
Lehigh University
Lehigh Preserve

Theses and Dissertations

2008

Robust stabilization of resistive wall modes in
Tokamak plasmas via [mu symbol]-synthesis
Joseph Delassio
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Delassio, Joseph, "Robust stabilization of resistive wall modes in Tokamak plasmas via [mu symbol]-synthesis" (2008). Theses and
Dissertations. Paper 993.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/993?utm_source=preserve.lehigh.edu%2Fetd%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


Dalessio, Joseph

Robust Stabilization
of Resistive Wall
Modes in Tokamak
Plasmas via ~-

synthesis

January 2008



/

Robust Stabilization of Resistive Wall Modes

in Tokamak Plasmas via /L-synthesis

by

Joseph Dalessio

Presented to the Graduate and Research Committee of Lehigh University in

Candidacy for the Degree of Master of Science

In

Electrical Engineering

Lehigh University

Department of Electrical and Computer Engineering

Bethlehem, PA 18015

December 7, 2007





Acknowledgements

First, I would like to thank my advisor, Professor Eugenio Schuster, who gave me

direction on countless occassions and without whom I would not have had the oppor

tunity to do research in such an exciting field. I also want to thank him for providing

me the opportunity to work at DIII-D with General Atomics in San Diego, CA over

the summer of 2007. On that note, I would like to thank General Atomics;. specifi

cally David Humphreys, Michael Walker, and Anders Welander, for their assistance

both research and non-research related during my summer stay. Also, Yongkyoon In

of Fartech Inc. who provided the mathematical models and helping me understand

plasma physics. Thanks also go out to my summer roommates Yongsheng au, Chao

Xu, and David Sondak who all played a big part in the best summer of my life.

Most importantly, .1 would like to thank my parents, Fred and Arlene, my brother

Jason and sister Nicole, and rest of my family for their continued support of my

educational development.

iii



Contents

List of Tables

List of Figures

Abstract

1 Introduction

1.1 Background . . . . .

1.2 Resistive Wall Mode

1.3 Objective .

2 RWM Model

2.1 System Model.

2.2 Model Transformation

2.2.1 Parameterization of the L;} Matrix.

2.2.2 Expressing the Parameterized State Space Matrices

2.2.3 Behavior of Nonlinear Uncertainties ....

2.2.4 Behavior of System's Unstable Eigenvalue

2.3 Growth Rate Parameterization .

2.3.1 Definition of Linear Fractional Transformation.

2.3.2 Linear Fractional Transformation (LFT) of RWM

2.3.3 Normalizing 0: Parameters .

iv

vii

viii

1

2

2

2

5

7

7

10

10

13

14

16

16

16

19

23



2.4 Model Characteristics. . . . . . . . . . . . . . . . . . 33

2.5 Discrete-Time Transformation of the State Matrices . 34
J

3 Controller Design 45

3.1 DK-iteration Model Based Controller. 45

3.2 NCF Model Based Controller 48

3.3 LQG Model Based Controller 51

3.4 LQRY Model Based Controller 53

3.5 PD Performance Based Controller . 53

4 Controller Comparison 58

4.1 Simulink Model . . . ........ 58

4.2 Stability and Performance Ranges . 59

4.2.1 Test Detail 59

4.2.2 Results. 61

4.3 Step Response. 62

4.3.1 Test Detail 62

4.3.2 Results ... 63

4.4 Initial Condition Response 63

4.4.1 Test Detail 63

4.4.2 Results .. 64

4.5 Saturation Limits 65

4.5.1 Test Detail 65

4.5.2 Results. 65

4.6 Noise ...... 66

4.6.1 Test Detail 66

4.6.2 Results ... 66

4.6.3 Frequency Response and Noise Spectrum. 67

v



4.7 Comparison with Controllers Designed in Previous Work

4.7.1 Test Detail

4.7.2 Results ..

4.8 Response Graphs

4.8.1 Test Detail

4.8.2 Results ...

5 Conclusion and Future Works

5.1 Conclusion ..

5.2 Future Works

Vita

vi

71

71

71

72

72

73

85

85

86

89



/

List of Tables

4.1 Performance Targets and Constraints 58

4.2 Stability Ranges. . . 60

4.3 Performance Ranges 61

4.4 Initial Condition and Impulse Stability Range 61

4.5 Initial Condition and Impulse Performance Range 62

4.6 Step Information ........ 63

4.7 Varying-Initial Conditions in f . 64

4.8 Saturation Limits . . . 65

4.9 Noise Tolerance Levels 66

4.10 Growth Rate Comparison 72

vii



List of Figures

1.1 Coils and sensors for RWM magnetic feedback stabilization . 6

2.1 Empirical relationship between the growth rate I and cpp 9

2.2 Nonlinear Uncertainties (CYi) versus cpp . . . . 15

2.3 Unstable Eigenvalue of the System versus cpp . 17

2.4 . Graphical Representation of Lower LFT 18

2.5 Graphical Representation of Upper LFT 18

2.6 G(s) as a LFT usingMex , ~In .. 20

2.7 G(s) as a LFT using M, CYp , ~In . 23

2.8 CYp as a LFT using Q and ,6. 25

2.9 Block Diagram for CYI • • • • 25

2.10 G(s) as a LFT using M, Q, 0, ~In . 29

2.11 Graphical representation of G(s) manipulation. 30

2.12 General framework for robust control . . . . . . 33

2.13 Frequency Response from Input 1 to (a) Output 1 and (b) Output 2 . 35

2.14 Frequency Response from Input 2 to (a) Output 1 and (b) Output 2 . 36

2.15 Frequency Response from Input 3 to (a) Output 1 and (b) Output 2 . 37

2.16 Frequency Response Comparison from Input 1 to (a) Output 1 and (b)

Output 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 38

2.17 Frequency Response Comparison from Input 2 to (a) Output 1 and (b)

Output 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39

Vlll



2.18 Frequency Response Comparison from Input 3 to (a) Output 1 and (b)

Output 2. . . . . . .' . . . . . . . . . . . . . . . . . . . . . . . . . .. . 40

2.19 Comparison for (a)-(b) Output of open-loop simulation, (c)-(d) Output

of closed-loop simulation, and (e)-(f) Controller of closed-loop simulation. 44

3.1 Frequency Response of the Weighing Function Wp • . . . • . . . . .. 51

3.2 / contours of stability for (a) Varying term PD, (b) Constant term PD. 56

3.3 / contours of stability for (a)-(b) [13] Results constant term PD. 57

4.1 Simulink Model of the Control System and Plasma Model .... 60

4.2 LQG response to initial conditions for / = 5,000 with noise (a-b)

Stable Case and (c-d) Unstable Case. . . . . . . . . . . . . . . . . . 68

4.3 Frequency Response for (a) LQG, (b) LQRY, and (c) NCF. . . . . 69

4.4 Frequency Response for (a) DK, (b) PD, and (c) Noise Spectrum. 70

4.5 RWM response to initial conditions at (a) I = 10 rad/s for (b) LQG,

(c) LQRY, (d) NCF, (e) DK, and (f) PD.. . . . . . . . . . . . . . .. 76

4.6 RWM response to initial conditions at (a) I = 5,000 rad/s for (b)

LQG, (c) LQRY, (d) NCF, (e) DK, and (f) PD. . . . . . . . . . . .. 77

4.7 Control Voltage response to initial conditions at (a) / = 5,000 rad/s

for (b) LQG, (c) LQRY, (d) NCF, (e) DK, and (f) PD , 78

4.8 RWM response to unit step at (a) ,= 10 rad/s for (b) LQG, (c) LQRY,

(d) NCF, (e) DK, and (f) PD. . . . . . . . . . . . . . . . . . . . . .. 79

4.9 RWM response to unit step at (a) I = 5,000 rad/s for (b) LQG, (c)

LQRY, (d) NCF, (e) DK, and (f) PD. . . . . . . . . . . . . . . . . .. 80

4.10 RWM initial condition response to (a) ramping I rad/s for (b) LQG,

(c) LQRY, (d) NCF, (e) DK, and (f) PD.. . . . . . . . . . . . . . .. 81

4.11 RWM initial condition response to (a) stepping / rad/s for (b) LQG,

(c) LQRY, (d) NCF, (e) DK, and (f) PD , 82

ix



4.12 RWM initial condition response to (a) 'sinusoidal 'Y rad/s for (b) LQG,

(c) LQRY, (d) NCF, (e) DK, and (f) PD.. . . . . . . . . . . . . . .. 83

4.13 RWM initial condition response to (a) sinusoidal 'Y rad/s with 0.15 G

RMS noise for (b) LQG, (c) LQRY, (d) NCF, (e) DK, and (f) PD.. , 84

x



Abstract

The control of the resistive wall mode (RWM) instability is one of the main areas

of research at the DIII-D tokamak. The resistive wall mode is an instability caused by

a kink in the plasma. Using the Far-Tech DIII-D/RWM model, which takes advantage

of the resistive wall mode dynamics acting similar to a toroidal current sheet, a linear

state space representation is considered. The states of the model are the currents in

the walls of the tQkamak and in the control coils surrounding the tokamak, which are

used to stabilize the RWM. There are 12 internal feedback control coils and 3 external

feedback control coils. Using a quadrature configuration to lock the internal feedback

coils in amplitude and phase and ignoring the slow response of the external feedback

coils, the effective number of inputs in the model is reduced to 3. The outputs
El

are 22 magnetic field sensors composed of poloidal probes and saddle loops. These

outputs are augmented with a matched filter to reduce the number of outputs to 2,

representing the two orthogonal components of the RWM. The major term driving the

instability is the RWM growth rate 'Y which is a time-varying uncertain parameter.

Taking advantage of the structure of the state matrices, the model is reformulated

into a robust control framework, with the growth rate of the RWM modeled as an

--- .uncertain parameter.

The controller design technique of p.-synthesis is used stabilize the RWM. The

design is a robust control technique that takes advantage of an uncertain parameter

influencing a nominal plant. Since there doesn't exist an optimal method to design

a /L-synthesis controller, the DK-iteration method i~uJed to design a controller that

stabilizes the system for a range of practical growth rates. In order to effectively

compare the results of the DK-iteration, additional model based control techniques

were used, including the LQG, LQRY, and NCF controller designs. Also, the model

based controllers are compared to the perfermance based PD control design. A

stability and performance range of 'Y is stated for each of the controllers, quantifying

the benefits of model based controllers. Implications for experimental implementation

and use are discussed.

1
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Chapter 1

Introduction

1.1 Background

Nuclear fusion produces energy through fusing together the nuclei of two light hy-

drogen atom isotopes (deuterium and tritium). Such a process requires an extreme
.\

amount of temperature and pressure to occur, since the nuclei need to overcome the

Coulomb barrier (both nuclei carry positive charges). The high-temperature hydro-

gen isotopes must exist in a plasma (ionized gas) state in order to sustain fusion

reactions. The confinement of this plasma can be provided by a tokamak, which is a

magnetic confinement device in the shape of a torus. While confinement of the fusion

plasma has been achieved, there are many instabilities that limit the performance

and cause the loss of the plasma [1].

1.2 Resistive Wall Mode

One of the major non-axisymmetric instabilities in tokamaks is the resistive wall

mode (RWM), a form of plasma kink instability whose growth rate is moderated by

the influence of a resistive wall [2]. In a kink mode, the entire plasma configura

tion deforms in a helically symmetric manner with an extremely fast growth time (a

2



few microseconds) generating moving magnetic fields as it deforms that induce eddy

currents in the surrounding conductive structure of the tokamak. These induced cur-

rents, in turn, generate magnetic fields that oppose the plasma deformation slowing

the overall growth rate of the instability (to a few milliseconds), which enables the use

of feedback to control the RWM. At present, current efforts focus on the stabilization

of the n = 1 mode (the plasma perturbation repeats only once as the toroidal angle

varies from 0 to 21f) because this instability is the first to occur when pressure rises.

The rise of pressure is characterized through the variable 13, which collects key

performance parameters of the plasma. The variable 13 provides a ratio between the

internal kinetic pressure of the plasma and the external pressure of the magnetic field

that confines the plasma [1] i.e.,

<p>
13 = [!&]

2J.!o

where < P > is the plasma kinetic pressure averaged over the plasma volume, BT

is the vacuum toroidal field strength, and fJ,o is the magnetic permeability of the

vacuum. It is convenient to express this term as a normalized beta f3N such that

13
f3N = [ 11' ]

aET

where a is the plasma minor radius and I p is the plasma current. Since the normalized

beta f3N defines how much confining pressure is needed to maintain a given plasma

pressure, it is a measure of efficiency of confinement. Magnetohydrodynamic theory

predicts that when the surrounding wall structure is located far from the plasma

surface, a sufficiently high plasma pressure will make the RWM unstable. Thus if

a perfectly conducting wall is within a critical distance of the plasma, the unstable

eigenmode could be stabilized by the mode-induced eddy currents in the wall. A per-

3



fect conductor assumes no internal resistance and thus no decay of the eddy currents

in the wall. However, these resistive behaviors exist in practice causing the RWM

mode amplitude to grow at a rate fractional to that of the wall time constant. The

range of interest for the control of the RWM is between the critical f3 value where

the plasma becomes unstable without a perfectly conducting wall and the critical

f3 where the RWM is unstable even with the perfectly conducting wall due to high

plasma pressure. This is the range between the "no-wall beta limit" f3N no-wall and,

the "ideal-wall beta limit" f3N,ideal-wall. The normalized plasma pressure efficiency

f3N is further normalized based on the limits of interest to form a new variable

C
f3N - f3N,no-wall

(3=
f3N,ideal-wall - f3N,no-wall

where C(3 is a measure of the stability of the plasma to resistive wall modes. For

C(3 < 0 the RWM is always stable and for C(3 > 1 the plasma cannot be practically

stabilized. The range of interest for control of the RWM is 0 < C(3 <1. Further, there

exists a relationship between the normalized measure of stability C(3 and growth rate

of the RWM ,. There are efforts to fully understand this relationship, yet typically

the growth rate increases for increasing C(3 [3].
,

The Far-Tech DIII-D/RWM model represents the plasma surface as a toroidal

current sheet and represents the wall using an eigenmode approach [4]. The plasma

surface and current sheet perturbations are equivalent in the sense that they both

produce the same magnetic field perturbation. Observations from experiments show

that the mode spatial structure remains unchanged. This spatial invariance is de

scribed as mode rigidity, which implies that the spatial distribution of current on

the plasma surface and the wall remain intact while only their magnitudes change.

Using the surface current representation of the mode, it is possible to construct a

state-space model of the plant, whose states are the surrounding wall current, and

4



the external control coil currents. Since the plasma is represented as a single mode,

and due to the rigidity assumption, the state space model is parameterized with a

scalar coupling coefficient cpp , which is directly related to the growth rate I of the

mode, and is expressed as an inductive circuit equation derived from Faraday's Law.

Although the plasma surface deformation cannot be directly measured in real time,

the magnitude and phase of the deformation can be diagnosed from measurements

by a set of 22 magnetic field sensors composed of poloidal probes and saddle loops.

An array of 12 control internal feedback coils (I-coils) can then be used to return the

plasma to its original axisymmetric shape. Fig. 1.1 shows the arrangement of coils and

sensors. Using an estimator for the two orthogonal components of the assumed n = 1

mode pattern, the resultant plant can be constructed into a reduced form from the

original 12 input, 22 output [6]. In particular, using a typical quartet configuration

for the I-coils and matched filter, the plant can be simplified to a 3 input, 2 output

system. The three inputs represent three I-coils that are not locked in phase by the

quartet configuration. The matched filter reduces the 22 outputs to two outputs

that represent the RWM mode vector of the sine and cosine components. These two

outputs can be combined to express the output as a single signal composed of the
~

RWM amplitude and toroidal phase [4].

1.3 Objective

The overall goal of this work is to take advantage of the developed model of the DIII

D tokamak plasma to design a model based feedback controller for the resistive wall

mode. The major term driving the instability is the RWM growth rate I which is an

uncertain time-varying parameter. This parameter, in the form of the scalar coupling

coefficient Cpp, is buried within the state space representation of the plasma and it

must be extracted and separated from the nominal plant model in order to write the

5
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model in a robust control framework. Once the uncertain parameter is extracted, a

robust controller based on ~tructured singular value J.L [10] is designed to stabilize

the RWM instability over a certain range of the growth rate /. The controller must
(

achieve stability and performance requirements over a large range of growth rate

values. This has the benefits of designing one constant controller that can stabilize

the plasma RWM instability over the entire physical range of the uncertain time-

varying growth rate. The robust J.L-synthesis controller is compared with previously

reported results and other controllers in stabilizing the RWM instability [13].

External Colis
(C..Coils)

I

Vacuum Vessel
Bp Sensors (Cutaway View)

Internal Coils
(I-Coils)

Figure 1.1: Coils and sensors for RWM magnetic feedback stabilization
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Chapter 2

RWM Model

2.1 System Model

Stated below is the Far-Tech DIII-DjRWM model, a plasma response model for the

resistive wall mode using a toroidal current sheet to represent the plasma surface

[4]. Faraday's Law is used to derive the inductive circuit equation that describes the

nonaxisymmetric plasma-conductor system

(2.1)

where the subscript s represents the conductor (consisting of the wall and the coils)

and the subscript p represents the plasma. The matrices Mss is the mutual inductance

between the vessel wall and the coils, Rss is the resistance matrix, Is is the current

flowing in the conductor, ~ is the externally applied voltage to the conductor, ff<: is

the change in flux at the conductors resulting from a modal amplitude proportional

to K p , where K p is a mode amplitude parameterization function of applied flux at

the plasma surface [5]. Using the assumption that

(2.2)

7



where M sp is the mutual inductance between either the wall or coils and the plasma

and

(2.3)

where Cpp completely describes the energy source driving the instability, (2.2) and

(2.3) can be substituted into (2.1). In general Cpp is a 2x2 matrix, which for the

n = 1 RWM represents two degenerative (having the same growth rate) modes that

allow the RWM to grow at any toroidal angle. It is possible for the two modes to have

slightly different Cpp values due to the discreteness of the conductor model. The model

under consideration has two modes influenced by the same growth rate, which results

in the 2x2 Cpp matrix simplified to a scalar Cpp. This yields the system dynamics

derived from Faraday's Law

The model is represented in terms of the couplings between the plasma (p), vessel

wall (w), and coils (c). The mutual inductance matrices are given by

[
MWW Mwe] [MWP] [1I1ss = , Msp = , Mps = Mpw
Mew Mee Mcp

where Mps and Msp satisfy the following condition

Mpe ] ,

The resistance matrix is given by

8



Relationship between Growth Rate yand C
pp

103 .-~~~~...,...,,---~~.,...,...,-~~~~......,

c
pp

Figure 2.1: Empirical relationship between the growth rate rand cpp

where Aw characterizes the couplings of a wall surface currents and Re is the coil

resistance. The conductor current and externally applied conductor voltage can be

written as

where Iw is the wall current, Ie is the coil current, and v:: is the externally applied

voltage to the coil.

Most of the matrices and variables presented are characteristics of the tokamak

and are well known. The uncertainty is introduced through the variable Cpp, which

is based on the growth rate 'Y of the resistive wall mode. The relationship between

these variables is shown empirically in Fig. 2.1 and is further explained in [6].

This model can be represented in a state space formulation using the conductor

current as the state (x = Is) and the applied.voltage as the input (u = Vs). This

results in the following state space equation

x= Ax+Bu

9



where

B = D;}, (2.4)

where Lss = Mss - MspCppMps . The output equation of the state space representation

is based on sensor measurements that relate to the coil current through the dynamics

where Gyp is the coupling matrix between the sensor and plasma current and

Css = [ Gyw CYC ]

is given by the coupling matrix between the sensor and wall current Cyw , and the

coupling matrix between the sensor and coil current Cyc. This results in the state

space output equation

y=Cx

where

(2.5)

2.2 Model Transformation

2.2.1 Parameterization of the L-;sl Matrix

The goal il' to extract Cpp from the uncertain state space system and introduce it

as an uncertainty block that perturbs a nominal state space system. The initial

step to obtaining the nominal state space system is to express each state matrix as

a general state space representation affine in nonlinear functions of the uncertainty

cpp• As seen in (2.4), the majority of the complexity is introduced in the A and

B state matrices, where the uncertainty cpp is introduced through L;l, and where

10



Lss = (Mss - MspCppMps)' Using the fact the Cpp is scalar and that the matrix product

MspMps is rank 2, the L ss matrix can be expressed as

where

M ss - CppMspMps

2

M ss - Cpp L UiU~
i=l

(2.6)

where Ul and U2 are n x 1 vectors, u~ and u; are the transpose of Ul and U2 respectively

and are 1 x n vectors, and n is the number of states in the RWM state space model.

To obtain a parameterized expression for the L-;} term, we must first compute the

inverse of a matrix sum. Given the matrix AT, the scalar bT , and the vectors CT and

DT , the inverse of a matrix sum is given by the Sherman-Morrison formula as [7]

Using (2.6), the inverse of Lss can be written as

(2.7)

Now, using the matrix Al = M ss - CppUIU~ the above equation can be written as

11



This is now in the form given by (2.7) and thus the formula can be applied, resulting

III

(2.8)

Now the matrix L-;sl is expressed in terms of All, which is equivalent to (Mss 

CppuluD-l, and once again applying (2.7) results in

This expression can now be substituted back into (2.8), which yields

Expanding the terms and factoring out the terms dependent on Cpp, the equation

simplifies to

The terms can be collected and rewritten in the form

4

B = L-;sl = 2: (}:iBi,
i=O

12



where (}i'S are nonlinear functions of Cpp, and Bi's are constant matrices. The indi-

vidual terms are given by

1

Cpp

Bo

[(M~lU2) (U~(Ms~lU1)(u~M~1))

+ ((Ms~lU1)(u~Ms~1)U2) (U~Ms~l)]

B4 [(M~lU1)(u~M~1)U2U~(M~lU1)(u~M~1)].

2.2.2 Expressing the Parameterized State Space Matrices

The last section allowed us to express the L -;sl matrix in a parameterized form, which

allows the parameterization of the state and input matrices A and B respectively. In

a similar way, the output matrix C can also be parameterized. Using the fact that

Cpp is a scalar, the C matrix can be written as

where

13



Defining Ai = - BiRss , we can finally summarize the parameterized expressions for

the state matrices A, B, and C in terms of a/s, given as

(2.9)

(2.10)

(2.11)

2.2.3 Behavior of Nonlinear Uncertainties

With the creation of five new variables that all depend on Cpp, it is important to

study the behavior of these variables with respect to our uncertainty Cpp. The range

considered for Cpp is determined by the growth rate of the resistive wall mode and by

the number of eigenmodes used in the model. A thorough comparison of the number

eigenmodes needed to fully represent the resistive wall mode is explained in [6]. This

comparison determined that using 15 or 29 eigenmodes have similiar results and are

the best representation of the resistive wall mode. The number of eigenvalues (or

states) for a given eigenmode model is determined by double number of eigenmodes

(due to the quadrature relationship of the wall currents) and the number of control

coils currents. There are 6 control coil currents, 3 of which are due to the slower

external feedback coils (C-coils) and the remaining 3 are due to the internal feedback

coils (I-coils). It was found in [8] that the I-coils are much more effective at controlling

the RWM than the slower C-coils. For this reason, the controller design is based on 3

inputs (I-coils), however the C-coil currents remain in the model for the determination

of the number of eigenvalues. Using a physically realizable growth rate, range from

10 rad/s to 5,000 rad/s, the corresponding Cpp range for the 29 eigenmode and 15

eigenmode model is given by 71 to 0.3325. The 29 eigenmode model of the DIII-D

tokamak, RWM model is defined with 3 inputs, 23 outputs, and 67 states, while the 15

14



eigenmode model has 3 inputs, 23 outputs, and 36 states. As seen earlier, the variable

a5 is directly equal to the uncertainty cpp thus rendering a linear relationship. This

trivial case is not plotted to emphasize the nonlinearities in the first four variables. As

seen in Fig. 2.2, the variables a1 and a2 are approximately equal to each other, with

a maximum error on the order of 10-6
. Also note that except for high growth rates,

which correspond to small cpp values, the a parameters are approximately constant.

This approximately constant behavior is valid for Cpp values larger than 3. Although

the state matrices are expressed in a linear form, the coefficients of each individual

state matrix components are clearly nonlinear, which calls for additional manipulation

to conform to a parameterized robust control framework.

Behavior of a parameters vs. c
pp

0.05

o

-0.05

i::l -0.1

-0.15

-0.2

-0.25

l
~'. ._1_1 __ 1_,.,_'_'.1_'_1_._._11_'_1_'_1_1_1_'_'_._._,

I I""'"

-u1

•••u
2

cpp =3 -u3

1.,.,u
4

o 10 20 30 40
cpp

50 60 70 80

Figure 2.2: Nonlinear Uncertainties (ai) versus Cpp
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2.2.4 Behavior of System's Unstable Eigenvalue

With the introduction of new matrices and nonlinear uncertainties, it is important to

examine the behavior of the system to ensure that the new representation complies

with the original system dynamics. In particular, the system characteristic of most

importance in the unstable eigenvalue behavior that varies with the uncertainty Cpp.

Using the newly developed representation of the state matrices given by (2.9)-(2.11),

the system's unstable eigenvalue for the 29 eigenmode model is plotted in Fig. 2.3.

The figure is plotted over the same uncertainty range previously defined for Cpp.

The behavior of the unstable eigenvalue is consistent with the expected system dy-

namics. At faster RWM growth rates (smaller Cpp) the system is much more unstable

than the slower RWM growth rates. When the working range of cpp is relaxed, the 29

eigenmode model produces a singularity at Cpp = 0.1521. This value is comparable

with the Cpp value of 0.1519 presented in [6].

2.3 Growth Rate Parameterization

In order to represent the uncertain state space matrix in conventional M D.. formulation

for the robust control framework, several intermediary steps must be performed. First

of all, the state space realization of the system transfer function using linear fractional

transformation must be developed.

2.3.1 Definition of Linear Fractional Transformation

Linear fractional transformation (LFT) is a matrix function convenient for formulat

ing control problems. Given a complex partitioned matrix
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Figure 2.3: Unstable Eigenvalue of the System versus cpp
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and letting two other complex matrices defined by D.l E CQ2 XP2 and D.u E Cq1
XPI. The

lower LFT is defined with respect to D.l as the map

where

assuming that (I - M22 D.l)-1 exists. Similarly, the upper LFT is defined with respect

to D.u as the map

where

assuming that (I - Mu D.ut 1 exists.

The matrix M is known as the coefficient matrix. Fig. 2.4 and Fig. 2.5 display the

graphical representation of the LFT's and corresponding sets of equations.

---_._--
YI

- M
-------

IZl

I
~f

Figure 2.4: Graphical Representation of Figure 2.5: Graphical Representation of

Lower LFT Upper LFT
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Lower LFT

[
YI ] M [ UI] [Mll M12] [UI ] ,
ZI WI M2I M22 WI

WI ~IZI

Upper LFT

[
Z2 ] M[ W2 ] = [Mll M12] [W2] ,
Y2 U2 M2I M22 U2

W2 ~uZ2

The two notations of the upper an[d:,:er:'~T]'S are related to each other through

Fu(N,~) = FI(M,~) where N = [2].
M I2 Mll

2.3.2 Linear Fractional Transformation (LFT) of RWM

A system with state space representation A, B, C, D has a transfer function G(s) =

D + C(sIn - A)-IB, where n is the number of states (or eigenvalues) in the system

and In is the convention used to describe an n x n identity matrix. The number

of states is either n = 64 or n = 36 depending on which eigenmode model is used.

Defining the matrix

19
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Figure 2.6: G(s) as a LFT using Mo ' Vn

we can write the transfer function as the linear fractional transformation of Mo as [9]

G(s)

The graphical representation of G(s) is shown in Fig. 2.6, with equivalent equations

To introduce the uncertainty given by the parameterized state space system (2.9)

(2.11), the 1110 matrix can be written in the form of a general affine state space

uncertainty
k

Ao+ LaiAi
i=l

k

Co + LaiCi
i=l

k

Bo + LaiBi
i=l

k

Do + LaiDi
i=l

where k = 5, A5 = 0, B5 = 0, Ci = 0 for i = 1, ... ,4, and Di = 0 for all i.
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This uncertainty can be formulated into a linear fractional transform by achieving

the smallest possible repeated blocks using the method outlined in [9]. To begin this

method, matrices Ji's are formed such that

for each i = 1, ... ,5. Then ,using singular value decomposition and grouping terms,

an expression for Ji can be achieved (note: A* is denoted as the complex conjugate

transpose of the matrix A)

Denoting qi as the rank of each matrix Ji , each inner matrix is given by

Then, the uncertainty can be introduced as

where in our case, ql = 1, q2 = 1, q3 = 2, q4 = 1, qs = 2. Finally, the linear fractional

transformed ma~rix can be written as
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where

Mn = [ ~ B
o

] M 12 = [ £1 £5 ]

Co Do WI Ws

R* Z* G: I l q1 01 1

M21 = G:p =

R* Z* 0 G:slqSs s

This is equivalent to the lower linear fractional transformation

Mo Fl( [Mn M12], G:p ) = Fl(M, G:p )

M21 0

M n + M12 G:p (IQT - M22 G:pt 1M21 = M n + M12G:pM2I

where

and qT is the total rank of the G:p matrix given by

Finally, the transfer function of the state space uncertainty is written as

The graphical representation of G(s) is ~hown in Fig. 2.7 with the equivalent equations
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y M u

Figure 2.7: G(s) as a LFT using M, (Xp, Fn

y

2.3.3 Normalizing a Parameters

The system is now in a form where the uncertainty is given by the five Qi parameters.

However, as shown earlier, each of the Qi parameters are nonlinear functions of the

single variable CPP . Thus the next step is to express the linear fractional transformation

in terms of the single uncertainty Cpp- First, cpp is normalized using

Cpp = d + oe,

where c~ is the nominal value of c pp , and cPPmin and CpPmax are its minimum and

maximum values respectively. This defines a new normalized uncertainty °that has

a range of values within 101 ::; 1 that corresponds to the desired cpp range.
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Now that each Qi parameter is expressed in terms of 8, we "pull out the 8" [10].

This is done by drawing the block diagram for each Qi system and labeling the input

to each 8 block Z3i and the output of each 8 block W3i. Then[:: ill]a~Lx Q[' ::iC]h

satisfies Qp = Fl(Q,.6.) with .6. = 81mT , can be found using = Qi
Z3i W3i

for each Qi term, where mT is the total number of uncertainty elements needed to

represent Qp. Thus the Qi matrix satisfies the equation Qi = Fl(Qi' 81mi ) , where mi is

the minimum number of uncertainty elements 8 needed to represent Qi. Recalling that

W2 = QpZ2, the system can be formulated such that W2 = Fl(Q, .6.)Z2. To correspond

to each Qi term in the matrix Qp, the W2, Z2, W3, Z3 matrices are given by

W21 Z21 Z31 Z31

W22 Z22 Z32 Z32

W2 = W23 ,Z2 = Z23 ,W3 = Z33 ,Z3 = Z33

W24 Z24 Z34 Z34

W25 Z25 Z35 Z35

where each W2i and Z2i are vectors of length qi, based on the rank of each Ji matrix,

and each W3i and Z3i· are vectors of length miqi, based on the minimum number

of 8's required to represent each Qi and the value of qi. The composite Q matrix

will be defined after each individual Qi is determined, where Qi is given by Qi =

[
Qill Qi12 ] Th I b f . 1 J:. • b th. e tota num er 0 uncertamty e ements mT lor Q p IS gIven y e
Qi21 Qi22

total length of W3, which is found by

The graphical representation of the Q p block is show in Fig. 2.8.
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z,

Q
w,

Figure 2.8: CYp as a LFT using Q and ~

Z21
_,()------l--+I

d-:l
e

\\'21

L-----l ae 14-----1

Figure 2.9: Block Diagram for CYI

The block diagram for CYI is shown in Fig. 2.9. Recalling that CYI = 1 C;~ 1 ,
-CPPU1 53 Ul

and using a = U~ Ms-/Ul' the relationship becomes

rv - Cpp
\..'1 -

1- aepp

Inserting the normalized relationship cpp = d + oe, CYI can be written as

d + Oe d + oe
CYl= =

1 - a(d + oe) (1 - ad) - aeO·

Since there is only one uncertainty element, ml = 1. The block diagram for CYI can

be directly drawn from this form, with the feedback terms in the denominator and

the feedforward terms in the numerator. The terms not multiplied by 0 are branched

out prior to the 0 block and those multiplied by 0 are branched out after the 0 block.

The terms in the denominator are multiplied by -1 because of the feedback (Fig. 2.9).

From the diagram,
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Solving for Z31

Z31 (1 - ad) - Z21 + aew31

Z31 ( 1! ad) Z21 + (1 ~ead) W31.

From the diagram, the output is given by

Substituting for Z31' the expression becomes

Thus, the governing equation for (Xl is given by

which results in a Ql given by

To prove that this is equivalent to (Xl = PI (Ql' 6), the lower linear fractional tranform
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is expanded

Q'1 Fi (Q1' 0) = Q111 + Qh20 (1 - Q122 0r 1
Qb

C:ad) + (" [1 +1:dad]) 6 (1- C:"ad)) -1 C~ ad)
d (1)0(1 -ad - aeo) -1 11-ad + e 1-ad 1-ad 1-ad

d eO
--+....,--------:---,-----------.-
1- ad (1 - ad)(l - ad - aeo)
d (1 - ad) - aedo + eO
(1 - ad) (1 - ad - aeo)
d (1 - ad) + eO (1 - ad)
(1 - ad) (1 - ad - aeo)

d+oe
(1 - ad) - aeo·

For the system matrices of the DIII-D tokamak, the behavior of Q'l and Q'2 are

approximately the same, with an error on the order of 10-12
. From this very good

approximation, we can take Q'l = Q'2. Although the full model could be used, this is an

accurate enough assumption that allows the reduction of computational complexity.

As a result of this approximation, the following changes can be made to the other Q'

parameters:

Since Q'2 = Q'l, m2 = ml = 1 and the Q2 block is simply defined by

The parameter Q'3 is given as Q'3 = Q'i, or Q'3 = Fi(Ql' O) . Fi(Ql, 0). In general,
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the series connection of x identical lower linear fractional transforms Fl(T, 0) where

[ Tn T
12

]T=
T21 T22

can be written as Fl(S, 01x ) , where

TfI T{1-lT12 T x- 2T T11T12 T1211 12

T21 T22 0

S=
T21T11 T21T12 T22

T21T12 T22

T Tx - 2 T21Tfl-3T12 T21T12 T2221 11

T T x - 1 T21TfI-2T12 T21Tfl-3T12 T21T12 Tn21 11

A reduction can be made so that Q3 = Fl (Q3,0I2), where 12 is the size 2 identity

matrix, thus m3 = 2. Through the series connection of the linear fractional transform

of Q1, the Q3 block is given by

Similarly to Q3, the parameter Q4 is given as Q4 = Qr, or Q4 = Fl (Q1 ,0) .Fl (Q1, 0) .

Fl(Q1'0). A reduction can be made so that Q4 = Fl (Q4,0I3), where 13 is the size 3

identity matrix, m4 = 3, and Q4 is given by the series connection of the linear
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Zl WI

Y M u

z: W2

Figure 2.10: G(s) as a LFT using M, Q, 8, ~In

fractional transform such that

QL QLQ112 Q111 Q112 Q112

Q121 Q122 0 0
Q4=

Q121Ql11 Ql2l Qh2 Q122 0

Q l 21QL Q121 Q111 Q112 Q121 Q112 Q122

Also, Q5 can be directly written as

such that m5 = 1.

Now that there is an expression for each of the Qi (i = 1, ... ,5) parameters in

terms of a linear fractional transformation Qi = F1(Qi,8Im J, they can be combined

to form one linear fraction transformation with a common uncertainty 8. As shown
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Figure 2.11: Graphical representation of G(s) manipulation

earlier, the uncertainty in terms of Q is given as

o

o

where I q; is the size qi identity matrix. The total number of uncertain elements

is given by mT = L miqi = 11. Thus, the linear fractional transformatio~ Q p =
i

:~'[L1~l~it~~]= :~ ~:b::t::YQ~:i:gi:: :Y~:eL1:~: :::~::::~Where
Q21 Q22

where j = 1,2 and k = 1,2. The matrix Qjk has the same number of diagonal blocks

as Q p based on the rank of each Ji matrix denoted by qi·

This renders the final representation of entire system G(s) = Fu(Ft(M, Fl(Q, 6.)), ~In),

which is described by Fig. 2.10 and corresponding equation set

30
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Finally, the original system M can be combined with the matrix Q through the

interconnection of LFT's [11]. This is done using the fact that

where R is defined as

and where

R12 M 12 (II - QllM22t
1
Q12

R21 Q21 (II - M22Qll t
1M21

R22 Q22 + Q21 M22(II - Qll M22)-IQI2
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Since M22 = 0 it simplifies to

R = [ Mn + M 12QnM21

Q21 M21

Now the system is reduced to a simple form of R, uncertainty f::. = OImT with

181 :::; 1, and Vn' The system can now be reduced using a simple property of the

LFT. The system given by G(s) = Fu(Fl(R,f::.), Vn) can be written as G(s) =

FI(Fu(R, Vn), f::.) = Fl(PI, f::.) where pI = Fu(R, Vn)' The final step in the system

reduction moves the uncertainty, creating an upper LFT for convention purposes.

This is done by using

where pI is of the form

The overall system reduction is shown in Fig. 2.11.

The parameterization of the RWM model allows this system to be represented in

the general framework of robust control for uncertain systems. The goal is to design

a controller K that stabilizes the plant for all uncertainty 181 :::; 1. The feedback

controller K can be applied to the plant to formulate a closed-loop LFT system on

the uncertainty and the controller, given by

G(s) = Fl(Fu(P, f::.), K)

Fu(FI(P, K), f::.),

which can be seen in Fig. 2.12.
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u

Figure 2.12: General framework for robust control

2.4 Model Characteristics

The model matrices are provided by FAR-TECH Inc. using experimental data to

determine the values. As mentioned in the introduction, the model uses a typical

quartet structure of 240 degrees. This configuration takes the 12 control I-coils (6

pairs) and locks the amplitude and phase relationship between several of the I-coils,

leaving 3 I-coils that can be used for control purposes. The 3 C-coils have a much

slower response, have little to no effect on the rapid RWM instability, and are not

considered as control inputs. Thus, the number of controllable inputs into the model

can be taken as 3, corresponding to the 3 I-coils. And using the matched filter, the

number of outputs is reduced from the 23 sensors to the 2 components of the RWM

mode. The frequency response graphs for the model in Fig. 2.13-Fig. 2.15 clearly

display the effect of the uncertainty on the system. As seen by the majority of the

frequency response figures, the uncertainty strongly effects the phase and magnitude

of the lower frequencies compared to that of higher frequencies. Also seen by these

figures, at varying uncertainty values the frequency response takes a similar profile

except for high growth rates I (small values of Cpp), which introduced more error from

the nominal system.

The frequency response graphs were produced using both the original model matri

ces and the model in P~ form to ensure the validity of the transformation (Fig. 2.16

Fig. 2.18). To easily make the comparison, the frequency response graphs are com-
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puted at three growth rates, the minimum, nominal, and maximum values of the range

we are considering. The values are I = lOrad/5, ,= 120rad/5, and I = 5, 000rad/5

(Cpp = 71, Cpp = 5.75, and Cpp = 0.3325). All of the input to output combinations

match well between the two systems, with small error introduced in the Input 3 to

Output 1 case in Fig. 2.18. This error is negligible for the controller design.

2.5 Discrete-Time Transformation of the State Ma-

trices

The model transformation into the nominal plant/uncertainty form benefits the ap

plication of fL-synthesis to obtain one controller that can provide robust stability.

However, this transformation can also lead to the design of another controller tech

nique, adaptive control via system identification. The purpose of the adaptive control

approach is to use the knowledge of the model to perform online estimation of the

growth rate " from which an optimal controller for that growth rate can be applied.

Before an adaptive controller can be designed, real time parameter estimation must

be obtained through system identification techniques. Since all of the recursive pa

rameter estimation methods (RPEM) involve using a discrete-time state equation,

the first step is to make a discrete-time equivalent state equation. Sampling of the

system x= Ax + Bu will produce a discrete-time system

where F = eAT, G = J: eAT BdT, and T is the sampling time. These matrices

cannot be implemented in this form because of the exponential function, therefore an

approximation of the exponential function is needed. The exponential can be written
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Figure 2.13: Frequency Response from Input 1 to (a) Output 1 and (b) Output 2
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Frequency Response Magnitude from Input 2 to Output 1
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Figure 2.14: Frequency Response from Input 2 to (a) Output 1 and (b) Output 2
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Frequency Response Magnitude from Input 3 to Output 1
-50,--------,r------,--------,------,

-250~====~=======:=====~~~;;;;;;::~- 90 r

Ci
OJ
"0

'Q;' -135
en
III

.s:::.
a..

10
2

10
4

Frequency (rad/sec)

(a)

Frequency Response Magnitude from Input 3 to Output 2
Or-----.---------,------.-----~

Miny

I

Maxy

-50co
"0
'Q;' -1 00 I:-----:r------=::::~
"0
::J

:2 -150
OJ
III

~ -200

Ci
OJ
~
OJ
en
III

.s:::.
a..

1d 10
4

Frequency (rad/sec)

-45 b.-.- -'-- --'- -'----- ..d

10°

(b)

Figure 2.15: Frequency Response from Input 3 to (a) Output 1 and (b) Output 2
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Openloop Frequency Response Magnitude from Input 1 to Output 1
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Openloop Frequency Response Magnitude from Input 2 to Output 1
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Openloop Frequency Response Magnitude from Input 3 to Output 1
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Figure 2.18: Frequency Response Comparison from Input 3 to (a) Output 1 and (b)
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as
T2 T3 00 AkTk

eAT = 1+ AT+ A2_, + A3_, + ... = 1+ L-,-'
2. 3. k.

k=l

In order to approximate the state matrices, the number of terms in the exponential

function expansion must be determined. A common method of determining how

many terms to keep is Paynter's algorithm which follows the steps:

1. Let q = maxlAjTI where A is n x n

2. Find an integer p such that 1 (nq)penq ~ 0.001
p

3. Compute W= I + ~AT + ~A2T2 + ... + (p~l)!APTP, truncating the series after

p terms

4. Form F = I + ATw, G = wTB.

This algorithm is implemented in the Matlab code to obtain the discrete-time state

matrices. Also needed for the parameter estimation algorithm are the derivatives of

these state matrices with respect to the parameter Cpp, First, rewriting the discrete-

time matrices

G = \IJTB.

Now the derivatives can be expressed as

dG = d\IJ T B + wT dB ,
dcpp dCpp dCpp

where
dw [P kAk-1Tk] dA
-= L ,-.
dcpp k=l (k + 1). dcpp

The derivatives of the continuous-time state matrices can be found using the form
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A = 2:;=0 ctjAj and B = 2:;=0 ctjBj , where the Aj and Bj matrices are constant

and only the ctj terms depend on Cpp. Thus the derivatives with respect to cpp can be

written as
4

dA _ '" dctj A-- - LJ-- j
dcpp j=O dcpp

4

dB = '" dctj B.
d LJd l'

Cpp j=O Cpp

Knowing that the a terms are given by

1

the derivatives are given as

o
1

A comparison check was run on the discrete-time system versus the continuous-
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time system. The comparison can be seen in Fig. 2.19. The left column is the

continuous system, and the right column is the discrete system. All three graphs

match well for the discretization. All the simulations were run at Cpp = 5.75.
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of closed-loop simulation, and (e)-(f) Controller of closed-loop simulation.
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Chapter 3

Controller Design

Although the main focus was to design a robust controller for the RWM model, in

order to have an effective comparison of controllers other controller design schemes

were considered. The controller designs used were DK, N CF, P D, LQRY, and

LQG.

3.1 DK-iteration Model Based Controller

The goal is to design a controller that can robustly stabilize the RWM and meet

specified controller performance criteria. That is equivalent to designing a feedback

controller K that robustly stabilizes the system for the applicable range of fj. in

Fig. 2.12. The basic idea is that for a small enough disturbance in the uncertain

parameter, stability can be maintained. Thus, j.L-analysis gives a non-conservative

measure of the range in which this disturbance exists and the system remains stable.

The robust stability of the plant is determined by the Nu sub-matrix, where N =

FI(P, K). P is the system that relates the control input, the sensor output, and the

growth rate of the RWM through the reformulation of the plasma model (Fig. 2.12).

The system N represents the nominal closed-loop system. The sub-system Nu term

isolates the uncertainty from the input and output of the system. lVleanwhile, N 12
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and N21 characterize the coupling between the uncertainty and the input/output of

the system and N22 represents the system at a nominal Cpp value (~ = 0). The robust

stability is determined by the structured singular value, which is defined as

for a-(~) :::; 1. Lager fL values means (I - Nll~) becomes singular with small

perturbations, thus the smaller J.L the better. The robust stability condition is found

by finding the smallest value of km at the onset ofinstability, or det(I -kmNn~) = 0,

which yields km = J,l(~ll)' where km is a measure of the robust stability to pertur

bations in A Thus, assuming Nll and ~ are stable, the system is robustly stable

if and only if fL(Nn(jw)) < 1, Vw. Similarly, the robust performance is given by

fL(N) < 1, Vw. Both conditions assume that N is internally stable. For this appli-

cation of the fL-synthesis controller, there is no weight augmented to the system to

affect the performance of the design.

DK-iteration is one available procedure to design a controller using fL-synthesis.

Since there is no direct method to synthesize a fL-optimal controller, this method is

used by combining ?-loo synthesis and fL-analysis. This method starts with the upper

bound on fL in terms of the scaled singular value

where 1) is the set of matrices D which commute with~, i.e., D~ = ~D. Then, the

controller that minimizes the peak value over frequency of this upper bound is found,

namely

min (min IIDN(K)D-11Ioo) .
K DEV

The controller is designed by alternating between the two minimization problems

until reasonable performance is achieved. The DK-iteration steps are summarized in
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[11] as follows:

1. K-step. Synthesize an 'Hoo controller for the scaled problem, minK IDN(K)D-1I oo

with fixed D(s).

2. D-step. Find D(jw) to minimize 0- (DND-1(jw)) at each frequency with fixed N.

3. Fit the magnitude of each element of D(jw) to a stable and minimum-phase trans

fer function D(s) and go to step 1.

The iteration continues until IIDN(K)D-11I oo < 1 or the 'Hoo norm no longer

decreases.

Using the derived P - D.. formulation, a controller can be designed with the DK

iteration method for robust stabilization. For the model being used and assuming a

high rotating plasma, the growth rate 'Y ranges from 10 rad/s to 5,000 rad/s. This

results in a range for the uncertain parameter cpp that goes from 71 to 0.3325. This

is the range of values for which the system should be stabilized so that the robust

controller can be considered a suitable design.

The complete system that is used to design the controller has an additional two

time delay blocks preceding the plasma model. The time delays physically represent

the plasma control system and the power supply. For design purposes, the time delays

are linearized using second order Pade approximations.

The controller is synthesized using the dksyn command in Matlab. During the

process of synthesizing the controller, it is evident that controllers designed with a

smaller, more unstable nominal Cpp value produce the widest range of stability for

Cpp' This is because the normalized uncertainty 8 is defined by a linear relationship

with Cpp, while the unstable eigenvalue of the system is nonlinear with respect to Cpp

(Fig. 2.2). Using a smaller, more unstable Cpp range, the defined linear relationship

with 8 more accurately represents the system by capturing the dynamics at the more
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unstable values of CPP . The DK controller is synthesized using a P - D. system

constructed for c~ = 0.39625 (,* = 3, 722rad/s) and guarantees f.L < 1 for the range

defined by

which is equivalent to

Cwmin = 0.3325 Cppmax = 0.46,

,max = 5, OOOrad/s 'min = 2, 903rad/s.

However, these results are conservative and, as it will be shown in the next part, the

stability and performance ranges for our system are indeed bigger. The conservatism

is explained by the fact that the DK-iteration implicitly assumes that the uncertain

parameter is complex and does not take advantage of the known phase information of

the real uncertainty. As a result, the designed controller is more conservative, but the

scaled singular value stili- converges such that a- (DND-I (jw)) :::; 1. The controller

was simulated using the 15 eigenmode model with 36 states. The designed controller

has an order of 108 and is reduced to an order of 16 before computing the effective

stability and performance ranges.

3.2 NCF Model Based Controller

The normalized coprime factorization (NCF) controller is a frequency response con

troller used for non-parametric robust model-based control, compared to the DK

iteration controller which is a parametric approach. The NCF method depends heav

ily on loop shaping techniques of the original plant using the frequency response

graphs (Fig. 2. 13-Fig. 2.15). T.he desired performance is achieved by appending

the original plant G(s) with pre- (WI) and post- (W2) compensators. The com

pensators shape the open-loop plant G(s) prior to controller synthesis, which allows

48



the closed-loop weighted system to achieve the performance specifications. In gen

eral the performance is characterized by shaping G(s) such that the augmented plant

(Gs(s) = W2G(S)WI ) has large gain at frequencies of desired disturbance attenuation

and small gain where robust stability is required. The weight W2 is considered the

output weight and for systems with multiple outputs, different constants can be used

to emphasize the importance of one output over another. In the case of the RWM

model, both the sine and cosine components of the output are equally important, thus

the output weight is set to W2 = 12. The weight WI is considered the performance

weight and is dependent on the shape of the loop transfer function and can take on a

different shape for each input into the system. The general transfer function for the

performance weight is
W _ (M-I/n s +Wb)n

I - (S +wbAI/n)n

For the NCF controller design the augmented plant Gs(s) = W2(s)G(S)WI (s) is used

and the NCF algorithm determines the optimal 'Hoo controller (Koo ) that minimizes

the 'Hoo cost functions:

Inc!:= mm
Koo

00

where Inc! is the optimal stability margin of the closed-loop system. By definition,

Inc! is always greater than 1, however a smaller Inc! corresponds to a satisfactory

stabililty margin. The NCF controller applied to the system G(s) is defined as Knc! =

WI KooW2 [12]. The augmented plant Gs(s) is used in the design to ensure that the

'Hoo norm is less than 1 for all frequencies. This ensures that the original plant G(s)

will have the desired closed-loop shape as determined by the performance weights.
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The NCF method takes the linear plant Gs(s) and finds the coprime, normalized

stable transfer functions Ms and Ns, such that Gs(s) = M;lNs. Introducing the

uncertain parameters, the family of plants is given by

where

The designed stabilizing controller K~o ensures that the closed-loop system will remain

stable for the uncertainty range given by E. The stability margin and the range of

uncertainty E are related through ~ = Inc!.

After several controller design attempts by adjusting the variables and order (n) of

the transfer function in the performance weight, it was determined that n = 2 provides

the best performance weight for the system. After many different performance weight

considerations and simulations, the final performance weights were chosen with the

following parameters

The frequency response of this weighing function is seen in Fig. 3.1. The performance

weight was applied equally to all three inputs into the system such that Wl 13 was

the performance weight. This controller was designed using a Cpp value of 0.29 using

the 29 eigenmode model with 64 states. The controller was designed with an order of

54, but using model reduction the order was reduce to 12 while maintaining similar

performance characteristics.
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Figure 3.1: Frequency Response of the Weighing Function Wp

3.3 LQG Model Based Controller

The LQG controller is a combination of the linear quadratic regulator (LQR) state

feedback matrix and a Kalman filter, which is a state estimator. The state feedback

law is given by u = - K x, where K is the state feedback gain matrix. This state

feedback law minimizes the quadratic cost function,

where x is the Kalman state estimate and Q and R weighting matrices that weight

the states and inputs respectively. The state feedback gain of the LQG controller is

found by first solving the solution S of the associated Riccati equation
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From the solution of the Riccati equation the controller is found by

The Kalman filter equation is,

£=Ax+Bu+L(y-Cx)

where L is the filter gain matrix, which is found by solving the following algebraic

Riccati equation for P,

and inserting Pinto

where Qn and Rn are the process and sensor noise covariance matrices of the Kalman

filter. The final controller is governed by the state-space equations

{
£= [A - LC - BK] i + Ly

K LQG :

u = -Ki

The same design parameters used in [13] were used, where the Q and R weighting

matrices are diagonal matrices of 1.0 x 10-4 and 1.0 x 108 respectively putting more

weight on the inputs and less on the states. Also, the Qn and Rn noise covariance

matrices are given by 1.0 x 108 and 1.0 x 10-4 respectively to decrease process noise

and increase reliance on sensor noise. This controller was designed using a cpp value of

0.29 using the 29 eigenmode model with 64 states. The controller was designed with

an order of 74, but using model reduction the order was reduce to 8 while maintaining
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similar performance characteristics.

3.4 LQRY Model Based Controller

The LQRY controller is very similar to the LQG controller. design method. The

only difference is in the application of the weights. Instead of applying the weights

to the states of the system, the LQRY applies the weighting to the outputs of the

system. Therefore, all of the above equations hold for the LQRY as well, except for

the quadratic cost function is now defined as

where Q is now the weighting matrix of the outputs. All other definitions hold for the

LQRY case, including the governing equation of the controller K LQRy . For this case,

the Q and R weighting matrices are diagonal matrices of 1.0 x 108 and 1.0 x 10-4

respectively putting more weight on the outputs and less on the inputs to increase

bandwidth. The same noise covariance matrices are used as well. This controller was

designed using a cpp value of 0.29 with the 29 eigenmode model with 64 states. The

controller was designed with an order of 74, but using model reduction the order was

reduce to 11 while maintaining similar performance characteristics.

3.5 PD Performance Based Controller

A PID controller was designed to maximize the stability range of 'Y. It was de

termined that integral action is not required for this system, so using the standard

implementation the PD controller is of the form
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where i is the index for the control inputs into the system (i = 1 ... 3), j is the index

for the number system outputs (j = 1 ... 2), Gp is the proportional gain, GD is the

derivative gain, and Tpcs is the time constant taken to be 4 x 10-4 sec. Each K ij term

fills the 3 x 2 controller matrix K. To go about determining each entry into the K

matrix, a stabilizing controller with K ll = K 22 and every other term set to zero was

considered as a base case. After determining the stability range of this controller,

these terms were held constant and the remaining terms were individually checked

the maximum stability range under the optimal condition. The only term that had a

more stabilizing effect was the K 32 term. Using a controller with the terms K ll , K 22 ,

and K32 all six gains were optimized to obtain the maximum range of / for stability.

This was done by holding two of the controller terms constant and sweeping the

proportional and derivative gains for one controller term to determine the stability

range of /. After the gains were optimized for one controller term, the process was

continued for the other two controller terms. The resulting gains are

Gpll = 3.80 X 104 GDll = 76

Gp22 = 1.38 X 104 GD22 = 40

Gp32 = 6.62 X 104 GD32 = 103.

The maximum growth rate / at which the system remains stable was found to

be 5,980 rad/s. The / contours that display the PD with respect to the growth

rate / can be seen in Fig. 3.2(a) for this design case. This figure assumes that the

first two controller terms are fixed using the parameters given above, and the third

controller term gains are scanned for stability. For each / contour, the system is stable

inside of the curve and unstable outside of the curve. The advantage of using three

tunable controller terms instead of using the same gains for each term are shown in

Fig. 3.2(b). This figure assumes that all three controller terms are equal to each other,

and the gains are tuned for stability. It is easily seen that stability range is reduced

to a maximum stable / of 4,594 rad/s, with controller gains Gp = 2.33 X 104 and
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GD = 40. The single term PD controller presented in [13] shown in (Fig. 3.3(a-b))

has better results than the single term PD controller designed for the updated model

because that case considered a square model (either 2 x 2 or 6 x 6 system) which

took advantage of every input and output of the system. Applying the same concept

to a 3 x 2 model ignores the effect of the third input, which limits the ability of the

controller to have good performance results. The single term PD from previous work

[13] does not have as much range as the three term PD controller.
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Chapter 4

Controller Comparison

A useful comparison of controllers is to determine the range of 'Y where the system

remains stable as well as a range where the system performs within the limits of the

performance constraints. The five controllers compared in this part are the LQG,

LQRY, N CF, DK, and PD. The desired range of stability for the growth rate 'Y is

[10-5,000] rad/s, with a nominal value at 120 rad/s. All simulations in this chapter

are performed using the 29 eigenmode model with 64 states. The performance targets

and constraints are given in Table 4.1.

4.1 Simulink Model

The new Simulink model can be seen in Fig. 4.1. The plasma model block is the state

space representation of the RWM plasma model altered to accept a time-varying value

Table 4.1: Performance Targets and Constraints

Condition Target Value Maximum Constraint
Rise Time 1.0ms 5.0ms

Settling Time 5.0ms lOms
Overshoot 15% 50%

Input Voltage N/A ± 100V
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of Cpp, The input to the plasma model block is the 6 control voltages, of which the

first 3 C-coil controls are set to zero. The output is the 23 sensor readings. The

plasma model block can also add independent band-limited white noise to each of

the 23 sensor outputs of the system if desired. The MF gain block is the matched

filter that reduces the outputs to the two RWM mode amplitudes. The next series

of blocks entering through the Switch determine the reference value of the RWM

mode amplitude, either through initial condition response, an impulse response, or a

step response. The controller block is the state space representation of the designed

controller to be tested and the Switchl determines whether a designed model based

controller or the PD controller is used in the simulation. The pcs delay block is a

pure delay of time constant 65 x 10-6 sec to represent the plasma control system

operation. The RWM PS block is the power supply block which is represented by a

saturation limit of ±100V, a pure delay of time constant 5 x 10-6 sec, and a transfer

function '4X 10
1

68
+1' The gains in the model are set to 1.

Three simulation profiles were created to test the controllers; an initial condition

test, an impulse response test, and a step response test. The initial condition test

initializes the plasma states to set the output RWM mode amplitude to a value of 1

Gauss for the simulation start time of t = Osee. The reference value of RWM mode

amplitude is set to zero. The impulse response test creates an impulse of 1 Gauss at

a time of t = O.OOlsec and lasts for O.OOOlsec. The step response test creates a step

of 1 Gauss starting at a time of t = O.OOlsec.

4.2 Stability and Performance Ranges

4.2.1 Test Detail

Tables 4.2-4.3 provides the range of, for which the model satisfies certain conditions.

In Table 4.2 the first column Order is the order of the designed controller. The second
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Figure 4.1: Simulink Model of the Control System and Plasma Model

Table 4.2: Stability Ranges

Controller Order Stability Range (Eigen.) Stability Range (Step)
LQG 8 o- 9,109 rad/s o- 9,100 rad/s

LQRY 11 o- 8,514 rad/s o- 8,263 rad/s
NCF 12 o- 9,027 rad/s o- 8,418 rad/s
DK 16 o- 7,747 rad/s 0- 7,437 rad/s
PD 2 o- 5,980 rad/s o- 5,042 radjs

column Stability Range (Eigen.) is the range of I that stabilizes the system based on

it's eigenvalues, using the Pade approximation for the time delays. The third column

Stability Range (Step) indicates the range of I for which the system remains stable

when using a unit step input for the RWM mode amplitude. Table 4.3 represents

the range of I for which the performance conditions are satisfied under the same

condition.

The ranges in Tables 4.4-4.5 are determined using an initial condition and an

impulse response test in Simulink. Again, the stability limit is found by observing the

divergence point of the response. The initial condition response simulates the closed-
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Table 4.3: Performance Ranges

Controller Performance Range (Step)
LQG o- 7,694 radJs

LQRY o- 7,628 radJs
NCF 0- 8,418 radJs
DK o- 7,254 radJs
PD 0- 2,247 radJs

Table 4.4: Initial Condition and Impulse Stability Range

Controller Stability Range (Both)
LQG o-9,109 radJs

LQRY o-8,514 radJs
NCF o- 9,027 radJs
DK 0- 7,747 radJs
PD o- 5,980 radJs

loop system without a reference value and with an initial RWM mode amplitude of

1 Gauss. The initial RWM mode amplitude level depends on the initial conditions

assigned to the states of the system. The initial condition of the states are set by

finding the unstable eigenvector of the system for a certain growth rate I and scaling

the eigenvector to match the desired 1 Gauss RWM mode amplitude. The impulse

response simulates the closed-loop system where the reference value is an impulse of

1 Gauss for 0.1 ms. The performance range is determined by the condition that the

RWM mode amplitude is reduced to two percent of it's maximum value by 10 ms

from the beginning of the simulation.

4.2.2 Results

The results in Tables 4.2-4.3 are a good initial indicator of the advantage of model

based controllers. Although the PD controller is a much smaller order controller, the

stability range is not as robust as the other controllers despite covering the entire
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Table 4.5: Initial Condition and Impulse Performance Range

Controller Performance Range (Initial) Performance Range (Impulse)
LQG 0- 7,969 rad/s o-8.340 rad/s

LQRY 0- 8,113 rad/s 0- 8,263 rad/s
NCF 0- 8,746 rad/s o-8,832 rad/s
DK 0- 6,459 rad/s o- 7,314 rad/s
PD o- 3,278 rad/s o-4,927 rad/s

desired range of growth rate T = [10 - 5, OOO]rad/s. More importantly, the P D

controller does not satisfy the performance conditions to a step response over the

desired range of growth rate, while the model based controllers all meet performance

criteria at T = 7, OOOrad/s. The LQG controller is the smallest order controller of

those meeting all of the conditions and it also has the widest stability range. The

N CF controller has the widest performance range for the step response.

Similar to the previous tables, the Tables 4.4-4.5 performance ranges prefer the

model based controllers. This table shows the performance response to the initial

condition and impulse tests. Once again, the N CF controller has the widest range

of performance for these two tests, while the PD does not fall into the desired range.

The stability range exactly correlates with that predicted by Matlab in the previous

table.

4.3 Step Response

4.3.1 Test Detail

Table 4.6 provides information about the performance of the controllers in response

to a 1 Gauss step input function of the RWM mode amplitude. The first and second

columns S-S offset at T = 5,000 rad/s and S-S offset at T = 120 rad/s are the steady

state offset values of the system response at the given value of T· The third column
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Table 4.6: Step Information

Controller S-S offset at T = 5, 000 S-S offset at T = 120 ±10% of 1 GRange
LQG 1.1375 G 0.0193 G 0- 647 rad/s

LQRY 1.6062 G 0.0224 G 0- 596 rad/s
NCF 1.4425 G 0.0216 G 0- 596 rad/s
DK 2.473 G 0.0230 G 0- 521 rad/s
PD N/A 0.0349 G 0- 361 rad/s

±10% of 1 G Range is the range of T values where the step function final value resides

within ±10% of the 1 Gauss input.

4.3.2 Results

The LQG has the best performance under all of these conditions, closely followed by

the NCF, LQRY, and DK controller. Although the PD controller does not have

the stability and performance range that the other two have, the steady-state offset

and step range is comparable to that of the model based controllers. Since the system

does not have a pole located at the origin (integrator), for a step input there exists

an error constant that determines the steady state offset. The steady state error

increases under all controllers with increasing growth rate T' As T increases, the

system dynamics of the open-loop system changes, which increases the error constant

of the system.

4.4 Initial Condition Response

4.4.1 Test Detail

The initial conditions are calculated to have a RWM mode amplitude of 1 Gauss at the

simulation starting time for a certain T' As explained earlier, the initial RWM mode

amplitude level depends on the initial conditions assigned to the states of the system.
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Table 4.7: Varying Initial Conditions in I

Controller Saturation
LQG 24.05 rad/s

LQRY 25.05 rad/s
NCF 26.14 rad/s
DK 15.75 rad/s
PD 13.55 rad/s

The initial condition of the states are set by finding the unstable eigenvector of the

system for a certain growth rate I and scaling the eigenvector to match the desired 1

Gauss RWM mode amplitude. This growth rate I that determines initial conditions

of the states is set to a value of ,= 120rad/s. Thus, if the initial condition response

simulation is run using a growth rate of 1 = 120rad/s, the RWM mode amplitude

would have a starting value of 1 Gauss. The Saturation column provides the minimum

1 where the voltage saturation limit is first reached by the spike in the control voltage

(Table 4.7).

4.4.2 Results

When the initial condition response simulation is run with a larger growth rate than.
1 = 120rad/s the resulting initial value of the RWM mode amplitude is less than 1

Gauss which results in less required control voltage. However, when the simulation

growth rate is decreased below 1 = 120rad/s the resulting initial value of the RWM

mode amplitude is increased above 1 Gauss. Thus, the smaller reported growth rates

in Table 4.7 correlate to wider ranges where the control voltages do not saturate.

The PD controller performs the best in this condition, closely followed by the DK

controller.
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Table 4.8: Saturation Limits

Controller Initial Condition Step Impulse
LQG 4.7 G 3.5 G 3.2 G

LQRY 4.6 G 3.5 G 3.3 G
NCF 4.4 G 4.0 G 3.7 G
DK 6.7 G 7.5 G 7.5 G
PD 5.2 G 5.7 G 5.7 G

4.5 Saturation Limits

4.5.1 Test Detail

Table 4.8 reports the maximum value of the RWM mode amplitude assumed by the

specific test before saturation is reached in the control voltage. All of the simulations

and initial conditions are designed using I = 120 rad/s. The limits were found for

each of the three test simulations and the values are reported in Gauss.

4.5.2 Results

One noticeable behavior is the ability of the D K controller to suppress the RWM mode

amplitude at higher initial values without reaching the saturation of the coil voltages.

In general, this behavior is directly related to the gain of the controller, which is

inversely related to the stability and performance range for Cpp. The saturation limit

provides a measure of the controller's ability to provide mode suppression at a given

RWM mode amplitude without causing the maximum voltage to be applied to the

coils.
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Table 4.9: Noise Tolerance Levels

Controller RMS Noise b = 5,000 rad/s)
LQG 8.97 G

LQRY 9.07 G
NCF 11.53 G
DK 15.12 G
PD 1.16 G

4.6 Noise

4.6.1 Test Detail

As a final check of the controllers, noise was added to the system to observe the

predicted effect that it will have on the system. Only the sensor noise was taken

into account, ignoring the process noise. The Band-Limited White Noise block in

Simulink was used, which allows you to set the noise power and the sampling time.

The sampling time was set to 5 x 10-6 sec. There are 23 noise blocks added to the

simulation model to represent each of the 23 sensors in the system.

A test was performed to find the RMS noise level of the RWM mode amplitude that

can be sustained until instability is reached. Table 4.9 summarizes the approximate

RWM mode amplitude noise level at which this occurs. The column RMS Noise

h = 5,000 rad/s) corresponds to an initial condition response test at a growth rate
~

of I = 5,000 rad/s to determine the maximum noise level before instability was

reached. For all simulations, the sampling time of the simulation is equal to the

sampling time of the noise blocks.

4.6.2 Results

The LQRY, NCF, and LQG can withstand a large amount of noise amplitude, but

the DK can withstand the most noise. One thing to note is that the time range used
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in the simulations of these test was from 0-15 ms. This time range restricts the ability

to confidently report the maximum allowable RMS noise. Once the reported noise

level is reached, the controller starts using bang-bang control, which can only stabilize

the system for a short period of time before control is completely lost. The reported

noise level corresponds to a system that is stable within a 0-15 ms time range, however

it could go unstable after this time. An example of saturation causing instability is

in Fig. 4.2(c-d). This figure is the LQG controller response to initial conditions of

1 Gauss at I = 5,000 rad/s. An example of a stable response to noise is shown in

Fig. 4.2(a-b). This figure is the LQG controller response to initial conditions of 1

Gauss at I = 5,000 rad/s. The default noise value was used to produce an equivalent

RMS noise level of 0.15 Gauss.

4.6.3 Frequency Response and Noise Spectrum

Fig. 4.3-4.4 provide the frequency response of the controllers as well as the noise·

spectrum. Despite all of the different characteristics of the controllers, the one sim

ilarity between them is the approximate value of the cutoff frequency at 104rad/s.

The noise spectrum was implemented to have a wider frequency range up to approx

imately 1Q6rad/s. This is to help improve the accuracy of the results of the noise

simulations by using a sampling time much smaller than the fastest dynamics of the

system, which are introduced through the controller.
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4.7 Comparison with Controllers Designed in Pre

vious Work

4.7.1 Test Detail

The next step is to compare the above results with the stability and performance

ranges determined in previous control design efforts from [13]. Although it is useful

to compare the ranges of growth rate, there are several key differences to note. First

of all, these results do not take into account the changing value of Cpp in the state

output matrix C. This causes inaccurate results when performing a robustness sweep

of the system to determine the allowable range of "f in terms of system stability

and performance. In addition, the model sizes are different as [13] used models

that were 2 x 2 and 6 x 6 models, while this research uses a 3 x 2 model with a

quartet configuration. A!so, since these efforts were performed, updated models that

incorporate the additional line resistances and inductances have been created to more

accurately represent the operation of DIll-D.

Table 4.10 provides a comparison of previous results from [13] with the new design

results from this research. The controller designs from [13] were designed and tested

on three different models, and this table reports the widest stability and performance

ranges of each controller out of all three models. The results in the New Design

Results column are from simulations where the reported stability and performance

ranges are in response to a 1 Gauss step input.

4.7.2 Results

This table shows that using the updated models, including the state-output depen

dency on cpp , and using a quartet configuration improve the stability and performance

range of both the model based controllers and the performance based PD controller.
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Table 4.10: Growth Rate Comparison

Previous Design Results New Design Results
Controller Stability Performance Stability Performance

LQG 10 - 7,200 rad/s 500 - 4,550 rad/s o- 9,100 rad/s 0- 7,694 rad/s
LQRY 10 - 2,000 rad/s 10 - 1,700 rad/s o- 8,263 rad/s 0- 7,628 rad/s
NCF 10 - 4,550 rad/s 30 - 3,200 rad/s o- 8,418 rad/s 0- 8,418 rad/s
DK - - o- 7,437 rad/s 0- 7,254 rad/s
PD 10 - 1,800 rad/s 200 - 1,300 rad/s o- 5,042 rad/s 0- 2,247 rad/s

The growth rate ranges for stability and performance have been increased greatly.

The design goal mentioned in the thesis [13] was that the PD controller gains were

chosen primarily based on the performance results, which greatly reduced the stabil-

ity range of the controller. It is reported that a PD controller with a stability range

of 'Y = [10,4100] rad/s could be obtained, however this controller does not satisfy

the performance constraints. The main design goal of the recently designed PD con

~roller was to maximize the range of stability and determine the performance range

afterwards. The differences in the PD performances and stability ranges is due to

the differences in the models described above.

4.8 Response Graphs

4.8.1 Test Detail

The following pages contain the system response to several different conditions. For

all of the figures, the following subfigures show: (a) cpp and 'Y time profiles, (b)

LQG response, (c) LQRY response, (d) NCF response, (e) DK response, and (f)

PD response. Fig. 4.5-4.7 show the initial condition responses of the RWM mode

amplitude for 'Y = lOrad/s (Cpp = 71), RWM mode amplitude for 'Y = 5, OOOrad/s

(cpp = 0.3325), and the applied control voltages for 'Y = 5, OOOrad/s (Cpp = 0.3325)

respectively. Fig. 4.8-4.9 show the RWM mode amplitude response to a unit step for
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/ = lOrad/sand / = 5, OOOrad/s respectively. Since the robust controller stabilizes

the plant over a range of growth rate, it is of interest to investigate the controller

performance using time-varying of growth rate /. The results for ramping, stepping,

and sinusoidal functions of the cpp parameter are presented (Fig. 4.10-4.12). The

ramp and step functions begin at an initial value of / = 120 rad/s (Cpp = 5.75).

The sinusoidal function is defined by the design range of / of the controller with a

frequency of 5,000 rad/sec. Finally, one case is shown where noise included in the

sensor signal readings (Fig. 4.13). The sensor noise is assumed to have a sampling

time Ts = 5 x 1O-6sec and a RMS noise level of 0.15 Gauss.

4.8.2 Results

The initial condition response at the slow end of the growth rate range shown in

Fig. 4.5 has satisfactory results for all of the designed controllers. The LQG, LQRY,

NCF, and DK controllers all have quick suppression of the RWM mode amplitude

within 1.5 ms. The PD controller uses more effort to suppress the mode, taking

approximately 2.5 IDS to settle.

For the faster growth rate shown in Fig. 4.6, there is some performance separation

between the controllers. The LQRY and N CF controllers provide the quickest mode

suppression on the order of 1.5 ms, similar to that of the slower growth rate. The LQG

also provides sufficient mode suppression within 3.5 IDS. The DK controller allows

the RWM mode amplitude to exist at a larger magnitude than the other model based

controllers, however the mode is still suppressed within 3.0 ms. The PD controller

has much more difficulty at higher growth rates and does not completely eliminate

the RWM mode amplitude within the performance criteria, however does stabilize

the system at high end of the growth rate range. An important variable to track in

the stabilization of the RWM in the tokamak plasma is the applied control voltage to

the coils. The voltage response for the fast growth rate initial condition response is
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shown in Fig. 4.7. The LQG, LQRY, and NCF have similar control voltage profiles,

a fast application that peaks with an absolute value of approximately 25 volts and

goes to zero within 2 ms. The DK controller uses less applied peak voltage of 19

volts to suppress the RWM mode amplitude, yet the mode suppression is not a fast

as the other model based controllers. The PD controller uses much more controlling

action with a peak on the magnitude of 50 volts and much longer settling time.

The LQG, LQRY, and NCF controllers have similar responses to a unit step

of the RWM mode amplitude at the lower growth rate of'Y = 10rad/sec (Fig. 4.8).

These controllers have no overshoot and the settling time for these controllers is

within a few tenths of a millisecond of the onset of the step function. The D K and

PD controllers have approximately 15% overshoot and settles within 1.5 ms.

A unit step simulation at the faster growth rate of 'Y = 5, OOOrad/sec reveals

the different characteristic of the controllers (Fig. 4.9). The LQG controller has little

overshoot, a settling time of approximately 3.5 IDS, and the smallest steady state error

(approximately 1 Gauss) of all the controller responses. The LQRY controller has

negligible overshoot, a fast settling time of 1.0 ms, and a steady state error above 1.5

Gauss. The NCF controller has approximately 10% overshoot, a settling time of 2.0

ms, and a steady state error under 1.5 Gauss. The DK controller has a much more

oscillatory response with less than 10% overshoot, a settling time of approximately

3.5 ms, and a much larger steady state error of 2.5 Gauss. Finally, the PD is unstable

for a step response at the fast growth rate.

For the results with time-varying growth rate, the ramping Cpp profile of Fig. 4.10

produces similar responses to that of the initial condition response with a slow growth

rate. All of the controllers provide quick suppression of the RWM mode amplitude,

while the PD uses more effort to eliminate the presence of the RWM.

The results in Fig. 4.11 provide insight into the controller behavior to large, in

stantaneous changes in the RWM growth rate. The cpp profiles jumps between the
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upper and lower limits of the desired range and the nominal value. The change in

growth rate that caused the largest effect in RWM mode amplitude was from the fast

growth rate to the slow growth rate. Due to the longer time for mode suppression

at the faster growth rate, when the system was altered with the change in growth

rate, the states of the system (currents in the conductor) were not completely at

equilibrium (x = 0). The model based controllers were able to stabilize the system

despite this large spike in RWM mode amplitude. The LQG was least effected by the

change in growth rate, with a peak of 10 Gauss in the RWM mode amplitude and the

fastest response of RWM mode suppression. The LQRY and NCF controllers had

similar response with a peak of 15 Gauss and a quick elimination of the RWM. The

D K was effected the most by the changing growth rate with a peak of 25 Gauss and

a longer settling time. The PD controller was unable to remain stable under the cpp

time profile.

For the sinusoidal time profile of cpp (Fig. 4.12) the LQG, LQRY, NCF, and

DK controllers provide fast control of the RWM within 2.5-3.0 IDS. The performance

based PD controller does stabilize the system, however has difficulty in completely

eliminating the RWM under this condition. Fig. 4.13 displays the effect of noise

on the controller responses. In general the model based controllers are able to take

advantage of the modeled system dynamics to extend the stability and performance

ranges of the driving instability term ,.
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Chapter 5

. Conclusion and Future Works

5.1 Conclusion

A toroidal current sheet model for the DIII-D tokamak plasma was restructured into

a robust control framework, isolating the RWM growth rate I (ew), the key term

of RWM instability. With the system model in this framework, the DK-iteration

method was applied to develop a structured-singular-value-based robust controller for

a pre-determined range of,. Since the plasma RWM growth rate can vary throughout

the operation of the DIII-D tokamak, the design of a controller that can stabilize the

system over the entire physical range of I is critical.

Four other controller designs were considered (LQG, LQRY, NCF, and PD)

and compared with the robust parametric D K controller. Through simulations and

reported stability and performance ranges, the effectiveness of each controller was

quantified. An extensive sweep of PD gains allowed for a superior PD controller

compared to previously reported values 113].

Despite the improvement in the PD controller, the stability and performance

ranges are limited. The LQG provides the widest range of stability and the smallest

order controller of the model based controllers. The NCF has the widest performance
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range. The DK controller's stability and performance ranges are slightly narrower

than the other model based controllers, however the range without saturating the

control coils is wider and it can withstand more noise than the other controllers. The

optimal controller choice depends on the importance of each of these tradeoffs. In

terms of robust stability, the model based controller could eliminate the need of online

identification and controller scheduling.

5.2 Future Works

While synthesizing the DK controller the algorithm used assumes that the uncertain

parameter is complex. Since in the case of the RWM model the uncertain parameter is

real, using a DK-iteration based on complex uncertainty is not conservative enough.

Since the phase information is known through the real uncertainty, better results

could be achieved using a modified algorithm, the DGK-iteration [14].

Although a robust controller can be designed to handle a range of RWM growth

rates, adaptive control techniques are still worth investigating. Using the toroidal

current sheet model, a transformation into the discrete-time state space representation

was !described. This transformation can be used to assist the development of a system

identification algorithm, which can provide real-time online parameter estimation of

the cpp variable. A discrete-time identification algorithm for state space systems can

be found in [15]. Once the system identification algorithm can identify Cpp parameter,

adaptive control techniques can be implemented to provide stabilizing effects on the

resistive wall mode.
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