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ABSTRACT 

 

Pronghorn (Antilocapra americana) Offspring Recruitment on the Carrizo Plain 

National Monument:  Evaluating the Effects of Low Population Density and 

Marginal Habitat Quality. 

 

By 

Diego Ramirez Johnson 

 

Dr. Daniel B. Thompson, Examination Committee Chair 

Professor of Biology 

University of Nevada, Las Vegas 

 

Demographic fluctuation among ungulate populations is strongly linked to 

variability in recruitment.  Rates of recruitment are subject to various forms of density-

dependent and density-independent regulation.  For species which benefit from the 

presence of conspecifics, reduced population density can decrease rates of recruitment 

and trigger a decline in per capita growth.  Termed the Allee effect, this scenario can 

cause demographic collapse and population extinction. For many ungulate species, 

predation on juveniles is reduced when the timing and distribution of births is 

synchronized within a local population.  Because birth synchrony is density-dependent, it 

may act as a mechanism for the Allee effect if offspring production in small populations 

is not sufficient to limit predation.  In addition to risks associated with the Allee effect, 



 iv   
 

marginal quality habitat and stochastic environmental fluctuation can limit recruitment 

and contribute to declines in reduced populations.  An understanding of how small 

populations are affected by density-dependence and habitat quality is critical for the 

ecology and conservation of ungulates.  This study examines recruitment in a highly 

reduced population of pronghorn occupying sub-marginal habitat on the Carrizo Plain 

National Monument (CPNM) in California.   

In Chapter 2, I address the potential for birth synchrony to act as a mechanism for 

a component Allee effect by comparing survival of individuals born during “peak” and 

“non-peak” periods within annual birth distributions.  Twenty of forty-five pronghorn 

fawns born on the CPNM from 2009-2011 were equipped with lightweight, detachable 

GPS/VHF collars.  The status of uncollared fawns was monitored via the VHF tracking 

of a collared sibling, general location of fawning site and/or the pelage of individual does.  

All 12 surviving fawns in the study (26.7%) were born during peak periods of 

productivity.  I then tested for the presence of a demographic Allee effect by 

investigating the density dependent feedback of population size on logarithmic per capita 

population growth rate using ten years of regional flight count information from 2000-

2011.  Using multi-model inference and Akaike’s information criterion (AIC) I 

developed and selected a set of candidate models to best describe the pattern in the 

dataset.  Results indicated that, at small population size, per capita growth rate tended to 

decline providing evidence for the presence of an Allee effect.   

In Chapter 3, I evaluate the effect of macro- and micro-environmental conditions 

on recruitment.  I modeled fawn habitat selection and survival, as well as examined diet 

composition and forage quality/availability for adults.  Fawn locations, in comparison to 
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random locations, were closer to drinking water and large shrub communities and 

contained lower percent slope of terrain.  Survival of fawns appeared to increase with 

closer proximity to water sources, greater distance from main roads, and with increased 

slope of terrain.  Low seasonal precipitation and high summer temperatures appeared to 

negatively affect survival.  Forage abundance and quality were adequate during spring, 

but low during summer and fall.  Low overall shrub cover appeared to provide inadequate 

concealment opportunities for fawns and likely limited nutrient availability during 

summer and fall for adults.  Collectively, this study demonstrates that low density 

pronghorn populations are likely at risk for Allee effects and that Allee effects may be 

manifested through mechanisms associated with birth synchrony.  Additionally, this 

study provides information on specific environmental conditions which affect survival of 

pronghorn fawns associated with micro- and macro-habitat availability and selection by 

does and fawns. 
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CHAPTER 1 

INTRODUCTION 

 

Introduction 

Understanding how populations are regulated is a central theme in ungulate 

ecology and conservation (Caughley 1977, Tulijapurkar 1997).  For temperate 

herbivores, offspring recruitment has been demonstrated to play a fundamental role in 

population dynamics (Coulson et al. 1997, Pettorelli et al. 2005).  Iteroparous 

reproduction among large, long-lived herbivores contributes to strongly age-structured 

populations and survival rates among particular age classes respond differently to various 

limiting factors (Gaillard 1998).  For instance, juvenile survival is typically lower and 

more variable than survival of prime-aged adults (Gaillard et al. 2000, Eberhardt 2002).  

The importance of recruitment in influencing long-term demographic variation is 

particularly apparent for polytocous species (Gaillard et al. 2000), such as pronghorn 

(Antilocapra americana).  Pronghorn consistently produce relatively large numbers of 

young annually (i.e., one set of twins per adult female per year) and exhibit the highest 

reproductive investment of any North American ungulate (Byers and Moodie 1990).  

However, mortality of neonatal fawns can be highly variable (40-80%) causing 

considerable fluctuations in annual recruitment rates (O’Gara and Shaw 2004).  Causes of 

mortality for pronghorn fawns commonly include predation, disease, starvation, and 

exposure to inclement weather (O’Gara and Shaw 2004).  Although predation is often the 

primary cause of mortality, the importance of predation as a limiting factor for pronghorn 

populations covaries with habitat quality.   Alone, predation on fawns is not generally 

1 
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considered to drive population dynamics of pronghorn and many populations remain 

stable despite enduring considerable neonatal losses (Byers 1997).  Nonetheless, the 

effect of predation on pronghorn recruitment appears to increase for low density 

populations (Gasaway et al. 1983, Cantrell 2001) and populations occupying habitats of 

marginal quality (Kohlmann 2004, Vriend and Barrett 1978). 

Recruitment in low density populations 

Recruitment, and ultimately population size, of pronghorn and other North 

American ungulates is regulated by both density-dependent and density-independent 

factors.  Density-dependence in ungulate populations commonly involves forage 

limitation, predation, and disease.  Density-independence is typically characterized by the 

effects of climatic variables.  In populations where density-dependence is the primary 

form of regulation, there commonly exists a negative or “classical” relationship between 

density and per capita growth.  However, when populations are low in density this 

relationship can become positive or “inverse” such that smaller populations have lower 

per capita growth.  Termed the Allee effect, positive density-dependence at small 

population size can produce catastrophic demographic collapse and ultimately increases 

the risk of localized extinction (Courchamp et al. 1999). 

Allee effects are generally classified as being either a component or demographic 

Allee effect (Courchamp et al. 1999).  Component Allee effects refer to a positive 

relationship between population size or density and any measurable component of 

individual fitness (e.g., rates of births, deaths, or overall recruitment).  When component 

Allee effects are strong they can result in a demographic Allee effect, a population level 

interaction where per capita growth rate is positively rated to population size or density. 
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The occurrence of Allee effects has been documented among a broad range of 

wildlife species, including pronghorn.  Allee effects arise via such mechanisms as 

predator dilution, anti-predator vigilance, social thermoregulation, and decreased genetic 

diversity (Dennis 1989, Fowler and Baker 1991, Courchamp et al. 1999).  For pronghorn, 

however, mechanisms for the Allee effect are poorly understood.  Allee effects are 

typically manifested through behavioral or physiological characteristics that are intrinsic 

to the species’ life history (Courchamp et al. 1999).  For instance, pronghorn exhibit birth 

synchrony which is thought to saturate predators (e.g., time spent hunting or prey item 

consumption) and increase overall offspring survival rates (Rutberg 1987, Gregg et al. 

2001, Kohlmann 2004).  However, the benefits of birth synchrony are density-dependent, 

and small populations may not exhibit sufficient offspring production to reduce predation 

(i.e., component Allee effect).  Small pronghorn populations, with reduced offspring 

production and increased predation rates may experience zero or negative per capita 

growth (i.e., demographic Allee effect). 

Recruitment in marginal quality habitat 

Beyond the constraints of population density on offspring recruitment are the 

effects of habitat quality.  Pronghorn are endemic to North America and range from 

southern Canada to northern Mexico.  Pronghorn abundance and dispersal vary among 

habitat types.  Roughly two-thirds of all individuals inhabit grasslands, one-third live in 

shrub-steppe habitats, and less than one percent occupy deserts (Yoakum 1972, 

Sundstrom et al. 1973, Wildlife Management Institute 2001).  Within each biome type, 

specific biotic and abiotic environmental attributes influence various aspects of fitness for 

both fawns and adults.  For example, fawns require adequate vegetative and/or 
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topographic concealment from predators during the early hiding phase of development 

(first two weeks of age) (Byers 1997b).  However, adult does require open, high visibility 

terrain with relatively shorter vegetation height to maintain vigilance against approaching 

ground predators. 

Pronghorn population density is strongly linked to forage quality, diversity, and 

availability (Yoakum 2004a).  Populations regulated by forage conditions tend towards 

dynamic equilibria when food resources are constant (Caughley 1976).  However, if 

interannual forage conditions are variable, considerable fluctuations in population size 

may occur (DeAngelis and Waterhouse 1987, Ellis and Swift 1988).  Forage conditions 

not only affect adult survival but also impact recruitment by influencing reproductive 

success, birth site-selection, and nutritional quality during lactation (Canon and Bryant 

1997, Yoakum 2001, 2003, Johnson et al. 2007).  Pronghorn are highly selective, 

opportunistic foragers that consume the most palatable and succulent plant items 

available (Salwasser 1980).  Pronghorn diets are generally divided into three main plant 

types:  Grasses, shrubs and forbs (i.e., forbaceous plant).  Although the availability of 

plant types may vary among different biomes, pronghorn preference for certain forage 

classes is remarkably consistent (Yoakum 2004c).  Forbs comprise the majority of 

pronghorn diet and shrub composition is generally equal to, or far greater than, grass 

composition (Yoakum 2004a).   Forbs tend to provide the best nutritional value and high 

forb abundance during winter and spring has been shown to contribute to increased fawn 

productivity and survival (Yoakum 2004c).  Shrubs, however, become an important food 

source for both adults and fawns during late summer and fall, especially if annual forbs 

and grasses become desiccated and are no longer available (O’Gara and Yoakum 1992). 
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Objectives and justification 

In this thesis, I evaluate how fawn recruitment is affected by low population 

density and habitat quality for a translocated population of pronghorn on the Carrizo 

Plain National Monument (CPNM) in California.  Over two decades, the number of 

pronghorn at this site has decreased from 135 animals to approximately 30 individuals 

(Sommer 2012) and habitat quality has previously been ranked as moderate to poor for 

pronghorn (Longshore and Lowrey 2008).  Prior research on pronghorn has been limited 

and information on recruitment has not been previously available.  At such low 

population density, pronghorn on the CPNM may be affected by an Allee effect and, if 

so, may be at risk of local extinction due to demographic fluctuation.  Testing for the 

presence of an Allee effect and evaluating the potential for birth synchrony to act as a 

mechanism for the Allee effect is the focus of Chapter Two.  Recruitment on the CPNM 

may also be affected by the apparent low quality of habitat, which may also influence and 

impede population recovery.  Evaluating how environmental conditions on the CPNM 

affect fawn habitat selection and survival is the aim of Chapter Three. 

 Understanding how recruitment is affected by population density and 

habitat conditions is not only critical for immediate management of pronghorn on CPNM, 

but also holds large scale implications for population ecology and conservation of 

pronghorn across the species’ range.  Over the past several decades, many pronghorn 

populations have become critically small, particularly those located within isolated and/or 

arid habitats.  Examples include the federally endangered Sonoran subspecies in Arizona 

(A. americana sonoriensis) and the threatened Peninsular subspecies in Mexico’s Baja 

California (A. americana peninsularis) (IUCN 2014, U.S. Fish and Wildlife Service 
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1997, respectively).  Many declining populations are derived from translocated groups of 

individuals.  Although the translocation of animals to reestablish extirpated populations 

or augment critically small populations is a common conservation practice (Griffith et al. 

1989, Fischer and Lindenmayer 2000, World Conservation Union 1993), the success of 

such efforts depends on two important factors:  the number of animals released and the 

quality of habitat available (Wolf et al. 1996, Griffith et al. 1998, O’Gara et al. 2004).  

Results described within this research thesis can be used by population ecologists and 

conservation managers to better understand the factors affecting recruitment and 

ultimately population dynamics of pronghorn and other ungulates.    

Background 

The remarkable, and perhaps unparalleled, population recovery of Pronghorn 

(Antilocapra americana) represents a success story for the conservation and management 

of North American megafauna (O’Gara and Yoakum 2004, Sparrowe 2004).  Prior to 

European settlement, between 30 and 40 million pronghorn are estimated to have 

inhabited the expansive, open plains of western North America (Nelson 1925).   

However, numbers were reduced by more than 99% due to anthropogenic impacts 

associated with rapid agricultural development, unregulated year-round hunting, 

competition with domestic livestock, disease, construction of fencing, and the overall 

alteration and transformation of native rangelands (Yoakum 2004a).  By 1915 a historic 

low of 13,000 individuals remained (Yoakum 2004b).  Wildlife conservation practices 

became increasingly popular during the 20th century and pronghorn populations began to 

recover from near extinction through improved hunting policies and rangeland 
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management (Yoakum 2004b).  By 1924 the estimated population size increased to 

30,500 and by 1983 that number had climbed to over one million (Yoakum 2004b). 

Although pronghorn experienced more than half a century of significant 

population recovery, numbers plateaued between 1984 and 1995, and have since 

decreased by approximately one-third (Yoakum 2004b).  This population decline is 

particularly apparent for pronghorn occupying arid habitats of the southwestern U.S. and 

Mexico (i.e., A.americana sonoriensis and A. americana peninsularis subspecies).  

California, which is composed of large areas of semi-arid habitat, once contained one of 

the highest pronghorn densities west of the Continental Divide (Yoakum 2004b).  The 

species was widely distributed throughout the state, occupying ranges from the Modoc 

Plateau in the northeast, throughout the Sacramento and San Joaquin valleys, and along 

both sides of the coastal range in southwest California (Yoakum and Koch 2009).  

However, as California’s human population expanded during the early 1900’s, pronghorn 

populations exhibited similar trends as elsewhere in North America (Yoakum 2004b).  

The species became regionally extinct in all areas except the northeast (McLean 1944) 

and presently are absent from an estimated 70% of their historic range (Yoakum and 

Koch, 2009).   

From 1987 to 1990, the California Department of Fish and Game (CDFG) 

conducted a series of reintroductions, during which 340 pronghorn were translocated 

from the Modoc Plateau region to several sites in Kern and San Luis Obispo counties 

(Maher 1994).  Approximately 135 of these animals were released onto the Carrizo Plain 

National Monument (CPNM).  Information from aerial surveys, conducted by the CDFG 

in 1995 and biannually from 2000-2011, indicate that this translocated pronghorn 
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population has declined significantly.  Today, pronghorn on the CPNM exist at low 

density as fewer than 30 individuals consistently utilize habitat within the monument 

boundary (Sommer 2012). 

Study area 

The Carrizo Plain National Monument (CPNM) is located within the coast range 

in southeastern San Luis Obispo County, California (Goodwin Education Center: N 35° 

11' 23.51", W 119° 51' 47.87"; UTM 35.189864, -119.863298) (Fig 1.1). The monument 

encompasses 102,639 hectares (253,628 acres) co-managed by the CDFG, Bureau of 

Land Management (BLM) and The Nature Conservancy (TNC) (BLM 2011, Sisk et al. 

2008).  Topography within the monument is primarily composed of an expansive plain 

bordered by two mountain ranges:  the Temblor Range along the northeast boarder and 

the Caliente Range along the southwest boarder. Elevation along the valley floor 

averages 615 meters (2,018 ft). The highest elevation is Caliente Peak at 1,556 meters 

(5,105 ft). Annual rainfall occurs primarily between December and April and can be 

highly variable among years (mean = 24.56 cm, SE = 2.31 cm).  Runoff from rainfall 

drains collects in Soda Lake, a shallow, alkali terminal lake in the center of the valley 

floor (Penrod et al. 2010).  The semi-arid nature of the Carrizo Plain results in the lake 

being ephemeral in nature. Average minimum daily temperature during the past two 

decades since 1992 was 5°C (41°F, SE = 8.72) and average maximum daily temperature 

was 24°C (75°F, SE = 13.04). Historically, the area was used for dry land wheat farming 

and is now inundated with non-native annual plant species. Annual grasses, notably 

brome (Bromus spp.) and wild oats (Avena spp.) are dominant on the plain. Alkali sink 

vegetation including spiny saltbush (Atriplex spinifera) and iodine bush (Allenrolfea 



 9   
 

occidentalis) are found at the lowest elevations. Juniper-oak cismontane woodland and 

cismontane juniper woodland and scrub are found in the higher elevations.  Although 

anthropogenic disturbances within the monument are minimal, portions of the valley 

floor have been converted to agricultural fields and some livestock grazing does occur.  

The CPNM is generally considered to be at the far southwest portion of the Central 

Valley ecoregion (Hickman 1993).  It provides habitat for a number species which are 

either federally listed as endangered or considered species of management concern:  San 

Joaquin kit fox (Vulpes macroitis mutica), blunt-nosed leopard lizard (Gambelia sila), 

giant kangaroo rat (Dipodomys ingens), longhorn fairy shrimp (Branchinecta 

longiantenna), Nelson’s antelope squirrel (Ammospermophilus nelson), and burrowing 

owl (Athene cunicularia) (Sommer 2012). 
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CHAPTER 2 

ALLEE EFFECTS, BIRTH SYNCHRONY, AND NEGATIVE DENSITY 

DEPENDENCE IN A TRANSLOCATED POPULATION OF PRONGHORN 

(ANTILOCAPRA AMERICANA) 

 

Introduction 

Understanding how wildlife populations are regulated is a principal concern in 

ecology and conservation (Caughley 1977, Tuljapurkar and Caswell 1997).  For most 

temperate ungulates density-dependent and density-independent factors, in concert, 

directly affect individual fitness and ultimately regulate population size (Saether 1997, 

Clutton-Brock 1985, 1991).  Density-independent regulation commonly involves the 

effects of climatic variables (Post and Stenseth 1998) whereas density-dependent 

regulation is often associated with forage availability (Kie et al. 1980; Skogland 1986), 

predation, (Wittmer et al. 2005), and disease (Shrauder 1984).  Studies on density-

dependence have largely focused on the effects of overcrowding, where a negative or 

“classical” relationship between population size and per capita growth (Fig 2.1) is formed 

as populations approach carrying capacity (the maximum number of animals supported 

within a particular habitat in relation to available resources) (Fowler 1981, Kohlmann 

1998, Hess 1986, Hess 1999, Pojar 1997).  Less studied, however, are the contrasting 

effects of positive or “inverse” density-dependence.  Termed the Allee effect, positive 

density-dependence at low population size causes per capita growth rates to decline (Fig 

2.1; Allee 1931).  When Allee effects are strong, per capita growth rates can reach zero or 

15 
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negative values and cause catastrophic population collapse (Dennis 1989, McCarthy 

1997, Poggiale 1998, Stephens et al. 1999, Courchamp et al. 1999). 

Allee effects have profound implications for threatened wildlife populations 

(Stephens and Sutherland 1999, Courchamp et al. 2008).  Thus, understanding how Allee 

effects arise is important for population ecology and conservation.  Allee effects are 

generally classified as being either a component or demographic Allee effect (Courchamp 

et al. 1999).  Component Allee effects refer to a positive relationship between population 

size or density and any measurable component of individual fitness (e.g., rates of births 

or deaths).  When component Allee effects are strong enough, they may then result in a 

demographic Allee effect, where population size or density is positively related to per 

capita growth rate.  Mechanisms for both component and demographic Allee effects have 

been documented for a large variety of taxa and can include cooperative breeding, 

predator dilution, foraging efficiency, mate finding and reduced genetic diversity (Dennis 

1989, Fowler and Baker 1991, Stephens and Sutherland 2000, Berec et al. 2007).  For 

ungulates, however, it is not well understood how Allee effects are produced (Hoffman 

2010).  Allee effects generally arise via mechanisms that are intrinsic to the species’ life 

history (Courchamp et al. 2008).  For social ungulate species, in which selection has 

favored large group sizes, fitness benefits are associated with the presence of conspecifics 

(Stephens and Sutherland 1999).  Many ungulate species produce large numbers of young 

during tightly synchronized birth periods (Estes 1976, Rutberg 1987).  Birth synchrony is 

an important adaptation which acts to saturate predation thresholds (e.g., energy and time 

foraging required) and ultimately decrease per capita predation rates (Rutberg 1987, 

Gregg et al. 2001, Kohlmann 2004).  However, the benefits of birth synchrony are 
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density-dependent and, in small populations, predation rates may increase if offspring 

production is low (i.e., component Allee effect).  Thus, demographic Allee effects may 

arise in low density populations if a collapse of birth synchrony produces low or negative 

per capita growth rates. 

In this study, I investigate potential Allee effects and evaluate birth synchrony as 

a possible mechanism for the Allee effect within a highly reduced population of 

pronghorn (Antilocapra americana) on the Carrizo Plain National Monument (CPNM) in 

California.   The CPNM is located along the southwest edge of California’s Central 

Valley, a region which once contained one of the highest pronghorn densities in North 

America (Pyshora 1977, Yoakum 2004b).  However anthropogenic effects associated 

with agricultural development and overhunting resulted in regional elimination of the 

species by the 1930’s (Yoakum 2004a).  During a series of reintroduction efforts 

conducted in 1987, 1988 and 1990, 240 pronghorn were translocated to various locations 

surrounding the CPNM. 

Information from aerial surveys indicates that descendants of the originally 

released individuals presently exist in two distinct groups (i.e., herds) (Sommer 2012).  

Although these groups occupy sites adjacent to one another, geographic and 

anthropogenic barriers (e.g., mountain ranges, salt flats, roads, fences, and residential 

development) restrict movement and minimize immigration and/or emigration (Sommer 

2012). For purposes of clarity, these two groups will hereby be referred to as the CPNM 

and California Valley (CV) populations.  Although the CPNM population utilizes 

expansive, undeveloped and federally protected habitat on the southern end of the Carrizo 

Plain, pronghorn abundance and fawn:doe ratios have consistently been higher for the 
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CV population occupying the mostly private agricultural areas on the northern end of the 

Carrizo Plain (Sommer 2012).  The demographic contrast between the two populations 

provides an opportunity to compare relative strengths of potential Allee effects. 

To assess ecological processes related to density-dependence in small 

populations, I first determine how fawn survival is affected by the timing and distribution 

of birth dates and evaluate the potential for birth synchrony to act as a mechanism for a 

component Allee effect.  I then test for a demographic Allee effect by measuring the 

density-dependent feedback of population size on logarithmic per-capita growth for the 

CPNM and CV populations. 

   

Methods 

Birth synchrony and fawn survival 

To examine the degree of synchronicity for annual birth distributions I divided the 

range of days in which births occurred for each year into four equal periods using the 

first, second and third quartiles (Gregg et al. 2001). I then totaled the number of births 

which occurred during each of the four periods. The two periods with the most number of 

births were considered peak periods and the two periods with the least number of births 

were considered non-peak periods. I defined birth synchrony as a distribution with two 

adjacent peak periods (e.g., the first and second periods are peak). Distributions in which 

the two peak periods were separated by one or more non-peak periods were considered to 

be asynchronous. The survival rates for fawns born during peak and non-peak periods 

were then compared to determine the effect that timing of birth had on recruitment 

(Gregg et al. 2001). 
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Fawn survival and causes of mortality 

Neonatal pronghorn fawns were equipped with GPS/VHF expandable, breakaway 

collars during April and May, 2009-2011. Total weight of each collar was ≤ 120 grams. 

Fawn captures were conducted using methods described in O’Gara et al. (2004) and 

Gregg et al. (2001). Heidi Zurawka D.V.M., California Dept. Fish & Game, assisted with 

captures and trained the field crew in fawn processing techniques in 2009. Pronghorn 

fawns were captured at < 5 days of age. Bedded fawns were approached on foot and a 

large net (approx. 1 m dia.) was placed gently over the fawn to assure capture and prevent 

bolting. If a birth was witnessed, capture was conducted at least 4-6 hours afterwards to 

allow for fawn-doe imprinting. Once captured, every effort was used to minimize stress 

to the animals. Fawns were blindfolded and kept still to reduce the chance of injury. 

Surgical gloves, capture net, and collars were all previously stored in local vegetation to 

minimize human scent. I recorded sex, weight, body measurements, condition of fawns, 

and estimated the date of birth. For fawns whose birth was not observed, birth date was 

estimated by behavioral criteria, condition of pelage, hoof and dental development, and 

desiccation of umbilical cord (see O’Gara et al. 2004). Blood samples (18-20 ml) were 

collected from individuals that did not appear stressed (e.g. fawns that struggled more 

than normal). Blood samples were sent to the California Department of Fish and Game 

Wildlife Investigations Laboratory. All pronghorn fawns observed on the CPNM were 

monitored daily. Collared fawns were located using VHF telemetry receivers. Positive 

identification of uncollared fawns was possible through the collaring of a sibling, 

location, or identifiable pelage of the mother (Byers 1997a). Fawns which lived > 90 days 

were considered to have been recruited based on abundant evidence from similar studies 
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which have documented that 95% of fawn mortality takes place ≤ 18 days of age (Gregg 

et al. 2001). Both collared and uncollared fawns which were not again observed after the 

regrouping of individuals during late summer, were considered to have died based on 

results from numerous studies (reviewed in Gaillard et al. 2000) indicating that young 

ungulates die either within their first weeks or during their first winter (Pettorelli et al. 

2005).  Results for survival rates were compared to eighteen other similar studies 

conducted within 10 different states as reported by O’Gara and Shaw (2004). 

In addition to collaring fawns, I conducted standardized road surveys from 2008-

2011. The purpose of these surveys was to: 1) monitor the distribution and condition of 

uncollared fawns and adults; 2) verify count information from flights conducted by the 

CDFG during that same period; and 3) locate and recorded potential predators of fawns 

(i.e., coyotes and golden eagles) (predators were recorded for 2010 and 2011 only). The 

CPNM contains an extensive network of paved and unpaved roads (>150 km in total), so 

that any one point within suitable pronghorn habitat is no more than 4.2 km from a 

drivable location. I was able to use binoculars and spotting scopes to effectively survey 

all pronghorn habitat from vehicles and by accessing areas of elevated topography on 

foot. Animal locations were calculated using the observer location (Garmin map76 

handheld GPS unit) and the estimated distance and bearing to the animal. Female 

pronghorn detected during ground surveys were monitored for the presence of fawns 

using methods described by Byers (1997a).  

I calculated seasonal fawn survival rates using the Kaplan–Meier (K-M) 

procedure (Kaplan and Meier 1958) modified for staggered entry (Pollock et al. 1989). 

Due to the small sample size of collared individuals and the large quantity of censored 
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data (i.e., telemetry failure) interpretation of K-M results was limited. However, when I 

compared K-M survival curves between collared fawns and fawns which were 

uncollared, but monitored regularly for survival, I found that results did not differ. I 

therefore grouped all fawns born during individual seasons and then compared seasons 

using a log rank procedure. 

Fawns which did not survive were recovered as quickly as possible to determine 

whether death was due to predation and if so, to identify the predator species using 

criteria described in O’Gara and Shaw (2004). When possible, carcasses of deceased 

fawns were taken to the California Department of Fish and Game’s Wildlife 

Investigations Laboratory for necropsy results. 

Density-dependence and the Allee effect 

To test for Allee effects, and overall density-dependence, I used a multi-model 

inference approach (Burnham and Anderson 2002).  First, I measured the density-

dependent feedback of population size on logarithmic per-capita growth for both the 

CPNM and CV populations (Hoffman et al. 2010).  Annual population sizes were 

estimated using winter count totals from aerial surveys conducted by the CDFG from 

2000 to 2011. Population size was used instead of population density because the two 

areas occupied by each herd are similar in size (Courchamp et al. 2008).  To evaluate the 

potential for immigration and emigration to have occurred between the CPNM and CV, 

and to justify analyzing the two populations as separate and demographically distinct, I 

compared the linear relationships of annual population change between the two groups.  

For all years, excluding 2008, there existed a positive relationship of annual population 

change between the two groups, indicating the population growth and/or decline occurred 
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similarly, and that interchange between each group was likely limited and insignificant.  

Information from aerial counts was compared to information from ground surveys (from 

2009-2011) to assess the accuracy of the data set. Logarithmic per capita population 

growth rate (log(g(N)) was calculated using log transformed data from the discrete-time 

model of population dynamics (g(N) = log(Nt+1/Nt); where Nt represents the population 

size at time t (Courchamp et al. 2008).  I then developed a suite of models to test possible 

linear and non-linear (i.e., exponential) relationships between population size and per-

capita growth (Burnham and Anderson 2002).  Akaike’s Information Criterion adjusted 

for small sample size (AICc) was used for model selection (Burnham and Anderson 

2002).  Residual sum of squares values from each of the alternative models were used to 

determine AICc and ΔAICc values. I used the AICc differences to rank the set of 

candidate models. I considered approximating models with ΔAICc of ≤ 3 as a 

conservative approach to determine the fit of possible competing models. I used Akaike 

weights (wi) and evidence ratios to assess the relative strength of evidence for each 

model. 

 

Results 

Birth synchrony and fawn survival 

Births for all three seasons (from 2009-2011) occurred within a one month period, 

between April 25 and May 25 (Fig. 2.2). The date range and synchronicity of fawn birth 

distributions varied between years (Fig. 2.2). The mean range in which births took place 

was 22.7 days (SE = 6.4). Birth synchrony was detected for the first two years, during 

2009 and 2010, where peak offspring productivity occurred during the first two quarters 
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of each year’s respective birth distribution (before quartile 1 and between quartile 1 and 

2). Birth synchrony was not detected for 2011, where peak periods of offspring 

productivity occurred at the beginning (before quartile 1) and at the end (after quartile 3) 

of the birth distribution. Survival was higher during peak periods than non-peak periods 

(Table ). All 12 surviving fawns in the study were born during peak periods and none of 

the fawns born during non-peak periods survived in any year of the study. Survival was 

not related to overall offspring production across the three years (χ2 = 6.00, df = 4, p = 

0.20). 

Fawn survival and causes of mortality 

Forty-five pronghorn fawns were born on the CPNM during three seasons from 

2009 to 2011. Of these individuals, 20 (7 males and 13 females) were equipped with 

GPS/VHF collars and released. Mean age at capture was 2.07 days (SE = 0.33). Body 

measurements and processing data for each fawn can be found within Appendix A. 

Survival between male and female collared fawns did not differ (z = -0.32, p = 0.75). The 

remaining 11 uncollared fawns were monitored through field observation. Percent 

survival of collared fawns (20.0%) and uncollared fawns (32%) did not differ (z = -0.25, 

p = 0.81). Percent survival of all fawns (both collared and uncollared; 26.7%) did not 

differ from that found for other populations (29.4%, n = 995) as reported by O’Gara and 

Shaw (2004) (z = 0.22, p = 0.82). Annual fawn productivity and survival was variable 

across years (mean productivity = 15.0 fawns, SE = 3.5 and mean survival = 30.7%, SE = 

8.5) (Table 2.2). Of 13 recovered collars, 10 functioned properly while deployed (i.e., 

consistently recorded locations); and of these 10 functioning collars, 9 were from 

deceased fawns. The mean number of days lived for the 9 deceased collared fawns was 
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14.4 days (SE = 2.9) and all but one of these fawns died at ≤ 18 days of age. Results for 

the Kaplan-Meier survival curve (Fig. 2.3) indicated that 50% of fawn mortality occurred 

prior to 20 days of age and that the greatest rate of mortality took place between 16 and 

18 days. Kaplan-Meier survival curves did not differ between years (Log-Rank Statistic = 

3.34, DF = 2, P = 0.19). 

Causes of mortality for the 20 collared fawns and 1 uncollared fawn included 

predation (28.6%; n = 6), health-related issues (0.1%; n = 2) and undetermined causes 

(61.9%; n = 13). For the 6 predator related mortalities, predation by coyote (n = 6) and 

golden eagle (n = 1) were detected. Results from laboratory necropsies performed for the 

two health-related mortalities indicate that death was caused by an infected umbilical 

cord for one individual and a lacerated liver (possibly from being stepped on by its 

mother) for the other (Appendix B). 

To evaluate the potential for additional predator related mortalities to have 

occurred, I analyzed age-specific mortality and movement patterns of fawns that did not 

survive. Byers (1997b) reported that fawn mortality was highest for individuals between 

11 and 20 days; and suggested that, as fawns develop, increases in movement make 

individuals more visible to predators. On the CPNM, fawns made significant increases in 

movement between 16 to 18 days of age (Fig. 2.4). During that same period, the mortality 

rate was higher than for any other ages (Fig. 2.3).  Eight of the 10 mortalities occurred 

between 16 and 18 days of age, indicating that mortality risk may have been associated 

with increased movement.  

Density-dependence and the Allee effect 
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Pronghorn abundance and distribution on the CPNM were consistent between 

ground and aerial surveys conducted during the fawning seasons from 2009 to 2011 (Fig. 

2.5). The pattern in the relationship between population size and logarithmic per-capita 

growth for the CPNM and CV populations are shown in Fig. 2.6.  Analysis of variance 

and regression analyses of the data produced a set of possible models with varying fit to 

the data (Table 2.1).  Parameters in the  global model included population type (i.e., 

CPNM and CV), population size, population size squared, interaction between population 

type and population size, and interaction between population type and population size 

squared (Table 2.1).  AIC model selection results indicated that four candidate models, 

Model 1 (wi = 0.40), Model 2 (wi = 0.27), Model 3 (wi = 0.14) and Model 4 (wi = 0.12), 

showed support as the best approximating models (ΔAICc < 3.0) (Table 2.1).  Important 

parameters indicated by the four top candidate models were population type (i.e., CPNM 

and CV), population size, and population size squared (Table 2.1).  

 

Discussion 

Birth synchrony and fawn survival 

Synchronous birth distributions were detected for the two years of highest 

offspring productivity and largest population size, suggesting that birth synchrony is 

density dependent and may degrade in reduced populations.  Birth peaks, however, 

contained only limited numbers of individuals due to low population size and did not 

reflect a strong pattern of synchronicity.  All recruited individuals were born during the 

highest periods of offspring productivity (i.e., peak periods) within their respective 

annual birth distributions. In contrast, the total number of offspring produced each year 
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was not related to the probability of survival. Therefore, it appears that the timing and 

clustering of birth dates (i.e., birth synchrony) was more important than the raw number 

of fawns produced.  Though it is likely that birth synchrony and total offspring 

production are working together to influence fawn survival. Decreased recruitment rates 

due to a loss of birth synchrony in reduced populations would produce a component Allee 

effect, and possibly a demographic Allee effect.  However, directly testing for birth 

synchrony as a mechanism for a component or demographic Allee effect would require 

more than three years of fawn survival information.  Increased population size is likely to 

create a more synchronous birth distribution and therefore increase offspring survival. 

Additionally, variables which influence timing and breeding are likely to be important for 

maintaining synchronous birth distributions. Gregg et al. (2001) suggested that excessive 

disturbance of adults during breeding season may disrupt social breeding structure 

(Copeland 1980), which could reduce birth synchrony by lengthening the breeding 

period. Gregg et al. (2001) also suggested that female nutrition and body condition during 

breeding and pregnancy are important for maintaining normal estrous cycles and 

gestation periods; and that birth synchrony may be promoted through management 

practices which enhance summer and fall forage quality and abundance, or include 

supplemental feeding during breeding season (Lee et al. 1998). 

Fawn survival and causes of mortality 

Mean percent survival of pronghorn fawns on the CPNM did not differ from 

mean percent survival reported for other populations across the species’ range (O’Gara 

and Shaw 2004). It is important to consider, however, that for small populations, having 

the same mean percent survival as larger populations may not be adequate for population 
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growth and stability because the raw numbers of recruited individuals are very limited. 

During this study, the total number of fawns that survived during any one year was only 

between 3 and 5 fawns. In addition, offspring productivity and percent survival varied 

substantially between years. Although pronghorn commonly exhibit high variability in 

annual recruitment (Vriend and Barrett 1978, Kohlmann 2004), small or sparse 

populations are likely to become vulnerable to environmental and demographic 

stochasticity (e.g., drought and chance variation of births/deaths, respectively) 

(Courchamp et al. 2008). Increased rates of fawn survival are likely required to sustain a 

viable pronghorn population on the CPNM and management actions which increase 

recruitment will reduce the risk of localized extinction. 

The primary causes of mortality typically attributed to deceased pronghorn fawns 

include predation, starvation, exposure and disease (O’Gara and Shaw 2004). Of these 

mortality factors specifically, I found evidence for predation only. Mortalities related to 

health appeared to be separate and unrelated events. Predation on the CPNM (29%) was 

substantially lower than for other populations (53%; O’Gara and Shaw 2004). Although 

predation is not generally considered to drive pronghorn population dynamics, the 

importance of predation increases for static or declining populations; as well as for 

populations occupying marginal habitats or areas where the number of predators is high 

in relation to the number of pronghorn (Lee et al. 1998, O’Gara and Shaw 2004). In 

addition, the abundance of alternate prey species (e.g., lagomorphs, rodents, etc.) can 

alleviate pronghorn fawn predation (Beale 1986). For the CPNM, population density 

estimates of predators and alternative prey species would be useful to provide an 
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indication of how predator-prey relationships function at this site; and how interspecific 

interactions may affect fawn survival and predation. 

Information for the direct causes of individual mortalities was absent for the 

majority of deceased individuals. Weak or non-existent VHF signals on collars delayed 

and/or impeded the ability to recover carcasses and conduct effective necropsies. Often, 

fawns were consumed entirely before arrival and/or only small tooth or bone fragments 

remained. Scavengers (e.g., vultures, corvids, coyotes, etc.) are common on the CPNM, 

and differentiating between scavenging and predation events becomes increasingly 

difficult with delayed recovery times (e.g., > 48 hours). To investigate the potential for 

additional predator related deaths to have occurred, I examined patterns in movement in 

relation to age-specific mortality. Byers (1997b) found that predation is highest for fawns 

between 11 and 20 days of age, suggesting that the transition from hiding to cursorial 

(i.e., running) behavior causes fawns to become increasingly visible to predators while 

still vulnerable to attack. These results support Byers (1997b) and provide evidence that 

mortality is associated with increased movement patterns during development. Of the 10 

mortalities which occurred during ages of increased fawn movement, the cause of death 

was reported as unknown for 8 individuals. I consider it likely that predation was 

involved for a portion of these undetermined cases.  Long-term information on fawn 

survival and causes of mortality is likely required to accurately assess the importance of 

predation in driving recruitment and ultimately population size on the CPNM. 

Density-dependence and the Allee effect 

Three broad conclusions can be interpreted through evaluation of the candidate 

models for density-dependence.  First, Model 2 and Model 4 indicate that, independent of 
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population size, growth rates differ between the two populations.  That is, the CPNM 

population has lower rates of growth at any given population size than does the CV 

population.  This may indicate that a habitat effect is involved in which environmental 

variables (e.g., forage conditions or predator densities) influence population growth.  

Second, Model 3 indicates that both populations exhibit an Allee effect but do not differ 

in the magnitude or position of shift from an Allee effect to negative density dependence.  

Third, Model 1 indicates that both populations exhibit negative density-dependence but 

do not differ in the amount of reduction in population growth caused by increased 

population size.  The apparent contradiction between Model 1 and Model 3 is best 

understood by noting that the average size of each population differs within the data set; 

average population size on the CPNM (53 adults) is lower than in CV (67 adults).  

Accordingly, it is unknown how growth rates respond to large population sizes on the 

CPNM or how growth rates respond to small population sizes in CV.  Examination of the 

dataset indicates that at low population size, growth rates respond differently between the 

two populations, suggesting the presence of an Allee effect for pronghorn on the CPNM 

and the presence of negative density-dependence for pronghorn in CV.   

 

Summary 

In summary, two lines of evidence from this study support the hypothesis that 

birth synchrony in small populations can act as a mechanism for component Allee effects, 

and possibly for demographic Allee effects.  First, survival was higher for fawns born 

during peak birth synchrony and lower for those born during outlier dates (component 

Allee effect).  Second, results from multi-model inference and the fact that population 
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growth rates between CPNM and CV appeared to respond differently at low population 

size, indicate the possible presence of a demographic Allee effect for the CPNM. 

Evidence of both positive and negative density-dependent feedback was detected.  

Although the multi-model inference was not conclusive overall due to the relatively low 

sample size and AIC penalty on fitting parameters, this modeling method would be useful 

for future research on demographics of pronghorn and other ungulate species.  For this 

study, the ability to further resolve patterns in model results was limited by the size of the 

data set, and future research on the CPNM and CV populations would require additional 

years of information.  Accordingly, studies which aim to examine density-dependency in 

small populations will require long-term data sets with more sampling and replication to 

reach the best possible conclusions. 
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Figure 2.1.  Relationship between population size or density and the per capita population 
growth rate (adapted from Berec et al. 2007).  At low population size or density, the 
relationship is positive for weak (dashed and dotted line) and strong (solid line) Allee 
effects.  For negative or “classical” density dependence (dashed line) the relationship is 
negative despite population size or density. 
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Figure 2.2.  Pronghorn fawn survival relative to annual birth distribution, for 2009, 2010 
and 2011 on the Carrizo Plain National Monument, CA. Survivals (shaded bars) and 
mortalities (open bars) of individuals are indicated. Birth synchrony was detected for 
2009 and 2010, but not for 2011 (see Results). 
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Fig 2.3. Survival curve for pronghorn fawns, born on the Carrizo Plain National 
Monument, CA during 2009, 2010 and 2011. Survival rate was calculated as proportion 
of fawns alive at each age class. Upper and lower confidence intervals (dotted lines) were 
calculated using Kaplan-Meir standard errors.  
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Figure 2.4. Daily distance traveled by GPS collared fawns relative to age, on the Carrizo 
Plain National Monument, CA from 2009-2011. Distances represent the mean number of 
meters moved per day, in two hour intervals, by fawns in each respective age class. 
Distances differed across age classes (H = 17.77, df = 6, p = 0.007) with significance 
detected between age 1 – 3 days and 19 – 21 days (p < 0.05). 



 

 
 
Figure 2.5.  Pronghorn locations detected during aerial surveys and road surveys, (blue and green circles, respectively) during 
spring and summer 2009-2011. Points represent single observations of one or more animals (mean = 3.60 individuals per 
location, range = 1-16 individuals per location.
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Figure 2.6. Relationship between population size and logarithmic per capita growth rate 
for pronghorn on the CPNM and in California Valley, (closed circles and open circles, 
respectively).  Information reflects winter count totals from aerial surveys conducted by 
the California Department of Fish from 2000-2011.  
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Table 2.1. Comparison and relative ranking of candidate models for analysis of density-
dependent feedback between population size and per-capita growth, for pronghorn on the 
Carrizo Plain National Monument (CPNM) and in California Valley (CV) from 2000 to 
2012.   Akaike’s Information Criterion (AIC) corrected for small sample sizes (AICc) was 
used for model selection. Included for each candidate model are values for sum of 
squares (SS), number of parameters (k), AICc values, Δ AICc values, and Akaike weights 
(wi). Relative ranking of models was determined using Δ AICc ≤ 2.5. 
 
 Model SS k AICc ΔAICc wi 
1 popsize 1.50 1 2.29 0 0.40 
2 poptype 1.61 1 3.04 0.75 0.27 
3 popsize+popsize2 1.38 2 4.34 2.06 0.14 
4 poptype+popsize 1.42 2 4.65 2.36 0.12 
5 poptype+popsize+popsize2 1.30 3 6.90 4.62 0.04 
6 poptype+popsize+int1 1.50 3 8.42 6.13 0.02 
7 poptype+popsize+popsize2+int1 1.50 4 12.03 9.74 0.003 
8 Global model 1.20 5 13.80 11.50 0.001 
aGlobal model included population type (poptype) (i.e., CPNM and CV), population size 
(popsize), population size squared (popsize2), interaction between population type and 
population size (int1), and interaction between population type and population size 
squared (int2). 
 
 
 
Table 2.2. Number of survivals and mortalities for fawns born during peak and non-peak 
periods on the Carrizo Plain National monument, CA.  
 
 Survivals Mortalities  
Year Peak Non-peak Peak Non-peak Total born 
2009 3 0 12.5 6.5 22 
2010 5 0 4 3 12 
2011 4 0 2 5 11 
Total 12 0 18.5 14.5 45 
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CHAPTER 3 

PRONGHORN (ANTILOCAPRA AMERICANA) FAWN SPATIOTEMPORAL 

MICRO- AND MACRO-HABITAT SELECTION AND SURVIVAL  

 

Introduction 

Population sizes of large mammalian herbivores are highly influenced by habitat 

quality, availability, and distribution (Ogutu et al 2008, Gaillard et al. 1998).  Marginal or 

sub-marginal habitats tend to produce fitness costs, such as low rates of recruitment, 

which cause population size to become unstable and/or decline (Vriend and Barrett 

1978).  Recruitment rates have been demonstrated to drive population dynamics of 

temperate herbivores (Coulson et al. 1997, Saether 1997), particularly for polytocous 

species such as pronghorn (Antilocapra americana) (Gaillard et al. 2000,).  Although 

pronghorn produce large numbers of offspring annually, survival of juveniles in 

comparison to adults is consistently lower and more sensitive to environmental variability 

(Gaillard et al. 2000, Eberhardt 2002, Gaillard & Yoccoz 2003).  The effect of predators 

on recruitment and population limitation for pronghorn has been shown to covary with 

habitat quality, where predation of neonatal fawns is high when environmental conditions 

are poor (Kohlman 2004).  Understanding how predator induced mortality is affected by 

habitat conditions is a fundamental consideration for the ecology and management of 

pronghorn populations. 

The biotic and abiotic environmental variables which influence fawn survival and 

ultimately recruitment have been relatively well documented within the three primary 

biome types commonly used to describe pronghorn habitat (i.e., grassland, shrub-steppe, 
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and desert biomes) (Yoakum 2004, O’Gara 2004).  Vegetative attributes appear to 

influence recruitment through the effects of plant type, density, height, and diversity on 

fawn concealment from predators and survival during the early hiding phase of fawn 

development (Bromley 1978, Mitchell 1980, Alldredge et al. 1991).  Indirectly, these 

same vegetative characteristics affect fawn survival by influencing the initial birth site 

selection by preparturient adult females (e.g., forage conditions, long-range visibility of 

predators), as well as nutritional quality during lactation (Canon and Bryant 1997, 

Yoakum 2001, 2003, Johnson et al. 2007).  Accordingly, habitat requirements for both 

fawns and does must be met simultaneously at different spatial scales.  At the micro-

habitat scale, selection is based on the hiding requirements of a fawn; and at the macro-

habitat scale selection depends on the dietary requirements of the doe balanced with the 

needs of her offspring.  

Although information for the influence of habitat on recruitment may be readily 

available, research has largely focused on specific biome types, without much 

consideration for biome overlap or for habitats which have undergone significant 

alterations and no longer reflect standard biome classifications (Yoakum 2004).  

Conservation efforts to reestablish pronghorn populations within historic ranges often 

involve the translocation of individuals to areas which have been dramatically altered 

since extirpation (e.g., anthropogenic effects).  Releases of pronghorn into such habitats 

may hinder the success of relocation programs.  On the Carrizo Plain National Monument 

(CPNM), located along the southwest edge of California’s Central Valley, a translocated 

population of pronghorn has been reduced by approximately 75% since original 

reintroduction efforts 20 years prior (Sommer 2012).  Although pronghorn were once 
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considered abundant in this area of the state (Pyshora 1977, Yoakum 2004b), the species 

became regionally extinct by the mid 1900’s due to overhunting and habitat loss (Koch 

and Yoakum 2001).  Today, the environment on the CPNM differs greatly from historic 

conditions.  Native plants, such as perennial bunchgrasses, have been replaced by non-

native annual species (Schiffman 1994, Meyer 1997), an ecological transformation most 

likely caused by the grazing of domestic livestock (Malo & Suarez 1995, Yoakum 2001).  

Where perennial plants once offered year round forage and concealment opportunities for 

pronghorn, the site is now dominated with annual vegetation which dies off seasonally 

(Longshore and Lowrey 2008).  In an effort to assess the quality of habitat on the CPNM, 

several small-scale studies have been conducted.  Longshore and Lowrey (2008) ranked 

habitat quality within the CPNM as moderate to poor for pronghorn.  Their results were 

based on limited shrub cover and diversity and were supported by similar findings from 

Koch and Yoakum (2001).  Longshore and Lowrey speculated that current habitat 

conditions on the monument may not be adequate to sustain a viable population of 

pronghorn, however information on recruitment was not available at that time. 

Because the CPNM has undergone a substantial ecological transformation, and 

contains habitat characteristics found in all three biome types, traditional management 

techniques (e.g., rangeland manipulation) may not be suitable without site-specific 

information.  Here, I evaluate the relationship between habitat, predation, and recruitment 

on the CPNM.  First, I measured fawn survival and determined causes of mortality.  

Then, I measured micro- and macro-habitat conditions and used the information to create 

two independent models:  1.) a habitat selection model and 2.) a fawn survival model.  

Lastly, to aid in the assessment of general habitat conditions for pronghorn on the CPNM, 
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I evaluated the effect of diet and forage quality on fawn recruitment and measured forage 

availability of known plant types. 

 

Methods 

Methods for pronghorn fawn survival and causes of mortality are described in 

Chapter 2.  Two separate binary logistic regression models were developed to explore the 

best combination of biotic and abiotic environmental parameters for predicting 1) fawn 

habitat selection and 2) fawn survival (Hosmer and Lemeshow 2000). Akaike’s 

information criterion adjusted for small sample size (AICc) was used for model selection 

(Burnham and Anderson 2002). The log-likelihood estimates from each of the alternative 

logistic regression models were used to determine AICc and ΔAICc values. I used the 

AICc differences to rank the set of candidate models. I considered approximating models 

with ΔAICc of ≤ 2 as possible competing models. I used Akaike weights (wi) and 

evidence ratios to assess the relative strength of evidence for each model. For both 

models, I performed all geographical information system (GIS) analyses using ArcMap 

9.3 (ESRI 2008).  

The fawn habitat selection model compared the relationship between fawn and 

random locations (dichotomous response/dependent variables) and a suite of macro- and 

microhabitat parameters (explanatory/independent variables). I considered microhabitat 

characteristics to be located within a spatial scale small enough to elicit a response by 

individual fawns. Microhabitat was defined exclusively as the area within a 100 meter 

radius of a fawn and included measurements of vegetation height and composition (i.e., 

forb, grass, shrub, bare ground), as well as adult and fawn visibility. Measurements were 
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made at fawn and random locations, along four equidistant compass directions at 10 

meter intervals to 50 meters and then again at 100 meters (modified from Canon and 

Bryant 1997). Visibility was defined as the proportion of a 1 meter measuring stick 

(located at the center of each plot) visible at fawn height (0.5 m) and adult height (1 m). 

Macrohabitat characteristics were considered to be landscape-scale features which would 

potentially influence doe habitat selection but not necessarily fawn habitat selection. 

Macrohabitat explanatory variables were generated from six spatially explicit 

environmental GIS data layers and included slope of terrain and linear distances to active 

water sources, fences, saltbush (Atriplex spp.), high-use main roads (Soda Lake Rd., 

Panorama Rd., Selby Rd. and Elkhorn Rd) and all roads (small roads as well as main 

roads.) 

The fawn survival model compared the relationship between locations of fawns ≤ 

or > 17 days of age (dichotomous response/dependent variable) and the same spatially 

explicit, landscape scale macrohabitat features used in the fawn habitat survival model 

(explanatory/independent variables). Based on information from Gregg et al. 2001, that 

the majority (95%) of fawn mortalities take place ≤ 17 days of age, as well as 

corresponding evidence from this study’s survival data (see Results), I considered that 

fawns >17 days of age would have a higher expectancy for survival than fawns < 17 days 

of age; and that habitat selection between these two groups would vary accordingly to 

influence survival. 

Weather information, consisting of annual and seasonal precipitation and 

temperature, was collected from the Carrizo Remote Automated Weather Station 

(RAWS) and compared to annual offspring production and survival observed on the 
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CPNM from 2009 to 2011. Climatic parameters were not included in the fawn survival 

model because the study period was not long enough to produce adequate variability in 

the data (i.e., data could not converge algorithmically). 

Pronghorn diets were estimated using micro-histological identification of plant 

epidermal fragments in fecal material. Fecal samples were collected from ten individuals 

monthly, oven-dried and ground in a Wiley mill through a 1 mm mesh screen. A one-

gram subsample was then taken from each fecal sample and composited for analysis by 

Wildlife Habitat Nutrition Laboratory, Washington State University. Percent fecal 

nitrogen (FN) and fecal diaminopimelic acid (DAPA) were used as indicators of diet 

quality (Goldsmith 1988, Wehausen 1995). Percent diet composition was calculated from 

the amount of each forage item detected in the diet. I used diet composition results to 

collect above ground samples of forage species consumed by pronghorn. 

Plant biomass and forage availability within the CPNM were measured along 23, 

50-meter random transects during spring, summer and winter 2008-2011. Plant 

composition of above-ground annual vegetation was documented and collected within ten 

0.5 meter plots evenly distributed along each transect. Plants were sorted by forage class 

(i.e., grasses, forbs and shrubs). Forbs (i.e., forbaceous plants) are considered to be 

herbaceous plants that are not grasses (Yoakum 2004b). Plant samples were weighed 

immediately after collection, dried, and then reweighed to obtain dry biomass weight and 

preformed water content (i.e., water contained in forage plants). Nutritional analyses of 

plant samples were conducted by the Washington State University Wildlife Habitat 

Nutrition Laboratory. Analyses for nutritional content of forage included, in vitro 

digestible dry matter (IVDDM), gross energy (cal/g), percent crude protein, percent crude 
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fat, percent neutral detergent fiber, percent acid detergent fiber, percent acid detergent 

lignin, percent total ash, and percent acid insoluble ash. Available vegetative 

composition, diet composition, and preference ratings (diet composition divided by 

available vegetative composition) for forbs, grasses and shrubs were calculated and 

compared to that for North American grassland and shrubsteppe biomes as reported by 

Yoakum (2004c). 

 

Results 

To model fawn habitat selection, eight candidate models were developed using 70 

locations from collared individuals and 61 random locations (Table 3). The habitat 

parameters used in the global model are indicated at the bottom of Table 3. Two 

candidate models, Model 1 (wi = 0.56) and Model 2 (wi = 0.36), showed substantial 

support as the best approximating models (ΔAICc < 2). Parameter estimates (β), standard 

errors (SE) of the estimates, odds ratios, and 95% confidence intervals (CI) for the odds 

ratios of the variables in the two models are shown in Table 4. Model 1 showed that fawn 

locations were negatively associated with increased vegetation height at 5m, fawn 

visibility at 5 m and 50 m, slope of terrain, and distance to saltbush and water, yet 

positively associated with increased forb composition and fawn visibility (height 0.5 m) 

at 100 m. The negative associations for variables measured close to fawn locations and 

the positive associations for similar variables measured 100 m from fawns reveal that the 

relationship between these variables and choice of bedding locations is scale-dependent. 

Model 2, consisted of the same parameters and respective negative and positive 

associations as Model 1 for all variables excluding forb composition and fawn visibility 
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at 50 m. Model 1 and Model 2 variables which could be measured using standard GIS 

layers (e.g., slope of terrain, distance to water, and distance to saltbush) were used to 

create a generalized map of fawn habitat selection within CPNM (Fig. 3.1). 

 

The two best approximating models for fawn habitat selection, interpreted in the 

discussion, are as follows: 

Model 1:  Fawn habitat = 7.802 - (0.002) Distance to saltbush - (0.001) Distance 

to water - (0.424) Percent slope of terrain - (0.04) Fawn visibility at 5 meter distance - 

(0.027) Fawn visibility at 50 meter distance + (0.053) Fawn visibility at 100 meter 

distance + (0.02) Forb cover at fawn location - (0.045) Vegetation height at 5 meter 

distance. 

 

Model 2:  Fawn habitat = 7.892 - (0.002) Distance to saltbush - (0.001) Distance 

to water - (0.225) Percent slope of terrain - (0.046) Fawn visibility at 5 meter distance + 

(0.031) Fawn visibility at 100 meter distance - (0.041) Vegetation height at 5 meter 

distance. 

 

To model fawn survival, six candidate models were developed (Table 5) using 

1,417 locations from 10 GPS collared individuals.  The parameters used in the global 

model of fawn survival are located at the bottom of Table 5. Two candidate models, 

Model 1 (wi = 0.55) and Model 2 (global model; wi = 0.32), showed support as the best 

approximating models (ΔAICc < 2). Parameter estimates (β), standard errors (SE) of the 

estimates, odds ratios, and 95% confidence intervals (CI) for the odds ratios of the 
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variables in the two models are shown in Table 6. Model 1 showed that locations of 

individuals which lived greater than 17 days were positively associated with increased 

slope and distance to main roads; and negatively associated with increased linear distance 

to water, fences, and all roads. Model 2, in addition to the same parameters and 

respective positive/negative associations as Model 1, showed a negative association with 

linear distance to saltbush. The global model was mapped to include the effect of saltbush 

on fawn survival (Fig. 3.2).  Locations of both collared and uncollared fawns were 

dispersed throughout the CPNM; located on both the north and south ends of the plain, as 

well as on the east and west sides of the plain. Locations for the 10 GPS collared fawns 

used in the models are indicated in Fig. 3.3. The mean fawning area for these collared 

fawns was 0.05 km2 (SE = 0.01 km2). 

 

The two best approximating models for fawn survival included: 

Model 1:  Survival = 1.235 + (0.0009) Distance to main roads - (0.0028) Distance 

to all roads - (0.0016) Distance to fences - (0.0004) Distance to water + (0.0403) Percent 

slope of terrain 

 

Model 2:  Survival = 1.530 + (0.0008) Distance to main roads - (0.0028) Distance 

to all roads) - (0.0018) Distance to fences - (0.0002) Distance to saltbush - (0.0004) 

Distance to water) + (0.0509) Percent slope of terrain. 

 

Seasonal precipitation and temperature, as well as annual fawn productivity and 

survival, varied considerably during the study (Table 7). Of the three study years, 2009 
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had the lowest total seasonal precipitation (6.22 inches) and the greatest summer average 

high temperature. Although annual fawn production was highest during 2009 (22 fawns), 

annual survival of fawns was lowest (14%). Measurements of seasonal precipitation and 

summer high temperature, as well as fawn productivity and survival were similar for 

2010 and 2011 (Table 7). Mean annual precipitation during the study (10.58 inches; SE = 

5.75 in) exceeded the mean annual precipitation during the past 20 years (9.67 inches; SE 

= 4.17 in). However, rainfall in 2010 (19.05 inches), was exceptionally high and 

represented the wettest year on record since 1998 (19.88 inches). In contrast, annual 

rainfall for 2008, 2009, and 2011 (7.09, 6.92 and 9.26 inches, respectively), were all 

lower than the mean annual rainfall for the past 20 years.  

Pronghorn consumed more than 50 different individual forage items (Appendix 

C). At least 42 different plant taxa were identified in the diet, including 26 species of 

forbs, 9 species of grasses and 8 species of shrubs. Principle forage items (Table 8) 

comprised ≥ 5% of the dietary composition for any one season. Principle forage items 

among forbs included Astragalus spp., Camissonia spp., Erodium spp., Lotus spp., Aster 

family flower, Borage family, and legume pod; among grasses were Avena spp. and 

Bromus spp.; and for shrubs was Atriplex spp. Among principle forage items, Erodium 

spp. comprised >20% of the diet for all seasons; and Astragalus spp., Aster family 

flower, and Atriplex spp. represented ≥ 10% of the dietary composition for at least one 

season. 

Annual diet composition consisted of 76.19% (1.83% SE) forbs, 14.58% (0.95% 

SE) grasses, 6.10% (0.98% SE) shrubs, and 3.13% (0.26% SE) other forage items (seeds, 

lichens and unidentified flowers). Annual composition of forage available for pronghorn 
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consumption on the CPNM consisted of 35.46% (16.43% SE) forbs and 64.54% (16.43% 

SE) grasses. Shrubs were not detected within vegetation transects. In comparison to 

pronghorn occupying grassland, shrubsteppe and desert biomes, pronghorn on the CPNM 

appeared to have consumed a comparable amount of grasses, but a greater percentage of 

forbs and a fewer percentage of shrubs (Table 9). Preference ratings, a function of forage 

use (i.e., diet) in relation to availability (Yoakum 2004c), for forbs (2.2) and grasses (0.2) 

were similar between the CPNM and grassland and shrubsteppe biomes (Table 9). 

Seasonal diet composition of forage classes (i.e., forb, grass, and shrub) was 

consistent throughout the year (Table 11). During all seasons, forbs made up the majority 

of pronghorn diet, followed by grasses and then by shrubs. In contrast, forage availability 

varied among seasons (Table 11). During spring, available forb composition (54.40%; SE 

= 3.29%) was greater than available grass composition (45.60%; SE = (3.29%). However, 

available forb composition during summer (27.01%; SE = 5.94%) and winter (24.98%; 

SE = 11.56%) were nearly one-third of available grass composition during summer 

(72.99%; SE = 5.94%) and winter (75.02%; SE = 11.56%). The seasonal preference 

rating for forbs was higher during summer (2.78) and winter (2.95) than during spring 

(1.31). For grasses, the seasonal preference rating was highest during spring (0.36) and 

lower during summer (0.19) and winter (0.23). 

Monthly diet composition (Fig. 3.4) was highest for forbs, followed by grasses 

and then by shrubs. Consumption of other miscellaneous forage items (i.e., seeds, lichens 

and unidentified flowers) did not exceeded 10% of the diet for any month. Forb 

consumption generally increased during the year (from January to December), while 

monthly consumption of grasses and shrubs declined. 
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Seasonal vegetative cover of forbs and grasses (Table 12) was highest during 

spring (25.89%; SE = 0.87% and 43.45%; SE = 1.12%, respectively). Forb and Grass 

cover declined during summer (19.52%; SE = 0.89 and 29.18%; SE = 1.13, respectively) 

and again during winter (17.24%; SE = 0.85 and 21.90%; SE = 1.01, respectively). The 

rate of decline between seasons was higher for grass cover than forb cover. From spring 

to summer and from summer to winter, grass cover declined by 33% and 25%, 

respectively; and forb cover declined by 25% and 12%, respectively. The percentage of 

exposed bare ground (i.e., without vegetation) was < 50% for Summer and Winter (Table 

12).  

I analyzed nutritional composition of available grasses and forbs at peak biomass 

production during the fawning season to establish baseline data for available nutrients. 

Comparison of the nutritional quality of grasses and forbs during spring (Table 13) 

indicated that grasses contained more gross energy (4426.20 calories/gram; SE = 35.04 

calories/gram) than forbs (4259.77 calories/gram; SE = 23.80 calories/gram). 

Additionally, grasses contained a higher percentage of neutral detergent fiber (58.95%; 

SE = 1.73%) and acid detergent fiber (29.37%; SE = 1.77 %) than forbs (38.82%; SE = 

1.47% and 27.24%; SE = 1.00%, respectively). However, forbs contained a higher 

percentage of crude fat (2.89%; SE = 0.27) and acid detergent lignin (5.19%; SE = 

0.28%) than grasses (1.84%; SE = 0.12% and 1.89%; SE = 0.08%, respectively). 

Monthly fecal nitrogen (FN) values (Fig. 3.5a) were highest in March 2009 

(3.06%) and April 2008 (3.09%) and lowest during January 2008 (2.01%), January 2009 

(2.33%) and August 2009 (2.29%). Monthly fecal diaminopimelic acid (FDAPA) values 
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(Fig. 3.5b) ranged from a high of 1.15 mg/g during March 2009 to a low of 0.27 mg/g 

during January of 2008.  

Mean preformed water content of available forbs and grasses was 33.1% (SE = 

0.01%). Although preformed water content was similar between forbs (38.0%; SE = 

0.01%) and grasses (30.3%; SE = 0.01%), seasonal preformed water content was 

variable. Winter had the highest preformed water content (51.7%; SE = 0.01%), followed 

by spring (42.8%; SE = 0.01%). Summer preformed water content was considerably 

lower (5.58%; SE = 0.01%). Preformed water content between foraged plant species 

(45.58%; SE = 3.11) and non-foraged plant species (51.69%; SE = 3.82) did not differ (z 

= 0.30, p = 0.77). 

 

Discussion 

Results from the fawn habitat selection model indicate that both pronghorn does 

and their fawns selected for a combination of environmental parameters at both macro- 

and micro-habitat scales.  Fawn locations had taller vegetation and lower visibility at 

close distances compared to random locations.  However, fawn locations within low 

visibility vegetation patches were on average located on a larger scale in open, more 

visible areas compared to random locations. Fawns (or does) on the CPNM appear to 

choose sites in isolated patches of cover located within larger areas containing less 

concealment from predators rather than in continuous habitat with dense cover.  This 

pattern is apparent in the negative association with 5 meter visibility and the positive 

association with 100 m visibility for fawn locations. Movement between such dispersed 

patches of cover is likely to increase the risk of detection by predators. However, 
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pronghorn does may choose areas with higher visibility surrounding hidden fawns as a 

means of gaining more visibility themselves to detect predators. Does with fawns exhibit 

increased vigilance and aggressive defensive behavior against predators (Byers 1997b), 

and fawn survival can be higher in habitat containing open areas with shorter vegetation 

height (Bodie 1979, Autenrieth 1982). Additionally, model results show that forb cover 

was higher at 100 meters from fawns than at random locations; fawns may simply be 

selecting bed sites within areas that also meet the dietary needs of does.  

At the macrohabitat scale, fawn locations were in areas with lower slope and in 

closer proximity to water sources and saltbush shrub communities than available random 

locations. Flat terrain increases the ability of adult pronghorn to detect and avoid 

predators.  In addition, the availability of open drinking water for adult pronghorn can be 

important in arid environments, particularly for females providing water to fawns through 

lactation (Yoakum 2001). Ockenfels et al. (1992) suggested that water on arid grasslands 

may be an important, if not critical, factor in determining the location of fawn bed sites 

(Yoakum 2004b). I did not anticipate that proximity to saltbush would be an important 

habitat variable for fawns because saltbush communities on the CPNM tend to be 

clustered in dense stands with heights that are indicative of low quality habitat (> 50 cm; 

Longshore and Lowrey 2008). Although moderate dispersion of shrubs in grassland 

habitats can increase fawn survival (Autenrieth 1982), sites with taller shrub height (76 to 

137 centimeters [30 – 54 in]) can have significantly higher predator related mortality 

(Bodie 1979). If pronghorn on the CPNM are selecting for saltbush based on the need for 

concealment, then predation risk due to tall shrub height may be high. 
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Results from the fawn survival model indicate that locations of individuals who 

lived beyond 17 days of age were closer to water sources, farther from high-use main 

roads (i.e., Soda Lake Rd, Selby Rd, Panorama Rd, and Elkhorn Rd.) and on steeper 

terrain. Model results also indicated that these individuals were located in closer 

proximity to fences and all roads (small dirt roads as well as main roads), however this 

association is most likely due to the fact that fences and dirt roads are abundant and well 

dispersed throughout the monument; not because they increased survival times. The 

positive association between survival and distance from high-use main roads may 

indicate that anthropogenic disturbance during the fawning season could influence 

survival. Proximity to water sources appeared to increase survival times of fawns on the 

CPNM. Although postnatal fawns acquire water strictly from nursing, and does typically 

meet most of their water requirements through the consumption of succulent forage 

items, pronghorn on the CPNM may require supplemental water sources for drinking. 

The availability and dispersion of open water sources on arid ranges directly affects adult 

health and reproduction, as well as fawn productivity and survival (L. McKee and Wolf 

1963, Beale and Smith 1970, Whisler 1984, Ockenfels et al. 1992). It was unexpected 

that survival would be positively influenced by steeper terrain because pronghorn 

typically select habitat with the lowest slope (Ockenfels et al. 1994). However, Einarsen 

(1948) found that the best physiography for fawning sites was among basins surrounded 

by low ridges or hills. On the CPNM, environmental conditions in areas with steeper 

terrain, including vegetation structure, forage quality and availability, or even the absence 

of human disturbance, may offer benefits which increase fawn survival and outweigh the 

costs of increased slope.  
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Fawn birth sites were not restricted to traditional fawning areas (i.e., areas where 

fawns were observed during years prior to the study) (Longshore and Lowrey 2008). 

Observed birth sites varied between years and were spatially dispersed throughout the 

monument, located along both the east and west sides as well as on the north and south 

ends of the plain. Selection of traditional fawning areas is dependent on pronghorn 

seasonal rangeland use (Yoakum 2004b). Herds that are required to travel long distances 

between summer and winter rangelands due to harsh winter conditions tend to have high 

site-specific fidelity for traditional fawning locations. In contrast, herds occupying ranges 

with mild winter conditions, such as on the CPNM, are not forced to travel far between 

seasonal rangelands and tend to fawn throughout their small home ranges (Yoakum 

2004b). 

Trend information for the correlative effects of climate on offspring productivity 

and survival are difficult to evaluate for short-term studies. However, available 

information suggests that fawn survival was influenced by low seasonal precipitation and 

high summer temperatures. Adverse weather conditions on pronghorn ranges, including 

droughts and severe winters, reduce the availability of nutritious forage, increase 

predation on fawns, and limit survival overall (O’Gara 2004). On the CPNM, mean 

annual rainfall is within the range of precipitation required to sustain a moderately high 

density pronghorn population (8 to 15 inches; Yoakum 2004b). However, both annual 

and seasonal rainfall are highly variable, creating stochastic environment in which small 

populations are likely to suffer, especially during sustained drought or temperature 

extremes. Additionally, habitat quality at this cite has been significantly altered by over 
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one hundred years of dry-land wheat farming and domestic livestock grazing, as well as 

by inundation of non-native annual grasses (Longshore and Lowrey 2009). Native 

perennial plant communities provide important forage opportunities for pronghorn during 

dry summer months, however non-native annual plants become desiccated and vegetative 

cover is greatly reduced. While the amount of total annual precipitation may be adequate 

to support a viable pronghorn population on the CPNM, offspring survival and 

population density are likely limited by poor seasonal forage conditions during summer 

and fall. 

The abundance, diversity and quality of forage available to, and consumed by, 

pronghorn directly influence fitness and population density (Yoakum 2004c). On the 

CPNM, total vegetative cover was within the range typically found on arid rangelands 

(40% to 60%; Yoakum 1972, Ockenfels et al. 1994). However, the composition of 

vegetative cover reflected characteristics found in both high and low quality habitats 

according to criteria developed by Longshore and Lowrey (2009) and modified from 

Allen et al. (1984), O’Gara and Yoakum (1992), Okenfels et al. (1996), and Yoakum 

(2004c). Forb and grass cover were representative of high quality grassland-scrub habitat. 

Shrubs however, were scarce and undetected within vegetation transects; and shrub cover 

was indicative of low quality grassland-scrub habitat. This information is consistent with 

other reports for the CPNM, including Koch and Yoakum (2002) who also reported zero 

shrub cover within transects and Longshore and Lowrey (2008) who reported low shrub 

cover and diversity. Habitat with greater forb and grass cover and relatively lesser shrub 

cover is considered optimal for foraging and predator avoidance (Yoakum 2004b). 

However, the importance of shrubs increases during summer and fall, when late season 
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annual forbs and grasses are not available (O’Gara and Yoakum 1992). While the amount 

of forage available to pronghorn on the CPNM may be adequate during late gestation and 

early postnatal development (i.e., during spring), low forage availability during summer 

and fall likely affect fawn survival and adult reproduction. Increased shrub cover on the 

CPNM would likely offer a critical nutrient source for pronghorn during summer and fall, 

and may be required to increase offspring production and survival, as well as population 

density.  

In comparison to pronghorn occupying grassland, shrubsteppe and desert biomes, 

pronghorn on the CPNM consumed large amounts of forbs, moderate amounts of grasses, 

and low amounts of shrubs. Regardless of habitat type, forbs comprise the majority of 

pronghorn diet and shrub composition is generally equal to, or far greater than, grass 

composition. Grasses are consumed increasingly, however, where shrubs are not plentiful 

(Yoakum 2004c). On the CPNM, shrub consumption was atypical and comprised less 

than half the composition of grasses. Pronghorn are highly selective foragers, and 

although forage availability may vary among different habitats, the preference for certain 

forage classes is remarkably consistent (Yoakum 2004c). This was supported by results 

from this study, where preference ratings for forage classes on the CPNM were the same 

as other populations. The strong preference for certain forage classes across habitat types 

indicates that pronghorn are highly restricted by forage availability on rangelands, 

especially during certain times of year. Pronghorn can make seasonal adjustments to their 

diet according to nutrient availability associated with plant phenology. Forbs are most 

nutritious during spring and summer, and consumption of forbs during these periods has 

been linked to offspring production and survival (Yoakum 2004c). Shrubs have 
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comparatively high nutrient levels in fall and winter and can be important for adult body 

condition during breeding and pregnancy (Yoakum 2004c). Maternal condition during 

late gestation can affect offspring birth weights (Thorne et al. 1976) and low birth weight 

can decrease survival (Thorne et al. 1976, Clutton-Brock et al. 1982, Fairbanks 1993). 

Grasses can offer important digestible energy during winter. On the CPNM however, 

pronghorn did not appear to adjust their diet to account for seasonal changes in forage 

availability. Even when late season forbs and grasses were largely desiccated and 

vegetative cover was greatly reduced, pronghorn on the CPNM continued to consume 

forage classes in the same proportion throughout the year. Pronghorn occupying arid 

lands, such as the CPNM, can exhibit less pronounced shifts in seasonal diet (Cancino 

1994c, Miranda 2000) compared to pronghorn in northern grassland and shrubsteppe 

habitat (Salwasser 1980, Yoakum 1990). Although shrub availability was not well 

measured, the relatively high consumption of grasses and the low consumption of shrubs 

throughout the year, indicate that shrub availability is likely limited on the CPNM. 

Limited availability of preferred forage items during different seasons is likely to have a 

negative influence on individual fitness and restrict population growth on the CPNM. 

Plant taxa in pronghorn diets during this study were similar to results from 2003-

2004 for shrubs and grasses (Longshore and Lowrey 2008). However, the number of forb 

species in the diets during this study was lower than in 2003-2004. Pronghorn did 

consume other miscellaneous forage items including seeds, lichens and unidentified 

flowers, however mean percent composition of these items was small (< 3.5%) and their 

relative importance in the diet is likely insignificant. 
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Nutrient quality of pronghorn diets can be evaluated by measuring fecal nitrogen 

(FN) and fecal diaminopimelic acid (FDAPA) content (Leslie and Starkey 1987). On the 

CPNM, FN values were highest during March and April and lowest during January and 

August; and FDAPA values were highest during March and lowest during January. 

Although seasonal differences in percent FN and percent FDAPA were not statistically 

significant, and some variability occurred between years, seasonal trends overall matched 

those found for other pronghorn populations (Hansen et al. 2001).   

Pronghorn often make use of preformed water (i.e., water contained in forage) 

because surface water typically occurs sparsely in most pronghorn habitats (Sundstrom 

1968, Boyle and Alldredge 1984, Kindschy et al. 1982). When moisture content in plants 

exceeds 75%, pronghorn may cease drinking, even if surface water is readily available 

(Beale and Smith 1970). On the CPNM, performed water content was low and pronghorn 

were frequently observed making use of drinking water. Seasonally, performed water 

content was particularly low during summer and was likely lower during fall. The 

abundance of forage with high moisture content during spring and summer can influence 

fawn survival (Beale and Smith 1966) and moisture content during fall likely influences 

adult body condition. Studies indicate that plants foraged by pronghorn have higher 

moisture content than non-foraged plants (Fox 1997, Beale and Smith 1970, Deblinger 

and Alldredge 1991, Hughes 1991) and selection of plant species with higher preformed 

water content can be important for offspring production and survival (Yoakum 2004c). 

On the CPNM, no difference was detected between preformed water content of foraged 

and non-foraged plant species. In certain arid environments preformed water content 

alone may not be enough to support viable populations, especially during particularly dry 
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seasons (Fox 1997). Water on arid grasslands may be an important factor influencing 

fawn bedsites (Ockenfels et al. 1992) and will likely continue to be critical for pronghorn 

on the CPNM.  

 

Summary 

Collectively, these findings highlight the importance of both micro- and macro-

habitat scale environmental attributes for recruitment in pronghorn.  Results from this 

study indicate that fawns select the best available bed sites within larger scale areas 

preselected by does.  Thus, ecological studies on recruitment, as well as conservation 

strategies aimed at increasing rates of recruitment, should consider the habitat 

requirements of both does and fawns simultaneously. 

On the CPNM, it appears that increased shrub cover, diversity, and moderate 

spatial dispersal are needed to improve concealment of fawns from predators and to 

provide important late-season nutrients during adult breeding and reproduction.  

Presently, available shrubs on the CPNM tend to be dominated by large, dense saltbush 

(Atriplex spp.) stands which may reduce visibility of predators and offer limited seasonal 

nutrition.  Pronghorn prefer a mosaic of vegetative structure rather than extensive 

monotypic plant communities (Yoakum 2004d). 

Forb and grass cover on the CPNM is adequate during spring.  However, late-

season annual forb and grass species on the CPNM are largely desiccated or dead during 

summer and fall and offer limited nutrients and preformed water content during late 

fawning.  Promoting perennial plant growth is likely important for reproduction and 

recruitment. 
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The availability of open drinking water on the CPNM was a significant factor for 

fawn survival.  Although drinking water is not generally considered essential for 

pronghorn throughout many parts of their range, drinking water becomes increasingly 

important in arid habitats with variable precipitation and low forage succulence (Yoakum 

2004b). 

The results of this study hold broad implications for conservation and 

management of pronghorn.  Understanding how fawn habitat is selected for and which 

specific environmental features affect survival is an important component of pronghorn 

ecology.  Research on fawn survival is relatively ubiquitous, however few studies aim to 

distinguish between micro- and macro-habitat scale parameters.  Methods and results 

contained in this thesis may be used as guidelines for continued research on pronghorn 

within the CPNM and across the species’ range. 
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Figure 3.1.  Pronghorn fawn habitat selection model, for the Carrizo Plain National Monument, CA. Included are variables 
from the best approximating binary logistic regression model for predicting fawn habitat and which could be mapped using a 
GIS (i.e., linear distance to water and saltbush communities and percent slope of terrain). The top 15% of model values are 
indicated.
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Figure 3.2. Pronghorn fawn survival model, for the Carrizo Plain National Monument, CA. Model parameters include slope of 
terrain and distances to water sources, saltbush (Atriplex spp.), fences, small dirt roads, and high use main roads (Soda Lake 
Rd., Elkhorn Rd., Panorama Rd. and Selby Rd.).  Indicated are the top 15% of model values within the CPNM boundary.
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Figure 3.3. Locations of ten GPS collared pronghorn fawns, on the Carrizo Plain National Monument, California from 2009-
2011.
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Figure 3.4. Mean monthly percent composition of forage classes consumed by pronghorn, (i.e., forb, grass, shrub) on the 
Carrizo Plain National Monument, CA during 2008 and 2009. The category labeled “Other” was comprised of seeds, lichens, 
and unidentified flowers. Diet composition was determined by microhistological analysis of pronghorn fecal samples. 
Percentages reflect the mean monthly composition for two years except for months for which only one year of information was 
available (*).
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Figure 3.5. Fecal nitrogen and fecal diaminopimelic acid measurements for pronghorn, 
(A and B, respectively) on the Carrizo Plain National Monument, CA during 2008 
(closed circles) and 2009 (open circles). Information for certain months was not available 
due to inaccessible road conditions following heavy rains or when no fecal samples could 
be found. 
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Table 3.1. Comparison and relative ranking of candidate models for pronghorn fawn 
habitat selection, on the Carrizo Plain National Monument, California from 2009 to 2011. 
Akaike’s Information Criterion (AIC) corrected for small sample sizes (AICc) was used 
for model selection. Included for each candidate model are values for log-likelihood, 
number of parameters (k), AICc values, Δ AICc values, and Akaike weights (wi). Relative 
ranking of models was determined using Δ AICc. 
 
 Model -2LogL k AICc ΔAICc wi 
1 dsb+dw+ps+fvis5+fvis50+fvis100+f0+ht5 98.33 8 115.51 0 0.5593 
2 dsb+dw+ps+fvis5+fvis100+ht5 103.74 6 116.41 0.91 0.3552 
3 dsb+dw+fvis5+fvis100+f0 109.57 5 120.05 4.54 0.0578 
4 Global modela 83.51 17 122.93 7.42 0.0137 
5 dsb+dw+fvis100 116.76 3 122.95 7.44 0.0135 
6 dsb+dw+f0 123.44 3 129.63 14.12 0.0005 
7 dsb+dw 128.57 2 132.66 17.16 0.0001 
8 dw+ps+ht5+fvis100+f0 125.73 5 136.21 20.70 0.00002 
aGlobal model included distances to saltbush (dsb), water (dw), main roads (dmr), and 
fences (df); percent slope of terrain (ps); fawn visibility at fawn location (fvis0) and at 
distances of 5 meters (fvis5), 10 meters (fvis10), 50 meters (fvis50) and 100 meters 
(fvis100); forb cover at fawn location (f0), grass cover at fawn location (g0), and cover at 
distances of 5 meters for forbs (f5), grasses (g5) and shrubs (s5); vegetation height at 
fawn location (ht0) and at 5 meters distance (ht5). 
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Table 3.2. Parameter estimates, standard errors of the estimates, odds ratios, and 95% 
confidence intervals for the odds ratios of the variables in the two best approximating 
models for the occurrence of pronghorn fawns, (β, SE, Odds ratio, 95% CI, respectively) 
on the Carrizo Plain National Monument, California.  
 
Effect β SE Odds ratio 95% CI 
Model 1:     
    dsb -0.002 0.001 0.998 0.996-0.999 
    dw -0.001 <0.001 0.999 0.998-1.000 
    ps -0.424 0.256 0.654 0.396-1.080 
    fvis5 -0.040 0.020 0.961 0.924-1.000 
    fvis50 -0.027 0.026 0.973 0.924-1.025 
    fvis 100 0.053 0.027 1.054 1.000-1.111 
    f0 0.020 0.010 1.021 1.001-1.040 
    ht5 -0.045 0.023 0.956 0.915-0.999 
Model 2:     
    dsb -0.002 0.001 0.997 0.997-0.999 
    dw -0.001 <0.001 0.998 0.998-0.999 
    ps -0.225 0.191 0.550 0.550-1.161 
    fvis5 -0.046 0.020 0.919 0.919-0.993 
    fvis 100 0.031 0.012 1.011 1.011-1.054 
    ht5 -0.041 0.021 0.921 0.921-1.001 
Variables include distance to saltbush (dsb), distance to water (dw), percent slope of 
terrain (ps), fawn visibility at distances of 5 meters (fvis5), 50 meters (fvis50) and 100 
meters (fvis100), forb cover at fawn location (f0), and vegetation height at 5 meters (ht5). 
 
 
 
Table 3.3. Comparison and relative ranking of candidate models for pronghorn fawn 
survival, on the Carrizo Plain National Monument, CA from 2009 to 2011. Akaike’s 
Information Criterion (AIC) corrected for small sample sizes (AICc) was used for model 
selection. Included for each candidate model are values for log-likelihood, number of 
parameters (k), AICc values, Δ AICc values, and Akaike weights (wi). Relative ranking of 
models was determined using Δ AICc. 
 
 Model -2LogL k AICc ΔAICc wi 
1 dmr+dar+df+dw+ps 478.20 5 488.25 0 0.5540 
2 Global modela 477.30 6 489.36 1.12 0.3172 
3 dmr +dar+df+dw 483.16 4 491.19 2.94 0.1275 
4 dmr+ dar+df 494.34 3 500.35 12.11 0.0013 
5 dmr + dar 508.19 2 512.19 23.95 < 0.0001 
6 dmr +dw+ps 527.97 3 533.98 45.74 < 0.0001 
aGlobal model included percent slope of terrain (ps) and distances to saltbush (dsb), water 
(dw), main roads (dmr), all roads (dar) and fences (df). 
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Table 3.4. Parameter estimates, standard errors of the estimates, odds ratios, and 95% 
confidence intervals for the odds ratios of the variables in the two best approximating 
models of pronghorn fawn survival, (β, SE, Odds ratio, 95% CI, respectively) on the 
Carrizo Plain National Monument, CA. 
 
Effect β SE Odds ratio 95% CI 
Model 1:     
    dmr 0.001 <0.001 1.001 1.000-1.001 
    dar -0.003 0.001 0.997 0.996-0.998 
    df -0.002 <0.001 0.998 0.997-0.999 
    dw -0.0004 <0.001 1.000 0.999-1.000 
    ps 0.0403 0.019 1.041 1.004 -1.080 
Model 2:     
    dmr 0.001 <0.001 1.001 1.000-1.001 
    dar -0.003 0.001 0.997 0.996-0.998 
    df -0.002 0.001 0.998 0.997-0.999 
    dw -0.0004 <0.001 1.000 0.999-1.000 
    ps 0.051 0.022 1.052 1.009-1.097 
    dsb -0.002 <0.001 1.000 0.999-1.000 
Variables include percent slope of terrain (ps) and distances to water (dw), main roads 
(dmr), all roads (dar), fences (df) and saltbush (dsb). 
 
 
 
Table 3.5. Fawn productivity and survival in respect to seasonal precipitation and 
temperature, (precip.; Centimeters and temp.; Celsius, respectively) from fall 2008 to 
summer 2011 on the Carrizo Plain National Monument, CA. 
 

Year Number 
of fawns 

born 

Number 
of fawns 
survived 

Fall1 
precip. 

 

Winter2 
precip. 

Spring 
precip. 

Summer 
precip. 

Total3 
precip. 

Summer 
avg. high 

temp. 
2009 22 3 (14 %) 0.00 6.68 9.04 0.08 15.80 31.24 
2010 12 5 (42%) 0.36 16.97 11.61 0.58 29.51 29.02 
2011 11 4 (36%) 4.60 21.97 13.16 2.01 41.73 28.32 

1Fall = August through October of previous year 
2Winter = November and December of previous year through January. 
3Total = fall of previous year through summer. 
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Table 3.6. Percentage of principle forage items found in the diet of pronghorn, on the 
Carrizo Plain National Monument, CA during 2008 and 2009. Principle forage items 
comprised ≥ 5% of the dietary composition for any one season. Diet composition was 
determined by microhistological analysis of pronghorn fecal samples. Standard error 
values are indicated within parentheses. 

Forage item Spring 
(Feb – Apr) 

Summer 
(May – Jul) 

Fall 
(Aug – Oct) 

Winter 
(Nov – Jan) 

Forbs         
    Astragalus spp. 12.0 (6.6) 4.7 (1.3) 6.1 (1.1) 9.0 (2.5) 
    Camissonia spp. 4.4 (1.3) 9.6 (2.5) 6.9 (2.1) 5.8 (2.8) 
    Erodium spp. 20.9 (1.0) 21.0 (2.4) 21.4 (4.3) 21.3 (5.0) 
    Lotus spp. 5.4 (2.4) 4.3 (1.2) 6.8 (1.6) 5.1 (2.8) 
    Aster family flower 2.8 (1.2) 9.2 (3.1) 10.0 (8.0) 3.4 (1.8) 
    Borage family 2.2 (0.1) 7.8 (2.3) 8.1 (3.4) 1.4 (0.7) 
    Legume pod 1.0 (0.7) 2.1 (0.7) 6.0 (1.7) 0.7 (0.5) 
Grasses         
    Avena spp. 2.8 (1.2) 2.5 ( 0.7) 2.1 (0.6) 9.5 (5.7) 
    Bromus spp. 5.5 (1.9) 4.1 (0.9) 6.6 (1.8) 4.9 (1.9) 
Shrubs         
    Atriplex spp. 0.4 (0.4) 0.6 (0.2) 0.3 (0.3) 12.2 (11.0) 
 
 
 
Table 3.7. Comparison between annual available forage composition, diet composition, 
and preference ratings by forage class, (i.e., forb, grass, shrub) for pronghorn on the 
Carrizo Plain National Monument, CA during 2008 and 2009, and pronghorn occupying 
shrubsteppe, grassland, and desert biomes (modified from Yoakum 2004c.). 
 

 Carrizo Plain 
N.M  Grassland 

biome  Shrubsteppe 
biome 

Desert 
biome 

 Fa G S  F G S  F G S  F G S 
Available forage 
composition (%)  35 65 -  16 74 9  15 37 46  - - - 

                
Pronghorn diet 
composition (%)  76 15 6  62 19 17  30 7 62  58 2 38 

                

Preference Rating 2.
2 

0.
2 -  3.

9 
0.
2 

1.
9  2.

0 
0.
2 

1.
3  - - - 

a F = Forbs; G = Grasses; S =  Shrubs. 
 
 
 



 83   
 

Table 3.8. Comparison between percent available forage composition, percent pronghorn 
diet composition and preference ratings of forage classes, on the Carrizo Plain National 
Monument, CA during 2008 and 2009. Percent composition of available forage was 
calculated using dry biomass weight collected seasonally along vegetation transects. 
Transect surveys were not conducted during fall and shrubs were not detected within 
transects. Preference rating is a function of forage use (i.e., diet) in relation to 
availability. Percent composition of diet was determined by microhistological analysis of 
pronghorn fecal samples. 
 

Season Forage class Available forage 
composition (SE) 

Pronghorn diet 
composition (SE) 

Preference 
Rating 

Spring 
(Feb – Apr) 

Forb 54.40  (3.29) 71.07  (6.12) 1.31 
Grass 45.60  (3.29) 16.53  (2.50) 0.36 
Shrub  8.07    (2.43)  

Summer 
(May – Jul) 

Forb 27.01  (5.94) 75.02  (2.97) 2.78 
Grass 72.99  (5.94) 13.67  (1.71) 0.19 
Shrub  7.68    (3.25)  

Fall 
(Aug – Sep) 

Forb  81.62  (3.06)  
Grass  12.53  (2.51)  
Shrub  3.25    (1.72)  

Winter 
(Nov – Jan) 

Forb 24.98  (11.56) 73.63  (12.64) 2.95 
Grass 75.02  (11.56) 16.90  (7.24) 0.23 
Shrub  6.70    (6.43)  

 
 
 
 
Table 3.9. Percent forb cover, grass cover and bare ground during spring, summer, and 
winter, on the Carrizo Plain National Monument, CA from 2008 to 2011. The standard 
error is shown in parentheses. Shrubs were not detected within vegetation transects. 
 
Season Forb cover Grass cover Bare ground 
Spring (Feb – Apr) 25.89 (0.87) 43.45 (1.12) 30.66 (1.07) 
Summer (May – Jul) 19.52 (0.89) 29.18 (1.13) 51.30 (1.26) 
Winter (Nov – Jan) 17.24 (0.85) 21.90 (1.01) 60.87 (1.27) 
Mean 20.88 (2.59) 31.51 (6.33) 47.61 (8.91) 
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Table 3.10. Nutritional information for forbs, grasses, and forbs and grasses combined, 
(in the proportion they were available) on the Carrizo Plain National Monument, CA 
during spring 2008 and 2009. Forb and grass composition at the time of collection was 
67.81% (SE = 1.75%) and 31.97% (SE = 1.74%), respectively. Standard error values are 
indicated within parentheses. 
 
Nutritional information Forbs (SE) Grasses (SE) Forbs and Grasses 

(SE) 
% CP Crude protein 9.05 (0.57) 11.31 (1.69) 8.21 (0.35) 
Gross energy (calories/gram) 4259.77 

(35.04) 
4426.20 
(58.99) 4275.33 (23.80) 

Total ash (grams) 12.44 (0.74) 8.16 (0.67) 9.62 (0.43) 
% Crude fat 2.89 (0.27) 1.84 (0.12) 2.37 (0.12) 
% Neutral detergent fiber 38.82 (1.47) 58.95 (1.73) 50.56 (1.78) 
% Acid detergent fiber 27.24 (1.00) 29.37 (1.77) 30.94 (0.80) 
% Acid detergent lignin 5.19 (0.28) 1.89 (0.08) 3.89 (0.23) 
% Acid insoluble ash 1.55 (0.40) 0.53 (0.07) 0.58 (0.10) 
% In-vitro dry matter 
digestibility 63.41 (2.04) 47.74 (3.14) 54.05 (2.13) 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

 

The results from this study provide two lines of evidence for birth synchrony as a 

mechanism for a component Allee effect in pronghorn inhabiting the CPNM.  First, fawn 

survival was highest during peak productivity and second, the synchrony of seasonal 

births appeared to degrade with decreasing population size.  Birth synchrony may act as a 

mechanism for producing component Allee effects without necessarily leading to a 

demographic Allee effect.   While the evidence for a demographic Allee effect was not 

conclusive, there was evidence of both positive and negative density-dependent feedback 

for the CPNM and CV populations.  The effect of population density on per capita 

growth between these two populations likely does not differ at large population size, but 

does differ at small population size.  The variation in density-dependent feedback at low 

numbers is likely due to a habitat effect (i.e., a difference in quality of habitat available). 

Both micro-and macro-habitat scale environmental attributes were important for 

fawn habitat selection and survival on the CPNM.  Fawns appeared to select the best 

available bed sites within larger scale areas preselected by does.  An apparent cost-benefit 

relationship existed between separate environmental features important to fawns and 

does.  Thus, ecological studies on recruitment, as well as conservation strategies aimed at 

increasing rates of recruitment, should consider the habitat requirements of both does and 

fawns simultaneously. 

Population decline on the CPNM is likely due to the compounding effects of both 

low population density and marginal habitat quality.  Pronghorn at this site may be able 
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to exist at low population size, but ultimately, environmental and demographic 

stochasticity are likely to affect growth, with a high probability of further decline in 

numbers.  The ability to resolve patterns in density dependent feedback, as well as fawn 

habitat selection and survival, was limited in part by the number of annual population 

counts and the number of captured fawns..    Accordingly, studies which aim to examine 

density-dependence and environmental impacts for small populations will require long-

term data sets with more sampling and replication to reach more robust conclusions.  

Collectively, the methods, results, and concepts covered in this thesis offer a good 

template for future studies on the importance of Allee effects and habitat quality for small 

ungulate populations. 
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APPENDIX A. Information for fourteen pronghorn fawns collared on the Carrizo Plain 
National Monument, CA from 2009-2011. 
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Missing information was either not applicable or not collected during capture.
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APPENDIX B.  Laboratory necropsy results for two pronghorn fawns from the Carrizo 
Plain National Monument, CA in 2010 and 2011. 
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APPENDIX C. Percentages of forage items in the diet of pronghorn on the Carrizo Plain 
National Monument, CA in 2008 and 2009. Percentages are based on microhistological 
analysis of fecal samples. 
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Salsola 
tragus 

   0.
5 

1.
1 

2.
5 

4.
2        2.
7   2.
2 

Salvia spp.  0.
3      1.
0 

1.
6       0.
9  1.
0 

Trifolium 
spp. 

  0.
2   0.
4 

0.
3  0.
2  0.
7  0.
7  0.
4 

0.
2 

0.
2 

0.
4 

Aster family 
flower 

 5.
1 

7.
9 

20
.7

 

9.
4 

14
.7

 

41
.7

 

7.
7 

5.
9 

4.
4 

1.
9 

1.
3 

2.
7    0.
8 

9.
6 

Aster 
(Composite) 
family hair 

 3.
1 

2.
7 

0.
9      0.
7 

0.
9  2.
1 

0.
3 

0.
2 

1.
3 

2.
0 

1.
4 

Borage 
family 

 2.
1 

2.
7 

0.
9 

12
.6

 

9.
8 

2.
4 

7.
0 

2.
4 

1.
8 

2.
3 

2.
3 

14
.8

 

6.
0 

4.
3 

5.
3 

21
.4

 

6.
1 

Cruciferae 
(Mustard 
family) 

  0.
4 

0.
4   3.
4 

0.
2 

0.
2 

0.
5 

0.
7 

0.
3  0.
8  0.
5 

1.
8 

0.
8 
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Flower               0.
4   0.
4 

Lamiaceae 
(Mint 
family) 

 1.
8 

2.
7 

0.
5  0.
4            1.
4 

Legume pod  0.
6 

2.
7 

3.
6  2.
1 

3.
9 

5.
0 

1.
6 

0.
4 

2.
3   4.
1 

9.
3 

10
.6

 

1.
2 

3.
6 

Polygonacea
e  family 

           0.
6      0.
6 

Uknown 
Forb 1.

1 

2.
8 

3.
7 

3.
1 

3.
1 

2.
0 

3.
0 

6.
2 

2.
7 

1.
8 

3.
3 

4.
1 

2.
5 

5.
1 

5.
2 

5.
1  3.
4 

Forb Total : 32
.3

 

71
.0

 

70
.0

 

76
.0

 

87
.7

 

80
.5

 

82
.5

 

80
.5

 

86
.5

 

64
.4

 

81
.7

 

60
.5

 

68
.9

 

71
.5

 

70
.7

 

84
.8

 

90
.7

 

74
.1

 

G
R

A
SS

E
S 

Avena spp. 20
.2

 

4.
0 

1.
9 

2.
7  2.
1 

3.
0 

3.
7 

0.
8 

7.
6 

0.
5 

3.
9 

5.
6 

2.
5 

1.
9 

0.
9 

0.
8 

3.
9 

Bromus spp. 6.
2 

1.
8 

1.
9 

4.
5 

1.
5 

3.
7 

2.
4 

10
.3

 

1.
2 

7.
3 

8.
0 

6.
8 

7.
4 

5.
7 

11
.3

 

3.
5 

5.
3 

5.
2 

Distichlis 
spicata 

 0.
9                0.
9 

Elymus spp.        0.
4          0.
4 

Hordeum 
spp. 

         5.
4  0.
3      2.
9 

Leymus 
triticoides 0.

6 

1.
5  0.
9   0.
6  1.
2 

0.
4 

0.
5 

1.
0 

4.
1 

4.
8 

0.
4  1.
2 

1.
4 

Poa spp. 4.
0 

0.
6 

0.
8 

0.
9 

2.
3 

3.
7  1.
7 

2.
4 

4.
0 

3.
3 

5.
2 

1.
5 

0.
6 

5.
1 

1.
3  2.
5 

Stipa 
(Nasella) 
spp. 

0.
8 

4.
3 

1.
5  1.
5  1.
8  2.
4 

0.
7 

0.
9 

4.
2 

2.
4 

4.
8 

2.
3 

1.
8  2.
3 

Vulpia spp.          2.
2   1.
5     1.
9 

Unkown 
Grass 

   1.
3 

2.
7   0.
8 

0.
8 

3.
3 

1.
9  3.
2 

3.
2 

3.
5 

1.
3 

0.
4 

2.
0 

Grass Total 31
.8

 

13
.1

 

6.
1 

10
.3

 

8.
0 

9.
5 

7.
8 

16
.9

 

8.
8 

30
.9

 

15
.1

 

21
.4

 

25
.7

 

21
.6

 

24
.5

 

8.
8 

7.
7 

15
.8
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SH
R

U
B

S 

Artemisia 
spp. 

              0.
4   0.
4 

Atriplex spp. 34
.1

 

 1.
2 

1.
3 

0.
4 

0.
4    2.
5  1.
3   1.
6   5.
4 

Chrysotham
nus 
nauseosus 

 0.
9 

3.
9 

0.
9   0.
1 

0.
6    4.
4 

0.
4   3.
3  1.
8 

Ericameria 0.
6 

9.
2 

7.
2 

8.
0 

0.
4  5.
4           5.
1 

Gutierrezia 
californica 0.

6  4.
2  0.
8  1.
8 

0.
8    4.
9 

4.
4   0.
9  2.
3 

Isocoma 
acradenia 0.

6  1.
2  0.
8      1.
4       1.
0 

Krascheninn
ikovia 
lanata 

 0.
3  0.
4              0.
4 

Quercus 
spp. 

          0.
9    0.
4   0.
7 

Shrub stem       0.
9   0.
7 

0.
9    1.
2 

0.
9 

0.
8 

0.
9 

Shrub Total 35
.9

 

10
.4

 

17
.7

 

10
.6

 

2.
4 

0.
4 

8.
2 

1.
4 

0.
0 

3.
2 

3.
2 

10
.6

 

4.
8 

0.
0 

3.
6 

5.
1 

0.
8 

7.
0 

O
T

H
E

R
 

Seed  5.
5 

6.
2 

3.
1 

1.
9 

9.
6 

1.
5 

1.
2 

4.
7 

1.
5    6.
0 

1.
2 

1.
3 

0.
8 

3.
4 

Flower            1.
3      1.
3 

Lichen            6.
2 

0.
6 

0.
9    2.
6 

Other Total 0.
0 

5.
5 

6.
2 

3.
1 

1.
9 

9.
6 

1.
5 

1.
2 

4.
7 

1.
5 

0.
0 

7.
5 

0.
6 

6.
9 

1.
2 

1.
3 

0.
8 

3.
1 

Grand Total 10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 
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