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Abstract 

Early numeracy skills are predictive of later mathematics achievement; therefore, technically 

adequate screening tools are needed to identify young children who may be at risk for 

developing mathematics difficulties.  The Individual Growth and Development Indicators – 

Early Numeracy (myIGDI-EN) is a curriculum-based measure of four key early numeracy skills: 

quantity comparison fluency (QCF), oral counting fluency (OCF), one-to-one correspondence 

counting fluency (OOCCF), and number naming fluency (NNF).  MyIGDI-EN yields scores 

found to be technically adequate at one point in time and sensitive to growth across the preschool 

year in mixed-age samples of preschool children.  However, age-based developmental 

trajectories of numeracy skills have yet to be modeled and are needed to inform assessment 

schedules and expectations for growth in the context of educational decision-making.  Using an 

accelerated longitudinal design, this study sought to evaluate the developmental progression 

within and between the four skills measured by myIGDI-EN.  Utilizing data from 408 preschool 

children, linear and latent basis growth curve models were evaluated in a structural equation 

modeling framework.  Results indicated growth was represented nonlinearly across all myIGDI-

EN tasks.  Each task demonstrated significant age-based sensitivity to growth over the measured 

developmental period with the most growth evident on OCF and OOCCF.  Significant variation 

in initial level of performance at 45 months was evident across tasks, as was significant variation 

in slope for all tasks except QCF.  Intercept values suggest QCF is an earlier emerging skill and 

NNF a later emerging skill.  Results strengthen and advance what is known about patterns of 

early numeracy growth and the suitability of myIGDI-EN for repeated measurement across the 

preschool years.  Implications for practice and future research are discussed. 
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CHAPTER I: INTRODUCTION 

There has been increased attention to raising standards for mathematics education of 

young children.  In 2000, the National Council of Teachers of Mathematics (NCTM) included 

prekindergarten for the first time in their principles and standards for school mathematics, and 

that same year, a conference on standards for prekindergarten and kindergarten mathematics was 

held to discuss critical issues in early mathematics education (Clements, Sarama, & DiBiase, 

2004).  Precipitated by the Good Start, Grow Smart initiative of 2002, which is the early 

childhood counterpart of No Child Left Behind, states increasingly developed research-based 

standards for early childhood education.  By 2010, all U.S. states established early learning 

standards in key developmental domains including mathematics to outline the skills children 

ages 3 to 5 should learn prior to entering kindergarten in recognition that quality early learning 

experiences are critical for later school success (National Center on Child Care Quality 

Improvement, 2011; Scott-Little, Lesko, Martella, & Milburn, 2007).   

Two widespread social concerns have largely contributed to the growing interest in 

improving standards for mathematics education.  First, despite improving trends in the 

mathematics achievement of American students (Fleischman, Hopstock, Pelczar, & Shelley, 

2010; Mullis, Martin, & Arora, 2012), performance of students in the U.S. continues to lag 

behind many international comparisons, particularly East Asian and European countries 

(Ginsburg, Cooke, Leinwald, Noell, & Pollock, 2005; Sarama & Clements, 2009).  Further, 

research consistently indicates the majority of American students fail to achieve mathematics 

proficiency (National Center for Education Statistics, 2011).  This is highly detrimental within 

our growing system of globalization wherein science, technology, engineering, and mathematics 

fields are rapidly accelerating to maintain the competitiveness of our domestic technical 
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workforce.  Second, intra-national comparisons indicate there are persistent disparities in 

mathematics achievement that are evident as early as prekindergarten (Ginsburg, Lee, & Boyd, 

2008; Jordan, Kaplan, Olah, & Locuniak, 2006; Starkey, Klein, & Wakeley, 2004).  For example, 

longitudinal studies found that children from low-income families are more likely to enter school 

with less foundational knowledge for learning mathematics than their high-income counterparts, 

as are children from diverse sociocultural backgrounds (Denton & West, 2002; Jordan et al., 

2006; Reardon & Galindo, 2009; Roberts & Bryant, 2011).   

In addition to early emerging differences in mathematical skill development, research 

indicates these skills tend to be stable over time.  For example, mathematics performance 

measured in kindergarten is strongly associated with mathematics achievement in later 

elementary school years (Jordan, Kaplan, Locuniak, & Ramineni, 2007; Jordan, Kaplan, 

Ramineni, & Locuniak, 2009; Locuniak & Jordan, 2008; Missall, Mercer, Martinez, & Casebeer, 

2012).  Similarly, children with persistently low levels of mathematics performance in 

kindergarten continue to demonstrate low rates of growth across elementary school (Aunola, 

Keskinen, Lerkkanen, & Nurmi, 2004; Morgan, Farkas, & Wu, 2009).  Also underscoring the 

importance of long-term learning trajectories emerging prior to formal schooling, a meta-analysis 

of six longitudinal data sets indicated that school-entry mathematics skills are the strongest 

predictors of subsequent achievement outcomes, even more predictive than early reading and 

attention-related skills (Duncan et al., 2007).  Overall, these findings suggest that much of the 

differences in later mathematics achievement are the perpetuation of differences that were 

present in prekindergarten and point to the need to modify beginning mathematics trajectories 

through early identification and intervention. 
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Number Sense as a Foundational Skill 

There is general consensus that the development of mathematical knowledge and skills 

begins very early in life and continues to expand extensively throughout early childhood 

(Baroody, Lai, & Mix, 2006; Perry & Dockett, 2002; Sarama & Clements, 2009).  Through 

everyday experiences, young children develop a fundamental, informal sense of mathematics 

that is more complex and sophisticated than previously assumed (Ginsburg et al., 2008; National 

Mathematics Advisory Panel [NMAP], 2008).  For example, infants demonstrate the ability to 

discriminate between small quantities, and many begin to count soon after they learn to talk 

(Fuson, 1988; Geary, 2000; Mack, 2006).  Very young children spontaneously enumerate sets, 

sort objects, search for patterns, and compare sizes prior to formal schooling (Baroody & 

Wilkins, 1999).  It is clear that young children are capable of and interested in thinking 

mathematically.   

Mathematics is a multidimensional construct comprised of many skills, of which number 

sense is the cornerstone (NCTM, 2006; NMAP, 2008).  Although there are different definitions 

of number sense (Berch, 2005; Gersten, Jordan, & Flojo, 2005), in general, the term refers to 

one’s understanding of numbers, ways of representing numbers, and relationships among 

numbers.  A well-developed number sense promotes fluency in estimation and magnitude 

comparison, greater ease and flexibility in computation, and the ability to recognize unreasonable 

results (Kalchman, Moss, & Case, 2001).  Specific skills identified as part of number sense 

include verbal and object counting, quantity comparison, numeral identification, and basic 

calculation (Howell & Kemp, 2009; Lago & DiPerna, 2010).   

Several indicators of number sense have been identified as predictive of later 

mathematics achievement.  For example, young children’s counting strategies and quantity 
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comparison abilities have been found to be valid predictors of children’s ability to profit from 

mathematics instruction (Case, Harris, & Graham, 1992; Geary, 1990; Landerl, Bevan, & 

Butterworth, 2004; Mazzocco & Thompson, 2005; Okamoto & Case, 1996; Siegler & Shrager, 

1984).  At least one study indicated that children entering preschool with low levels of counting 

ability have lower levels of mathematics achievement and slower rates of mathematics growth 

across elementary school years than children entering preschool with high levels of counting 

ability (Aunola et al., 2004).  In addition, research indicates both symbolic (e.g., printed 

numerals and number words) and non-symbolic (e.g., arrays of dots on a page) magnitude 

comparison skills in kindergarten predict calculation skills and number fact knowledge in first 

and second grade (Desoete, Ceulemans, De Weerdt, & Pieters, 2012).  Finally, research suggests 

that speed and accuracy in number naming at kindergarten accounts for considerable variance in 

basic numerical skills and has an influence on mathematical achievement at the end of fourth 

grade (Krajewski & Schneider, 2009).  Collectively, research supports the notion that later 

mathematical difficulties may be associated with early deficits in number sense.  In light of this, 

the National Mathematics Advisory Panel (NMAP, 2008) emphasized that the development of 

early number sense is critical for setting children’s learning trajectories in elementary school 

mathematics. 

Early Identification of Number Sense Deficits 

To facilitate the early identification of young children who may be at risk for developing 

difficulties in mathematics, systems for assessment are needed in early childhood settings.  

Curriculum-Based Measurement (CBM; Deno, 1985, 2003) is an assessment framework that can 

be successfully utilized to screen for early academic deficits in key domains such as mathematics 

and monitor children’s progress over time.  CBM is a set of formative evaluation tasks 
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empirically linked to important outcomes and designed to detect children's responsiveness to 

instruction and intervention.  CBM falls under the category of assessment referred to as General 

Outcome Measurement (GOM).  In the GOM tradition, measured skills are linked to broad, long-

term objectives and represent global indicators of valued educational goals (Fuchs & Deno, 

1991).  CBM tasks can be developed using a curriculum sampling approach or a robust indicator 

approach (Fuchs, 2004), frequently referred to in early childhood research as a key skill indicator 

approach (e.g., Carta et al., 2005).  The curriculum sampling approach requires a systematic 

sampling of skills that are representative of the annual curriculum; whereas, key skill indicators 

are not necessarily tied to a particular curriculum, but rather correlate robustly with the 

component skills constituting a targeted domain.   

CBM tasks are designed to be technically adequate, time- and cost-efficient, capable of 

having multiple forms, and suitable to repeated measurement (Deno, 1985).  They are not 

intended to be diagnostic and comprehensive, but are intended to serve as indicators of a child’s 

performance in a given domain (Walker, Carta, Greenwood, & Buzhardt, 2008).  With regard to 

technical adequacy, CBM tasks must demonstrate empirical support across three research stages 

prior to their use as screening and progress monitoring tools (Fuchs, 2004).  The first stage 

focuses on the technical features of scores at one point in time such as interscorer, test–retest, 

and alternate-form reliabilities and criterion-related validity.  The second stage addresses the 

technical features of slope to determine whether the tasks are sensitive to growth over time.  

These first two stages are critical in considering whether the tasks are adequate for screening 

across the school year.  Finally, the instructional utility of the tasks are evaluated to determine 

whether they yield instructionally-relevant data to aid decision-making, which is essential in 

determining their use as progressing monitoring tools (Fuchs, 2004).   
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Research on mathematics CBM designed specifically for preschool children lags much 

further behind that focused on elementary populations (Foegen, Jiban, & Deno, 2007), and in 

fact, CBM did not exist in early childhood programs prior to 2002 (Greenwood, Carta, & 

McConnell, 2011).  A challenge in the development of screening and progress monitoring tools 

for preschool children is the lack of a shared curriculum from which to sample; as such, 

researchers must select skills to assess on the basis of developmental expectations for 

performance.  As a result, mathematics CBM for preschoolers has been designed exclusively 

within the key skill indicator approach and mainly focus on number sense (e.g., Floyd, Hojnoski, 

& Key, 2006; Hojnoski, Silberglitt, & Floyd, 2009; Lei, Wu, & Morgan, 2009; Polignano & 

Hojnoski, 2011; Reid, Morgan, DiPerna, & Lei, 2006; VanDerHeyden, Broussard, Fabre, 

Stanley, Legendre, & Creppell, 2004; VanDerHeyden, Broussard, & Cooley, 2006).  For 

example, in one of the few studies conducted with preschoolers, Floyd et al. (2006) developed 

and evaluated the Preschool Numeracy Indicators, recently renamed the Individual Growth and 

Development Indicators – Early Numeracy (myIGDI-EN), which include tasks measuring 

quantity comparison, oral counting, one-to-one correspondence counting, and number naming.  

These four tasks have demonstrated moderate to strong test–retest and alternate-form reliabilities 

and concurrent validity with measures of mathematics and school readiness (Floyd et al., 2006).  

In addition, myIGDI-EN is the only mathematics CBM for preschoolers for which sensitivity to 

growth over time has been systematically examined.  Specifically, the tasks have the potential to 

model growth across fall, winter, and spring assessment periods in samples of children attending 

Head Start (Hojnoski et al., 2009), with children who speak Spanish as their primary language 

(Hojnoski, Caskie, Polignano, & Brittain, 2012), and with children receiving special education 

services (Hojnoski, Caskie, & Young, 2012). 
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Limitations of the Research 

Despite the importance of early identification of mathematics deficits in the prevention of 

later achievement difficulties, research on CBM for early childhood mathematics is limited 

(Foegan et al., 2007).  This is problematic given that data-based decision-making in the 

preschool years has the potential to effectively promote mathematical skill development and 

change early learning trajectories.  As such, in line with the recommendations of the NMAP 

(2008), continued research on the development and technical adequacy of mathematics 

assessment tools for young children is needed.   

Because early mathematics CBM have been developed exclusively using the key skill 

indicator approach, it is imperative that we establish a more comprehensive understanding of the 

developmental progression of the key skills targeted by such measures in order to inform 

assessment practices and instructional targets.  Detailed documentation of the developmental 

connections within and across key mathematical skills will enable us to identify children who 

demonstrate a level and rate of growth comparable to same-age peers and those children who 

need additional support to achieve developmental expectations for mathematics performance.  

Stated differently, educational decisions need to be based on empirically-supported expectations 

for performance and the developmental progression of key skills over time.  Measurement 

researchers studying other early childhood developmental domains (e.g., communication, social 

skills, problem-solving, and cognitive abilities) have recognized the importance of measures’ 

developmental sensitivity and have investigated longitudinally the dynamic interplay within and 

between various key skills comprising these domains (e.g., Carta, Greenwood, Luze, Cline, & 

Kuntz, 2004; Greenwood, Carta, Walker, Hughes, & Weathers, 2006; Greenwood, Walker, & 
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Buzhardt, 2010; Greenwood, Walker, Carta, & Higgins, 2006; Walker, Carta, Greenwood, & 

Buzhardt, 2008): researchers in the area of early mathematics assessment should follow suit.    

Further, in the area of reading, researchers have begun to calibrate measurement 

schedules to developmental learning trajectories.  For example, the skills assessed in 

kindergarten using DIBELS Next (Good & Kaminski, 2011), the most recent version of the 

Dynamic Indicators of Early Literacy Skills (Good & Kaminski, 1996; Kaminski & Good, 1996), 

are aligned with developmental expectations for reading during the kindergarten year.  

Specifically, students are assessed in initial sounds and letter naming at the beginning of 

kindergarten; initial sounds, letter naming, phoneme segmentation, and nonsense words in the 

middle of kindergarten; and letter naming, phoneme segmentation, and nonsense word fluency in 

the end of kindergarten.  In the area of early mathematics assessment, researchers have not yet 

empirically investigated the development of number sense as it unfolds in relation to assessment 

practices.  It is important to identify the early numeracy skills that show promising growth over 

time in order to ensure the CBM used assesses only the skills with the potential to reflect 

developmental changes in mathematical knowledge and yield instructionally-relevant data 

(Fuchs, 2004; Mazzocco, 2005).  Assessing only the skills empirically deemed important during 

a given developmental window will also contribute to the time and cost efficiency of the 

measures.   

Thus far, the only early mathematics CBM that has begun to investigate skill growth 

across the preschool period has been myIGDI-EN.  MyIGDI-EN has demonstrated sensitivity to 

growth from the fall to spring of the preschool year (Hojnoski et al., 2009), aligned with Fuch’s 

(2004) second stage of CBM development; however, the potential for the tasks to demonstrate 

developmental sensitivity has not yet been systematically examined because growth has been 
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modeled only in an aggregated sample of mixed-age preschool children.  Age-based 

developmental trajectories of numeracy skills should be examined to inform the development of 

early numeracy CBM, assessment schedules, and expectations for growth in the context of 

educational decision-making.   

Developmental and cognitive research indicates number sense does not develop in a 

strictly linear fashion, but rather as an interconnected web of skills that build off of each other 

(Purpura, Baroody, & Lonigan, 2013).  Beginning in infancy and toddlerhood, young children 

demonstrate an innate ability to enumerate and compare small sets through subitizing (i.e., 

automatically recognizing the quantity of a set; Baroody & Wilkins, 1999; Ginsburg, Klein, & 

Starkey, 1998).  A key transition in young children’s mathematical development is recognition 

that counting, in addition to subitizing, can be used as a means of labeling and comparing 

quantities (Clements et al., 2004).  As children gradually acquire knowledge of the counting 

sequence and realize that numbers represent quantities, they begin to apply the conventional 

number-word sequence to objects (Sarama & Clements, 2009).  Finally, with increased exposure 

to formal mathematics instruction, children’s numeracy knowledge continues to expand through 

the learning of culture-specific numeric symbols (e.g., Arabic numerals) and manipulation of 

these symbols (Baroody & Wilkins, 1999).  Although developmental and cognitive research has 

provided evidence suggesting a continuum of early numeracy skills, researchers in the area of 

preschool numeracy CBM have not yet modeled age-based growth.  Modeling growth on 

myIGDI-EN across the preschool period will allow for an empirical examination of the 

developmental progression of key numeracy skills over time. 
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Purpose of the Study  

This study seeks to examine the developmental progression of key early numeracy skills 

measured by myIGDI-EN.  Specific research questions are as follows:   

(1) What is the developmental progression within each of the four tasks comprising 

myIGDI-EN (i.e., Quantity Comparison Fluency, Oral Counting Fluency, One-to-One 

Correspondence Counting Fluency, and Number Naming Fluency) across the 

preschool years?  

(2) What are the relations between each of the myIGDI-EN tasks during the preschool 

years?  

 Because research on preschool numeracy CBM is limited, it is difficult to specify 

hypotheses regarding the relations within and across the skills measured by myIGDI-EN; 

however, it is expected that each of the tasks will demonstrate developmental sensitivity to 

growth over time in accordance with prior research.  More specifically, it is hypothesized that 

Quantity Comparison Fluency (QCF) will be an earlier developing skill because children as 

young as infancy can distinguish which of two small sets has “more” or “less” (Sarama & 

Clements, 2009; Starkey & Cooper, 1995).  The ability to compare quantities arguably results 

from one’s ability to subitize, or immediately recognize the number of items in a set, which is a 

key foundational skill present from a very early age (Clements, 1999; Ginsburg et al., 1998).  

The inclusion of larger quantities in QCF (>4) that may not be immediately recognized through 

subitizing, however, may provide a greater range of difficulty.  Given early competency in this 

skill, it is likely that QCF will demonstrate the least growth over the time, demonstrating a 

potential ceiling effect.  In addition, it is hypothesized that initial levels of Oral Counting 

Fluency (OCF) scores will be greater than initial levels of One-to-One Correspondence Counting 
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Fluency (OOCCF) scores because children must learn the counting sequence before mapping 

number words onto objects and coordinating number words with actions (Sarama & Clements, 

2009); however, some temporal relationship between these two areas of development is expected.  

Finally, developmental literature indicates that numeral identification is a formal mathematics 

skill requiring the learning of culture-specific symbols, and thus, skill in this area usually 

coincides with the introduction to more formal education experiences and increased exposure to 

the written form of number over time (Baroody & Wilkins, 1999; Sarama & Clements, 2009).  

The preschool CBM literature also suggests that number naming progresses later in the 

developmental sequence.  Specifically, an examination of the sensitivity to growth of myIGDI-

EN (Hojnoski et al., 2009) found less growth on Number Naming Fluency (NNF) than the other 

three tasks, and greater growth rates on NNF for 4-year-olds than 3-year-olds.  As such, it is 

hypothesized that initial levels of this skill will be lower than the other measured skills and 

growth will be less steep across the preschool period.  
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CHAPTER II: LITERATURE REVIEW 

Development of Number Sense 

Number sense emerges at a young age and serves as the foundation for the acquisition of 

higher order mathematical skills (NMAP, 2008; Sarama & Clements, 2009).  As such, the area of 

number is the most well researched domain in early mathematics (Ginsburg, Cannon, Eisenband, 

& Pappas, 2006).  Despite consensus that number sense is a multidimensional construct and 

prerequisite to continued mathematics learning, researchers have not agreed on a conceptual 

definition of the term or how it should be measured (Berch, 2005; Gersten et al., 2005).  

Attempts to operationalize number sense generally involve an understanding of the meaning of 

numbers, representation of numbers, and relationships among numbers (NCTM, 2006).  

Measurable skills within the domain of number sense have included oral counting, comparing, 

ordering, estimating, numeral identification, and basic arithmetic (Howell & Kemp, 2009; Lago 

& DiPerna, 2010).  Growth within many of these skills appears to develop in a hierarchical 

fashion, and children develop an increasingly complex and flexible web of mathematical 

concepts and skills as they connect new information to previously learned knowledge (Ginsburg 

et al., 2006; Purpura et al., 2013).  

Number sense develops informally prior to explicit mathematics instruction, with 

evidence suggesting the existence of math knowledge in infancy and toddlerhood (Brannon, 

2002; Wynn, 1992; Wynn, Bloom, & Chiang, 2002).  Very young children seem to possess 

innate competencies related to the enumeration of small quantities, quantity comparison, and 

simple arithmetic reasoning (Ginsburg et al., 1998) and have an inherent interest in searching for 

patterns, explanations, and solutions in everyday experiences (Baroody & Wilkins, 1999).  Just 

as children learn language by hearing it spoken in the everyday environment, children actively 
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learn about number through interactions with their physical and social world (Ginsburg et al., 

2006).  Daily occurrences such as playing games and distributing items (e.g., allocating playing 

cards, setting the table, and sharing snacks) provide opportunities for children to learn and apply 

mathematical concepts and provide the foundation for later mathematical learning (Baroody & 

Wilkins, 1999; Ginsburg et al., 1998).  

For many children, the preschool period marks the introduction to formal mathematics 

instruction.  Formal mathematics builds on children’s existing informal knowledge and involves 

learning culture-specific numeric symbols (e.g., Arabic numerals and operation symbols) and 

manipulations of these symbols (Baroody & Wilkins, 1999).  For example, research has 

demonstrated that informal mathematical knowledge in preschool significantly predicts numeral 

knowledge and written calculation in kindergarten (Purpura et al., 2013).  Although a distinction 

has been made between informal to formal mathematics, the application of these skills is 

somewhat fluid.  For example, children’s understanding of the mental number line requires the 

integration of informal and formal knowledge (Griffin, Case, & Siegler, 1994).  That is, children 

must coordinate both informal and formal systems to understand that the verbally expressed 

“three” corresponds to an array of three items (e.g., ●●●) and the written numeral “3” and to 

understand that “three” is less than “four” but more than “two.” 

Subitizing and Quantity Comparison 

Subitizing, or the automatic recognition of quantity, appears to be a keystone skill in 

early numeracy development (Sarama & Clements, 2009).  Children as young as age 2 and 3 

demonstrate the ability to subitize by enumerating small sets up to three objects, and by age 4 

and 5, recognizing sets up to five (Ginsburg et al., 1998; Starkey & Cooper, 1995).  Even 6-

month-old infants can discriminate among and match small configurations of objects, and 18-
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month-old children can differentiate which set has more objects (Cooper, 1984; Starkey & 

Cooper, 1995; Starkey, Spelke, & Gelman, 1990).   

There are two types of subitizing: perceptual and conceptual (Sarama & Clements, 2009).  

The type of subitizing evident in infancy is considered perceptual subitizing in its most primitive 

form.  Perceptual subitizing is used with small collections up to three items; the numerosity is 

recognized by abstracting the number of items in the set and matching it to a number word 

(Sarama & Clements, 2009).  As quantities become larger, children will not be able to rely solely 

on perception to ensure accuracy of their quantity estimation and comparison.  Instead, they must 

rely on the more advanced skill of conceptual subitizing which involves the ability to compose 

and decompose a set into smaller units (Sarama & Clements, 2009).  For example, a set of six 

objects can be perceived as two collections of three or a collection of two and a collection of four.  

Experiences with different arrangements of a collection will eventually help young children 

understand that sets can have the same number of objects despite their arrangement (von 

Glasersfeld, 1982).   

Subitizing forms much of the foundation for the general learning of number (Sarama & 

Clements, 2009).  It helps children make relative judgments about which set is “more” and which 

is “less” even before they demonstrate the ability to count (Starkey & Cooper, 1995), and this 

acuity in discriminating between sets becomes sharper with age (Halberta & Feigenson, 2008).  

In addition, through experiences comparing small and unequal collections, subitizing may help 

children understand that larger quantities are represented by number words farther along in the 

number-word sequence (Baroody & Wilkins, 1999).  Finally, subitizing is implicated in the 

development of the cardinality principle, or the understanding that the last count represents the 
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numerosity of the set (Clements, 1999).  That is, children’s first use of cardinal words are 

generally labels for small sets of subitized objects.  

Verbal and Object Counting 

Although subitizing is used throughout the lifespan as an efficient means of enumerating 

small sets, a key transition in the mathematical development of young children is recognizing 

that counting can be used as a means of labeling and comparing quantities (Clements et al., 

2004).  Mathematics learning gradually shifts from a more qualitative focus (i.e., attending to 

perceptual patterns) to a more quantitative focus (i.e., numerical patterns).  The fundamental 

process through which children make this shift is through learning the counting sequence.  

Verbal counting skills may be developed before a child is 2 years old (Fuson, 1988; Fuson & 

Hall, 1983; Ginsburg et al., 1998), and during the preschool period, counting is typically 

extended through 20 (Fuson, 1992).   

Initially, young children may perceive oral counting as a pattern of sounds without an 

understanding that numbers represent quantities, but eventually they learn that a number 

represents a specific quantity and apply counting in meaningful ways (Fuson, 1988).  Thus, 

verbal counting involves both an understanding of the conventional sequence of number words 

and relationships between number words.  As children realize numbers represent quantities, they 

begin to apply the conventional number-word sequence to objects, which requires the integration 

of number words and physical actions (e.g., pointing or moving objects; Sarama & Clements, 

2009).  At first, children may have trouble coordinating verbal counting and pointing to one 

object at a time, but once they coordinate counting and pointing, the primary difficulty is keeping 

track of the items that have been counted and those that have not (Fuson, 1988).  The number of 

objects in a set, arrangement of objects, and ability to manipulate objects predict young 
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children’s counting accuracy, with more accurate counting of numerically small, linearly 

arranged sets of touchable objects (Clements et al., 2004; Greeno, Riley, & Gelman, 1984).  By 

counting objects in a collection and adding or taking away objects from a collection, children 

learn that collections can be made larger or smaller, thereby laying the groundwork for later 

arithmetic tasks (Baroody & Wilkins, 1999). 

Object counting is reliant on three principles: the one-to-one principle, stable order 

principle, and cardinality principle (Gelman & Gallistel, 1978).  The one-to-one principle 

upholds that only one label can be given to individual objects in a set as they are counted; the 

stable order principle maintains that the labels assigned to objects being counted are arranged in 

a stable, repeatable order; and the cardinal principle asserts that the final label used in counting a 

set represents the number of objects in the set (Gelman & Gallistel, 1978).  Cardinality, which 

has been referred to as the “capstone of early numerical knowledge, and the necessary building 

block for all further work with number and operations” (Clements et al., 2004, p. 19), is 

generally the last of the principles to be acquired.  Children 2 and 3 years of age may be able to 

recite the number sequence but may not realize that the last number word stated represents the 

quantity of the collection (Baroody & Wilkins, 1999; Fuson, 1988).  That is, they may correctly 

count the collection, but not be able to answer the question, “How many objects are there?”  

When asked, children without a grasp of cardinality often interpret the question as a cue to re-

count the objects.  Around 4 years of age, the cardinal meanings of “one” through “three” and 

perhaps “four” are learned in sequential order by means of subitizing, and children know not to 

assign these number words to unknown quantities (Sarnecka & Lee, 2009; Slusser & Sarnecka, 

2011).  That is, they realize that number words are mutually exclusive.  Also around this time, a 

conceptual shift occurs in which children realize the cardinal meaning of a number word is fixed 
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by the word’s ordinal position in the list, and shortly thereafter, this knowledge is generalized to 

words “five” and higher (Sarnecka & Lee, 2009). 

Numeral Identification 

An understanding of the symbolic representation of quantity provides a critical link 

between children’s informal and formal mathematics development.  Informal mathematical skills, 

including learning the counting sequence and mapping quantities onto number words, lay the 

groundwork for learning numeric representations (Purpura et al., 2013).  When learning the 

language of mathematics, young children must realize that numerals are distinct from other 

symbols (e.g., letters) and connect number names with written symbols.  Initially, young children 

exhibit idiosyncratic and pictographic responses (e.g., scribble) to represent number before 

relying on iconic (e.g., tallies) and symbolic (e.g., numerals) responses (Hughes, 1986).  To read 

numerals, children must construct a mental image of each numeral (Baroody & Wilkins, 1999).  

During the preschool years, children are increasingly able to construct a mental image of 

numerals 1 to 9, but may confuse numerals like 2 and 5 and 6 and 9 that share the same features 

(Baroody & Wilkins, 1999).  When learning double-digit numerals, children interpret new cases 

on the basis of existing knowledge (e.g., stating “one-six” for 16).  Finally, research suggests that 

children learn to read single-digit and teen numerals before they can write them.  Writing 

numerals requires not only an accurate mental image of a numeral, but also a plan for translating 

the mental image into motor action (Clements et al., 2004).  During the process of learning to 

write numerals, commonly occurring errors include flipped or reversed numerals and reversing 

digits in teen numerals (e.g., 41 for “fourteen”) (Clements et al., 2004).   

It is important to note that procedural knowledge related to the identification and writing 

of numerals does not always correspond with children’s conceptual understanding of quantity, or 
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the ability to map number words and numerals to quantities (Sarama & Clements, 2009).  For 

example, a child may be able to identify a numeral without knowing its position on the mental 

number line.  The potential lack of congruence between a child’s procedural and conceptual 

knowledge may be due to the fact that development across mathematical skill areas does not 

follow a strict stage-like progression (Ginsburg et al., 2006); instead, children exhibit varying 

degrees of numeracy knowledge and employ many different strategies at any given point in time.  

Before developing other formal mathematics skills, however, children will need to relate their 

understanding of quantity, number words, and numerals (Purpura et al., 2013).  In fact, research 

indicates that numeral knowledge (i.e., numeral identification and mapping numerals onto 

quantities) mediates the relation between informal knowledge and formal calculation skills in 

preschool and kindergarten (Purpura et al., 2013), and accuracy and speed in number naming at 

kindergarten is associated with mathematical achievement in fourth grade (Krajewski & 

Schneider, 2009).  Further, children’s later developing ability to compare numerals in 

kindergarten predicts procedural calculation in second grade (Desoete et al., 2010).   

Curriculum-Based Measurement of Early Number Sense  

Because number sense is a foundational skill that is predictive of later academic growth, 

a system for monitoring number sense development during the preschool period is critical.  

Tiered models of service delivery, such as Response to Intervention, are being increasingly 

applied in early childhood settings to identify and remediate early academic deficits in key 

developmental domains, such as mathematics (Greenwood, Bradfield et al., 2011).  A critical 

component of these multi-tiered systems is universal screening several times throughout the 

school year to identify children falling below a benchmark standard given the general classroom 

curriculum and instructional strategies.  These children can then be provided with more targeted 
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instruction and their progress monitored to determine their responsiveness to more intensive 

services.   

Curriculum-Based Measurement (CBM; Deno, 1985, 2003) is an assessment framework 

that can be successfully utilized within multi-tiered systems of support to evaluate young 

children’s numeracy knowledge and inform instructional changes to accelerate skill growth.  

Before CBM tasks can be used as screening and progress monitoring tools, there must be 

evidence of the reliability and validity of the scores yielded by such measures.  Specifically, 

CBM tasks must demonstrate empirical support across three research stages prior to their use as 

screening and progress monitoring tools (Fuchs, 2004).  Research must evaluate the technical 

features of scores at one point in time (Stage 1), sensitivity to growth over time (Stage 2), and 

instructional utility to aid decision-making (Stage 3; Fuchs, 2004).  Research in the area of early 

numeracy CBM has grown substantially within the past decade and has led to the development 

of several assessment tools that have the potential to be used to screen young children for 

potential academic difficulties. 

Kindergarten Curriculum-Based Measures 

Early Numeracy Curriculum-Based Measures.  The Early Numeracy Curriculum-

Based Measures (EN-CBM) developed by Clarke and Shinn (2004) have been the most well-

researched CBM in early mathematics.  The technical adequacy of four tasks – Oral Counting 

(OC), Number Identification (NI), Quantity Discrimination (QD), and Missing Number (MN) – 

was originally supported in a sample of first grade students and has since been examined in 

kindergarten samples.  Chard and colleagues (2005) piloted 10 CBM tasks for kindergarten 

children including the EN-CBM tasks of NI, QC, and MN, as well as Count to 20, Count from 3, 

Count from 6, Count by 2, Count by 5, Count by 10, and Number Writing.  The tasks for first 
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grade students included numerals to 20; however, several of the kindergarten tasks were 

modified to include only numerals to 10.  The NI, QD, and MN tasks demonstrated significant 

criterion-related validity with the Number Knowledge Test (Okamoto & Case, 1996); thus, these 

tasks were retained in future studies of EN-CBM.    

Subsequent research has provided additional support for the reliability and validity of 

EN-CBM and modified versions of the tasks.  Specifically, test–retest and alternate-form 

reliabilities have consistently been found to be moderate to strong (Baglici, Codding, & Tryon, 

2009; Hampton, Lembke, Lee, Pappas, Chiong, & Ginsburg, 2012; Lembke & Foegan, 2009; 

Lembke, Foegan, Whittaker, & Hampton, 2008; Martinez, Missall, Graney, Aricack, & Clarke, 

2009).  In addition, validity has been demonstrated through concurrent and predictive relations 

with the following: teacher ratings of mathematics proficiency, the mathematics subtest of the 

Stanford 10 Achievement Test (SAT-10; Harcourt Educational Measurement, 2002), Test of 

Early Mathematics Ability (TEMA-3; Ginsburg & Baroody, 2003), mathematics subtests of the 

Woodcock–Johnson III Tests of Achievement (WJ III; Woodcock, McGrew, & Mather, 2001), 

calculation and reasoning and concepts subtests of the Woodcock–McGrew–Werder Mini 

Battery of Achievement (Woodcock, McGrew, & Werder, 1994), first grade AIMSweb 

computation probes (Shinn, 2004), first grade report card grades, and third grade Indiana 

Statewide Testing for Educational Progress-Plus (ISTEP+; Baglici et al., 2009; Hampton et al., 

2012; Lee, Lembke, Moore, Ginsburg, & Pappas, 2012; Lembke & Foegan, 2009; Lembke et al., 

2008; Martinez et al., 2009; Missall, Mercer, Martinez, & Casebeer, 2012).   

In addition to Stage 1 research, the sensitivity to growth over time of EN-CBM and 

modified versions of the tasks has been examined.  Chard et al. (2005) examined changes in 

mean scores across the school year and concluded that children in kindergarten and first grade 
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demonstrated growth in NI, QD, and MN from fall to winter to spring, with NI demonstrating the 

most substantial growth over time.  Corroborating these results, Lembke and Foegen (2009) and 

Martinez et al. (2009) found the greatest weekly growth rate from fall to spring of kindergarten 

for NI (0.79 and 0.46 respectively), followed by QD and MN.  In contrast to the former two 

studies, results of Baglici et al. (2009) suggested that NI showed the least weekly growth (0.11) 

from the winter to spring during the kindergarten year relative to QD, MN, and OC.  This was 

the only study that examined growth in OC in addition to the other three EN-CBM tasks and 

found that this task had the greatest weekly growth rate (0.65).  Disparities in growth rates may 

be due to differences in the age of the samples, task variations (e.g., NI range from 0-20 versus 

0-100), or period of time between assessment periods (e.g., fall to spring versus winter to spring).   

Finally, two studies utilized growth curve analysis to examine the potential of EN-CBM 

for progress monitoring.  Clarke, Baker, Smolkowski, and Chard (2008) examined the added 

value of slope for OC, NI, QD, and MN in predicting spring scores on the Stanford Early School 

Achievement Test (SESAT-2; Harcourt Brace Educational Measurement, 1996) in kindergarten.  

They found that the slope of only QD fit a linear growth curve and contributed to predicting 

spring SESAT scores, thereby calling into question the ability of the other tasks to reliably 

monitor student progress over time.  In a similar study, Lembke et al. (2008) examined the 

potential of NI, QD, and MN to reliability monitor student progress in kindergarten and first 

grade.  In contrast to Clarke et al. (2008), significant linear growth was found only for NI.  

Collectively, results suggest that numeracy skills in kindergarten and first grade may not follow a 

linear trajectory and point to the need for more research evaluating the potential of the EN-CBM 

for progress monitoring.  
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Kindergarten Early Numeracy and Literacy Assessments. The Kindergarten Early 

Numeracy and Literacy Assessments developed by VanDerHeyden, Witt, Naquin, and Noell 

(2001) included four mathematics-related tasks.  Draw Circles required children to draw circles 

that corresponded to a given numeral; Circle Number required children to circle the numeral that 

corresponded to a set of circles; Write Number required children to write the numeral that 

corresponded to a set of objects; and Discrimination required children to identify the symbol 

(e.g., number, shape, and letter) that did not match the others.  Thus far, two studies have been 

conducted to support the technical adequacy of these kindergarten measures at the Stage 1 level 

(VanDerHeyden et al., 2011; VanDerHeyden et al., 2001).  Initial research indicated strong 

interscorer and alternate-form reliability in sample of kindergarten children in a suburban setting 

(VanDerHeyden et al, 2001).  However, concurrent validity estimates with subtests of the 

Comprehensive Inventory of Basic Skills, Revised (CIPS-R; Brigance, 1999) were inconclusive. 

The kindergarten CBM tasks were not significantly correlated with the rote counting, read 

numerals, numeral comprehension, and write numerals subtests of the CIPS-R, and only Circle 

Number and Discrimination were correlated with the understands quantitative concepts subtest 

and overall math composite.  In addition, moderate to strong non-domain specific correlations 

with the letter identification and letter sounds subtests called into question the construct being 

measured by the CBM tasks. 

VanDerHeyden et al. (2011) further evaluated these tasks and piloted additional 

mathematics-related tasks (i.e., Pattern Completion, Shape Completion, Comparison of Sets with 

Equal and Unequal Items per Set, Adding or Taking Away Objects, and Subitivity) in a sample 

of children diverse in ethnicity and from low-income backgrounds.  Interscorer agreement was 

high for all tasks, and test–retest reliability for the new tasks was moderate to strong.  All the 
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tasks except for Adding or Taking Away Objects were moderately correlated with kindergarten 

TEMA-3 scores.  Predictive validity with researcher-constructed addition and subtraction CBM 

administered in first grade was moderate for all the tasks with the exception of Shape 

Completion and Subitivity. 

Early Numeracy Skill Indicators.  Initial research was also conducted on the Early 

Numeracy Skill Indicators (ENSI) developed by Methe, Hintze, and Floyd (2008).  Researchers 

originally piloted four tasks in a sample of kindergarten children in a rural setting: Counting-On 

Fluency (COF) required children to count starting from a specified number other than 1; Ordinal 

Position Fluency (OPF) required children to identify ordinal positions to “fifth;” Number 

Recognition Fluency (NRF) required the naming of numerals to 20; and Match Quantity Fluency 

(MQF) required children to point to the numeral that matched a quantity of objects.  Results 

indicated strong internal consistency for COF and OPF, though low internal consistency for 

MQF.  Test-retest reliability estimates across tasks were moderate to strong.  All of the tasks 

demonstrated moderate concurrent relations with the TEMA-3 in the fall and spring of 

kindergarten, with the exception of MQF which was only weakly correlated with the TEMA-3 in 

the spring.  All tasks also demonstrated concurrent and predictive relations with teacher ratings 

of children’s mathematical performance.  In addition, the diagnostic accuracy of cut-scores for 

OPF and NRF facilitated accurate classification decisions with sensitivity and specificity within 

the range of 0.75.  Based on these findings, the authors concluded that OPF and NRF 

demonstrated greater reliability, validity, and diagnostic accuracy than COF and MQF. 

Methe, Begeny, and Leary (2011) modified some of the original ENSI tasks (i.e., 

Matching Quantities and Ordinality) and developed others (i.e., Touch Counting, Relative Size, 

Equal Partitioning, Group by Five, Decomposition, and Verbal Facts).  Children in kindergarten 
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were administered Touch Count (counting up to 30 dots), Match Quantity (matching an array of 

dots with a numeral), Relative Size (selecting the quantity with more or less), Equal Partitioning 

(dividing quantities into equal parts and identifying if items were shared equally), and Ordinality 

to Five (identifying ordinal positions to “five”).  First graders were administered Group by Five 

(identifying how many groups of five items and how many items altogether), Ordinality to 10 

(identifying ordinal positions to “ten”), Decomposition (matching two different arrays and basic 

arithmetic with picture cues), and Verbal facts (basic arithmetic without picture cues).  Internal 

consistency and test–retest reliability of the tasks were strong, though concurrent correlations 

with the Calculation, Math Fluency, and Applied Problems subtests of the Woodcock–Johnson 

III Normative Update (Woodcock, McGrew, Schrank, & Mather, 2007) were weak to moderate.  

Concurrent and predictive relations were stronger for kindergarteners than first graders, and 

concurrent relations were stronger than predictive relations overall.  Strongest criterion-related 

validity was found for the Equal Partitioning (EP) and Ordinality (OP) tasks, with the most 

robust correlations between EP and the Applied Problems subtest and OP with the Applied 

Problems and Computation subtests in kindergarten.  In addition, the EP and OP tasks 

administered in the fall, winter, and spring of kindergarten were the only tasks to demonstrate 

adequate diagnostic accuracy in predicting performance on the Math Calculation Composite in 

the spring of kindergarten.   

Preschool Curriculum-Based Measures 

Research on screening and progress monitoring tools designed specifically for preschool 

children has lagged behind that for kindergarteners.  In general, number sense concepts targeted 

in preschool and kindergarten CBM are very similar and primarily focus on skill development in 

quantity comparison, counting, and numeral identification.  Among the main differences between 
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kindergarten and preschool CBM tasks are the numerosities of the quantities and numerals 

represented. 

Preschool Early Numeracy Measures.  VanDerHeyden and colleagues (2004) 

developed the Preschool Early Numeracy Measures which included five CBM tasks.  Choose 

Number required children to point to the number the examiner named; Count Objects required 

children to count quantities of objects up to 10; Free Count required children to verbally count in 

sequence; Discrimination required children to choose an object that was different out of a set; 

and Choose Shape required children to point to the shape the examiner named.  Results of an 

initial investigation in a sample of children deemed at-risk due to demographic indicators and 

living in a rural setting indicated strong interscorer reliability and moderate to strong alternate-

form reliability (VanDerHeyden et al., 2004).  Concurrent correlations with the TEMA-2 

(Ginsburg & Baroody, 1990) and the Brigance Screens (Brigance, 1985) were weak to moderate.  

Correlations were strongest for the Choose Number and Discrimination tasks and weakest for the 

Choose Shape task.  Concurrent relations with teacher rankings of children’s mathematics ability 

were mainly moderate to strong, with the weakest correlations evident for Free Count.   

In subsequent research, VanDerHeyden et al. (2006) revised the Choose Number and 

Count Objects tasks to include numerals and quantities up to 20 instead of 10, and these 

modified tasks were found to strongly correlate with the original tasks.  Performance on the 

Count Objects, Choose Number, Discrimination, Number Naming, and Free Count tasks 

demonstrated inconsistent predictive relations with VanDerHeyden and colleagues’ (2001) 

kindergarten Circle Number and Discrimination tasks, with correlation coefficients ranging 

from .31 (preschool Choose Number and kindergarten Circle Number) to .60 (preschool 
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Discrimination and kindergarten Circle Number).  In general, the preschool Discrimination and 

Free Count tasks demonstrated the strongest correlations with scores on the kindergarten CBM.   

Regarding Stage 2 research, a comparison of mean scores obtained during preschool and 

kindergarten indicated that kindergarten children scored higher on each of the tasks 

(VanDerHeyden et al., 2006).  Although growth across the preschool year was not examined, 

significant growth across a 7-week period was not evident for any task.  Further, diagnostic 

accuracy of the preschool tasks in predicting low performers on the Brigance Screens based on 

cut scores recommended by test developers was found to result in 70% accurate identification 

with sensitivity at 0.52 and specificity of 0.88.   In the same study, VanDerHeyden et al. (2006) 

evaluated whether the preschool measures would be sensitive to the effects of intervention.  Six 

low-performing preschool children participated in seven sessions of direct instruction in the four 

skill areas tested by the measures.  Although the scores of the children who received the 

intervention improved, growth was not significant. 

Early Arithmetic and Reading Learning Indicators.  The Early Arithmetic and 

Reading Learning Indicators (EARLI) were developed by Reid et al. (2006) as a tool for 

monitoring the academic growth of children attending Head Start.  The EARLI included six 

mathematics tasks: Counting Aloud, Counting Objects, Subitizing (up to 6 objects), Number 

Identification, Measurement, and Pattern Recognition.  As a whole, the EARLI exhibited strong 

item and scale reliability properties (i.e., high internal consistency and item discrimination 

indices) and moderate to large concurrent correlations with the Math Reasoning, Applied 

Problems, and Quantitative Concepts subtests of the WJ III (Woodcock et al., 2001).     

Multiple short forms of the measures designed to be developmentally appropriate based 

on child age (3 or 4 years old) and assessment period (fall, winter, and spring) were later created 
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by Lei, Wu, DiPerna, and Morgan (2009).  Data were collected for 3- and 4-year-olds three times 

across the school year using two modified EARLI tasks: Numbers and Shapes consisted of 38 

items requiring children to name numerals or shapes, and Measurement consisted of 20 items 

requiring children to identify basic measurement concepts using basic shapes.  Data analysis 

suggested similar performance on Numbers and Shapes across all assessment periods at age 3 

and in the fall of age 4, while performance was similar for winter and spring of age 4 and 

significantly different from the former time period; thus, two difficulty levels were created for 

the short form of Numbers and Shapes.  Regarding the Measurement task, performance in the 

fall of age 3 was different from the other time points, while performance across winter and 

spring of age 3 and fall of age 4 were similar.  Finally, performance in winter and spring of age 4 

were similar and significantly different from the other time periods.  Hence, short forms of the 

Measurement task were created to reflect three difficulty levels.  Item response theory, classical 

test theory, and maximizing item usage selection rules were then utilized to create and compare 

the short forms.  Internal consistency of the short forms created using all three methods were 

similar and acceptably high, though lower than that of the longer forms.  Concurrent validity 

estimates of the short forms with the WJ III Applied Problems and Quantitative Concepts 

subtests were also lower than those of the long forms but did not differ significantly.   

Individual Growth and Development Indicators – Early Numeracy.  The Individual 

Growth and Development Indicators – Early Numeracy (myIGDI-EN) developed by Floyd et al. 

(2006), formally the Preschool Numeracy Indicators, are also among the few early numeracy 

CBM for preschoolers.  Quantity Comparison Fluency (QCF) required children to determine 

which of two sets of objects has “more”; Oral Counting Fluency (OCF) required children to 

count in sequence from 1; One-to-One Correspondence Counting Fluency (OOCCF) required 
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children to count up to 20 circles; and Number Naming Fluency (NNF) required children to 

name numerals up to 20.  Across four preschool samples, myIGDI-EN demonstrated moderate to 

strong test–retest reliability and concurrent relations with the TEMA-3 and School Readiness 

Composite of the Bracken Basic Concept Scale (BBCS; Bracken, 1998). 

After obtaining preliminary evidence at the Stage 1 level, Hojnoski et al. (2009) 

evaluated the sensitivity to growth of myIGDI-EN in a sample of 3- to 5-year-olds across the 

school year.  Findings indicated the tasks yielded growth data large enough to be visually 

detected.  Specifically, growth rates for QCF, OCF, and OOCCF were estimated to be 

approximately one unit per month, and the growth rate for NNF was estimated to be an increase 

of approximately one-half unit per month.  When age was added to the linear mixed model, 

findings suggested that myIGDI-EN did not demonstrate differences in growth rate based age 

with the exception of NNF which showed steeper growth for older children.   

Polignano and Hojnoski (2012) further evaluated myIGDI-EN and also developed five 

additional tasks (i.e., Cardinality, Pattern Completion, Shape Naming Fluency, Shape Selection 

Fluency, and Shape Composition).  The reliability and concurrent validity of the original and 

new tasks were examined in a sample of preschool children identified as at-risk due to 

demographic characteristics.  One-week alternate-form reliability was strong across all tasks, and 

2-week test–retest reliability estimates were moderate to strong.  Similar to earlier research, 

myIGDI-EN demonstrated moderate to strong correlations with the TEMA-3 and Bracken Basic 

Concepts Scale: Receptive (BBCS-3: R; Bracken, 2006).  Further, Cardinality (CAR), the new 

task most closely linked to early number sense, was moderately to strongly correlated with the 

original myIGDI-EN tasks and strongly correlated with the TEMA-3 and School Readiness 

Composite of the BBCS-3: R.  Interestingly, in addition to moderate to strong correlations with 



 
 

	   30	  

mathematics-related subtests of the BBCS-3:R (i.e., Numbers, Sizes/Comparisons, Shapes, 

Direction/Position, and Quantity), CAR also demonstrated moderate concurrent correlations with 

the Colors and Letters subtests of the BBCS-3:R. 

Summary and Analysis of Early Numeracy CBM Literature 

Utilizing Fuchs’ (2004) three stages as a framework for evaluating CBM, several 

assessment tools for preschool and kindergarten children demonstrate potential for screening.  At 

the kindergarten level, EN-CBM (Clarke & Shinn, 2004) has yielded the most research support 

at Stage 1 and 2 across multiple samples.  EN-CBM demonstrate reliable and valid static scores 

and have the ability to model growth across the school year, though more Stage 2 research is 

warranted to definitively establish expected growth rates.  The next step will then be to 

determine whether the tasks yield instructionally-relevant data to aid decision-making (Fuchs, 

2004).  At present, less research has evaluated the technical adequacy of the Kindergarten Early 

Numeracy and Literacy Assessments (VanDerHeyden et al., 2001) and ENSI (Methe et al., 

2008).  Although preliminary evidence supports the technical adequacy of the numeracy tasks of 

the Kindergarten Early Numeracy and Literacy Assessments at one point in time, research 

supporting their sensitivity to growth is necessary.  In addition, due to the presence of non-

domain specific concurrent relations, future research should focus on determining the construct 

being measured by the tasks.  With regard to the ENSI, further investigation supporting the 

technical adequacy of the measures at one point in time should be conducted prior to the 

initiation of research on the sensitivity of the measures to model growth over time.  

At the preschool level, preliminary evidence of the technical adequacy of the Preschool 

Early Numeracy Measures (VanDerHeyden et al., 2004), EARLI (Reid et al., 2006), and 

myIGDI-EN (Floyd et al., 2006) at one point in time has been established.  Regarding Stage 2 
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research, growth has been systematically modeled across the preschool period only for myIGDI-

EN (Hojnoski et al., 2009).  Researchers of the EARLI, however, have provided preliminary 

evidence of growth based on a comparison of mean scores across the school year and developed 

shorter test forms to be appropriate in difficulty level for children of different ages and at 

different assessment periods (Lei et al., 2009; Reid et al., 2006).  Although growth rates for 

EARLI tasks have not yet been established, researchers attended to developmental considerations 

(e.g., maturation and exposure to schooling) that influence number sense performance by 

aligning difficulty levels to age and assessment period.  Finally, sensitivity to growth of the 

Preschool Early Numeracy Measures has not yet been investigated, but an initial exploration of 

the tasks’ intervention utility was conducted.  Because performance differences following a 7-

week intervention were not significantly different than pre-intervention scores, researchers 

maintained that the tasks may not demonstrate sufficient sensitivity to detect change over a short 

duration of time and called for further investigation in this area. 

Collectively, all early numeracy CBM have been developed using the key skill indicator, 

or robust indicator, approach.  Within this assessment approach, measured skill elements are a 

subset of skills selected from the universe of possible skills based on their representativeness of a 

global outcome (Fuchs & Deno, 1991).  This is in contrast to specific subskill mastery 

monitoring in which a skill hierarchy is derived from the curriculum and ordered as short-term 

objectives (Fuchs & Deno, 1991).  Whereas master monitoring requires changes in content for 

each new skill introduced in the curriculum sequence, progress toward long-term goals in the key 

skill indicator approach is measured using the same tool across a longer designated age span or 

grade level.  Because existing early numeracy CBM has been developed in the key skill tradition, 

it appears the global construct of number sense is conceptualized by assessment researchers as a 
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composition of discrete skills that each contribute to the general long-term outcome.  In order to 

better understand the development of number sense and the optimal way to measure the construct, 

the relations within and between each of the measured skills across the early childhood period 

should be investigated further.   

A review of early numeracy CBM also indicates that research has primarily focused on 

evaluating scores at one point in time with some beginning to examine features of slope over 

time.  Several studies that moved to Stage 2 research did not comprehensively model growth 

over time however; instead, many compared mean scores across assessment periods (e.g., fall, 

winter, and spring) or compared scores of preschool children to those of kindergarten children.  

Of the studies specific to preschoolers, myIGDI-EN has been the only measure for which 

sensitivity to growth has been systematically examined and growth rates estimated through linear 

mixed modeling (Hojnoski et al., 2009).  However, because growth was modeled in an 

aggregated mixed-age sample across the preschool year, age-based developmental trajectories 

remain unknown.  In addition, conclusions about the interplay between key skill elements over 

the preschool period cannot be drawn. 

Researchers in the area of early mathematics CBM have not yet examined age-based 

growth trajectories across the preschool period.   Rather, Stage 2 research has exclusively 

focused on measuring growth from the fall to spring of a preschool year in samples of mixed-age 

children.  Perhaps an age-based developmental approach has been neglected because the 

development of CBM for young children reflects a downward extension of CBM evaluation 

practices for older children.  Sensitivity to growth has historically been measured triannually in 

the fall, winter, and spring of a single school year in aggregated samples of children representing 

specific grade levels.  Although an effective methodology for students at the elementary school 
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level, this may not be maximally informative during the early childhood years when skills 

accelerate very rapidly and individual skill variation is considerable.  To reflect the rapid 

attainment of new skills, early childhood assessment researchers in other developmental and 

academic domains have measured growth using smaller intervals (e.g., monthly), and applying 

this methodology to early numeracy CBM may prove valuable.  

Alternative Conceptualization of Sensitivity to Growth	  

The Early Childhood Research Institute on Measuring Growth and Development (ECRI-

MGD) has been a leader in the development of indicators measuring important developmental 

outcomes for young children from birth to preschool age.  ECRI-MGD developed Individual 

Growth and Development Indicators (IGDI) for infants, toddlers, and preschoolers in the areas of 

communication, cognitive problem solving, social skills, movement, parent-child interaction, and 

literacy on the basis of developmental trajectories, psychometric standards, and predictive-utility 

(Greenwood, Carta et al., 2011).  The IGDI development and validation process is consistent 

with Fuchs’ (2004) three-stage framework, though when examining sensitivity to growth over 

time, greater emphasis is placed on age differences in performance since the purpose of the tasks 

is to identify children with developmental delays in the years before schooling and ensure they 

are benefitting from early intervention services (Greenwood, Carta et al., 2011). 	  

IGDI scores are displayed in growth charts, similar to child height and weight charts, 

which allow for comparisons between children over time and within individual children across 

time.  In order to obtain estimates of growth rates, ECRI-MGD researchers have commonly 

conducted growth curve analysis of data obtained longitudinally across short time intervals.  For 

example, to examine the sensitivity to growth of the Early Communication Indicator (ECI), the 

most well-researched infant and toddler IGDI, hierarchical linear modeling was utilized to 
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conduct growth curve analysis (Greenwood, Buzhardt, Walker, Howard, & Anderson, 2011; 

Greenwood et al., 2006; Greenwood et al., 2010; Greenwood et al., 2013; Luze et al., 2001).  The 

ECI is an observational progress monitoring tool administered in the context of a 6-minute play 

session with a familiar adult and standard toy set that yields scores for gestures, non-word 

vocalizations, single-word utterances, multiple-word utterances, and a weighted total 

communication composite.  Across studies, children of different age cohorts from birth to 3 years 

(i.e., 0-12, 13-24, and 25-26 months) were measured repeatedly on an approximate monthly basis, 

and individual and group trajectories were estimated and graphically displayed by age in years in 

the preliminary study (Luze et al., 2001) and by monthly intervals in future studies (Greenwood, 

Carta et al., 2006; Greenwood et al., 2010; Greenwood, Buzhardt et al., 2011).  Initially, linear 

growth trajectories were computed (Greenwood, Carta et al., 2006; Luze et al., 2010), but 

curvilinear growth curves were later found to better fit ECI data (Greenwood et al., 2010; 

Greenwood, Buzhardt et al., 2011; Greenwood et al., 2013).  Growth curve analyses across 

multiple samples allowed researchers to conclude that more complex elements of communication 

(single- and multiple-word utterances) gradually replace or add to the simpler elements of 

communication (gestures and vocalizations) that precede them between the period of birth to 3.  

In addition, comparisons of children with and without disabilities indicated that children with 

disabilities demonstrated slower growth rates for single- and multiple-word utterances and total 

communication scores than those without disabilities (Greenwood, Carta et al., 2006; Greenwood 

et al., 2010).  Similar growth curve analysis techniques have been utilized with regard to the 

infant and toddler IGDIs measuring movement (Greenwood, Luze, Cline, Kunz, & Leitschuh, 

2002), problem-solving (Greenwood, Walker et al., 2006), and social skills (Carta et al., 2004) to 
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identify if measured skills show promising growth over time and to describe the relations among 

the skills representing the targeted developmental domain.  	  

Analyzing sensitivity to growth incrementally by month has recently gained attention by 

preschool CBM researchers in the area of early literacy.  Specifically, monthly growth rates for 

the Early Literacy IGDIs (EL-IGDI; Missall & McConnell, 2004), which included Picture 

Naming (PN), Rhyming (RHY), and Alliteration (ALL) tasks were estimated.  In a preliminary 

study (Missall, McConnell, & Cadigan, 2006), IGDI data were collected monthly across a 5-

month span in a sample preschool children (ages 44 to 68 months) with and without disabilities, 

and HLM was used to conduct growth curve analysis.  Across all EL-IGDI tasks, average rates 

of growth showed significant increases over time, with PN demonstrating the steepest growth.  

Further, differences in growth rates were noted in children with special education needs and 

those attending Head Start in comparison to children without identified risk factors.  In a 

subsequent study of EL-IGDI (Roseth, Missall, & McConnell, 2012), growth trajectories were 

modeled for a sample of 7,358 children whose data were inputted into the EL-IGDI online data 

entry and management system.  Linear growth models were used to document change from 36 to 

60 months, and linear-spline models were used to account for the possibility of distinct growth 

rates for 3- versus 4-year-olds.   Results indicated significant rates of linear growth for all three 

tasks and different linear growth rates based on age, with 4-year-olds demonstrating steeper 

growth.  Though research questions did not seek to describe relations between the PN, RHY, and 

ALL tasks, Roseth et al. (2012) provided a brief description of the interplay between the skills 

and speculated that proficiency in PN may be a prerequisite for growth in RHY and ALL.  Taken 

together, research has supported the ability of EL-IGDI to detect age-based growth and 

facilitated the development of age-based normative data.  	  
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Purpose of the Study 	  

 As in other important developmental domains, growth in key early numeracy skills 

should be modeled developmentally across the early childhood period.  The reliability and 

validity of scores yielded by myIGDI-EN have been supported at one point in time, and the four 

tasks have demonstrated the potential to model growth from the fall to spring of the preschool 

year.  A logical extension of Stage 2 research is to document age-related change in myIGDI-EN 

scores across the preschool period.  In addition, relations among indicators should be 

investigated to determine the developmental continuity of skills comprising the construct of 

number sense.  To address these areas, the present study examined the age-based sensitivity to 

growth of myIGDI-EN in a large sample of preschool children and also described the relations 

between developmental growth trajectories across the preschool years. 

 The quantity comparison, oral counting, one-to-one correspondence counting, and 

number naming tasks included in myIGDI-EN all contribute to the measurement of number 

sense; however, it may not be necessary to administer every task at different time points during 

the preschool period.  In order to make valid and efficient decisions regarding instructional 

decisions, only the tasks that are sensitive to small changes in age, time, and experience over the 

developmental period of interest should be utilized.  MyIGDI-EN has demonstrated the ability to 

detect time-based change (Hojnoski et al., 2009), and the current study examined the potential of 

the tasks to model age-based growth.   
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CHAPTER III: METHOD 

Participants and Setting 

Data were drawn from a sample of 570 children enrolled in a public preschool program in 

the third largest school district in Illinois in the 2009-2010, 2010-2011, and 2011-2012 school 

years.  In order to model age-based growth trajectories of typically developing children, 126 

children (22%) receiving special education services were excluded from data analyses, leaving a 

sample size of 444.  Given a minimum sample size recommendation of 200, the sample size was 

adequate for the latent growth curve methodology (Quintana & Maxwell, 1999; Weston & Gore, 

2006).  Boys accounted for 50% of participants.  The racial/ethnic distribution of the sample 

was: White (40.1%), Asian (32.4%), Hispanic or Latino (14.0%), African American (8.6%), and 

two or more races (5.0%).  As an indicator of socioeconomic status, 16.7% of the sample was 

entitled to free lunch, 0.9% was entitled to reduced lunch, and 82.4% was not eligible for free or 

reduced lunch.  Of the sample, 73.4% of children attended the preschool program for 1 year and 

26.3% attended the program for 2 years.  One child attended for three years.   

MyIGDI-EN data were obtained from 16 classes during the 2009-2010 year, 20 classes 

from the 2010-2011 year, and 20 classes during the 2011-2012 year.  The preschool program 

from which the sample was drawn operated half-day morning or afternoon sessions, and 

classrooms were composed of up to 18 children.  Each classroom was staffed by a teacher and 

two teacher assistants.  All teachers were certified by the Illinois State Board of Education in 

both general education and special education.  Classrooms used the Creative Curriculum and the 

Teaching Strategies GOLD Assessment System in addition to supplemental instructional 

resources. 
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Measures 

Quantity Comparison Fluency (QCF).  QCF targets children’s ability to discriminate 

quantities of objects.  Within 1 minute, students must identify which of two boxes presented on 

an 8.5- by 11-inch page contains more circles.  Up to 30 pages are presented by the examiner in 

rapid succession, and each box contains 1 to 6 circles that are presented in a standard die 

arrangement.  Children respond by touching the box with more circles.  Children have 3 seconds 

to respond to each page.  This task yields a fluency score indicating the number of correct 

quantity comparisons in 1 minute.  Children can earn a time bonus if they respond correctly to all 

items in less than 60 seconds.  The time bonus is calculated by dividing the product of 30 

(number of items) and 60 (allotted time) by the actual number of seconds it took the child to 

complete the task.  Children have to respond correctly to 1 of 2 sample items to be administered 

the task, otherwise receive a score of 0.  Alternate forms of the task include the same items in a 

different prescribed order.  Prior research indicated test–retest reliability coefficients of .89 

across a 2- to 4-week interval and .94 across a 5- to 7-week interval (Floyd et al., 2006).  

Alternate-form reliability was .73 across a 1-week interval (Polignano & Hojnoski, 2011).  

Corrected correlations between QCF and scores from the Bracken Basic Concept Scale-Revised 

(BBCS-R; Bracken, 1998), WJ III Applied Problems test (Woodcock et al., 2001), and Test of 

Early Mathematics Ability-Third Edition (TEMA-3; Ginsburg & Baroody, 2003) ranged from 

.38 to .58 (Floyd et al., 2006).  QCF growth rates obtained in a mixed-aged sample of preschool 

children are estimated to be approximately one unit, or one additional correct comparison per 

month (Hojnoski et al., 2009).   

Oral Counting Fluency (OCF).  OCF targets children’s ability to state numbers 

sequentially starting from 1.  The fluency score represents the last number stated correctly in 



 
 

	   39	  

sequence within 1 minute.  If a number is the counting sequence is skipped or incorrect, the score 

is the last number correctly stated in the sequence.  Prior research indicated test–retest reliability 

coefficients of .90 across a 2- to 4-week interval and .82 across a 5- to 7-week interval (Floyd et 

al., 2006).  Corrected correlations between OCF and scores from the BBCS-R, WJ III Applied 

Problems test, and TEMA-3 ranged from .31 to .55 (Floyd et al., 2006).  OCF scores 

demonstrated growth rates of approximately one unit, or one additional number counted per 

month in a mixed aged sample of preschool children (Hojnoski et al., 2009). 

One-to-One Correspondence Counting Fluency (OOCCF).  OOCCF targets children’s 

ability to count objects using one-to-one correspondence.  Students must point to and count up to 

20 circles approximately an inch in diameter printed in a 4 by 5 arrangement within 30 seconds.  

This task yields a fluency score indicating the number of correct counts with one-to-one 

correspondence in 30 seconds.  Children can earn a time bonus if they count all 20 circles 

correctly in less than 30 seconds.  The time bonus is calculated by dividing the product of 20 

(number of circles) and 30 (allotted time) by the actual number of seconds it took the child to 

complete the task.  After a demonstration by the examiner, children have to correctly count 4 

circles on a sample item in order to be administered the task, otherwise they receive a score of 0.  

Prior research indicated test–retest correlation coefficients of .62 across a 2- to 4-week interval 

and .96 across a 5- to 7-week interval (Floyd et al., 2006).  Corrected correlations between 

OOCCF and scores from the BBCS-R, WJ III Applied Problems test, and TEMA-3 ranged from 

.29 to .64 (Floyd et al., 2006).  Scores demonstrated growth rates of approximately one unit, or 

one additional object counted correctly per month in a mixed-aged sample of preschool children 

(Hojnoski et al., 2009). 
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Number Naming Fluency (NNF).  NNF targets children’s ability to name numerals.  

Children are required to state numerals (0 - 20) printed individually on 8.5- by 11-inch pages as 

they are presented up to three times each by the examiner in rapid succession.  Children have 3 

seconds to respond to each page.  The fluency score represents the number of numerals named 

correctly in 1 minute.  Alternate forms of the task include the same items in a different 

prescribed order.  Prior research indicated test–retest reliability coefficients of .91 across a 2- to 

4-week interval and .88 across a 5- to 7-week interval (Floyd et al., 2006).  Alternate-form 

reliability was .95 across a 1-week interval (Polignano & Hojnoski, 2011).  Corrected 

correlations between NNF and scores from the BBCS-R, WJ III Applied Problems test, and 

TEMA-3 ranged from .29 to .70 (Floyd et al., 2006).  The monthly growth rate was estimated to 

be approximately one-half unit per month in a mixed-aged sample of preschool children, which 

suggests this measure is somewhat less sensitive than the other measures to growth over the 

course of one month (Hojnoski et al., 2009). 

Procedures 

Certified teachers employed by the school district were trained annually to administer 

myIGDI-EN by the preschool program’s student services coordinator, a doctoral-level certified 

school psychologist.  Training consisted of a review of administration and scoring procedures 

and practice assessments with feedback based on a fidelity checklist created by myIGDI-EN 

developers.  Teachers also attended a seminar related to early mathematics and myIGDI-EN 

presented by a myIGDI-EN developer and were provided with online support as needed. 

MyIGDI-EN administration occurred as part of routine academic assessment procedures within a 

2- to 4-week interval in the fall (late September to early October), winter (late January to early 

February), and spring (late April to early May) of the 2009-2010, 2010-2011, and 2011-2012 
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school years.  Thus, children who attended the program for 1 year were administered myIGDI-

EN up to three times, and children who attended the program for 2 years were administered 

myIGDI-EN up to six times.  

Data Analysis  

Research design.  Developmental trends in numeracy skills across the preschool period 

were estimated using an accelerated longitudinal design.  This type of design involves linking 

segments of overlapping repeated measurements of independent age cohorts to determine the 

existence of a common growth curve (Duncan, Duncan, & Hops, 1996).  Stated differently, a 

long-term longitudinal trajectory was approximated on the basis of several converged short-term 

longitudinal trajectories.  Previous research found growth estimates from accelerated 

longitudinal designs comparable to estimates from corresponding true longitudinal designs 

(Duncan et al., 1996; McArdle & Hamagami, 1992).  Due to the potential for cohort differences 

resulting from unspecified demographic or history effects, particularly in studies conducted over 

extensive multi-year spans, analyses may be warranted to test the assumption of convergence 

across age cohorts (Miyazaki & Raudenbush, 2000).  However, given the sufficiency of overlap 

in data points and stability of child and programming characteristics across age cohorts in this 

study (e.g., children from the same community were exposed to the same curriculum and group 

of teachers), convergence analysis was deemed unnecessary.     

Data for this study were measured at three time points across 3 years (i.e., Fall 2009, 

Winter 2010, Spring 2010…Spring 2012).  Aggregated across school years, children ranged in 

age from 37 to 67 months in the fall, 37 to 72 months in the winter, and 40 to 74 months in the 

spring.  Only a limited number of children contributed data above 68 months of age (N = 31).  

Although there is not agreement in the literature about the minimum sample size required per 
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observed variable (Velicer & Fava, 1998), data obtained when a child was older than 68 months 

were not included in analyses to reduce the potential for improper solutions.  To examine 

developmental change based on chronological age, data were restructured by age.  Four-month 

age intervals were established (i.e., 37-40, 41-44, 45-48, 49-52, 53-56, 57-60, 61-64, 65-68).  

This interval was chosen to ensure an adequate sample size within each age range, and also 

because it reflects a practical time interval for benchmark assessments (e.g., children are often 

screened in September or October, then January or February, and finally May or June).  To ease 

interpretability, age ranges are referred from this point forward by the youngest month in age 

represented (e.g., 37-40 months is referred to as 37 months…65-68 months is referred to as 65 

months).  Because the focus of the proposed study is growth over time, children had to contribute 

myIGDI-EN data across a minimum of two waves of assessment to be included in the study.   

Developmental progression within key skills.  In order to answer the first research 

question, latent growth models (LGM) were calculated to examine change over time for each 

myIGDI-EN task within a structural equation modeling framework.  This methodology supports 

the evaluation of growth trajectories based on repeated observations.  LGM allows for the 

examination of a common growth curve across the sample, while also capturing interindividual 

variability in developmental trajectories over time (Duncan, Duncan, & Stryker 2006).  In 

addition, when conducted in a structural equation model, the covariance of the intercept and 

slope can be estimated to determine the degree to which a child’s value at the intercept is 

correlated with his or her rate of growth (Caskie, 2011).  That is, one may be able to determine 

whether a higher initial score on a task is associated with a greater rate of growth or vice versa.  

Other advantages of this methodology over other methods such as repeated measures analysis of 

variance include tolerance of missing data when using Full Information Maximum Likelihood 
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estimation, acceptability of unequal measurement frequencies, and accommodation of unequal 

intervals between measurement points (Caskie, 2011).   

Within a LGM model, the estimates yielded are an intercept and slope factor for each 

individual in the sample, an average intercept and slope factor for the total sample based on 

individual-level trajectories, and variability of individual-level intercepts and slope factors.  

LGM can be conceptualized as an application of multilevel modeling represented by two 

equations.  When assuming a linear model, the Level 1 equation describing within-person 

variation over time is expressed as 

𝑌𝑖𝑝 = 𝜋!𝑝 +   𝜋!𝑝𝑡𝑖 + 𝜀𝑖𝑝 

where i = time point; p = person; t = time elapsed; 𝜋!𝑝 = intercept parameter representing the 

value of Y for person p when 𝑡𝑖 = 0; 𝜋!𝑝 = slope parameter representing change in Y over time for 

person p; and 𝜀𝑖𝑝 = measurement error.  The equation indicates that a child’s score at a particular 

time point is a combination of his or her true score at the intercept time point, the true rate of 

growth over time multiplied by the amount of time elapsed since the intercept time point, and 

some error.   

The Level 2 equations describing between-person variation in the intercept (𝜋!𝑝) and 

slope (𝜋!𝑝) are expressed as  

𝜋!𝑝 = 𝛽!! +   𝑢!𝑝 

𝜋!𝑝 = 𝛽!" +   𝑢!𝑝 

where 𝛽!! and 𝛽!" are fixed effects representing the average intercept and average slope for the 

group respectively, and 𝑢!𝑝 and 𝑢!𝑝 are random effects representing individual-specific variation 

around the average group intercept and slope respectively. 
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 The Level 1 and 2 equations can be combined into a single equation expressing the model 

by substituting the Level 1 equation into the Level 2 equations and rearranging the terms.   

The resulting unconditional linear mixed model can be expressed as 

𝑌𝑖𝑝 = 𝛽!! + 𝛽!"𝑡𝑖 + 𝑢!𝑝 + 𝑢!𝑝𝑡𝑖 + 𝜀𝑖𝑝  

First, the significance of the two fixed-effects (𝛽!! and 𝛽!") are tested to determine whether the 

average intercept differs significantly from zero and whether the average slope differs 

significantly from zero.  Next, the significance of the two random-effects (𝑢!𝑝 and 𝑢!𝑝) are tested 

to determine the degree of interindividual variability in the intercept and slope values.  This will 

indicate whether individuals differ significantly from each other in their intercept and rates of 

growth over time.   

In addition to estimating linear growth, LGM also affords the flexibility to test for 

nonlinear trajectories across time, thereby providing information about the shape of growth 

curves (McArdle, 1988; Meredith & Tisak, 1990).  When the shape of a trajectory is specified to 

be linear, the set of factor loadings (or basis coefficients) is held constant and defines the linear 

shape of the growth trajectory over time.  Alternatively, one may not assume a priori that the 

trajectory is linear and instead choose to freely estimate the factor loadings using a latent basis 

model approach.  When the set of factor loadings are unspecified, the slope factor is best 

interpreted as a general shape factor because the data determine the shape of the curve.  The 

mean of the shape factor reflects the expected amount of growth, weighted by the estimated 

loading at each time point.   

In this study, both linear and nonlinear trajectories were evaluated to determine the better 

fit to the data.  The decision to test both models was based on an examination of unfitted mean 

raw score trajectories, which reflected potential nonlinear growth (see Figure 1).  Model 
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parameters were estimated using Amos 22.0 (Arbuckle, 2013).  Figure 2 depicts the linear model 

and Figure 3 depicts the nonlinear model, with Y37 through Y65 representing the observed 

outcomes for each age range.  Loadings on the intercept were fixed to 1 across both models 

because the value for each age range depends equally on the intercept term.  The intercept was 

estimated at the first data point as to determine whether number sense skills varied significantly 

as early as age 3, which is a policy-linked age when children can be found eligible for Part B 

services under the Individuals with Disabilities Education Act (2006).  The factor loadings 

plotted against the observed time metric indicate the shape of growth, and reflect the mean 

change in the observed variables.  For the linear model, the loadings are fixed to 0 through 7, 

representing each age range.  For the latent basis model, the factor loadings for the first and last 

factor are set respectively to 0 and 7, and the other factor loadings are unspecified to allow for 

free estimation.   

The error structures of the models were also examined.  Homoscedastic (equal) error 

structure means the variance of error terms is the same across all age ranges; whereas, 

heteroscedastic (unequal) error structure implies different error variances across age ranges.  

Given that data were collected over repeated measurements and by different administrators, 

homoscedasticity could not be assumed (Willett & Sayer, 1994).  To test the assumption of 

homoscedasticity, the error variances of each model were fixed to 1 and then compared to a 

model with freely estimated errors terms using the chi-square difference test. 

To determine the model that best fit the data for each myIGDI-EN task, first the linear 

model with homoscedastic error structure was compared to the linear model with heteroscedastic 

error structure using the chi-square difference test.  Second, the latent basis model with 

homoscedastic error structure was compared to the latent basis model with heteroscedastic error 
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structure.  Third, the best fitting models determined by these two model comparisons were 

compared to determine which of the four competing models demonstrated better fit.  

Alternatively, the linear and latent basis models with homoscedastic error structures could have 

been compared first, followed by a comparison of the linear and latent basis models with 

heteroscedastic error structures.  However, given there are no established guidelines regarding 

the order in which competing models should be evaluated, it was decided the models of the same 

form with different error structures would be first compared. 

Criteria used to evaluate model fit included the root mean square error of approximation 

(RMSEA), Tucker–Lewis index (TLI), and comparative fit index (CFI).  The chi-square statistic 

(χ2) was also reported.  A non-significant χ2 value serves as an indicator of good fit, though χ2 fit 

statistics are more likely to erroneously detect a significant effect when sample sizes exceed 200 

as in this sample (Schumacker & Lomax, 2004).  For RMSEA, maximum value of .08 represents 

acceptable fit, with values less than .05 indicating good fit; for CFI and TLI, a minimum value 

of .90 indicates acceptable fit, with values of .95 of greater indicating good fit (Brown & Cudeck, 

1993; Hu & Bentler, 1999; Steigler 2007). 

 The models for each myIGDI-EN task were first evaluated with all age ranges included.  

When testing the models, the χ2 and other fit indices were unable to be calculated across 

myIGDI-EN tasks due to limited covariance between the observed variables.  The models were 

modified by removing the 37-month age range due to the much lower sample size relative to the 

other age ranges (N = 47-50), higher percent of zero scores (6%-42%), and more restricted 

ranges.  Because the χ2 and fit indices were unable to be calculated for the modified models, the 

41-month age range was removed for the same former reasons allowing for the estimation of fit.  

As such, latent growth curves for each myIGDI-EN task were estimated for the 45- through 65-
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month age ranges, which still captures a substantial portion of the preschool period, spanning 2 

years.   

Given that the 37- and 41-month age ranges were removed, it was necessary to ensure 

that children continued to meet the criterion of contributing data across a minimum of two waves 

of assessment.  Thirty-six children no longer met the criterion, thus, data from 408 children who 

met the inclusion criterion were included in final analyses.  The distribution of the remaining 

sample was: 51.5% male; 40.4% White, 31.9% Asian, 14.0% Hispanic or Latino, 8.8% African 

American, and 4.9% two or more races.  Regarding socioeconomic status, 17.2% was entitled to 

free lunch, 0.7% was entitled to reduced lunch, and 82.1% was not eligible for free or reduced 

lunch.  Of the children who contributed data between 45 and 65 months, 20.6% contributed data 

across two waves of assessment (N = 84), 52.0% across three (N = 212), 13.2% across four (N = 

54), 11.5% across five (N = 47), and 2.7% across six (N = 11).  

Relations between key skills.  In order to evaluate relations between skills over time, a 

visual inspection of the growth trajectories was conducted.  Specifically, the initial levels of 

children’s performance on each myIGDI-EN task were examined, as was the steepness of growth 

over time for each task.  Further, data were visually analyzed to determine the temporal stability 

of skills in relation to each other.  
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CHAPTER IV: RESULTS 
 
Treatment of Outliers and Missing Data  

 Data were screened for univariate outliers using z-scores greater than 3.29 standard 

deviations above or below the mean, which is the standard score value that corresponds to a 

probability of .001 (two-tailed).  Of 5,317 measurement occasions between the 45- and 65-month 

period, 22 values were 3.29 standard deviations above the mean, and 9 values were 3.29 standard 

deviations below the mean.  Because outliers increase the likelihood of improper solutions 

(Bollen, 1987), these values were excluded from data analyses. 

Given that an accelerated longitudinal design was utilized, children did not contribute 

data across all measurement occasions.  Accelerated longitudinal designs fall in the class of 

research designs that strategically incorporate planned missing data.  In planned missing data 

designs, participants are assigned to conditions in which they do not respond to all items, 

measures, or measurement occasions (Graham, Taylor, Olchowski, & Cumsille, 2006; Rhemtulla 

& Little, 2012).  In this study, children had different numbers of repeated measurements due to 

their respective ages during each fall, winter, and spring assessment period, as well as 

differences in the number of years enrolled in the preschool, transfers, and absences.  Detailed 

information regarding the number of data points children contributed across the age distribution 

is presented in Table 1.  Of 9,792 possible observed values, 4,475 were missing, for a total of 

46% missing data.  It was estimated 90% of missing data was planned missing data.  Planned 

missing data are missing completely at random (MCAR; Balardi & Enders, 2010; Rubin, 1976), 

meaning the cause of the missingness is completely unrelated to any of the observed or missing 

variables.  The remaining 10% appeared to be missing as a result of uncontrolled variables such 

as transfers and absences, and can be considered missing at random (MAR; Balardi & Enders, 
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2010; Rubin, 1976).  To address the missing data, Full Information Maximum Likelihood 

(FIML) procedures were utilized.  This method is preferred over traditional deletion techniques 

or single imputation methods, and performs as well or better than multiple imputation methods 

(Balardi & Enders, 2010; Graham, Olchowski, & Gilreath, 2007).  FIML estimates parameter 

values that have the highest probability of producing the sample data by utilizing all available 

data. 

Descriptive Statistics  

Means and standard deviations for all measurements are reported in Table 2.  As 

previously noted, age ranges are referred to by the youngest month in age represented (e.g., 45-

48 months is referred to as 45 months…65-68 months is referred to as 65 months).  Skewness 

and kurtosis values are also reported, and all fall within the recommended interval of -2 to +2 

and -7 to +7, respectively (Curran, West, & Finch, 1996), suggesting the assumption of 

approximate normality is tenable.  In addition, Table 2 includes the percent of zero scores across 

tasks for each age range.  The percent of zero scores is an important descriptive statistic as it has 

the potential to indicate the presence or absence of a floor effect, and for this sample, values 

suggest a potential floor effect for the youngest age range in NNF.  Correlations among the 

observed variables across age ranges are available from the author. 

Relations Within Numeracy Skills 

 QCF.  In order to determine the best fitting trajectory representing skill growth on QCF, 

first the linear model with heteroscedastic error was compared to the linear model with 

homoscedastic error.  The linear model with heteroscedastic error represented a better fit to the 

QCF data, ∆χ 2 (5, N = 408) = 40.68, p < .001.  Second, the latent basis model with 

heteroscedastic error was compared to the latent basis model with homoscedastic error, and the 
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latent basis model with heteroscedastic error represented a better fit to the data, ∆χ 2 (5, N = 408) 

= 19.32, p = .002.  Third, the latent basis and linear models with heteroscedastic error structures 

were compared, and the latent basis model with heteroscedastic error was the better fitting model, 

∆χ 2 (4, N = 408) = 12.56, p =.01. 

 The latent basis model with heteroscedastic error represented a good fit to the data, χ2 (12, 

N = 408) = 14.12, p = 0.29, RMSEA = .02, CFI = .99, TLI = .99.  Results indicated an average 

intercept of 18.27 correct quantity comparisons per minute at 45 months (p < .001) and an 

average slope value of 2.64 (p < .001), indicating children’s scores are expected to increase by 

13.20 units on average from 45 to 65 months.  As reported in Table 3, substantial variation 

among children’s initial QCF score at 45 months was evident, though not in children’s skill 

growth over time.  The estimated covariance between the intercept and slope was not significant, 

indicating a child’s initial QCF score does not covary with his or her rate of growth.  Utilizing 

basis coefficients to estimate average percentages of growth across time, a child is expected to 

realize 31.5% of growth between 45 and 49 months, 18.6% between 49 and 53 months, 16.8% 

between 53 and 57 months, 16.5% between 57 and 61 months, and 16.6% between 61 and 65 

months.  Although the latent basis model with heteroscedastic error best represented the data, it 

should be noted that the linear model with heteroscedastic error also represented good fit, χ2 (16, 

N = 408) = 26.67, p = .05, RMSEA = .04, CFI = .96, TLI = .95, with an average intercept of 

19.69 (p < .001) and average linear slope of 2.45 per 4-month interval (p < .001).   

 OCF.  Comparing the linear model with heteroscedastic error to the linear model with 

homoscedastic error, the linear model with heteroscedastic error represented a better fit to the 

OCF data, ∆χ 2 (5, N = 408) = 60.49, p < .001.  When the latent basis model with heteroscedastic 

error was compared to the latent basis model with homoscedastic error, the latent basis model 
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with heteroscedastic error represented a better fit to the data, ∆χ 2 (5, N = 408) = 62.68, p < .001.  

Finally, the latent basis model and linear models with heteroscedastic error structures were 

compared, and the latent basis model with heteroscedastic error best fit the data, ∆χ 2 (4, N = 408) 

= 23.61, p < .001. 

 The latent basis model with heteroscedastic error represented a good fit to the data, χ2 (12, 

N = 408) = 15.29, p = .23, RMSEA = .03, CFI = 1.0, TLI = .99.  Results indicated an average 

intercept of 13.84 oral counts per minute at 45 months (p < .001) and an average slope value of 

5.90 (p < .001), indicating an increase of approximately 29.50 oral counts from 45 to 65 months.  

As reported in Table 4, substantial variation among children’s OCF score at 45 months was 

evident, as was variability in children’s skill growth over time.  The estimated covariance 

between the intercept and slope was also significant, indicating children with higher initial OCF 

scores demonstrated greater rates of growth over time, and vice versa.  Applying the average 

slope to the developmental curve, a child is expected to realize 12.5% of growth between 45 and 

49 months, 20.5% between 49 and 53 months, 24.7% between 53 and 57 months, 21.1% between 

57 and 61 months, and 21.2% between 61 and 65 months.  The latent basis model with 

heteroscedastic error best fit the data, though the linear model with heteroscedastic error also 

represented acceptable fit, χ 2 (16, N = 408) = 38.90, p = .001, RMSEA = .06, CFI = .97, TLI 

= .96, with an average intercept of 12.82 (p < .001) and an average linear slope of 5.78 oral 

counts per 4-month interval (p < .001). 

 OOCCF.  A comparison of linear models indicated the model with heteroscedastic error 

represented a better fit to the OOCCF data than the linear model with homoscedastic error, ∆χ 2 

(5, N = 408) = 62.67, p < .001.  Similarly, the latent basis model with heteroscedastic error was 

better fitting than the latent basis model with homoscedastic error, ∆χ 2 (5, N = 408) = 60.03, p 
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< .001. When the latent basis model and linear models with heteroscedastic error structures were 

compared, the latent basis model with heteroscedastic error was found to better represent the data, 

∆χ 2 (4, N = 408) = 9.38, p = .05. 

 The latent basis growth model with heteroscedastic error represented a good fit to the 

data, χ2 (12, N = 408) = 13.81, p = .31, RMSEA = .02, CFI = .99, TLI = .99.  Results indicated an 

average intercept of 13.17 at 45 months (p < .001) and an average slope value of 4.68 (p < .001), 

indicating children’s scores are expected to increase by 23.40 units on average from 45 to 65 

months.  Significant variability in children’s initial OOCCF score and rate of growth over time 

was evident, though the covariance between the average intercept and slope was not significant 

as reported in Table 5.  On average, children are expected to demonstrate 28.6% of growth 

between 45 and 49 months, 22.8% between 49 and 53 months, 17.5% between 53 and 57 months, 

18.6% between 57 and 61 months, and 12.5% between 61 and 65 months.  Although the latent 

basis model with heteroscedastic error best represented the data, the linear model with 

heteroscedastic error also represented good fit, χ2 (16, N = 408) = 23.19, p = .12, RMSEA = .03, 

CFI = .98, TLI = .97, with an average intercept of 13.71 (p < .001) and average linear slope of 

5.12 per 4-month interval (p < .001).   

 NNF.  Comparing the linear model with heteroscedastic error to the linear model with 

homoscedastic error, the model with heteroscedastic error represented a better fit to the NNF 

data, ∆χ 2 (5, N = 408) = 24.98, p < .001.  Of the latent basis models, the model with 

heteroscedastic error represented better fit to the data, ∆ χ 2 (5, N = 408) = 32.07, p < .001.  

Finally, the latent basis and linear models with heteroscedastic error structures were compared, 

and the latent basis model with heteroscedastic error better fit the data, ∆ χ 2 (4, N = 408) = 14.92, 

p = .005. 
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 Although the chi-square statistic was significant, χ 2 (12, N = 408) = 54.95, p < .001, the 

fit indices for the latent basis model with heteroscedastic error suggest acceptable fit: RMSEA 

= .09, CFI = .96, TLI = .93.  Given the recommendation to consider confidence intervals when 

interpreting fit indices (MacCallum, Browne, & Sugawara, 1996), the RMSEA fit index would 

be acceptable based on a 90% confidence interval of .07 and .12.  Results indicated an average 

intercept of 8.61 numbers named correctly per minute at 45 months (p < .001) and an average 

slope value of 3.56 (p < .001).  This indicates children’s NNF scores are expected to increase 

approximately 17.80 units across the total developmental period.  As seen in Table 6, there was 

significant variation among children’s intercept and growth over time; however, the estimated 

covariance between the intercept and slope was not found to be significant.  Applying the 

average slope to the developmental curve, a child is expected to demonstrate 24.8% of growth 

between 45 and 49 months, 24.2% between 49 and 53 months, 18.6% between 53 and 57 months, 

17.0% between 57 and 61 months, and 15.4% between 61 and 65 months.  A model comparison 

indicated the linear model with heteroscedastic error did not fit the data as well as the latent basis 

model with heteroscedastic error, but it did represent adequate fit, χ 2 (16, N = 408) = 69.87, 

RMSEA = .09, CFI = .95, TLI = .94.  For the linear model, the average intercept was 9.20 

numbers named correctly at 45 months (p < .001) and the average slope was an increase of 3.77 

numbers named correctly per 4-month interval (p < .001). 

Relations Between Key Skills 

Given that the latent basis models with heteroscedastic error best represented the data 

across tasks, the latent basis growth curves were visually analyzed to compare initial levels of 

performance, growth over time, and temporal stability of skills in relation to each other.  As seen 

in Figure 4, QCF demonstrated the highest initial level of performance, followed by OCF, 
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OOCCF, and NNF.  Children’s average scores on QCF exceeded their performance on the other 

myIGDI-EN tasks at 45 and 49 months, as well as at 53 months for OCF and NNF.  The greatest 

rate of growth on QCF occurred between 45 and 49 months before decelerating and remaining 

seemingly consistent between 49 and 65 months.  Overall, growth rates suggest QCF 

demonstrated the least age-based growth over the preschool developmental period examined.   

Children demonstrated the most growth over time on OCF and OOCCF relative to the 

other myIGDI-EN tasks.  Initial performance on OCF and OOCCF at 45 months was very 

similar, and these skills maintained close temporal stability through 57 months.  Between 53 and 

57 months of age, the growth rate for OCF accelerated and surpassed children’s average 

performance on OOCCF.  The growth rate on OOCCF decelerated between 61 and 65 months, 

contributing to less temporal stability in these skills at 65 months.   

Finally, as with QCF, NNF demonstrated the greatest escalation in growth between 45 

and 53 months.  Performance on NNF continued to increase over time, although the rate of 

growth was not as high as during the younger months.  Performance never exceeded the average 

scores on the other myIGDI-EN tasks.  
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CHAPTER V: DISCUSSION 

Psychometrically sound assessment tools such as CBM are needed to facilitate the early 

identification of young children at risk for academic difficulties.  A critical feature of CBM is the 

ability to detect small increments of growth over time (Fuchs, 2004), reflecting typical skill 

development and learning.  The purpose of this investigation was to strengthen the evidence for 

myIGDI-EN by modeling and describing age-related change in early numeracy performance 

across the preschool years.  Growth in the four key skills measured by myIGDI-EN was 

examined in a large sample of preschool children to determine the age-based sensitivity of the 

tasks and improve our knowledge of the developmental patterns occurring within and between 

skills comprising number sense.   

Strengths of this investigation included the large sample size, use of repeated 

measurements, and examination of developmental trends using latent growth curve methodology.  

This study advances the literature by testing the assumption of uniform growth rates in myIGDI-

EN performance across the preschool years.  Previous research on the development and 

evaluation of preschool numeracy CBM examined growth over time by comparing mean scores 

from fall, winter, and spring assessment periods (Floyd et al., 2006; Reid et al., 2009; 

VanDerHeyden et al. 2006).  Hojnoski et al. (2009) extended the sensitivity to growth literature 

by using linear mixed modeling to establish myIGDI-EN growth rates from the fall to the spring 

of the preschool year in an aggregated sample of 3- to 5-year-olds.  Until now, research has not 

yet examined age-based developmental trends in early numeracy performance and the potential 

for nonlinear growth in preschool numeracy skills as measured by CBM tools.  This knowledge 

is needed to fully understand the developmental progression of key skills comprising number 

sense.  In addition, evidence regarding the shape of growth trajectories is critical for making 
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developmentally-informed and empirically-supported decisions about assessment schedules and 

instructional targets. 

Relations Within Numeracy Skills.   

To answer the first research question, linear and latent basis growth curve models for 

each of the four tasks comprising myIGDI-EN were conducted within a structural equation 

modeling framework.  Based on previous research (Hojnoski et al., 2009), it was hypothesized 

that each task would be sensitive to small units of change over time.  Data analyses supported the 

hypothesis, resulting in slope factors that were significantly different from zero.  In addition, 

children’s performance at the intercept (45 months) was significantly different from zero.  

Significant variability in initial performance was evident across tasks, with especially high 

variation in children’s OOCCF skills at 45 months.  This variability is consistent with prior 

research indicating that disparities in mathematics achievement manifest as early as the 

preschool years (Ginsburg et al., 2008; Jordan et al., 2006; Starkey et al., 2004).  Differential 

performance in children as young as age 3 suggests there are considerable differences in 

children’s early mathematical environments and indicate the need to enrich the early learning 

environments of children at risk. 

Significant variation in slope was also indicated for all tasks except QCF, highlighting the 

extent to which children differ not only in initial status but also in growth rates.  Heterogeneity in 

children’s growth rates on OCF, OOCCF, and NNF indicates children’s skills develop differently 

over time as measured by these myIGDI-EN tasks.  In addition, differential growth rates suggest 

the potential of lower performing children to gradually catch up to their higher performing peers 

when provided further mathematics support.  It is concerning, however, that children begin with 

significantly disparate scores on QCF, but demonstrate the same growth trajectories.  This 
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suggests QCF is not sensitive enough to detect differences in quantity comparison development 

or that lower performing children are simply less likely to catch up to peers in this skill area. 

The only task for which initial status and growth over time significantly covaried was 

OCF.  That is, children with higher levels of OCF performance at 45 months also demonstrated 

greater rates of growth over time, and conversely, children with lower levels of initial OCF 

performance demonstrated slower rates of growth.  This finding is reflective of previous research 

indicating that children who enter preschool with low levels of counting ability demonstrate 

slower rates of mathematics growth across elementary school years compared to children who 

enter preschool with high levels of counting ability (Aunola et al., 2004).  Findings suggest it is 

important to intervene early when a child demonstrates low oral counting abilities, as 

performance in this skill area serves as an indicator of growth over time.  Non-significant 

covariance estimates for the other myIGDI-EN tasks indicate that children who initially 

demonstrate low performance will not necessarily demonstrate slower rates of growth and may 

catch up to higher performing peers provided exposure to rich early mathematical experiences.    

Results also indicate it is not appropriate to assume linear growth in myIGDI-EN data 

across the preschool developmental period.  The sample data for all myIGDI-EN tasks were best 

represented by a nonlinear shape, with typical monthly growth rates varying based on age.  For 

QCF, growth was greatest between 45 and 49 months of age before decelerating between 49 and 

53 months.  QCF growth continued to decelerate between 53 and 57 months, with growth 

becoming highly consistent between 53 and 65 months.  Similar to QCF, growth rates for 

OOCCF and NNF were greatest between 45 and 49 months.  On these tasks, the second highest 

rate of growth was evident between 49 and 53 months, with the least growth occurring between 

61 and 65 months.  In contrast, children demonstrated the least OCF growth between 45 and 49 
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months of age.  Growth on OCF was relatively consistent between 49 and 65 months, with the 

greatest growth occurring between 53 and 57 months.   

From a theoretical standpoint, nonlinear trajectories reflect the varying patterns of 

numeracy growth over time, and knowledge that numeracy development tends to follow a 

nonlinear path is not surprising given prior research (e.g., Ginsburg et al., 2006; Purpura et al., 

2013).  However, from a measurement perspective, linear trajectories are typically preferred 

because they better lend themselves to progress monitoring.  Further, when both linear and 

nonlinear models fit the data well, some researchers would likely recommend using a more 

parsimonious linear model because models with fewer unknown parameters stand a better chance 

of replication (Bentler & Mooijart, 1989).  Stated differently, there is higher potential for 

instability when parameters are freely estimated, which may reduce the likelihood for cross-

validation.  In light of this, since both linear and latent basis models in the present study fit 

myIGDI-EN data acceptably well, parameter estimates for both models were reported.  

Using a 4-month age interval, which reflects a practical time interval for benchmark 

assessments, a linear growth rate of 2.45 units was indicated for QCF, 5.78 units for OCF, 5.12 

units for OOCCF, and 3.77 units for NNF.  These growth rates are of a magnitude sufficient 

enough to be visually detected when graphing data.  Prior myIGDI-EN research examining time-

based growth in a mixed-age sample of 3- to 5-year-olds also found linear growth rates of 

approximately 2 to 4 units per benchmark period (Hojnoski et al., 2009); thus, research supports 

myIGDI-EN’s potential to detect both age- and time-based growth.    

Relations Between Key Skills 

To answer the second research question, a visual analysis of the best fitting growth 

trajectories was conducted.  It was hypothesized that QCF would be an earlier emerging skill 
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given that very young children can enumerate small sets and distinguish between “more” and 

“less” (Sarama & Clements, 2009; Starkey & Cooper, 1995).  Consistent with this hypothesis, 

initial performance was highest on this task.  Children demonstrated the least growth on QCF 

over time, with scores increasing approximately 13 units total between 45 and 65 months. 

Growth on QCF may have been limited by task format.  QCF is a selection task wherein children 

have a 50% chance of responding correctly, which increase the potential for error due to 

guessing and inflation of children’s scores.  

The task demonstrating the second highest initial level was OCF, though OCF 

performance at 45 months was nearly identical to performance on OOCCF.  The higher 

performance on OCF at 45 months is consistent with the hypothesis that children must learn the 

counting sequence before mapping number words onto objects (Sarama & Clements, 2009).  

Further, although scores from children in the 37- and 41-month age ranges were not included in 

LGM analyses, average OCF scores at 37 months (N = 47, M = 9.2) and 41 months (N = 118, M 

= 11.4) were higher than respective OOCCF scores at 37 months (N = 47, M = 6.9) and 41 

months (N = 117, M = 9.3) months, providing additional support for the hypothesis although not 

empirically modeled.  Of all myIGDI-EN tasks, OCF and OOCCF demonstrated the most 

temporal stability and the greatest rates of growth over time.  Children’s performance on OCF 

increased approximately 30 units across the measured developmental period, and OOCCF 

performance increased approximately 23 units.   

Finally, NNF demonstrated the lowest initial performance level, which is consistent with 

research indicating numeral identification is a formal mathematical skill that typically improves 

with increased exposure to schooling (Baroody & Wilkins, 1999; Sarama & Clements, 2009).  

Coupled with a high percent of zero scores for the youngest age range, NNF does not appear to 
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be an appropriate screening tool for 3-year-old children.  In addition, NNF exhibited the second 

lowest rate of growth over time, demonstrating an increase of approximately 18 units between 45 

and 65 months.  The lower growth rate on NNF is not surprising given that it takes children 

repeated exposures before numerals can be accurately and consistently identified.  Naming 

numerals requires the construction of a mental image of each number and the ability to 

distinguish between numerals with similar features (e.g., 2/5 and 6/9).  Further, children must 

gradually modify their existing knowledge of single-digit numerals when learning double-digit 

numerals that do not follow the same numeric pattern (e.g., stating “eleven” instead of “one-

one”). 

Limitations 

There are several limitations that must be considered when interpreting the results of this 

investigation.  Because the study utilized an accelerated longitudinal design, data were both 

cross-sectional and longitudinal; thus, one cannot assume the cross-sectional data would be fully 

representative of data had it been collected completely longitudinally.  However, to attenuate this 

concern to a degree, children had to contribute data across a minimum of two assessment periods. 

Further, there was a large percentage of missing data; albeit, most was planned missing data, 

inherent in this type of design (Graham et al., 2006; Rhemtulla & Little, 2012).  Although this 

loss of information may have potentially impacted the precision of parameter estimates, FIML 

estimation was used to account for missing data while reducing bias in the estimated parameters. 

 The exclusion of children under 45 months of age should also be considered when 

interpreting conclusions drawn from this study.  Although post-hoc model modification is 

generally not advised (Bullock, Harlow, & Mulaik, 1994), modifications were necessitated in 

order to estimate model fit and calculate fit indices.  Specifically, the 37- and 41-month age 



 
 

	   61	  

ranges were excluded due to limited covariance between observed variables, lower sample sizes, 

higher percent of zero scores, and more restricted ranges as compared to the other age ranges.  

Jöreskog and Sörbom (1993) distinguished between three types of model evaluations: strictly 

confirmatory in which a single a priori model is accepted or denied, alternative models in which 

one of a set of a priori models is selected, and model generation in which a tentative model is 

specified and modified to fit the data.  Model generation is the most common model fitting 

process (Jöreskog and Sörbom, 1993).  Given that the purpose of this study was to generate 

preliminary latent growth models of early numeracy skills, the decision to exclude the two 

youngest age ranges was made based on data constraints.  Although the developmental period 

evaluated in this study was reduced, results still capture a span of 2 years.  Further, growth 

trajectories across the preschool year immediately preceding kindergarten (ages 4 to 5) appear to 

be well captured.  In the future, it will be beneficial to evaluate growth trajectories of children 

representing the full preschool developmental period.   

Another limitation of the data is a lack of interscorer reliability obtained during live 

administration.  Without interscorer reliability, the accuracy with which myIGDI-EN was 

administered cannot be estimated.  As a balance to this limitation, it should be noted that 

myIGDI-EN, like all CBM, emphasize ease of administration, and fidelity checklists accompany 

all myIGDI-EN tasks that detail required steps for reliable administration.  Further, all myIGDI-

EN recording forms were checked and entered by the author to ensure correct scoring, and 20% 

of recording forms were checked again by a blind rater to confirm accurate data entry.  Less than 

0.01% of the recording forms checked by the blind rater contained errors, with only one scoring 

error and three data entry errors indicated.  This finding indicates accuracy in scoring does 

appear to be a significant concern for this dataset.  
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Error structure should also be considered when interpreting the results of this study.  

Given that myIGDI-EN tasks were administered by different classroom teachers to children 

changing over time, it could not be assumed that the precision with which skills were measured 

across time was identical (Willet & Sayer, 1994).  As such, both homoscedastic and 

heteroscedastic error structures were tested, and across tasks, models with heteroscedastic error 

faired better.  Although heteroscedastic error does not change the underlying covariance 

structure or result in biased parameter estimates (Korendijk, Maas, Moerbeek, & Van der 

Heijden, 2008; Willet & Sayer, 1994), it suggests a degree of imprecision in the data.  For 

example, error may be due to individual differences in measurement across age and time or 

potential administration variations.  In addition, measurement error may increase as the potential 

value of a variable increases.  In this study, error variances were highest for OOCCF followed by 

OCF, and these tasks had the greatest range of scores represented, which may have contributed 

to higher error values, especially for older age ranges. 

Finally, generalizability should be addressed.  Although not necessarily a limitation, 

findings of this study generalize only to the population of children served by the preschool 

program in Illinois from which the data was drawn.  It is possible that patterns in performance 

and growth over time would differ across samples, such as for children who are not enrolled in a 

preschool program or enrolled in a less academically rigorous program.  Further, although 

children in the sample represented a variety of racial and ethnic groups, as well as a degree of 

socioeconomic diversity, performance and growth differences based on group membership was 

not examined. 
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Implications for Practice 

This research provides preliminary knowledge of the typical pattern of children’s early 

numeracy development as measured by myIGDI-EN.  Following continued research, this 

knowledge can improve early identification practices by enabling school psychologists and early 

childhood practitioners to detect children achieving or not achieving age-based expectations for 

mathematics performance within or across skills.  Age-based growth in this sample was evident 

across myIGDI-EN tasks, suggesting this assessment tool is suitable for repeated measurement.  

Further, this research highlights that early mathematics skills may not develop uniformly during 

the preschool years.  Although not established, it may be possible that accelerated growth during 

a developmental time frame may be associated with increased exposure to a targeted concept 

within that specific developmental period.  Alternatively, acquisition and fluency in one skill 

may be needed before another skill can be demonstrated.  Future examination of potential 

individual and environmental variables may help explain the acceleration and deceleration of 

growth rates over time. 

A goal of this study was to provide an empirical basis for informing assessment schedules 

and instructional targets.  CBM are useful only if they reflect small changes in age, time, and 

experience over the developmental period of interest and help differentiate between children of 

varying skill levels.  Of the myIGDI-EN tasks, QCF demonstrated the least growth over time.  In 

addition, QCF captured differential initial performance but did not capture differential growth 

rates, which has implications in terms of lower performing children’s ability to catch up to peers.  

Other limitations include the task format (i.e., 50% chance of responding correctly) and potential 

floor effect for 3-year-olds.  On account of these limitations, QCF appears to be the least suitable 

for reliable repeated measurements. 
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In contrast, OCF and OOCCF yield data that are more useful for evaluating skill 

development over time.  Of the four key skills, OCF and OOCCF demonstrated the greatest 

growth rates, supporting their potential to monitor children’s progress more frequently than 

triannual benchmark periods in order to better inform instructional decisions.  Given their close 

temporal stability and for the sake of efficiency, it does not appear necessary to administer both 

tasks concurrently.  One may argue it is more beneficial to administer OCF because no 

administration materials are needed and the slope is slightly steeper, which may aid in 

differentiation.  To note, it is possible that the less steep slope on OOCCF reflects the task 

format; that is, there are limits to how fast a child can count 20 circles due to the coordination of 

words and physical actions (i.e., pointing) compared to OCF which requires only a verbal 

response.  An argument in support of using only OOCCF is that this task provides an indication 

of both oral and object counting.  OOCCF likely provides a more comprehensive snapshot of 

children’s numeracy skills: educators can observe a child’s knowledge of the number-word 

sequence as well as the child’s understanding that numbers meaningfully represent quantities.  

However, OOCCF may be less useful for 5-year-olds due a lower average growth rate between 

61 and 65 months relative to the other age ranges. 

Although the growth rate for NNF was not as high as those of OCF and OOCCF, this task 

appears valuable, especially given the significant association between preschool number naming 

and elementary school mathematics achievement (Krajewski & Schneider, 2009; Purpura et al., 

2013).  However, given the high percent of zero scores for children under age 4 and needed 

exposure to formal learning experiences, it is not recommended that this task be administered to 

3-year-old children.  In addition, the task appears to be less useful for children older than 

approximately 61 months of age, as suggested by the lower percentage of growth occurring 
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between 61 and 65 months.  This may be due to children’s increased mastery in identifying 

numbers 0 to 20 around this time and a capped pace at which they are able to do so. 

Given age-related changes in early numeracy performance, this research underscores the 

importance of taking a developmental perspective when interpreting myIGDI-EN data.  It is 

important for school psychologists and early childhood practitioners to be knowledgeable of 

typical academic performance levels in order to identify children who are not meeting 

developmental expectations.  By assuming a developmental perspective, it is also possible to 

determine the windows of time during which skill growth is most likely to occur.  Moreover, 

significant variation in children’s initial levels of performance and growth over time highlights 

the importance of examining growth trends across time rather than relying on single-point 

indicators of performance.  Because preschool classrooms may be composed of 3-, 4-, and 5-

year-old children and familiarity with mathematical concepts may differ considerably based on 

age and exposure to schooling, it is important to compare a child’s current performance to his or 

her past performance, rather than relying solely on broad comparisons across children in a 

preschool classroom or program.  This is especially true knowing that variability in numeracy 

knowledge and skills is evident as early as age 3.  However, variation in performance within 

each age range may offer a supplemental means of differentiating children to target instruction, 

in addition to evaluating an individual child’s growth over time.  

Future Directions 

While the current study and previous myIGDI-EN research provide a solid starting point, 

many questions remain unanswered.  Because this is the first study to model age-based numeracy 

growth across the preschool years, cross-validation is of foremost importance.  It is necessary to 

cross-validate the models with independent samples and also determine if the identified 
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trajectories hold for various subpopulations of children (e.g., children with special education 

needs and children at-risk due to demographic indicators).  If nonlinear growth better represents 

the data in future research, the consistency of growth patterns across samples should be 

evaluated to determine whether there are developmental periods in which children tend to 

demonstrate more skill growth and whether child characteristics (e.g., special education or low-

income status) impact these growth patterns. 

Given the significant variability in children’s rates of growth across the preschool years 

on most myIGDI-EN tasks, examination of variables that may contribute to differential growth is 

warranted.  The unconditional model examined in this study can be changed to a conditional 

model through the addition of predictors that may account for the random variance observed in 

estimated growth trajectories.  Predictors may include frequency of parental math talk in the 

home setting, participation in supplemental preschool programming, or individual-level variables 

found to be implicated in early numeracy development such as working memory (e.g., Bull, Espy, 

& Wiebe, 2008; Raghubar, Barnes, & Hecht, 2010).  Identifying these contributing factors may 

inform further targets for early intervention.  

Future research should also examine whether predictive relations exist within and across 

skills.  For example, one may evaluate whether growth trajectories across age 3 predict growth 

trajectories across age 4 on the same skill.  Similarly, one can examine whether performance in 

one skill predicts later growth in a different skill area.  Determining the existence of a continuum 

of skills would prove useful in establishing short-term instructional goals.  That is, through 

awareness that growth in one skill predicts growth in another, one can design instruction that 

prioritizes the earlier emerging skill. 
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Finally, the utility of myIGDI-EN growth trajectories to predict mathematics 

performance in the elementary school years is not yet known.  It is likely that knowledge of 

children’s early numeracy growth provides information about learning that is not captured by a 

single measure of performance; therefore, future research should examine the added value of 

slope in predicting later mathematics outcomes.  It will be beneficial to determine the myIGDI-

EN task or combination of tasks that best predict later mathematical competency because this 

knowledge will aid in the early identification of skill deficits that have a longstanding 

educational impact.   

Conclusions 

Taken together, findings from this investigation strengthen and advance what is known 

about early numeracy growth and the ability of myIGDI-EN to detect this growth across the 

preschool years.  This study provides further evidence that young children are able to think 

mathematically and demonstrate considerable improvements in their mathematical knowledge 

and skills over time.  Given that the preschool period is a time of tremendous skill development, 

marked by considerable individual differences in early numeracy performance, it is imperative 

that screening and progress monitoring tools be critically examined to ensure they yield scores 

that are reliable and valid at one point in time and accurately reflect children’s skill growth over 

time.  As the early childhood field continues to move in the direction of utilizing multi-tiered 

systems of support, research in this area will facilitate the early identification of children at risk 

and the design of interventions to improve early mathematics outcomes.   
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Table 1 

Number of Data Points Across Age Ranges Per MyIGDI-EN Task 
 

Ages at which data were contributed  N 

45 49 53 57 61 65      QCF   OCF OOCCF   NNF 

       35 36 35 35 

       29 27 29 28 
       18 23 24 24 
       30 31 29 31 
       10 11 8 10 
       4 4 4 4 
       7 6 7 7 
       8 5 6 5 
       14 16 15 16 
       55 61 60 60 
       2 2 5 3 
       0 0 2 0 
       0 1 1 1 
       1 1 1 1 
       1 1 1 1 
       1 1 1 1 
       9 9 9 9 
       9 9 9 9 
       9 0 0 0 
       47 50 49 49 
       3 7 7 7 
       1 1 1 1 
       6 4 4 4 
       1 1 1 1 
       0 0 1 0 
       12 14 12 14 
       10 11 10 10 
       59 63 63 63 
       1 1 1 1 
       5 0 0 0 
       12 13 13 13 
       9 0 0 1 

Note. QCF = Quantity Comparison Fluency; OCF = Oral Counting Fluency; OOCCF = One-to-
One Correspondence Counting Fluency; NNF = Number Naming Fluency. 
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Table 2 

Summary of Sample Sizes, Means, Standard Deviations, Ranges, Skewness and Kurtosis Values, 
and Percent of Zero Scores Across MyIGDI-EN Tasks Based on Age 
 
Age  N M (SD) Range Skewness Kurtosis Percent Zero Scores 
QCF       
45 171 19.1 (7.5) 0-35 -0.8  0.1 3.5% 
49 242 23.1 (5.5) 4-35 -1.1  1.2 0.4% 
53 268 25.1 (5.7) 0-45 -1.1  3.8 0.7% 
57 295 27.0 (5.6) 9-44 -0.3  1.7 0.7% 
61 207 28.9 (5.5) 9-45 -0.1  1.5 0.5% 
65 101 30.7 (5.8) 20-51  1.4  2.2 1.0% 
OCF       
45 171 14.6 (8.6) 0-54 1.9   4.8 1.8% 
49 249 18.3 (10.7) 0-59 1.3  1.7 1.6% 
53 275 23.9 (15.5) 0-77 1.5  1.9 0.4% 
57 303 30.4 (20.1) 1-93 1.1  0.4 0.3% 
61 219 34.1 (22.7) 4-100 0.9   0.0 0.5% 
65 114 37.0 (26.8) 4-100 0.9 -0.4 0.9% 
OOCCF       
45 171 13.8 (10.3) 0-50 1.7  0.2 2.3% 
49 254 20.5 (16.6) 0-75 1.2  0.2 1.2% 
53 277 25.7 (18.3) 0-86 0.8 -0.4 1.4% 
57 303 29.3 (19.4) 1-79 0.5 -1.1 0.7% 
61 218 31.8 (20.0) 0-86 0.3 -1.2 0.5% 
65 114 31.3 (20.0 0-67 0.3 -1.4 0.9% 
NNF       
45 173 10.3 (8.2) 0-39 1.0  0.8 12.1% 
49 252 14.2 (10.3) 0-44 0.8  0.0 5.6% 
53 276 18.0 (11.7) 0-53 0.5 -0.5 5.8% 
57 302 20.1 (12.3) 0-51 0.4 -0.6 4.0% 
61 218 21.9 (12.3)  0-51 0.2 -0.9 1.8% 
65 113 21.6 (12.9) 0-52 0.2 -0.7 2.7% 

Note. QCF = Quantity Comparison Fluency; OCF = Oral Counting Fluency; OOCCF = One-to-
One Correspondence Counting Fluency; NNF = Number Naming Fluency.  
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Table 3 
 
Quantity Comparison Fluency Latent Growth Curve Model Parameters 
	  

Note. χ2 = chi-square; df = degrees of freedom; RMSEA = root mean square error of 
approximation; CFI = comparative fit index; TLI = Tucker–Lewis index.  
*** p < .001, ** p < .01, * p < .05.	  
 
  

Parameter Estimates 
Linear 

Homoscedastic 
Error 

Linear 
Heteroscedastic 

Error 

Latent Basis 
Homoscedastic 

Error 

Latent Basis 
Heteroscedastic 

Error 
Fit Indices     

χ2  67.35 ***  
(df = 21) 

26.67 *  
(df = 16) 

33.44 **  
(df = 17) 

14.12 
(df = 12) 

RMSEA 0.07 0.04 0.05 0.02 
CFI 0.84 0.96 0.95 0.99 
TLI 0.84 0.95 0.93 0.99 
Fixed Effects     
Intercept 19.42 *** 19.69 *** 17.96 *** 18.27 *** 
Slope 2.53 *** 2.45 *** 2.65 *** 2.64 *** 
Random Effects     
Intercept Variance 25.39 *** 18.23 *** 7.17 *** 21.78 *** 
Slope Variance 1.02 ** 0.27 4.10 *** 0.47 
Covariance -3.10 *** -0.60 -5.40 *** -1.54 
Factor Loadings     
Y45 0.00 0.00 0.00 0.00 
Y49 1.00 1.00 1.78 *** 1.58 *** 
Y53 2.00 2.00 2.66 *** 2.50 *** 
Y57 3.00 3.00 3.43 *** 3.34 *** 
Y61 4.00 4.00 4.22 *** 4.17 *** 
Y65 5.00 5.00 5.00 5.00 
Error Variances     
e45 16.57 *** 37.48 *** 15.41 *** 32.93 *** 
e49 16.57 *** 16.42 *** 15.41 *** 15.81 *** 
e53 16.57 *** 13.80 *** 15.41 *** 13.71 *** 
e57 16.57 *** 13.50 *** 15.41 *** 13.66 *** 
e61 16.57 *** 14.09 *** 15.41 *** 14.18 *** 
e65 16.57 *** 18.98 *** 15.41 *** 18.92 *** 
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Table 4 
 
Oral Counting Fluency Latent Growth Curve Model Parameters 
	  

Parameter Estimates 
Linear 

Homoscedastic 
Error 

Linear 
Heteroscedastic 

Error 

Latent Basis 
Homoscedastic 

Error 

Latent Basis 
Heteroscedastic 

Error 

Fit Indices     

χ2  99.39 *** 
(df = 21) 

39.90 *** 
(df = 16) 

77.97 *** 
(df = 17) 

15.29 
(df = 12) 

RMSEA 0.10 0.06 0.09 0.03 
CFI 0.89 0.97 0.92 1.00 
TLI 0.89 0.96 0.90 0.99 
Fixed Effects     
Intercept 12.46 *** 12.82 *** 14.00 *** 13.84 *** 
Slope 6.01 *** 5.78 *** 6.18 *** 5.90 *** 
Random Effects     
Intercept Variance 21.23 **  51.44 *** 37.15 *** 55.08 *** 
Slope Variance 21.42 *** 22.04 *** 21.81 *** 21.75 *** 
Covariance 3.12 *** 7.71 * 20.95 *** 13.44 *** 
Factor Loadings     
Y45 0.00 0.00 0.00 0.00 
Y49 1.00 1.00 0.56  *** 0.62 *** 
Y53 2.00 2.00 1.55 *** 1.65 *** 
Y57 3.00 3.00 2.73 *** 2.88 *** 
Y61 4.00 4.00 3.71 *** 3.94 *** 
Y65 5.00 5.00 5.00 5.00 
Error Variances     
e45 74.72 *** 26.87 *** 71.08 *** 28.03 *** 
e49 74.72 *** 42.31 *** 71.08 *** 41.94 *** 
e53 74.72 *** 76.81 *** 71.08 *** 73.71 *** 
e57 74.72 *** 87.65 *** 71.08 *** 84.03 *** 
e61 74.72 *** 59.88 *** 71.08 *** 55.64 *** 
e65 74.72 *** 176.74 *** 71.08 *** 179.66 *** 
Note. χ2 = chi-square; df = degrees of freedom; RMSEA = root mean square error of 
approximation; CFI = comparative fit index; TLI = Tucker–Lewis index.  
*** p < .001, ** p < .01, * p < .05.  
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Table 5 
 
One-to-One Correspondence Counting Fluency Latent Growth Curve Model Parameters 
 

Parameter Estimates 
Linear 

Homoscedastic 
Error 

Linear 
Heteroscedastic 

Error 

Latent Basis 
Homoscedastic 

Error 

Latent Basis 
Heteroscedastic 

Error 
Fit Indices     

χ2  85.86 *** 
(df = 21) 

23.19 
(df = 16) 

73.85 *** 
(df = 17) 

13.81 
(df = 12) 

RMSEA 0.09 0.03 0.09 0.02 
CFI 0.79 0.98 0.82 0.99 
TLI 0.79 0.97 0.78 0.99 
Fixed Effects     
Intercept 14.10 *** 13.71 *** 12.28 *** 13.17 *** 
Slope 5.06 *** 5.12 *** 4.75 *** 4.68 *** 
Random Effects     
Intercept Variance 44.50 ** 90.21 *** 12.79  97.42 *** 
Slope Variance 4.86 * 12.23 *** 2.13  11.04 *** 
Covariance 19.87 *** -9.23 22.74 *** -4.95 
Factor Loadings     
Y45 0.00 0.00 0.00 0.00 
Y49 1.00 1.00 1.65 *** 1.43 *** 
Y53 2.00 2.00 2.71 *** 2.57 *** 
Y57 3.00 3.00 3.72 *** 3.45 *** 
Y61 4.00 4.00 4.50 *** 4.38 *** 
Y65 5.00 5.00 5.00 5.00 
Error Variances     
e45 159.55 *** 22.92 * 168.79 *** 12.82 
e49 159.55 *** 147.44 *** 168.79 *** 144.18 *** 
e53 159.55 *** 199.89 *** 168.79 *** 196.35 *** 
e57 159.55 *** 187.40 *** 168.79 *** 187.92 *** 
e61 159.55 *** 163.48 *** 168.79 *** 167.18 *** 
e65 159.55 *** 105.76 *** 168.79 *** 119.79 *** 
Note. χ2 = chi-square; df = degrees of freedom; RMSEA = root mean square error of 
approximation; CFI = comparative fit index; TLI = Tucker–Lewis index.  
*** p < .001, ** p < .01, * p < .05.  
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Table 6 
 
Number Naming Fluency Latent Growth Curve Model Parameters 
	  

Parameter Estimates 
Linear 

Homoscedastic 
Error 

Linear 
Heteroscedastic 

Error 

Latent Basis 
Homoscedastic 

Error 

Latent Basis 
Heteroscedastic 

Error 
Fit Indices     

χ2  94.85 *** 
(df = 21) 

69.87 *** 
(df = 16) 

87.02 *** 
(df = 17) 

54.95 *** 
(df = 12) 

RMSEA 0.09 0.09 0.10 0.09 
CFI 0.93 0.95 0.94 0.96 
TLI 0.93 0.94 0.92 0.93 
Fixed Effects     
Intercept 9.20 *** 9.90 *** 8.72 *** 8.61 *** 
Slope 3.74 *** 3.77 *** 3.67 *** 3.56 *** 
Random Effects     
Intercept Variance 74.83 *** 72.90 *** 73.15 *** 73.08 *** 
Slope Variance 3.59 *** 4.01 *** 3.23 *** 3.61 *** 
Covariance 2.83 2.36 2.70 1.36 
Factor Loadings     
Y45 0.00 0.00 0.00 0.00 
Y49 1.00 1.00 1.12 *** 1.24 *** 
Y53 2.00 2.00 2.30 *** 2.45 *** 
Y57 3.00 3.00 3.25 *** 3.38 *** 
Y61 4.00 4.00 4.09 *** 4.23 *** 
Y65 5.00 5.00 5.00 5.00 
Error Variances     
e45 22.65 *** 7.91 ** 22.76 *** 5.39 
e49 22.65 *** 20.85 *** 22.76 *** 20.60 *** 
e53 22.65 *** 25.95 *** 22.76 *** 25.47 *** 
e57 22.65 *** 28.64 *** 22.76 *** 29.59 *** 
e61 22.65 *** 18.86 *** 22.76 *** 18.64 *** 
e65 22.65 *** 29.71 *** 22.76 *** 31.33 *** 
Note. χ2 = chi-square; df = degrees of freedom; RMSEA = root mean square error of 
approximation; CFI = comparative fit index; TLI = Tucker–Lewis index.  
*** p < .001, ** p < .01, * p < .05. 
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Figure 1. Unfitted mean trajectories. QCF = Quantity Comparison Fluency; OCF = Oral 
Counting Fluency; OOCCF = One-to-One Correspondence Counting Fluency; NNF = Number 
Naming Fluency. 
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Figure 2. Linear latent growth model specification. COV = covariance; Y = observed outcome;  
e = error. 
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Figure 3. Latent basis growth model specification. COV = covariance; Y = observed outcome;  
e = error. 
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Figure 4. Best-fitting latent growth curves. QCF = Quantity Comparison Fluency; OCF = Oral 
Counting Fluency; OOCCF = One-to-One Correspondence Counting Fluency; NNF = Number 
Naming Fluency. 
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