero-

oligomerize to transduce Sema signals. Nrps are believed to bind Semas directly 

(although Plxns also contain a sema domain), but have a very short intracellular domain 
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that may not be sufficient to transduce intracellular signals. Plxns, on the other hand, 

have an extensive intracellular domain (reviewed in Zhou et al., 2009). Since both Nrps 

and Plxns are the best known receptors for Semas, we initiated a candidate gene search 

of these gene families. The zebrafish genome contains 4 neuropilin (nrp) genes (nrp1a, 

nrp1b, nrp2a, and nrp2b, Yu et al., 2004). In addition, Plexins in the A and D families 

are candidate receptors for secreted Semas (Zhou et al., 2008). The zebrafish genome 

contains plexina1 (plxna1), plxna3, plxna4, and plxnd1. Of these 8 candidate genes, 

only nrp2a, plxna1, and plxna3 appear to be expressed in regenerating fins by in situ 

hybridization (Figure 2.4). The expression of nrp2a appears mainly in the blastema, 

perhaps more heavily localized distally. The distal-most blastema has been proposed to 

regulate fin outgrowth during regeneration (Nechiporuk and Keating, 2002). There is 

also apparent staining in the skeletal precursor cells, and sporadic but strong staining in 

individual cells of the outer layers of the epithelium. The identity of these cells is not 

known. The plxna1 gene is expressed primarily in the distal blastema and also in the 

distal basal layer of the epidermis. In contrast, plxna3 appears to be expressed primarily 

in the skeletal precursor cells and throughout the medial compartment of the regenerate. 

PlxnA3 and Nrp2a mediate independent Sema3d functions 

Next we completed functional analyses to determine which, if any, of these 

receptors contribute to the Cx43-Sema3d pathway. Receptors that mediate Sema3d 

function are expected to exhibit similar knockdown phenotypes as cx43 and sema3d. 

However, knockdown of plxna1 did not appear to influence either cell proliferation or 

joint formation (Figures 2.2 and 2.3), suggesting that PlxnA1 does not participate in 



 

42 

 
 

Cx43-Sema3d-dependent skeletal morphogenesis. In contrast, knockdown of plxna3 

caused short segments (Figure 2.2C and Figure 2.3) but had no effect on cell 

proliferation (Figure 2.2B). There is some influence of plxna3 knockdown on fin 

length, as the length of the regenerate was statistically shorter than the controls (Figure 

2.2A). Since there was no effect on cell proliferation, we conclude that the small 

plxna3-dependent effect on fin length is due to its influence on segment length, and 

not on fin growth. To provide further support for the functional relationship between 

plxna3 and cx43-dependent joint formation, we evaluated the effect of plxna3-

knockdown in alf 
dty86 

regenerating fins. As anticipated, plxna3-knockdown rescued the 

joint formation phenotype, recapitulating the cx43- and sema3d-knockdown effects 

(Figure 2.2D). These data suggest that PlxnA3 contributes to Sema3d- mediated joint 

formation. Therefore, we have now identified a third gene (i.e. plxna3), predicted to 

function downstream of Cx43-Sema3d, whose function is required for appropriate 

joint formation. 

Knockdown of nrp2a caused increased fin growth and increased cell 

proliferation (Figure 2.2A,B and Figure 2.3), suggesting that signaling via Nrp2a 

negatively influences cell division. There was no effect on segment length following 

nrp2a gene knockdown (Figure 2.2C), indicating that Nrp2a signaling does not 

mediate Sema3d effects on joint formation. Since knockdown of cx43 and sema3d 

both cause reduced growth and reduced cell proliferation, it was anticipated that 

Nrpa2a knockdown would similarly cause reduced growth and cell proliferation. Since 

this was not the case, we suggest instead that Sema3d binding to the Nrp2a receptor 
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inactivates its activity, thereby positively regulating cell division by inhibiting a 

negative signal. We attempted to provide evidence for this hypothesis by evaluating 

Nrpa2a knockdown in sof 
b123 

fins, which express less sema3d (Figure 2.1 and Table 

2.2). For example, if Sema3d is required to block the effects of Nrp2a signaling, then 

the increase in cell proliferation associated with Nrp2a knockdown should be 

attenuated when Sema3d is reduced, as in sof 
b123

. This is what we find. Nrp2a 

knockdown in wild-type regenerating fins causes a 30 % increase in dividing cells, 

while Nrp2a knockdown in sof 
b123

regenerating fins has no effect on the number of 

dividing cells (Figure 2.5). Further studies will be required to demonstrate 

unequivocally that Sema3d acts as a ligand for Nrp2a. However, our current findings 

provide support for the conclusion that Sema3d can mediate negative regulation of 

Nrp2a and thereby promote cell proliferation. Note that the observed Nrp2a effects 

may be mediated in conduction with an as yet unidentified Plxn co-receptor since Nrps 

appear not to encode intracellular signaling domains. 

Together, our analyses of the plxna1, plxna3, and nrp2a genes suggest that 

Nrp2a and PlxnA3 mediate Sema3d-dependent events, while PlxnA1 does not appear 

to function in Sema3d-mediated events. Moreover, we suggest that Nrp2a and PlxnA3 

mediate distinct Cx43- and Sema3d-dependent phenotypes, where Nrp2a mediates the 

Cx43-dependent effects on cell proliferation and PlxnA3 mediates the Cx43 dependent 

effects on joint formation. 
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2.5 Discussion 

Much of what is known about sema3d has been determined during 

development of the central nervous system in zebrafish. In the embryonic nervous 

system sema3d has been found to exert multiple diverse functions. For example, 

sema3d may act as an axonal repellent or as an axonal attractant (Wolman et al., 

2004). Alternatively, sema3d function can modify cell adhesion via influencing the 

expression of the adhesion protein L1 (Wolman et al., 2007). Further, sema3d has been 

found to influence the population of neural crest cells by promoting proliferation 

(Berndt and Halloran, 2006), and by regulating their migration (Yu and Moens, 2005). 

It has been suggested that the different functions of sema3d may depend on the 

receptors expressed on the responding cells. Indeed, depending on the cell-type, 

sema3d has been found to interact with nrp1a (Wolman et al., 2004), with 

nrp1a/nrp2b (Wolman et al., 2004), or via nrp-independent mechanisms (Wolman et 

al., 2007). Thus, Sema3d appears to interact with a variety of receptors in order to 

mediate a diversity of downstream cellular events.  It is therefore not possible to 

predict a specific receptor complement/pathway for Sema3d function. However, it is 

also not difficult to envision how Sema3d signaling could be responsible for mediating 

multiple independent signaling events during fin regeneration. 

The finding that Sema3d functions downstream of Cx43 is supported by 

multiple independent lines of evidence. First, the sema3d gene exhibits differential 

expression in sof 
b123 

and alf 
dty86 

regenerating fins by in situ hybridization and by qRT-

PCR. Second, cx43-knockdown in wild-type fins is sufficient to reduce sema3d gene 
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expression. Third, we provide functional evidence that sema3d acts downstream of 

cx43 since sema3d-knockdown recapitulates all of the cx43-dependent phenotypes, 

including rescue of joint formation in alf 
dty86

. Thus, sema3d is both molecularly and 

functionally downstream of Cx43. Moreover, we identify two putative Sema3d 

receptors, Nrp2a and PlxnA3. Remarkably, these receptors appear to independently 

mediate Cx43-Sema3d-dependent cell proliferation and joint formation. The described 

functional analyses for Sema3d and its putative receptors utilized translation-blocking 

morpholinos. Since antibodies are not currently available, we are unable to demonstrate 

that protein translation of the targets is inhibited following morpholino-mediated gene 

knockdown. However, the specificity of sema3d-  and plxna3- knockdown to Cx43-

dependent phenotypes is provided by our findings that sema3d- and plxna3-knockdown 

both cause short segments and also rescue joint failure in alf 
dty86 

(i.e. prior to this 

report, these findings were specific for cx43 mutations or knockdown). Similarly, the 

finding that sof 
b123 

abrogates the effects of nrp2a-knockdown provides specificity for 

the role of Nrp2a in Cx43-Sema3d-dependent cell proliferation. We did not observe 

Cx43-dependent phenotypes following plxna1-knockdown. However, until we can 

demonstrate that the PlxnA1 protein has been successfully reduced, we cannot formally 

rule out the possibility that PlxnA1 also contributes to Sema3d signaling events. 

Based on our current and published findings (summarized in Table 2.3), we 

suggest the following model for Cx43 activity during fin regeneration (Figure 2.6). Prior 

studies from our lab have shown that Cx43 both promotes cell proliferation and 

suppresses joint formation (Hoptak-Solga et al., 2008; Sims et al., 2009). Here we find 
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that Sema3d signaling contributes to these Cx43-dependent activities in a pathway that 

bifurcates after Sema3d (Figure 2.6A). Indeed, functional analyses of Cx43 and Sema3d 

provide evidence that cell proliferation and joint formation are coupled, while functional 

analyses of the putative Sema3d receptors demonstrate effects on either cell proliferation 

(i.e. Nrp2a) or joint formation (PlxnA3). Thus, Cx43 coordinates skeletal growth and 

patterning via Sema3d signaling, which in turn regulates cell proliferation and joint 

formation in distinct downstream signaling pathways. 

It is possible to visualize the steps of this molecular pathway by considering the 

location of gene expression of the molecular players (Figure 2.6B). For example, Cx43 

is expressed in the medially located dividing cells during fin regeneration (Iovine et al., 

2005). These cells are directly adjacent to the skeletal precursor cells that will 

differentiate as either osteoblasts or joint forming cells (Brown et al., 2009; Borday et 

al., 2001). We suggest that Cx43 activity in the dividing cells influences gene 

expression of sema3d in the adjacent lateral compartments, which in turn mediates 

independent signaling pathways that regulate cell division and joint formation. It 

remains unknown how gap junctions contribute to tangible changes in gene expression. 

One possibility is that Cx43-dependent GJIC influences the concentration of a second 

messenger that directly regulates the activity of a relevant transcription factor in the 

cx43-positive cells. These changes in gene expression in the cx43-positive 

compartment lead to changes in gene expression in the adjacent sema3d-positive 

compartment. Once the expression of sema3d is up-regulated in the lateral skeletal 

precursor cells, Sema3d will be secreted where it may interact with its receptors. 
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Conveniently, Nrp2a and PlxnA3, which mediate independent events, are expressed in 

distinct populations of cells. For example, the Nrp2a receptor is expressed in the distal 

blastema where it may influence cell proliferation in the cx43-positive cells. We 

suggest that Sema3d binding to Nrp2a prevents the inhibition of cell proliferation, 

thereby promoting growth. Similarly, the expression of plxna3 in the skeletal precursor 

cells suggests that secreted Sema3d binds to the PlxnA3 receptor and initiates an 

autocrine response to influence the expression of genes that will determine joint 

formation (i.e. promoting osteoblast differentiation, suppressing joint formation, or 

both). However, recall that nrp2a and plxna3 are expressed in more than one cellular 

compartment during fin regeneration. Thus, it remains possible that Sema3d signaling 

events are more complicated than this model suggests. 

The model we propose suggests that Sema3d initiates a typical signal 

transduction pathway that directly influences cell proliferation or joint formation in the 

cells expressing the putative receptors. This model is consistent with our examination 

of gene expression patterns and on functional analyses. Alternate models are also 

possible. For example, it has been suggested that Sema3A influences innervation and/or 

vasularization of endochondral bones in mammals, which in turn impacts bone growth 

(Gomez et al., 2005). The fin rays contain both nerve axons and blood vessels, although 

it is not known if Sema3d and/or its receptors are expressed in either of those cell 

populations. Future immunohistochemical analyses may provide new insights into the 

possibility that Cx43-Sema3d drives growth and/or patterning via the vasculature or 

nervous system. Moreover, others have found evidence that Sema3F may influence the 
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localization of Cx43 to the plasma membrane in rat liver epithelial cell lines, perhaps 

regulating Cx43-based GJIC (Kawasaki et al., 2007). Our findings do not support this  

type of role for Sema3d during fin regeneration since cx43 and sema3d are not co-

expressed in the same population of cells. However, it remains possible that additional 

Semas may contribute to the expression and/or localization of Cx43. 
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2.6 Conclusions 

The identification of Sema3d acting downstream of Cx43 provides tangible 

insights into how cellular outcomes are coupled in order to coordinate bone growth 

with skeletal patterning. We find that the Cx43-Sema3d pathway diverges via distinct 

receptors to influence two cellular outcomes: cell proliferation and joint formation. 

Continued validation of additional genes identified by our microarray will fill the gaps 

of molecular events occurring both between Cx43 activity and Sema3d signaling as 

well as events occurring downstream of the putative Sema3d receptors that mediate 

changes in cell division and joint formation. 
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2.7 Figures  

 
 

Figure 2.1 sema3d is differentially expressed in wild-type (top), alf 
dty86 

(middle) and 

sof 
b123

 (bottom). Left: whole mount in situ hybridization shows increased expression in 

alf 
dty86

 and decreased expression in sof 
b123

 compared to wild-type. Right: Cryosections 

reveal the tissue-specific localization of sema3d-expressing cells. Arrowheads point to 

skeletal precursor cells; arrows point to the basal layer of the epidermis (ble) 
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Figure 2.2 Morpholino-mediated gene knockdown of sema3d and its putative 

receptors. In all graphs, MO represents the particular gene-targeting morpholino; MM 

represents the particular 5 mis-match/control morpholino; UN represents 

uninjected/untreated fins. (A) Total regenerate length was measured. sema3d-knockdown 

and plxna3-knockdown cause reduced fin length (*); nrp2a-knockdown causes increased 

fin length (*), (B) the total number of H3P positive cells were counted. sema3d-

knockdown causes reduced levels of cell proliferation (*); nrp2a-knockdown causes 

increased levels of cell proliferation (*), (C) segment length was measured in treated 

wild-type fins. sema3d-knockdown and plxna3-knockdown cause reduced segment 

length (*) and (D) segment length was measured in treated alf 
dty86 

fins. sema3d-

knockdown and plxna3-knockdown cause reduced segment length and rescue joint 

formation in alf 
dty86

 (*). Statistically different data sets (*) were determined by the 

student’s t-test where p<0.05. By the student’s t-test, there is no statistical difference 

between MM and UN for any mismatch morpholino. Error bars represent the standard 

deviation. 
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Figure 2.3 Representatives images of morpholino induced phenotypes. From left to 

right: representatives whole fins  following injection in the dorsal most 5-6 fin rays 

(arrow); segment length in targeting  morpholino injected (MO) and in 5 mis-match 

morpholino injected (MM); H3P positive cells in targeting morpholino injected (MO) 

and in 5 mis-match morpholino injected (MM).  
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Figure 2.4 Gene expression of candidate receptors for Sema3d. Left: expression of 

nrp2a is primarily located in the distal blastema and in skeletal precursor cells. Staining 

of individual cells of the outer epithelial cells is also observed (*). Middle: expression of 

plxna1 is primarily in the distal blastema and in the distal cells of the basal epidermis. 

Right: expression of plxna3 is located in both the skeletal precursor cells and in the 

blastema. Arrows identify the basal layer of the epidermis (ble), arrowheads identify 

skeletal precursors.  

 



 

54 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Nrp2a-knockdown effects are abrogated in sof 
b123

. Nrp2a-mediated gene 

knockdown causes an increase in cell proliferation when Sema3d is present at typical 

levels. In sof 
b123

, where sema3d expression is reduced, Nrp2a is unable to enhance the 

level of cell proliferation. MO, gene-targeting morpholino. MM, 5 mis-match/control 

morpholino. 
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Figure 2.6 Model of how Cx43-Sema3d influences skeletal morphology. (A) Proposed 

pathway of Cx43-Sema3d and downstream receptors (text colors are coordinated with the 

cartoon in B). Cx43 activity in the dividing cells influences sema3d gene expression in 

the lateral skeletal precursors and basal layer of the epidermis. Secreted Sema3d 

promotes cell proliferation (dotted arrow) in the cx43-positive compartment by inhibiting 

a negative signal from Nrp2a in the distal blastema. Sema3d suppresses joint formation in 

the skeletal precursor cells by its interaction with PlxnA3, (B) cartoon illustrating the 

compartments of gene expression in the Cx43-Sema3d pathway (e, epithelium; m, 

mesenchyme; basal layer of the epidermis is dotted). The cx43 mRNA is up-regulated in 

the blastema (red), adjacent to the sema3d -positive cells in the skeletal precursor cells 

and in the lateral basal layer of the epidermis (green). Cx43-dependent up-regulation of 

sema3d in the lateral compartment allows secreted Sema3d to signal back to the 

blastema via Nrp2a (yellow), relieving the Nrp2a inhibition of cell proliferation. 

Sema3d signaling via PlxnA3 in the skeletal precursor cells (blue circles) inhibits joint 

formation in the skeletal precursor cells, perhaps by influencing osteoblast/joint forming 

cell differentiation.  

 

 

 

 



 

56 

 
 

 

Table 2.1: Primer and morpholino sequences. The RNA polymerase T7 binding site is 

underlined in the reverse primers. MO = targeting morpholino; 5MM = control 

morpholino with 5 mismatch pairs to target sequence 
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Table 2.2: Expression of sema3d via qRT-PCR  
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Table 2.3: Phenotypes associated with altered expression of cx43 and genes 

proposed to function downstream of Cx43. Changes in cx43 and sema3d gene 

expression were evaluated by qRT-PCR. All knockdowns (KD) listed here were 

completed in wild type regenerating fins. No change (n/c); not done (n/d).  
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CHAPTER 3:  

Identification of an evx1-dependent joint-formation pathway during fin 

regeneration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

63 

 
 

3.1 Abstract 

Joints are essential for skeletal flexibly and form, yet the process underlying joint 

morphogenesis is poorly understood. Zebrafish caudal fins are comprised of numerous 

segmented bony fin rays, where growth occurs by the sequential addition of new 

segments and joints. Here, we evaluate joint gene expression during fin regeneration. 

First, we identify three genes that influence joint formation, evx1, dlx5a, and mmp9. 

We place these genes in a common molecular pathway by evaluating both their 

expression patterns along the distal-proximal axis (i.e. where the youngest tissue is 

always the most distal), and by evaluating changes in gene expression following gene 

knockdown. Prior studies from our lab indicate that the gap junction protein Cx43 

suppresses joint formation. Remarkably, changes in Cx43 activity alter the expression 

of joint markers. For example, the reduced levels of cx43 in the sof 
b123 

mutant causes 

short fin ray segments/premature joints. We also find that the expression of evx1-dlx5a-

mmp9 is shifted distally in sof 
b123

, consistent with premature expression of these genes. 

In contrast, increased cx43 in the alf 
dty86 

mutant leads to stochastic joint failure and 

stochastic loss of evx1 expression. Indeed, reducing the level of cx43 in alf 
dty86 

rescues 

both the evx1 expression and joint formation. These results suggest that cx43 influences 

the pattern of joint formation by influencing the timing of evx1 expression. 
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3.2 Introduction 

The precise location of joints provides both flexibility and form to the vertebrate 

skeleton. We use the zebrafish regenerating fin as a model to study skeletogenesis, 

including the appropriate formation of fin ray joints. Fin ray joints have been termed 

“fibrous joints” (Borday et al., 2001) since the articulation occurs in the bone matrix 

while the central mesenchyme remains continuous (Pacifici et al., 2006). These joints 

are distinct from synovial joints which completely articulate previously uninterrupted 

cartilaginous templates of the endochondral skeleton. The fin grows rapidly during 

regeneration, fully restoring fin size and pattern. The fin is comprised of multiple bony 

fin rays or lepidotrichia, and each fin ray is comprised of multiple bony segments 

separated by fin ray joints (or simply, joints). Each fin ray consists of two hemirays of 

bone matrix surrounding the mesenchyme, and several layers of epidermal cells 

surround the mesenchyme. Actinotrichia are bundles of collagen-like fibers that 

emanate from the distally located basal epidermal cells and serve as a substrate for 

osteoblasts to align and secrete bone matrix directly (Landis and Geraudie, 1990). The 

mesenchyme medial to the actinotricha includes dividing cells, undifferentiated cells, 

blood vessels, nerves, and connective tissues. The mesenchyme lateral to the 

actinotrichia includes the bone matrix, osteoblasts, and joint-forming cells. Joint-

forming cells are a subpopulation of lateral mesenchymal cells that condense on the 

surface of the uninterrupted bone matrix and form an elongated row of cells at the site 

of the presumptive joint. These cells later separate into two rows of cuboidal cells that 

flank a newly established articulation in the bone matrix (Sims et al., 2009). Thus, 

these cells appear responsible for the articulation of the fin ray joints. We refer to the 
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osteoblasts and joint-forming cells collectively as skeletal precursor cells. 

During growth and regeneration, the fin regenerates in the proximal to distal 

direction where new segments and new joints are continually added to the distal end of 

the fin ray. Thus, youngest tissue is always located more distally than mature tissue 

(Brown et al., 2009). Following amputation, the regenerate undergoes three main 

stages: wound healing, blastema formation, and outgrowth (Akimenko et al., 2003; 

Poss et al., 2003) The blastema is a specialized compartment comprised of rapidly 

proliferating cells, and is located in the distal and medial mesenchyme. These cells are 

the source of new tissue during regeneration. Recent studies show that several cell 

types in the regenerating fin are lineage restricted, meaning that new cells in the 

regenerating fin arise from precursor cells of the same cell type (Knopf et al., 2011; 

Singh et al. 2012; Sousa et al., 2011; Tu and Johnson, 2011). These cells undergo de- 

differentiation, cell proliferation, and re-differentiation, in order to replace lost tissue. 

This may not represent the only way to replace lost tissue, as others have found that 

osteoblasts are capable of de novo differentiation during fin regeneration (Singh et 

al.,2012). Osteoblasts and joint-forming cells appear to be derived from a common 

lineage (Tu and Johnson, 2011). To date, little is known about the genes required for 

differentiation of joint-forming cells, or indeed, the signals required to initiate this 

process. 

The transcription factor Even-skipped 1 (Evx1) belongs to a family of vertebrate 

eve-related homeobox genes (Faiella et al., 1991). In zebrafish regenerating fins, the 

expression of evx1 was observed strongly in the distal-most and youngest joints 

(Borday et al., 2001). Sections of evx1 following in situ hybridization (ISH) showed a 
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strong expression level of evx1 mRNA in the lateral compartment where skeletal 

precursor cells reside (Borday et al., 2001). More recently, evx1 was shown to be 

required for joint formation since an evx1 mutant fails to produce fin ray joints during 

regeneration (Schulte et al., 2011). Our evaluation of two other fin mutants, short fin 

(sof 
b123

) and another long fin (alf 
dty86

), suggest that the gap junction protein 

Connexin43 (Cx43) also contributes to joint formation. Both cx43 mRNA and Cx43 

protein are expressed throughout the medial mesenchyme, adjacent to the lateral 

populations of skeletal precursor cells (Hoptak-Solga et al., 2008). The sof 
b123

mutant 

exhibits reduced levels of cx43 mRNA and protein (without a lesion in the coding 

sequence) that lead to reduced cell proliferation, short segments (i.e. premature joints) 

and short fin length (Iovine et al., 2005).  In contrast, the alf 
dty86 

mutant exhibits fin 

overgrowth and overlong segments on average due to stochastic joint failure (Sims et 

al., 2009). The alf 
dty86 

phenotype is not caused by mutations in cx43 but coincidently 

has increased levels of cx43 mRNA (van Eeden et al., 1996). We have shown that 

morpholino-mediated cx43 knockdown in alf 
dty86 

rescues joint formation, suggesting 

that the higher levels of cx43 in this mutant contributes to the loss of fin ray joints 

(Sims et al., 2009). Thus, reduced cx43 leads to premature joints while increased cx43 

leads to joint failure. We interpret these findings to indicate that Cx43 suppresses joint 

formation, perhaps by communication between the medial cx43-positive mesenchyme 

and the lateral evx1-positive mesenchyme. 

As an initial attempt to understand the events initiating and controlling joint 

formation, we first wished to define additional molecular players acting downstream of 
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evx1. Here, we describe the addition of two evx1-dependent joint gene markers that 

also contribute to joint formation: distal-less homeobox-5a (dlx5a) and matrix-

metalloproteinase-9 (mmp9). We also exploited the characteristics of low and high 

Cx43 activity in sof 
b123 

and alf 
dty86 

to address the relationship between the expression 

of these joint genes and Cx43 activity during joint patterning. We found that the onset 

of joint gene expression correlates with the level Cx43 activity. These results suggest 

that Cx43 may regulate joint formation by influencing the timing of evx1 expression. 
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3.3 Materials and Methods 

Statement on the ethical treatment of animals 

This study was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. 

The protocols used for this manuscript were approved by Lehigh’s Institutional Animal 

Care and Use Committee (IACUC) (protocol identification #128, approved 

11/14/2012). Lehigh University’s Animal Welfare Assurance Number is A-3877-01. 

All experiments were performed to minimize pain and discomfort. 

Fish maintenance 

Zebrafish were derived from the C32 strain. Mutant fish used in these studies 

include sof 
b123 

(Iovine and Johnson, 2000) alf 
dyt86 

(van Eeden, et al., 1996) 

homozygous evx1
-/- 

mutant fish, and heterozygous carriers (Schulte et al., 2011).  All 

fish were raised and cared for at constant temperature of 25
o
C in a 14 light: 10 dark 

photoperiod (Westerfield, 1993). 

RNA probes and whole mount ISH 

Antisense evx1 probe was generated from 1µg of a PCR-generated linear 

template containing a T3 RNA polymerase binding site  

F –TAATACGACTCACTATAG 

R-T3 GGATCCATTAACCCTCACTAAAGGGAAGAGCTATGACGTCGCAT where 

the T3 binding site is underlined). Antisense digoxigenin-labeled shh, lef1, mmp9, and 

dlx5a probes were generated from lef1 cDNA (Lee et al., 2009, shh cDNA (Lee et al., 

2009) mmp9 cDNA (Yoshinari et al., 2009) and dlx5a cDNA (Yoshinari et al., 2009). 
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The template for the col10a1b  probe was a generous gift from the lab of Dr. David 

Parichy (gi68437010, located on chromosome 20). 

Whole-mount ISH was performed on 5 dpa regenerating fins as described 

(Ton and Iovine, 2012). Stained fins were examined on a Nikon Eclipse 80i 

microscope. Images were collected using a digital Nikon camera. At least 4 

regenerating fins were assessed at a time, and all markers were examined in 

triplicate. 

ISH on cryo-sections 

Fin regenerates (5dpa) were harvested and fixed overnight with 4% 

paraformaldehyde in PBS. Fins were dehydrated in 100% methanol at -20
o
C. Next, fins 

were rehydrated in a methanol-PBS series of washes before embedding in 1.5% 

agarose/5% sucrose and equilibrated overnight in 30% sucrose. Blocks were mounted 

in OCT and cryosectioned (15 µm sections) using a Reichert–Jung 2800 Frigocut 

cryostat. Sections were collected on Superfrost Plus slides (Fisher) and allowed air dry 

overnight at room temperature. Slides may be stored in a freezer box at -20
o
C for up to 

one year. For evaluation, two slides containing sections from two different fins were 

chosen. A marking pen (ImmEdge™ Pen H-4000; PAP pen, Vector Laboratories) was 

used to circle the sections. Probe was pre-hybridized with a mixture of 1X salt solution 

(NaCl, Tris HCl, Tris Base, Na2HPO4.7H20, NaH2PO4, and 0.5 M EDTA) with 50% 

deionized formamide (Sigma), 10% dextran sulfate, 1mg/mL tRNA, and 1X Denhart’s 

(Fisher) at 70
o
C for 5 mins. Hybridization with digoxigenin-labeled antisense probes 

was completed overnight at 65
o
C. The next day, slides underwent series of washes in a 
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solution that has 1X SSC, 50% formamide and 0.1% Tween-20 at 65
o
C. Slides were 

then transferred to room temperature for extensive washes in MABT (100 mM Maleic 

acid, 150 mM NaCl, and 0.1% Tween-20) before incubation in blocking solution 

(MABT, Goat serum and 10% milk) for at least 2 hours or overnight. Anti-digoxigenin 

Fab fragments (pre-absorbed against zebrafish tissue) were used at 1:5000 overnight at 

4
o
C. After incubation, slides were washed in MABT four times followed by two short 

washes in staining buffer (100mM Tris, 9.5, 50 mM MgCl2, 100mM NaCl, and 0.1% 

Tween20). Slides were next transferred to 10% polyvinyl alcohol (PVA; MW: 86,000) 

staining solution plus NBT/BCIP stock solution (Roche) and development proceeded 

overnight at 37
o
C. Once observing purple staining on the sections, the reaction was 

stopped by washing the slides with PBST for at least 3 hours. Sections were mounted in 

100% glycerol and examined on a Nikon Eclipse 80i microscope. Images were 

collected using a digital Nikon camera. 

Morpholino-mediated gene knockdown and electroporation 

Injection and electroporation experiments were performed as described previously 

(Hoptak-Solga et al., 2008; Sims et al., 2009; Ton and Iovine, 2012; Thummel et al., 

2006). Targeting morpholinos were designed against the start codon and modified with 

fluorescein at the 3’ end (Gene Tools, LLC) to provide a charge and for detection. 

Control morpholinos were either custom mismatch morpholinos containing five 

mismatches to the targeted gene or were the Gene Tools ‘standard control’ morpholino, 

which does not recognize any zebrafish genes. Following injection and electroporation, 

fins were harvested at 1day post electroporation (dpe) to evaluate changes in gene 
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expression. At least 4 regenerating fins were treated per morpholino (targeting or 

control), and all knockdown experiments were completed in triplicate. 

Morpholino sequences for cx43 were described previously (Hoptak-Solga et al., 

2008). Morpholinos used here include: evx1-MO, 

CTTTCCGTGCTTCGGCGAGCCCATT; evx1-MM, 

CTTTGCCTGGTTCGGCCACCCCATT; mmp9-MO, 

AAACGCCAGGACTCCAAGTCTCAT; dlx5a-MO (also used in Talbot et al., 2010), 

CGAATACTCCAGTCATAGTTTGGAT; Standard control MO, 

CCTCTTACCTCAGTTACAATTTTATA. 

Measurements 

Measurements of the distal boundaries of ISH expression domains to the distal 

end of the fin were taken from the third fin ray (V+3) since that was established as a 

standard (Iovine and Johnson, 2000). Student’s t-tests were performed to determine if 

data sets were statistically different (p < 0.05). At least 8 fin rays per marker (evx1, 

dlx5a, mmp9, col10a1b, shh, and lef1) were measured. 

Quantitative real-time PCR 

For qRT-PCR analysis, TRIZOL RNA extraction was made from the 5 dpa 

regenerating fins of evx1
-/-

, evx1
+/-

, or 1 dpe for dlx5a-morpholino injected fins (targeting 

or standard morpholino). A minimum of 8 fins was used for total RNA extraction. For 

each sample, 1 µg of total RNA were reverse transcribed with SuperScript III reverse 

transcriptase (Invitrogen) using oligo-dT primers. Primers for qPCR analysis of dlx5a 

(GAGCCCGCAAGAAAAAGAAA; CCGTTGACCATCCTTACTTCG), mmp9 

(CGTGACGTTTCCTGGAGATGT; TCATCCGCTAGCTGTGTGTTG), and col10a1b 
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(ATCCCACACTGTTGCTGGTGA; CCGTTCTTTCCAGGACTTCCA), were designed 

using Primer express software. Two independent RNA samples were used for the 

experimental comparison and qPCR for each gene was done in duplicate. The samples 

were analyzed using Rotor-Gene 6000 series software (Corbette Research) and the 

average cycle number (CT) was determined for each amplicon. Delta CT (CT) values 

represent normalized expression levels of the test with respect to actin, the internal 

control. The relative level of gene expression between experimental and control samples, 

which is the fold difference (i.e. either between evx1
-/-

 and evx1
+/-

, or between targeting 

and control morpholino-treated fins), was determined using the delta delta CT (CT) 

method (i.e., 2
CT

).  
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3.4 Results and Discussion 

dlx5a and mmp9 are expressed downstream of evx1 

Since our studies suggest that Cx43 influences joint formation, we were 

interested in identifying additional genes that function together to regulate this process. 

Unlike osteoblast genes which are expressed in broad domains throughout the lateral 

compartment in the regenerating fin (Brown et al., 2009) genes expressed during joint 

formation tend to be expressed in a discrete group of cells. The expression pattern 

typically appears as a band of cells following whole mount ISH, and these cells are 

located within the lateral population of skeletal precursor cells (i.e. see Borday et al., 

2001). Thus, we identified evx1, dlx5a, mmp9, and col10a1b  as candidate joint genes 

based on their location of expression (Borday et al., 2001; Yoshinari et al., 2009; Dr. 

Parichy generous gift. The col10a1b sequence appears to be a paralog of col10a1a 

located on chromosome 17). We first confirmed the location of gene expression of this 

set of genes using whole mount ISH on 5 days-post-amputation (dpa) regenerating fins 

and by ISH on cryo-sectioned tissue of 5 dpa caudal fins. As expected, we found evx1, 

dlx5a, mmp9 and col10a1b  are strongly expressed in a discrete group of cells in the 

lateral compartment where the skeletal precursor cells reside (Figure 3.1).  

It has been proposed that evx1 is one of the earliest joint gene markers (Borday 

et al., 2001). Indeed, evx1
-/-

mutants lack fin ray joints, demonstrating that evx1 is 

required for joint formation (Schulte et al., 2011). We have also found that 

morpholino-mediated knockdown of evx1 is sufficient to cause joint failure (data not 

shown). We next investigated if expression of dlx5a, mmp9, and col10a1b  depend 
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upon evx1 for their expression by taking advantage of both morpholino-mediated 

knockdown of evx1 and the evx1
-/- 

mutant fins. We expected to find that expression of 

evx1-dependent genes is reduced in the knockdown fins and completely absent in the 

evx1
-/- 

mutant fins. Indeed, we found that expression signals of dlx5a and mmp9 are 

reduced in evx1-knockdown fins, while col10a1b expression appeared unaffected 

(Figure 3.2). One possibility for failure to observe a knockdown effect on col10a1b 

expression is that the morpholino did not target the col10a1b-expressing cells located 

in the lateral mesenchyme. Unfortunately, it was not possible to evaluate doubly-

labeled cell for the morpholino (flourescein-tagged) and for gene expression since the 

fluorescein signal is labile following in situ hybridization (Figure 3.3). However, we 

regularly observe that our morpholinos target all compartments of the regenerating fin, 

including the lateral compartment of skeletal precursor cells (Figure 3.3). We next 

evaluated gene expression in evx1
-/- 

regenerating fins. Similar to our findings using the 

evx1-morpholino, we find that expression of dlx5a and mmp9 are more severely 

reduced in evx1
-/-

regenerating fins, while col10a1b  is also not affected in those fins 

(Figure 3.2). Interestingly, dlx5a and mmp9 are not completely abolished in the evx1
-/- 

mutants, suggesting that an alternate, non-evx1- dependent pathway may also 

contribute to expression of these genes.  These findings were confirmed by quantitative 

RT-PCR (qRT-PCR). We calculated the fold-difference for each gene between evx1
-/- 

and evx1
+/-

 regenerating fins. We find that dlx5a and mmp9 expression is reduced (i.e. 

fold-change less than 1) but not abolished in evx1
-/- 

regenerating fins. Furthermore, 

expression of col10a1b was not influenced by the loss of evx1 (Figure 3.4). Taken 
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together, these data suggest that dlx5a and mmp9 are expressed downstream of evx1, 

while col10a1b is not. Continued studies therefore focused on dlx5a and mmp9. Both 

evx1 and dlx5a encode for homeobox domain- containing transcription factors, 

although their direct targets are largely unknown.  The mmp9 gene codes for a matrix 

metalloprotease enzyme, which is responsible for degradation of extracellular matrix 

proteins. During the process of joint morphogenesis, the previously uninterrupted bone 

matrix separates into two bony elements (Sims et al., 2009). It is possible that Mmp9 

activity contributes to this articulation event through digestion of the bone matrix. 

We next wished to distinguish between the dlx5a and mmp9 genes acting simply 

as either joint markers, or as providing a function during joint formation. Reduced 

function of genes required for joint formation is predicted to cause either complete joint 

failure or a delay of joint formation (i.e. longer segments). We find that morpholino-

mediated knockdown of dlx5a and mmp9 both cause increased segment length (Figure 

3.5). Importantly, the knockdown of these genes represents the first example of a 

manipulation causing longer segments in the fin. Indeed, the only other example of long 

fin ray segments is the alf 
dty86 

mutant. We cannot rule out the possibility that dlx5a and 

mmp9 may also influence the rate of fin growth. However, changes in growth rate are 

not sufficient to influence segment length. Fish grown in crowded conditions grow 

slower than fish grown in sparse conditions, but segment length is not different 

between these groups (Iovine and Johnson 2000). Moreover, abrogation of either Fgfr1 

or Shh, while influencing the rate of cell proliferation and fin length, do not influence 

segment length Thus, these findings support a model where dlx5a and mmp9 contribute 
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to correct joint placement, irrespective of any putative role in regulating fin growth. 

Placing the genes of the joint pathway in a linear order 

Previously, our lab showed that the early genes required for osteoblast 

differentiation initiated in the more distal, less mature osteoblasts, while onset of 

expression of late osteoblast genes was observed in the more proximal, more mature 

osteoblasts (Brown et al., 2009). Here we applied a similar approach for this set of joint-

forming genes in an attempt to reveal a preliminary order of the evx1-dependent genes. 

We completed whole mount ISH at 5 dpa and measured the distance of expression 

domains of evx1, dlx5a, and mmp9 to the distal end of the fin. As anticipated, evx1 is 

expressed in the most distal domain of skeletal precursor cells, consistent with this gene 

acting the earliest (Figure 3.6). Since dlx5a and mmp9 appear downstream of evx1, we 

expected to find their gene expression more proximally. We find that dlx5a is expressed 

more proximally than evx1, while mmp9 is expressed more proximally than both evx1 

and dlx5a (Figure 3.6). These findings support the hypothesis that dlx5a and mmp9 are 

expressed downstream of evx1 and further suggests the following linear pathway: evx1 

followed by dlx5a followed by mmp9. 

To confirm this predicted order of gene expression, we examined changes in 

gene expression following dlx5a-knockdown and mmp9-knockdown by whole-mount 

ISH (Figure 3.7). We found that mmp9 expression is reduced in fins treated for dlx5a-

knockdown, consistent with the hypothesis that mmp9 is expressed downstream of dlx5a. 

This reduction of mmp9 expression in dlx5a-knockdown fins was confirmed by qRT-

PCR. We calculated the fold-difference for mmp9 expression in dlx5a-knockdown fins
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compared with control knockdown fins. We find that mmp9 levels are reduced 

approximately 40% (i.e. fold-change of  0.54 and 0.57 from independent RNA samples). 

In contrast, dlx5a expression is not affected by mmp9- knockdown. Similarly, evx1 

expression is not affected by either dlx5a-knockdown or by mmp9- knockdown. 

Together with our earlier findings that loss of evx1 causes reduced expression of dlx5a 

and mmp9 (i.e. Figure 3.2), these results confirm the relative order of gene expression 

predicted by the expression patterns along the proximal-distal axis and further suggests 

that dlx5a and mmp9 function does not feedback on expression of evx1. 

Cx43 regulates the evx1-dependent joint pathway 

Based on our previous findings, we have suggested that Cx43 activity in the 

medial compartment, adjacent to the population of skeletal precursor cells, suppresses 

joint formation (Sims et al., 2009). For example, the sof 
b123 

mutant (reduced cx43) 

exhibits short segments/premature joints. Therefore, we predicted that the expression of 

the joint genes would initiate sooner, or more distally, in sof 
b123

 fins than in wild type. 

Indeed, expression of evx1, dlx5a, and mmp9 genes are each initiated more distally in 

sof 
b123 

regenerating fins compared with wild type (Table 3.1). These findings are 

consistent with the reduced level of Cx43 activity causing premature activation of the 

evx1-dependent joint pathway, and premature joints. It may be suggested that the 

reduced growth rate of sof 
b123 

causes the shift of gene expression domains to more 

distal locations. However, such a shift in patterning due to differential growth rates has 

not been observed. For example, fin amputations at more proximal locations regenerate 

more rapidly than fin amputations at more distal locations. However, when comparing 
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these conditions for four different genes located in the basal layer of the epidermis (i.e. 

lef1, shh, wnt5b, pea3), the distance of expression of the gene domain to the distal end 

did not appear altered, although the strength of expression and/or size of the expression 

domain can change (Lee et al., 2009). Therefore, to confirm that the reduced growth 

rate of sof 
b123 

does not influence the patterning of gene expression in general, we 

compared the expression of both shh and lef1 between sof 
b123 

and wild-type 

regenerating fins. Importantly, we found no significant changes in the distance of the 

distal expression domains for either gene to the distal end of the fin between wild type 

and sof 
b123 

(although we do see that overall expression levels are slightly reduced) 

(Figure 3.8). Thus, the reduced growth rate of sof 
b123 

is likely not the cause of the 

distal shift in joint gene expression. Rather, we suggest that reduced cx43 in sof 
b123 

leads to premature expression of the joint genes. 

We next examined joint gene expression in the alf 
dty86 

mutants, which exhibit 

stochastic joint failure and overlong segments on average due to increased expression 

levels of cx43 (van Eeden et al., 1996; Sims et al., 2009). Thus, in alf 
dty86 

we expected 

to observe an irregular pattern (on/off) of joint gene expression and/or more proximal 

expression of the joint genes compared with wild type. Indeed, evx1 is expressed in a 

stochastic pattern and also initiates more proximally (Figure 3.9 and Table 3.1). Since 

evx1 is required  for joint formation (Schulte et al., 2011) these findings suggest that the 

stochastic nature of evx1 expression is the underlying cause of stochastic joint failure in 

alf 
dty86

. Moreover, we suggest that the increased level of cx43 in alf 
dty86 

is the 

underlying cause of stochastic evx1 expression (i.e. since cx43-knockdown rescues joint 
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formation in alf 
dty86

, Sims et al., 2009). Therefore, we next wished to determine if 

cx43-knockdown rescues evx1 expression. We tested this by injecting either a cx43-

targeting morpholino or a cx43- mismatch morpholino across all fin rays in alf 
dty86 

regenerating fins. Next, the percentage of evx1-positive fin rays was determined for 

each fin. We find that cx43-knockdown in alf 
dty86 

regenerating fins significantly 

increases the percentage of evx1-positive fin rays compared with the cx43-mismatch 

morpholino and compared with uninjected alf 
dty86 

regenerating fins (Figure 3.10). 

These findings reveal that cx43-knockdown relieves the suppression of evx1 expression, 

thereby permitting joint formation. Therefore, we suggest that cx43 suppresses joint 

formation by suppressing evx1 expression. Previously, we found that Cx43 regulates 

joint formation via sema3d-plxna3. To test whether cx43 suppression function through 

the sema3d-plxna3, we injected plxna3-targeting morpholino or a plxna3- mismatch 

morpholino across all fin rays in alf 
dty86 

regenerating fins then calculated the percentage 

of evx1-positive fin rays. We find that indeed plxna3-knockdown rescues evx1 expression. 

In contrast, knockdown of nrp2a (the putative receptor of Sema3d that belongs to the cell 

proliferation pathway) does not (Figure 3.10). These findings strongly suggest that the 

previous identified pathway (sema3d-plxna3) downstream of cx43 regulates joint 

formation through the suppression of evx1 expression.  

It was anticipated that the stochastic nature of evx1 expression would lead to 

stochastic expression of both dlx5a and mmp9. However, this was not observed 

(Figure 3.9). Instead, we find their expression is activated in all fin rays in alf 
dty86

, 

consistent with the observation that dlx5a and mmp9 expression are not completely 
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eliminated in the evx1
-/- 

mutant, and therefore appear to be activated even in the 

absence of evx1. Since joint failure occurs despite expression of dlx5a and mmp9, 

these data also suggest that dlx5a  and mmp9 cannot mediate joint formation without 

the additional expression of evx1. Thus, since evx1 is required for joint formation but 

dlx5a  and mmp9 are required but not sufficient for joint formation, evx1 must 

activate at least one other pathway to establish fin ray joints. Continued studies are 

required to identify this pathway. 

Model of joint differentiation during fin regeneration 

Our analyses of joint gene expression suggest a model for joint formation that 

requires evx1, which is expressed the earliest, followed by expression of dlx5a and 

mmp9 (Figure 3.11). Each of these genes is expressed in the population of skeletal 

precursor cells, adjacent to the Cx43-positive medial mesenchyme, and all three genes 

contribute to joint formation. We further suggest that Cx43 influences joint formation 

by influencing evx1 expression. When cx43 activity is reduced, as in sof 
b123

, 

expression of all evx1-dependent joint genes is shifted distally, consistent with the 

observation that sof 
b123 

produces premature joints. When cx43 activity is increased, as 

in alf 
dty86

, expression of evx1 is irregular, consistent with the stochastic joint failure 

observed in alf 
dty86 

regenerating fins. Indeed, cx43-knockdown rescues both evx1 

expression and joint formation (Sims et al., 2009) in alf 
dty86

. Interestingly, expression 

of dlx5a and mmp9 are not randomized, but instead are consistently expressed in all 

fin rays. Continued studies will be necessary to identify additional possible evx1- 

dependent pathways, and to understand how dlx5a and mmp9 expression is 
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maintained in the absence of evx1. 
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3.5 Figures 

 

Figure 3.1 Expression of joint genes in regenerating fins. (Left) Whole mount ISH 

shows evx1, dlx5a, mmp9, and col10a1b are expressed in 5 dpa wild type fins. (Right) 

ISH on wild-type 5 dpa cryosections reveal expression of joint genes in the lateral 

skeletal precursor cells. Arrows point to gene expression in the skeletal precursor 

compartment. (e) epithelium; (m) mesenchyme 
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Figure 3.2 dlx5a and mmp9 are genes downstream of evx1. (A) Whole mount ISH 

shows levels of dlx5a expression and mmp9 expression are reduced in the evx1-

morpholino (evx1-MO) injected side compared with the evx1-mismatch (evx1-MM) 

injected side, while the level of col10a1b expression is unchanged. (B) Whole mount ISH 

on evx1
-/-

 mutants displays similar results seen in the evx1-MO injected fins, except that a 

stronger reduction in dlx5a and mmp9 is observed. Arrows identify regions of the fin 

where staining is present and/or expected (i.e. in the cases where reduced evx1 influences 

expression levels). 
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Figure 3.3 Quantitative RT-PCR confirms changes in gene expression downstream 

of evx1. The fold difference of expression between evx1
-/-

 and evx1
+/-

 regenerating fins 

was determined for dlx5a, mmp9, and col10a1b. A fold-difference of 1 indicates no 

difference between these samples. Both dlx5a and mmp9 expression levels are reduced in 

evx1
-/-

, while the expression level of col10a1b was not. Two independent cDNA samples 

from 5 dpa regenerating fins were prepared. Each trial represents the average results from 

one cDNA sample examined in duplicate. The average represents the average results 

from both trials. 
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Figure 3.4 Morpholinos target all cellular compartments of the regenerating fin. 

The two left panels demonstrate loss of fluorescein signal of the tagged morpholino 

following in situ hybridization. The two right panels demonstrate that 24 hours post 

morpholino injection/electroporation, fluorescein-positive cells are observed in all 

cellular compartments in freshly harvested fins. The basal layer of the epidermis (ble) is 

identified. The skeletal precursor cells (sp) are located adjacent to the ble. Morpholino 

uptake, identified as green fluorescent cells, is observed in the outer epithelial layers, in 

the skeletal precursors, and in the medial mesenchyme. 
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Figure 3.5 dlx5a and mmp9 are necessary for correct joint placement. (A) Segment 

length is increased following targeted gene knockdown of dlx5a and mmp9 compared 

with standard control (std) morpholino knockdown (negative control). (B) Segment 

length is increased in dlx5a-knockdown and mmp9-knockdown fins compared with 

standard control morpholino. Statistically different data sets (*) were determined by the 

student’s t-test where p<0.05. The p-value for the comparison of segment length for the 

dlx5a-treated fins was p = 0.0047. The p-value for the comparison of segment length for 

the mmp9-treated fins was p = 0.0018. Error bar represent the standard deviation. MO, 

morpholino. 
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Figure 3.6: Expression domains of joint genes expressed during fin regeneration. 
The double arrow identifies the measured distance between the expression domains and 

the distal top of the fin. The measurement was taken from the third ray of each fin and 

was calculated in average and in standard deviation (±).  
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Figure 3.7 Confirmation of the predicted evx1-dependent joint pathway. Morpholino 

mediated gene knockdown followed by whole mount ISH show that dlx5a-knockdown 

causes reduced mmp9 expression (A) but does not influence evx1 expression (B) mmp9-

knockdown does not influence dlx5a expression (C) or evx1 expression (D). Arrows point 

to the in situ hybridization staining. 
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Figure 3.8 Reduced growth rate of sof 
b123

 mutants does not influence patterning of 

gene expression. (A) Whole mount ISH of shh on WT fins (A) and on sof 
b123

 fins (B). 

(C) The distance of expression of shh and lef1 to the distal end of the fin is not influenced 

by the reduced growth rate of sof 
b123

 since the distances of the expression domains for 

shh and lef1 are not statistically different by the student’s t-test (p>0.05). The p-value for 

comparison of the shh domain was p = 0.19. The p-value for the comparison of the lef1 

domain was p = 0.30. Arrows identify the region of the fin that was measured, from the 

distal expression domain to the distal end of the fin. Error bars represent the standard 

deviation.  
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Figure 3.9 Expression of joint genes in alf 
dty86

. Whole mount ISH of evx1 shows that 

evx1 is expressed consistently in wild-type but irregularly in alf 
dty86

 (i.e. “on” vs. “off”) 

Asterisks were placed just proximal to the evx1-positive rays in alf 
dty86

, which are present 

even though expression is weak. In contrast, dlx5a and mmp9 appear to be expressed in 

all fin rays in both wild-type and alf 
dty86

 fins. 
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Figure 3.10 Knockdown of cx43 and plxna3 rescue evx1 expression in alf 
dty86

. (A) 

Whole mount ISH of evx1shows that evx1 is expressed in most fin rays in cx43-

morpholino (MO) fins (on) but not in cx43-mismatch (MM) fins (off). Arrow identify 

evx1-positive signal. (B) evx1 expression is present in a much higher percentage of fin 

rays in alf 
dty86

 following injection/electroporation of cx43-MO compared with either the 

cx43-MM control fins or the uninjected fin rays. (C) evx1 expression is present in a much 

higher percentage of fin rays following plxa3-MO compared with plxna3-MM control fin 

rays. (D) There is no significant difference in evx1 rescue between nrp2a-MO and nrp2a-

MM control. Statistical significance (*) was determined by student’s t-test where p<0.05 

show significant differences. The p-value for the comparison of cx43-MO and cx43-MM 

was p = 0.0015. The p-value for the comparison of cx43-MO and uninjected fin rays was 

p = 0.0036. The p-value for the comparison of plxna3-MO and plxna3-MM was 0.00052. 

The p-value for the comparison of nrp2a-MO and nrp2a-MM was 0.72. The bars 

represent the standard deviation.  
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Figure 3.11 Model of the identified joint pathway. Both dlx5a and mmp9 appear to be 

regulated by both evx1-dependent and non-evx1-dependent manners. In addition, evx1 

may activate additional genes required for joint formation. Cx43 utilizes Sema3d 

signaling pathway to suppress joint formation (via PlexinA3 receptor but not via Nrp2a 

receptor) by influencing evx1 expression. 
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Table 3.1: Expression domains of genes contributing to joint formation in the 

regenerating fin. The distance is measured from the expression domain (determined by 

whole mount ISH) to the distal end of the fin, using the third fin ray as a standard, as 

previously established (Iovine and Johnson, 2000). Irregular (+/-) expression of evx1was 

observed in the alf 
dty86 

fins, while dlx5a and mmp9 gene expression was present in all fin 

rays (+).The evx1expression domain in the alf 
dty86

 fins was measured from the subset of 

evx1-positive fin rays. N, number of fins. 

 

 



 

94 
 
 

3.6 References 

 

Akimenko, M.A., et al., 2003. Old questions, new tools, and some answers to the 

mystery of fin regeneration. Dev Dyn .226: 190-201. 

Borday, V., et al., 2001. evx1 transcription in bony fin rays segment boundaries leads to 

a reiterated pattern during zebrafish fin development and regeneration. Dev Dyn 

.220: 91-98. 

Brown, A.M., et al., 2009. Osteoblast maturation occurs in overlapping proximal- 

distal compartments during fin regeneration in zebrafish. Dev Dyn. 238: 2922-

2928. 

Faiella, A., et al., 1991. Isolation and mapping of EVX1, a human homeobox gene 

homologous to even-skipped, localized at the 5' end of HOX1 locus on 

chromosome 7. Nucleic Acids Res. 19: 6541-6545. 

Hoptak-Solga, A.D., et al., 2008. Connexin43 (GJA1) is required in the population of 

dividing cells during fin regeneration. Dev Biol .317: 541-548. 

Iovine, M.K., et al., 2005.  Mutations in connexin43 (GJA1) perturb bone growth 

in zebrafish fins. Dev Biol .278: 208-219. 

Iovine, M.K., Johnson S.L., 2000. Genetic analysis of isometric growth control 

mechanisms in the zebrafish caudal fin. Genetics. 155: 1321-1329. 

Knopf,  F., et al., 2011. Bone regenerates via dedifferentiation of osteoblasts 

in the zebrafish fin. Dev Cell. 20: 713-724. 

Landis, W.J., Geraudie J., 1990. Organization and development of the mineral phase 

during early ontogenesis of the bony fin rays of the trout Oncorhynchus 



 

95 
 
 

mykiss. Anat Rec. 228: 383-391. 

Lee, Y., et al., 2005. Fgf signaling instructs position-dependent growth rate during 

zebrafish fin regeneration. Development. 132: 5173-5183.  

Lee, Y., et al., 2009. Maintenance of blastemal proliferation by functionally diverse 

epidermis in regenerating zebrafish fins. Dev Biol. 331: 270-280. 

Mari Beffa, M., et al., 1989. Elastoidin turn over during tail fin regeneration in 

teleosts. A morphometric and radioautographic study. Anat Embryol (Berl). 

180: 465-470.  

Pacifici, M., et al., 2006. Cellular and molecular mechanisms of synovial joint and 

articular cartilage formation. Ann N Y Acad Sci. 1068: 74-86. 

Poss, K.D., et al., 2003. Tales of regeneration in zebrafish. Dev Dyn. 226: 202-210. 

Quint, E., et al., 2002. Bone patterning is altered in the regenerating zebrafish 

caudal fin after ectopic expression of sonic hedgehog and bmp2b or 

exposure to cyclopamine. Proc Natl Acad Sci U S A. 99: 8713-8718. 

Santamaria, J.A., et al., 1992. Interactions of the lepidotrichial matrix components 

during tail fin regeneration in teleosts. Differentiation. 49: 143-150.  

Schulte, C.J., et al., 2011. Evx1 is required for joint formation in zebrafish fin 

dermoskeleton. Dev Dyn. 240: 1240-1248. 

Sims, K., et al., 2009. Connexin43 regulates joint location in zebrafish fins. Dev Biol. 

327: 410-418. 

Singh, S.P., et al., 2012. Regeneration of amputated zebrafish fin rays from de 

novo osteoblasts. Dev Cell. 22: 879-886. 



 

96 
 
 

Sousa, S., et al., 2011. Differentiated skeletal cells contribute to blastema formation 

during zebrafish fin regeneration. Development. 138: 3897-3905. 

Talbot, J.C., et al., 2010. hand2 and dlx genes specify dorsal, intermediate, and ventral 

domains within zebrafish pharyngeal arches. Development. 137: 2507-2517.   

Thummel, R., et al., 2006. Inhibition of zebrafish fin regeneration using in vivo 

electroporation of morpholinos against fgfr1 and msxb. Dev Dyn. 235: 336-346. 

Ton, Q.V., Iovine M.K., 2012. Semaphorin3d mediates Cx43-dependent 

phenotypes during fin regeneration. Dev Biol. 366: 195-203. 

Tu S., Johnson S.L., 2011. Fate restriction in the growing and regenerating zebrafish 

fin. Dev Cell. 20: 725-732. 

van Eeden, F.J., et al., 1996. Genetic analysis of fin formation in the zebrafish, Danio 

rerio. Development. 123: 255-262. 

Westerfield, M., 1993. The Zebrafish Book: A guide for the laboratory use of 

zebrafish (Brachydanio rerio). . Eugene, OR: University of Oregon 

Press. 

Yoshinari, N., et al., 2009. Gene expression and functional analysis of zebrafish larval 

fin fold regeneration. Dev Biol. 325: 71-81. 



 

97 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 

 

Remaining Questions and Future Direction 
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4.1 Introduction 

The focus of my thesis dissertation is defining the relevant Cx43 functions during 

skeletal morphogenesis to reveal the initial Cx43-dependent event that regulates 

changes in cellular function, whether Cx43 functions as a gap junction channel, a 

hemichannel, or in a channel-independent manner. Still, several questions remain open 

regarding (1) how Cx43 influences gene expression in the lateral skeletal precursor 

cells, (2) how Cx43 is regulated in turn mediates effects of skeletal patterning. This 

chapter is an attempt to provide a synopsis of some preliminary work in order to 

recommend further interests for future inquiry.   
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4.2 How does Cx43 influence gene expression in the lateral skeletal precursor cells? 

It has been established that Cx43-based GJIC contributes to skeletal development 

but it remains unclear how. Others have shown that in osteoblast-like cell lines changes 

in the level of Cx43 based GJIC influences the expression of osteoblast genes. This work 

has been completed using a reporter assay in osteoblast cell lines (i.e., ROS17/2.8 cells 

and/or MC3T3 cells). The reporter construct contains the promoter of the osteoblast-

specific gene osteocalcin upstream of the luciferase coding sequence. Luciferase activity 

can be precisely calculated and is directly proportional to the level of gene transcription 

from the osteocalcin promoter. When Cx43 function is high, luciferase activity is high. 

When Cx43 function is abrogated either by over-expression of Cx45 (which has been 

shown to reduce Cx43-dependent GJIC by modifying the size and specificity of the 

heteromeric gap junction channel, Lecanda et al., 1998) or by the addition of 

pharmacological inhibitors of GJIC (Stains and Civitelli, 2005), luciferase activity is 

reduced. Using this system, two distinct Cx43-dependent response elements have been 

identified in the osteocalcin promoter, and a mechanism for Cx43-dependent 

transcriptional activation has been suggested. In addition, a minimal Cx43 response 

element (CxRE) was identified in the osteocalcin promoter (Stains et al., 2003). It was 

determined that Cx43 function regulated the level of phosphorylation of the transcription 

factor Sp1, which in turn is bound to the CxRE. Thus, increased phosphorylation of Sp1 

favored its recruitment to the CxRE and caused increased gene transcription. In contrast, 

reduced phosphorylation of Sp1 favored the recruitment of an alternate transcription 

factor, Sp3, and leads to reduced gene transcription. Continued studies revealed that the 

phosphorylation of Sp1 occurred through Cx43-dependent activation of the ERK signal 
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transduction cascade (Stains and Civitelli, 2005). Moreover, this Cx43-dependent 

recruitment of Sp1 was also correlated with recruitment of the osteoblast transcription 

factor Osx/Sp7 to the osteocalcin promoter (Niger et al., 2011). A second pathway for 

Cx43-dependent gene transcription occurs via activation of the transcription factor 

Runx2. Phosphorylated Runx2 interacts with the osteoblast-specific element OSE2, also 

found in the osteocalcin promoter. Cx43 function leads to activation of PKCδ, which is 

an intermediate in the FGF2 signaling pathway. Activation of PKCδ leads to the 

phosphorylation of Runx2 and increased gene transcription (Lima et al., 2009). 

Alternatively, FGF2 signaling can activate ERK independent of Cx43, also leading to 

Runx2-phosphorylation (Niger et al., 2012). These data provide evidence that FGF2 and 

Cx43 synergize to influence Runx2-phosphorylation and therefore increased gene 

expression of at least a subset of osteoblast-specific genes. How are the ERK and FGF2 

growth factor dependent signaling cascades related to Cx43 function? The Stains group 

suggests that both primary and secondary responses to growth factor-mediated signal 

transduction pathways are responsible for coordinated regulation of gene expression 

among a population of osteoblasts. The primary response occurs in cells expressing 

appropriate receptors for externally provided cues, such as growth factors. Growth factor 

binding to its receptor leads to the intracellular production of second messengers, which 

in turn can be shared with adjacent cells via gap junctions, thereby promoting the same 

response in neighboring cells (i.e., even when those cells lack the appropriate receptor). 

The identification of signal transduction cascades working synergistically with Cx43-

based gap junctions suggests that one role of gap junctions may be to amplify typical 

growth-factor induced responses. Moreover, as the carboxy-tail of connexins may act as a 
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signaling center by binding to components of various signaling complexes (Bivi et 

al.,2011), the mediators of the second messengers may be closely associated with gap 

junctions. For example, Ras, a mediator of the ERK pathway, is known to associate on 

the inner leaflet of the plasma membrane and could associate with gap junctions (Stains 

and Civitelli, 2005). Moreover, PKCδ, a known mediator of FGF2 signaling, was recently 

shown to physically associate with the carboxy-tail of Cx43 (Niger et al., 2010). 

In chapter 2, I provided evidence that Cx43 activity strongly correlated with 

levels of sema3d expression. However, since sema3d expression is in a different 

population of cells, it is uncertain how cx43 present in the blastema could influence 

sema3d expression in the lateral compartment.  I suggest two models to address this 

question (reviewed in Ton and Iovine, 2013). First, Cx43-GJIC may cause changes in 

gene expression in the cx43-positive compartment that lead to the secretion of an 

unidentified growth factor. This growth factor may bind to its receptor on the adjacent 

cells (i.e. skeletal precursor cells) and cause an increase in sema3d expression in the 

lateral compartment (Figure 4.1a). Such a mechanism may be revealed by continued 

examination of genes identified from the microarray analysis (described in Ton and 

Iovine, 2012). There is also another possibility that a junctional complex that may 

regulate sema3d transcriptional expression. For example, Cx43 channels could physically 

bind to tight junction components interacting with transcription factors in the neighboring 

cell to control downstream gene expression (reviewed in Vinken et al., 2012). If this is 

the case, we need to investigate which tight junctional complex that can bind to Cx43. 
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We also need to identify potential transcription factors that could bind to the complex in 

turn regulate sema3d.  

For the  second model, I propose that heterotypic gap junctions (i.e. when each 

cell contributes a connexon composed of different connexins) exist between cells of the 

blastema and the skeletal precursor cells (Figure 4.1b). Our data suggest that the two 

population of cells in the medial and lateral compartments may use Cx43 based gap 

junction to communicate with the surrounding environment activating signaling pathways 

that could alter cell cycle (for growth) and cellular differentiation (for joint). This 

hypothesis is consistent with the requirement of smedinx-11 during planarian 

regeneration (smedinx is one type of connexin (called innexin in planarian) gene (Oviedo 

and Levin 2007). In our scenario, Cx43 activity in the medial compartment could now 

directly transmit signals that influence gene expression in the lateral skeletal precursor 

cells via GJIC. Expression of a connexin gene has not been identified in the lateral 

compartment. However, since the zebrafish genome has at least 37 connexin genes 

(Eastman et al., 2006), one may still be found. This latter model, if true, may represent an 

in vivo example of second messengers traveling from one cell population to another in 

order to coordinate changes in gene expression.  

4.3 How is Cx43 activity regulated? 

Zebrafish joints occur in the intramembraneous ossification (Flores et al., 2004; 

Kang et al., 2004; Yan et al., 2005), unlike synovial joints which occur in the 

cartilage/endochondral skeleton (Pacifici et al., 2006). Although mechanisms that 

regulate joint formation in zebrafish are still largely unknown, studies shows that joint 
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morphogenesis in chicks and mouse begins with a condensation of a subset of 

mesenchymal cells (Eames et al., 2003; Pacifici et al., 2006). We identified a similar 

condensation of mesenchymal cells early in joint development of fin regeneration (Sims 

et al., 2009). In chapter 3, it was shown that changes in Cx43 activity located in the 

blastema influence joint gene expression in the lateral skeletal precursor cells. In 

addition, cx43-KD and plxna3-KD experiments rescue the irregular pattern of evx1 

expression in alf 
dty86

 (chapter 3). Thus, we believe that Cx43 could be the main regulator 

for joint formation. In addition, Cx43 rescues joints by regulating Sema3d-PlxnA3 

signaling to rescue evx1 expression. Further, our initial data support the hypothesis that 

Cx43 suppresses joint formation. It follows that cx43 expression must be reduced to 

permit joint formation. To test this hypothesis, we first attempted to evaluate joint 

morphology over time.   

Previously, our study shows that the morphology of young versus mature joints 

can be clearly distinguished (Sims et al., 2009; Figure 4.2). Since the fin grows from a 

proximal to distal direction, new joint and new tissue can be found in the distal end of the 

fin. Thus, a young joint is located distally and can be detected as a single row of cells that 

appears as condensations of ZNS5-positive cells. At this time, bone matrix remains 

uninterrupted; we refer to this as presumptive joint. Shortly thereafter as joint cells 

transition to more mature morphology, physical separation of bone matrix occurs. The 

mature joint appears more proximal as two rows of cells where each row flanks a joint 

(Figure 4.2). We next examined joint morphology over time (i.e. 48 hpa to 144 hpa). The 

first young joint appears at 87 hpa in the third fin ray. Mature joints appear by 96 hpa. 

Next, we attempted to correlate cx43 expression with joint morphology. We performed 
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whole mount ISH, cryo ISH, and qRT-PCR to examine this correlation. Indeed, we 

observed the appearance of first young joint that is correlated with the decreased level of 

cx43 gene expression (Figure 4.3; Table 4.1). We thus concluded that transient reduction 

in cx43 expression correlated with presumptive joints, supporting our previous hypothesis 

that Cx43 suppresses joint formation.  

From chapter 3, we established an evx1-dependent joint pathway (evx1-dlx5a-

mmp9) that is regulated by Cx43 activity. We next attempted to correlate changes in joint 

gene expression with the timing of joint formation. We predicted that evx1 expression 

will be up-regulated as cx43 expression gets down-regulated. Indeed, we found that the 

level of evx1 expression is up-regulated at 87 hpa (Figure 4.4). Expression of other genes 

downstream of evx1 genes (dlx5a and mmp9) are also correlated with changes in cx43 

expression through time. For example, dlx5a expression is expanded at 87 hpa. 

Interestingly, the level of mmp9 peaks a bit later at 96 hpa (Figure 4.4). MMP9 is a 

matrix metalloproteinase (MMP) protein. It is possible that mmp9 becomes up-regulated 

later in concert with the formation of physical separation of the bone matrix. Future 

studies are required to determine if this is the case. Taken together, our final data suggest 

that Cx43 activity is negatively correlated with the expression of joint markers, especially 

with evx1 expression (Figure 4.5). These data provide insights into how joints become 

premature in sof 
b123

 and how joints fail in alf 
dty86

. Premature joints may occur due to the 

lower level of cx43, which ultimately relieves the inhibition of the evx1-dependent joint 

pathway too early. Joint failure may occur due to the high level of cx43, which is rarely 

reduced sufficiently to relieve the inhibition on evx1 expression.  
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It is interesting that while cx43 mRNA expression has a modest reduction at 87 

hpa, the level of Cx43 protein appears little to no different compared with other time line 

(Figure 4.6). Taken this result into consideration, we wish to explore Cx43 localization 

through time to locate the position of Cx43 relative to whether it is at either the 

cytoplasm or at the plasma membrane. Since studies show that gap junction channel is 

functional once Cx43 assembles at the plasma membrane (Lampe et al., 2000; Jordan et 

al., 1999), we predict that Cx43 protein could be cytoplasmic at 87 hpa. To test this, we 

will first examine localization of Cx43 within time course (72 hpa, 87 hpa and 96 hpa) by 

utilizing transgenic fish; Tg(b-actin:HRAS-EGFP)vu119 that has reporter c-Ha-Ras gene 

(GTPase) fused to eGFP for  plasma membrane visualization (generous gift from Dr. 

Poss; original construct from Lila Solnica-Krezel lab, Vanderbilt University). 

Localization of Cx43 at specific time line thus will be determined by using antibodies 

against Cx43 (red) in the Ras transgenic fish that is used as membrane marker (green). 

Under the confocal microscope, we will then look for red and green signals whether they 

are co-localized or separated reflecting whether Cx43 is cytoplasmic or at the membrane. 

In addition, we wish to explore the roles of phosphorylation over time. Several 

studies show direct roles of phosphorylation in connexins that are involved in 

intracellular communication have different distinct roles (reviewed in Laird 2005). For 

example, there is abundant evidence showing that phosphorylation events are involved in 

marking connexin proteins (i.e. Cx43) for degradation thus increasing the rate of turnover 

(reviewed in Laird 2005). However, other research shows that phosphorylation events do 

not appear to be a pre-requisite for degradation. For example, study shows Cx43-GFP 

fused construct appears fully functional at the plasma membrane and is still 
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phosphorylated within live mammalian cells (Jordan et al., 1999). Further, 

phosphorylation events through Akt activation rescue the gap junction from potential 

degradation (Dunn et al., 2012). In MDCK cell line, activation of Akt phosphorylates 

Cx43 in turn results in gap junction stabilization (Dunn et al., 2012). Perhaps 

phosphorylation occurring at different residues could lead to different outcomes seen in 

these studies. Thus, we wish to explore phosphorylation events  during the regeneration 

time course (72 hpa, 87 hpa and 96 hpa) by using phosphor-specific-antibodies against 

specific residues at the C-terminal of Cx43 that have potential to be phosphorylated. 

These future studies will provide physical evidence to explain when/where Cx43 based 

GJIC channels get modified and whether phosphorylation events at different residues 

occurring at a specific time could be one of the reasons causing the downstream events 

(i.e. joint inhibition).  

My graduate work has focused on defining tangible Cx43-dependent pathways 

that regulate skeletal morphogenesis. I have revealed the connection between Cx43 and 

Sema3d signaling pathways that regulate growth and skeletal patterning in fin 

regeneration. Upstream events that could regulate Cx43 still remain under questions. 

FGF4 signaling in the developing limb bud has shown to be responsible for cell-cell 

communication (i.e. Cx43-GJIC in the posterior mesenchyme cells at the tip of the bud) 

(Makarenkova et al., 1997). Further, FGF signaling is commonly known to contribute to 

fin regeneration (reviewed in Poss 2010). Thus, we speculate that FGF signaling might 

function upstream of Cx43 in zebrafish fin regeneration. Moreover, in recent years, 

several studies have showed evidence of micro RNAs (miRNA) that have potential 

functions to regulate Cx43. For example, miRNA-206 targets Cx43 to regulate osteoblast 
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differentiation in primary osteoblast cell lines (Inose et al., 2009).  In zebrafish heart 

regeneration, cx43 is the target of miR-133 (Yin et al., 2012). Interestingly miR-133 may 

have an additional role in zebrafish fin regeneration. Study shows that when miR-133 is 

increased, fin regeneration is attenuated. Fgf signaling can alter miR-133 expression to 

facilitate cell proliferation in the blastema and tissue renewal (Yin et al., 2008).  It is still 

unknown whether cx43 is the target in this scenario. In addition, it is reported that more 

than one micro-RNAs could target several potential genes to directly regulate fin 

regeneration (Thatcher et al., 2008), suggesting that micro RNAs indeed play essential 

roles for regeneration. Thus, at least one micro RNA acts upstream of Cx43 and whether 

or not miR-133 regulates cx43-dependent phenotypes remains for us to find. 

Most studies in regenerative field focus on pluripotent stem cells in vitro as the 

potential application to replace lost or damaged tissues with new ones. However, to gain 

a complete understanding of regeneration, researchers must study the processes in vivo. 

Several in vitro studies of bone and joint development have demonstrated central roles of 

Cx43 in skeletal development (Plotkin and Bellido 2013). For example, Cx43 serves as a 

scaffold regulator for osteoblast survival and its activity (reviewed in Plotkin and Bellido 

2013). Cx43 also represents as a mediator for other intercellular signal transduction such 

as calcium signaling that eventually influences downstream effects (reviewed in Rossello 

and Kohn 2009). Here, I have revealed the connection between Cx43 and Sema3d 

signaling pathway that in turn regulates cell proliferation and differentiation for growth 

and skeletal patterning in vivo.  Several extensive studies have mainly utilized classical 

approaches such as conduction, induction and cell transplantation to enhance cell 

differentiation and tissue regeneration (reviewed in Rossello and Kohn 2009). Recently, 
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researchers have begun to focus on paracrine signals secreted by different populations of 

cells. For example, they developed a new strategy by co-culturing vascular endothelial 

cells with osteoblasts in a three-dimensional system in a silk fibroin scaffold (reviewed in 

Grellier et al., 2013). They think that if they have a better understanding of biological 

processes underlying cell-cell communication between these two populations, they would 

be able to improve vascularization in a bone substitute to enhance the survival of cells. 

They also think that with this strategy live grafts will not only substitute when implanted 

but can repair defected bone, providing a good implication to vascular bone tissue 

engineering. In our scenario, we hope that once we understand how Cx43 is regulated, 

what regulates Cx43, and how communication is achieved between the two populations 

of cells (i.e. the medial compartment and the lateral compartment), it might present some 

new knowledge in regeneration in addition to new strategies for the bone tissue 

engineering. 
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4.4 Figures 

 

Figure 4.1 Examples of how Cx43-dependent GJIC may influence gene expression in 

the regenerating fin. (a) Up-regulation of cx43 in the blastema (red) may lead to the 

secretion of a growth factor that can interact with its receptor located on adjacent skeletal 

precursor cells (green), leading to increased sema3d expression. (b) Heterotypic gap 

junctions may exist between cells of the blastema and skeletal precursor cells, permitting 

the direct exchange of secondary messengers. These second messengers may influence 

sema3d expression. Reviewed in Ton and Iovine, 2013. 
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Figure 4.2: Joint morphology in zebrafish fin rays. Cartoon depicts joint morphology 

at 5 dpa. The youngest (newest) joint (joint 1) is located distally, seen as a single row of 

cells. Fins grow in a proximal-distal axis as joints become more mature. Mature joint 

(joint 3) appears under two rows of cells.     
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Figure 4.3: First young joint is detected when cx43 is down-regulated. Upper panel: 

First joint is detected at 87 hpa. Middle panel: Whole mount in situ hybridization (ISH) 

shows cx43 down-regulated at 87 hpa. Bottom panel: In situ hybridization (ISH) on cry-

sections show cx43 expression reduced in the mesenchymal compartment.   
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Figure 4.4: Expression of joint gene markers are coordinated with Cx43 activity. In 

situ hybridization (ISH) on cryo-sections shows up-regulation in evx1 expression and the 

expansion of dlx5a expression at 87 hpa, while cx43 expression is downregulated. The 

expression of mmp9 is slightly higher at 96 hpa since it is required for the physical 

separation of joint cells when they start to mature. Whole mount ISH also shows this 

correlation of the joint markers with cx43 expression (Data not shown).  
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Figure 4.5: Cx43 activity negatively corelated with evx1 expression. Graph shows 

when first young joint is detected at 87 hpa, cx43 expression is down-regulated while 

evx1 expression becomes up-regulated, confirming our hypothesis that Cx43 suppresses 

joint formation.  



 

114 
 

  
 

Figure 4.6: Level of Cx43 protein is slightly reduced at 87 hpa. Western blot shows 

different level of Cx43 protein through time. Cx43 has 3 phosphorylation sites P0, P1, 

and P2. Tubulin was used for control.  
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72 hpa 87 hpa 96 hpa 

∆Ct (Ct cx43 - Ct ker4) 

 

3.27 

2.89 

3.16 

 

5.41 

4.49 

4.24 

 

4.23 

3.39 

3.98 

 
 High ∆Ct values indicate low gene expression   

 

Table 4.1: cx43 is normally down-regulated at time of joint initiation. qRT-PCR 

shows ∆Ct of cx43 at 87 hpa is one to two cycles later compared with 72 hpa and 96 hpa.  
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Conclusions 

Research from the Iovine lab has suggested that Cx43 coordinates cell proliferation with 

joint formation. Using genetics approach and functional test (i.e. morpholino mediated 

gene knockdown), I have identified a major signaling pathway, Sema3d, that acts 

downstream of cx43 mediating cx43- dependent phenotypes. Data also elucidates an 

evx1-dependent joint pathway that acts and mediated by Cx43-Sema3d-Plxna3 signaling. 

Further, Cx43 activity appears correlated with joint gene expression that ultimately 

permits joint formation. Overall, this dissertation has contributed to a better 

understanding about the influence of Cx43 based gap junctional activity on semaphorin 

signaling leading to downstream effects such as skeletal growth and patterning. Both 

connexins and semaphorins are widely expressed in human tissues. In addition, 

semaphorins have been become a drug target since they are showed to be key players in 

many human pathologies.  Thus the coordination between connexins and semaphorins 

during skeletal morphogenesis should be explored further to provide novel understanding 

of mechanistic pathways required during skeletal morphogenesis.  
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