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Abstract 

 

Water demand in the southwestern United States continues to rise. The population of the 

Las Vegas Valley doubled from 2000-2010 and now more than two million people call it home. 

The residential sector uses 60% of all water consumed in the valley. Outdoor urban landscape 

irrigation is responsible for 70% of all residential use. These landscapes are dominated by trees 

and turf grass. Although the water use of turf grass species is well studied, there are few 

published results about the water use of landscape trees in the desert southwest USA.  To obtain 

a more complete picture of the tradeoffs between grasses and trees in urban landscapes in 

Southern Nevada, we conducted a tree to grass water use ratio study focusing on 10 common 

landscape trees and four turf grass species grown in the valley. We estimated water use by 

closing hydrologic balances (Evapotranspiration=water input-drainage-change in soil water 

storage) on mature trees planted in the ground and turf grass grown in lysimeters. We estimated 

transpiration of trees using Granier probes and estimated conductive tissue with a novel dye 

injection system. Sapflow was lower than the hydrological balance estimated evapotranspiration 

(ET) because of significant evaporation rates associated with irrigating trees in a desert 

environment. The values for sapflow ranged from 10 to 50 cm per year.  Trees used less water 

than grass in nine out of 10 cases with an ET 38-88 cm/year determined by a hydrological 

balance. The exception was Lagerstroemia indica that used 196 cm year-1 which was similar to 

the grass ET (106-262 cm year-1) again determined by hydrological balance. We also developed 

models that predicted the tree water use based on reference evapotranspiration (ETref) and 

morphological characteristics such as tree height, canopy volume, basal canopy area, leaf area 

index (LAI) and leaf area.  Replacing turf grass and planting trees can save water, if the right 
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species are selected. However, turf grass serves its purpose in many areas by providing aesthetics 

and recreational use. Water use values are listed to help assist in making landscape tradeoffs.   
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Introduction 

 

The Mojave Desert in the southwestern U.S.A. receives very little rain during the year.  

Even though water supplies are limited, people in the Las Vegas Valley and surrounding areas 

continue to place nonnative landscape plants that consume a lot of water in the ever expanding 

housing developments. Most (60 percent) of the water used in the valley is used outdoors 

(Southern Nevada Water Authority 2018) and 66 percent of residential water is used to irrigate 

the urban landscape (Devitt et al. 2008). To save water, the common trend now is to remove 

turfgrass and plant landscape trees to save water but do landscape trees use less water than the 

grass? 

A study conducted Devitt et al. (1995) recorded young landscape trees used more water 

than turfgrass with tree to grass water use ratios ranging from two to four. But what about water 

use by mature trees, which have higher water use efficiency and canopy aerodynamic resistance 

than young trees (e.g. Quercus rubra, a temperate forest species; Cavender et al. 2000)? 

Landscape trees in the desert may demonstrate a similar characteristic. Few scientists have 

recorded the water use of landscape trees, although many scientists have measured the water use 

of turfgrasses, even fewer studies show a direct comparison of the tradeoffs between landscape 

trees and grasses, and none in Southern Nevada.  

 The arid desert region of Southern Nevada is an excellent place to quantify the water use 

of trees and grass due to the region’s minimal precipitation. Because trees in urban areas obtain 

most of their water as irrigation, water balances can be accurately closed using a hydrologic 

approach. In this study, evapotranspiration (ET) estimates were found by closing a hydrological 

balance (ET=Irrigation/Precipitation-Drainage-Change in soil water storage) on ten different 

mature landscape tree species. The hydrological balance was closed by measuring each one of 
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the parameters in the equation and plugging the numbers into the equation to get the estimate for 

evapotranspiration. This estimate was then compared to transpiration estimates attained with sap 

flow sensors inserted into the trunk. Trees can vary their water use dependent on water 

availability, widely known to be true for native species (opportunistic species) (Devitt et al. 

1994). Trees and grass were provided irrigation amounts based on how much water was used on 

a weekly basis. Four turfgrass species were also used in the study to determine water usage. 

Based on inherent species differences in water use efficiency (C3 vs. C4 grasses) we postulated 

significant differences in water use of the four grass species and this should lead to significant 

differences in the tree to grass water use ratios. If this is true, significant tradeoffs between trees 

and grasses should be possible in the urban landscape.  

Devitt et al. (1995) assessed the comparative water use of turfgrass and ornamental trees 

in an arid environment. Their results demonstrated that young ornamental trees used more water 

than turfgrass based on basal canopy area. The tree evapotranspiration rate of Q. virginiana 

‘Heritage’ (oak) compared to low fertility Cynodon dactylon (Bermuda) grass had a 3:1 ratio. 

Prosopis alba (Mesquite) and Chilopsis linearis (Desert Willow) showed similar ratios. When 

comparing tree water use to Festuca arundinacea (Fescue) water use, the trees used more water, 

although at a smaller average rate throughout the year. It was estimated that larger trees could 

possibly use even more water than turfgrass, but questions associated with accurate scaling were 

noted.  
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I. Water Use of Ornamental Landscape Trees 

Few scientists have approached the subject of water use of ornamental trees. Ansley 

(1994) compared stem flow gauges with porometry to estimate transpiration of Prosopis 

glandulosa (honey mesquite). These trees grew in a large tree stand of P. glandulosa with 200 

trees ha-1. Human destruction of the trees in the 1960s caused coppice growth since that time. 

When the study was performed the trees stood 3.5 m tall.  Using stem flow gauges (Dynamax), 

the team of scientists estimated that in June and October, 30 km south of Vernon, TX (a semi 

arid region), the tree’s transpiration was 108 kg (108 L) day-1 in June. The measurements taken 

with porometry compared somewhat to sap flow gauge estimations of transpiration, however, the 

accuracy of the porometer declined with increased transpiration. This study did not include a 

hydrological balance method to cross check the values obtained with the stem flow gauges. The 

values for transpiration were relatively high compared to turfgrass in Southern Nevada, although 

this reading only reflected summer time water use.  

Zajicek and Heilman (1991) studied the transpiration of four different varieties of 

Lagerstroemia indica (crepe myrtle) under different land cover in College Station, TX on the 

16th of August 1989. The scientists used sap flow gauges in addition to weighing the trees to 

estimate the amount of water each tree used during the course of the study. Trees ranged in 

height from 20 cm to 65 cm, depending on the variety, and were one-year-old plants. Plants grew 

in pots placed in holes in a plot of land with undescribed distances between trees, watered to 

saturation daily at sunset. Sapflow was estimated for only two 2-day intervals. The results 

revealed the water use rates per unit of leaf area over a course of 24 hours for the four varieties 

were somewhere between 4.63 to 3.55 kg m-2 day-1. If the values are extrapolated, the trees used 

as much as 1690 kg per year. Most likely L. indica uses less water per year, since the estimate 
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was based on the summer period. The short interval of measurements may not have accurately 

reflected the water use of L. indica (crepe myrtle) on a yearly basis. However, this plant is native 

to tropical East Asia (Rohwer, 2000) suggesting it grows naturally with large amounts of 

available water.  

Interestingly, evapotranspiration (ET) and growth can vary based on different irrigation 

regimes (Devitt et al., 1994).  Prosopis alba, C. linearis, and Q. virginiana grew in lysimeters in 

Southern Nevada while watered based on three different leaching fractions (+0.25, 0, -0.25) to 

see if evapotranspiration varied dependent on irrigation amount. The lysimeters were weighed 

once a week to determine the water use of the young one to two meter tall trees. The trees 

growing in tanks (lysimeters) were placed in the ground in concrete sleeves with insulation 

placed in between the lysimeter and the concrete sleeves with five meters separation between 

trees. The area between the trees was planted to turfgrass with drip irrigation. Based on the size 

of the trees and openness of the experimental plot, turbulent wind moved unimpeded and no 

shading of trees occurred.  The analyses showed that the average yearly ET showed significant 

differences between leaching fractions for all three species. Also, the size of the tree influenced 

the ET of the oak and willow, with the oak ET closely correlating with all growth parameters.  

These trees varied their water use based on the amount of water irrigated.  

An earlier study done by Devitt et al. (1993) demonstrated that stem flow gauges could 

accurately estimate transpiration by using a hydrologic balance approach. The three young tree 

species were grown in lysimeters and hoisted onto a top loading balance to measure water loss 

during a period from May to August. The average estimate of the three species was about one 

centimeter per day. If we extrapolate that estimate for the May to August period the value 

exceeds 120 cm, which greatly exceeds the water use of most turfgrass species.  



5 

 

A similar study done in Arizona, demonstrated P. alba used more water than Q. 

virginiana when given unlimited water (Levitt et al., 1995). Again, similar to Devitt et al. 1994, 

the trees ranged between 1-2 m tall, were placed in a grid with the trees spaced 4m apart, and 

weighed to determine the ET. The experiment only ran for four months and their basic statistics 

showed a significant difference between mesquite water use (0.55 to 4.07 L per day) and oak 

water use (0.35 to 5.50 L per day), again with unlimited irrigation applied. 

The question whether tall mature trees use more water per area than short trees remains 

unanswered. Bennett et al. (2015) compiled data from other studies that measured tree growth 

(n=13) and tree mortality (n=14) on trees from natural wooded areas experiencing drought. The 

findings showed that tall trees exhibited a greater decrease in growth rate and a greater increase 

in mortality in drought.  The paper suggested that the patterns may be attributed to responses of 

canopy versus understory species. They were unable to substantiate whether small and tall trees 

in the studies were of the same species.  Within the compilation of 40 drought events that 

occurred worldwide, the study did not mention the age of the trees, which plays an important role 

in the determination of water use efficiency and ability to survive drought. From the results, it 

seems that large trees use more water than short trees, although results may have been skewed 

with confounding factors.  

Pataki et al. (2011) recorded estimates of the water use of landscape trees in southern 

California, with the caveat that the estimates really were specific to that region with its particular 

climate. The study used Thermal Dissipation Probes in 14 tree species in the Los Angeles 

Metropolitan area and found the water use per tree ranged from 0.8 kg tree-1 day-1 to 176.9 kg 

tree-1 day-1, depending on the tree species. These trees grew as single trees in several different 

urban areas such as a University campus, the zoo, an arboretum, and as plantings adjacent to the 
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street. The trees had a range of diameters at breast height (dbh) ranging from 12.1 cm to 61 cm, 

with most trees in the 40-50 cm range, therefore the study encompassed mature trees. The largest 

water user grew near the street, Platanus hybrida (London Sycamore), and the lowest water user 

grew in an unirrigated landscape at the zoo, Malosma laurina (Laurel Sumac), a native to 

Southern California. Likely street trees that stand alone use more water due to their increased 

surface area exposed to the wind and sun, as opposed to trees planted in a denser stand. Also, the 

region of origin of these species may have contributed to their water use.  Several trees used in 

our study were used by Pataki et al. (2011): L. indica (crepe myrtle) used 45.3 kg tree-1 day-1, U. 

parvifolia (elm) used 67.7 kg tree-1 day-1, and G. tracanthos (locust) used 89.9 kg tree-1 day-1.  It 

should be noted that, these trees did not get watered according to their respective 

evapotranspiration rates. Rather, the irrigation amounts generally went unknown. It is unknown 

how the trees in the Pataki et al. study (2011) might have responded with different irrigation 

amounts. 
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II. Water Use of Turfgrass 

Many have studied the water use of different kinds of turfgrasses in the southwest in the 

1980s and 90s. However, none directly compared the use of tree and grass water use at the same 

field site. Kim and Beard (1988), Salaiz et al. (1991), Bowman and Macaulay (1991), and 

DaCosta and Huang (2006) all used mini-lysimeters to measure turfgrass actual ET (ETa). Mini-

lysimeters tend to overestimate the amount of water used by the plant due to the soil matrix 

discontinuity at the bottom of the lysimeter to the soil underneath restricting drainage (Devitt 

personal observation). Kim and Beard identified the ET of 12 different turfgrasses grown with 

nonlimiting water and fertilization at rates applied to golf courses. Despite using mini-lysimeters, 

they found that C. dactylon (Bermudagrass) used about 180 cm year-1 from measurements done 

for three months and F. arundinacea used 219cm year-1. The grass ET was determined by the 

water balance method by weighing the mini-lysimeters on a daily basis. Lolium perenne 

(Creeping Bentgrass) varied between 3.2mm day-1 to 10.7 mm day-1 throughout 1987 and 1988 

in Nebraska (Salaiz et al, 1991). The grasses were mowed five times a week to keep the grass 

short and watering was determined by weighing minilysimeters 14 times between May and 

October.  Some of the variation in ET may have been driven by the infrequent weighings. 

Bowman and Macauley in Reno, NV estimated water use F. arundinacea cultivars in April. 

Scientists estimated ET by using mini-lysimeters weighed on a daily basis for a week. F. 

arundinacea ‘Monarch’ used 6.23 cm for the week measured.  This paper did not provide 

explicit information about fertilizer input, which may have influenced ET in an unknown way.  

Schiavon et al. (2017) used a plot of perennial ryegrass to assess performance and to 

measure ET, without the use of lysimeters. Unfortunately, the adjacent plots were not provided 

with buffer to isolate roots, and horizontal water movement under sprinkler irrigated conditions.  
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The reference ET (ETref) for the study was 147 cm year-1 and the scientists found that even 

watering at 100% ETref, the cool season grass did not do well in the summer at UC Riverside.  

 Another recent study, Litvak et al. (2016), studied the ET of grass in metropolitan Los 

Angeles area. This study did not control irrigation, fertilization, or drainage at any site, but 

simply took data from the grass being managed by a third party. The numbers from this study 

predicted an ET of 165 cm year-1 for C. dactylon. 

Devitt (1992) determined ET for desert turfgrasses. The research included C. dactylon 

over seeded with ryegrass at three sites within Las Vegas, NV. The golf course C. dactylon was 

estimated to use 150 cm vs. 106 cm for C. dactylon in a park setting due to increased fertilization 

at the golf course. This fertilization response agreed with the 1989 study by Devitt and Morris 

that showed that increased nitrogen fertilization increased evapotranspiration.  
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III. Turfgrass and Trees  

Litvak et al. (2017a) modeled differences between urban landscape trees and urban 

turfgrass in Southern California. The authors measured ET based on Land Data Assimilation 

System and in situ measurements from a previous study Litvak et al. (2017b). From the modeled 

ET, grass used more water in mm per year when compared to the trees per each city council 

district. Water use in this study and the previous study mentioned by Litvak assumed nonlimiting 

irrigation and did not measure fertilizer inputs. Given these conditions, it is unclear what were 

the exact water needs of both urban landscape trees and turfgrass and what the possible tradeoffs 

were between these plant forms.  

Our study aimed to determine possible water use tradeoffs in urban landscapes based on 

comparing water use of turfgrass on an area basis equivalent to the basal canopy area of the trees. 

These ratios will vary based on turfgrass species, with cool season F. arundinacea using 

significantly more water than warm season C. dactylon. Also, given that this current study 

included the morphological assessment of the trees, such as tree height, basal canopy area, 

canopy volume, leaf area density, and trunk diameter we believe it may be possible to estimate 

monthly and yearly actual evapotanspiration of tree species. The accuracy of these estimates will 

be species dependent and dependent on the inclusion of reference evapotranspiration.  

The environment, people’s livelihood, and the quality of life depend on the efficient use 

of water in urban places, especially with continually sprawling metropolises and dwindling water 

supplies (Hilaire et al., 2008).  Reducing the total amount of water used in the urban landscape 

will act as a critical component of balancing supply and demand. Landscapers will need to 

choose the proper tree and grass species to achieve these lower water use rates in urban 

landscapes.  
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Methods 

 

 The research was conducted at the University of Nevada’s Center for Urban Water 

Conservation in North Las Vegas, NV. A large tall fescue plot containing lysimeters was 

selected for the study. Six of the existing lysimeters were selected; three with tall fescue (Festuca 

arundinacea var. Monarch) and three converted to perennial ryegrass (Lolium perenne var. 

Palmer Prelude). The lysimeters size was 0.5m diameter and 1.22m deep. These lysimeters were 

centrally located in the larger fescue plot surrounding a weather station that monitored 

atmospheric conditions, enabling estimates of reference evapotranspiration (ETref) using the 

empirical based Penman Monteith equation (Allen et al. 1998). In an area 100 m north east of the 

tall fescue plot, an additional turfgrass plot planted to bermudagrass 5 years earlier was also 

selected for the study. This turfgrass plot also contained lysimeters of which 6 were selected; 

three with the existing bermudagrass (Cynodon dactylon var. Tifway) and three converted to 

bentgrass (Agrostis stolonifera var. TI Creeping). The lysimeters were placed there in 2009 and 

filled with the native North Las Vegas soil attained from the hole dug for the lysimeters, which 

was leveled to the ground.  A stand of 100 landscape trees was also included in the study. The 

trees had been planted twenty years earlier. The tree plot contained (Mesquite Prosopis alba 

Grisebach, Ash (Modesto and Arizona) Fraxinus velutina ‘Modesto’ and Fraxinus velutina 

‘Arizona’, Desert Willow Chilopsis linearis, Oak Quercus virginiana, Palo Verde Parkinsonia 

florida, Vitex Vitex agnus-castus, Locust Gleditsia tricanthos, Elm Ulmus parvifolia and Crepe 

Myrtle Lagerstroemia indica). Three trees of each species were selected out of the ten by ten tree 

grid where trees were planted on 4.88 m center to center spacing.  All of the trees were 

surrounded with 1.8 m diameter irrigation basins, however in the case of the 30 trees selected for 

this study all irrigation lines were capped off such that water was only delivered via a metered 
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hose. Prior to the start of the study, a trencher dug 1.2 m down every row in all directions cutting 

all roots leaving or entering each watering basin.   

Each of the watering basins surrounding the 30 trees and all of the lysimeters selected for 

this study had access tubes inserted to a soil depth of one meter to allow a PR2 Theta Probe 

(Dynamax, Houston, TX) to be inserted to estimate soil volumetric water content at depths of 10, 

20, 30, 40, 60 and 100 cm. Measurements were taken on a weekly basis during the study. These 

soil moisture estimates were then entered into a hydrological balance equation to determine 

evapotranspiration (ET=Input-Output-Change in Soil Water Storage). The input in the equation 

signifies the irrigation or precipitation that occurred during the previous week. This irrigation 

was applied with a hose attached to a digital pvc water meter (TM075 Great Plains Industries, 

Inc) and the water shot into a bucket that sat on a mat, to prevent the basin from eroding. The 

output in the equation denotes the drainage which was determined in the trees to be negligible 

based on little or no change in soil water content estimates (time domain reflectometry probe) at 

a depth of 150 cm (one tree of each species). Change in water storage reflects the soil moisture 

change in the entire one meter profile from week to week. With the grass, drainage was 

determined by a vacuum pump pulling water from ceramic extraction cups from the bottom of 

the lysimeter.   All plants then received irrigation water for the next week based on the previous 

weeks ET, thus minimizing the possibility of a drainage component.   

Thermal Dissipation Probes (Dynamax, Houston, TX) were inserted into the trunks of all 

experimental trees to continuously measure sap flow.  The sensors were all inserted on the north 

side and at a height of 0.75m off the ground. The probes selected were one centimeter in length 

to minimize the entry of the probe beyond the sapwood that would otherwise distort the 

measurement.  These probes were connected to a data logger (CR1000, Campbell Scientific, 
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Logan, UT) in the middle of the stand of trees that recorded measurements every thirty seconds, 

storing 30 minute averages. The data were downloaded to a laptop and analyzed by converting 

the sap velocity measurements to transpiration. First the dimensional parameter K needed to be 

defined as K=(ΔTM-ΔT)/ ΔT, where ΔT is the difference in temperature between one heated 

probe and the other non-heated probe. The other value ΔTM is the value of ΔT when there is no 

sap flow. Sap flow velocity V (cm/s) can be related to K by V=0.0119*K^1.231. The sapflow of 

the tree was determined by the equation Fs =As
*V*3600 (s/h), where Fs (cm3/h) is the sap flow, V 

is the average sap flow velocity, and As is cross sectional area of sapwood (active) as described 

below.  

In order to convert the sap flow velocities to transpiration, the area of conductive xylem 

tissue needed to be quantified. The sapwood area was estimated by injecting a colored dye into 

the conductive tissue. To accomplish this, a small area of bark was removed and a rubber stopper 

was affixed to the trunk of each tree (strong adhesive). The stopper had a 1 cm diameter hole 

drilled into the middle of the stopper and a second smaller hole drilled as a vertical hole between 

the outside of the stopper and the inside hole of the stopper to purge air bubbles from the system. 

A hole was then drilled though this central hole in the stopper into the tree to a depth of 

approximately 10 cm. A plastic bottle with a bent nozzle on the top was filled with water and 

placed into the hole and sealed with silicone glue and supported with elastic bands. A small hole 

was drilled into the top of the plastic bottle to properly vent the bottle to allow the water to freely 

move into the sapwood under natural tension in the xylem. Once the hole was fully charged with 

water and water was observed flowing from the vertical hole in the stopper, a nail was inserted 

into the top of the stopper.  After a two-day period in which water was flowing into the tree at a 

somewhat constant rate, we switched the water to a red dye (Kool-Aid, a mixture of 2 packets 
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per liter of water). This bottle then stayed on the tree for a week. Levels of dye in the bottle were 

observed daily and additional solution was added as needed to maintain a constant head. At the 

end of the one week period the stopper and dye injection system were removed and a core was 

taken 2.5 cm above the hole injected with red dye. The cores were dried and mounted on wood 

and the sapwood area was estimated based on the length of the core stained red. Photos were 

taken of the cores under a microscope (Leica M27s, Leica, Buffalo Grove, IL), with a Nikon D60 

camera (Nikon, Melville, NY) and analyzed with ImageJ (Schneider, et al., 2012) and measured 

with Photoshop (Adobe).  

Morphological measurements of the trees were taken using a hydraulic lift. This lift 

enabled accurate measurements of height, canopy rib (start at the top of the canopy and descend 

down to the base on the outer edge of the canopy) length in four cardinal directions. The 

diameter of the canopy was also measured at the top, middle and bottom of each tree on a north, 

south east and west basis. Trunk diameters were measured at a height of one meter. In addition, 

leaf area index was assessed with a leaf area index wand (Li-cor 2100, Li-Cor, Lincoln, 

Nebraska). Monthly physiological measurements (see below) were taken to verify that the trees 

were not under water stress based on irrigating at the previous weeks ET rate.  Physiological 

measurement included: canopy temperatures (39800 Infrared Thermometer, Cole Palmer, 

Vernon Hills, IL), stomatal conductance (SC-1 Porometer, Meter Group, Pullman, WA) leaf 

xylem water potential (Pressure Chamber, PMS Instruments, Albany, OR) and chlorophyll index 

(FieldScout CM1000 Chlorophyll Meter, Spectrum Technologies, Aurora, IL). Canopy density 

was assessed by measuring Photosynthetic Active Radiation (PAR) (LI-190R, Li-Cor, Lincoln, 

Nebraska) in open areas and comparing that to measurements taken at the base of the canopy of 

each tree, allowing for a PAR ratio to be generated.  
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Trees received fertilizer once per year in the early spring (same regiment as the last 21 

years). Nitrogen was applied at a rate of 325 g tree-1 with a 15-15-15 (N-P-K) fertilizer. Iron 

chelate was applied 30 g tree-1 and sulfur was applied at 225 g tree-1. The grass had fertilizer 

applied once a month on each lysimeter with ammonium sulfate 21-0-0 at a rate of 227 g of 

nitrogen 1000 sq. feet-1. Clipping height was 5.08 cm for F. arundinacea and L. perenne; height 

was kept at 2.54 cm for A. stolonifera and C. dactylon. The grass was clipped using hand shears 

on a weekly basis.  

 Data was analyzed using descriptive statistics, analysis of variance, linear and multiple 

regression analysis (Sigmaplot, Systat Software, San Jose, CA).  
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Results 

 

I. Climate  

Climatic conditions reported for the study were obtained from a weather station located 

in a larger F. arundinacea ‘Monarch’ plot. Ambient temperature ranged from 45.3° C in the 

summer to -3.9° C in the winter, with a mean temperature of 26.5 ± 9.6° C. Rainfall at the site 

was 87.36 mm for November through June 2016, and 64.01 mm for July to June 2017. The mean 

wind speed was 1.9 ± 0.8 ms-1. The reference ET estimated from weather station parameters was 

156.19 cm for July 2016- June 2017 and 136.44 cm for July 2017 to May 2018.   
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II. Morphology of Trees 

 The mature trees ranged in height from 3.37 ± 0.38 m to 6.95 ± 0.35 m (means with 

standard deviations, Table 2). The smallest trees in the study were L. indica and F. velutina 

‘Modesto’, whereas F. velutina ‘Arizona’ and Q. virginiana stood the tallest in the grove of 

trees. The maximum trunk diameter at 1 m from the soil surface was 22.25 ± 2.02 cm for Q. 

virginiana with the smallest trunk diameter measured was for C. linearis at 10.52 ± 5.05 cm, 

with an overall average trunk diameter for all species of 15.35 ± 4.63 cm. Most of the trees had 

basal canopy areas between 17 and 25 m2. The tree with the maximum basal canopy area was P. 

florida at 29.62 m2 and the smallest was 4.95 m2 for L. indica, with an overall average basal 

canopy area for all species of 19.78 ± 7.18 m2. The canopy volume also varied greatly based on 

species with a maximum of 108.19 m3 for Q. virginiana, a minimum of 6.65 m3 for L. indica 

with an overall canopy volume average for all species of 48.17 ± 28.38 m3.  

Leaf Area Index (LAI) is reported in Table 3. The lowest LAI was 0.49 for P. alba, 

which had a very open widespread canopy. Other low values included the U. parvifolia (0.53), P. 

florida (0.74), and C. linearis (0.75).  Whereas, Q. virginiana (2.22) and L. indica (1.68) 

exhibited the highest LAI values. The area of the individual leaf played a significant role in 

determining LAI. The smallest individual sun leaf area averaged 0.5 mm2 for P. florida. 

However, some trees had large sun leaves, such as the G. tricanthos at 51.5 mm2 and F. velutina 

at 47.3 mm2. Shade leaves ranged in size from 0.9 mm2 to 46.4 mm2 for P. florida and F. velutina 

‘Modesto’ respectively.  
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Table 1. Tree morphological characteristics (Height (Ht), Trunk Diameter, Basal Canopy Area 

(BCA), and Canopy Volume) taken for all 10 species in 2016 in North Las Vegas. Values are 

means with one standard deviation.  

Tree Species                                    Ht (m)    Trunk Diameter (cm)   BCA (m2)          Canopy Volume (m3) 

Chilopsis linearis  5.97± 0.32  10.52± 5.05  24.75± 6.52   54.86± 15.51  

Fraxinus velutina ‘Arizona’ 6.95± 0.35  17.60± 3.71  19.05± 0.97   59.11± 4.83 

F. velutina ‘Modesto’  4.18± 0.21  13.09± 0.80  16.61± 2.69   27.43± 3.11 

Gleditsia tricanthos  4.62± 0.83  15.50± 1.30  17.72± 6.69   33.70± 18.55  

Lagerstroemia indica  3.73± 0.45  8.90± 0.81  5.69± 0.64   3.14± 2.44  

Prosopis alba   5.30± 0.11  21.40± 0.77  22.16± 2.27   52.71± 28.43  

Parkinsonia florida  5.77± 0.38  17.86± 1.62  29.62± 4.70   93.10± 18.49  

Quercus virginana  7.10± 0.27  22.25± 2.02  20.49± 6.57   74.53± 29.32  

Ulmus parvifolia  5.57± 0.12  15.77± 0.81  22.85± 4.77   60.42± 15.25  

Vitex agnus-castus  3.37± 0.38  12.13± 1.62  19.67± 4.95   27.30± 13.84  
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Table 2. Leaf Area Index (LAI) and Photosynthetically Active Radiation measured underneath 

the canopy (inverse, 1/PAR) and the leaf area for leaves in the shade and in the sun for all ten 

tree species in North Las Vegas. Data are means with one standard deviation.  

Tree Species               LAI     1/PAR  Sun Leaf Shade Leaf 

Chilopsis linearis 0.76± 0.01a 2.33± 0.74a 2.07± 0.23a 2.47± 1.42a  

Fraxinus velutina ‘Arizona’ 0.76± 0.03 a 2.22± 1.30 a 42.75± 6.29c 45.55± 10.54b 

F. velutina ‘Modesto’ 1.21± 0.22 a 2.71± 0.35 a 34.88± 8.55c 37.9± 10.09 b 

Gleditsia tricanthos 1.25± 0.38 a 2.05± 0.25 a 36.00± 14.31c 32.9± 21.51 b 

Lagerstroemia indica 1.22± 0.60 a 5.70± 3.19 a 5.33± 0.681ab 6.23± 0.81 a 

Prosopis alba 0.59± 0.09 ab  1.93± 0.34 a 12.7± 7.14bc 16.07± 8.41c 

Parkinsonia florida 1.25± 0.56a 3.86± 1.45 a  0.67± 0.15a 0.97± 0.12 a 

Quercus virginana 1.82± 0.43 ac 4.49± 2.18 a 6.23± 2.70bc 13.33± 2.91c 

Ulmus parvifolia 0.85± 0.42 a  2.21± 0.50 a  2.53± 0.23a 3.00± 0.79 a 

Vitex agnus-castus 1.15± 0.02 a  4.17± 2.02 a  17.20± 4.09c 23.93± 7.62 c     

Small letters denote significant differences within each column, α=0.05 
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III. Assessing Physiological Status of the Trees 

During the active growing period of each year we assessed the physiological status of the 

trees (Table 4). Measurements of chlorophyll index, leaf xylem water potential (ψL), and 

canopy-ambient temperature differentials (Tc-Ta) were taken at midday (1100-1300 hours). 

These measurements were taken to document that irrigation to meet the previous weeks ET 

(thereby not having to assess drainage) did not lead to stressful conditions that might reduce 

the amount of water used. Although there was a certain amount of variation with each 

parameter all trees had similar values (differences were nonsignificant p>0.05) for the 

chlorophyll index, leaf water potential, and Tc-Ta. When Tc-Ta values are positive it indicates 

increased plant water stress. Only on a few days for a few species did positive Tc-Ta values 

occur, suggesting that irrigations to replace ET did not lead to a systematic rise in canopy 

temperatures relative to ambient temperatures.  
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Table 3. Physiological measurements for all ten trees in North Las Vegas reported as a mean 

with one standard deviation.    Tc-Ta represents the temperature differential between canopy 

temperature (Tc) and ambient temperature (Ta).  

Tree Species                      Chlorophyll Index     Xylem Water Potential(MPa)    Tc-Ta (°C) 

Chilopsis linearis 170.20± 32.07a -1.79± 0.12a    -1.88±1.05a 

Fraxinus velutina ‘Arizona’ 172.20± 23.95a -2.18± 0.47 a   -1.42±0.88 a 

F. velutina ‘Modesto’ 156.93± 18.22 a  -2.46± 0.67a   -2.65±1.32 a 

Gleditsia tricanthos 163.33± 37.33 a  -2.44± 0.33a   -1.55±0.81 a 

Lagerstroemia indica 170.64± 21.80 a  -2.19± 0.44 a    -2.70±1.32 a 

Prosopis alba 154.44± 28.61 a -2.66± 0.42 a    -1.93±0.74 a 

Parkinsonia florida 136.31± 11.67 a  -2.17± 0.12 a    -1.10±1.68 a 

Quercus virginana 165.98± 18.32 a  -2.44± 0.33 a    -0.84±1.16 a 

Ulmus parvifolia 150.40± 7.29 a  -2.86± 0.64 a    -2.97±1.79 a 

Vitex agnus-castus 156.18± 17.63 a  -2.56± 0.62 a    -3.14±1.32 a 

Different small letters denote significant differences within each column, α=0.05 
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IV. Soil Water Storage 

Soil water storage generally went the opposite direction as reference ET, as was clearly 

demonstrated with V. agnus-castus. This fluctuation between the soil water being up when 

reference ET was down and soil water storage down when reference ET was up can be explained 

by the watering regime. Trees received water based on the values of ET in the previous week, 

therefore when temperatures declined in the fall and ET declined, soil water rose because we 

were irrigating based on the previous weeks higher ET. This same phenomenon occurred in the 

spring/summer, as we irrigated based on the previous weeks’ lower ET and the soil water storage 

declined. However, closing the water balance required an estimate of drainage. We assumed 

drainage was zero based on no change in the soil water content at the 150 cm depth (Figure 1 and 

2). Quercus virginiana soil water storage displayed a different trend by remaining mostly 

unchanged for the entire study period. This was the only evergreen tree which may explain why 

the soil water did not fluctuate very much, the tree was transpiring year round. It was also the 

largest tree based on height, trunk diameter and canopy volume and may have extracted water 

from a greater distance outside of the basin, thereby maintaining a greater level of soil moisture 

depletion.  
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Figure 1. Soil water storage, reference evapotranspiration (ETref) and soil moisture at 150 cm. 

All points are means with error bars. 
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Figure 2. Soil water storage graphed with reference evapotranspiration (ETref) and soil moisture 

at 150 cm. All points are means with error bars.  

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

V. Evapotranspiration 

Evapotranspiration (ET. liters) was measured by the hydrologic balance technique on 

each tree. In order to compare the ET for the 10 different tree species, the ET (L) was normalized 

with the basal canopy area to generate ET in centimeters (cm). This also allowed for direct 

comparison with turfgrass species ET in cm. The majority of tree species used less water than 

reference ET. The exceptions were G. tricanthos which used water at a similar rate as reference 

ET and Lagerstroemia indica which stood out as the highest water user, despite the short height 

of the tree, using more water than reference ET throughout most of the year. ET in cm is shown 

for C. linearis and L. indica in Figure 3, which reveals contrasting water use relative to reference 

ET. The water use varied in a sinusoidal fashion throughout the year with higher water use in 

summer months (June/July) and lower water use during winter months (January-March).  In the 

case of the high water using L. indica ET rates in June and July were over 10 fold higher than 

during the inactive winter early spring period. All ten trees’ graphs are displayed in the appendix. 

Different ways of adjusting and comparing the amount of water used by each tree were 

assessed. ET was estimated in liters but also based on the basin area where water was supplied 

and also based on the basal canopy area. It was more straightforward to compare trees to grass 

based on the area from the drip line of a tree projected onto the ground (basal canopy area). 

Using the irrigation basin area to compare the plants was misleading since the trees would 

actually replace the amount of grass covered by the total expanse of the tree branches and leaves 

and not just the basin area.  

Interestingly the ET of all the trees showed a one or two-month lag behind the ETref. This 

was particularly noticeable during peak ET for the trees around July and August 2017, whereas 

the ETref, based on tall fescue, peaked around June.  Perhaps the trees were placing some 
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physiological control over water loss and it required a decline in environmental demand for 

maximum water usage to occur. ET vs. ETref linear regressions were done by adjusting for this 

one month offset aligning the ET with July ETref. All trees had a positive relationship between 

ET and ETref with a R2 ranging from 0.20-0.74 as seen in Table 4.  Results for the trees indicated 

that 73% of the variation in the amount of liters applied to G. tricanthos could be accounted for 

based on ETref (p<0.001) seen in Figure 4. P. alba relationship was a weaker relationship with 

an R2=0.196, p=0.022. 
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Figure 3. Evapotranspiration (ET) of two trees with different ways of reporting the ET compared 

to reference ET (ETref).  
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Figure 4. Linear regression of Gleditsia tricanthos log evapotranspiration (ET) in liters (L) 

relationship with reference evapotranspiration (ETref) (p<0.001, R2=0.731) 
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Table 4.  Evapotranspiration in cm versus reference evapotranspiration (ETref) for all ten species 

of trees in North Las Vegas with one ETref offset, except for Quercus virginiana, Parkinsonia 

florida, and Prosopis alba which had ETref set two months later. 

Tree Species      R2          p-value   F    

Chilopsis linearis  0.570  <0.001  28.889 

Fraxinus velutina ‘Arizona’ 0.596  <0.001   26.525 

Fraxinus velutina ‘Modesto’ 0.602  <0.001   32.815 

Gleditsia tricanthos  0.731  <0.001   58.070  

Lagerstroemia indica  0.759  <0.001   67.183   

Prosopis alba  0.474  <0.001    19.906 

Parkinsonia florida  0.638  <0.001   36.192   

Quercus virginana  0.519  <0.001   22.560  

Ulmus parvifolia  0.474  <0.001   19.906 

Vitex agnus-castus  0.582  <0.001    30.292 
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Table 5.  Hydrological balance (Hydro) evapotranspiration in centimeters (cm) for trees and 

grass in North Las Vegas. 

Plant Species                         Hydro Year 1 cm    Hydro Year 2 cm      Hydro 2 Year Total cm 

Chilopsis linearis  45.76±23.42 38.03±15.88 83.79±39.29 

Fraxinus velutina ‘Arizona’  42.90±8.97 49.53±5.84  92.43±14.81  

Fraxinus velutina ‘Modesto’  88.41±25.30 66.59±13.25  155.00±37.90  

Gleditsia tricanthos 61.70±15.72 60.21±21.03  121.90±33.25 

Lagerstroemia indica     196.32±19.89 196.61±37.32  392.93±89.74 

Prosopis alba  44.05±7.07 32.29±3.99  76.34±11.57 

Parkinsonia florida     38.56±19.89 23.92±6.69  10.52±5.05   

Quercus virginana  51.70±20.09 32.64±8.91  84.34±28.59   

Ulmus parvifolia  49.55±2.30 33.69±6.38  83.23±5.43 

Vitex agnus-castus  44.66±15.57 41.33±7.56  62.47±22.67  

Cynodon dactylon Low Fertility 106.28±8.77  --   --   

Festuca arundinacea 186.35±14.31 197.35±15.56  383.71±12.62  

Cynodon dactylon  262.95±9.97 162.46±8.24  394.17±2.332   
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Table 6.  Hydrological balance (Hydro) and sapflow evapotranspiration in liters (L) and 

centimeters (cm) for trees and grass in North Las Vegas. 

Tree Species                 Hydro cm              Hydro L          Sapflow cm         Sapflow L  

Chilopsis linearis   42±18ab  9513±1603  10±6  2330±1566 

Fraxinus velutina ‘Arizona’ 46±7ab  8768±1110 24±24 4722±4734 

F. velutina ‘Modesto’          78±22a     12371±2157 26±20 4431±3621 

Gleditsia tricanthos            61±17ab  10217±2401 25±4 4277±994 

Lagerstroemia indica  197±42c  11039±1893 50±38 2692±1839 

Prosopis alba       38±9ab  9036±1718 32±7 7042±1281 

Parkinsonia florida  31±16b  5989±3317 27±2 7807±707 

Quercus virginana  42±17ab  8203±2 12* 2982  

Ulmus parvifolia  42±10ab  9437±2746 23±3 5246±1270 

Vitex agnus-castus  43±11ab  8239±1792 50±29 9344±4649 

Cynodon dactylon Low Fert. 106±9ϯ   --   --  -- 

Festuca arundinacea  192±15c   389±30  --  -- 

Cynodon dactylon  213±56c  431±46  --  --     

Different small letters denote significant differences within each column, α=0.05. * signifies one 

tree. ϯ signifies a historical value.  

 

 

ET for all four grass species followed reference ET as seen in Figure 5. Lolium perenne 

var. Palmer Prelude ET was not statistically different than reference ET most of the two year 

period (p<0.05). Agrostis stolonifera actually showed significantly more water usage in 2016 and 

began to follow ETref in 2017. However, both L. perenne and A. stolonifera died back during 

summer months. Cynodon dactylon used more water than reference ET. The C. dactylon in our 

experiment was high fertility grass (0.22kg per 92.9 m2 per month, April and October), so it used 
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more water than the historical low fertility C. dactylon (Devitt 1992).  Festuca arundinacea was 

similar to ETref in winter months but exceeded ETref during summer months.  

 The grass ET for all four species significantly correlated with ETref. In the case of C. 

dactylon, a clear relationship was found (R2=0.58, p<0.001). Festuca arundinacea and A. 

stolonifera ET had a weaker positive correlation with ETref, still significant (R2=0.193, p=0.02) 

(R2=0.35, p=0.006) respectively.  The last grass, L. perenne ET L also had a positive relationship 

(R2=0.41, p=0.002).  

Total evapotranspiration for trees and grass were compared for the two-year period, 

revealing a very clear separation between the two groups (Figure 6). The trees used significantly 

less water than the grasses, even low fertility C. dactylon, with one exception: L. indica. So 9 out 

of the 10 species of trees commonly planted in Southern Nevada used less water than the grasses. 

Only F. arundinacea and C. dactylon total ET were compared to the trees due to the L. perenne 

and A. stolonifera death during both summers and therefore having incomplete yearly data. The 

one-way ANOVA results based on log transformed two year total ET (cm) standardized on basal 

canopy area showed F. arundinacea and C. dactylon used significantly more water than all the 

trees except L. indica. (p<0.03). Low fertility C. dactylon ET was significantly higher than P. 

alba, U. parvifolia, P. florida, V. agnus-castus, Q. virginiana, and C. linearis. Also, L. indica 

used significantly more water than all other tree species (p<0.03) on a basal canopy area basis. 

Interestingly, Fraxinus velutina ‘Modesto’ used more water than P. florida (p<0.003) even 

though it was a significantly smaller tree (Table 2). 

.  
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Figure 5. Grass evapotranspiration for all four species compared to reference evapotranspiration 

(ETref) and low fertility Cynodon dactylon. Points are means with 1 standard error.  
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Figure 6. 

Evapotranspiration (ET) standardized by area for both trees and grass. Lolium perenne and 

Agrostis stolonifera were excluded due to the lack of summer time values. (Means with one 

standard error). ET in liters is not normalized to area, and simply refers to the area of the 

lysimeter for the grass, and per tree. 

2nd Year Water use Per Plant or Lysimeter, Not Scaled to Water per Area 
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VI. ET vs. Transpiration 

Sap flow data showed transpiration was significantly less during summer months than 

evapotranspiration occurring with the hydrological balance revealing a clear seasonal oscillation 

pattern (Figure 7 and 8). The eight other additional graphs for each tree species are in the 

appendix. During the winter months, the sap flow and the hydrological balance had very similar 

values. During the summer months the values were very different and this was probably due to 

the higher irrigations and larger evaporation component.  The effect was more pronounced in the 

L. indica, probably because more water was supplied to those trees and they had the smallest 

canopy volume leading to greater percentage of the basin area exposed for greater evaporation. 

During winter months, irrigation volumes were significantly less as was ETref leading to a lower 

evaporation component which led to a closer relationship between transpiration and ET.  During 

the winter all plants reduced their water intake and subsequently their transpiration.  

 

 

 

 

 

 

 

 

Figure 7. Sapflow transpiration and evapotranspiration (ET) determined by hydrological balance. 

Points are the mean (n=3), error bars show 1 standard error, single trunk tree. 
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Figure 8. Sapflow transpiration and evapotranspiration (ET) determined by hydrological balance. 

Points are the mean (n=3), error bars show 1 standard error, trees have 1-4 trunks. (sapflow was 

adjusted by multiplying sapflow by trunk number). 
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VII. Tree to grass Water Use Ratios 

The tree to grass ratios typically fell below the 1:1 ratio line except for a few instances. 

Lagerstroemia indica had the highest ET (cm) of all trees, leading to tree to grass ratios > 1:1 

during most months (Figure 9). Low Fertility C. dactylon (Bermuda) grass used less water than 

the other four experimental turf grasses, leading to tree grass ratios closer to one. Lagerstroemia 

indica used significantly more water than low fertility C. dactylon (n=3, p<0.008). When 

comparing Low Fertility C. dactylon to Q. virginiana, the tree used significantly less water than 

the grass based on one year totals (n=3, p<0.001). The spike in December and January of 2016 

resulted from reduced water on the grasses to bring storage values down. Irrigation to the trees 

was also reduced to avoid deep drainage during the low ET period. The winter irrigation 

adjustment was not needed during the second year.   
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Figure 9. Tree to grass evapotranspiration (ET) ratios for one desert adapted tree (Chilopsis 

linearis) and one tropical tree (Lagerstroemia indica). 

 

 

 

VIII. ET vs. distance from the middle of the experimental plot. 
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We measured the distances trees were located from the middle of the experimental plot 

were measured to see if plants on the outside of the plot used more water than plants inside the 

grid. This excluded the crepe myrtle which used more water than any other tree per area basis. 

All three L. indica were close to the middle of the stand of trees.  Because the trees on the 

outside were more prone to wind and sun exposure, those trees may have transpired more water 

than inner trees. However, the results did not show this phenomena occurring. Results of the 

spearman rank correlation showed that trees on the outside of the stand did not use more water 

than trees on the inside (p=0.762, correlation coefficient= -0.0601).  It must be noted that the 

trees in this experiment were in a grove setting with multiple trees close together which may 

have influenced evaporation and transpiration. Urban trees usually stand alone at larger distances 

from one another, and due to increased wind and sun exposure may use more water than the trees 

in this experiment. All plants also received water based on their respective evapotranspiration. 

Plants receiving more than the necessary water for growth and survival tend to subsequently use 

more water (Devitt, et al., 1994). 
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IX. ET relationship with morphological parameters 

Backward stepwise regressions indicated the total year two ET (L) could be determined 

by trunk diameter, basal canopy area, and the area of the sun leaves (ET(L)=12070.34-

150.82*Trunk Diameter-84.64*Basal Canopy Area+37.09*Area of Sun Leaf, R2=0.58, p<0.001). 

Also, ET in centimeters in year one which was adjusted for basal canopy area could be 

determined by canopy volume and PAR (ET cm Year 1=1.89-0.005*Canopy 

Volume+0.04*1/PAR, R2=0.477, p<0.001). Year two backward regression of ET in cm which 

was adjusted for basal canopy area resulted in only canopy volume being accepted into the 

regression equation (ET cm Year 2=2.033-0.008*canopy volume, R2=0.642, p<0.001). ET in 

centimeters for the two year total revealed canopy volume and 1/PAR as the accepted parameters 

in the backward regression analysis (ET cm 2 Year Total=2.204-0.006* Canopy 

Volume+0.034*1/PAR, R2=0.585, p<0.001). VIF’s were all less than two and the sum total of 

VIF’s were all less than 10 for all backward regression equations indicating no co-correlations of 

accepted parameters.  

Depending on the data set (year, ET cm vs. ET L) different morphological parameters 

were accepted in the backward regression analysis. The choice of equations will be linked to the 

end user.  Landscapers would probably select ET L as they could relate liters/gallons to the rate 

of water discharged by bubblers or drip systems. Accounting for approximately 60 % of the 

variation in ET is excellent but on-site adjustments would need to be made based on different 

growing conditions compared to the experimental conditions imposed in this experiment. 
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Discussion 

 

 Several factors associated with the study site and experimental design could have 

influenced results.  For example, the research site was situated on the urban/desert fringe with 

the northern and eastern boundaries associated with an undisturbed creosote bursage plant 

community, whereas the western and southern boundaries had extensive residential development. 

Wind was predominately from the south during the summer and from the north during the 

winter. Trees grew in the ground with irrigation basins that were spaced 4.9 m apart. The trees 

were planted over 20 years ago and canopies were often separated by only 1-2 m. Irrigation 

treatments were applied weekly to meet the previous weeks ET rate. Xylem water potential and 

leaf temperature suggested the trees were not under stress. However, during spring to summer, 

each weeks ET was typically greater than the previous weeks ET. While during fall and winter 

just the reverse situation occurred based on irrigating using the equation: Irrigation=ET/(1-

Leaching Fraction) where Leaching Fraction was set equal to zero. We don’t know how much 

water the trees might have used if they were located in a more open setting with irrigations above 

and beyond ET to achieve leaching.  

 Our results indicate that nine out of the ten landscape tree species used less water than the 

four grass species.  This coincides with work done by Litvak (2017a) with mature landscape 

trees and landscape grasses. Lagerstroemia indica stood out as the one tree that used as much 

water as the turfgrasses based on basal canopy area. Lagerstroemia indica has a very small 

stature and therefore was exposed to more sunlight and wind within the experimental plot, which 

led to higher transpiration and evaporation rates. It also has tropical origins and its evolutionary 

origin also may have played a role in its water use.  
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Young trees may use more water than grass as displayed in the study by Devitt et al. 

(1995). The smaller trees in the 1995 study reached a canopy volume ranging from 0.08 to 1.88 

m3 and had the ET of 435.1 L, 748.7 L, and 461.8 L per year for Q. virginiana, P. alba, and C. 

linearis respectively. As the size of the tree increased, the water usage went up for each tree 

under a zero leaching fraction: 791.6 L, 865.8 L, and 630.1 L per year for Q. virginiana, P. alba, 

and C. linearis respectively.  The ratio of ET from the Devitt et al. (1995) study trees compared 

to the current study trees of the same species ranged between 5-10%, yet the young trees trunk 

size was 10-30% of the mature trees, the height 15-45% of the mature trees, and the canopy 

volume of 0.1-2% of the mature trees. The basal canopy area of the young trees from the study in 

1995 was 1-2% of the size of the mature trees in the current study.  Such data suggests scaling up 

from small to large trees would be difficult and more extensive data would be needed. The 

scaling of ET to compare young trees to mature trees did not accurately take into account the 

water efficiency of mature trees.  The trees in the project in 1995 were not only young trees that 

may not be as water efficient (Cavender-Bares et al. 2000), but they also were placed in 

lysimeters with a lot of space between canopies. The extra space between the trees may have 

contributed to increased water usage (Hagashima et al. 2007). Interestingly, this first study by 

Devitt et al. (1995) used three trees that used the least amount of water in the current study and 

still found them to use more water than F. arundinacea.  

Balogen et al. (2009) in Kansas City, MO set up a weather station in a new suburban 

housing development and measured Bowen ratio estimates of ET of the young trees with 

irrigated grass lawns. The Kansas City observations had a higher ET than other more established 

suburbs of other North American cities with mature trees. Offerle (2006) also found that urban 

vegetation in the form of both mature trees and turfgrass transpired at a higher rate than a 
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completely vegetated grass surface. However, what grass and tree species grew in the rural area 

is unknown and given that our results varied based on the species of the tree and grass, that detail 

is important. Another project studying trees and grass found that a grass field used 467 mm yr-1 

of water compared to a suburban area with mature tall trees that used 324 mm yr-1 (Peters et al. 

2011). These numbers look low compared to our study most likely because the project took place 

in Minneapolis/St. Paul, Minnesota with a different climate. The differences between how much 

water the trees used in various studies may also be attributed to the fact that some trees were 

grown close together and others were further apart (Hagashima et al. 2007). Other studies have 

also shown that grass uses more water than trees, such as Kotani and Sugita (2005) that used 

Bowen ratio estimates of ET in Japan, validating our findings.  

 In our study, the transpiration was routinely less than the evapotranspiration of the trees. 

The transpiration did not account for the evaporation that occurred in the irrigation basins of the 

trees, which would have been high during the hot summer days. Sap flow sensors may 

underestimate transpiration during periods of high radiation (Peters et al. 2011). When the 

transpiration was subtracted from the evapotranspiration for each tree and then averaged the 

evaporation was on average 41.33 cm with a standard deviation of 38.71 cm.  The average ET 

was 61.92 cm with a standard deviation of 49.06, so the evaporation on average was greater than 

50% of the evapotranspiration, although there was a large standard deviation. Ideally the study 

would have included 2-3 sap flow sensors on each tree increasing the accuracy of the 

measurements, but due to cost only one per tree was used. The novel dye injection system clearly 

labeled the sap wood of our trees making the measurement more exact. Some trees, like the oak 

had very nonuniform sapwood, therefore a percentage of the wood was used in the estimations. 

Usually visual inspection of the wet tree core is used to estimate conductive sapwood (Litvak et 
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al. 2017a). Staining the tree sapwood revealed a much more exact way to measure the area of 

wood conducting water.  

 

 

Table 7.  Number of trees that compare to a 185 m2 patch of grass. The first column lists the 

number of trees that fit in the space using the tree basal canopy area. The second and third 

column show how many trees would use the same amount of water to equal to the water use of 

grass in 185 m2.  

Tree Species      # of trees that fit  # of trees to water use  # of trees to water use 

in the space    of Festuca arundinacea  of Cynodon dactylon 

Chilopsis linearis  7.5 34.4  19.0 

Fraxinus velutina ‘Arizona’ 9.7 40.3   22.3 

F. velutina ‘Modesto’  11.1 27.5   15.2  

Gleditsia tricanthos  10.4 32.7   18.1 

Lagerstroemia indica  32.5 31.7   17.6 

Prosopis alba  8.3 41.7   23.1 

Parkinsonia florida  6.2 38.1   21.1  

Qurecus virginana  9.0 41.0   22.7  

Ulmus parvifolia  8.1 37.3   20.7 

Vitex agnus-castus  9.4 42.0   23.2   

 

Our research was done to assess the tradeoffs between landscape trees and turfgrass. To 

demonstrate the tradeoffs in a landscape we compared our trees and grasses to a plot size of 185 

m2. Table 7 reveals how few trees can fit into the 185 m2 area, yet many more would be needed 

to equal the same amount of water lost as ET from the grasses in the same area. For example, 7.5 

C. linearis trees would fit in the area of 185 m2, however, it would take 34 C. linearis trees to use 

the amount of water used by F. arundinacea in the same 185 m2 area. All but one of the trees fit 
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more trees in the space compared to the number needed to use the same amount of water as the 

grasses. Lagerstroemia indica, the tropical tree, used a comparable amount of water as F. 

arundinacea, with 33 trees fitting into the 185 m2 area based on basal canopy area, while 31 trees 

used the same amount of water as the F. arundinacea in the same area. Lagerstroemia indica 

would not result in water savings by removing F. arundinacea and planting this tropical tree. It is 

important to choose species wisely as the low fertility C. dactylon did have a comparable water 

use to F. velutina ‘Modesto’, meaning that removing one and planting another may not result in 

any water savings at all. However, if F. velutina ‘Modesto’ was compared to F. arundinacea 

significant savings would occur. In most cases it would be beneficial to remove the grass and 

plant trees based on the basal canopy size of the trees in our study. Such as with Q. virginiana, 

although nine trees would fit in the 185 m2 area it would take 41 trees to use the same amount of 

water as a lawn of F. arundinacea.  

Looking at plants in natural settings, without irrigation, similar ET values were found in 

Southern Nevada for Tamarix ramosissima, which used between 75 cm and 145 cm growing 

along the Virgin River (Devitt et al. 1998). This was comparable to the native trees that grew 

alongside the invasive Tamarix (Sala et al. 1996). These plants were in a riparian setting 

surrounded by large arid regions that swamped the system with additional sensible heat via 

advection.  Still the lower amount of water lost as ET (75 cm) was comparable to some of the 

trees used in our experiment.  

Future directions for the research include identifying the cause of the two-month lag in 

the data comparing ETref and ET of the trees and grass. When regressions were done between 

ETref and ET there was no correlation until the tree data was moved backward two months, then 

all the data was strongly correlated. Perhaps the trees had a lag due to the late winter here and 
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harsh summertime weather since the trees are at peak growth a couple months later (August-

September) than the peak reference ET. Although it may be due to Las Vegas weather, Peters et 

al. (2011) found that mature deciduous trees had peak ET during August and September in 

Minnesota. Possible satellite observations of canopy development over time could be compared 

to changes in ET and ETref to help identify the mechanism behind this lag.  

Many golf courses in the southwest U.S.A have reduced water consumption by removing 

turf along the roughs and the fairways. This has led to trees becoming isolated in the landscape 

areas. Golf course managers have little information to help guide the irrigation of trees. Results 

from this study would suggest that environmental demand (ETref) and tree morphology can 

provide an excellent starting point to determine the irrigation amount. 
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I. Conclusion 

 Depending on the species, mature landscape trees generally used less water than turfgrass 

species. Generally trading grass for trees saves the amount of water used per year, except in the 

case of L. indica. You can fit nine Q. virginiana trees in aspace of 185 m2 yet it would take 41 

trees to compare to the water use of F. arundinacea in the same area. Such information can allow 

landscape managers and even homeowners to make wise decisions regarding plant choices and 

irrigation strategies to conserve water in our desert.   Future directions include identifying a time 

lag between ETref and ET of the trees. With the area of study of water conservation, hopefully we 

can conserve the precious resource of water.  
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Appendix A: Soil Water Storage  

Soil water storage graphed with reference ET (ETref) and Soil moisture at 150 cm. 
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 Figure 10. Chilopsis linearis soil water storage graphed with reference evapotranspiration 

(ETref) and soil moisture at 150 cm. All points are means with one standard error (SE).  
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Figure 11. Fraxinus. velutina ‘Arizona’ soil water storage graphed with reference 

evapotranspiration (ETref) and soil moisture at 150 cm. All points are means with one standard 

error. 
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Figure 12. Fraxinus velutina ‘Modesto’ soil water storage graphed with reference 

evapotranspiration (ETref) and soil moisture at 150 cm. All points are means with one standard 

error.  
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Figure 13. Gleditsia tricanthos soil water storage graphed with reference evapotranspiration 

(ETref) and soil moisture at 150 cm. All points are means with one standard error. 
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Figure 14. Lagerstroemia indica soil water storage graphed with reference evapotranspiration 

(ETref) and soil moisture at 150 cm. All points are means with one standard error.     
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Figure 15. Prosopis alba soil water storage graphed with reference evapotranspiration (ETref) and 

soil moisture at 150 cm. All points are means with one standard error. 
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Figure 16. Parkinsonia florida soil water storage graphed with reference evapotranspiration 

(ETref) and soil moisture at 150 cm. All points are means with one standard error. 
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Figure 17. Quercus virginiana soil water storage graphed with reference evapotranspiration 

(ETref) and soil moisture at 150 cm. All points are means with one standard error. 
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Figure 18. Ulmus parvifolia soil water storage graphed with reference evapotranspiration (ETref) 

and soil moisture at 150 cm. All points are means with one standard error.  
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Figure 19. Vitex agnus-castus soil water storage graphed with reference evapotranspiration 

(ETref) and soil moisture at 150 cm. All points are means with one standard error. 
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Appendix B: Evapotranspiration of 10 Trees 

 Evapotranspiration (ET) of 10 trees with different ways of reporting the ET compared to 

reference ET. All points are means with one standard error (SE). 
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Figure 20. Evapotranspiration (ET) of Chilopsis.linearis with different ways of reporting the ET 

compared to reference ET. All points are means with one standard error. 
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Fraxinus velutina 'Arizona'
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Figure 21. Evapotranspiration (ET) of Fraxinus velutina ‘Arizona’ with different ways of 

reporting the ET compared to reference ET. All points are means with one standard error. 
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Fraxinus velutina 'Modesto'
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Figure 22. Evapotranspiration (ET) of Fraxinus velutina ‘Modesto’ with different ways of 

reporting the ET compared to reference ET. All points are means with one standard error. 

 

 

 



60 

 

 

Figure 23. Evapotranspiration (ET) of Gleditsia tricanthos with different ways of reporting the 

ET compared to reference ET. All points are means with one standard error. 
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Lagerstroemia indica
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Figure 24. Evapotranspiration (ET) of Lagerstroemia indica with different ways of reporting the 

ET compared to reference ET. All points are means with one standard error. 
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Prosopis alba
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Figure 25. Evapotranspiration (ET) of Prosopis alba with different ways of reporting the ET 

compared to reference ET. All points are means with one standard error.  

 

 

 



63 

 

Parkinsonia floridum
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Figure 26. Evapotranspiration (ET) of Parkinsonia florida with different ways of reporting the 

ET compared to reference ET. All points are means with one standard error. 
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Figure 27. Evapotranspiration (ET) of Quercus virginiana ‘Heritage’ with different ways of 

reporting the ET compared to reference ET. All points are means with one standard error. 
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Ulmus parvifolia
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Figure 28. Evapotranspiration (ET) of Ulmus parvifolia with different ways of reporting the ET 

compared to reference ET. All points are means with one standard error.  
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Vitex agnus-castus
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Figure 29. Evapotranspiration (ET) of Vitex agnus-castus with different ways of reporting the ET 

compared to reference ET. All points are means with one standard error.  
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Appendix C: Sapflow Transpiration  

Sap flow transpiration and evapotranspiration (ET) determined by hydrological balance. Points 

are the mean (n=3), error bars show 1 standard error. 
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Figure 30.  Sap flow transpiration and evapotranspiration (ET) determined by hydrological 

balance for Chilopsis linearis. Points are the mean (n=3), error bars show 1 standard error. 
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Fraxinus velutina 'Arizona'
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Figure 31. Sap flow transpiration and evapotranspiration (ET) determined by hydrological 

balance for Fraxinus velutina ‘Arizona’. Points are the mean (n=3), error bars show 1 standard 

error. 
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Fraxinus velutina 'Modesto'
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Figure 32. Sap flow transpiration and evapotranspiration (ET) determined by hydrological 

balance for Fraxinus velutina ‘Modesto’. Points are the mean (n=3), error bars show 1 standard 

error. 
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Gleditsia tricanthos
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Figure 33. Sap flow transpiration and evapotranspiration (ET) determined by hydrological 

balance for Gleditsia tricanthos. Points are the mean (n=3), error bars show 1 standard error. 
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Lagerstroemia indica
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Figure 34. Sap flow transpiration and evapotranspiration (ET) determined by hydrological 

balance for Lagerstroemia indica. Points are the mean (n=3), error bars show 1 standard error.  

 



72 

 

Prosopis alba 
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Figure 35. Sap flow transpiration and evapotranspiration (ET) determined by hydrological 

balance for Prosopis alba. Points are the mean (n=3), error bars show 1 standard error. 
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Parkinsonia floridum
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Figure 36. Sap flow transpiration and evapotranspiration (ET) determined by hydrological 

balance for Parkinsonia floridum. Points are the mean (n=3), error bars show 1 standard error. 
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Quercus virginiana 'Heritage' 
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Figure 37. Sap flow transpiration and evapotranspiration (ET) determined by hydrological 

balance for Quercus virginiana ‘Heritage’. Points are the mean (n=3), error bars show 1 standard 

error. 
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Ulmus parvifolia
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Figure 38. Sap flow transpiration and evapotranspiration (ET) determined by hydrological 

balance for Ulmus parvifolia. Points are the mean (n=3), error bars show 1 standard error. 
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Vitex agnus-castus
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Figure 39.  Sap flow transpiration and evapotranspiration (ET) determined by hydrological 

balance for Vitex agnus-castus. Points are the mean (n=3), error bars show 1 standard error. 
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Appendix D: Tree to Grass Ratios 

Tree to grass ratios for ten desert adapted trees. 
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Figure 40. Tree to grass evapotranspiration (ET) ratios for Chilopsis linearis. 
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Fraxinus velutina 'Arizona'
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Figure 41. Tree to grass evapotranspiration (ET) ratios for Fraxinus velutina ‘Arizona’. 
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Fraxinus velutina 'Modesto'
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Figure 42. Tree to grass evapotranspiration (ET) ratios for Fraxinus velutina ‘Modesto’. 
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Gleditsia tricanthos

2016-2018

Apr  Aug  Dec  Apr  Aug  Dec  Apr  

A
ve

ra
g

e
 T

re
e

 t
o

 G
ra

s
s
 E

T
 (

c
m

) 
R

a
ti
o

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G. tricanthos vs Agrostis stolonifera

G. tricanthos vs Lolium perenne

G. tricanthos vs Festuca arundinacea

G. tricanthos vs Cynodon dactylon

G. tricanthos vs Historical Low Fertility C. dactylon

1:1 Ratio

 

Figure 43. Tree to grass evapotranspiration (ET) ratios for Gleditsia tricanthos. 
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Lagerstroemia indica
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Figure 44. Tree to grass evapotranspiration (ET) ratios for Lagerstroemia indica. 
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Prosopis alba
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Figure 45. Tree to grass evapotranspiration (ET) ratios for Prosopis alba. 
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Parkinsonia florida

2016-2018

Apr  Aug  Dec  Apr  Aug  Dec  Apr  

A
ve

ra
g

e
 T

re
e

 t
o

 G
ra

s
s
 E

T
 (

c
m

) 
R

a
ti
o

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P. florida vs Agrostis stolonifera 

P. florida vs Lolium perenne

P. florida vs Festuca arundinacea

P. florida vs Cynodon dactylon

P. florida vs Historical Low Fertility C. dactylon

1:1 Ratio

 

Figure 46. Tree to grass evapotranspiration (ET) ratios for Parkinsonia florida. 
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Quercus virginiana
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Figure 47. Tree to grass evapotranspiration (ET) ratios for Quercus virginiana. 
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Ulmus parviofolia
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Figure 48. Tree to grass evapotranspiration (ET) ratios for Ulmus parvifolia. 
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Vitex agnus-castus
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Figure 49. Tree to grass evapotranspiration (ET) ratios for Vitex agnus-castus. 
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