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Abstract 

This thesis demonstrates the development of a current-mode system that integrates a front 

end mixer, an intermediate complex filter and a back end demodulator, based on the theory of 

log domain filtering and the technique of state-space synthesis. The unique features of this 

system involve: (1) it is realized only with BJTs, current sources, capacitors and no op amps; (2) 

the intermediate complex filter is designed according to a specific state-space description and it 

integrates a multiple input multiple output second-order band pass filter that is conveniently and 

precisely tunable in both Q and   ; (3) the topology of each block and the whole system is 

implemented with  great symmetry, which is preferable in IC layout.  
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1. Introduction 
 
1.1Motivation for Current Mode Filter Design 

Integrated high-frequency tunable filter design has become a hot research topic in recent 

years; for example, the design of an electronically tunable anti-aliasing filter for use in digital 

video was proposed in [1] and [2]-[4] discussed the design of high-frequency filters in both 

bipolar and CMOS technology. Although a variety of topologies have been studied in these 

papers, they suffered from the high-frequency limitations of active elements and increasing 

circuit complexity due to the use of master-slave system configurations. To overcome the 

frequency limitations of active components, current-mode elements were incorporated in the 

design. In reference [5]-[8], current conveyors were used as active elements in filter 

implementations and even switched-capacitor filters have been designed from the current-mode 

perspective [9]. However, these designs still either contained voltage-mode elements, such as 

operational amplifiers, or were virtually using configurations to process voltage at some internal 

nodes and behaving similarly to voltage-mode filters. To tackle the challenge, Roberts and Sedra 

presented a design in [10] to realize a fundamentally verifiable current-mode filter. Seevinck also 

proposed an integrator in [11] which was genuine current mode. Despite the effort, neither 

design was generally applicable or practically implementable.  

 In summary, filters that are electronically tunable and immune to high-frequency 

distortion have found application in a variety of RF electronic devices and are promising in 

modern filter design. Since current-mode filters are superior to voltage-mode filters in many 

cases, methodologies for current-mode filter design have been intensively studied, and a mature 

technique that could be adopted to guide the reliable implementation of current-mode filters is in 

dire need.  
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1.2 Log Domain Filtering and State-space Synthesis Technique 

In 1992, a novel approach to the current-mode filter design that involves applying an 

exponential mapping to the state-space description of a filter was elaborated by Frey in [12]. 

Inspired by Adams’ ‘log-domain’ filter that will be discussed in the next section, Frey’s 

implementation strategy only requires the use of transistors, current sources and capacitors in 

circuit realization, therefore generalizing the design of Adams by introducing a complete 

distortionless synthesis procedure. Furthermore, state variables defined by this strategy are 

intrinsically related to current rather than voltage in the resulting circuits due to the exponential 

mapping. This fact emphasizes the current-mode nature of the design. In [12], a general 

biquadratic filter section and a seventh-order Chebychev low pass filter were designed using the 

proposed methodology, and implemented with complementary bipolar processes. Both circuits 

were shown to be tunable over a two-decade range in frequency without distortion. 

1.2.1 Introduction to Adam’s Log Filter 

The idea of ‘log-domain filtering’ was first proposed by Adams in 1979[13]. It is claimed 

that by feeding the natural logarithm of the input current to a ‘filter’ that only contains diodes, 

capacitors, current sources and op-amps, it is possible to obtain at some node the natural 

logarithm of a linearly filtered original input current, in voltage form. Subsequent exponentiation 

would translate the voltage back into a current and produce an output that is a linearly filtered 

version of the input current. Simply put, a linear transfer function could be implemented with a 

highly nonlinear circuit. 

A simple example of the log-filtering idea introduced by Adams is given by the network 

in Fig. 1. The network can be divided into three parts. In the front end, the left-most diode D1 

and  the voltage follower work together to convert the input current into a voltage signal, whose 
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value is the natural logarithm of the input current, and send it to the following ‘log filter’. The 

‘log filter’ functions as a special low pass filter, whose output- i.e., the voltage across the 

capacitor-is proved to be the natural logarithm of the low pass filtered input current. The back 

end consists of a level shifter followed by an exponentiator that implements the voltage-to-

current conversion, which is a process of solving for the antilogarithm of the output signal from 

the preceding ‘log filter’.  

 

Fig. 1 Adam's basic log-domain filter 

The quantitative analysis of such network is shown below, where the diodes are assumed 

to obey the ideal diode law and is constantly in forward bias. 

Front end     Input current is converted to a voltage which is a log function of the current: 

   
 

 
   (

   

  
)  

 

 
   (

   

  
)                                                       (1) 

where       is the current flowing in the first diode D1; 

                  is the reverse bias saturation current for an ideal diode; 

               
 

  
 is the inverse of thermal voltage    . q is the magnitude of charge on an electron;  

K is the Boltzmann constant; T is the absolute temperature in Kelvin of the p-n junction.     

‘Log filter’     The output voltage of ‘log filter’    is related with    by the following equation:  

  
   

  
    ̇                

                                                (2) 
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where      is the current of the second diode D2. 

Back end    Since the current flowing in the level shifter diode D3 is forced to be   , the voltage 

across it could be expressed as : 

    
 

 
  (

  

  
)                                                                 (3) 

Obviously, the voltage applied to the last diode is       
 , therefore 

        
             

                                                        (4)                         

Derivation of transfer function    

 In order to figure out the relationship between      and       , combination and 

transformation is applied to the obtained equations. By observation, (1), (2) and (4) produces: 

   ̇ 
       

       
                                                           (5) 

Define        and get: 

                                                                                          (6) 

 ̇     ̇ 
    

    ̇

   
                                                                       (7) 

    ̇      ̇       ̇ 
                                                                    (8) 

Substitute (8) into (5): 

   ̇ 
    

 

   
     ̇                                                                    (9) 

(6), (7) and (9) yield the function relationship between     and       : 

  ̇                                                                                 (10) 

    ̇  
   

 
     

   

 
                                                                     (11) 

From this analysis, it is clear that the network in Fig.1 implements a linear differential 

equation relating the output to the input in current mode; hence the output is a linearly filtered 

version of the input. Equation (11) above suggests a transfer function of a one-pole low pass 
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filter, with cutoff angular frequency at  
   

 
. This result could also be achieved by assuming the 

input to be a small signal added to a DC level. In this case, the diode in the ‘log filter’ acts as a 

resistor which equals to the dynamic impedance of a diode with     flowing in it. Therefore the 

‘log filter’ is equivalent to a simple RC low pass filter, with        =1/(k  ) and the cutoff 

angular frequency                   . Based on the small signal analysis, Adams 

suggested that any RC active filter should have a log-filter counterpart where resistors are 

replaced with diodes. However, the nonlinear term in the differential equation is noteworthy 

since it indicates distortion at the output even under ideal conditions.  

    Potential merits of the log filter include: First, it is electronically tunable over several decades 

of frequency by adjusting the magnitude of internal current sources; therefore, such a design 

strategy might be useful at high frequencies. Second, by comparing the definition of     in large 

signal analysis with the equation describing the ideal diode law, it is interesting to note that 

although   is a function of voltage,    intrinsically represents a current. Such a definition relates 

the voltage across the capacitor in a ‘log filter’ with a current which could be written as a state 

variable of the system state equation. Such perspective is appealing in the design of a genuine 

current-mode filter.   

Despite these promising advantages, a major downside in Adam’s original design is the 

absence of a distortionless synthesis procedure, which leaves some uncertainty for designers to 

evaluate whether a log filter would be acceptable for a given application. Another drawback is 

the dependence of such network on op amps in the process of logging, level shifting and 

exponentiating. It would predictably bring forth serious degradation to the filter in practice, due 

to the non-ideal parameters of the adopted op amps , such as DC offset, DC bias, noise and 

frequency-response limitations.        
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1.2.2 State-space Synthesis Technique 

The distortionless synthesis procedure proposed by Frey is now introduced for the 

creation of log filters. Suppose the dynamical equations corresponding to a desired filter function 

is of the following standard form 

State equation:                                         ̇                                                                  (12) 

Input-output equation:                                                                                               (13) 

where               
  is the state vector,   is the scalar input,   is an      matrix,   is an 

    vector,   is a     vector, and   is a scalar. Then, define the change of variables as: 

                                                                                (14) 

           
                                                                 (15) 

where   is some positive real number, and     is some nominal current value. These equations 

define the mapping from the positive real numbers    and       to    and      . The 

following equation is acquired by directly substituting the specific expression of   and   back 

into the original state equation: 

    ̇ 
      ̇ 

        ̇ 
                               

            (16) 

Multiplying both sides of (16) by        
    ,  

     ̇  [∑
  

 

 

   

    
 (     )]  

  

 
      

        [∑    

 

   

  (     )]      
               

(17) 

where      
  

 
   ,     

  

 
     . 

Now these equations could be interpreted to be a set of nodal equations, where    

represents the     node voltage. Therefore, the left-hand side term     ̇ is the current flowing in a 

grounded capacitor tied to the     node, and the right-hand side of the equation can be taken as 



8 
 

the sum of currents entering or leaving this capacitor. The physical meaning and implementation 

method for terms on the right hand side of eqn.(17) are analyzed as below to prepare for further 

design.  

First of all, categorize the terms from the right-hand side of eqn. (17) into three types and 

make proper definitions for convenience of the subsequent implementation. 

                              
 (     )      

 [(       )   ]                                    for     >0 and  i   j     (18a)       

     
 [            ]                                  for     <0 and i   j      (18b) 

     
                                                                                                                 (19) 

        
              

 [          ]                                      for    >0                     (20a) 

                                                         
 [          ]                                    for    <0                       (20b) 

Then, define              
 

 
                                                                                                   (21a) 

      
 

 
                                                                                                   (21b) 

Compare the definition above with the constitutive law for standard diodes working in forward 

conduction, i.e.,     ( 
 

 

  
    )      

 
 

  
          , where   is the current flowing in the 

diode,    is the reverse bias saturation current for an ideal diode, q is the magnitude of charge on 

an electron, K is the Boltzmann constant and T is the absolute temperature in Kelvin of the p-n 

junction. It is easy to discover that as long as    
 

  
 ,          ) represents the voltage across a 

diode with forward current of |    |         flowing through it. This analogy interprets the physical 

meaning of the right hand side terms of equation (17) in a straightforward way that they are 

either a constant current or the current through a ‘junction’ obeying the standard diode 

constitutive law.  
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Fig. 2 Circuit implementation for (a)    
 [(       )   ]and (b)      

 [            ] 

 

     The term “   
 [(       )   ]” in (18a) essentially represents the current flowing through a 

‘junction’ that follows the ideal diode constitutive law and with voltage             across it. 

        is achieved by shifting up the     node voltage    by a ‘diode’ drop of     , which could 

be acquired using a ‘logging diode’ with a current of      flowing in it. To implement this term, 

assume the ‘junction’ to be the base-emitter junction of an ideal NPN transistor, which works in 

active region. Then, the “   
 [(       )   ]” is obviously the emitter current of the transistor when 

its base is connected to          and emitter connected to     .  Fig. 2a provides a circuit 

implementation of such term. The current flowing in the emitter of Q2 equals    
 [(       )   ] in 

ideal condition.  

The term     
 [          ]  in (20a) is similar to the term     

 [(       )   ]  in (18a) and 

it requires a voltage of       available at some node. Such voltage, call it    , could be 

mathematically constructed as          
 

 
          

 

 
           

 

 
   

   

   
     . 

Therefore,    is the voltage across a diode with current  
   

   
   flowing in it. If set        , then 

   
 

 
        , where   is always a positive real number as defined in eqn. (15). It is easy to 
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obtain    with a ‘logging diode’ placed at the input of the system. It is noteworthy that each input 

current needs to be offset to constantly flow in one direction. 

The term “    
 [            ]” in (18b) describes a negative current. By “negative” it 

means that the current is flowing out of some node. Such a term could be implemented by 

connecting the node to the collector of an ideal NPN transistor whose base is tied to     and 

emitter is connected to        , which is achieved by down shifting the voltage at the     node-

i.e.,  - by a diode drop of     . Fig. 2b gives an example of realizing the negative current. With 

the help of Q2 and Q3, a current of      is forced to flow in Q1. It follows that the collector 

current of Q4,    
 [            ], is pulled out of node  . The fact naturally results in the negative 

sign for the current. The term      
 [          ]  in (20b) can be avoided by forcing     to be 

constantly positive, for the convenience in circuit design. We hence skip the discussion on the 

implementation of this term.   

Apply the same mapping method and subsequent processing to the input-output equation 

and we obtain 

  (∑     
    

   )     
                                                      (22) 

where        and        . Obviously, each term at the right hand side of eqn. (22) could be 

implemented using the technique described above. 

What is noteworthy is that the above development holds only when the state variables    

and the input   are constantly positive. Such a constraint calls for further investigation. For  , 

adding a DC offset component would provide an input that never goes to zero or negative. Since 

the transfer function from   to   is linear, this operation simply adds a DC shift to the final 

output without changing the filter response to the nominal input. For state variables to be always 

positive, the processing technique is more complex. Forcing appropriate equilibrium conditions 
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would be the first step, and it will guarantee that when all the capacitors are replaced by open 

circuits, the transistor-current source network would have a suitable DC solution. For example, 

assume after a certain state-space transformation to the original dynamical equations, we have in 

the transformed co-ordinates the state-space equation below:   

                                                             (23) 

Let the original dynamical equations be expressed as 

   ̃

  
  ̃ ̃   ̃              ̃ ̃   ̃                                           (24)                                                

Then apply the linear transformation     ̃ and impose the DC equilibrium constraint that 

                    
  where       when         .It gives us 

    ̃        ̃          ̃   ̃                                  (25) 

where   ̃      and   ̃    in (23). 

Eqn. (25) sets a number of constraints on the choice of transformation M. Since the elements of 

M are generally under-constrained by the equations, one can choose M to optimize the sparsity 

of the transformed matrices A and B. After transformation, the input-output equations also get 

new matrices:    ̃    and    ̃. 

In practice, the fact that the actual circuit implementation will be made with transistors of 

finite gain guarantees that the currents in the network-i.e. the state variables in the mathematical 

model-will always remain bounded; therefore, the capacitor voltages can only change at a finite 

rate. Although it has been verified in simulation that large transients in high-Q networks do cause 

serious distortion for a period of time, since the bounds on the state-variable excursions can be 

easily exceeded, designs can nevertheless be made free of problems by appropriately scaling the 

signals in system.  
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The general design procedure using the state space synthesis technique is now outlined as 

follows: First, determine the state-space representation for given filter transfer function. This can 

be done by using a companion-form approach. Typically, high-order filters are constructed based 

on a single state-space model, or by a cascade of lower-order state-space models. Then, apply a 

transformation to the obtained dynamical equations in order to force an appropriate DC operating 

point for the filter. The transformation should be linear and nonsingular so that the new state-

space presentation would implement the same transfer function as the old one does. Such 

transformation will involve some trial and error to find a best circuit implementation; hence, it 

requires some intuitive perspective of the whole system. Having determined a transformed linear 

state equation, the exponential transformation is applied as presented above, resulting in a set of 

nodal equations in the form of eqn. (17) and eqn. (22). The nodal equations would suggest an 

interconnection of transistors, capacitors and current sources for the realization of the system. 

1.3 Project Introduction 

1.3.1 System Block Diagram and Possible Application  

The proposed system consists of a mixer block, a complex filter block and a mixer-based 

demodulator block, as shown in Fig. 3. A quick review of superheterodyne receivers would 

provide an example for the application of such system.  

 

Fig. 3 Block diagram of the proposed complex filter system 
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Fig. 4 shows the block diagram of a typical superheterodyne receiver: the signal from the 

antenna is first filtered by a band pass filter with high center frequency for band selection. A 

local oscillator in the receiver produces a sine wave to mix with the processed signal, shifting it 

to an intermediate frequency (IF), usually a lower frequency. The output signal of the mixer is 

then band pass filtered, amplified and possibly processed in additional ways to provide an IF 

signal with good quality. Then the demodulator uses the IF signal to recreate a copy of the 

baseband signal. According to Fig. 3, the proposed system in this thesis would perform signal 

down conversion, IF-centered band pass filtering and FM signal demodulation as an integrated 

block. Also, the complex filter alone could work individually as a band pass filter for band 

selection.    

 

Fig. 4 Block diagram of a typical superheterodyne receiver 

1.3.2 Design Spec. 

For the convenience in design review, some specs for the system are set in advance. 

    Input signal:              (         )                       

    Signals provided by local oscillator: 

                                              

                                               

    Intermediate frequency/ center frequency of complex filter: 

                                                          

http://en.wikipedia.org/wiki/Local_oscillator
http://en.wikipedia.org/wiki/Intermediate_frequency
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    Offset DC current for each AC signal:            

1.4 Summary 

This thesis starts from the introduction to log domain filtering theory and the state-space 

synthesis technique given above. Then it discusses in detail the design and implementation 

procedure of an integrated current-mode complex filter system using such a technique. It is 

hoped that throughout the study, a better understanding of log domain filtering could be 

established, and a synthesis technique based on this principle for the design of mixers, filters and 

other related RF applications can be demonstrated and generalized.  
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2. Mixer Block Design 

 
In the mixer block, the system input current is separately mixed with two sinusoidal 

current signals generated by the local oscillator, which are identical in amplitude and frequency 

but 90 degrees apart in phase. The block performs multiplication in parallel, producing two 

output currents both with frequency components that present the sum and difference of the mixed 

frequencies. Quantitative analysis based on the trigonometric identity is given below to describe 

the function of an ideal mixer. Note that  

           
 

 
         

 

 
                                              (26a) 

              
 

 
         

 

 
                                              (26b) 

According to the system spec, replacing      and      in (26a) with        (       ) 

and                , and replacing      and      in (26b) with        (       ) 

and              , the unscaled current products are formulated below: 

                  (       )                   

                
 

 
          [             ]  

 

 
          [              ] 

                
 

 
          [              ]  

 

 
          [               ] 

                
 

 
                     

 

 
                                                   (27a)                             

                  (       )                 

              
 

 
          [             ]  

 

 
          [              ] 

              
 

 
          [              ]  

 

 
          [               ] 

              
 

 
                     

 

 
                                                        (27b) 
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     In addition to the sum and difference of the mixed frequencies shown in eqn. (27a) and 

(27b), the output of a real mixer may contain other frequency components such as DC signal and 

the original frequencies themselves. It is desired that the mixer block produces as few extra 

frequency components as possible. On the other hand, to ensure the output of a current mixer to 

have unit of first power, the product is usually divided by a scale factor in the form of a current. 

The following sections discuss two approaches to the implementation of the mixer block. The 

first approach is based on the state-space synthesis technique as discussed in Chapter 1, and the 

second approach utilizes the variable-transconductance principle [14]. 

2.1 Design with the State-space Synthesis Technique 

Recall that the state-space synthesis technique deals with constantly positive current 

variables, so a DC offset must be added to each current sent into the mixer. The offset current for 

any AC signal is set to 0.5mA and is denoted as      in the system spec. As shown in Fig. 2(a), 

the product of two positive currents is an exponential function of the sum of two corresponding 

diode drops provided that the junctions approximately obey the ideal diode constitutive law. Two 

design issues are noteworthy during the circuit implementation:  

1. Properly scaling the current product.  

2. Regulating the DC offset of both output signals to be the same 

Since the output of the mixer block is a current flowing in certain transistor, the 

constitutive law governs that the voltage difference between the base and the emitter of the 

output transistor should be only one diode drop. It implies that the output current is a scaled 

current product. Another perspective would be that since the output current is supposed to have 

unit of first power, the result given by (27a) and (27b) has to be divided by a scale factor which 

is in the form of a current. For convenience, the current for scaling-e.g.,    -                 . 
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Regulating the DC offset of both output signals is important because it would greatly 

facilitate the subsequent process. As for the following core filter to work properly, it requires its 

input signals to have the same DC offset. Realizing such regulation requires forcing a proper DC 

operating point for the circuit. 

      Based on the discussion above, the output of the proposed mixer block is constructed as 

below: 

      
 

   
[                                                        

 ] 

             
                

 

   
                                                                                                 (28a) 

      
 

   
[                                                        

 ] 

                
                

 

   
                                                                                                (28b)                                                                                                                                                            

Substitute the specific value of each variable into (28a) and (28b),  

       
 

    
[ 

 

 
                      

 

 
                     ]       

                                                                                       (29a) 

              
 

    
[
 

 
                     

 

 
                    ]       

                                                                                         (29b) 

Inspired by the first-order low pass filter designed in [15], a mixer is designed as shown 

in Fig. 5. Recall the dynamic equations for a low pass filter with the cutoff frequency at    and 

unity gain at low frequency: 

 ̇                                                                 (30a) 

                                                                              (30b) 
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If the input variable   can be implemented as a scaled current product, then the output   would 

represent a low-pass-filtered input. A challenge of applying state-space synthesis technique to 

the implementation of a mixer is the design of a proper input stage. Specifically, we need to 

build a circuit with a nodal equation in the form of (30a) and an input that is a scaled current 

product with proper DC offset. From eqn. (28a) and (28b), the input signal could be taken as the 

summation of two current products subtracted by the offset current product. It is obvious that two 

sets of the circuit block in Fig. 2(a) and one set of the circuit block in Fig. 2(b) are needed. In 

Fig. 5, it is the three subparts formed by Q3, Q4, Ish1; Q7, Q8, Ish2; and Q9,Q10,Q11,Q12, Isc that 

realize the summing and subtracting of the current products. Note that each subpart has an input 

voltage that is two-diode drop, denoted by V1, V2 and V3. The implementation of a two-diode 

drop is simply connecting two NPN base-emitter junctions carrying the current to be multiplied. 

In Fig. 5, V1 is achieved with Q1, ILOsin_pos, Q2 and Isig_pos; V2 is achieved with Q5, ILOsin_neg, Q6 

and Isig_neg; and V3 is achieved with Q15, Ioff, Q14 and Ioff2. 

To implement the low pass filtering, a capacitor with one end grounded and a current 

source pulling current from the capacitor is needed. The two components in conjunction 

determine the cutoff frequency of the filter. The ungrounded end of the capacitor is connected to 

the emitter of Q4, Q8 and the collector of Q11.  The voltage at this node is two-diode drop which 

is a natural log function of the unscaled output current. The structure that consists of Q9, Isc, Q10 

and Q12 forces Isc to flow in Q9, so there is one diode drop of Vsc from the base of Q9 to the 

base of Q13. It follows that the current flowing in Q13 is the scaled current product.  

         Since VC in Fig. 5 is two-diode drop, the base of Q4 and Q8 should be three-diode drop. 

Therefore, a one-diode drop shift up from the emitter of Q3 to the base of Q4, and from the 

emitter of Q7 to the base of Q8 is required, and it involves selecting proper value for Ish1, Ish2 and 
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Ish3. This is accomplished by making DC analysis on the circuit. Assume that all the AC signals 

are off, then V1, V2 and V3 would have the same value which is a voltage of two-diode drop 

corresponding to      . According to KCL, the amount of the current flowing into the capacitor 

should balance that of the current flowing out of it. A straightforward solution involves setting 

Ish1=Ish2=Ish3=Isc=Ioff, so that VC would be a voltage of two-diode drop corresponding to      . 

Such a solution is not the only one that constructs the DC equilibrium for the mixer. Discussion 

regarding how to find a proper DC operating point through quantitative analysis is not in the 

scope of this study.  

 
Fig. 5 Schematic of a mixer designed with the state-space synthesis technique   

Detailed large signal analysis to the circuit in Fig. 5 is shown below: 

Assume:            
                        ̇     ̇   

                                                         (31a)                                                                                                         

                            
        

        
                                                                                                                                                                                                                                                                    

                   (         )                 (          )      
  

                                       
                                                                                          (31b) 

        
                                                                                                    (31c)  
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The nodal equation describing the current in the capacitor can be written as: 

       ̇           
    ̂         

    ̂         
                                              (32) 

Comparing the left hand side of (32) with (31a), and multiplying both sides of (32) with 

 

   
   

          , we get: 

 ̇   
    
   

   
            

 

   
   

      ̂        
 

   
   

      ̂       
 

   
  
       

   
    

   

  
      

   
 

    

   

    

    

  
      

   
 

    

   

    

    

  
      

   
 

    

   

   

    

  
      

   
                             (33) 

Assume      
    

   
  and                      ,  

   ̇         (
   

   
)                  where    

   

   
                                      (34)                                                      

(34) and (31c) together suggests that the output of the circuit is a low-pass filtered version of the 

input signal. Since the circuit has a stable DC operating point, the voltage change at the 

ungrounded end of the capacitor is negligible. Therefore,  ̇ in eqn. (34) is approximately zero. It 

indicates that the output of the circuit in Fig. 5 equals the input which is a scaled current product. 

Fig. 6 shows the schematic of the mixer block that contains two identical mixers proposed in Fig. 

5 with different input and without any capacitor. To decrease the hardware cost, two mixers 

share the offset DC voltage that corresponds to      . The current flowing in Q20 and Q35 

represents the output of the mixer block. 
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Fig. 6 Schematic of a mixer block designed with the state-space synthesis technique 

    The value of each current source in the circuit is listed as below:  

                                                                

                                                                  

                                                             

                                                             

                                                                 

                                                          

                                                                   

     Fig. 7a shows the result of PSpice simulation on the circuit in Fig. 6 with ideal NPN 

model and Fig. 7b shows the result of the simulation with real NPN model, which is given in the 

Appendix. The plots in Fig. 7(a1),(a2) agree quite well with eqn. (29a) and eqn. (29b), but the 

plots in Fig. 7(b1),(b2) display an output with smaller amplitude and unexpected frequency 

components. Specifically, the output offset is 0.495m which has -1% error compared to 0.5m and 

the amplitude of both 1MHz and 9MHz components is 17.5uA which has -12.5% error compared  

to 20uA.
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    (a1)                                                                                 (a2) 

 

 

        
    (b1)                                                                                (b2) 

 

 

 
Fig. 7 Simulation result of the mixer block proposed in Fig. 6. (a1) Transient response of 

the test with ideal transistor model (β     ). (a2) FFT frequency response of the test 

with ideal transistor model (β     ). (b1) Transient response of the test with real 

transistor model. (b2) FFT frequency response of the test with real transistor model. 
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2.2 Design with the Variable-transconductance Principle 

Another design approach is based on the variable-transconductance principle. The 

principle is utilized in the monolithic four-quadrant multipliers to achieve small error over a wide 

frequency range and is briefly introduced below. In the circuit block shown in Fig. 8, the 

differential pair Q3-Q4 provides the variable transconductance, and the diode-connected pair Q1-

Q2 provides the proper base drive for the former. Assume the BJTs are matched and they all 

have negligible base currents. By KVL,                      , so           

         . The logarithmic characteristics of ideal BJTs gives that     
  

  
     

  

  
, or 

  

  
 

  

  
. 

This can be rewritten as                                . Rearrange terms,  

                                                                             (35)  

Eqn. (35) indicates the circuit’s ability to multiply the current difference         by the total 

emitter current        and scale the product by        . Moreover, the offset current must be 

added to ensure that i1, i2, i3 and i4 always flow in the same direction.  

 

Fig. 8 Linearized transconductance block 
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Using the variable-transconductance principle to implement a multiplier is not complex if 

we can first mathematically construct the scaled current product in a proper way. Eqn. (35) 

naturally suggests the idea of expressing a scaled current product by the combination of current 

differences. A specific example is given below using the data from the system spec.  

Assume                              (         )  (          )        

                                                                                                                       (36a)                                

so        =                     (         )  (          )                   (36b)                   

Set                    =                                                          (37a) 

Substitute these results into eqn. (35), 

                                                                                         (38)   

Adding in another current summation         that is similar to        function wise, and 

setting                                                                      (39)  

then by a similar calculation, we get 

                                                                                      (40)        

Subtract eqn. (40) from eqn. (38),  

(                                                                                            

                                                                                      

                                                                                              (41)      

To ensure that the current difference above is constantly positive, it is necessary to offset 

        with a proper DC current. In the context of given spec,                    . Therefore, 

        in (41) becomes (            ), and the final output is:  

                                                    

                                                        (42) 
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     The other output could be constructed the same way by setting  

                                                                                 (43)        

                                                                             (44)    

Conducting similar calculation,  

                                                             

                                                  (45) 

Note that the output signals shown in eqn. (42) and eqn. (45) are identical to the outputs of the 

mixer block proposed in Fig.6, as shown in (29a) and (29b). It indicates the feasibility of using 

Fig. 8 as a basic unit to implement another mixer block. 

 

Fig. 9 Schematic of a designed mixer using the variable-transconductance principle 

     Fig. 9 shows the design of a mixer based on the variable-transconductance principle. Q1, 

Q2, Q3, Q4, Q5 and the current sources of       ,          work in conjunction to force          

flowing in Q1 and          flowing in Q2. The two currents correspond to      and      in the 

analysis above. The sum of the currents flowing in Q6 and Q7 is           , and that of the 
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currents flowing in Q8 and Q9 is           . They correspond to         and          

respectively. Apply KCL to the interconnection of Fig. 9, 

                                                             (46a) 

                                                          (46b) 

Considering the logarithmic relationship between the voltage drop and the current of an ideal PN 

junction, equations that describe the currents of interest is derived using (46a) and (46b): 

  

  
 

  

  
                                                            (47a) 

  

  
 

  

  
                                                          (47b) 

The difference between (I6-I7) and (I9-I8) equals the difference between (I6+I8) and (I7+I9). 

Therefore, the collectors of Q6, Q8 and Q10 are connected together to force the current sum of 

(I6+I8) to flow in Q10. The same connection method is applied to Q7, Q9 and Q11 to pull the 

current sum of (I7+I9) out of Q11. Note that Q10 and Q11 form a current mirror, so the current 

flowing in Q11 equals (I6+I8). To obtain a constantly positive current difference as the final 

output,      is pushed into Q11 to provide a DC offset. I12 is the output of the mixer, which could 

be formulated as: 

                                          

                                                               

    
       [               ]

     
      

           

    
                                        (48)        

To implement a mixer block with two outputs as formulated in eqn. (42) and eqn. (45), 

two sets of circuit block in Fig. 9 are connected and modified as shown in Fig. 10. Since the ideal 

BJT models with high β are used in simulation, the base current of each transistor is negligible. It 

follows that the left-most block which provides         ,           and the corresponding voltage 
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drops could be shared by the two subsequent parallel blocks that contain current sources of 

          ,            and           ,            respectively. It decreases the circuit hardware 

complexity and would not influence the correctness of applying the variable-transconductance 

principle to the circuit loops of concern. Current flowing in Q53 and Q65 represents the output 

of the mixer block. 

 
Fig. 10 Schematic of a designed mixer block using variable-transconductance principle 

 

     Fig. 11a shows the result of the PSpice simulation on the mixer block proposed in Fig.10 

with ideal BJT models, and Fig. 11b shows the result of the simulation with real BJT models. 

The plots in Fig. 11(a1), (a2) agree quite well with eqn. (42) and eqn. (45). However, the plots in 

Fig. 11(b1),(b2) display the introduction of an unexpected frequency component of 5MHz with 

amplitude of 3.938uA, which is brought forth by the difference in the DC offset of the current 

flowing in Q1 and Q2. In Fig. 11(b2), the amplitude of 1MHz and 9MHz component is 19.162u 

and the output offset is 0.502mA which has an error of 0.4% compared to the expected 0.5mA. 
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(a1)                                                                                 (a2) 

 

           
(b1)                                                                                  (b2) 

 

 

 

 

 

 

 

 

 

Fig. 11 Simulation result of the mixer block proposed in Fig. 10. (a1) Transient response 

of the test with ideal transistor model (β     ). (a2) FFT frequency response of the 

test with ideal transistor model (β     ). (b1) Transient response of the test with real 

transistor model. (b2) FFT frequency response of the test with real transistor model. 
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3. Demodulation Block Design 

     The demodulation block, which is also the back end of the system, consists of a mixer 

block and a subtractor. The mixer block is very similar to the one discussed in the last chapter. It 

mixes one of the outputs from the core filter with a sinusoidal signal generated by the local 

oscillator and the other with another sinusoidal signal. The two sinusoidal signals are identical in 

amplitude and frequency but 90 degrees apart in phase. The difference of the two mixed signals 

is achieved with a subsequent subtractor and is the final output of the whole system. Based on 

the discussion in Chapter 2, the design of the back end block merely requires some modification 

to the schematic in Fig. 5 or Fig. 10. In this chapter, two designs of the demodulation block are 

proposed and tested. 

3.1 Design with the State-space Synthesis Technique 

     The design proposed in this section uses the state-space synthesis technique and is very 

similar to the circuit in Fig.5. As shown in Fig. 12, the blocks in green form an interface between 

the preceding core filter and the back end stage, providing the input voltages that correspond to 

Iin1_pos, Iin1_neg, Iin2_pos and Iin2_neg for the demodulation block. 

 

Fig. 12 Schematic of a designed demodulation block using the state-space synthesis technique
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Assume:      
                    ̇    ̇    

            

                     
        

        
        

        
         

                                                                                 

                                                    —                                                    

                                                          

               
               

Suppose there is a capacitor connected between node1 and the ground, then the nodal equation 

for node 1 could be written as: 
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Multiplying both sides of the above equation by  
 

   
   

         , we get 

 ̇   
   
   

   
          

 

   
  
   (  ̂    )  

 

   
  
   (  ̂    )  

 

   
  
   (  ̂    )  

 

   
  
      

 

   
  
     

     
   
   

  
     

   
 

   
   

 
  

     

   
 

  
     

   
 

  
     

   
 

  
     

   
 

  
     

   
  

Set    
   

   
 and             ,  

 ̇         
  

   
              where    

  

   
                          (49) 

     Eqn. 49 indicates that the output of the circuit is a low-pass filtered version of the scaled 

input. Since the circuit has a stable DC operating point, the voltage change at the ungrounded 

end of the capacitor is negligible. Therefore,  ̇ in eqn. (49) is approximately zero. It indicates 

that the output of the circuit in Fig.12 theoretically equals the scaled input signal. Transient 

analysis is made with PSpice to test the performance of the demodulation block. According to 

the system spec, the output signals of the core filter would be                        

     and                            , so two ideal current sources respectively set 
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to the value of    and    are used as the input for the demodulation block in simulation. 

Sinusoidal signals generated by the local oscillator and all the DC currents are set to the same 

value as in the front end mixer block. The PSpice test result for the demodulator proposed in Fig. 

12 is shown in Fig. 13. Specifically, Fig. 13 (a1) and (a2) display the result of the simulation 

with ideal BJT models, and Fig. 13 (b1) and (b2) shows the result of the simulation with real BJT 

models.  

The output of such a block is supposed to be: 

          
 

   
[                                 ] 

         
 

    
[                                         

                                                  ] 

         
           

    
[                                             

               ]         

                                                                                                                   (50)

     The simulation result of the test using ideal BJT models matches (50) perfectly. For the 

simulation using real BJT models, the amplitude of 4MHz frequency component is 5.7uA, 

deviating from the expected 8uA for 28.75%, and the offset of the output current is 0.4826m 

which has an error of 3.48% compared to 0.5m.   



32 
 

      
    (a1)                                                                          (b1) 

 

       
         (a2)                                                                         (b2) 

 

 

 

 

 

 

 

 

Fig. 13 Simulation result of the demodulator block proposed in Fig. 10. (a1) Transient 

response of the test with ideal transistor model (β     ). (a2) FFT frequency response 

of the test with ideal transistor model (β     ). (b1) Transient response of the test 

with real transistor model. (b2) FFT frequency response of the test with real transistor 

model. 
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3.2 Design with the Variable-transconductance Principle 

     Another approach to the demodulator block design is derived from the circuit in Fig.10, 

as shown in Fig. 14. Similarly, the two blocks in green form the interface between the preceding 

core filter and back end block, providing                                        

         as the input signals for the demodulator.

    According to the variable-transconductance principle, we have 

  

  
 

  

  
        

       

       
 

       

       
                   

       

       
                    

          

     
 

  

  
 

  

  
        

       

       
 

       

       
                   

       

       
                    

          

     

  

  
 

  

   
      

       

       
 

        

        
                  

        

       
                    

          

     
 

  

  
 

   

   
    

       

       
 

         

         
                   

         

       
                    

          

     
  

 

Fig. 14  Schematic of the demodulation block using the variable-transconductance principle 
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     Since the reference current of the current mirror is                   ,         

             . Therefore, output of the block-i.e. the current flowing in the ideal voltage 

source-could be written as 

                                                                        

                            [               ]  [                  ] 

         
 

    
(             )                  

 

    
(             )                         (51) 

Substitute the specific value into eqn. (51), 

                      
 

    
                                        

 
 

    
                                         

                                                                                                                              (52)

PSpice transient analysis with the ideal BJT models produces an output that agrees quite 

well with eqn. (52), as shown in Fig. 15 (a1) and (a2). In the test with real BJT models, a “  

helper” is added to the current mirror. In order to decrease the influence of Early effect on the 

output DC offset, the ideal voltage source carrying the output current is set as 1.4V. The FFT 

frequency spectrum shown in Fig.15 (b2), which shows the result of the test with real BJT 

models, suggests that the output current has an offset of 2.408uA, and the amplitude of 4MHz is 

7.645uA which has an error of -4.438% compared to the expected 8uA. Again, an unexpected 

frequency component of 5MHz is introduced into the output with amplitude of 1.275uA.
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(a1)                                                                        (b1)  

 

       

(a2)                                                                         (b2) 

 
 

 

 

 

 

 

Fig. 15 Simulation result of the mixer block proposed in Fig. 14. (a1) Transient response 

of the test with ideal transistor model (β     ). (a2) FFT frequency response of the 

test with ideal transistor model (β     ). (b1) Transient response of the test with real 

transistor model. (b2) FFT frequency response of the test with real transistor model. 
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4. Complex Filter Block Design  

The complex filter proposed in this chapter is a double input double output second-order 

band pass filter that performs log domain filtering. The filter is electronically tunable both in 

quality factor Q and center frequency   , and has unity gain at the center frequency. The 

detailed design flow and synthesis procedure is discussed in this chapter. Related parameters are 

calculated and selected based on the system spec. given at the end of Chapter 1. 

4.1 Preliminary Design 

4.1.1 Mathematical Model 

Assume the state-space description of the complex filter block as:    
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|                                 (53a) 
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|                                                                          (53b) 

where    and    are the input variables,    and    are the state variables, and    and    are the 

output variables.  

The transfer functions derived from (53a) and (53b) are given in (54a) to (54b): 
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To understand the function of this block, typically an AC signal is fed to only one of the 

input terminals and the other terminal is treated as a “dummy” input driven by a positive DC 

signal. For example, when    is connected to the input signal,    should be connected to a 

positive DC signal. In this case,    would represent a band-pass filtered    as expressed in (54a) 

and   would represent a low-pass filtered    as suggested in (54c). Similarly, when driving the 

filter with   , the band-pass filtered version and low-pass filtered version of the input at    and 

   can be obtained respectively. The denominator of the transfer functions above suggests that 

the two poles of the filter are       
  

  
    . Although the transfer functions given by (54a) 

and (54d) are not in the standard form for a second-order band pass filter, the center frequency of 

the band pass filter could be estimated to as          √  
 

   . Applying Taylor expansion 

to the function of         gives the expression             
 

     when Q is large. The error 

between        and    is      
 

    , and a high Q would minimize the error. On the other hand, 

the magnitude of the two band-pass filtering transfer functions-i.e., (54a) and (54d)-at       is 

       √
     

      ; therefore, higher Q makes       closer to unity. 

4.1.2 Implementation Procedure  

     The synthesis procedure starts from making physically meaningful definitions for the 

state variables. Based on the technique and topology proposed in [15],    and    are defined as 

the scaled current products that could be implemented with the circuit block in Fig. 2(b). 

Specifically,    is connected to some voltage of two-diode drop that corresponds to the unscaled 

current product, and      is replaced with a DC current source to scale the current product. Since 

   and    are exponential functions of the voltage across the corresponding one-end-grounded 
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capacitor, the voltage across each capacitor should be two-diode drop. This indicates that there 

are definitely some nodes in the circuit connected to the voltage of three-diode drop. The 

schematic sketch of the filter is proposed in Fig. 12. Large signal analysis is then made by 

formulating two nodal equations-e.g., (55a) and (55b)-that describe the current in each capacitor. 

 

Fig. 16  Schematic sketch for the complex filter 

In figure 16 the nodal equations are given by 

    
̇           [               ]       [(          )    ]        (55a) 

    
̇          [               ]          [(          )    ]        (55b) 

Assume: 1.    and    are the two input currents with DC offset      

2.             [           ] and             [           ]                       

3.                                          

                4.                   
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Note that   ̇   
  

  
    

̇  and   ̇   
  

  
    

̇ , by multiplying both sides of (55a) and (55b) by 

         and          respectively, the left hand side of (55a) and (55b) is transformed to   ̇and 

  ̇.  

Specifically, the two nodal equations could now be rewritten as: 
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                                                                   (56a) 
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                                                                   (56b) 

In matrix form, 
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|                                                    (56c) 

In order for (56c) to be equivalent to (53a), each corresponding entity must be equalized: 
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                                                (57c) 

     It is easy to note that (57b) and (57c) could not simultaneously hold when Q≠1. The 

reason for this defect is that    is used in both input level shifting and output scaling for the input 

variable   . A simple solution is to add in another set of circuit block in Fig. 2(b) so that the 

input level shifting and the output scaling for    would depend on different current source. The 

modified schematic is shown in Fig. 13. Based on the assumption made on page 39, the state-

space description for the new circuit could be obtained by making slight modifications to eqn. 

(56).  The nodal equation for the left capacitor remains the same as eqn. (55a), but that for the 

right capacitor is now reformulated as 
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Multiplying both sides of (58) by         , i.e.,      [           ]      ,  
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Substitute (59) back into (56c) gives 
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Fig. 17  Modified schematic sketch for the complex filter 

To match (60) with (53a), set:  
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                                               (61c) 

Correlate (61a), (61b) and (61c) with the assumption on page 34 and the system spec, a summary 

on the value for each component in Fig. 17 is listed below:  
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1.                               ;       
     

  
 

     

 
;       

    

 
. 

2.    
    

    
 

    

             
        .  

Consider the error of      
 

  
   for   , the value of C needs slight adjustment during the 

simulation in order to obtain the center frequency of 1MHz. 

According to the large signal analysis, the design in Fig. 13 completes the implementation 

of the complex filter block. However, another important issue to consider is that whether the 

circuit has DC equilibrium. To clarify this point, DC analysis to the circuit will be discussed in 

the following section. 

4.2 Small-signal Analysis and Design Modification 

4.2.1 Gm-C counterpart and AC analysis 

For convenience in AC analysis, another perspective of the circuit shown in Fig. 17 is 

developed at block level by introducing the Gm-C equivalent circuit. Note that the circuit blocks 

in Fig. 2(a) and Fig. 2(b) could virtually be modeled as transconductance amplifiers with positive 

and negative   , respectively. The positive transconductance pushes current into the output 

terminal of the amplifier while the negative one pulls current from the output terminal. The 

transconductance equals the inverse of the dynamic resistance of certain forward biased b-e 

junction in the block, value wise. The dynamic resistance could be expressed as    
  

  
 , where 

   is the thermal voltage and    is the current flowing in the junction at some DC operating

point. Based on this concept, the Gm-C counterpart of the circuit in Fig. 17 is shown in Fig. 14. 

For convenience in the following AC analysis, several simplifications are applied to the circuit:  

1. Each input of the filter is denoted by a voltage of two-diode drop corresponding to the 

product of the input current        and the DC current    .  
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2. Output blocks are removed.  

3. Blocks for the voltage level shift in Fig. 13 are replaced by ideal DC voltage sources.  

 

Fig. 18 Gm-C counterpart of the design in Fig. 17 

The transconductance of each amplifier in Fig. 18 equals the reciprocal of the dynamic 

resistance of the related transistor in Fig. 17; therefore,     
 

      
 

      

  
,     

 

      
 

      

  
,      

  

      
  

      

  
,      

  

      
 

      

  
, where each current term represents the 

current flowing in the junction at some DC operating point. Based on the equivalent circuit 

shown in Fig. 18, AC analysis could be made with great convenience. Specifically, short all the 

DC voltage sources and open all the DC current sources, then write nodal equations for the two 

capacitors with the labeled parameters. By inspecting the current condition at node1 and node2, 

the nodal equations could be formulated as: 

|
   

̇

   
̇
|  |

                   
                 

| |
   

   
|  |

      
       

| |
   

   
|       (62) 

where     and      are the voltage variables that are natural logarithm of the corresponding input 

current product, and both are of two-diode drop. Note that eqn. (62) has the same form as (53a); 

it provides a necessary condition for the circuit to perform as expectation. 
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Another appealing feature of the Gm-C filter in Fig. 18 is that each amplifier has its 

inverse or non-inverse input terminal directly connected to the output terminal, rather than to the 

ground as is the case in many other Gm-C filters. Such a feature is exclusive to the Gm-C 

counterpart of a log-domain filter, which greatly facilitates the AC analysis. The equivalent 

circuit where either input terminal of each transconductance amplifier is grounded is shown in 

Fig. 19 to provide another perspective of the circuit in Fig. 18. 

 

Fig. 19  The equivalent circuit of Fig. 18 where either input terminal of each transconductance 

amplifier is grounded 

4.2.2 DC analysis and Circuit Modification 

Eqn. (62) alone is not sufficient to guarantee the performance of the circuit in Fig. 17. 

The other indispensable piece for a reliable design is to realize DC equilibrium and find for the 

circuit a proper DC operating point, which will be discussed in the following section. 

In DC analysis, AC signal is assumed to be nonexistent in the circuit. Specifically, two 

capacitors will behave like open circuit and the AC component in     and     is replaced by DC 

component. For simplicity,     and     are connected to the voltage of two diode drops 

corresponding to    
 , i.e.,     (

   

  
) . Again, the nodal equations are derived based on Fig. 18 
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for node1 and node2, where the left hand side represents the current(s) flowing into the node and 

the right hand side represents the currents(s) flowing out of the node: 

(          )                                                  (63a)                                                  

                            (          )                              (63b) 

For a proper DC operating point, it is desired that both     and     are two-diode drop 

and are independent on Q. To check out whether the circuit meets such criteria, (63a) and (63b) 

are solved for     and    . Assume 

         (
 

  
)     ,          (

 

  
)       

          ,                    

According to eqn. (61a)-(61c) and the schematic in Fig. 13, (63a) and (63b) are simplified as 
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(
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                                                            (64b) 

Solve for x1 and x2 in (64a) and (64b), 

   
       

     
,       

       

     
                  

       

     
,          

       

     
 

Note that both     and     are functions of Q; therefore, the circuit does not have a stable 

DC operating point and it needs further modification. 

The modification procedure involves: First, force the circuit in Fig.13 to be in DC 

equilibrium by assuming                      (
 

  
)  in DC analysis. Second, list the 

nodal equations and identify extra terms that are needed to hold the equations true. Third, 

synthesize the extra terms and add the blocks to the schematic in Fig. 17.  

Nodal equation set for the circuit in Fig. 17 under the assumed DC equilibrium can be 

written as: 
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                                                       (65a) 

                      
 

  
 

 

 
 

  

  
                                          (65b) 

One of the most straightforward methods to hold the above equations true is:  

1. Add (  
 

  
)   to the left hand side of (65a).  

2. Add 
  

  
, I to the left hand side and the right hand side of (65b) respectively.  

To maintain the voltage level of two diode drops at both nodes, the implementation of the new 

terms must to obey the following rules: 1. For a block that pushes current into any node, the base 

voltage of the output transistor should be three-diode drop and the emitter should be connected to 

the corresponding node. 2. For a block that pulls current out of a node, the base voltage of the 

output transistor is two-diode drop and the collector should be connected to the corresponding 

node.  

The modified circuit is shown in Fig. 20, where there are three added blocks that provide 

the needed DC currents with proper voltage level to force the DC equilibrium of the circuit. The 

Gm-C counterpart is shown in Fig. 21, where each colored block corresponds to the block with 

same color in the circuit in Fig. 20. The value of each component in Fig. 21 is given below: 
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Fig. 20 Modified schematic version of the circuit in Fig. 17 

 

Fig. 21 Gm-C counterpart of the circuit in Fig. 20 
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4.4 Design Test I 

     In this section, AC analysis and DC analysis are made to testify whether the modified 

circuit shown in Fig. 20 has obtained both necessary condition and sufficient condition to 

perform as expectation. Then, AC test is run in PSpice to show the Bode plots and relevant 

measurement result of the circuit.  

Since the added blocks only introduce DC signals into the old circuit, the AC analysis to 

the circuit in Fig. 20 would achieve an equation identical to eqn. (62). In DC analysis, assume 

             (
 

  
) and both capacitors are open circuit. Two nodal equations describing the 

currents in the capacitors in Fig. 21 are formulated as: 

                                  
 

  
                                                      (66a) 

 

                                    
 

  
                                    

(66b) 

 

To solve the nodal equation set of (66a) and (66b) for     and    , assume  
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)     ,          (

 

  
)      

          ,             

Similarly, (66a) and (66b) are simplified as 
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                                                    (67b) 

Solve eqn. (67a) and (67b), 

                       (
 

  
)                                            (68) 

The result mathematically proves that the circuit in Fig. 20 has a stable DC operating point 

independent on Q. Eqn. (62) and eqn. (68) together establish the necessary and sufficient 
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condition for the circuit in Fig. 20 to implement the state-space description given in (53a) and 

(53b) with reliability. Therefore, the circuit could be a candidate for the complex filter block 

design.  

To test the performance of the circuit, AC analysis is made by PSpice simulation. The 

simulation contains two parts: single-ended AC test and double-ended AC test. In the single-

ended test, only one input terminal is connected to an offset AC current, while the other is driven 

by some DC current at a proper voltage level. In the double-ended test, both input terminals are 

simultaneously connected to the offset AC signals. The right input signal (corresponding to     

in Fig. 20) should lead the left input signal (corresponding to     in Fig. 20) 90 degrees in phase, 

and they are identical in amplitude and frequency. This setting models the output generated by 

the front end mixer block as discussed in Chapter 2.  

     Set               , so          ,
 

  
       , (  

 

  
)         , 

  

  
 

      . The filter is expected to have a center frequency that equals the frequency difference 

between the system input signal and the signal generated by the local oscillator, e.g., 1MHz. 

Therefore,    
 

      
        . In the simulation, ideal NPN model and ideal current or 

voltage sources are used. According to the test result, C is adjusted to 3.075nF to move    closer 

to 1MHz.  

Simulation result is given in Fig.22. For both tests, the upper plot represents the left 

output and the bottom one represents the right output. The measured    and   agree quite well 

with expectation. Bode plots in the same column are almost identical, indicating that two inputs 

of the circuit are band-pass filtered with good balance. In the single-ended test, unity gain is 

achieved at center frequency, while in the double-ended test the gain at the center frequency is 

around 6dB due to AC signal superposition. Moreover, the plots from the single-ended test 
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display better low frequency suppression and overall symmetry than that from the double-ended 

test.   
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         (a)             (b) 

Fig. 22 AC test result for the circuit in Fig. 20 (a) Single-ended test result. (b) Double-ended test result. 
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4.5 Design Improvement 

     The PSpice simulation has testified the band-pass filtering function of the circuit in Fig. 

20. Defects of the design lies in the lack of symmetry in topology, complicated tuning process, 

and non-unity gain at the center frequency in the double-ended AC test. This section discusses a 

solution to the defects. 

4.5.1 Topology Symmetry Improvement 

      Inspect Fig. 20 or Fig. 21, there are altogether three added blocks that help force the DC 

equilibrium of the circuit. Specifically, there is one block injecting certain amount of DC current 

into the left capacitor and there are two other blocks respectively pushing and pulling current at 

the ungrounded end of the right capacitor. If such a circuit could be truncated so that only one 

block is attached to the right side capacitor, the topology would be more symmetric. Recall eqn. 

(65b), in DC analysis on the circuit in Fig. 17, the current flowing into and out of node 2 is I and 

  

  
 respectively. Among the current leaving node 2,  

 

 
 is provided by the right input signal and 

 

  
 

is provided by the added block. If the right side input block is modified to reverse the direction 

of the current of  
 

 
, then the total amount of the current flowing into the right side capacitor 

becomes (  
 

 
   and that of the current flowing in the opposite direction becomes 

 

  
. In this 

case, only one block that sucks the current amount of (  
 

  
)   from the right side capacitor is 

needed.     

     Fig. 23 shows a truncated schematic for the filter block. Note that the phase of the right 

input signal has been shifted with 180 degrees due to the modification to the right side input 

block. To maintain the sign of the output that corresponds to the right input signal, a 180-degree 

phase shift should be applied to the AC component of the right input. Moreover, a block that 
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performs proper scaling is added in, which is the right most block with the current source I, to 

keep the amplitude of the output signal correct. The Gm-C counterpart for the new design is 

shown in Fig. 24, which is much simpler and more symmetric in topology compared to the 

circuit in Fig.21. 

 

Fig. 23 Truncated version of the circuit in Fig. 20 

 

 

Fig. 24 Gm-C counterpart of circuit in Fig. 23 
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Single-ended and double-ended AC test is run in PSpice on the circuit in Fig. 23. For 

simplicity in comparing the test result with Fig. 22, parameters for the truncated circuit are set 

almost the same as they are in the test on the circuit in Fig. 20:            ,     

     , 
 

  
       ,  (  

 

  
)         ,    

 

      
        . In the double-ended test, 

two input signals are identical in amplitude and frequency, but the right input is set to lag the left 

input by 90 degrees in phase. All the components used in the simulation are assumed to be ideal. 

The test result is shown in Fig. 25. Bode plots and the measured parameters such as 

quality factor, center frequency and peak gain, are very close to the results displayed in Fig. 18. 

It indicates that the modification to the circuit does not influence the performance of the circuit. 

For both tests, the upper Bode plot represents the left output and the bottom one represents the 

right output. In the single-ended test, unity gain is achieved at center frequency, while in the 

double-ended test the gain at center frequency is around 6dB due to the AC signal superposition. 

Additionally, Bode plots from the single-ended test show better low frequency suppression and 

better overall symmetry than that given by the double-ended test.   
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(a)                                                                              (b) 

 Fig. 25 AC test result for the circuit in Fig. 23. (a) Single-ended test result. (b) Double-ended 

test result. 
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4.5.2 Tunability Improvement and Design Optimization 

     Although the design in Fig. 23 has better topology symmetry, other two defects such as 

inconvinience in tuning and non-unity gain at the center frequency still exist. The complexity in 

tuning is due to the fact that Q is determined by current sources tagged with  
 

 
, 

 

  
, (  

 

  
)   

and (  
 

  
)  . The downside is obvious: First, hardware inefficiency. Second, at least two 

parameters-e.g., 
 

 
     

 

  
-need to be figured out in the tuning of Q. To facilitate the tunning, we 

could adjust the value of the current source connected in parallel with  each capacitor, from 
 

  
 to 

 

 
. To maintain the DC equilibrium, the current sources tagged as  (  

 

  
)   and (  

 

  
)   in 

Fig. 23 should change to  . After the parameter adjustment, the tunning of Q becomes much 

simpler because the current sources that determine Q are currently of the same value, denoted by 

 

 
. Since (  

 

  
)   has been adjusted to I, the task of scaling the output that corresponds to the 

right input could be done by the block containing such a current source. Therefore, the right most 

block in Fig. 23 is no longer needed. In this case, the parameter adjustment above also simplifies 

the schematic of the filter. The modified circuit is shown in Fig. 26 and the Gm-C counterpart  

remains the same as is shown in Fig. 24. 

After the above adjustment, the state-space description for the filter becomes 
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|                                        (69a) 

|
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|                                                                              (69b) 
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Fig. 26 Final version of the schematic for the complex filter block 

Four transfer functions for the system are deduced as: 

                    
(
  
 

)   
  
 

 

    (
  
 

)     
 

     
 
                                       (70a)    

                           
  (

  
 

)

    (
  
 

)     
 

     
 
                                    (70b)                                                                  

According to the denominator polynomial of     and    , the two poles of both band 

pass filters are solved as       
  

 
    . An approximation could be made that        

  √  
 

        
 

    , which indicates an error of 50(
 

  )% between        and   . Note 

that the coefficient of S in the denominator polynomial is  (
  

 
), it suggests that the current 

sources denoted as  
 

 
  in the circuit virtually correspond to  

 

 
 . That is to say, when set the 

current sources tagged  
 

 
  in both Fig.23 and Fig.26 to the same value, the obtained quality 

factor of the former filter is twice as much as that of the latter one. 
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For both band pass filtering functions, the amplitude at the center frequency is calculated 

to be  

         
          

 √
    

     
 

When Q is big enough,          
          

 (     √
 

 
)          . The result 

suggests that in the single-ended AC test the peak gain is around -3dB and in the doubled-ended 

AC test, unity gain could be obtained due to the signal superposition. At this point, the third 

problem is solved.   

The tunability of Q and    is discussed below: 

1. To tune the value of Q, adjust the current sources denoted with “ 
 

 
” in Fig. 26. It is the 

current value of  
 

  
 that corresponds to Q. The process of tuning Q is fairly simple when   is set. 

2. Recall that        , it follows that all the current sources in Fig. 26 except the ones 

tagged with        have to be tuned in order to vary the center frequency of the filter block. Such 

process is not only cumbersome; it even involves adjusting the current sources that affect the 

value of Q. Inspect eqn. (69a) and the circuit, it is easy to see that    is dominantly determined 

by the current sources framed with rectangle. It indicates that during the tuning of   , one only 

needs to adjust the value of these two current sources plus two other ones that are framed with 

circle, to maintain the circuit DC equilibrium.   

3. The tuning of Q and    does not impact each other because the two parameters are 

determined by two current source groups with no interaction. Specifically, the value of Q 

depends on the current sources in blue and the tuning of    involves adjusting the current sources 

in yellow.  
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4.6 Design Test II

The test of the complex filter block proposed in Fig. 26 is run in PSpice, including:  

1. Transfer function test.  

2. Tunability test. 

3. Accuracy test.  

    Page 60 to Page 66 show the result of the test with ideal transistor model and C=3.075nF.  

Page 67 to Page 71 display the result of the test with real model and C=2.589nF. 
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    Verification of the transfer function implementation (test with ideal BJT models) 

            
(a)                                                                      (b)                                                                    

 

 

 

 

 

 

 

Fig. 27 Bode plots for the circuit network in Fig. 26. (a) Bode plot for     (top left) and     

(bottom left). (b) Bode plot for     (top right) and     (bottom right). 

    Single-ended AC analysis is made: set         , sweep    at discrete value of 0.5m, 

0.1m, 0.025m, 0.0125m, 0.00625m, and extract four Bode plots of the double input double 

output circuit block. To obtain Bode plots representing    and    , feed the left input with 

an offset AC signal and the right input with positive DC signal, then check both left output 

and right output. Similar method is used to obtain the plots for     and    . Result shows 

that     and     are band pass filtering functions while     and     are low pass filtering 

functions. It agrees with (70a) and (70b). The following simulation will only focus on the 

test of     and    . 
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Tunability of Q (test with ideal BJT models) 

     

(a)                                                                   (b) 

 

 

In the simulation, set             and sweep 
 

 
  at discrete value of 0.05m, 0.025m, 

0.0125m, 0.01m, 0.0625m. It is expected to obtain in each plot a cluster of curves that represent 

the band pass filtering function, centered at 1MHz and with Q varying from 5 to 40. Simulation 

result agrees quite well with expectation. During the sweep, the peak gain of the filter block 

almost stays the same. For double-ended test, unity gain is obtained at center frequency. 

Relevant measurement data is given as below. 

 

 

 

Fig. 28 Test result for the tunability of Q. (a) Bode plot for    (top left) and    (bottom left) in 

the single-ended test. (b) Bode plot for    (top right) and    (bottom right) in the double-ended 

test. 
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Table 1 Measurement result of Q, peak gain and fc when Ifc=0.5m and 

Q=0.05m,0.025m,0.0125m,0.01m,0.0625m. For (a) single-ended test and (b) double-ended test. 

 

 

 

 

 
                                                                 (a) 

 

 

 

 
                                                                 (b) 
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Tunability of    (test with ideal BJT models) 

                  

        (a)                                                                   (b) 

    

  

 

In the simulation, set            , sweep     from 0.45m to 0.55m with step of 0.025m. It’s 

expected that each plot displays a cluster of curves representing the band pass filtering function, 

with a constant Q of 20 and a moving center frequency in      range of 1MHz. Simulation 

result testifies the tunability of   . During the sweep, the quality factor and the peak gain vary in 

~     range of the center value in opposite direction: higher     results in higher Q and lower 

peak gain. Relevant measurement data is given below. 

 

 

Fig. 29 Test result for the tunability of fc. (a) Bode plot for    (top left) and    (bottom 

left) in the single-ended test. (b) Bode plot for    (top right) and    (bottom right) in 

double-ended test. 
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Table 2 Measurement result of fc, Q and peak gain when IQ=0.0125m and 

Ifc=0.45m,0.475m,0.5m,0.525m,0.55m. For (a) single-ended test and (b) double-ended test. 

 

 

 

 

                                                              (a) 

 

 

 

                                                               (b)
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Influence of     on Q (test with ideal BJT models) 

 
(a)                                                                                 (b) 

 

 

 

              

             Table 3 Measurement result of Q in the doubld-ended AC test when IQ=0.00625m,0.01m,0.0125m,0.025m,0.05m 

             and Ifc=0.45m,0.475m,0.5m,0.525m,0.55m. 

 

 

Fig. 30 The change of Q in (a)     and (b)     in the double-ended AC test when both Ifc and IQ are 

tuned. The Plots suggest that Q has an inverse relation with   . Given   , larger     produces larger Q 

and the effect is more obvious when    is small, or, Q is large. 
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Influence of    on    (test with ideal BJT models) 

     
(a)                                                                           (b) 

 

 

 

 

     

 

  Table 4 Measurement result of fc in the double-ended AC test when   

IQ=0.00625m,0.01m,0.0125m,0.025m,0.05m and Ifc=0.45m,0.475m,0.5m,0.525m,0.55m. 

 

 

Fig. 31 The change of fc in (a)     and (b)     in the double-ended AC test when both Ifc 

and IQ are tuned. The plots display a linear relationship between fc and Ifc, and suggest 

that adjusting IQ hardly has influence on fc when Ifc is set. 
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Tunability of   (test with real BJT models) 

 

 

Table 5 Measurement of (a) Q, (b) peak gain and (c) fc in the Q tunability test 

 

 

Fig. 32 (a) Bode plot of     and (b) Bode plot of     in the double-ended AC test. In 

the simulation, Ifc=I=0.5m (corresponding to fc=1MHz) and IQ sweeps at discrete 

value of 0.05m, 0.025m, 0.0125m.0.1m, 0.00625m. 

    The result shows that when Ifc is set, varying IQ could change the quality factor of the 

filter block without affecting the value of center frequency. The obtained Q has an error of 

~10% compared to the theoretical value. The peak gain is greater than unity and it 

increases as IQ decreases, or the obtained Q increases.  



67 
 

Tunability of    (test with real BJT models) 

 

 

 

 

Table 6 Measurement of (a)fc, (b)Q and (c)peak gain in the fc tunability test. 

 

    

Fig. 33 (a) Bode plot of     and (b) Bode plot of     in the double-ended AC test. In 

the simulation, IQ=0.125m (corresponding to Q=20) and Ifc sweeps from 0.45m to 

0.55m with the step of 0.025m. 

      The result shows that when IQ is set, varying Ifc in      range of 0.5m would move 

the center frequency in      range of 1MHz without affecting the value of peak gain. Q 

increases as Ifc, or fc increases. 
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   Influence of     on Q (test with real BJT models) 

    
(a)                                                                                   (b) 

                

 

 

 

 

Table 7 Measurement of Q in the tuning of both Ifc and IQ. 

Fig. 34 The change of Q in (a)    and (b)     in the double-ended AC test when both Ifc 

and IQ are tuned. The plots suggest that Q has an inverse relation with   . Given   , larger 

    produces larger Q and the effect is more obvious when    is small, or the obtained Q is 

large. The plots are similar to the ones in Fig. 30.  
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Influence of    on fc (test with real BJT models) 

 
(a)                                                                         (b) 

              

 

 

 

Table 8 Measurement of fc in the tuning of both Ifc and IQ.

  

Fig. 35 The change of fc in (a)    and (b)     in the double-ended AC test when both Ifc and 

IQ are tuned. The plots suggest that fc is linearly proportional to Ifc. Given    , the influence of 

   on the center frequency is negligible. The plots are similar to the ones in Fig.31. 
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5 System Test 

 
    In this chapter, the mixer block, the complex filter block and the demodulator block are 

connected to form the whole system. System function is then tested by transient analysis. 

Since there are two approaches to front end and back end block design, two schematics 

for the system are presented and tested.  Lastly, the image frequency rejection of the 

system is tested by tuning Q of the complex filter and comparing the output of a 

pair of input signals with image frequency of 5MHz.



71 
 

 

 

Fig. 36 System schematic I.  
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         System function test 

 

 
        

 

 

 

 

Fig. 37 Simulated result of the transient analysis and FFT frequency analysis on the system 

proposed in Fig. 36. (a1), (a2), (a3) shows the output of the front end mixer, the intermediate 

complex filter and the back end demodulator, in time domain. (b1),(b2),(b3) is the frequency 

spectrum corresponding to (a1), (a2), (a3). 
 

    Ideal current sources and transistor models are used in the simulation. For the complex filter 

block, set           (corresponding to Q= 20), C=3.075n, Ifc=0.5m (corresponding to 

fc=1MHz). The offset of the output of each block is the same, which is 0.5m. The frequency 

response further verifies that all the outputs agree well with the theoretical expectation. 
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              Image frequency rejection test 

        

(a1)                                                                               (b1) 

           

 (a2)                                                                               (b2) 

 

 

 

 

 

 

Fig. 38 Simulated result of the image frequency rejection test on the system proposed in Fig. 36. 

(a1) (a2) Time and frequency response to the input current (          π        ).  
(b1) (b2) Time and frequency response to the input current (          π        ). 
 

    In the test, sweep IQ in the core filter at discrete values of 0.25m, 0.0625m, 0.025m, 0.0125m 

(corresponding to Q=1, 4, 10,20). As Q increases, the amplitude of the output for the 4MHz 

input remains the same, while the amplitude of the output for the 6MHz input continues 

decreasing. Therefore, the system could be used in the image frequency rejection.   
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Fig. 39 System Schematic II. 
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         System function test 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

  

    Ideal current sources and transistor models are used in the simulation. For the complex filter 

block, set           (corresponding to Q= 20), C=3.075n, Ifc=0.5m (corresponding to 

fc=1MHz). The offset of the output of first two blocks are the same, which is 0.5mA. Due to the 

use of an ideal voltage source to carry the final output current, the final output is offset by 8uA. 

The frequency response further verifies that all the outputs agree well with the theoretical 

expectation. 

 

Fig. 40 Simulated result of the transient analysis and FFT frequency analysis on the system 

proposed in Fig. 39. (a1), (a2), (a3) shows the output of the front end mixer, the intermediate 

complex filter and the back end demodulator, in time domain. (b1),(b2),(b3) is the frequency 

spectrum corresponding to (a1), (a2), (a3). 
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              Image frequency rejection test 

   

         (a1)                                                                             (b1) 

          

         (a2)                                                                             (b2) 

 

 

 

 

     

Sweep IQ in the core filter at discrete values of 0.25m, 0.0625m, 0.025m, 

0.0125m, (corresponding to Q=1, 4, 10,20). As Q increases, the amplitude of the output 

for the 4MHz input remains the same, while the amplitude of the output for the 6MHz 

input continues decreasing. Compare Fig. 40 to Fig. 37, the overall performance of 

system II is better than that of system I. 

 

Fig. 41 Simulated result of the image frequency rejection test on the system proposed in Fig. 39.  

(a1) (a2) Time and frequency response to the input current (          π        ).  
(b1) (b2) Time and frequency response to the input current (          π        ). 
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6 Conclusion and Future Work 

 
6.1 Study Conclusion 

     In this study, the principle of log domain filtering and the state-space synthesis 

technique is reviewed. An integrated current-mode complex filter system including a 

front end modulation block, a core filter block and a back end demodulation block is 

designed using BJTs and ideal current sources. The system does not contain any op amp, 

therefore would effectively avoid serious degradation in practice.  

     Two methodologies are used in the design of both front end and back end block, 

based on the state-space synthesis technique and the variable transconductance principle 

respectively. The design that uses the state-space synthesis technique virtually constructs 

a low pass filter with a stable DC operating point. The input variable in the state-space 

description of the filter is a scaled offset current product which is formed by the 

combination of several current products. The output variable equals the state variable, 

which is a current related to the voltage across the “capacitor”. The DC equilibrium of the 

filter is achieved by forcing the currents flowing into and out of the “capacitor” node to 

strictly obey KCL. Transient test is run in PSpice using both ideal and real BJT models. 

The test with ideal models shows result that perfectly matches the theoretical evaluation. 

However, for the test with real models, the amplitude and offset of the output current is 

smaller than the theoretical value. The former parameter has an error of 10% and the 

latter parameter has an error of 1%. FFT frequency spectrum of each test suggests that the 

circuit performs properly as a mixer block.  

The design for core filter starts from the state-space description of the block. After 

making proper definitions for the state variables and the input/output variables, a 
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schematic is developed to realize the corresponding nodal equations. Gm-C counterpart 

of the schematic is introduced to illustrate the filter at block level. DC analysis of the 

circuit is made by formulating nodal equation that describes the current condition at each 

capacitor, and extra DC currents are intentionally added in order to force the DC 

equilibrium. To enhance the topology symmetry and schematic conciseness, the circuit is 

then truncated. A direct result is that to constantly obey KCL, the ungrounded node of 

each capacitor requires only one block that provides additional DC current. For the 

simplicity in tuning Q and   , the original state-space description of the filter is slightly 

modified. The modification greatly improves the tunability by explicitly assigning the 

task of tuning Q and tuning    to two current source groups with no interaction. 

Moreover, each current source in the same group technically share the same adjustment 

parameter during the tuning. AC simulation is run in PSpice, using both ideal and real 

BJT models. Simulation result shows the successful implementation of a double-input-

double-output second-order band pass filter which is electronically tunable in both Q and  

  , with unity gain at center frequency. Adjusting    has little influence on    when    

varies in the range of     ; however, large Q is sensitive to the tuning of    .  

Two schematics of the whole system are proposed. Transient test using ideal 

transistor model shows excellent agreement with the theory, thus verifies the system 

function of modulation, band pass filtering, and demodulation. Image frequency rejection 

capability of the system is also tested. In the test, Q of the core filter is set to 1,4,10 and 

20 successively. FFT frequency spectrum of the test suggests that the increase of Q 

effectively improves the image rejection ability of the system. 
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6.2 Future Work 

The transient test of the system using real transistor model does not produce a 

satisfactory output in the simulation. This opens up the opportunity for further study on 

the analysis and design detail of each block and the interface between them.  

Second, throughout the study, we explore the method to assist DC equilibrium for 

each designed block by observing the current condition at each interested node and 

making simple quantitative analysis. A more general technique that involves 

transforming the given state-space description and implementing extra circuit block could 

be studied.   

Last but not least, given an input to the current system, the tuning of Q and    

requires manual adjustment. Future study would research the design and implementation 

of a system with self-tuning ability, or with time-varying Q and    that are automatically 

tuned according to the input signal. 
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Appendix 

Spice model for NPN transistor and PNP transistor used in simulation 

AT&T ALA400 - CBICR MODELS   TYPICAL CASE  8/31/87   REVISION I 

NPN TRANSISTORS 

 

*NR100N - 1X NPN TRANSISTOR 

.MODEL NX1 NPN RB=524.6 IRB=0 RBM=25 RC=50 RE=1 

+IS=121E-18 EG=1.206 XTI=2 XTB=1.538 BF=137.5 

+IKF=6.974E-3 NF=1 VAF=159.4 ISE=36E-16 NE=1.713 

+BR=.7258 IKR=2.198E-3 NR=1 VAR=10.73 ISC=0 NC=2 

+TF=.425E-9 TR=.425E-8 CJE=.214E-12 VJE=0.5 

+MJE=.28 CJC=.983E-13 VJC=0.5 MJC=0.3 XCJC=.034 

+CJS=.913E-12 VJS=0.64 MJS=0.4 FC=0.5 

PNP TRANSISTORS 

 

*PR100N - 1X PNP TRANSISTOR 

 

.MODEL PX1 PNP RB=327 IRB=0 RBM=24.55 RC=50 RE=3 

+IS=73.5E-18 EG=1.206 XTI=1.7 XTB=1.866 BF=110.0 

+IKF=2.359E-3 NF=1 VAF=51.8 ISE=25.1E-16 NE=1.650 

+BR=.4745 IKR=6.478E-3 NR=1 VAR=9.96 ISC=0 NC=2 

+TF=.610E-9 TR=.610E-8 CJE=.180E-12 VJE=0.5 

+MJE=0.28 CJC=.164E-12 VJC=0.8 MJC=0.4 XCJC=.037 

+CJS=1.03E-12 VJS=0.55 MJS=0.35 FC=0.5 
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