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Abstract 

In this thesis, we investigate the efficiency enhancement of surface plasmon (SP) 

coupling to the InGaN/ GaN QWs LED based on the strongly localized optical field and highly 

enhanced photon density of states near the SP frequency (ωsp) according to Purcell enhancement 

factor. Based on the Purcell effect, when the emission frequency approaches the surface 

plasmon frequency coupled to the active region, the energy coupled to the SP will notably 

increase and hence IQE will be strongly enhanced.  

In order to achieve the desirable long-wavelength emission and enhance the radiative 

efficiency for InGaN QWs LED, TiN and Au are selected as the appropriate materials for 

allowing the design of the surface plasmon frequency in the long-wavelength spectral regime 

(green-red). Such optimum design for engineering the surface plasmon frequency of the nano-

metallic structures will result in enhanced radiation recombination rate from the active region.  

In this thesis, we investigate both single and double metallic layers structure to get the 

optimized model for Purcell enhancement in long-wavelength range. The effect of the metallic 

layer thicknesses has been exhibited in the computational studies. The Au and TiN single-layer 

structures can achieve the strong Purcell factor of ~1000 times and ~550 times in green and 

amber regime, respectively. The tunability of the SP frequency can be achieved by using the 

TiN/Au double-metallic layer structures for achieving optimized design to cover the peak 

Purcell factor ~ 500 times across the range of the surface plasmon frequencies of Au and TiN.  

The effect of different spacer separation between the InGaN QWs and metallic layer is also 

investigated. The variation of the spacer thickness affects the coupling efficiency, and this 

increased thickness also reduces the Purcell enhancement factor and decreases the surface 

plasmon frequency.  
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Chapter 1: Introduction  

1.1. Challenges of Conventional InGaN QW LEDs  

GaN based light emitting diodes (LEDs) are currently the subject of extensive 

research interest and has been widely commercialized due to the widespread 

applications in the areas of photonics, including solid state lighting [1]-[2], LCD 

backlighting [3], full-color displays [4], power electronics [5], thermoelectricity [6], 

and solar cells [7]. Nowadays for the high-efficiency, high-output, and energy-saving 

purposes, white- and full-color lighting technology require a monolithic device 

composed of red, green and blue GaN based LEDs.  

 

 

 

 

 

 

 

 

In the past years, the InGaN alloy has been used as the active layer in GaN light 

emitting diodes radiating in blue and green spectral regimes. The InGaN alloy allows 

the emission from the ultraviolet up to entire visible spectral regimes, and the 

engineering of the InxGa1-xN QWs with higher In-content have the potential to access 

into the important “red emission” spectral regime. However, the strain misfit 

Figure 0-1. Bandgap and lattice constant mismatch of GaN and InN. 
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dislocation density from lattice mismatch of InGaN (3.545 Å) and GaN (3.189Å) 

results in higher density of nano-scale In-rich clusters through spinodal decomposition 

and other mechanisms [8]-[9]. Thus, high In-incorporation in growing InGaN/GaN QW 

for efficient long-wavelength light emission is usually difficult, and the poor material 

quality will lead to the low internal quantum efficiency (IQE) of InGaN QWs in the 

long-wavelength regime [10]. The challenges in achieving high efficiency InGaN-

based quantum well light-emitting diodes (LEDs) in the long-wavelength (green-red) 

spectral regimes are attributed to the low radiative recombination rate and poor material 

quality from this active region alloy containing high In-content. Hence, these issues 

will lead to the low IQE of InGaN QWs LEDs operating at longer wavelength. 

 

 

 

 

 

 

 

 

Another important limitation is related to the charge separation induced by the 

large internal field in the InGaN QW. This large internal field is attributed to the strong 

spontaneous and piezoelectric fields in the InGaN/GaN QWs [11]-[12]. As the InGaN 

and GaN layers have different polarization properties, this results in the built-in field 

Figure 0-2. Room temperature PL measurement of InGaN film grown on GaN 

under same growth conditions except for the InGaN growth temperature (a) 

830℃, In=0.14, (b) 780℃, In=0.24 [15]. 

Lower In Content

Higher In Content



4 

 

within the active region. Additionally, as there is a p-i-n junction, it will also have a 

built-in field in the QWs. Considering those fields altogether, there will be a net field 

from p-type layer to n-type layer, which mainly produced by the polarization field. With 

such an internal field, there will be a potential tilt in the QW, which results in the charge 

separation of the electronics and holes in the active region. Such charge separation will 

result in the reduced internal quantum efficiency in the long-wavelength range, and 

consequently affect the overall efficiency of LED.  

 

 

 

 

 

 

1.2. Motivation 

To solve the charge separation issue, several methods with improved electron-

hole wave function overlap (Γeh) have been proposed [13]–[19], such as the staggered 

InGaN QW, type-II InGaN/GaNAs QW, strain-compensated InGaN-AlGaN QW, 

InGaN-delta-InN QW. The proposed LED works well on red spectrum of visible light 

emitting range, however it suffers from lower efficiency comparing to blue and green 

emission. To solve the low efficiency problem, we propose to use surface plasmon (SP) 

coupled LED which works based on the strongly localized optical field and highly 

enhanced photon density of states near the surface plasmon frequency (ωsp) according 

Figure 0-3. Structure of InGaN/ GaN QW LED 
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to Purcell factor [20]. Purcell effect is the basic idea of emission enhancement of surface 

plasmon. When you put a radiating dipole near the metal structure in the resonance 

cavity, the emission efficiency will be improved and enhanced. Due to Purcell effect, 

when ωsp overlaps with the emission frequency of the quantum wells, the energy 

coupled to the surface plasmon will notably increases, which enhances the LED 

efficiency at long-wavelength emission.  

Recently the approaches based on metallo-dielectric stacks structure [21] and 

double-metallic layers structure [22] on InGaN QW-based LEDs had been reported to 

tune the surface plasmon frequency and enhance the radiation rate of nearby active 

region. The use of surface plasmon coupled active region to increase the photon density 

of states has been demonstrated in the blue and green spectral regime in many reports, 

especially the strong enhancement of Ag layer and Au/Ag double layers for blue and 

green spectral regimes. In this work, the tuning of the SP frequency over a wide 

frequency range while maintaining a large Purcell factor by using SP will be presented.  

 

1.3. Thesis organization  

Chapter 1 introduces the background and motivation of using surface plasmon 

to enhance the efficiency of InGaN QW LEDs in the long-wavelength range. Chapter 

2 illustrates the basic concept and the effect of surface plasmon coupled to InGaN QWs 

for the enhancement of IQE. In Chapter 3, the general formulation for the calculation 

of SP modes in the planar structures containing multilayers. Chapter 4 explores the 

optical properties of different materials to find the proper and applicable plasmonic 
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materials with ωsp in the range of long-wavelength emission to couple to the InGaN 

QWs. This chapter also exhibits the simulation results of the dispersive properties and 

Purcell factor for different SP structure with single or double metallic layers, and hence 

find the optimized design for SP model which is appropriate and compatible for 

achieving strong Purcell factors in SP coupling. Chapter 4 also analyzes the factors that 

affect SP structure by using different configuration of thicknesses of metallic layer and 

GaN spacer. The summary and future work are included in Chapter 5.  
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Chapter 2: Theory of Surface Plasmon Polariton  

2.1. Basic Concept of Surface Plasmon Polariton  

The phenomenon of radiative efficiency enhancement via using metal film has 

been known for many years since 1974 [1]-[2]. For InGaN QW, the coupling for the 

spontaneous emission from QW into the SP mode on silver thin film method was 

initially demonstrated through the observation of spectrally sharp photoluminescence 

dip in 1999 by I. Gontijo, et al. [5]. Then it has been used as a method to enhance the 

efficiency of InGaN QW LEDs by K. Okamoto, et al. in 2004 [6]. Conventionally, noble 

metals especially gold and silver are used as plasmonic materials for their strong 

enhancement for efficiency. The recombination rate in InGaN/GaN QWs could be 

significantly enhanced from the metal surface, and increased absorption of light at the 

SP frequency has been demonstrated.  

The plasmon is the collective oscillation of conducting electron gas responding 

to an electric field, in a metal, and a special phenomenon of plasma oscillation mode is 

called surface plasmon (SP). Surface plasmon exists at an interface between a metal, 

which has a dielectric function εm=εm
' +iεm

'' , and a dielectric or semiconductor material, 

which has a positive real dielectric constant εd. If the collective motion oscillation of 

electrons is excited on the surface, it can produce the surface plasmon resonance (SPR). 

Surface plasmon resonance occurs when a resonance of the charge density wave 

matches the frequency of the applied field. The bulk oscillation of electrons and an 

electromagnetic wave outside of the metal will couple with the other, which results in 

the remaining surface wave. 
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Surface plasmon polaritons (SPPs) is a kind of surface wave of which the mode 

is confined at the interface between metal and dielectric. SPPs couple the 

electromagnetic wave to oscillations of conducting electron plasma, and it only exists 

for TM mode. They propagate in the longitudinal direction, which is in the dielectric-

metal interface, and evanescently confined in the perpendicular direction on both sides 

of the interface. The evanescent wave is a near-field wave with an intensity that exhibits 

the exponential decay without absorption as a function of distance from the boundary 

at where the wave was formed, which confines the energy in a small area.  

 

 

 

 

 

 

Figure 0-1. Geometry for SPP propagation at a single interface between a metal and a 

dielectric. 

Figure 0-2. Schematic Diagram of the surface plasmon and surface plasmon polariton 

generated at the metal/ dielectric interface [4] 
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In order to couple energy from a QW to the surface plasmon mode, the 

plasmonic material plasmon frequency should match the radiation frequency. This 

means that the bandgap energy of semiconductor Egap  should match the surface 

plasmon energy, e.g. Egap=ħωsp. Thus, by obtaining the surface plasmon frequency 

ωsp  enables further investigation of the characteristics of the surface plasmons at 

metal-dielectric interface. 

The details of the derivation of the surface plasmon dispersion follow the 

treatment in reference [7]. By solving Maxwell’s equations, one obtains the dispersion 

equation as follow  

 
Ksp=

ω

c
√

εm
' εd

εm
' +εd

+i
ω

c
(

εm
' εd

εm
' +εd

)

3
2 εm

''

2𝜀𝑚
′ 2 (2.1)  

where εm=εm
' +εm

''  is the metal relative permittivity, εd is the relative permittivity of 

the dielectric material, 
ω

c
 is the wave vector of the propagating wave in vacuum. The 

first term of Eq. (2.1) is surface plasmon dispersion, and the second term corresponding 

to the damping factor of SP mode. If we assume a low damping factor, which lies in the 

loss term, and the Drude model reduces to εd=1 - 
ωp

2

ω2 , where ωp is the regular plasma 

frequency. 

The expression for the surface plasmon frequency can be derived by substituting the 

equation of relative permittivity of dielectric into the dispersion relation and letting 

ω=ωsp. Take the limit of Ksp to ∞, and we get the surface plasmon frequency,  

 
ωsp=√

ωp

1 + εm

 (2.2) 
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Thus, the surface plasmon frequency is analogous to the regular plasma frequency, and 

according to Eq. (2.2), one can obtain the surface plasmon frequency below the plasma 

frequency ωp.  

The dispersion relation is plotted in Fig. 2-3. The dash line of surface plasmon 

frequency is going horizontal along the propagation constant kx. There is no SPP modes 

above the line of SP, and for the light line, just regular waves exist to the left of this line, 

and to the right they’re cut off. So the SPP modes only exist within the shaded region.  

 

 

 

 

 

 

 

 

2.2. Loss from Metal 

Surface plasmon is attracting much attention in the optics area for its useful 

propagation characteristics and highly subwavelength. However, the charge density 

wave moves back and forth and will cause very strong absorption or scattering at 

particular frequencies, thus it suffers from extraordinary losses from the metal. In an 

unpatterned metal-dielectric layer structure, the dispersion diagram of SPP lies below 

Figure 0-3. Dispersion relation of a SPP. 
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the light line, so that such a dissipation of the photon energy dominantly comes from 

Ohmic loss in metal. 

Attributing to the metal dissipation loss, the SP coupling technique can be used 

only for the devices of intrinsically low emission efficiency. In the LED application, 

the SP coupling technique is useful for enhancing the efficiency of InGaN-based LED, 

which usually has lower internal quantum efficiency. The use of metal nanostructure 

engineering can be designed to minimize the metal loss.  

 

2.3. Surface Plasmon Effect on Spontaneous Emission Rate 

It has been well known that the environment surrounding an excited atom can 

alter its spontaneous emission (SE) rate, and the enhancement of SE in a resonant cavity 

was first predicted by Purcell [8]. Purcell effect is the enhancement of the spontaneous 

emission rate of the fluorescent molecule by its environment, and the density of final 

states can be changed by modifying the surrounding environment of an emitter. Due to 

Purcell effect, when the ωsp of Ag overlaps with the emission frequency of the InGaN 

QWs, the energy coupled to the SP will notably increase and hence the internal quantum 

efficiency (IQE) will be enhanced.  

For the conventional uncoated InGaN QWs structure, both radiative and non-

radiative recombination need to be taken into account, which are described by the 

recombination rate Γ0(ω)  and Γnr(ω) , respectively. For the QWs structure coated 

with metal film, a new spontaneous emission channel is introduced into surface 

plasmons, hence the total recombination rate becomes Γp(ω)+Γ0(ω)+Γnr(ω). The ratio 

https://en.wikipedia.org/wiki/Spontaneous_emission
https://en.wikipedia.org/wiki/Spontaneous_emission
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which is the analog of the Purcell factor Fp(ω) can be expressed as follow 

 Fp(ω)=
Γp(ω)+Γ0(ω)+Γnr(ω)

Γ0(ω)+Γnr(ω)
≈1+

Γp(ω)

Γ0(ω)
 (2.3) 

According to the Fermi’s golden rule, 

 Γp(ω)=
2π

ℏ
|⟨f|H|i⟩|

2
 * ρ(ℏω) (2.4) 

where d⃗    represents the electron-hole pair moment, a  is the location of the QW 

relative to the metal-dielectric interface, ⟨𝑓|𝐻|𝑖⟩ is the matrix element of perturbations 

between final and initial states, and ρ(ħω)  is the mode density of final state.  

Therefore, two ways for enhancing the radiative recombination rate in QWs, namely: 

1) to enhance electron and hole wavefunction overlap, and 2) to enhance the density of 

final state.  

Figure 2-4 shows the process of spontaneous emission of the carriers in the 

quantum well. There are some inevitable loss channels, because metal has dissipations. 

In this process by using SPPs, the energy is effectively transferred from carriers in 

InGaN QWs into the surface plasmon for emission, which means that we alternatively 

create a new emission channel to enhance the photon generation rate.  

 

 

 

 

 

 

 

Figure 0-4. spontaneous emission channels of carriers in the InGaN QWs 
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The strong dispersive properties of SPPs allows to guide wave along the surface 

of a metal, which introduces new mechanisms for manipulating waves, and it is a huge 

area of research because of its wide range of applications: sensing application with SPR, 

data storage, subwavelength optics, SP-enhance Raman spectroscopy, plasmonic 

integrated optoelectronics, light emission/ absorption enhancement, and others. In the 

context of LED applications, the engineering of the surface plasmon frequency allows 

the optimization of the Purcell enhancement peak for achieving dramatic increase in 

the spontaneous emission rate in the active region of the emitters.  
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Chapter 3: Theoretical Analysis of Surface Plasmon 

Enhancement  

3.1. Classical Analysis 

The recombination rate enhancement produced by surface plasmon polariton 

structures can be determined using a classical model of fluorescence near the metal 

surfaces, which allows computing the emission rates over the entire k – ħω plane, and 

which has been proven quite accurate in describing a wide range. In this model, the 

emissive layer is treated as a plane of electric dipole sources of frequency ω, of which 

radiated field is Fourier expanded in a sum of plane or evanescent waves over all values 

of the in-plane wavevector k. For all these component waves, the reflected waves from 

the metallic layers are calculated using a matrix technique to account for the multiple 

interfaces, and their amplitudes are then added [1].  

We consider the emission to take the form of a forced damped harmonic 

oscillation. The equation of motion for the electronic dipole moment p is 

 
d2p

dt2
+ω0

2p=
e2

m
Er-b0

dp

dt
 (3.1)  

where ω0 is the resonant angular frequency in the absence of all damping, m is the 

effective mass, e is the electric charge, Er is the reflected field at the dipole position 

and b0 is the damping constant, which corresponding to the inverse of lifetime. The 

reflected field does work on the dipole and they oscillate with the same complex 

frequency Ω = ω - 
ib

2
, that is 

 p=p0exp(-iΩt)=p0exp[-(
iω+b

2
)t] (3.2)  
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 Er=E0exp(-iΩt) (3.3)  

where ω and b are the frequency and damping rate respectively. Substitute Eq. (3.2) 

and Eq.(3.3) into Eq. (3.2), and equalize the real and imaginary components, we find 

that 

 b

b0
=1+

e2

mωp0b0
Im(E0) (3.4)  

 
∆ω≈

b2

8ω
 - 

bb0

4ω
 - 

e2

2mω0p0
Re(E0) (3.5)  

We see from equations (3.4) and (3.5) that the normalized damping rate and 

frequency shift are related to the out-of-phase and the in-phase components respectively 

of the reflected field. The change to the damping rate is dictated by the reflected field. 

Calculating the reflected field has been the focus of many research reports; most make 

use of a Green function approach, often involving an expansion of the dipole field in 

terms of plane waves [2]. The derivation presented here follows the treatment in 

reference 2. We shall not follow through the development that leads to the reflected 

field, we are here only interested in the result. Any dipole orientation may be considered 

as a combination of perpendicular and parallel dipole components. The parameters z⊥ 

and z
‖
 are given by 

 
z⊥=1-

3

2
Im∫

u3

l1

∞

0

(1-r1,2
p

)exp(-iβ)du (3.6)  

 z‖=1-
3

4
Im∫

u

l1

∞

0

[(1+r1,2
s )-(1-u2)(1+r1,2

p
)]exp(-iβ)du (3.7)  

Several parameters need further explanation here. The integration variable u is 

the component of the wave-vector in the plane of the interface, normalized with respect 
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to the far-field wave-vector of the dipole radiation field in medium 1. The parameter l1 

is given by l1 = −𝑖 ∗ √(1 − 𝑢2), and it is related to the component of the wave-vector 

perpendicular to the interface. The phase angle is the phase due to retardation, which is 

the phase change incurred in the round trip from the emitter, to the interface and back. 

The coefficients r1,2
p

  and r1,2
s  are the Fresnel reflection coefficients for p- and s-

polarized light respectively at the interface, and they’re described as a function of u. 

And the latter may range over all positive values between 0 and infinity, the reflection 

coefficients have to be calculated for both real and imaginary angles of incidence. These 

correspond to incident waves that are propagating and evanescent respectively. We note 

that, when a multilayer structure capable of supporting guided modes is present, the 

perpendicular dipole will couple to only transverse magnetic (TM) polarized modes 

since z⊥ involves only r1,2
p

. A dipole of any other orientation will be able to couple to 

transverse electric (TE) and TM modes, if present, since z
‖
 contains both r1,2

p
 and 

r1,2
s . 

The equations (3.6) and (3.7) provide a particularly convenient formulation of 

the problem. The decay rates can be evaluated simply from the knowledge of the 

reflection coefficients of the interface between the upper half-space and the substrate. 

An important aspect of this technique is that it does not require us to calculate the modal 

properties of the structure under investigation. Further, by making straightforward 

modifications to Eq. (3.6) and Eq. (3.7) the system under study can be extended to 

include multilayers below and above the dipole, a matrix method being used to calculate 

the reflection coefficients for the multilayers. 
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Next, we assume that the dipole orientation as isotropic, by which we mean a 

dipole whose moment rotates and samples all directions in space in a time much faster 

than the fluorescence lifetime.  

The spontaneous emission rate (into both radiative and SPP modes) Γ is then 

computed by the dipole on the radiation field as follows,  

 Γ = -
ω

2
Im(p⃗ * * E⃗⃗ ) (3.8)  

where p⃗  is the dipole moment and E⃗⃗  is the total (emitted plus reflected) field at the 

dipole location. This rate is finally divided by the same quantity in the absence of any 

metallic layers to yield the spontaneous emission rate enhancement, which is analogous 

to the Purcell factor. The result of this analysis depends on whether the dipoles are 

perpendicular or parallel to the interfaces and can be written as follows 

 F⊥=Re∫
3

2

∞

0

 (3.9)  

 

3.2. Purcell Calculation 

The localized electric field E⃗⃗ (a) of the SP mode at the location of the QWs can 

be used to determine the recombination rate Γp(ω) of the spontaneous emission into 

the plasmon continuum in the QWs. By using Fermi’s golden rule,  

 Γp(ω)=
2π

ħ
〈d⃗  * E⃗⃗ (a)〉2ρ(ħω) (3.10)  

where E⃗⃗ (a)  is normalized to a half quantum for zero-point fluctuations by the 

following denominator 

 E2(a)=
ħω 2⁄

L2

4π∫ [∂ (ωε) ∂ω⁄ ]E0
2(x)dx

∞

-∞

E0
2(a) (3.11)  

where E0
2 represents the unnormalized electric field, L2 is the in-plane quantization 
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space, and ħω 2⁄  is the energy of vacuum fluctuation [3]. 

For a non-dispersive medium, the integrand in equation (3.11) will be simply 

εE0
2(x), however in the case of highly dispersive medium like metals, the appropriate 

expression to be used for the electric energy density is [∂ (ωε) ∂ω⁄ ]E0
2(x)/8π. Note 

that ε varies in frequency and also with the vertical position in the multilayer structure. 

The density of SP modes is obtained according to the other density of states 

calculations in solid state physics [4]. For a frequency range dω , the number of 

corresponding modes in the two-dimensional k space is 

 
ρ(ħω)=

2πkdk

(2π)2d(ħω)
L2=

L2

4π

d(k2)

d(ħω)
 (3.12)  

Therefore, the density of plasmon modes ρ(ħω) can be obtained from the derivative 

d(k2)

d(ħω)
 of the dispersion relation ω(k). The recombination rate into the surface plasmon 

modes can be obtained by combining Eq. (3.10), Eq. (3.11) and Eq. (3.12) as following,  

 Γp(ω)=
2

3

2π

ħ
d2

ħω 2⁄

L2

4π∫ [∂ (ωε) ∂ω⁄ ]E0
2(x)dx

∞

-∞

E0
2(a)

L2

4π

d(k2)

d(ħω)
 (3.13)  

 
Γp(ω)=

2

3

πd2ωE0
2(a)

ħ ∫ [∂ (ωε) ∂ω⁄ ]E0
2(x)dx

∞

-∞

d(k2)

d(ω)
 (3.14)  

where the factor 2/3 comes from the ratio of the coupling strengths of dipole moment 

d⃗  parallel toE⊥ and E
‖
 for conduction band to light hole band (C-LH) transition. This 

plasmon recombination rate has to be compared to the spontaneous emission rate 

Γ0(ω) in bulk semiconductors, which can be formulated using the classical formula 

 Γ0(ω)=
4nd2ω3

3ħc3
 (3.15)  

Putting Eq. (3.14) and Eq. (3.15) into Eq. (2.3), we obtain the Purcell 

enhancement factor Fp for the spontaneous emission into the surface plasmon modes 
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as 

 

Fp(ω)=1+

2
3

πd2ωE0
2(a)

ħ ∫ [∂ (ωε) ∂ω⁄ ]E0
2(x)dx

∞

-∞

d(k2)
d(ω)

4nd2ω3

3ħc3

 (3.16)  

 
Fp(ω)=1+

πc3E0
2(a)

2nω2 ∫ [∂ (ωε) ∂ω⁄ ]E0
2(x)dx

∞

-∞

d(k2)

d(ω)
 (3.17)  

In the derivation above, the fact the conduction-to-heavy hole band transition 

(C-HH) can be treated as it couple to electric fields which is polarized in the QW plane 

(y-z plane). On the other hand, C-LH transitions couple twice as strongly to electric 

fields with polarization which is perpendicular to the x direction than to those polarized 

in the y-z plane In the classical spontaneous emission model, C-HH transitions are 

described with parallel dipoles, while C-LH transitions are described according to both 

parallel and perpendicular dipoles, which are weighted by a factors of 1/3 and 2/3, 

respectively [5]. 

 

3.3. Calculation for Multilayer Structure  

So far, we have calculated the surface plasmon (SP) dispersion equation for the 

waves propagating in the interface of two semi-infinite half-space metal and dielectric 

materials. The wave equation for TM modes propagating in the +ẑ direction is given 

by 

 Hi
⃗⃗⃗⃗  = y ̂Hi (x) exp [ j (ωt - γz ) ] (3.18)  

Ei
⃗⃗  ⃗ = [ x ̂

γ

ωε(x)
Hi(x)+ z ̂

-j

ωε(x)

∂Hi(x)

∂x
] exp [ j (ωt- γz )] = r ̂ Ei(x )exp [j(ωt - γz)] 

  (3.19)  



24 

 

where γ is the complex propagation constant, ε(x) = ε0 εr(x) is the permittivity, and 

r ̂ = x ̂ + z ̂ represents the direction of the electric field. Moreover,  

 Hi(x)=Ai exp [−ki(x − xi-1)]+Bi exp [ki(x − xi-1)] (3.20)  

is the y-component of the magnetic field amplitude of the wave propagating in the ith 

layer and ki=√γ2 −
ω2

c2 ni
2 is the normal component of wavevector (in the x ̂ direction). 

Ai and Bi complex coefficients refers to +x̂ and -x̂ propagating wave respectively 

and xi  indicates the boundary between the ith and (i+1)th layer. TM boundary 

conditions require that tangential field components e.g. Hi(x)  and 
1

n2

dHi(x)

dx
 

continuous across the interfaces between the layers. Therefore, in the ith layer,  

 Hi(x)=Ai  exp [-ki (x - xi-1)]+ Bi  exp [ ki ( x - xi-1)] (3.21)  

 1

n2

dHi(x)

dx
=

1

ni
2
[ki(-Ai exp[-ki(x-xi-1)]+Bi exp[ki(x-xi-1)])] (3.22)  

and in the (i+1)th layer,  

 Hi+1(x)=Ai+1exp[-ki+1(x-xi)]+Bi+1exp[ki+1(x-xi)] (3.23)  

1

n2

dHi+1(x)

dx
=

1

ni+1
2

[ki+1(-Ai+1exp[-ki+1(x-xi)]+Bi+1exp[ki+1(x-xi)])] 

  (3.24)  

At the interface between the ith and (i+1)th layer, i.e. at x = xi, the values of the 

Eq. (3.21) and Eq. (3.23) are equal and give the following 

 Ai exp[-ki di]+Bi exp[ki di]=Ai+1+Bi+1 (3.25)  

where  di is the thickness of the ith layer. Similarly, the values of Eq. (3.22) and (3.24) 

are also equal at x = xi and they give the following equation,  

 
1

ni
2
[ki(-Ai  exp[-ki  di]+Bi  exp[ki  di])]=

1

ni+1
2

[ki+1(-Ai+1+Bi+1)] (3.26)  
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The equations (3.25) and (3.26) can be manipulated to give expressions for Ai+1 and 

Bi+1 as follow 

 
Ai+1=

1

2
[Ai (1+

ni+1
2

ni
2

ki

ki+1
exp[-kidi])+Bi (1-

ni+1
2

ni
2

ki

ki+1
exp[kidi])] (3.27)  

 
Bi+1=

1

2
[Ai (1-

ni+1
2

ni
2

ki

ki+1
exp[-kidi])+Bi (1+

ni+1
2

ni
2

ki

ki+1
exp[kidi])] (3.28)  

The equations above can be put into matrix form as 

 (
Ai+1

Bi+1
)=Qi (

Ai

Bi
) (3.29)  

where the transfer matrix of the ith layer, Q
i
 is given by 

 

Q
i
=

1

2

(

 
 

[1+f
i

ki

ki+1

] exp[-kidi] [1+f
i

ki

ki+1

] exp[-kidi]

[1+f
i

ki

ki+1

] exp[-kidi] [1+f
i

ki

ki+1

] exp[-kidi]
)

 
 

 (3.30)  

For the case of TE modes, f
i
= 1 and for TM modes,f

i
=

ni+1
2

ni
2 .  The transfer 

matrix Q
i
 relates the complex field coefficients at the interface between the ith and (i-

1)th layer and for a multi-layer waveguide with l layers, the transfer matrix of the whole 

waveguide is given by 

 
Qwg= ∏ Qi

0

i=l−1

 (3.31)  

and relates the field coefficients in the cover and the substrate layer, i.e. 

 (
Ac

Bc
)=Qwg (

As

Bs
) (3.32)  

where the elements of the transfer matrix are denoted as 

 Qwg=(
q11 q12

q21 q22
) (3.33)  

3.4. Rigorous Method for Dispersion Calculation  

The relation between the incident, reflection, and the transmission for the 
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multilayered structures is given by 

 (
Al

0
)=(

q11 q12

q21 q22
) (

1
B0

) (3.34)  

Since the magnetic field for TM modes in the output medium propagates in a single 

direction only, the sign of k must be chosen appropriately. In this case where we have 

substrate illumination, the magnetic field in the cover layer propagates in the +x ̂ 

direction, i.e., Im[kc > 0] and Bc = 0. The reflection coefficient is  

 R=
B0

A0
= −

q21

q22
 (3.35)  

The reflection coefficient (R) is a function of the complex propagation constant 

γ. The guided or leaky modes correspond to the resonances of the layered waveguide 

structure, which happen at the poles of the reflection coefficient R. According to (3.35), 

the poles of the reflection coefficient are solutions of q22(γ)=0. 

We know that the obtained dispersion equation is a complex function of  and 

γ, which should be solved. In order to find the roots of a complex function, we must 

have both real and imaginary parts of the function equals to zero. So, we have a 

nonlinear equation set as following that should be solved 

 {
Re[q(γ)]=0

Im[q(γ)]=0
 (3.36)  

where γ is the complex propagation constant, which indicates the modes (both guided 

and leaky one). 

To find the roots of the complex equation q22(γ)=0  is numerically 

challenging. Reflection pole method (RPM) examines the RPM phase as a function of 

the real part of the propagation constant [6]. Based on the Bode-plot theory (but with 

frequency on the real axis), for the case of modes with no loss, the RPM phase response 
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is a summation of the step functions where the number of steps equals to the number of 

guided modes, and the height of each step is exactly π. Each π step is located at a β  

which is equal to the real part of propagation constant of the lossless guided modes. 

For the case of a lossy or leaky guided mode, there is an abrupt variation in the RPM 

phase of the magnitude which is in the vicinity of the β  corresponding to the 

propagation constant [7]. 

The resulting spectrum of a single mode has the Lorentzian-type peak at β and 

has a half width at half maximum (HWHM) equal to α, where it corresponds to the 

complex propagation constant of the lossy guided or leaky mode of the multilayer 

structure.  

We can approximate the denominator of the reflection coefficient as an Nth 

degree polynomial. In order to find the analytic expression of the quantity dφ
RPM

dβ⁄  

we must collect all the coefficients of Eq. (3.36) with the same power of β. For example, 

for a fifth-degree polynomial, of which the coefficients are 

r4= − (γ1+γ2+γ3+γ4+γ5) 
r3=γ1γ2+γ1γ3+γ1γ4+γ1γ5+γ2γ3+γ2γ4+γ2γ5+γ3γ4+γ3γ5+γ4γ5 

r2=
− (γ1γ2γ3+γ1γ2γ4+γ1γ2γ5+γ1γ3γ4+γ1γ3γ5+γ1γ4γ5+γ2γ3γ4+γ2γ3γ5+γ2γ4γ5+γ3γ4γ5) 

r1=γ1γ2γ3γ4+γ1γ2γ3γ5+γ1γ2γ4γ5+γ1γ3γ4γ5+γ2γ3γ4γ5 

r0= − γ1γ2γ3γ4γ5 

  (3.37)  

Using Eq. (3.37), the phase of the reflection coefficient denominator 𝑞22(𝛽) can be 

obtained analytically as follow 

 
φRPM=tan-1 (

Im[q22(β)]

Re[q22(β)]
) (3.38)  
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and the derivative of the phase of q22(β) with respect to β is 

d

dβ
φRPM=

Re[q22(β)]2

Re[q22(β)]2+Im[q22(β)]2
×

Re[q22(β)]
d
dβ Im[q22(β)]-Im[q22(β)]

d
dβRe[q22(β)]

Re[q22(β)]2
 

  (3.39)  

3.5. Field Distribution 

After solving the dispersion equation, we still need to know the complex 

coefficients, Ai  and Bil , to find the field distribution profile. As we know the field 

must decay down in both cladding and substrate layers. Thus from Eq. (3.34), we have 

 (
Al

0
) = (

q
11

q
12

q
21

q
22

) (
0

B0
) (3.40)  

 

which yields to 

 Al=q
12

B0 (3.41)  

The equation (3.41) is an equation with two variables. Thus, we need one more equation, 

to find an unique solution for that. The other equation comes from the normalization of 

the filed such that the field carries 1 Watt of power flow along the 𝑧̂ axis per unit width 

in the 𝑦̂ direction. Thus, we have 

 1

2
∫ HyEx

*dx=
1

2

∞

-∞

∫ Hi(x)
∞

-∞

γ*

ωε*(x)
Hi

*(x)dx=
γ*

2ω
∫

|Hi(x)|
2

ε*(x)
dx=1

∞

-∞

 (3.42)  

or using 𝜀(𝑥) = 𝜀0𝜀𝑟(𝑥), we get 

 
∫

|Hi(x)|
2

εr
*(x)

dx=
2ωε0

γ*

∞

-∞

 (3.43)  

In order to calculate the integration, we need |Hi(x)|
2 which is given by 

|Hi(x)|
2=Hi(x)Hi

*(x) 

=(Aiexp[-ki(x-xi-1)]+Biexp[ki(x-xi-1)])(Aiexp[-ki(x-xi-1)]+Biexp[ki(x-xi-1)])
* 

={
|Ai|

2exp[-(x-xi-1)(ki+ki
*)]+|Bi|

2exp[(x-xi-1)(ki+ki
*)]

+AiBi
*exp[-(x-xi-1)(ki-ki

*)]+BiAi
*exp[(x-xi-1)(ki-ki

*)]
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  (3.44)  

And the integration gives 

|B0|
2

(k0+k0
*)εr0

*
+

|Al|
2

(kl+kl
*)εrl

*
+∑

1

εrj
*

[
 
 
 
 
 |Aj|

2

(kj+kj
*)

(exp[-dj(kj+kj
*)]-1)+

|Bj|
2

(kj+kj
*)

(exp[dj(kj+kj
*)]-1)

+
AjBj

*

(kj-kj
*)

(exp[-dj(kj-kj
*)]-1)+

BjAj
*

(kj-kj
*)

(exp[dj(kj-kj
*)]-1)

]
 
 
 
 
 

l-1

j=1

 

=
2ωε0

γ*  

  (3.45)  

where the coefficients inside the summation are related to 𝐵0 and 𝐴1 by Eq. (3.29). 

Thus we find the second equation that we need to find 𝐵0 and 𝐴1. After getting 𝐵0 

and 𝐴1, we can find the complex field coefficients of intermediate layers by using Eq. 

(3.29). 

The plasmon wave guided modes correspond to the rapid changes of the phase 

of 𝑞22(𝛾) . According to Bode plot theory, a peak of the derivative of the phase of 

𝑞22(𝛾) corresponds to the real part index of a guided mode, and the full width at half 

maximum of the phase derivative curve is the imaginary part of mode index [8]. 

The electromagnetic field of a mode with a particular k-vector can be described 

as follow 

 E⃗⃗ (r ,t)=
1

2
[Df 

k 
(r )η(t)+cc] (3.46)  

 
H⃗⃗ (r ,t)=

1

2

1

μ
0

[
D

ω
k 
∇×f 

k 
(r )χ(t)+cc] (3.47)  

with 𝜂(𝑡) = 𝑞(𝑡) + 𝑖𝑝(𝑡) , and 𝜒(𝑡) = 𝑝(𝑡) − 𝑖𝑞(𝑡) . Here, 𝑞(𝑡) ≡ −cos(𝜔𝑘𝑡)  and 

𝑝(𝑡) ≡ −𝑠𝑖𝑛(𝜔𝑘𝑡)  describe time-varying (oscillating) parts, 𝜇0  is the magnetic 

permeability of free space, and D is a constant. 𝑓 𝑘⃗ (𝑟 )  is a normalized time-
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independent part of electric field: 𝑓 𝑘⃗ (𝑟 ) = 𝑢⃗ 𝑘⃗ (𝑧)𝑒
𝑖𝑘⃗ .𝑥   with 

∭𝜕(𝜀𝜔) 𝜕𝜔|𝑢⃗ 𝑘⃗ |
2

⁄ 𝑑𝑟 = 1. The total energy can then be expressed as 

 𝑊=
1

2
∭[∂(εω) ∂ωE⃗⃗ (r ,t)2⁄ +μ

0
H⃗⃗ (r ,t)2]dr =

1

2
D2 1+Θk

2
(p2+q2) (3.48)  

where 1 (1 + Θ𝑘⃗ )⁄   describes the ratio of the electric field energy to the total field 

energy (Θ𝑘⃗ = ∭(1 𝜇0⁄ ) |∇×(𝑓 𝑘⃗ 𝑖𝜔𝑘⃗ ⁄ )|
2
𝑑𝑟 ). The choice of 𝐷 = −𝑖√2𝜔𝑘⃗ (1 + Θ𝑘⃗ )⁄  

satisfies Hamilton’s equations: −𝜕𝑊 𝜕𝑝 = 𝜔𝑘⃗ 𝑝 = 𝑞̇⁄  , and −𝜕𝑊 𝜕𝑞 = 𝜔𝑘⃗ 𝑞 = 𝑝̇⁄  . 

Then the mode can be represented aas a harmonic oscillator, the Hamiltonian quantized, 

and the electric field operator expressed as 

 
E⃗⃗ (r ,t)=i√

ħω
k 

1+Θ
k 

f 
k 
(r )a+H.C. (3.49)  

where H.C. is the hermitian conjugate. In a dielectric structure 1 (1 + Θ𝑘⃗ )⁄  equals 1/2. 

However, in a plasmonic structure (a structure with metal), the introduction of the 

1 (1 + Θ𝑘⃗ )⁄  term is critical, as the energy is not equally distributed between the electric 

and magnetic fields. At the metal-dielectric boundaries, the oscillation of the magnetic 

field induces surface charges because of the discontinuity of the conductivity on metal 

surface. The distribution of these charges produces an electric field 𝐸⃗ 𝑘 parallel to the 

metal surface by Coulomb’s law. At a frequency close to the SPP’s resonant frequency 

𝜈𝑠𝑝, high density of the surface charges induces a large 𝐸⃗ 𝑘 around the metal-dielectric 

boundary. This field-charge interaction increases 1 (1 + Θ𝑘⃗ )⁄  from 1/2, storing more 

energy in the electric field than in the magnetic field. 

The SE rate Γ  for the exciton lying in the vicinity of a metal surface is 

enhanced from the SE rate 𝑛Γ0  in a dielectric with index n due to the Purcell 
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enhancement effect. Here, Γ0 is the SE rate for the exciton lying in vacuum. To analyze 

the SE rate enhancement for the exciton with a radiative frequency 𝜈  coupled to 

traveling SPPs, the Purcell enhancement factor 𝐹(𝜈), defined as the Γ normalized by 

𝑛Γ0, has been studied. In this definition, we ignore the nonradiative decay of the exciton. 

As opposed to Purcell factor for the exciton coupled to a resonant cavity, 𝐹(𝜈) 

represents the electrodynamics of the exciton coupled to a number of traveling SPP 

modes. In a uniform metal surface, the SPP frequency 𝜔 is almost independent of its 

propagation constant k at the resonant frequency 𝜈𝑠𝑝 ≡ 𝜔𝑝 √1 + 𝑛2⁄ , where 𝜔𝑝 is the 

regular plasma frequency of the metal. This k-independence of 𝜔 increases the density 

of SPP states 𝐷(𝜔) and supports a large number of SPPs which are coupled to excitons 

at 𝜈𝑠𝑝. While this increase of 𝐷(𝜔) contributes to the part of the   enhancement, 

the field confinement of the SPP at the metal-dielectric interface also contributes to the 

Purcell effect. The field confinement of SPP increases the photon energy density (PED), 

and enhances the coupling effect of excitons near the metal surface and SPP modes 

which is relative to the coupling between the same excitons and non-SPP modes. The 

dissipation of the photon energy from each SPP mode has an additional effect on Γ. It 

gives the SE into each SPP mode a spectral width, analogous to Purcell effect in a cavity. 

In an unpatterned metal-dielectric layer structure, the dispersion diagram of SPP lies 

below the light line, so that such a dissipation of the photon energy mainly comes from 

the ohmic loss in metal. For investigation of 𝐹(𝜈)  in this part, we consider the 

mechanisms above according to quasi-quantum electrodynamics (QED) analysis [9].  

Here, the theoretical formulation of 𝐹(𝜈) for the exciton lies in the vicinity of 
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a uniform metal-dielectric interface. Including the effect of the ohmic loss in the metal, 

we assume a dissipative SPP mode with the following time evolution of its E-field, 

 E⃗⃗ 
k 
(r ,t)=E⃗⃗ 

k 
(r )×exp{-i(ω

k -i ω
k Q

k 
⁄ )t} (3.50)  

where 𝜔𝑘⃗  and 𝑄𝑘⃗  are the frequency and the quality factor of k-mode, respectively. 

For simplicity, we take the SPP-related part 𝐹𝑠𝑝(𝜈) as defined by 𝐹𝑠𝑝(𝜈) ≡ Γ𝑠𝑝 𝑛Γ0⁄ , 

where Γ𝑠𝑝 is the SE rate into SPP modes. 𝐹(𝜈) is obtained by summing 𝐹𝑠𝑝(𝜈) and 

the non-SPP-related part 𝐹𝑛𝑜𝑛−𝑠𝑝(𝜈): 𝐹(𝜈) = 𝐹𝑠𝑝(𝜈) + 𝐹𝑛𝑜𝑛−𝑠𝑝(𝜈). By solving the 

Jaynes-Cummings Hamiltonian with the multimode field expressed by Eq. (3.50),  

 Fsp(ν)= ∑
2π

nΓ0(ν)
|g

k 
(d)|

2
D

k 
(ν)

k 

 (3.51)  

 D
k 
(ν) =

1

π

ω
k 2Q

k 
⁄

(ω
k -ν)

2
+(ω

k 2Q
k 

⁄ )
2
 (3.52)  

where g
k 
(d) is the coupling strength between k-mode and the exciton located at z=d 

defined as g
k 
=g

0
Ψ(z)cos(ξ) , where g

0
=

μ

ħ √
ħν

(1+Θ
k 
)εV

k 

μ

ħ
√

ħν

2εV
k 
 , 𝛹(z)=

|E⃗⃗ 
k 
(z)|

max|E⃗⃗ 
k 
(z)|

 , and 

cos(ξ) = e 
k . e 𝜇⃗⃗ . Here, V

k  is the SPP mode volume, and e 
k  and e 𝜇⃗⃗  are unit vectors for 

the SPP electric field and the electric field dipole 𝜇 , respectively. 𝐷𝑘⃗ 
(𝜈) shown in Eq. 

(3.52) gives the Lorentzian spectrum for the SE into K-mode. The density of the SPP 

states does not show up in Eq. (3.51). However, ∑ 𝐷𝑘⃗ 
(𝜈)

𝑘⃗  becomes the density of the 

SPP states in case 𝐷𝑘⃗ 
(𝜈) → 𝛿(𝜔𝑘⃗ − 𝜈) with 𝑄𝑘⃗ → ∞. To investigate the enhanced 

SE rate into each k-mode, we introduce the distributed Purcell factor which defined by 

the following 

 Fsp-dis(ν,k )≡
1

∆k
x
∆k

y

2π

nΓ0(ν)
|g

k 
(d)|

2
D

k 
(ν) (3.53)  
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where ∆𝑘𝑥∆𝑘𝑦 ≡ (2𝜋)2 𝑙2⁄  is the reciprocal space of an SPP mode. If the real-space 

area 𝑙2 is large enough, then k can be considered as continuous. Eq. (3.53) is rewritten 

as 𝐹𝑠𝑝−𝑑𝑖𝑠(𝜈, 𝑘⃗ ) = 𝜕2𝐹𝑠𝑝(𝜈) 𝜕𝑘𝑥𝜕𝑘𝑦⁄ . In that case, the SE rate into a small reciprocal 

area ∆𝑘⃗ , normalized by 𝑛Γ0, is expressed as 𝐹𝑠𝑝−𝑑𝑖𝑠(𝜈, 𝑘⃗ )∆𝑘⃗ . The mode volume for 

each travelling SPP mode is expressed as 𝑉𝑘⃗ = 𝑙2𝐿𝑘⃗ , where 𝐿𝑘⃗  is defined as the 1D 

integral of the PED [9], 

 
Lk⃗ =

∫{∂(ωε) ∂ω⁄ }ω=ν|E⃗⃗ k⃗ (z)|
2
dz

max [{∂(ωε) ∂ω⁄ }ω=ν|E⃗⃗ k⃗ (z)|
2
]
 (3.54)  

By combining Eq. (2.45) and (2.46), 𝐹𝑠𝑝−𝑑𝑖𝑠(𝜈, 𝑘⃗ ) is rewritten as follows 

 
Fsp-dis(ν,k⃗ )=

3

2

1

n3

c3

ν2

Hk⃗ 
(d)

Lk⃗ 

1

1+Θk⃗ 
(e⃗ k⃗ .e⃗ μ⃗ )Dk⃗ 

(ν) (3.55)  

where  

 
Hk⃗ 

(z)=
εω=ν|E⃗⃗ k⃗ (z)|

2

max [{∂ (ωε) ∂ω⁄ }ω=ν|E⃗⃗ k⃗ (z)|
2
]
 (3.56)  

At a uniform metal-dielectric interface, 𝜔𝑘⃗ , 𝑄𝑘⃗ , and 𝐿𝑘⃗  are independent of 

the direction of 𝑘⃗ . By rewriting Eq. (3.51) as the integral in the polar coordinates 𝑘⃗ =

(𝑘, 𝜑), 𝐹𝑠𝑝(𝜈) can be expressed as a function of the propagation constant 𝑘 = |𝑘⃗ | 

below the light line  

 
Fsp(ν)= ∫ Funiform

sp-dis (ν,k)dk
∞

k0(ν)

 (3.57)  

where 𝑘0(𝜈)  is k on the light line. 𝐹𝑢𝑛𝑖𝑓𝑜𝑟𝑚
𝑠𝑝−𝑑𝑖𝑠 (𝜈, 𝑘)  is the integral of 𝐹𝑠𝑝−𝑑𝑖𝑠(𝜈, 𝑘⃗ ) 

over 𝜑 

 
Funiform

sp-dis (ν,k)≡∫ kFsp-dis(ν,k⃗ )dφ=
3π

n3

c3

ν2

1

1+Θk⃗ 
.
hk(d)

Lk
.kDk(ν)

2π

0

 (3.58)  

Here, ℎ𝑘(𝑧) is defined as an integral of 1 2𝜋⁄ .𝐻𝑘⃗ 
(𝑑). (𝑒 𝜇⃗⃗ . 𝑒 𝑘⃗ )

2
 over 𝜑 
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hk(z)=α

εω=ν|E⃗⃗ k
i (z)|

2

max [{∂(ωε) ∂ω⁄ }ω=ν|E⃗⃗ k(z)|
2
]
 (3.59)  

where 𝛼 = 1 2⁄  and 𝐸⃗ 𝑘
𝑖 (𝑧) = 𝐸⃗ 𝑘

𝑧(𝑧) when the dipole moment of the emitter 𝜇  is in 

the plane of the metal surface, and 𝛼 = 1 and 𝐸⃗ 𝑘
𝑖 (𝑧) = 𝐸⃗ 𝑘

𝑧(𝑧) when 𝜇  is out of the 

plane. 
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Chapter 4: Simulation of Surface Plasmon Dispersion 

Engineering  

4.1. Material Properties 

In this work, the pursuit of suitable plasmonic materials for enhancing the 

efficiency of InGaN QW LEDs in the range of long-wavelength emission is pursued. 

Here we want to find applicable and appropriate metal combinations to couple with 

InGaN/GaN QW in long-wavelength.  

It has been known from Drude-Lorentz model that there is the oscillation of 

electrons and metals when there exists a surface wave. In order to include the 

contributions of interband and intraband transitions, we use the Drude-Lorentz model 

to explore the SP characteristics of some metal candidates.  

The free electron response in metals can be described as Eq. (4.1) 

ε(ω) = ε
∞

− 
𝜔𝑝

2

𝜔2−𝑖ΓDω
 + ∑

𝑓𝑗∗𝜔𝑜𝑗
2

𝜔𝑜𝑗
2−𝜔2+𝑖𝛾𝑗ω

𝑚
𝑗=1     (4.1) 

The first term ε
∞

  is the background dielectric constant, and it is included in the 

equation because the contributions of higher energy level transition are not taken into 

account by the Lorentz term. The second term refers to the Drude term, which is 

described by plasma frequency 𝜔𝑝 and the damping factor ΓD. The third term includes 

each of the Lorentz oscillators which is at the location of the energy position 𝐸𝑜𝑗 =

ħ𝜔𝑜𝑗with the strength 𝑓𝑗 and the damping factor 𝛾𝑗. Optical constants of some metal 

materials are obtained from [1]-[2], and the values of Drude-Lorentz model parameters 

are given in Table 4-1. 
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 Au Ag Al TiN 

ε∞ 9.1 3.7 7 1.95 

ħ𝜔𝑝(eV) 9.03 9.01 14.98 1.009 

ΓD 0.053 0.048 0.047 0.118 

𝑓1 0.024 0.065 0.227 0.18 

𝛾1 0.241 3.886 0.333 0.023 

ħ𝜔𝑜1(eV)  0.415 0.816 0.162 0.553 

𝑓2 0.01 0.124 0.05 6.88 

𝛾2 0.345 0.452 0.312 0.148 

ħ𝜔𝑜2(eV) 0.83 4.481 1.544 0.92 

 

We assume that the plasmonic material has infinite thickness, so we use the 

infinite half-space to engineer the dispersion relation of plasmonic materials. An infinite 

half-space is a region in space that is bounded at only one edge, and it extends to infinity 

in the direction away from the interface. By using the assumption of the material 

thicknesses extending to infinity on both sides, there cannot be any contributing waves 

out extending to infinity. The field decays exponentially, away from the interface, and 

it is free to propagate without decay in the plane of the interface.  

We simulate the surface plasmon dispersion such that different materials have 

Table 0-1. Values of the Drude-Lorentz model parameters for Au, Ag, 

Al and TiN 
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been investigated to find the appropriate candidate for long-wavelength emission. Some 

of the metals such as Au, Ag, Al, ad TiN have been explored, and the simulation results 

for their dispersion relation are shown in Fig 4-1. 

  

 

 

 

 

 

 

 

 

 

     

 

 

 

 

As can be seen from Fig. 4-1, Au has a surface plasmon frequency ωsp of 2.29eV 

(539.5nm), Ag has a ωsp of 2.894eV (428.4nm), Al has a ωsp of 5.35eV (231.91nm), and 

TiN has a ωsp of 2.05eV (604.8nm) when they are deposited on top of GaN. Thus, the 

Ag and Al are obviously not good candidates for implementation in the InGaN/GaN 

LED emitting in the long-wavelength regime. However, we find that the surface 

Figure 0-1. Surface plasmon dispersion relation of (a) Au, (b) Ag, (c) Al, and (d) TiN in 

semi-infinite space 

(c)  (d)  

(a)  (b)  
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plasmon frequency of Au lies in the green spectra regime, and for TiN, the surface 

plasmon frequency matches the amber emission. Thus, the implementation of the Au 

and TiN for green and amber LEDs, respectively, is feasible. Thus, the optimization of 

the SP dispersion in the long wavelength regime will implement the TiN and 

combination of the TiN / Au.  

 

4.2. Single Metallic Layer Model 

We use Au and TiN to enhance the radiation efficiency of InGaN QW at long-

wavelengths through surface plasmon, and the enhancement of efficiency in the LED 

is based on Purcell effect. Here the spacer separation between metallic layer and QWs 

is set to 10nm. We choose 10nm GaN spacer thickness, and investigate the Purcell 

enhancement factor of different thicknesses of metal layer. Figure 4-2 and Figure 4-3 

show the computational results of dispersion relation and Purcell factor for Au and TiN. 

 

 

 

 

 

 

 

 

 

 

Figure 0-2. Purcell factor (left) and dispersion relation (right) of Au deposited on top of GaN 

spacer = 10nm, with Au thickness = 40nm, 10nm, 5nm, respectively. 
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The simulation results show that the Purcell factor is decreasing when the 

thickness of Au and TiN reduces. For the largest enhancement results, Au has the 

Purcell factor of ~500 times in the green spectrum, and TiN could provide the excellent 

performance for surface plasmon dispersive property in the amber region with the 

Purcell factor of ~1000 times.  

Using single metallic layer leads to strong enhancement in RRad near the ωsp, 

however the enhancement will reduce down for frequency further away from the ωsp 

such that no enhancement obtained for frequency above ωsp. This phenomenon of the 

use of single SP metallic layer coupled QWs had been demonstrated to result in an 

order-magnitude of enhancement in the green-emitting InGaN QWs through PL 

measurement in many reports [3]. 

4.3. Double Metallic Layers Model 

As our design is intended to tune the surface plasmon frequency within the range 

of long-wavelength emission, the use of single metallic will not provide the tunability 

Figure 0-3. Purcell factor (left) and dispersion relation (right) of TiN deposited on top of 

GaN spacer = 10nm, with TiN thickness = 40nm, 20nm, 15nm, 10nm, 5nm, respectively. 
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capability. In 2011, H. Zhao, et al. reported that double metallic layers provided the 

frequency tunability functionality in the optimum Purcell enhancement factor in 

appropriate operating frequency [3]. Here, we propose to use the double metallic layers 

model to control the surface plasmon dispersion, and we use the double layer models 

of TiN / Au and Au/ TiN with target operating wavelength near the red emission regime. 

The schematics of TiN / Au and Au/ TiN double metallic layers structures are shown in 

Figure 4-4.  

 

 

 

 

 

The spacer separation between metallic layer and QW is set to 10nm. We choose 

the GaN spacer thickness of 10nm, and use different thicknesses of TiN and Au layers, 

of which the total metallic thickness remains the same as 40nm. The simulation results 

of the double metallic layers model of TiN/Au have been provided as follows. 

 

 

 

  

Figure 0-4. Schematic of double metallic layers of TiN/Au (left) and Au/ TiN (right) on top 

of GaN 
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As shown in the simulation results (figure 4-5), the use of TiN / Au double 

metallic layer enables the tuning of surface plasmon frequency in the wavelength 

regime of interest – namely in the range of 539 nm up to 604 nm [figure 4-5(b)]. Thus, 

the use of TiN / Au double metallic layer structure can be considered an applicable 

method to tune of surface plasmon dispersion between the SP frequencies of TiN and 

Au.  

Moreover, besides of the tunability, it was found that TiN / Au double metallic 

layers placed over the InGaN QWs can be tuned to provide an increase in the Purcell 

enhancement factor in the long-wavelength spectra regime by ~500 times [figure 4-

5(a)], which indicates it can also provide the high enhancement tuning in the 

wavelength of interest where the InGaN QWs active region has low IQE.  

 

 

Figure 0-5. Purcell factor (left) and dispersion relation (right)of TiN/Au double metallic 

layers deposited on top of GaN spacer = 10nm, with dTiN/dAu = 40nm/0nm, 35nm/5nm, 

20nm/20nm, 10nm/30nm, 0nm/40nm, respectively. 
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We also apply Au/ TiN double layers model to understand about its 

enhancement effect. The simulation results are shown in figure 4-6. From the results in 

Fig. 4-6, the use of Au/ TiN also exhibits both the tunability within the range of surface 

plasmon frequency of Au and TiN, and the enhancement of coupling into InGaN QWs. 

But the enhancement of this structure is ~200 times, which is not as strong as that of 

TiN / Au double layer due to weaker coupling effect. The use of Au-layer as the first 

layer reduces the plasmonic effect introduced by the TiN layer attributed to the weak 

field interaction with the plasmon layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Energy Shift  

Based on the simulation results of the TiN/ Au and Au/ TiN structure above, 

there exists a minor energy shift of surface plasmon. These comparisons are plotted in 

figure 4.7. As shown in Fig. 4-7, for 35nm TiN/ 5nm Au structure, the SP frequency is 

smaller as compared to that of the 5nm TiN/ 35nm Au. Thus, the deposition of TiN as 

the first layer in the double metallic design results in stronger red shift in the SP 

Figure 0-6. Purcell factor (left) and dispersion relation (right)of Au/TiN double metallic 

layers deposited on top of GaN spacer = 10nm, with dAu/dTiN = 0nm/40nm, 5nm/35nm, 

20nm/20nm, 30nm/10nm, 40nm/0nm, respectively. 
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frequency of the structure. The order of the metallic layer plays significant role in 

determining the interaction strength between the field with the plasmonic layer, thus it 

is essential for one to design the TiN as the first layer in the studied structure for long 

wavelength emitter application. 

 

 

 

 

 

 

 

4.5. Effect of Different Spacer Thickness on Purcell Enhancement 

The density of states at the location of the InGaN QWs relative to the metal-

dielectric interface will influence the coupling effect between metal layer and GaN. 

Thus, we investigate various GaN spacer thickness to change the relative location of 

QWs to explore the coupling effect of QWs and metallic layers. We choose to use GaN 

spacer thickness of 4nm and 15nm respectively, with TiN/ Au double layers structure 

as simulated before. The Purcell factor enhancement for the case with different spacer 

thicknesses is shown in Fig. 4-8. 

 

 

 

Figure 0-7. Energy shift of double metallic layer of TiN/ Au (left) and Au/ TiN (right) 
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As shown in figure 4-8, there is decreasing Purcell factor enhancement for an 

increasing GaN spacer thickness. By comparing this result with the previous data of 

~500 times of enhancement with 10nm GaN spacer (in Fig. 4-5), the use of 4nm GaN 

spacer [Fig. 4-8(a)] results in a large increase of Purcell enhancement factor ~ 1000. In 

contrast, the use of 15nm spacer [Fig. 4-8(b)] results in a reduction in the Purcell factor 

of only 200 times. Attributing to the weaker coupling between SP and QWs, the increase 

of GaN spacer separation leads to the smaller Purcell enhancement factor.  

And from the simulation above, we notice that the SP frequency for the peak of 

Purcell factor of different GaN spacer has a small change, although it is not obvious 

with these value configurations of thickness. Thus, the effect of different spacer 

thickness with 40nm TiN single layer is investigated. 

 

 

  

Figure 0-8. Purcell factor of TiN/ Au double layers with 4nm GaN spacer (left) and 15nm 

GaN spacer (right) 
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Based on the results in Fig. 4-9, the dispersion relation shows there exists a 

slight energy shift of SP frequency for variation of spacer thickness in the 40-nm thick 

TiN layer structure. For the Purcell effect, the result shows a larger enhancement factor 

with the smaller GaN spacer separation, which matches the trend of that of double-layer 

model.  

Based on the simulation in this chapter, in order to optimize a SP coupled QWs 

structure, we have to consider the number of metallic layers, the thickness of metallic 

layer, and the separation of spacer, which will affect the enhancement and emission 

range of surface plasmon frequency. With an optimized SP structure, a strong 

enhancement is obtained as the energy coupled to the SP is increasing and thus internal 

quantum efficiency will be enhanced.  

 

 

Figure 0-9. Purcell factor (left) and dispersion relation (right) of 40nm TiN single metallic 

layer deposited on top of GaN spacer = 4nm, 10nm, 15nm, 20nm, 30nm , respectively 
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Chapter 5: Summary and Future Work 

The objective of this thesis is to use surface plasmon (SP) coupling to the 

InGaN/ GaN QWs to enhance the radiation efficiency of LED. The use of SP has been 

proven and demonstrated both theoretically and experimentally that SP can provide a 

notable enhancement of internal quantum efficiency (IQE). Using surface plasmon 

dispersion engineering is a method of creating a new emission channel to amplify the 

light generation rate, and it can effectively transfer the energy from carriers in InGaN/ 

Gan QWs into the surface plasmon mode attributed to the higher density of state which 

in turn results in faster photon generation rate. When the surface plasmon frequency of 

metal material overlaps with the emission frequency of the InGaN QWs, the energy 

coupled to the SP will greatly increase and thus IQE will be strongly enhanced. 

In order to achieve the desirable long-wavelength emission and enhance the 

radiation efficiency, the plasmonic properties of some metal materials have been 

explored to design the SP structure on top of GaN spacer. TiN and Au have been 

selected as appropriate plasmonic material to couple to the InGaN/ GaN QWs and hence 

enhance their efficiency through surface plasmons. The simulation results of the 

dispersive properties show that TiN with ωsp of 2.05 eV (605nm) could be a good 

candidate for amber emission; meanwhile the ωsp of Au lies in 2.298 eV (539.5nm) 

matches the green emission. It has been simulated that the Purcell factor of Au is of 

~550 times, and the Purcell factor of TiN is of ~1000 times in the green and amber 

spectral regimes, respectively, which demonstrates its applicability for this structure for 

IQE enhancement in those respective LEDs. However, the limitation for the single 
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metallic layer is that it can only be used in the specific emission spectrum, and cannot 

be tuned at the other frequency away from the SP frequency for the enhancement will 

decay very fast in the other spectral region.  

For the double metallic layers of TiN/ Au, the simulation shows both the flexible 

tuning capability by changing the thickness of metallic layers, which enables a large 

Purcell enhancement factor in the range of SP frequencies between those of Au and TiN 

(green-amber). The Purcell enhancement for double-layer model reduces as compared 

to those of single metallic layer, however the its large tunability provides the practical 

ability for designing this structure for specific emitters – specifically for addressing the 

red emission spectral regime.  

For future work, some experiments can be designed to investigate and 

demonstrate the dispersive characteristics and mechanisms of SP coupled InGaN/ GaN 

QWs LED. The objective of the experiments is to investigate the effect of (1) different 

configurations of the metallic layer and GaN spacer, and (2) In composition on InxGa1-

xN/ GaN heterostructures on the properties and performance of LEDs. And there are 

some important aspects in coupling radiation to SP which should be considered, such 

as the exact emission spectrum of the LED, the voltage-current characteristic of the 

LED, and the internal efficiency without metallic layers should be known too.  

For the experiment set up, the metallic layer should be sputtered through the 

sputtering system under the certain condition. After sputtering the metallic film on top 

of the LED with optimized and proper thickness, the efficiency enhancement of the 

LED can be tested by photoluminescence (PL) measurements. PL would be performed 
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by exciting the QWs with a suitable diode laser from the bottom of the substrate based 

on the set up shown in Figure 4-4. The ratio of the integrated photoluminescence spectra 

from the uncoated and metal-coated samples can be used as a direct measurement of 

the recombination rate enhancement.  

The advantages of SP coupling can be applied in wide fields of applications for 

its internal quantum efficiency enhancement, light extraction improvement, reduction 

of efficiency droop effect. Recently Eu-doped GaN QWs has been utilized to enable 

red emitting GaN LED [1]. The TiN for SP single metallic layer structure, as a good 

material for its strong Purcell factor in the amber-red spectral regime, can be proposed 

to be an excellent method of enhancing the internal quantum efficiency.  
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