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ABSTRACT 
 

 

Gap junctions (GJs) are channels that traverse the plasma membrane of neighboring cells 

and provide direct intercellular communication (GJIC) in multi-cellular organisms.  GJIC is a 

prerequisite for coordinated development, differentiation and tissue function; disruption of 

which can cause disease. Post-translational modification is essential for regulation of GJ 

trafficking, gating, internalization, and degradation. In the dissertation work presented here 

(1) I show the role of clathrin-mediated endocytosis (CME) on acute Cx43 (a GJ protein) GJ 

internalization. I treated primary pulmonary artery endothelial cells (pPAECs) with CME 

inhibitors after vascular endothelial growth factor (VEGF) stimulation and analyzed 

internalization patterns of GJs. VEGF treatment of endothelial cells leads to rapid 

internalization of GJs. I found that pharmacological inhibition of CME during VEGF 

treatment leads to GJs remaining in the plasma membrane, suggesting CME as the acute GJ 

internalization pathway. (2) I elucidated the ubiquitin-mediated regulatory mechanism of 

Cx43 GJ internalization and degradation. I utilized mutational analysis to identify two lysine 

residues that are K63-polyubiquitinated in the Cx43 C-terminal domain that are necessary 

for GJ internalization. Mutating these residues results in loss of K63-polyubiquitination, 

accumulation of GJs in the plasma membrane, and longer Cx43 protein half-life. My analysis 

also revealed a link between phosphorylations known to decrease GJIC (pS368, 

pS279/pS282, and pS255) and K63-polyubiquitination that regulates GJ internalization. (3) 

Additionally, I used knockdowns of key autophagy proteins and immuno-colocalization 

analysis to identify autophagy as the pathway that degrades internalized Cx43 GJs. I found 

that Beclin-1 and p62/SQSTM1 knockdowns leads to increased AGJs and decreased 

colocalization of Cx43 AGJs with the autophagic membrane protein, LC3. p62 (a ubiquitin 
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binding protein) colocalization of Cx43 at GJs and AGJs strongly suggests a link between 

ubiquitination of GJs and autophagic degradation. Additionally, I found that p62 and LC3 

robustly colocalize with Cx43 in endogenous Cx43 expressing PAECs. Work during my 

Ph.D. contributed to four primary research articles (three published, one submitted), four 

review articles and one book chapter.  
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Chapter 1: 

Introduction 

 

1-1: Connexins and gap junctions  

Connexins (Cxs) are four pass transmembrane proteins containing two extracellular loops, 

one intracellular loop and an intracellular N- and C- terminus. Six connexins oligomerize to 

form a connexon, or hemichannel, which is trafficked to the plasma membrane (Figure 1). 

Connexons from adjacent cells dock to form a double membrane spanning channel, or gap 

junction (GJ), that connects the cytosol of the two cells. This connection allows for the free 

passage of ions, small metabolites, and signaling molecules. GJ channels cluster to form 

paracrystalline arrays known as GJ plaques. In humans there are 21 known Cx proteins that 

are identified by molecular weight. Cx43 is ubiquitously expressed and the most studied 

within the Cx family. Mutations of Cx43 lead to heart conditions such as ischemia and heart 

failure (Fontes et al., 2012) as well as bone malformations such as Occulodentodigital 

Dysplasia (ODDD syndrome)(Batra et al., 2012). Diseased heart muscle shows signs of 

Cx43 GJ displacement from intercalated discs and downregulation of Cx43 expression 

(Dupont et al., 2001; Jongsma and Wilders, 2000; Kostin et al., 2003; Matsushita et al., 1999; 

Peters et al., 1993). Therefore, studying Cx43 regulation on a cellular level is crucial to 

understanding how intercellular communication is involved in both developmental and 

diseased states. 

 

1-2: Cx43 post-translational modifications 
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Multiple regulatory mechanisms are known to impact the dynamics of Cx43, most notably 

post-translational modification by ubiquitination and phosphorylation.  Ubiquitination is the 

addition of an 8.5 kDa protein onto a lysine of a target protein by an enzyme cascade 

(Figure 2A). Seven internal lysines and an N-terminal methionine allow for multiple 

ubiquitin moieties to link end-to-end to create complex chains that dictate the fate of the 

target protein (Figure 2B) (Komander and Rape, 2012). Cx43 ubiquitination has been 

described for 20 years (Laing and Beyer, 1995; Laing et al., 1997). However, little is known 

about how many ubiquitins are attached, which lysine residues they are attached to, and what 

pathways they signal within the cell.  

Phosphorylation of Cx43 has been shown to be a regulatory mechanism for Cx43 

trafficking, GJ assembly, gating and plaque internalization and degradation (King and 

Lampe, 2005; Laird, 2005; Lampe and Lau, 2004; Moreno, 2005; Solan and Lampe, 2005; 

Solan and Lampe, 2007; Solan and Lampe, 2009; Warn-Cramer and Lau, 2004). These 

phosphorylation events lead to conformational changes within the C-terminus of Cx43 that 

allow for regulatory protein binding. Numerous phosphorylation events by Akt (protein 

kinase B), PKA (protein kinase A) and CK1 (casein kinase 1) regulate Cx43 trafficking and 

assembly (Cooper and Lampe, 2002; Park et al., 2006; Park et al., 2007) (Figure 3). 

Phosphorylation by PKC (protein kinase C), CDC2 (cell division cycle protein 2), MAPKs, 

and Src regulate GJ channel closure, inhibition of GJIC, and GJ internalization (Kanemitsu 

et al., 1998; Lampe et al., 1998; Lampe et al., 2000; Leykauf et al., 2003; Petrich et al., 2002; 

Polontchouk et al., 2002; Saez et al., 1997; Sirnes et al., 2009; Solan and Lampe, 2007; Solan 

and Lampe, 2008).  
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1-3: Gap junction internalization 

Removal of GJs from the plasma membrane requires internalization of the entire GJ into 

one cell as individual hemichannels are unable to physiologically uncouple once they form a 

GJ channel (Ghoshroy et al., 1995; Goodenough and Gilula, 1974). Internalized GJs are 

known as annular gap junctions (AGJs) or connexosomes (Falk et al., 2009; Gaietta et al., 

2002; Jordan et al., 2001; Lauf et al., 2002; Piehl et al., 2007). This process of internalization 

requires the clathrin-mediated endocytosis (CME) machinery (Baker et al., 2008; Fong et al., 

2013; Gumpert et al., 2008; Piehl et al., 2007) (Figure 4, steps 1-4). Additionally, cells can 

acutely internalize GJs in response to inflammatory agents or growth factors (Baker et al., 

2008; Fong et al., 2014; Leithe and Rivedal, 2004a; Thuringer, 2004). Vascular endothelial 

growth factor (VEGF) is an angiogenic growth factor that is highly specific for endothelial 

cells and was found to lead to GJ serine phosphorylation and rapid internalization in 

endothelial cells (Nimlamool et al., 2015). Additionally, pathways of VEGF activation has 

been reported to transiently disrupt gap junction intercellular communication (GJIC) in 

endothelial cells via activation of MAPK and c-Src activity (Kevil et al., 1998; Suarez and 

Ballmer-Hofer, 2001) and lead to Cx43 tyrosine phosphorylation in rat coronary capillary 

endothelium (Thuringer, 2004).  

 

1-4 Autophagic degradation of gap junctions 

Autophagic degradation involves the targeted sequestration of large protein complexes and 

cytoplasmic organelles (He and Klionsky, 2009). Targeted proteins are recruited to a growing 

double membrane structure known as the phagophore, which completely engulfs its cargo 

and becomes an autophagosome. The outer membrane of the autophagosome fuses with a 
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lysosome, allowing for complete degradation of the internal membrane and all of its 

contents. Our lab and others have shown that Cx43 AGJs are degraded by autophagy under 

physiological (Fong et al., 2012), starvation (Bejarano et al., 2012; Lichtenstein et al., 2010) 

and diseased states (Hesketh et al., 2010) (Figure 4, steps 5-10). The process of 

autophagosomal degradation relies on the ubiquitin binding protein, p62, to interact with 

and sequester targeted cargo to autophagosomes. Work from our lab and others have 

verified the colocalization/interaction of p62 with Cx43, bridging GJ ubiquitination with 

autophagic degradation (Bejarano et al., 2012; Fong et al., 2012; Lichtenstein et al., 2010).  

The chapters presented in this dissertation cover several steps of internalization and 

degradation of GJs. Chapters 2 and 3 contribute to steps 1-4 and Chapter 4 contributes to 

steps 5-10 in Figure 4.  
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Figures 

 
 
Figure 1: Gap junction structure. GJ channels form by the head-on docking of two 
hemichannels or “connexons,” each assembled and trafficked to the PM by one of the two 
contacting cells. Connexons are assembled from six four-pass transmembrane proteins 
termed “connexins” (Cxs). Adapted from (Thévenin et al., 2013). 
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Figure 2: Ubiquitination. A) Ubiquitin targeting cascade. E1 (ubiquitin activating enzyme) 
binds to ubiquitin (Ub) in an ATP-dependent process. E1 transfers ubiquitin to E2 
(ubiquitin conjugating enzyme), which moves the ubiquitin moiety to the lysine (K) of the 
target protein. E3 (ubiquitin ligase) is bound to the target protein and aids in the transfer of 
ubiquitin from E2 to the target substrate and in its covalent attachment. B) lysine residues of 
the ubiquitin amino acid sequence involved in the formation of polyubiquitin chains. 
Ubiquitin has 76 amino acids, eight of which are involved in forming polyubiquitin chains. 
Of the seven lysines (K), K6, K11, K29, and K48 linkages lead to proteasomal degradation, 
whereas K63 linkages lead to trafficking, endocytosis, endo-/lysosomal and phago-
/lysosomal degradation, transcription, and DNA repair. The functions of K27 and K33 
linkages have yet to be elucidated. In addition to the seven lysines, methionine 1 (M1) also 
can link ubiquitin moieties together to form linear chains. The COOH-terminal glycine (G) 
residue is responsible for the covalent linkage of the ubiquitin moiety to the lysine of the 
target protein. Adapted from (Thévenin et al., 2013). 
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Figure 3: Kinases involved in the regulation of the Cx43 life cycle. Forward trafficking of 
Cx43 monomers from the ER to the Golgi apparatus may be regulated through Akt 
phosphorylation (and interaction with 14-3-3 protein) (left). Trafficking of connexons toward 
the PM is regulated through phosphorylation by PKA, whereas assembly of PM-localized 
connexons into newly synthesized channels in GJ plaques is regulated via CK1 
phosphorylation. Src, PKC, and MAPK activation can be achieved through the activation of 
the EGF receptor (EGFR) in an EGF- or TPA-dependent manner (right). MAPKs (i.e., 
ERKs, JNKs, or p38) are activated through Ras, Raf, and MEK (pathway 1). Src can be 
activated directly by the EGFR, which in turn can activate ERK5 through MEKK2 (pathway 
2). Src can also activate PKC through diacylglycerol (DAG) that is generated by 
phospholipase C (PLC)-mediated phosphatidylinositol 4,5-bisphosphate (PIP2) cleavage 
(pathway 3). PKC can also be activated directly by TPA. Activated kinases (Src, MAPKs, 
ERK5, and PKC) regulate downregulation of GJIC, channel closure, and possibly 
internalization, formation of annular GJs (AJGs), and degradation through either 
autophagosomal and/or endo-/lysosomal pathways (middle). CDC2 phosphorylates Cx43 at 
the onset of mitosis, also leading to GJ internalization and degradation (Thévenin et al., 
2013).  
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Figure 4: Schematic representation of the proposed steps that lead to GJ internalization (1-
3), AGJ vesicle formation and fragmentation (4, 5), and AGJ vesicle degradation by phago-
/lysosomal (6-10) and endo-/lysosomal (11-15) pathways based on the present and previous 
work by others and us (Fong et al., 2012). 
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Chapter 2: 

VEGF-mediated internalization of Connexin43 GJs requires clathrin-mediated endocytosis 

(from Nimlamool, Kells Andrews, and Falk, 2015) 

 

Contribution: My contribution to (Nimlamool et al., 2015) is summarized in Figure 5 and 6. 

I was responsible for establishing an essential protocol to block clathrin-mediated 

endocytosis (CME) by pharmacological inhibition upon reviewer request. I used Alexa568-

conjugated transferrin as a means to determine efficiency of endocytosis after addition of 

Dynasore, Pitstop 2, Ikarugamycin, and Hypertonic medium to endothelial cells that were 

pre-treated with vascular endothelial growth factor (VEGF). The resulting blockage of CME 

with the aforementioned CME inhibitors leads to decreased internalization of Cx43 GJs 

during VEGF treatment (Figure 5). The addition of this data to the manuscript allowed us 

to conclude that VEGF-induced internalization of Cx43 GJs relies on the CME pathway. 

Figure 6 shows a positive control for Alexa568-conjugated transferrin uptake of cells under 

untreated, VEGF, and Hypertonic conditions. Alexa568-conjugated transferrin is taken up in 

cells via CME. Blockage of CME results in a loss of Alexa568-conjugated transferrin signal, 

as seen under hypertonic medium conditions (Figure 6).   

 

2-1: Abstract 

Gap junction intercellular communication (GJIC) is essential for multi-cellular life. Gap 

junctions (GJs) provide a physical connection to neighboring cells and allow for the passage 

of signals between cells. Several growth factors, including vascular endothelial growth factor 

(VEGF), have been reported to disrupt cell-cell junctions and to abolish GJIC.  However, 
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the mechanism of decreased GJIC upon inflammatory mediators has not fully been 

elucidated. Here we show that acute internalization of GJs during VEGF stimulation is 

dependent on clathrin-mediated endocytosis (CME) using pharmacological inhibitors of 

CME.  

 

2-2: Introduction 

Aberrant function of GJs and reduction of cell-cell coupling via GJs has been associated 

with many pathological conditions, including cancer (Chang et al., 2003; Cronier et al., 2009; 

Leithe et al., 2006; Simon, 1999; Sulkowski et al., 1999). To maintain normal cell-to-cell 

communication, recruitment of newly synthesized GJ channels along the outer edge of GJ 

plaques and simultaneous removal of older channels from plaque centers are precisely 

regulated (Dunn and Lampe, 2014; Falk et al., 2009; Gaietta et al., 2002; Lauf et al., 2002; 

Rhett and Gourdie, 2011).  Dynamic assembly and degradation of GJs correlates with the 

short half-life of Cx proteins of 1-5 hours determined in situ as well as in cultured cells 

(Beardslee et al., 1998; Berthoud et al., 2004; Falk et al., 2009; Fallon and Goodenough, 

1981).  A characteristic feature of GJs is that docked double-membrane spanning GJ 

channels cannot be separated into individual, single-membrane spanning hemi-channels 

(connexons) under physiological conditions (Ghoshroy et al., 1995; Goodenough and Gilula, 

1974).  However, cells can constitutively turn over GJs either by internalizing small double-

membrane domains from central areas of plaques (Cone et al., 2014; Falk et al., 2009; Gaietta 

et al., 2002; Jordan et al., 2001), or by internalizing entire plaques or large portions of plaques 

(Piehl et al., 2007).  Moreover, cells can acutely internalize GJs in response to inflammatory 

agents or growth factors (Baker et al., 2008; Fong et al., 2014; Leithe and Rivedal, 2004a; 



 

13 

Thuringer, 2004).  Earlier studies have shown that GJ turnover utilizes the clathrin-mediated 

endocytosis (CME) machinery (Gilleron et al., 2011; Gumpert et al., 2008; Huang et al., 

1996; Larsen et al., 1979; Naus et al., 1993; Nickel et al., 2013; Nickel et al., 2008; Piehl et al., 

2007), and internalization results in the formation of cytoplasmic double-membrane GJ 

vesicles, termed annular gap junctions (AGJs) or connexosomes (reviewed in (Falk et al., 

2014; Ogawa et al., 2005; Su and Lau, 2014; Thévenin et al., 2013).  

Vascular endothelial growth factor (VEGF) is an angiogenic growth factor that is highly 

specific for endothelial cells.  VEGF-specific tyrosine kinase receptors, VEGFR-1 (Flt-1), 

VEGFR-2 (Flk-1/KDR), and VEGFR-3 (Flt-4, in lymphangiogenesis) activate several 

intracellular signaling pathways upon VEGF binding (de Vries et al., 1992).  Proliferation 

and migration of endothelial cells is primarily mediated by VEGFR-2 (Waltenberger et al., 

1994).  Activation of VEGF receptors promotes phosphorylation of a number of 

downstream proteins in endothelial cells, including phospholipase Cγ (PLCγ) (Takahashi et 

al., 2001), phosphatidylinositol 3-kinase (PI3-kinase) (Qi and Claesson-Welsh, 2001), and 

guanine 5' triphosphate and (GTP)ase-activating protein (Suzuma et al., 2000).  Furthermore, 

VEGF induces protein kinase C (PKC), which results in an increase in intracellular calcium 

ions, and stimulates inositol-1,4,5-triphosphate accumulation (Brock et al., 1991).  VEGF has 

also been reported to transiently disrupt GJIC in endothelial cells via the activation of 

VEGFR-2, which activates MAPK and c-Src activity (Kevil et al., 1998; Suarez and Ballmer-

Hofer, 2001).  Additionally, in 2004 it was reported that the VEGF-induced disruption of 

GJIC correlated with the rapid internalization of Cx43 and its tyrosine phosphorylation in rat 

coronary capillary endothelium (Thuringer, 2004).  
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Potential mechanisms including post-translational modifications of Cx43 such as 

phosphorylation or ubiquitination that may be important for VEGF-induced inhibition of 

GJIC, and whether VEGF-mediated inhibition of GJIC involves GJ internalization have not 

been investigated.  Elucidating the mechanisms that down-regulate GJIC in response to 

VEGF is important for e.g. understanding the biology of cancer development including 

changes in cell cycle progression, angiogenesis, and tumor cell metastasis. Here we use  

pharmacological inhibition of CME to show that the rapid internalization of Cx43 GJs is 

blocked when CME is inhibited.  

 

2-3: Results 

2-3-1: VEGF-induced GJ internalization is clathrin-mediated.   

After treatment of primary pulmonary artery endothelial cells (PAECs) endogenously 

expressing Cx43 with VEGF for 15 min, Nimlamool et al. 2015 found a rapid internalization 

of Cx43 GJs from the plasma membrane  (Nimlamool et al., 2015). The observed GJ 

internalization occurred in response to VEGF-treatment triggered by the phosphorylation of 

Cx43 in GJs at serines 368, 279/282, 255, and 262. Previous studies in our and other 

laboratories have revealed that Cx43 GJs are internalized utilizing the clathrin-mediated 

endocytosis (CME) machinery (Baldwin and Thurston, 2001; Fong et al., 2013; Fong et al., 

2014; Gilleron et al., 2011; Gumpert et al., 2008; Nickel et al., 2013; Piehl et al., 2007).  We 

therefore reasoned that VEGF-induced Cx43 GJ internalization is also clathrin-mediated.  It 

has been established that hypertonic conditions can efficiently prevent the budding of 

clathrin-coated vesicles from the plasma membrane and that this eventually will significantly 

inhibit clathrin-mediated endocytosis (Ferrara, 2004; Hansen et al., 1993; Heuser and 
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Anderson, 1989; Wu et al., 2001).  We therefore inhibited CME by exposing PAECs to 

hypertonic culture medium (0.45 M sucrose) before and during VEGF-exposure.  As shown 

in Figure 5A, c, and quantified in Figure 5B, VEGF-induced Cx43 GJ internalization was 

almost completely inhibited under these hypertonic culture conditions when compared to 

normal conditions (Figure 5A, a-c, B).  Since transferrin receptor endocytosis is known to 

be dependent on clathrin-mediated endocytosis (Motley et al., 2003), Alexa568-conjugated 

transferrin uptake was used as a control to verify that our conditions successfully blocked 

clathrin-mediated endocytosis.  Significant inhibition of Alexa568-transferrin uptake was 

observed under these conditions as well (Figure 6).  Similar results were obtained when 

VEGF-treated cells in addition were incubated with other known CME-inhibitors such as 

dynasore, a dynamin-specific small molecule inhibitor (Macia et al., 2006), Pitstop 2, a small 

molecule inhibitor that inhibits both clathrin-dependent and independent endocytic 

processes (Dutta et al., 2012), or Ikarugamycin, a macrocyclic antibiotic also known to block 

CME (Luo et al., 2001), also resulting in significant inhibition of GJ internalization (Figure 

5A, d-f). These results suggest that VEGF-mediated GJ internalization is also clathrin 

driven. 

 

2-4: Discussion 

These results demonstrate that VEGF stimulation of endothelial cells causes Cx43 GJ 

internalization via CME. In a larger context, these results combine with those from 

Nimlamool et al. 2015 to demonstrate that VEGF-treatment induces the phosphorylation of 

Cx43 at serines 255, 262, 279/282, and 368 by MAPK and PKC that correlates with GJIC 

inhibition and Cx43-based GJ internalization (Nimlamool et al., 2015).   
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Integrity of blood vessel walls must be maintained precisely to prevent the leakage of plasma 

components and blood cells into surrounding tissues, while simultaneously permitting 

extravasation of leukocytes and other immune cells at sites of inflammation.  GJs are one 

type of dynamic intercellular junction located at cell-cell contacts that regulate the selective 

permeability of endothelial cells.  VEGF is a potent endothelial cell mitogen with a 

significant role in regulating angiogenesis (Ferrara, 2004).  VEGF has been reported to 

disrupt GJIC in endothelial cells (Kevil et al., 1998; Suarez and Ballmer-Hofer, 2001; 

Thuringer, 2004); however, underlying molecular mechanisms were not characterized.  We 

investigated cellular and molecular effects of VEGF-induced GJ reorganization and 

characterized relevant signaling pathways in primary pulmonary artery endothelial cells 

(PAECs) that express high levels of endogenous Cx43 and VEGF receptors.  Hypertonic 

conditions and incubation of cells in Dynasore, Pitstop 2, or Ikarugamycin, known potent 

inhibitors of CME (Dutta et al., 2012; Hansen et al., 1993; Heuser and Anderson, 1989; Luo 

et al., 2001; Macia et al., 2006; Wu et al., 2001), significantly inhibited internalization (Figure 

5, 6).  This suggests that VEGF-mediated GJ internalization is also clathrin driven, as has 

been characterized before for GJ internalization occurring under various other conditions 

(Baker et al., 2008; Cone et al., 2014; Fong et al., 2013; Gilleron et al., 2009; Gumpert et al., 

2008; Nickel et al., 2013; Piehl et al., 2007).   

This data contributes to the first study that reports that Ser255, Ser262, Ser279/282, and 

Ser368, well-known Cx43 MAPK and PKC target sites, are specifically phosphorylated in 

response to VEGF stimulation (Nimlamool et al., 2015), and that phosphorylation on all or 

on a subset of these sites induces CME-mediated GJ internalization (Figure 5,6).  
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Stimulation with growth factors such as VEGF, EGF and PDGF, inflammatory mediators 

such as thrombin and endothelin, and with phorbol esters (TPA and derivatives, analogs of 

the second messenger molecule diacylglycerol [DAG] that activate PKC), or ischemia, 

wounding or oncogene activation are all known to efficiently down-regulate GJIC (Kevil et 

al., 1998; Pahujaa et al., 2007; Postma et al., 1998; Sirnes et al., 2009; Solan and Lampe, 2014; 

Suarez and Ballmer-Hofer, 2001; Thuringer, 2004; Warn-Cramer and Lau, 2004). For some 

stimulants (EGF, VEGF, thrombin, endothelin, PDBu, a TPA derivative) concomitant GJ 

internalization has now been shown (Baker et al., 2008; Cone et al., 2014; Fong et al., 2014; 

Leithe and Rivedal, 2004a).  Based on these observations, we postulate that inhibition of 

GJIC in general is accompanied by GJ internalization that is initiated by specific Cx43 C-

terminal phosphorylation events as described above.  Elucidating in detail the molecular 

signals that trigger GJ internalization and turnover will be critical for understanding the 

many essential and dynamic roles of GJs in physio-/pathology. 

 

2-5: Materials and methods 

2-5-1: Materials 

Recombinant human vascular endothelial growth factor-165 (VEGF-165, VEGF-A) was 

purchased from Millipore (Cat. No. GF315, Billerica, MA, USA). Dynasore was from Tocris 

Bioscience (Cat. No. 2897), Pitstop 2 was from Abcam (Cat. No. AB120687), and 

Ikarugamycin was from Biomol (Cat.  No. El313). Rabbit polyclonal anti-Cx43 antibody 

(Cat. No. 3512). Hoechst 33342, DAPI, and Alexa568-conjugated Transferrin (Cat. No. 

T23365) were from Invitrogen (Grand Island, NY, USA). 
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2-5-2: Cell culture 

Primary porcine pulmonary artery endothelial cells (PAECs) were purchased from Cell 

Applications (Cat. No. P302, San Diego, CA).  PAECs were cultured in DMEM 

supplemented with 10% FBS, 1.0% L-glutamine, 100 U/mL penicillin, and 100 mg/mL 

streptomycin in humidified atmosphere at 37˚C, 5% CO2.  Confluent cells were incubated in 

serum-free medium for 3 hours before exposure to VEGF.   

 

2-5-3: Immunofluorescence  

PAECs were grown on glass cover slips coated with poly-L-lysine and then were left 

untreated or treated with 100 ng/ml VEGF. Cells were fixed and permeabilized with -20˚C-

cold methanol for 10 min, blocked with 10% FBS/PBS for 30 min, and incubated with 

1:200 of an anti-Cx43 polyclonal antibody at 4˚C, overnight.  After three PBS washes, cells 

were incubated with 1:500 secondary antibodies (Alexa488-conjugated goat anti-rabbit, and 

Alexa568-conjugated goat anti-mouse) for 1 h at RT.  Cell nuclei were counter-stained with 

1µg/ml Hoechst 33342, or 1µg/ml DAPI.  Cells were mounted using Fluoromount-G™ 

(SouthernBiotech, Cat. No. 0100-01).  Observations were performed on a Nikon EclipseTE 

2000-U inverted fluorescence microscope equipped with 40x and 60x, Plan-Apochromat, 

NA1.4 oil-immersion objectives (Nikon, Tokyo, Japan).  Quantitative image analyses were 

performed using ImageJ software (National Institutes of Health, USA). 

 

2-5-4: Endocytosis inhibition assays 

PAECs grown to confluency on poly-L-lysine coated cover glasses were treated with 100 

ng/ml VEGF for 15 min at 37˚C in Hepes-buffered and serum-free DMEM without or with 
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the presence of 0.45M sucrose.  To inhibit CME, cells were treated with 100 ng/ml VEGF 

for 15 min at 37˚C in serum-free DMEM containing 30 μM Pitstop 2, 80 μM Dynasore, or 4 

μM Ikarugamycin.  Cells were fixed and immuno-stained with anti-Cx43 antibodies and 

visualized using fluorescence microscopy.  Transferrin was used as a positive control to 

determine efficiency of CME inhibition. Cells were incubated with 50 µg/ml Alexa568-

conjugated transferrin in the absence or presence of 0.45M sucrose (for 45min) or 

pharmacological CME inhibitors (for 15min) at 37°C. Cells were then fixed and mounted.  

Immunofluorescence images were captured as described above. 

 

2-5-5: Statistical analyses 

Unpaired student t-tests were performed to analyze intracellular and plasma membrane 

fluorescence intensities (Figure 5).  Data are presented as mean ± SD.  In all analyses, a p-

value (p*<0.05, p**<0.01, and ***p<0.001) was considered statistically significant.  NS is 

depicted for non-significant results. 
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Figures 

 

Figure 5: VEGF induces Cx43 GJ internalization via clathrin-mediated endocytosis (CME).  
(A) PAECs were (a) untreated, or treated with VEGF for 15 min at 37˚C in Hepes-buffered, 
serum-free DMEM without (b) or with (c) 0.45M sucrose (Hypertonic Medium, a potent 

inhibitor of endocytosis), or with inhibitors of CME (d) 80 μM Dynasore, (e) 30 μM Pitstop 

2, or (f) 4 μM Ikarugamycin before fixation and immuno-staining cells for Cx43. 
Representative images acquired with identical camera settings are shown.  (B) Quantitative 
analyses of plasma membrane localized Cx43 GJ fluorescence of 7 independent 
measurements.  Note significant inhibition of Cx43 GJ internalization in cells in which CME 
was blocked (published in (Nimlamool et al., 2015)).    
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Figure 6: Hypertonic Medium efficiently inhibits clathrin-mediated endocytosis. PAECs were 
left untreated (a), or treated with VEGF for 15 min at 37˚C in Hepes-buffered serum-free 
DMEM, without (b) or with 0.45M sucrose (c) (a potent inhibitor of CME) before 
incubation with Alexa568-conjugated transferrin (red, a protein whose uptake is known to be 
CME dependent), and fixation.  Cell nuclei were stained with DAPI (blue).  Note drastically 
reduced uptake of transferrin in cells placed in hypertonic medium (published in (Nimlamool 
et al., 2015)). 
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Chapter 3: 

Phosphorylation-induced K63-polyubiquitination of Connexin 43 is essential for  

gap junction internalization 

 (Kells Andrews and Falk, in review) 

3-1: Abstract 

Gap junctions (GJs) assembled from connexin (Cx) proteins play a pivotal role in cell-cell 

communication by forming channels that connect the cytosol of adjacent cells.  Connexin43, 

the best-studied Cx, is ubiquitously expressed in vertebrates.  While phosphorylation is 

known to regulate multiple aspects of GJ function and turnover, much less is known about 

the role ubiquitination plays in these processes.  Here we demonstrate that Cx43 in GJs and 

internalized GJs is K63-polyubiquitinated on K264 and K303.  Relevant Cx43 K to R 

mutants exhibited impaired internalization.  Intriguingly, ubiquitin-deficient Cx43 mutants 

accumulated as hyper-phosphorylated polypeptides, indicating that phosphorylation triggers 

subsequent ubiquitination.  Phospho-specific Cx43 antibodies revealed that upregulated 

phosphorylation affected serines 368, 279/282, and 255, well-known regulatory PKC and 

MAPK phosphorylation sites.  Together, these novel findings demonstrate that Cx43 in GJs 

is K63-polyubiquitinated, ubiquitination is necessary for GJ internalization, and that K63-

polyubiquitination is induced by Cx phosphorylation as is typical for phosphodegron-

regulated protein degradation.   

 

3-2: Introduction 

Ubiquitination, the addition of a small, 76 amino acid, 8.5kDa protein to a target protein is 

known to play multiple functions, from influencing protein structure and function to 
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trafficking and especially protein degradation (Komander and Rape, 2012; Nguyen et al., 

2013; Ravid and Hochstrasser, 2008).  Multiple types of ubiquitination (mono- and several 

different types of poly-ubiquitination) are known to execute these numerous functions 

(Komander and Rape, 2012). Ubiquitin (Ub) is covalently attached to lysines (K) on target 

proteins by an enzyme cascade consisting of an E1 (Ub-activating), E2 (Ub-conjugating), 

and E3 (Ub-ligating) enzyme (Chen and Sun, 2009).  Ub can also be removed from its target 

via proteases termed deubiquitinases (DUBs).  Ub has seven internal lysines (K6, K11, K27, 

K29, K33, K48 and K63), all of which (and also the N-terminal methionine) are capable of 

forming linkages to the C-terminal glycine of subsequent Ub moieties, forming polyubiquitin 

(polyUb) chains. The two best studied polyUb chains are K48-polyUb, which is known to 

lead to proteasomal degradation, and K63-polyUb, which -besides other functions- is known 

to signal endo- and phago-lysosomal degradation (Komander and Rape, 2012).  Ub-mediated 

degradation is often regulated via protein phosphorylation on a specific site (termed 

phosphodegron).  Phosphorylation on one or more residues induces substrate changes 

(conformational or other) allowing the subsequent ubiquitination of target lysines that then 

triggers the degradation of the phosphorylated/ubiquitinated protein (Nguyen et al., 2013; 

Ravid and Hochstrasser, 2008).  Ubiquitination of gap junction (GJ) proteins, termed 

connexins (Cxs), has also been reported (Girao et al., 2009; Laing and Beyer, 1995; Laing et 

al., 1997; Leithe and Rivedal, 2004b; Ribeiro-Rodrigues et al., 2015) however published 

results are inconsistent making it difficult to reliably judge the types of ubiquitination and the 

role they may play in GJ function. 

Connexins (Cxs) are the four pass transmembrane protein components of GJs that serve as a 

pathway for intercellular communication by physically coupling cells together and allowing 
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the passage of small metabolites, signaling molecules, and ions.  Cxs have two extracellular 

loops, one intracellular loop, and an intracellular N- and C-terminus.  Six Cxs oligomerize to 

form a hemichannel or connexon, which is trafficked to the plasma membrane (PM) and 

docks with a hemichannel of an adjacent cell forming the complete GJ channel.  Accrual of 

multiple channels at the PM into clusters or two-dimensional arrays forms typical GJ 

plaques.  Interestingly, once hemichannels dock at the PM, they can no longer be 

physiologically separated (Goodenough and Gilula, 1974).  Therefore, in a process that 

requires the clathrin-mediated endocytic (CME) machinery, one of the two adjacent cells 

invaginates the GJ plaque forming an annular gap junction (AGJ) vesicle or connexosome in 

the cytoplasm of one of the coupled cells (Falk et al., 2009; Gaietta et al., 2002; Jordan et al., 

2001; Lauf et al., 2002; Piehl et al., 2007).  The AGJ is then trafficked for degradation by 

autophago-lysosomal (under physiological, pathological, and starvation conditions) (Bejarano 

et al., 2012; Fong et al., 2012; Hesketh et al., 2010; Lichtenstein et al., 2010) and possibly 

endo-lysosomal pathways under TPA (12-O-Tetradecanoylphorbol 13-Acetate, a 

Diacylglycerol analog) treatment (Fykerud et al., 2012; Leithe et al., 2009).  In humans, there 

are 21 different Cx proteins, which are identified by molecular weight.  Cx43 is the best-

studied Cx and is expressed in most tissues.  Mutations in Cx43 have been linked to such 

cardiac diseases as heart failure, ischemia, and hypertrophy (Fontes et al., 2012) and the 

developmental bone malformation Occulodentodigital Dysplasia (ODDD) (Batra et al., 

2012).  The regulation of Cx43 trafficking and turnover is therefore imperative for the study 

of human health and disease.  

Phosphorylation of Cx43 is well established and has been shown to be a regulatory 

mechanism for Cx43 trafficking, GJ assembly, gating, plaque internalization, and degradation 
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(Falk et al., 2016; Solan and Lampe, 2014; Thévenin et al., 2013).  Cx43 phosphorylation by 

Akt (protein kinase B), PKA (protein kinase A), and CK1 (casein kinase 1) is known to up-

regulate gap junction intercellular communication (GJIC), whereas phosphorylation by PKC 

(protein kinase C), CDC2 (cell division cycle protein 2), MAPKs, and Src down-regulate 

GJIC by closing GJ channels and internalizing GJ plaques (Falk et al., 2014; Kanemitsu et al., 

1998; Lampe et al., 1998; Lampe et al., 2000; Leykauf et al., 2003; Nimlamool et al., 2015; 

Petrich et al., 2002; Polontchouk et al., 2002; Saez et al., 1997; Sirnes et al., 2009; Solan and 

Lampe, 2007; Solan and Lampe, 2008).  However, whether phosphorylation is linked to 

Cx43 ubiquitination has not been established.   

Cx43 ubiquitination was initially discovered by Laing and Beyer in 1995 and characterized as 

a signal leading to Cx43 degradation by the proteasome (Laing and Beyer, 1995).  Later, the 

same group published evidence suggesting that ubiquitination plays a role in both 

proteasomal and lysosomal degradation of Cx43 (Laing et al., 1997).  Afterward, it was 

reported that Cx43 likely is modified by multiple mono-ubiquitinations (Girao et al., 2009; 

Leithe and Rivedal, 2004b), while more recent evidence suggests that Cx43 interacts with 

AMSH (associated molecule with the SH3 domain of STAM) (Ribeiro-Rodrigues et al., 

2015). AMSH is a DUB with specificity toward K63-polyubiquitinated proteins (McCullough 

et al., 2004; Sato et al., 2008), suggesting that Cx43 may also become K63-polyubiquitinated 

(Ribeiro-Rodrigues et al., 2015).  It is possible that the different discovered types of Cx43 

ubiquitination distinguish the degradation of single, misfolded Cx polypeptides (by the 26S 

proteasome) from the degradation of GJs and AGJs (by phago- and endo-lysosomal 

pathways). However a rigorous analysis of where and when ubiquitination occurs on Cxs and 

at which stages of its ‘life-cycle’ (Cx polypeptides, connexons, GJs, AGJs) has not been 
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performed; nor is it known what signals trigger potential Cx43 ubiquitination and whether 

Cx43 ubiquitination may have additional functions beyond its proteasomal degradation.  

Here, we used Ub-specific antibodies and generated Cx43 lysine to arginine mutations to 

investigate whether Cx43 ubiquitination occurs in GJs, what type of ubiquitination may 

occur, and whether Cx43 ubiquitination may be used as a signal for GJ internalization and 

degradation.  We found that two juxtaposed ubiquitination sites in the C-terminus of Cx43 

become K63-polyubiquitinated, ubiquitination is required for constitutive GJ internalization, 

and ubiquitination is triggered by phosphorylation on well-known Cx43 regulatory serine 

residues. These findings suggest that a phosphodegron regulates GJ internalization and 

degradation.  

 

3-3: Results 

3-3-1: Cx43 is K63-polyubiquitinated in gap junctions and internalized gap junctions 

To determine whether and what type of ubiquitination may occur on Cx43 in GJs, we 

immunostained endogenously expressed Cx43 in primary porcine pulmonary artery 

endothelial cells (pPAECs) with antibodies directed against Cx43 and different forms of Ub 

(Figure 7).  FK2 antibodies, which recognize both monoUb and polyUb, colocalized with 

Cx43 at GJ plaques (insert 1, marked with arrows) and AGJs (insert 2, marked with 

arrowheads) as shown in Figure 7A.  This suggests that Cx43 in GJs and AGJs can become 

ubiquitinated.  To address this question further we co-immunostained Cx43 in pPAECs with 

antibodies that detected only polyubiquitinated proteins (FK1).  We found that 

colocalization of Cx43 GJ plaques and AGJs with antibodies for polyUb alone was also 

evident (Figure 7B).  This result indicates that Cx43 in GJ plaques and AGJs can become 
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polyubiquitinated.  To test whether the detected polyubiquitin modification is K63-based (or 

at least K63-based polyubiquitination may occur in GJs) we again used co-immunostaining 

in pPAECs with an antibody that detects only K63-polyUb.  Again, robust colocalization of 

GJs and AGJs with the K63-polyUb antibody indicates that Cxs in GJs and AGJs can 

become K63-polyubiquitinated (Figure 7C).  Our finding correlates with the enzyme 

specificity of the E3 ubiquitin ligase, Nedd4-1 (neural precursor cell expressed 

developmentally down-regulated protein 4-1), which preferentially K63-polyubiquitinates its 

substrates (Kim et al., 2007), and has been found to ubiquitinate Cx43 (Girao et al., 2009; 

Leykauf et al., 2006).  Our data also correlates with recent biochemical evidence suggesting 

that Cx43 interacts with the K63 polyUb specific DUB, AMSH (Ribeiro-Rodrigues et al., 

2015).   

To further verify K63-polyubiquitination of Cx43 in GJs and AGJs, we performed Triton X-

100 (TX-100) insolubility assays with endogenously Cx43 expressing pPAECs and 

exogenously Cx43 expressing MDCK cells (not expressing endogenous Cxs) (Dukes et al., 

2011) to separate the TX-100 insoluble (GJs, AGJs) from the TX-100 soluble (Cxs, 

connexons) fractions based on a previously described method (Musil and Goodenough, 

1991).  Prior to lysis, cells were left untreated or treated with 20μM PR-619, a pan-DUB 

inhibitor, for 1.5 hours.  TX-100 soluble and insoluble fractions were analyzed via western 

blot and probed for Cx43 (Figure 8A).  Both TX-100 soluble and insoluble fractions 

contained a triplet of Cx43 corresponding to the fastest migrating form of Cx43 (P0) and the 

slower-migrating phosphorylated forms of Cx43, commonly referred to as P1 and P2.  TX-

100 insoluble fractions contained an extra band migrating at about 70kDa that was more 

prominent when DUBs were inhibited, indicating a potential ubiquitinated form of Cx43 in 
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the GJ fraction (Figure 8A, arrow).  When TX-100 insoluble fractions were probed for 

monoUb/polyUb (FK2), polyUb (FK1), and K63-polyUb (HWA4C4), a typical ladder of 

ubiquitinated higher molecular weight proteins was observed along with a single band 

migrating at about 70kDa (Figure 8B, arrows).  Since these 70kDa bands were more 

prominent in both the GJ and Ub blots when DUBs were blocked (Figures 8A, B), it 

suggests that blocking deubiquitination leads to accumulation of Cx43 ubiquitination at GJs.  

To provide further evidence that the 70kDa band indeed represents K63-polyubiquitinated 

Cx43, K63-polyubiquitinated proteins were immunoprecipitated from PAEC cell lysates 

using the K63-polyUb specific antibody (HWA4C4) and probed for Cx43 after western blot 

(Figure 8C, right panel).  Again, a Cx43 band around 70kDa was prominent after 

immunoprecipitation, showing that Cx43 appears to be K63-polyubiquitinated (Figure 8C, 

arrow).  In addition to the ubiquitinated form of Cx43, the non-ubiquitinated P0, P1/P2 

triplet (besides other undetermined bands) was observed after immunoprecipitation 

migrating at the typical ~40kDa molecular weight range, indicating that not all connexins 

within a connexon or a GJ are ubiquitinated.  pPAEC cell lysates probed for K63-

polyubiquitinated proteins and Cx43 were analyzed in control (Figure 8C, left panel).   

To examine whether K63-polyubiquitination also occurs in GJs when Cx43 was expressed 

exogenously, MDCK cells were transfected transiently with wild type Cx43 cDNA, lysed and 

fractionated as described above for pPAECs 24 hours post transfection.  The TX-100 

insoluble pellet was then used for K63-polyUb and Cx43 immunoprecipitations.  Bands 

corresponding to K63-polyubiquitinated Cx43 were detected in the GJ-containing pellet 

fraction when either Cx43 was precipitated and probed with K63-polyUb specific antibodies 

(Figure 8D, left panel) or K63-polyubiquitinated proteins were precipitated and probed 
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with Cx43 specific antibodies (Figure 8D, right panel).  Protein A-Sepharose beads alone 

and immunoprecipitation reactions without antibodies analyzed in parallel did not precipitate 

any proteins.  Along with our immuno-colocalization data, these results provide compelling 

evidence indicating that Cx43 in GJs and AGJs in both endogenously and exogenously Cx43 

expressing cells is K63-polyubiquitinated. 

 

3-3-2: Mutating a set of lysines in the Cx43 C-terminus leads to an accumulation of mutant 

Cxs and GJs in the plasma membrane 

To determine whether ubiquitination of Cxs in GJs plays a role in GJ internalization and 

which lysines in Cx43 GJs become ubiquitinated, we transiently transfected HeLa cells with 

rat Cx43 constructs containing a set of C-terminal lysine (K) to arginine (R) mutations (called 

K/R) in order to block ubiquitination.  We focused on mutating lysines in the C-terminus of 

Cx43 as this domain is highly post-translationally modified and is known to interact with 

numerous binding partners (Thévenin et al., 2013).  Mutant 6K/R, generated via 

mutagenesis, contains six lysines within the C-terminus (K258, K264, K287, K303, K345, 

and K346) mutated to arginines (Figure 9A, boxed blue and green).  Mutant 3K/R contains 

the central lysines K264, K287, and K303 mutated to arginines (Figure 9A, boxed green 

only).  24 hours post transfection, cells were fixed and immunostained using Cx43 

antibodies.  Both mutants trafficked to the plasma membrane and assembled into GJ plaques 

with equivalent efficiency compared to wild type, however cells expressing either 6K/R or 

3K/R mutants had noticeably larger GJ plaques compared to wild type (Figure 9B, left).  

Total GJ length and number per cell pair was measured using ImageJ, and when averaged 

confirmed that both mutants had significantly larger and more GJ plaques in their PMs that 
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also was reflected by a significant increase in total pixel number.  The average GJ 

size/number and corresponding fluorescence intensity per cell pair significantly increased 

approximately 1.5-2 fold in both mutants (6K/R and 3K/R increased to 8.60x106 ± 0.65 and 

10.20x106 ± 0.85, respectively; n=3) when compared to wild type (5.35x106 ± 0.58) (Figure 

9B, right).  Interestingly, the 6K/R and 3K/R mutants gave similar results, implying that the 

additional peripheral residues in the 6K/R mutant (K258, K345, and K346) do not become 

ubiquitinated.  A comparable result was obtained when equal amounts of cell lysates were 

analyzed and probed for Cx43 protein content in Cx-deficient MDCK cells expressing wild 

type and mutant Cx43 (Figure 9C).  MDCK cells were used here and in the following 

experiments due to higher transfection efficiency compared to HeLa cells.  Quantification of 

6K/R and 3K/R mutants resulted in 8.88 ± 2.70 and 7.71 ± 2.95 fold increases in total 

Cx43 polypeptide amounts compared to wild type, respectively (Figure 9C).  Intriguingly, 

both mutant proteins accumulated as hyper-phosphorylated forms (compare the 

pronounced appearance of all three Cx forms, P0, P1 and P2 in the mutants that are barely 

visible in the wild type Cx43 under these exposure conditions), suggesting that ubiquitination 

of Cx43 in GJs is required for GJ internalization, blocking ubiquitination impairs GJ 

internalization, and ubiquitination is induced by Cx43 phosphorylation. 

 

3-3-3: Cx43 K/R mutants exhibit significantly longer half-lives and accumulate as hyper-

phosphorylated polypeptides 

To further investigate the inhibitory effect of mutating lysine residues on GJ internalization, 

we analyzed the half-lives of K/R mutants expressed in Cx-deficient MDCK cells with 

pharmacological inhibition of protein translation.  Furthermore, we generated all possible 
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double and single mutants of lysines 264, 287, and 303 (termed K264/303R, K264/287R, 

K287/303R, K264R, K287R, and K303R) to determine if one or more lysines become 

ubiquitinated and are necessary to inhibit GJ internalization.  24 hours after transient 

transfection protein translation was blocked by treatment with 50μg/ml of cycloheximide.  

Cells were lysed 0, 1, 2, 3, 4, and 6 hours post cycloheximide addition and total wild type and 

mutant Cx43 protein levels were analyzed using western blots (Figure 10).  The half-life for 

wild type Cx43 was determined to be approximately 2.3 hours, correlating with the known, 

short 1-5 hours half-live described previously for Cx43 (Beardslee et al., 1998; Falk et al., 

2009; Fallon and Goodenough, 1981) (Figure 10A, top panel).  Unlike wild type, the 

protein levels of Cx43 in both 6K/R and 3K/R at 6 hours post cycloheximide treatment had 

only decreased to 75% of starting Cx43 levels (Figure 10A, middle and bottom panels).  

Using a linear fit, the half-lives of 6K/R and 3K/R mutants were extrapolated as app. 15.7 

and 13.1 hours, respectively, making the mutant half-lives 4-5 times longer than that of wild 

type Cx43.  Again, 6K/R and 3K/R half-lives were not significantly different from one 

another, further suggesting that lysines 258, 345, and 346 are not targets for Cx43 

ubiquitination in GJs, and play no direct role in GJ internalization.  Expression of double-

mutants (K287/303R, K264/303R, and K264/287R) resulted in a significantly increased 

half-live of all three mutants (app. 11.4, 6.6, and 7.7 hours, respectively), suggesting that at 

least two separate lysine residues become K63-polyubiquitinated (Figure 10B).  Finally, 

expressing the single lysine residue mutants again resulted in extended protein half-lives for 

K264 and K303 mutants (4.5 hours for each), while the half-life of the K287 mutant 

corresponded to the protein half-life of wild type Cx43 (2.5 hours) (Figure 10C).  As already 

shown in Figure 10C, relevant mutants (all except K287R) showed higher Cx43 protein 
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levels compared to wild type Cx43 and accumulated as hyper-phosphorylated variants 

(compare Figure 9C with Figure 10).  Taken together these results identified two 

juxtaposed lysine residues in the Cx43 C-terminal domain (K264 and K303) that apparently 

become K63-polyubiquitinated in Cx43 in GJs to mediate GJ internalization. 

 

3-3-4: Immunoprecipitation of Cx43 mutants confirms K63-polyubiquitination of K264 and 

K303 on Cx43 in GJs 

To confirm that K264 and K303 are indeed the residues that become K63-polyubiquitinated 

in Cx43 in GJs, we again expressed Cx43 wild type and relevant double and single K/R 

mutants (K264/303R, K264R, K287R, and K303R) in MDCK cells. Cells were fractionated 

into soluble (Cx, connexon) and pellet fractions (GJ, AGJ) using TX-100 extraction. Then, 

wild type and mutant Cx43 polypeptides were immunoprecipitated from the pellet and 

probed for the presence of K63-polyUb modification with K63-polyUb-specific (HWA4C4) 

antibodies (Figure 11).  Resulting Western blots showed that wild type as well as Cx43 

K287R mutant were K63-polyubiquitinated as indicated by the higher molecular weight 

band pattern (marked with asterisks in Figure 11B) (consistent with previously detected 

Cx43 patterns shown in Figure 8), while K264 and K303 double and single mutants were 

not.  Control lanes consisting of lysate plus Protein A-Sepharose beads, beads alone, or 

beads plus Cx43 antibody also did not precipitate any K63-polyubiquitinated proteins.  

Amounts of total Cx43 and of K63-polyUb proteins (with α-tubulin as a loading control) 

present as starting material in the cell lysates were analyzed in control (Figure 11A).  Taken 

together, these analyses confirm K63-polyubiquitination of K264 and K303 of Cx43 in 
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GJ/AGJs.  Our findings correlate with recent mass spectrometry evidence suggesting 

ubiquitination on Cx43 lysines 9 and 303 (Wagner et al., 2011).   

 

3-3-5: Preventing ubiquitination on K264 and K303 leads to hyper-phosphorylation of  

serines 368, 279/282, and 255 

As Cx43 ubiquitination-deficient lysine mutants accumulate as hyper-phosphorylated 

polypeptides, phosphorylation at specific sites in Cx43 appears to precede Cx43 

ubiquitination in GJs.  Phosphorylation of degrons allowing subsequent protein 

ubiquitination is a well-known signaling event that regulates protein degradation (Nguyen et 

al., 2013; Ravid and Hochstrasser, 2008).  To further investigate which residues in Cx43 GJs 

are phosphorylated preceding ubiquitination, we analyzed and quantified phosphorylation 

levels of S368, S279/S282, S255, and S262, specific Cx43 phosphorylation events known to 

down-regulate GJ mediated cell-to-cell communication (Thévenin et al., 2013).  MDCK cells 

were lysed 24 hours post transfection with wild type or K/R mutant constructs, and 

analyzed by western blots using Cx43 phospho-specific antibodies (Figure 12).  Amounts of 

phosphorylated S368 (pS368), S279/S282 (pS279/pS282), and S255 (pS255) Cx43 

polypeptides were significantly increased in all double and single K/R mutants with the 

exception of the non-ubiquitinated K287R mutant.  Increased phosphorylation of S262 

(pS262) was observed only in a few mutants (some mutants containing 287, and/or 303 K/R 

exchanges), suggesting that mutating K287 may cause additional GJ internalization-impairing 

side effects (see discussion).  Taken together, these results show that phosphorylation of 

S368, S279/S282, and S255 is significantly increased in all Cx43 mutants that harbor lysine 

to arginine exchanges on K264 and/or K303, strongly suggesting that phosphorylation on 
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one, or a combination of these serine residues, induces K63-polyubiquitination of Cx43 in 

GJs.   

 

3-4: Discussion 

Ubiquitination is a post-translational modification that plays an important role in regulating 

protein degradation.  Particularly, the additions of K48-linked and K63-linked polyubiquitin 

chains are well-known signals for targeting proteins and protein-complexes to either 

proteasomal or endo-/phago-lysosomal degradation (Komander and Rape, 2012).  Here, we 

report for the first time the identification of two juxtaposed lysine residues in the C-terminus 

of Cx43, K264 and K303, which become K63-polyubiquitinated in GJs and internalized 

AGJs, and that K63-polyubiquitination is required for efficient GJ internalization.  Our 

additional discovery that Cx43 ubiquitin-deficient lysine mutants accumulated as hyper-

phosphorylated proteins in the plasma membrane further indicates that Cx43 K63-

polyubiquitination is triggered by Cx43 phosphorylation.  Use of phospho-specific Cx43 

antibodies showed that hyper-phosphorylation occurred on S368, S279/S282, and S255, well 

characterized PKC and MAPK targets known to down-regulate GJIC (Fong et al., 2014; 

Kanemitsu et al., 1998; Lampe et al., 1998; Lampe et al., 2000; Leykauf et al., 2003; 

Nimlamool et al., 2015; Petrich et al., 2002; Polontchouk et al., 2002; Saez et al., 1997; Sirnes 

et al., 2009; Solan and Lampe, 2007; Solan and Lampe, 2008). 

K63-polyubiquitinated Cx43 migrated as a band of approximately 70 KDa molecular weight 

and as higher molecular weight complexes on SDS-PAGE gels (Figures 8, 11).  Although 

ubiquitinated proteins are known to not necessarily migrate on SDS-PAGE gels according to 

their molecular weight (Hospenthal et al., 2015), polyubiquitin chains in general are believed 
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to consist of at least 4 Ubs (Ravid and Hochstrasser, 2008).  Four Ubs plus the mol. weight 

of Cx43 add up to 77 kDa, which is relatively close to the migration pattern of the 

prominently detected band, suggesting that the K63-linked polyubiquitin chain added to 

Cx43 conforms to established criteria.  

Ubiquitination of Cx43 in order to facilitate its degradation has been known for some time  

(Girao et al., 2009; Laing and Beyer, 1995; Laing et al., 1997; Leithe and Rivedal, 2004b).  

Originally, ubiquitination of Cx43 was discovered as a signal for proteasomal degradation 

(Laing and Beyer, 1995), thus likely regulating the degradation of mis-folded or aberrantly 

oligomerized Cx43 polypeptides shortly after their biosynthesis in the ER.  The later 

discovery that ubiquitination may also play a role in the lysosomal degradation of Cx43 

(Laing et al., 1997) suggested that ubiquitination may also play a role in the degradation of 

oligomerized Cx43 complexes (connexons, GJ channels, and GJ plaques).  However, the 

type of ubiquitination, the lysine residues that become ubiquitinated, and the signals that may 

induce Cx43 ubiquitination in GJs to aid in their internalization and degradation remained 

elusive.  It is now well known that the type of Ub linkage conveys Ub signal specificity 

(Ikeda et al., 2010; Komander and Rape, 2012; MacGurn et al., 2012).  Specifically, exposure 

of a hydrophobic patch on Ub and flexibility of the Ub C-terminus rely on the type of 

polyUb chain conformation (e.g. K48-linked versus K63-linked polyUb chains) and thus 

determine Ub signal specificity (Ye et al., 2012).  Different E3 ligases add Ubs in a chain 

specific manner and thus determine the fate of the target protein by different cellular 

degradation machineries.  Nedd4-1, Wwp1, and Smurf2 (all three HECT ligases) as well as 

Trim21 (a RING ligase) have been described to interact with Cx43 (Basheer et al., 2015; 

Chen et al., 2012; Fykerud et al., 2012; Leykauf et al., 2006).  Of these, Nedd4-1 has been 
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found to preferentially interact with K63-polyubiquitinated proteins (Kim and Huibregtse, 

2009) and to interact with 283PPGY286 in Cx43 via its WW2 domain (Leykauf et al., 2006) (see 

Figure 13A) suggesting that this E3 ligase induces K63-polyubiquitination on Cx43 to aid in 

GJ internalization and degradation.  Indeed, phosphorylation of S279/S282 in vitro was 

recently found to increase the binding affinity of this E3 ligase for its Cx43 binding domain 

(Spagnol et al., 2016), further supporting the concept that Nedd4-1 K63-polyubiquitinates 

Cx43 in GJs to mediate their internalization and degradation.   

Cx43 domains known to be exposed to the cytoplasm when oligomerized into GJ channels 

(intracellular/I-loop and C-terminal [CT] domain) contain a large number of lysine residues 

(11 in the I-loop, 9 in the CT) that are all potential targets for ubiquitination (see Figure 

9A).  However, as all regulatory phosphorylation events occur in the Cx43-CT, we 

hypothesized that ubiquitination - if occurring in GJs – would occur in the CT as well.  In 

addition, the C-terminal region juxtaposed to the fourth transmembrane domain is known to 

harbor a microtubule binding site (Giepmans et al., 2001) and when mutated will likely 

interfere with Cx trafficking (Wayakanon et al., 2012).  We thus left the lysines located within 

this region (K234, K237, and K241) untouched as well.  Both mutants, with the 6 remaining 

C-terminal lysines mutated (6K/R), and the mutant with the 3 central lysines mutated 

(3K/R; K264, K287, K303) behaved indistinguishable, resulting in significantly increased 

mutant protein half-lives, the accumulation of hyper-phosphorylated Cx43 polypeptides, and 

larger GJ plaques in the plasma membrane (Figures 9, 10), suggesting that one or more of 

these 3 lysine residues become K63-polyubiquitinated.  Generating and examining all 

possible double and single mutants then indicated that two of the three lysine residues, K264 

and K303, can become K63-polyubiquitinated.  The result of Cx43 protein half-lives of 
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K264 and K303 single mutants were not as long as protein half-lives of the double lysine 

mutants (4.5 hours compared to 6.6 -11.4 hours, see Figure 10C, Table) argues that 

ubiquitination of only one lysine is not sufficient for normal GJ turnover (2.3 hours).  

Indeed, K63-polyubiquitination of K264 and K303 single mutants was not detected using 

K63-polyUb specific antibodies (Figure 11), suggesting that mutating one lysine residue may 

inhibit K63-polyubiquitination of Cx43 in GJs altogether. 

Phosphorylation of Cx43 by various kinases (PKC, CDC2, MAPKs, and Src) is well known 

to down-regulate GJIC by closing GJ channels (Fong et al., 2014; Kanemitsu et al., 1998; 

Lampe et al., 1998; Lampe et al., 2000; Leykauf et al., 2003; Nimlamool et al., 2015; Petrich 

et al., 2002; Polontchouk et al., 2002; Saez et al., 1997; Sirnes et al., 2009; Solan and Lampe, 

2007; Solan and Lampe, 2008) however a link between phosphorylation and ubiquitination 

has not been demonstrated.  More recent findings from our lab also provided evidence for a 

link between Cx43 phosphorylation and GJ internalization.  Specifically, phosphorylation of 

serines 368, 279/282, 255 (and in some cases 262) by PKC and MAPKs in response to 

epidermal- (EGF) and vascular endothelial growth factor (VEGF) stimulation has been 

linked to acute GJ internalization in mouse embryonic stem cells and pPAECs (Fong et al., 

2014; Nimlamool et al., 2015).  Additionally, S279/S282 phosphorylation-deficient Cx43 

mutants were shown to stabilize GJ plaques in human pancreatic tumor cells (Johnson et al., 

2013), and upon EGF stimulation in HeLa cells (Schmitt et al., 2014). Recently, Solan and 

Lampe (Solan and Lampe, 2015) and we (Falk et al., 2016) suggested a kinase program 

consisting of PKC, MAPKs, and Src that hierarchically phosphorylate Cx43 on serines 368, 

279/282 (and potentially 255 and 262), and tyrosine 247, respectively to spatiotemporally 

regulate GJ internalization.  Of these events, phosphorylation of S368 is of particular interest 



 

38 

as it has been found to preferentially localize to the center of GJ plaques (Cone et al., 2014), 

the region where GJ channel internalization occurs (Falk et al., 2009; Gaietta et al., 2002; 

Lauf et al., 2002).  Furthermore, S368 phosphorylation is known to be dependent on S365 

dephosphorylation (termed “gate keeper”), an event known to trigger a large conformational 

change of the Cx43-CT that affects the upstream region that harbors the above described 

ubiquitination sites (Solan and Lampe, 2007).  Phosphorylation occurring at specific sites in a 

protein resulting in conformational changes allowing subsequent ubiquitination is a well-

established signaling event known to regulate protein degradation (termed a phosphodegron) 

(Ravid and Hochstrasser, 2008; Wayakanon et al., 2012).  As our data show that 

phosphorylation of S368, S279/S282, and S255 occur prior to ubiquitination, and preventing 

ubiquitination on relevant lysine residues results in the build-up of hyper-phosphorylated 

mutant Cx43 protein and GJs in the plasma membrane, our findings suggest that similarly, 

phosphorylation of Cx43 induces K63-polyubiquitination that then triggers GJ 

internalization and degradation.  At this time, we do not know if all three phosphorylation 

events are required. However as S365 de-phosphorylation/S368 phosphorylation is linked to 

conformational Cx43-CT rearrangements (Solan and Lampe, 2007) and S279/S282 

phosphorylation is linked to enhancing Nedd4-1 binding (Spagnol et al., 2016), 

phosphorylation on at least these two sites appear to be linked directly to Cx43 K63-

polyubiquitination. 

How might K63-polyubiquitination of Cx43 induce GJ internalization and degradation?  

Previously, we and others have demonstrated that Cx43 in GJs and internalized GJs interacts 

with a protein, p62/SQSTM1, which sequesters AGJs to autophago-lysosomal degradation 

(Bejarano et al., 2012; Fong et al., 2012; Lichtenstein et al., 2010).  p62/SQSTM1 interacts 
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specifically with K63-polyubiquitinated substrates via its UBA (ubiquitin associated) domain  

(Seibenhener et al., 2004) to sequester targets for autophagosomal degradation (Bjorkoy et 

al., 2005; Pankiv et al., 2007).  Depleting cells of autophagy-associated proteins such as LC3, 

Beclin1, Atg5/Atg12, and p62/SQSTM1 by RNAi significantly impaired GJ degradation 

(Bejarano et al., 2012; Fong et al., 2012; Lichtenstein et al., 2010).  Thus, it is likely that Cx43 

K63-polyubiquitination sequesters internalized GJs for degradation.  In addition, as 

described above, we found that Cx43 binds AP-2 at two sites in its C-terminal domain to 

recruit clathrin and internalize GJs (Fong et al., 2013; Piehl et al., 2007).  However, clathrin 

may also be recruited by another group of adaptor proteins, termed clathrin associated 

sorting proteins, or CLASPs that specifically bind via a Ub-interacting motif (UIM) to a 

polypeptide sequence that is exposed in K63-polyubiquitin chains (Traub and Bonifacino, 

2013).  One such alternative adaptor, called Eps15, was found to bind to Cx43 and has been 

proposed to facilitate GJ internalization of GJs (Catarino et al., 2011; Girao et al., 2009).  

Thus, K63-polyubiquitination may also allow Eps15 to bind to Cx43, recruit clathrin and 

internalize GJs as an alternative to AP-2 (Falk et al., 2016; Falk et al., 2014).  

Taken together, our findings show that the two post-translational modifications 

(phosphorylation succeeded by K63-polyubiquitination) need to occur on Cx43 polypeptides 

in GJs to successfully internalize and turn over GJ channels and plaques; a combination of 

amino acid modifications that is typical for phosphodegron-mediated protein degradation 

mechanisms (Nguyen et al., 2013; Ravid and Hochstrasser, 2008).  Blocking K63-

polyubiquitination prevents efficient GJ internalization and leads to the accumulation of 

hyper-phosphorylated Cx43 and GJs in the plasma membrane (schemed in Figure 13B).  As 

E3-Ub specific small molecule inhibitors are available, their administration may prevent the 
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loss of GJs from intercalated discs as is typical for a number of acute heart diseases (Fontes 

et al., 2012). 

 

3-5: Materials and Methods 

3-5-1: cDNA constructs and mutagenesis  

Full-length wild type rat Cx43 cDNA was cloned into pEGFP-N1 vector (Clontech) as 

previously described (Falk, 2000).  To generate full length untagged wild type Cx43, an 

authentic TAA stop codon was re-introduced (Fong et al., 2013).  Untagged rat Cx43 mutant 

3K/R and 9K/R cloned into pcDNA3.1 were generously provided by Vivian Su and Alan 

Lau (Natural Products and Cancer Biology Program, Cancer Research Center of Hawaii, 

Honolulu, HI 96813) (Su et al., 2010).  Untagged 6K/R Cx43 mutant was generated by 

restoring K234, K237, and K241 from 9K/R by site-directed mutagenesis and adding a 

BglII restriction site for confirmation of mutagenesis.  Double and single K/R mutants were 

generated by restoring one or two of the remaining lysines 264, 287, and 303 from the Cx43 

mutant 3K/R using Quick Change Mutagenesis method (Stratagene, Santa Clara, CA).  

Forward recovery mutagenesis primers were as follows (arginine recovered codons are 

underlined, BglII site in bold): R234_237_241K recovery, 5’-G CTC TTC TAC GTC TTC 

TTC AAA GGC GTT AAG GAT CGC GTG AAG GGA AGA TCT GAT CC-3’; R264K 

recovery, 5’-CCA TCA AAA GAC TGC GGA TCT CCA AAA TAC GCC TAC TTC 

AAT GGC-3’; R287K recovery, 5’-CCT ATG TCT CCT CCT GGG TAC AAG CTG 

GTT ACT GGT GAC AGA AAC AAT TCC-3’; and R303K recovery, 5’-CC TCG TGC 

CGC AAT TAC AAC AAG CAA GCT AGC GAG CAA AAC TGG-3’.  PCR mutagenesis 

reactions were generated using proofreading Pfu Ultra II polymerase (Cat. No. 600670-51; 
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Stratagene).  Digestion of template cDNA with Dpn1 restriction endonuclease (Cat. No. 

R0176-S; New England Biolabs, Ipswich, MA) was followed by transformation into 

chemically competent DH5α E. coli cells (Cat. No. 18258-012; Invitrogen).  Sequencing was 

performed on all cDNA constructs to confirm the presence of intended mutations.   

 

3-5-2: Cell culture and transient transfections 

HeLa (gap junction deficient; Cat. No. CCL-2; American Type Culture Collection, Manassas, 

VA), Madine-Darby Canine Kidney (MDCK) (gap junction deficient; Cat. No. NBL-2; 

American Type Culture Collection), and primary porcine Pulmonary Artery Endothelial Cells 

(pPAECs) (expressing Cx43 and other Cxs, gap junction proficient; Cat. No. P302; Cell 

Applications, San Diego, CA) were maintained in low glucose Dulbecco’s Modified Eagle 

Medium (DMEM) (Cat. No. SH30021.01; HyClone, Logan, UT) supplemented with 50 

I.U/ml penicillin and 50μg/ml streptomycin (Cat. No.30-001-Cl; Corning, Manassas, VA), 

2mM L-glutamine (Cat. No. 25-005-C1; Mediatech, Manassas, VA), and 10% Fetal Bovine 

Serum (Cat. No. S11150; Atlanta Biologicals, Flowery Branch, GA) at 37˚C, 5% CO2, and 

100% humidity.  Cells were washed with 1x PBS and trypsinized with 0.25% trypsin with 

2.21mM EDTA (Cat. No. 25-053-Cl; Corning) for passage.  24-48 hours after passing, 60-

80% confluent HeLa and MDCK cells were transiently transfected with wild type and 

mutant constructs using Superfect (Cat. No. 301307; Qiagen, Hilden, Germany) or 

Lipofectamine2000 (Cat. No. 11668019; Invitrogen, Carlsbad, CA) reagents, respectively, 

according to manufacturer’s recommendations.   

 

3-5-3: Immunofluorescence staining and image analyses 
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pPAECs and HeLa cells were grown on pretreated poly-L-Lysine (Cat. No. P8920; Sigma, 

St. Louis, MO) coated glass coverslips in low glucose DMEM at 37˚C, 5% CO2, and 100% 

humidity.  Cells were fixed in 3.7% formaldehyde/PBS and permeabilized with 0.2% Triton 

X-100 (TX-100) (Cat. No. 3929-2; VWR, Radnor, PA) in PBS.  Cells were blocked in 10% 

FBS/PBS for 30 minutes at room temperature (RT) and incubated with primary rabbit 

polyclonal anti-Cx43 antibodies (Cat. No. 3512; Cell Signaling, Danvers, MA) diluted 1:500 

in 10% FBS/PBS at 4°C overnight.  Additionally, pPAECs were incubated with primary 

mouse monoclonal anti-monoUb and polyUb (FK2) (Cat. No. PW8810; Enzo, Farmingdale, 

NY), polyUb (FK1) (Cat. No. PW8805; Enzo), or K63-polyUb (clone HWA4C4) (Cat. No. 

PW0600; Enzo) antibodies diluted 1:200 in 10% FBS/PBS at 4°C overnight.  Cells were 

incubated in secondary antibodies (goat anti-rabbit Alexa Fluor488 and goat anti-mouse 

Alexa Fluor568 (Cat. No. A11008 and A11031, respectively; Molecular Probes/Invitrogen, 

Eugene, OR) diluted 1:200 or 1:500 in 10% FBS/PBS, respectively, for 1 hour at RT.  Cells 

were also stained with 1 μg/ml 4′,6-diamidino-2-phenylindole (DAPI) (Cat. No. D1306; 

Molecular Probes).  Coverslips were rinsed in distilled water and mounted using 

Fluoromount-G (Cat. No. 0100-01; Southern Biotechnology, Birmingham, AL).  pPAEC 

and HeLa cells were imaged using a Nikon Eclipse TE2000E wide-field inverted 

fluorescence microscope equipped with 40x NA 1.3 Plan Fluor and 60x NA 1.4 Plan-

Apochromat oil-immersion objectives (Nikon Instruments, Melville, NY) and a forced-air 

cooled Photonics CoolSnap® HQ CCD camera (Roper Scientific, Duluth, GA).  Images 

were acquired using MetaVue software version 6.1r5 (Molecular Devices, Sunnyvale, CA).  

To quantify GJ plaque size/number, GJ plaques were outlined using the freeform tool in 

ImageJ version 1.43u (National Institutes of Health, Bethesda, MD) and total pixel 
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number/area was quantified for 73, 98 and 83 cell pairs, expressing Cx43 wild type, 6K/R, 

and 3K/R, respectively.   

 

 3-5-4: Triton X-100 solubility assays 

Prior to lysis, pPAECs were treated with 20μM of the pan-DUB inhibitor, PR-619, (Cat. No. 

662141; EMD Millipore, Billerica, MA) for 1.5 hours and cultured at 37°C, 5% CO2 and 

100% humidity.  To separate Cx proteins and connexons from plasma membrane GJs, TX-

100 solubility assays were performed based on a method described by Musil and 

Goodenough (Musil and Goodenough, 1991).  MDCK cells transiently transfected with wild 

type or Cx43 K/R constructs or pPAECs were used.  24 hours post transfection (MDCKs), 

or 48 hours after seeding (pPAECs), cells were briefly washed in ice cold PBS.  Cells were 

lysed on ice for 15 min in 400μL pre-chilled lysis buffer containing 50mM Tris-HCl, pH7.4 

(Cat. No. BP 153-1; Fisher Bioreagents, Fair Lawn, NJ), 150mM NaCl (Cat. No. S671-3; 

Fisher Chemicals, Fair Lawn, NJ), 1mM EDTA (Cat. No. 161-0729; Biorad, Hercules, CA), 

0.5% sodium deoxycholate (Cat. No. D6750; Sigma), 1% Triton X-100 (Cat. No. VW3929-2; 

VWR), and 1% Igepal (Cat. No.18896; Sigma). The buffer was supplemented with the 

following protease and phosphatase inhibitors: 1mM protease inhibitor cocktail (Cat. No. 

P8340; Sigma), 1mM β-glycerol phosphate (Cat No. 157241; MP Biomedicals, LLC, Solon, 

OH), 1mM sodium orthovanadate (Cat. No. 450234; Sigma), 20mM N-ethylmalemide (Cat. 

No. E1271; Sigma), and 10mM 1,10-phenanthroline monohydrate (Cat. No. AC130130050; 

ACROS Organics, NJ).  Lysates were transferred to Eppendorf® tubes and centrifuged at 

10,000xg for 5 min at RT to pre-clear cell lysates.  180μL of each resulting supernatant was 

centrifuged at 100,000xg in a Beckman Coulter Airfuge® ultracentrifuge for 10 minutes.  
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For western blot analysis, 100,000xg supernatants (TX-100 soluble fractions) were mixed 

with 4x SDS sample buffer and pellets (TX-100 insoluble fractions) were resuspended in 2x 

SDS sample buffer and boiled for 5 minutes.   

 

3-5-5: SDS-PAGE and Western blot analyses 

Immunoprecipitation, protein half-life, and phosphorylation analyses samples were loaded 

onto 10% SDS-PAGE minigels (Biorad).  Proteins were transferred onto nitrocellulose 

membranes and blocked for 1 hour at RT in 5% non-fat dry milk/TBST or 5% bovine 

serum albumin (BSA) (Cat. No. A7906; Sigma)/TBST.  Antibodies were diluted in 5% 

BSA/TBS as follows: rabbit anti-Cx43, rabbit anti-K63-polyUb (Cat. No. 05-1308; EMD 

Millipore), rabbit anti-Cx43 pS279/pS282, rabbit anti-Cx43 pS255, rabbit anti-Cx43 pS262 

(Cat. No. sc-12900-R, sc-12899-R and sc-17219-R, respectively; Santa Cruz, Dallas, TX) and 

rabbit anti-Cx43 pS368 (Cat. No. 3511S; Cell Signaling) at 1:2000, and mouse anti-α-tubulin 

primary antibodies at 1:5000.  Blots were incubated with primary antibodies at 4°C 

overnight, then washed three times with TBST.  Secondary HRP-conjugated goat anti-rabbit 

or goat anti-mouse antibodies (Cat. No. 81-6520 or 81-6120, respectively; Zymed, San 

Francisco, CA) were diluted 1:5000 and secondary HRP-conjugated mouse anti-rabbit light 

chain specific antibodies (Cat. No. 211-032-171; Jackson ImmunoResearch Laboratories, 

Inc., West Grove, PA) were diluted 1:15,000.  Blots were incubated in secondary antibodies 

for 1 hour at RT.  Protein bands were detected using Pierce® ECL2 Western Blotting 

Substrate (Cat. No. 80196; Thermo Scientific, Rockford, IL) and KODAK® BioMax® 

Light Autoradiography Film (Cat. No. 1788207; Carestream Health, Rochester, NY).  Cx43 
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protein amounts were quantified using NIH ImageJ and normalized to the corresponding α-

tubulin intensities.   

 

3-5-6: Cx43 protein half-life analyses 

24 hours post transfection, MDCK cells were treated with 50μg/ml cycloheximide (Cat. No. 

C655; Sigma) for 0, 1, 2, 3, 4, and 6 hours at 37°C, 5% CO2 and 100% humidity.  Cells were 

lysed in 1x SDS sample buffer at each time point and boiled for 5 minutes.  Samples were 

separated on 10% SDS-PAGE gels using western blot protocols described below.  Blots 

were probed with rabbit anti-Cx43 antibody, then stripped with stripping buffer and 

stringently washed in TBS/0.1% Tween20 (Cat. No. BP337; Fisher Bioreagents) (TBST) 

before re-probing with mouse anti-α tubulin antibodies (Cat. No. 9026; Sigma).  Cx43 

protein intensities were quantified using NIH ImageJ and normalized to the corresponding 

α-tubulin intensities.   

 

3-5-7: Immunoprecipitations 

For immunoprecipitation in PAECs, cells were washed in ice cold PBS and lysed in fresh 

lysis buffer without TX-100 for 15 minutes on ice.  Cell lysates were transferred to 

Eppendorf® tubes and centrifuged at 10,000xg for 5 min at RT to pre-clear cell lysates.  For 

immunoprecipitation in MDCK cells after TX-100 solubility assay, 100,000xg pellets (TX-

100 insoluble fraction) from MDCK cells transiently transfected with Cx43 wild type or K/R 

mutants were resuspended in fresh lysis buffer without TX-100 and sonicated 6 times (1 

second/pulse), with 5 minute intervals on ice in between pulses.  Immunoprecipitation 

samples were incubated with rabbit anti-Cx43 or mouse anti-K63-polyUb antibodies 
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adsorbed to protein A-Sepharose beads (Cat. No. 3391; Sigma) for 2 hours at RT while 

rotating.  After incubation, beads were washed in lysis buffer and immunoprecipitated 

protein was eluted from beads with 2x SDS sample buffer and boiled for 5 minutes.   

 

3-5-8: Statistical analyses 

One-way ANOVA analyses with Post-Hoc Bonferroni corrections were performed on data 

sets including GJ plaque size measurements (Figure 12B), Cx43 wild type and mutant 

protein levels (Figure 12C), and amounts of phosphorylated Cx43 in K/R mutants (Figure 

15) in SPSS software.  Unpaired student’s t-tests were performed to analyze Cx43 protein 

half-lives (Figure 13) in Excel.  All data are presented as mean ±SEM.  In all analyses, p-

values of *p<0.05, **p<0.005, and ***p≤0.0005 were considered statistically significant.   

  



 

47 

Figures 

 

 

Figure 7: Cx43 is K63-polyubiquitinated in GJs and AGJs.  Endogenously Cx43-

expressing primary pulmonary artery endothelial cells (pPAECs) were immunostained 

with antibodies toward Cx43 (green) and ubiquitin specific antibodies (red).  Below each 

panel, magnified insets highlight GJs (in brackets and arrows) and AGJs (arrowheads).  

(A) Cx43 antibodies robustly colocalized with monoUb and polyUb antibodies (FK2) at 

GJs and AGJs, suggesting that Cx43 ubiquitination may regulate GJ internalization.  (B) 

The polyUb antibody (FK1) and Cx43 antibody also colocalized at GJs and AGJs, 

providing evidence that polyubiquitination plays a role in GJ internalization.  (C) Cx43 

antibodies also colocalized with K63-polyUb antibodies (HWA4C4) at GJs and AGJs, 

suggesting that K63-polyubiquitination of Cx43 regulates GJ internalization and 

degradation.  Scale bar = 20μm.   
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Figure 8: Cx43 is K63-polyubiquitinated in TX-100 insoluble fractions.  (A) 

Endogenously Cx43-expressing pPAECs were untreated or treated with 20μM DUB 

inhibitor, PR-619, for 1.5 hours prior to lysis.  Cells were lysed in buffer containing TX-

100 and separated into TX-100 insoluble (GJ/AGJ) and soluble (Cx, connexons) fractions 

by ultracentrifugation.  Fractions were analyzed via western blot and probed using Cx43, 

mono/polyUb (FK2), polyUb (FK1), and K63-polyUb (HWA4C4) antibodies. A band 

suggestive of ubiquitinated Cx43 was evident at about 70kDa in the TX-100 insoluble 

fraction (arrow).  (B) TX-100 insoluble fractions probed with mono/polyUb (FK2), 

polyUb (FK1), and K63-polyUb (HWA4C4) antibodies also show the band around 

70kDa, indicative of Cx43 ubiquitination (arrows).  Ubiquitination (70kDa and higher 

molecular weight) was more pronounced in DUB inhibited fractions.  (C) 

Immunoprecipitation of K63-polyubiquitinated proteins from pPAEC lysates shows that 

Cx43 is among the K63-polyubiquitinated proteins. The band around 70kDa corresponds 

with the TX-100 pattern observed upon blockage of DUBs (arrow).  Note that non-

ubiquitinated Cx43 is also immunoprecipitated, indicating that not all connexins within a 

GJ/channel are ubiquitinated.  (D) Immunoprecipitations of Cx43 and K63-

polyubiquitinated proteins from TX-100 insoluble fractions derived from MDCK cells 

transiently expressing Cx43 were probed for K63-polyUb and Cx43, respectively.  

Resulting blots show the 70 KDa band (arrow), as well as higher molecular weight bands 

of K63-polyubiquitinated Cx43 along with unmodified Cx43.    
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Figure 9: Cx43 mutants with a set of lysine residues mutated to arginines accumulate as 

hyper-phosphorylated Cxs and GJs in the PM.  (A) Amino acid sequence of human Cx43 

with lysines (K) in the intracellular loop and the C-terminus (potentially accessible to 

ubiquitination in GJs) highlighted in red.  Lysines mutated to arginines (R) in the C-

terminus of Cx43 are boxed in blue and green for mutant 6K/R and green only for mutant 

3K/R.  (B) Cx-deficient HeLa cells were transfected with wild type or K/R constructs and 

immunostained with rabbit anti-Cx43 primary and Alexa488 conjugated secondary 

antibodies.  GJs were outlined and corresponding pixel counts were used to determine GJ 

length and number.  Both K/R mutants show significantly larger and more GJs compared 

to wild type.  p-values ≤0.05 were considered significant.  Scale bar = 20μm.  (C) Total 

Cx43 protein levels of wild type, 6K/R and 3K/R mutants exogenously expressed in 

MDCK cells were analyzed by western blot.  Phosphorylation of Cx43 leads to multiple 

electrophoretic forms, commonly known as P0, P1 and P2. In both mutants app. 8 times 

the number of Cx43 protein accumulated including a large amount of hyper-

phosphorylated  (P1, P2) variants compared to wild type.    
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Figure 10: Cx43 K/R mutants with critical lysine residues mutated to arginines have 

significantly extended protein half-lives. MDCK cells transfected with Cx43 wild type or 

mutant constructs were treated with 50µg/ml cycloheximide for 0, 1, 2, 3, 4, or 6 hours 

followed by cell lysis and western blot analyses.  (A) Quantification of Cx43 protein 

levels reveal a half-life of Cx43 wild type of 2.3 hours, with app. 20% of starting Cx43 

protein remaining after 6 hours of cycloheximide treatment.  Mutants 6K/R and 3K/R had 

significantly increased half-lives extrapolated to 15.7 and 13.1 hours, respectively.  (B) 

Double K/R mutants all had significantly extended half-lives.  (C) Mutating 264 and 303 

-together or independent of one another- also resulted in increased half-lives, whereas the 

half-live of the K287R mutant was unaffected (2.5 hours).  α-tubulin was probed as a 

loading control.  Extrapolated half-lives were calculated using a linear fit curve.    
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Figure 11: K264R and K303R mutants no longer get K63-polyubiquitinated.  Cx43 

antibodies were used to immunoprecipitate Cx43 from MDCK cells transfected with wild 

type, K264R, K287R, K303R and K264/303R constructs.  Cells were lysed in TX-100 

containing buffer and separated into soluble and insoluble fractions.  Samples were 

analyzed via western blot and probed for K63-polyUb.  (A) Cell lysates were probed for 

K63-polyubiquitination, Cx43 and α-tubulin as a loading control.  (B) 

Immunoprecipitation of the pellet fraction with Cx43-specific antibodies reveals the 

higher molecular weight band pattern typical of ubiquitination when probed with the 

K63-polyUb-specific antibodies.  None of the mutants, except K287R, showed a similar 

higher molecular weight pattern indicating that both K264 and K303, but not K287, 

become K63-polyubiquitinated.  
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Figure 12: Cx43 K/R mutant proteins are hyper-phosphorylated on S368, S279/S282, and 

S255.  Wild type, single and double K/R mutants were analyzed via western blot and 

probed using antibodies directed against total Cx43, and with Cx43-phosphospecific 

antibodies directed against phosphorylated S368 (pS368), S279/S282 (pS279/pS282), 

S255 (pS255), and S262 (pS262); Cx43 phosphorylation events known to down-regulate 

GJIC.  α-tubulin was probed as a loading control.  Densitometry analyses of Cx43 were 

normalized to α-tubulin.  Significant increases in pS368, pS279/p282, and pS255 were 

detected whenever K264 and K303 were mutated.  Accumulation of Cx43 

phosphorylated on serine 262 (pS262) was only detected in a few mutants (mutants 

containing K287R and/or K303R).   
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Figure 13: Schematic of K63-polyUb-mediated internalization of Cx43 GJs.  (A) C-

terminal tail of Cx43 showing the relevant E3-Ub ligase, Nedd4-1 binding site (brown 

circle), the AP-2/clathrin binding sites (purple boxes), the K63-polyubiquitinated lysine 

residues (green boxes), and the phosphorylated serine residues that are phosphorylated 

preceding to Cx43 K63-polyubiquitination (golden stars). Note that ubiquitination occurs 

juxtaposed (to the left and right) of the Nedd4-1 and AP-2/clathrin binding sites. (B) 

Phosphorylation of Cx43 by Src and MAPK on S368, S279/S282, S255 and possibly by 

other kinases on additional residues leads to Nedd4-1 binding, K63-polyubiquitination, 

and AP-2/clathrin binding, resulting in GJ internalization. Mutating either K264 or K303 

prevents ubiquitination, causes hyper-phosphorylation and abolishes GJ internalization. 

Preventing ubiquitination on both residues K264 and K303 further exacerbates 

internalization.   
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Chapter 4:  

Cx43 GJs are degraded by autophagy 

(from John T. Fong, Rachael M. Kells, Anna M. Gumpert, Jutta Y. Marzillier,  

Michael W. Davidson, and Matthias M. Falk, 2012) 

 

Contribution: My contribution to (Fong et al., 2012) is summarized in Figure 14, 15, and 16. 

My essential contribution upon reviewer request was the knockdown of Beclin-1/ATG6 and 

p62/SQSTM1 in HeLa cells and the imaging and quantification of Cx43 AGJ, LC3 positive 

autophagosomes and the % colocalization between them. My finding of significant decreases 

in LC3 positive autophagosome colocalization with AGJs in Beclin-1/ATG6 and 

p62/SQSTM1 knockdowns compared to wild type shows that autophagy is required for 

Cx43 AGJ degradation (Figure 15). Additionally, I contributed western blots of relative 

protein amounts to confirm Beclin-1/ATG6 and p62/SQSTM1 knockdowns in HeLa cells 

(Figure 14). I pursued co-immunolocalization studies in endogenous Cx43 expressing 

primary pulmonary artery endothelial cells (pPAECs) to corroborate this novel degradation 

process with the data in HeLa cells. Immunostaining in pPAECs shows that LC3 colocalizes 

with Cx43 at AGJs and internalized portions of GJ plaques. Staining with p62 and Cx43 

shows robust colocalization of p62 (a ubiquitin binding protein) with Cx43 at both GJs and 

AGJs (Figure 16). This intriguing finding suggests the interaction of Cx43 with p62 prior to 

GJ internalization; indicating that Cx43 ubiquitination is necessary for internalization.  

 

4-1: Abstract 
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Gap junction intercellular communication (GJIC) is essential for multi-cellular life. Gap 

junctions (GJs) provide a physical connection to neighboring cells and allow for the passage 

of signals between cells. The components of GJs, termed connexins (Cx), oligomerize to 

form connexons, or hemichannels, that dock with hemichannels of neighboring cells to form 

the full GJ. Whole GJs internalize into annular gap junctions (AGJs). The mechanism of 

AGJ degradation has not fully been elucidated. Here we show that knocking down key 

autophagy proteins, Beclin-1 and p62, in HeLa cells leads to decreases in LC3-positive 

autophagosome colocalization with AGJs and increases in AGJ number. We also show 

through co-immunolocalization studies in endogenous Cx43 expressing primary pulmonary 

artery endothelial cells (pPAECs) that Cx43 robustly colocalizes with p62 (a ubiquitin 

binding protein) at both GJs and AGJs.  

 

4-2: Introduction 

Direct cell-to-cell communication is a pivotal cellular function of multi-cellular organisms.  It 

is established by gap junction (GJ) channels, which bridge apposing plasma membranes of 

neighboring cells.  Typically, hundreds to thousands of GJ channels cluster into densely 

packed two-dimensional arrays, termed GJ plaques that can reach several square-

micrometers in size.  In addition to providing intercellular communication, GJs, based on 

their characteristic double-membrane configuration, significantly contribute to physical cell-

to-cell adhesion.  The ability to modulate (up- and down-regulate) the level of GJ-mediated 

intercellular communication (GJIC), and of physical cell-cell adhesion is as important as the 

basic ability of GJ formation itself; and is for example crucial for many physiological and 

pathological conditions, including cell migration during development and wound healing, 
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mitosis, apoptosis, leukocyte extravasation, ischemia, hemorrhage, edema, and cancer 

metastasis.   

GJ channels are assembled from a ubiquitously expressed class of four-pass trans-membrane 

proteins, termed connexins, with connexin 43 (Cx43) being the most abundantly expressed 

connexin type.  Six connexin polypeptides oligomerize into a ring to form a hexameric 

structure with a central hydrophilic pore, called hemi-channel or connexon.  Once trafficked 

to the plasma membrane, two connexons, one provided by each of two neighboring cells, 

dock head-on in the extra-cellular space to form the complete trans-membrane GJ channel.  

Recruitment of additional GJ channels along the outer edge then enlarges the channel 

plaques, while simultaneous removal of older channels from plaque centers balances GJ 

channel turnover (Falk et al., 2009; Gaietta et al., 2002; Lauf et al., 2002). 

While GJ channels can open and close (gate) to regulate electrical and chemical cell-cell 

coupling, GJ channel gating does not provide a means for modulating cell-to-cell adhesion, 

or for plasma membrane GJ channel renewal. Moreover, docked GJ connexons were found 

to be inseparable under physiological conditions, (Ghoshroy et al., 1995) posing potential 

challenges to these cellular functions.  How is then the removal of GJ channels from the 

plasma membrane achieved?  

We reported previously that cells appear to continuously internalize and turn over their GJs 

via a combined endo-/exocytic process that utilizes clathrin-mediated endocytosis 

components (Baker et al., 2008; Gilleron et al., 2008; Gumpert et al., 2008; Piehl et al., 2007) 

GJ internalization generates characteristic cytoplasmic double-membrane GJ vesicles, termed 

earlier annular GJs (AGJs) or connexosomes, preferentially in one of two coupled cells.  We 

and others further found that internalization is highly efficient and regulated, for example in 
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response to natural inflammatory mediators such as thrombin and endothelin, (Baker et al., 

2008) well-known inhibitors of GJIC; (Blomstrand et al., 2004; Postma et al., 1998; Spinella 

et al., 2003; van Zeijl et al., 2007) and under pathological conditions as e.g. in the failing 

canine ventricular myocardium (Hesketh et al., 2010). Continuous, as well as spontaneous 

internalization of GJ channels as complete, double-membrane spanning protein structures is 

supported by the fundamental observation that connexons, once docked, are inseparable 

under physiological conditions, and by a short half-life of Cxs and GJ channels of only 1-5 

hours (Beardslee et al., 1998; Berthoud et al., 2004; Falk et al., 2009; Fallon and 

Goodenough, 1981; Gaietta et al., 2002).  A similar internalization of GJs into cytoplasmic 

AGJ vesicles has been observed by others in cells in culture, as well as in situ in tissues 

(Ginzberg and Gilula, 1979; Hesketh et al., 2010; Hesketh et al., 2009; Jordan et al., 2001; 

Larsen et al., 1979; Leach and Oliphant, 1984; Mazet et al., 1985). 

Previous studies identified proteasomal, endo-/lysosomal, and to a lesser extent phago-

/lysosomal degradation pathways in the regulation of GJ stability and connexin protein 

degradation (Hesketh et al., 2010; Laing et al., 1997; Leach and Oliphant, 1984; Leithe and 

Rivedal, 2004b; Musil et al., 2000; Pfeifer, 1980; Qin et al., 2003).  We thus embarked on 

investigating, on a molecular level, the fate of internalized AGJ vesicles.  Following 

internalization, AGJ vesicles were observed to move away from the plasma membrane and 

to translocate deeper into the cytoplasm in a process that involves actin-filaments and the 

retrograde actin motor protein myosin VI (myo6) (Piehl et al., 2007).  Here we report that 

GJs, following internalization into cytoplasmic AGJ vesicles, are targeted to autophagosomes 

via the ubiquitin-binding protein, p62/SQSTM1, and are degraded by autophagy.  
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4-3 Results 

4-3-1: RNAi-mediated knockdown of Beclin-1 and p62/SQSTM1-protein significantly 

reduced AGJ/phagosome colocalization.  

To further support assumptions made in Fong et al. 2012 that internalized AGJ vesicles are 

degraded by autophagy, we depleted cells of autophagy-relevant proteins using RNA-

interference (RNAi) technology. We depleted cells of Beclin-1/(Atg6) and p62/SQSTM1 

and investigated its impact on AGJ vesicle degradation and AGJ vesicle/autophagosome 

colocalization. As part of a class III PI3-kinase complex, Beclin-1 (the mammalian homolog 

of the yeast protein Atg6) is crucial for mediating the localization of autophagic machinery-

proteins to pre-autophagosomal structures, and Beclin-1 has been identified as a key-protein 

required for isolation-membrane nucleation (Kihara et al., 2001). The Ub-binding protein 

p62, also named sequestosome 1 (SQSTM1), has been found instrumental in recognizing 

and targeting ubiquitinated cytoplasmic protein complexes to autophagic degradation, 

(Bjorkoy et al., 2005; Ding and Yin, 2008; Pohl and Jentsch, 2009) and to interact directly 

with LC3/(Atg8) (Pankiv et al., 2007).  We performed three independent sets (n=3) of 

knockdown (KD) experiments in HeLa cells transiently expressing Cx43-GFP. The levels of 

each of these proteins were significantly depleted as verified by Western blot. This assay 

demonstrated a significant reduction of both proteins in the HeLa KD cells (Figure 14). 

RNAi-oligonucleotide transfection-efficiency was confirmed in control experiments to be 

above 90%, using a fluorescently labeled siGLO RISC-free oligonucleotide (not shown) 

(Gumpert et al., 2008).   

Staining Beclin-1/(Atg6) KD and SI-control cells with LC3-specific antibodies followed by 

quantitative analyses revealed that a significantly smaller portion of AGJ vesicles (60.8+/-
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21.8%) colocalized with LC3-positive phagosomes in the Beclin-1 KD cells (7.6+/-4.6%, 

n=3, p<0.001) when compared to SI-control cells (18.9+/-2.2%, n=3) (Figure 15B, panel 

3).  Similar results (69.5+/-21.1% reduction) were obtained for p62/SQSTM1 KD cells 

(5.5+/-3.5%, n=3, p<0.001) (Figure 15B, panel 3). As expected, an increased number of 

AGJs (Figure 15B, panel 1), and a decreased number of autophagosomes (Figure 15B, 

panel 2) were detected in all of these KD experiments as well.  Representative LC3-

immunofluorescence/Cx43-GFP images of Beclin-1 and p62/SQSTM1 KD, and SI-control 

cells, are shown in Figure 15A. LC3-positive Cx43-GFP AGJ vesicles are marked with 

arrows in the inserts. Taken together, these results further support the assumption that 

under normal conditions (no induction or inhibition of autophagy or of any other cellular 

protein degradation pathway) internalized GJs are degraded by autophagy.  

 

4-3-2: LC3 and p62/SQSTM1 colocalize with Cx43 in primary PAE cells indicating 

autophagosomal degradation of AGJs in endogenously Cx43-expressing cells.   

Given that most analyses described in Fong et al. 2012 were either done in transiently or 

stably Cx43-GFP/YFP expressing HeLa cells, we wanted to know whether autophagy-

specific proteins would also co-localize with endogenously expressed Cx43.  Cytoplasmic 

AGJ vesicles had been seen before in situ under normal conditions inside autophagosomes, 

(Leach and Oliphant, 1984; Pfeifer, 1980) suggesting that autophagy might be the generic 

degradation pathway for internalized GJs.  We stained endogenously Cx43 expressing 

primary pulmonary artery endothelial cells (PAECs), that we had characterized before for 

thrombin/endothelin-mediated GJ internalization for Cx43, LC3, and p62/SQSTM1 using 

specific antibodies and qualitatively and quantitatively analyzed potential Cx43-LC3/p62 



 

60 

colocalization. Representative images are shown in Figure 16.  Significant colocalization of 

both autophagic proteins with Cx43 was observed (Figure 16A, panels 1 and 2), even at 

stringent threshold settings (set to 120 of a maximum intensity of 250 arbitrary units; Figure 

16B, panels 1 and 2).  Interestingly, while LC3 appeared to exclusively colocalize with Cx43-

AGJ vesicles located deep in the cytoplasm and occasionally juxtaposed to plasma 

membrane GJs, p62/SQSTM1 protein appeared to localize with both plasma membrane GJs 

as well as cytoplasmic AGJ vesicles; consistent with a role of p62 in sequestering 

ubiquitinated Cx43 to autophagosomes and LC3 as a specific autophagy marker (Figure 

16A, panels 1 and 2, marked with arrows in inserts 1 and 2).  

 

4-4 Discussion 

While previous studies identified preferentially proteasomal and endo-/lysosomal 

degradation pathways in the regulation of GJ stability and connexin degradation, our study 

provides novel molecular and mechanistic insights into the autophagic degradation of 

endocytosed GJs. We observed significant colocalization of AGJ vesicles with marker 

proteins specific for autophagosomal degradation (LC3/Atg8), or autophagosomal cargo 

sequestration (p62/SQSTM1) ((Fong et al., 2012)and Figures 15-16). Using pharmacological 

inhibition of key autophagy proteins shows that Cx43 GJs are degraded by autophagy. Upon 

knockdown of Beclin-1 and p62/SQSTM1 in Cx43-GFP expressing HeLa cells, a significant 

reduction of LC3-positive AGJ vesicles was shown (Figure 15A, B).  Colocalization 

between autophagic proteins, GJs and AGJ vesicles was observed in primary PAE cells, 

endogenously expressing Cx43 protein (Figure 16).  Together, these findings strongly 

suggest that under normal physiological conditions, internalized AGJ vesicles (similarly to 
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cellular organelles cytoplasmic protein aggregates, and other superfluous macromolecular 

protein-complexes such as the mitotic midbody ring) are cleared from the cytoplasm and 

degraded by autophagy (Bjorkoy et al., 2005; Gutierrez et al., 2004; Nakagawa et al., 2004; 

Ogawa et al., 2005; Pohl and Jentsch, 2009). 

Remarkably, although autophagic degradation of GJs had been described in several classical 

ultrastructural analyses of various cells and tissues in situ, including heart, dermis, and liver, 

(Leach and Oliphant, 1984; Mazet et al., 1985; Pfeifer, 1980; Severs et al., 1989) not much 

attention was attributed to this GJ degradation pathway. The recent observation that GJs 

appear to be internalized and degraded by autophagy in the failing ventricular myocardium  

(Hesketh et al., 2010) lends further importance to this GJ degradation pathway. 

Substantial research over the past decade has indicated that autophagy represents a common 

lysosome-based cellular degradation pathway specifically designed to remove and degrade 

protein aggregates, multi-protein complexes, organelles and invading pathogens from the 

cytoplasm (Bjorkoy et al., 2005; Hung et al., 2009; Pohl and Jentsch, 2009; Ravikumar et al., 

2008).  Recent studies have further shown that protein aggregates, such as the ones formed 

by huntingtin and β-amyloid protein, and cellular structures such as the midbody ring (a 

cytokinesis left-over multi-protein complex) are all degraded by autophagy (Bjorkoy et al., 

2005; Hung et al., 2009; Pohl and Jentsch, 2009; Ravikumar et al., 2008).  Clearly, these 

cellular structures are degraded by autophagy independent of starvation.  

Conjugation of ubiquitin (Ub) moieties to proteins has been recognized as a signal for both 

proteasomal targeting (addition of K48-linked poly-Ub chains), and more recently also as a 

sorting signal towards internal vesicles of the late endocytic pathway (addition of multiple 

mono-Ub moieties or of K63-linked poly-Ub chains) which ultimately leads to degradation 
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by lysosomes (Hicke, 2001; Hicke and Dunn, 2003; Schnell and Hebert, 2003; Shih et al., 

2002; Stahl and Barbieri, 2002).  The latter includes Ub-conjugation that acts as an 

internalization signal for clathrin-mediated endocytosis (Belouzard and Rouille, 2006; Geetha 

et al., 2005).  In this process, multiple mono-Ub moieties are attached to the target protein 

and are recognized by specific clathrin-mediated endocytic machinery protein-components 

that associate with a subset of Ub-binding proteins, specifically Epsin1 and Eps15(Girao et 

al., 2009; Hawryluk et al., 2006).  Further work has shown that the protein p62/SQSTM1 

recognizes and interacts via its UBA-domain with poly-ubiquitinated proteins (Ciani et al., 

2003; Seibenhener et al., 2004; Wilkinson et al., 2001) and delivers poly-ubiquitinated (K63-

linked) oligomeric protein complexes to the autophagic degradation pathway (Bjorkoy et al., 

2005; Pankiv et al., 2007). Ubiquitination of Cx43-based GJs has been described previously, 

(Girao et al., 2009; Kjenseth et al., 2010; Leithe et al., 2009; Leithe and Rivedal, 2004b; 

Leithe et al., 2012) and is consistent with our own unpublished fluorescence analyses (data 

not shown). The finding that Cx43-based GJs can become ubiquitinated, the known affinity 

of p62/SQSTM1 for ubiquitinated protein complexes, its colocalization with plasma 

membrane GJs in PAECs (Figure 16), and its apparent involvement in targeting AGJ 

vesicles for autophagic degradation (Figure 15), suggests that ubiquitination of Cx43, 

besides serving as a likely signal for GJ internalization, also serves as a likely signal for 

targeting AGJ vesicles to autophagic degradation.  

 

4-5 Materials and methods 

4-5-1: Cell culture, cDNA constructs, transient and stable transfections 
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Human epitheloid cervix carcinoma cells (HeLa, American Type Culture Collection [ATCC], 

Cat. No. CCL2,) were maintained in a humidified atmosphere containing 5% CO2 at 37°C in 

low glucose (1000mg/l) Dulbecco’s modified Eagle’s medium (DMEM, Thermo Scientific, 

Cat. No. SH30021.01).  Medium was supplemented for a final concentration of 10% with 

fetal bovine serum (FBS, Atlanta Biologicals, Cat. No. S11050), 2mM L-glutamine (Thermo 

Scientific, Hyclone, Cat. No. SH30034.01, stock 200mM) and 50 I.U/ml penicillin and 

50µg/ml streptomycin (Cellgro, Cat. No. 30-001-CI). Porcine primary pulmonary artery 

endothelial cells (PAECs) were isolated and cultured as described in reference (Baker et al., 

2008). 

Fluorescent protein-tagged Cx43-GFP construct was described previously (Falk, 2000; 

Gumpert et al., 2008; Shaner et al., 2008). For transfections cells were grown on glass cover-

slips coated with poly-L-lysine (Sigma-Aldrich, Cat. No. P8920) for 24hrs prior to 

transfection and allowed to reach 70-80% confluency. Cells were single and double-

transfected with cDNAs using SuperFect® Transfection Reagent (Qiagen, Cat. No. 301307) 

according to manufacturer’s directions. Cells were observed 20-24hrs post transfection, and 

transfection efficiencies between 15% and 30% were considered appropriate for qualitative 

and quantitative experiments.    

 

4-5-2: siRNA duplexes and knock-down procedures 

All RNAi oligonucleotides (oligos) were purchased from Dharmacon RNA Technologies 

and transfected into HeLa cells using Oligofectamine (Invitrogen, Cat. No. 12252011) 

according to manufacturer’s recommendations, and as described in reference (Gumpert et 

al., 2008).  Oligonucleotides directed against Beclin-1/(Atg6) (siGENOME SMARTpool, 



 

64 

Cat. No. M-010552-01), p62/SQTM1 (siGENOME SMARTpool, Cat. No. M-010230-00-

0005), as well as a non-targeting RISC-activating duplex control (siControl, Cat No. D-

001210-01-05) were used. RNAi-transfection efficiency was tested using a fluorescently 

labeled, non-targeting control oligonucleotide (siGLO RISC-Free, Cat. No. D-001600-01-05) 

and was established to be ≥ 90% efficient (Gumpert et al., 2008). 48hrs post oligo 

transfection cells were transfected with Cx43-GFP cDNA using SuperFect® Transfection 

Reagent (Qiagen, Cat. No. 301307), as recommended by the manufacturer. Cells were 

assayed 72hrs post oligo transfection and 20-24hr into Cx43 expression for KD efficiency by 

Western blot analyses (Figure 14). To evaluate whether Beclin-1 and p62 KD would result 

in a reduced number of LC3-positive AGJ vesicles, KD and SI-control cells were stained 

with LC3-specific antibodies (Figure 15). 

 

4-5-3: Stains, antibodies and immunofluorescence analyses 

mouse monoclonal anti-LC3 recognizing both, LC3-I and LC3-II of the human splice-

variants LC3A, B, and C (MBL International Corp., Cat. No. M115-3), rabbit polyclonal 

Beclin-1 (Cell Signaling, Cat. No. 3738), mouse monoclonal anti-3/p62 Lck ligand (BD 

Biosciences, Cat. No. 610832), and rabbit polyclonal anti-Cx43 (Sigma, Cat. No. 6219) 

antibodies were used at dilutions of 1:50–1:250 in 10% FBS/PBS.  Secondary anti-mouse 

and anti-rabbit antibodies conjugated to Alexa Fluor 568 (Molecular Probes/Invitrogen, Cat. 

No. A11036 and A11004), or Alexa Fluor 488 (Molecular Probes/Invitrogen, Cat. No. 

A21206) respectively, were used at 1:100 –1:200 dilutions in 10% FBS/PBS.  

Cells were fixed and permeabilized either in 3.7% formaldehyde for 15min followed by 

permeabilization in 0.1% Triton X-100 for 20min at RT. Cells were washed three times in 
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phosphate-buffered saline (PBS) between all steps. Following blocking with 10% FBS in 

PBS (20min), cells were incubated with primary and secondary antibodies (diluted in 

blocking solution) for 60min at RT each, then for 30sec with DAPI (10µg/ml), rinsed with 

PBS and diH2O, and mounted using Fluoromount G (Southern Biotechnology, Cat. No. 

0100-01). Knockdown of proteins was evaluated by comparing quantitative fluorescence 

intensity signals measured along lines on images taken under identical exposure conditions 

from treated and mock-treated cells. Fluorescence colocalization signals in Figure 16 were 

quantified using the colocalization tool of the Zeiss LSM 510 ZEN 2008 (Version 5.0.0.267) 

software package. 

 

4-5-4: Immunoblot analyses 

Verification of protein knockdown (KD) efficiency was assessed by Western-blotting 72hrs 

post-RNAi transfection. Cells were lysed in standard 4x SDS-PAGE sample buffer and 

boiled for 5min. Biotinylated protein ladder (Cell Signaling Technology, Cat. No. 7727) was 

used to determine the molecular weight of relevant protein bands. Samples were resolved on 

12% Bis/Acrylamide (1:29) gels and transferred onto nitrocellulose membranes (pore size 

0.2µm, Whatman, Optitran BA-S83, Cat. No. 10439396). Following blocking in 5% dry milk 

in TBST, membranes were incubated in primary antibodies (1:1000 in 5% BSA in TBST) for 

3hrs at RT or o/n at 4°C. Membranes were washed in TBST for 15min and incubated with 

horseradish peroxidase (HRP)–conjugated anti-mouse and anti-rabbit secondary antibodies 

(1:5000 in 5% BSA in PBST, Zymed Laboratories, Cat. No. 81-6520 and 81-6120) for 3hrs 

at RT or o/n at 4°C.  Immuno-reactive bands were detected using Amersham ECL Plus™ 

Western Blotting Detection Reagents (GE Healthcare, Cat. No. RPN2132). Membranes 
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were washed in TBST for 15 minutes, stripped in stripping buffer (Boston Bioproducts, Cat. 

No. BP-96) at 65oC for 30 minutes, followed by a stringent wash in TBST. Membranes were 

re-blocked with 5% dry milk in TBST and re-probed with mouse monoclonal antibodies 

directed against -tubulin (Sigma, Cat. No. T9026) or b-tubulin (Developmental Studies 

Hybridoma Bank, clone E7) (1:5000 in 5% BSA in PBS) to serve as a loading control. Signals 

were quantified by scanning developed films using SCION software (NIH). 

 

4-5-5: Microscopy and quantitative image analyses 

Wide-field fluorescence microscopy was performed on a Nikon Eclipse TE 2000E inverted 

fluorescence microscope equipped with 40x Plan Fluor (numerical aperture [NA] 1.3), 60x 

and 100x Plan Apochromat (NA 1.4) oil immersion objectives; a forced-air-cooled 

Photometics CoolSnap HQ charge-coupled device camera (Roper Scientific), and a ProScan 

II motorized stage (Prior Scientific). Images were captured, analyzed, and processed using 

MetaVue software version 6.1r5 (Molecular Devices) and Adobe Photoshop (Adobe 

Systems). Fluorescence colocalization analyses were performed on a Zeiss Axiovert 200 M 

inverted fluorescence microscope (Carl Zeiss) equipped with an LSM510 META scan head 

and a 63x Apochromat oil-immersion objective (NA 1.4). Argon-ion and Helium-Neon 

lasers were used to generate the 488- and 543-nm excitation lines, and pinholes were 

typically set to 1 airy unit. Images were acquired using four-line mean averaging in separated 

channels to avoid bleed-through and LSM510 META 3.0 software.  

 

4-5-6: Statistical analyses  
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AGJ vesicles and GJ plaques were measured and counted on images taken of knockdown, 

and control cells in at least three independent experiments each. Only clearly recognizable 

GJs (a line of fluorescent puncta, or elongated plaques located between cell pairs), and AGJs 

(bright fluorescent spherical structures located in the cytoplasm and ≥0.5 µm in diameter) as 

defined in detail in Piehl et al.(Piehl et al., 2007) and Gumpert et al. (Gumpert et al., 2008) 

were considered. Only spherical, clearly LC3-positive vesicular structures were considered as 

autophagosomes, and were counted as well. Participation of selected proteins and pathways 

in GJ internalization and subsequent degradation was evaluated by manually counting the 

number of Cx43-GFP expressing cells and by counting the number, and measuring the size 

of AGJ vesicles, GJ plaques, and LC3-positive autophagosomes. For statistical analyses, the 

total number of AGJ vesicles per experiment was divided by the number of cell pairs 

positive for Cx43-GFP expression and clearly coupled by GJs as described (Gumpert et al., 

2008; Piehl et al., 2007).  To compare the Beclin-1 and p62/SQSTM1 KD cells with the SI-

control cells, the number of AGJs, autophagosomes, and AGJ/autophagosome 

colocalization was determined for each cell pair. For each experiment, the ratio of AGJ 

vesicles colocalizing with LC3-positive structures was then formed over the total number of 

AGJs and of autophagosomes that were counted per cell pair. For statistical analyses ratios 

of Beclin-1 and p62 KD cell pairs (99 and 40) were compared to the ratios obtained in SI-

control cells (99). In all analyses, a P-value ≤0.05 was considered statistically significant." 

Statistical analyses were performed using Microsoft Excel's “Students T-test: Two samples 

assuming equal or unequal variances” function of the data analysis package.  

  



 

68 

Figures 

 

Figure 14: Efficient RNAi-mediated depletion of autophagy-relevant proteins monitored by 
Western blot. HeLa cells were transfected with SI-control RNA-oligonucleotides, or with 
RNA-oligos targeting the autophagy-relevant proteins, Beclin-1/(Atg6) and p62/SQSTM1 
(KD). 48 hours later cells were transfected with Cx43-GFP cDNA and analyzed for KD 
efficiency 72 hours after oligo-transfection. Target protein-depletion assayed by Western blot 
analyses in SI-control and RNAi-KD cells (published in and adapted from (Fong et al., 
2012)).  
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Figure 15: RNAi-mediated depletion of key-autophagic proteins inhibits degradation of AGJ 
vesicles and decreases the number of AGJ-containing LC3-labled phagosomes. HeLa cells 
were transfected with SI-control RNA-oligonucleotides, or with RNA-oligos targeting the 
autophagy-relevant proteins Beclin-1/(Atg6) and p62/SQSTM1 (KD). 48 h post oligo 
transfection cells were transfected with Cx43-GFP cDNA and 24 h later, total number of 
AGJs (in C), and colocalization with LC3-positive phagosomes (in A and B) was analyzed. 
(A) Beclin-1 and p62 KD and SI-control cells were stained with anti-LC3 antibodies 72 
hours post oligo, and 24 hours post Cx43-GFP cDNA transfections. Representative 
immuno-fluorescence images are shown. Individual and merged fluorescence signals of the 
boxed areas are shown at higher magnification on the right. Colocalization of Cx43-GFP 
AGJ vesicles and LC3-positive phagosomes was observed preferentially in the SI-control 
cells (marked with arrows).  Bars = 20 mm.  (B) Quantitative analyses of AGJ vesicles (panel 
1), LC3-positive autophagosomes (panel 2), and colocalizing AGJ/autophagosomes (panel 3) 
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revealed a significant increase of AGJs, a significant decrease of autophagosomes, and 
significantly reduced AGJ/autophagosome colocalization in the Beclin-1 and p62 KD 
knockdown cells in all three independent experiments (** = p<0.01; *** = p<0.001) 
((published in and adapted from (Fong et al., 2012)).   
 

  



 

71 

 

Figure 16: LC3 and p62/SQSTM1 protein colocalize with endogenously expressed Cx43-
based GJs and AGJ vesicles. Endogenously Cx43 expressing porcine primary pulmonary 
artery endothelial cells (PAECs) were stained for Cx43, LC3, and p62/SQSTM1 using 
specific mono- and polyclonal antibodies, and potential Cx43-LC3/p62 colocalization was 
qualitatively and quantitatively analyzed. (A) Representative merged fluorescence images of 
confluent PAECs are shown. Individual and merged fluorescence signals of the boxed areas 
are shown below at higher magnification. Significant colocalization of LC3 with AGJ 
vesicles, and of p62 with AGJ vesicles and individual plasma membrane GJs was observed, 
even at stringent threshold settings (marked with arrows). Bars = 20 mm.  (B) Quantitative 
scatter-blot colocalization analyses of the images shown in (A) with applied maximum 
intensity threshold settings of 120 (of maximally 250 arbitrary units; white lines) indicated 
(published in (Fong et al., 2012)).  
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Chapter 5: 

Conclusions and Future Perspectives 

 

5-1: Conclusions 

This dissertation describes three related aspects of Cx43 regulation during GJ internalization 

and degradation. Chapter 2 describes my identification of clathrin-mediated endocytosis 

(CME) of Cx43 GJs under VEGF stimulation (Figures 5 and 6). Stimulation of endothelial 

cells with the inflammatory mediator VEGF causes phosphorylation of Cx43 on S368, 

S279/S282, S255, and S262, residues that are known to cause GJIC downregulation 

(Nimlamool et al., 2015). My observations are in accordance with previous findings showing 

VEGF-mediated activation of the MAPK signaling pathway that were characterized in aortic 

endothelial cells (Kroll and Waltenberger, 1997).  Our lab and others (Kevil et al., 1998; 

Suarez and Ballmer-Hofer, 2001; Thuringer, 2004) report a rapid inhibition of GJIC in 

response to VEGF that correlates with activation of several kinases, including MAPK. At 

least 7 different kinases (Akt, CK1, PKA, PKC, MAPK, CDC2, Src) of different signal 

transduction pathways have been characterized that phosphorylate numerous regulatory C-

terminal serine and tyrosine residues of Cx43 at various stages of its life cycle.  Of these, 

PKC, MAPK, CDC2 (during mitosis) and Src have been reported to induce GJ channel 

closure and inhibition of GJIC (Kanemitsu et al., 1998; Lampe et al., 2000; Leykauf et al., 

2003; Petrich et al., 2002; Polontchouk et al., 2002; Sirnes et al., 2009; Solan and Lampe, 

2007; Solan and Lampe, 2014; Solan et al., 2007; Thévenin et al., 2013). A recent related 

study in our laboratory showed that treating mouse embryonic stem cell colonies (which 

express endogenous Cx43) with epidermal growth factor (EGF) also resulted in a significant 
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inhibition of intercellular communication (GJIC) and activation of MAPK and PKC 

signaling cascades to phosphorylate serines 262, 279/282, and 368 of Cx43, leading to Cx43-

based GJ endocytosis (Fong et al., 2014). This study, as well as additional studies in phorbol 

ester-treated (PKC-activated) Cos7 cells (Cone et al., 2014), and in GJ assembly-impaired 

BxPC3 and Capan-1 pancreatic cancer cells (Johnson et al., 2013) also describe the serine 

phosphorylation-mediated internalization of Cx43 GJs. Thus, phosphorylation on well-

recognized C-terminal regulatory Cx43 amino acid residues by a series of different kinases 

emerges as an early molecular signal that triggers GJ internalization.   

Integrity of blood vessel walls must be maintained precisely to prevent the leakage of plasma 

components and blood cells into surrounding tissues. Internalization for these purposes 

would be required under conditions where cells must rapidly internalize GJs in order to 

uncouple from neighboring cells for division or allowing trans-endothelial migration of 

immune cells from the blood to areas of tissue damage. Elucidating the mechanisms that 

down-regulate GJIC in response to VEGF is important for understanding the biology of 

cancer development including changes in cell cycle progression, angiogenesis, and tumor cell 

metastasis. Chapter 2 in this dissertation provides a mechanism for such physiological 

processes that involves not only the internalization process (CME) but together with 

Nimlamool et al. 2015 connects specific phosphorylations required to downregulate Cx43 

GJs upon stimulation with VEGF (pS368, pS279/S282, pS255, and ps262). These results 

further our understanding of how, for example, angiogenesis occurs within the body. VEGF 

in the extracellular environment stimulates phosphorylation of Cx43 GJs, which results in 

rapid internalization via CME. This downregulation of GJs then allows cells to uncouple 

from one another for new blood vessel formation.  
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Chapter 3 in this dissertation connects Chapters 2 and 4 to form a larger story involving the 

phosphorylation, ubiquitination, internalization and subsequent degradation of Cx43 GJs. In 

Chapter 3, I describe the elucidation of lysines 264 and 303 which are K63-polyubiquitinated 

on Cx43 GJs prior to internalization. This mechanism ties in with the findings from Chapter 

4, that Cx43 GJs are degraded by autophagy, in that p62 is likely binding to this K63-

polyubiquitinated Cx43 at GJs and sequestering it for autophagic degradation once 

internalized (Figure 17). Intriguingly, this chapter also reveals that the phosphorylation of 

Cx43 on serines 368, 279/282, and 255 occur prior to ubiquitination. These 

phosphorylations correlate with results presented earlier in Chapter 2 that show that 

phosphorylation is required for CME-mediated internalization of Cx43 GJs after VEGF 

stimulation (Figure 5, 6 and  (Nimlamool et al., 2015)). Together with Chapters 2 and 3, 

these findings have lead us and others in the field to conclude that regulation of Cx43 

requires a "kinase program" (Falk et al., 2016; Solan and Lampe, 2015), suggesting that 

specific phosphorylations occur sequentially in order for proper regulation of the Cx43 

lifecycle.  

Additionally, work in Chapter 3 relates to the previous findings from our lab showing that 

CME internalization of Cx43 GJs requires the interaction with clathrin and the clathrin 

adaptor, AP-2 (Fong et al., 2013; Piehl et al., 2007). Sufficient internalization of Cx43 GJs 

requires both S2 (
263

YAYF
268

) and S3 (
286

YKLV
289

) binding motifs within the Cx43 C-

terminus. Importantly, since K287 lies within the critical S3 binding site for AP-2 access to 

Cx43, it is likely that blocking this interaction (Chapter 3) adversely impacts the AP-2 

mediated CME process. Therefore, clathrin may also be recruited by another group of 

adaptor proteins, termed clathrin associated sorting proteins, or CLASPs, that specifically 
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bind via a Ub-interacting motif (UIM) to a polypeptide sequence that is exposed in K63-

polyubiquitin chains (Traub and Bonifacino, 2013).  One such alternative adaptor, called 

Eps15, was found to bind to Cx43 and has been proposed to facilitate GJ internalization 

(Catarino et al., 2011; Girao et al., 2009).  Thus, K63-polyubiquitination may also allow 

Eps15 to bind to Cx43, recruit clathrin, and internalize GJs as an alternative to AP-2 (Falk et 

al., 2016; Falk et al., 2014; Girao et al., 2009) (Figure 17).  

Chapter 4 describes my work in elucidating the degradation of  internalized GJs by 

autophagy. As shown in (Baker et al., 2008; Fong et al., 2013; Gumpert et al., 2008; 

Nimlamool et al., 2015; Piehl et al., 2007) and Chapter 2, the process of GJ internalization 

requires CME machinery under baseline and acute internalization conditions. Docked GJ 

channels cannot be separated into connexons under physiological conditions, posing 

potential challenges to GJ channel renewal and physical cell-cell separation (Ghoshroy et al., 

1995; Goodenough and Gilula, 1974). This poses additional challenges once the internalized 

GJ, or annular GJ (AGJ), must be degraded as the structure is a double membraned vesicle 

with docked GJs. Degrading this kind of a cellular structure would require more than 

proteasomal degradation (misfolded protein degradation). My work in Chapter 4 and Fong et 

al. 2012 shows that AGJs are degraded by autophagy under unstarved, physiological 

conditions. My work shows that the autophagic proteins Beclin-1/ATG6 and p62/SQSTM1 

are necessary for the sequestration of AGJs as knockdown of each protein lead to increases 

in AGJ number and decreases in colocalization of AGJs with the autophagosomal marker 

LC3 (Figures 14, 15 and (Fong et al., 2012)). To add a more physiological perspective to my 

work I also used co-immunolocalization studies of Cx43 GJs and p62 in primary pulmonary 

artery endothelial cells (pPAECs) to corroborate this novel degradation process with the data 
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in HeLa cells presented in Chapter 4 and Fong et al. 2012 (Figure 16 and (Fong et al., 

2012)). The findings from our lab show baseline degradation of Cx43 AGJs by autophagy 

and is one of the first to elucidate autophagy as the degradative fate of Cx43 internalized GJs 

under physiological conditions (Fong et al., 2012; Hesketh et al., 2010). In addition, my co-

immunolocalization findings in Chapter 4 show that p62 colocalizes with Cx43 at GJ and at 

AGJs (Figure 16). This finding was also described biochemically by others in the field 

(Bejarano et al., 2012; Lichtenstein et al., 2010). p62/SQSTM1 interacts specifically with 

K63-polyubiquitinated substrates via its UBA (ubiquitin associated) domain (Seibenhener et 

al., 2004) to sequester targets for autophagosomal degradation (Bjorkoy et al., 2005; Pankiv 

et al., 2007). My finding of p62 colocalizing with Cx43 at GJs in Chapter 4 suggests the 

interaction of Cx43 with p62 prior to GJ internalization (Figure 17). In this way, p62 

provides a connection between phosphorylations required to internalize GJs, such as in 

Chapter 2, and the degradation of internalized GJs (Chapter 4). Physiologically, autophagy 

has been observed as a degradation pathway for internalized GJs in the failing ventricular 

myocardium (Hesketh et al., 2010). Cx43 GJs are prominent at intercalated discs in 

myocardium, which is associated with altered Cx43 expression and regulation in heart 

disease (Dupont et al., 2001; Fontes et al., 2012; Kostin et al., 2003; Peters et al., 1993). In 

accordance with results from Chapter 2 it is feasible to speculate that MAPK/PKC-induced 

phosphorylations leading to decreased GJIC and Cx43 GJ internalization would result in 

AGJs that are degraded by autophagy (Figure 17).  

This dissertation ties together several aspects of Cx43 GJ phosphorylation (Chapter 2) and 

ubiquitination (Chapter 3) required for GJ internalization. Additionally, since the K63-

polyubiquitin binding protein, p62, binds to Cx43 at GJs (Chapter 4) and Cx43 at GJs is 
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K63-polyubiquitinated (Chapter 3), my results together show that p62 binds to K63-

polyubiquitinated Cx43 at GJs and upon internalization sequesters the ubiquitinated AGJs to 

the autophagosomal machinery for degradation. Taken together, these results provide a 

more comprehensive understanding of GJ internalization and degradation that starts with 

specific phosphorylations regulating the event. S368 phosphorylation is known to be 

dependent on S365 dephosphorylation (termed “gate keeper”), an event known to trigger a 

large conformational change of the Cx43 C-terminus that affects the upstream region which 

harbors the above described ubiquitination sites (Solan and Lampe, 2007). PKC-mediated 

phosphorylation on S368 may serve as the lead phosphorylation event that then triggers 

subsequent MAPK-mediated phosphorylation on serines 255, 262, and 279/282 to allow E3 

Ub ligases, AP-2/Eps15, and clathrin to access juxtaposed Cx43 binding sites (Fong et al., 

2013; Thévenin et al., 2013) resulting in GJ internalization (Figure 18).  These events are 

categorized as early and late, corresponding to early trafficking and docking of open 

channels to the outer region of the GJ plaque (Figure 18, steps 1-3) and later closure of the 

gap junctions as they move toward the center of the GJ plaque and eventually are 

internalized (Figure 18, steps 4-5). These early and late events are proposed to correspond 

to the conformational change in the C-terminus initiated by S365 dephosphorylation  

(Figure 19). Early events occur on residues located juxtaposed to the C-terminal ZO-1 

binding site and late occur on residues located juxtaposed to the S2, S3 AP-2 (Eps 

15)/clathrin binding sites (Figure 19). Findings from Chapters 2, 3, and 4 are depicted in 

Figure 17, 18, and 19 where Cx43 in GJs is first phosphorylated (Chapter 2) and 

ubiquitinated (Chapter 3) prior to internalization via clathrin-mediated endocytosis, then 

finally degraded by autophagy (Chapter 4). The findings presented in this dissertation 
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provide a mechanism for Cx43 GJ regulation that is crucial for many physiological and 

pathological conditions, including cell migration during development and wound healing, 

mitosis, apoptosis, ischemia, hemorrhage, edema, cancer metastasis, and heart disease.  

 

5-2 Future Perspectives 

Chapter 3 describes the identification of K63-polyubiquitination on Cx43 GJs at lysine 

residues 264 and 303. To further verify that the link between GJ internalization and AGJ 

autophagic degradation is K63-polyubiquitionation of Cx43, future analyses would involve 

immunoprecipitation of K/R mutants with p62. Since K264 and K303 within the C-

terminus of Cx43 are K63-polyubiquitinated, it would be expected that mutating these sites 

would abolish interaction of Cx43 and p62 whereas mutation of K87 should retain the 

interaction as wild type. Additionally, co-immunolocalization studies would show the lack of 

colocalization between p62 and Cx43 at GJs and AGJs and result in increased AGJ number 

as seen in Chapter 4. Another interesting aspect of Cx43 ubiquitination is that four E3 

ligases are described to interact with and ubiquitinate Cx43; Nedd4-1, Wwp1, Smurf2, and 

Trim21 (Basheer et al., 2015; Chen et al., 2012; Fykerud et al., 2012; Leykauf et al., 2006).  So 

far, only Nedd4-1 has been shown to directly interact with the 283PPGY286 motif in the C-

terminus of Cx43 (Leykauf et al., 2006). It is unknown where these remaining three E3 

ligases (Wwp1, Smurf2 and Trim21) bind within the C-terminus of Cx43 and if they 

ubiquitinate Cx43 with the same K63-linked polyUb chain. Current literature suggests that 

Trim21 builds K63-polyUb chains in vitro in response to infection (McEwan et al., 2013) 

while Wwp1 chain building specificity in toll-like receptor (TLR) inflammation is suggested 

to be K48-linkage specific (Lin et al., 2013). Further investigation into the role of Trim21, 
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Wwp1, and Smurf2 in the ubiquitination of Cx43 GJs would require identification of each 

E3 ligase binding motif within the C-terminus of Cx43.  Trim21 and Wwp1 both belong to 

the same family as Nedd4-1 and have multiple WW binding domains that bind to PPxY 

motifs in target proteins (Scheffner and Kumar, 2014) whereas the binding specificity of 

Trim21 is less well known. Mutation of each E3 ligase binding motif and 

immunoprecipitation analysis with the C-terminus of Cx43 would determine where each 

binds. Additionally, an analysis of the downstream effects of each E3 ligase would shed 

more light onto the regulation of Cx43 ubiquitination. Co-immunolocalization studies would 

provide evidence for interaction of E3 ligases at each stage of the Cx43 life cycle (Cx, 

connexon, GJ, AGJ). This would also be accomplished by knockdown or mutation of each 

DUB followed by analysis of Cx43 GJ/AGJ ubiquitination by immunoprecipitation. It is 

feasible to speculate that some E3 ligases are responsible for ubiquitination of misfolded 

Cx43 whereas others are required for modifying GJs.  

Another interesting finding in this dissertation work is that I identified a phosphodegron 

mechanism of Cx43 GJ regulation involving serine 368, 279/282, and 255 phosphorylations 

occurring prior to ubiquitination of Cx43. These phosphorylations lead to downregulation of 

GJIC and are increased in Cx43 ubiquitin mutants K264R and K303R. This regulation is 

consistent with a phosphodegron model in which phosphorylation of specific sites leads to 

ubiquitination. My finding is supported by recent evidence that phosphorylation on 

S279/S282 enhances the binding affinity of the E3 ligase, Nedd4-1, to the C-terminus of 

Cx43 (Spagnol et al., 2016). This added layer of regulation emphasizes the complex 

orchestration that must occur in physiological GJ turnover. To more definitively show that 

phosphorylations of Cx43 on serines 368, 279/282, and 255 are required prior to 
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ubiquitination, analysis of K63-polyubiquitin patterns of serine phospho-dead and phospho-

mimetic mutants would be conducted. Analyses would entail expression of the above-

mentioned serines as either phospho-dead (S/A) or phospho-mimetic (S/D or E) Cx43 

mutants on residues 368, 279/282, and 255 and immunoprecipitation of Cx43 to determine 

if K63-polyubiquitination still occurs. The expectation is that a loss of phosphorylation in 

S/A mutants would results in loss of K63-polyubiquitination because phosphorylation is not 

present to "prime" GJs for ubiquitination. Conversely, it is expected that S/D or E 

mutations would result in K63-polyubiquitination, potentially in higher amounts than wild 

type and/or a faster rate of internalization. Another direction of these findings would 

incorporate combinations of phosphorylation and ubiquitin mutations in transgenic mice to 

determine the effects on development and tissue physiology. Evidence that the C-terminus 

of Cx43 is crucial for development is shown in transgenic mice expressing Cx43K258Stop as 

heterozygous mice have altered Cx43 channel function, intercalated disc organization and 

longer Cx43 half-life (Maass et al., 2007). An in vivo model using ubiquitin and phospho-

mimetic/dead mutations would provide a more comprehensive view of GJ turnover. One 

interesting aspect would be the effect of such mutations on the development of heart tissue 

as Cx43 has been known to be affected in diseased hearts (Kostin et al., 2003).    

In conclusion, these findings greatly contribute to the broader understanding of mechanisms 

that regulate GJ internalization and degradation. They provide a comprehensive explanation 

of how GJ phosphorylation, ubiquitination, internalization, and autophagic degradation are 

linked together. Relevant findings of two of these chapters have been published and one will 

be published.  
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Figures 
 

 
Figure 17: Schematic representation of the signals participating in the proposed steps that 
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lead to gap junction internalization, formation of annular gap junctions in the cytoplasm of 
the acceptor cell, and annular gap junction degradation through the phago-/lysosomal or the 
endo-/lysosomal pathway based on studies published in the literature. (Abbreviations are: 
AGJ, annular gap junction; CLASPs, clathrin-coat-associated proteins; ESCRT, endosomal 
sorting complexes required for transport; GJ, gap junction; UBA, ubiquitin-associated 
domain; UIMs, ubiquitin-interacting motifs (Falk et al., 2014).  
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Figure 18: Scheme depicting the molecular signals in the Cx43-C-terminal domain 
hypothesized to regulate gap junction assembly and internalization based on our own 
(orange) and colleagues’ (green) findings. Steps [1– 5] trigger and coordinate the transition 
from functional (green) into non-functional, internalization-prone gap junction channels 
(yellow, orange) that then are primed via post-translational modifications to allow interaction 
with clathrin components to mediate their internalization (red) (Falk et al., 2016). 
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Figure 19: Scheme depicting how access of clathrin to Cx43 might be regulated. a 
Interestingly, all proposed Cx43 modifications relevant to Cx43 gap junction internalization 
cluster into two domains, ‘early’ occurring on residues located juxtaposed to the C-terminal 
ZO-1 binding site (shaded green), and ‘late’ occurring on residues located juxtaposed to the 
S2, S3 AP-2 (Eps 15)/clathrin binding sites (shaded red). The lowest energy 3D solution 
NMR structure of the Cx43-CT revealing the location of critical residues solved by Sorgen 
and colleagues [117] is shown. b We propose that a conformational change of the Cx43-C-
terminal domain (CT) triggered by serine 365 de-phosphorylation [116] opens up the Cx43-
CT allowing MAPK to access and phosphorylate S279/282 (and eventually also S262 and 
S255); and E3-ubiquitin ligases to bind to and ubiquitinate Cx43 (presumably on lysine 303) 
to promote AP-2 (and/or Eps15) to access the YXXΦ -binding motifs (S2, 265YAYF268; 
S3,286YKLV289), recruit clathrin and internalize gap junctions/central gap junction plaque 
portions (Falk et al., 2016). 
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