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ABSTRACT 

 

Pixel-based motion estimation using optical flow models has been extensively researched 

during the last two decades. The driving force of this research field is the amount of 

applications that can be developed with the motion estimates. Image segmentation, 

compression, activity detection, object tracking, pattern recognition, and more recently 

non-invasive biomedical applications like strain imaging make the estimation of accurate 

velocity fields necessary. 

The majority of the research in this area is focused on improving the theoretical and 

numerical framework of the optical flow models. This effort has resulted in increased 

method complexity with an increasing number of motion parameters. The standard 

approach of heuristically setting the motion parameters has become a major source of 

estimation error. 

This dissertation is focused in the development of reliable motion estimation based on 

global parameter optimization methods. Two strategies have been developed. In full-

reference optimization, the assumption is that a video training set of realistic motion 

simulations (or ground truth) are available. Global optimization is used to calculate the 
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best motion parameters that can then be used on a separate set of testing videos. This 

approach helps provide bounds on what motion estimation methods can achieve. In no-

reference optimization, the true displacement field is not available. By optimizing for the 

agreement between different motion estimation techniques, the no-reference approach 

closely approximates the best (optimal) motion parameters.  

The results obtained with the newly developed global no-reference optimization approach 

agree closely with those produced with the full-reference approach. Moreover, the no-

reference approach calculates velocity fields of superior quality than published results for 

benchmark video sequences. Unreliable velocity estimates are identified using new 

confidence maps that are associated with the disagreement between methods. Thus, the 

no-reference global optimization method can provide reliable motion estimation without 

the need for realistic simulations or access to ground truth. 

The methods developed in this dissertation are applied to ultrasound videos of carotid 

artery plaques. The velocity estimates are used to analyze plaque motion and produce 

novel non-invasive elasticity maps that can help in the identification of vulnerable 

atherosclerotic plaques. 
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Chapter 1  

Introduction 

The general problem of recovering object motion from digital video using only image 

intensity information without any additional information regarding nature of the motion 

is an ill-posed problem. While extensive research has been dedicated to improve the 

accuracy of the vector flow estimates and many techniques [1-11] have been proposed; in 

all cases, there is a need for adding regularization terms and parameters to solve the ill-

posed problem. In an effort to better define the problem; more constraints have been 

introduced in the form of energy functionals. As the number of regularization terms and 

parameters has increased, so has the complexity of the problem. Therefore, instead added 

constraints aiding in the solution to the problem, these same constraints have become one 

of the sources of inaccuracies [7, 12-15]. 

Current solutions to motion estimation, using optical flow models, estimate the 

displacement field that minimizes the value of a combined energy functional regardless 

of the optimality of this solution with respect to each individual functional or constraint.   

This dissertation implements a global optimization strategy to calculate the regularization 

and any other motion parameters that associated with pixel-based motion estimation. In 

full-reference optimization, the assumption is the true displacement field is available. 

Global optimization is then used to help calculate the motion parameters that produce the 

best velocity estimates by minimizing the mean squared error between the estimates and 
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the ground truth velocities. In no-reference optimization, the true displacement field is 

not available and error metrics can not be minimized. The no-reference assumption is that 

two motion estimation techniques are able to provide reliable velocity estimates. By 

optimizing for the agreement between the methods, the no-reference approach calculates 

the best motion parameters that accurately estimate the unknown motion field. A 

confidence map of the motion estimates is computed based on the pixel-wise agreement 

between the methods. 

1.1 Motivation for current work 

Pixel-based motion estimation calculation using optical flow models has been extensively 

researched. The most common models are based on the conservation of image brightness 

intensities [6, 8, 10, 16, 17] along with some smoothing or regularization term that 

constraints the admissible motion field. While much attention has been paid to improving 

the theoretical and numerical framework, there has been only a small effort [7, 14] in 

applying optimization methods to current optical flow based techniques as well as 

optimization methods that find the optimal values of the model’s regularization 

parameters [7, 12-15]. The complexity of the methods has grown so much in recent years 

that there is no guarantee that the motion estimates are optimal with respect to the energy 

functionals and regularization parameters that govern the weight of the constraints in the 

admissible motion field. Additionally, there is little information provided in the literature 

on how to optimize for the parameters, so the standard approach of heuristically choosing 

the weight of the regularization constraints has become another source of estimation error 

[7, 12-15].  
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The principal motivation of this dissertation is to develop global optimization methods 

that provide optimal parameters for motion estimation by developing a general platform 

where currently available techniques can be tested and optimized. Furthermore, this 

research will also be extended to video applications where there is no ground truth 

available to use for validating the velocity estimates. This is a problem present in all real 

video sequences that are used as input to motion estimation algorithms, and it is also an 

open problem in biomedical applications like motion analysis of ultrasound videos (US) 

of carotid artery (CA) plaques. Thus, the results of this dissertation will be used to obtain 

reliable US video motion of atherosclerosis plaques as an aid to clinical diagnosis. 

1.2 Related Work on Motion Estimation Parameter Selection 

Optical flow models for motion estimation use a smoothing constraint to uniquely 

determine the velocity field components of the model solution. The weight of the 

smoothness constraint is controlled by the value of the regularization parameter in order 

to find an appropriate trade off among the model energy functionals. With the exception 

of the approaches discussed in this section, the most commonly method for choosing the 

correct value of the regularization parameter is based on a heuristic trial and error 

approach. 

1.2.1 The Data-driven Approach 

Assuming that the image brightness intensity of a point that moves on a certain pattern 

does not change in time, the data-driven approach [15] starts by assuming the 

conservation of image brightness intensities: 
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 ( ), , 0.
d

I x y t
dt

=  (1.1) 

Applying the chain rule of differentiation to (1.1) gives: 

 ( ), , 0,
d I dx I dy I dt

I x y t
dt x dt y dt t dt

δ δ δ

δ δ δ
= + + =  (1.2) 

and defining the optical flow field to be ( )/ , /
T

v dx dt dy dt=
�

, equation (1.2) can be 

written in compact form as: 

 0,
x y t

I u I v I+ + =  (1.3) 

where , ,  and 
x y t

I I I  are the spatial and temporal image partial derivatives. The data-

driven approach adds extra error terms to (1.3) that are modeled as independent Gaussian 

random variables yielding to: 

 ,
t x y

I I u I v δ− = + +  (1.4) 

where ( )2 is 0,Nδ σ
n
Ι  with zero mean, variance noise of 2σ . A suitable performance 

measure needs to be defined to assess the accuracy of the estimates. Here, a weighted 

error norm or estimated risk is defined by: 

 ( )
2

2 ˆ ,R n E W f fα
−  

= −  
 (1.5) 

where 

 
[ ]

( ) ( )

, ,

,

T

x y

f u v

W diag I diag I

=

 =  

 (1.6) 

and f̂  is the optical flow estimate obtained by minimizing the combined constant 

brightness model energy functional proposed by Horn [1] (also see table 2.1): 
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 ( ) ( )2 2 2
.

CBM x y t
E I u I v I u v dxdyα

Ω

 = + + + ∇ + ∇  ∫∫  (1.7) 

The unbiased estimator of Rα  (1.5) is given by: 

 ( )
2

22 1

2 2

1 2ˆ ,T
R e trace WA W

n n
α

σ
σ −= − + −  (1.8) 

where ( )2

ˆ̂ / 2
CBM ff

A n E= , assuming square images 2
n  is the number of pixels, and the 

matrix ( ) ˆ̂CBM ff
E  can be computed by discretizing (1.7) and taking derivatives with 

respect to each component of [ ],
T

f u v= .   

If 2σ  is known, then R̂α  can be directly calculated and the optimal regularization 

parameter according to (1.8) is the α  that minimizes R̂α . If 2σ  is not known, then it can 

be replaced by an estimate [15].   

The proposed noise model in (1.4) does not consider that finite differencing 

approximations to image derivatives and violations to the conservation of image 

brightness intensities which introduce a noise correlation component that is not modeled. 

However, the main disadvantage of the data driven approach is that it requires noise free 

spatial image derivatives [15] which is not a realistic assumption. Thus, their 

performance measure (1.8) is invalid because it explicitly depends on their noise model. 

Furthermore, a discretization of the energy functional (1.7) is required to calculate its 

derivatives with respect to each velocity component. This methodology now introduces 

errors in the minimization of (1.8) which arguably leads to a good estimate of the optimal 

regularization parameters. Finally, the cost of calculating ( )1trace WA W−  leads to a very 

time consuming algorithm even for small images as recognized in [15]. 



 6 

1.2.2 The Maximum Likelihood Regularization Parameter Estimator Method 

Developed in [12, 13], this method uses a combined marginal maximum likelihood / 

maximum a posteriori (MML/MAP) estimator for estimating optical flow and 

simultaneously choosing the regularization parameter value in a Bayesian framework . 

As with most differential approaches to motion estimation, the conservation of image 

intensities is the starting point to compute motion vectors leading to: 

 0,T

h
g v =
� �

 (1.9) 

where ( ), ,
T

x y t
g I I I=
�

and ( ), ,1
T

h
v u v=
�

. Since it is not possible to estimate 
h

v
�

 from a 

single equation with two unknowns, the necessary additional constraint is incorporated by 

a regularization term ( )vρ
�

, where ρ  is an operator acting on ( ),
T

v u v=
�

, that imposes a 

smoothing constraint on permissible motion fields. The optical flow field is estimated by 

minimizing: 

 ( ) ( )( ) ,T

CBM h
E g v v dxdyψ λρ

Ω

= +∫∫
� � �

 (1.10) 

where ψ  is a real positive function and the regularization parameter λ  controls the 

influence of the regularization term ( )vρ
�

 relative to the data term ( )T

h
g vψ
� �

. 

In the Bayesian formulation, the optical flow is estimated using a probability density 

function (pdf). In order to design the pdf, a regular grid in space-time is assumed where 

image intensities and optical flow vectors are only considered if they lie on the knots of 

the grid. Then, for N  knots: 
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( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

( )

1 2

1 2

1 2

, , , ,

, , , ,

, , , ,

, .

N

c N

c N

T

I I x I x I x

u u x u x u x

v v x v x v x

v u v

=

=

=

=

�
…

�
…

�
…

�

 (1.11) 

In this framework, not only the measured image gradients ( ) ( ) ( )( )1 2, , Ng g x g x g x=
�

… , 

but also the estimated field v
�

 are considered random variables with pdfs ( )p v
�

 and 

( )p g
�

. Prior knowledge about v
�

 is incorporated into the estimation via the prior pdf 

( )p v
�

. The maximum a posteriori (MAP) estimator infers the optical flow field by 

maximizing the posterior ( )|p v g
� �

 [13]. Using Bayes theorem: 

 

( ) ( )
( )

( )( ) ( )( ){ }

|ˆ arg max ,

ˆ arg min ln | ln .

v

v

p g v p v
v

p g

v p g v p v

  
=  

  

= − −

�

�

� �
�

� � � �
 (1.12) 

The errors ε  in the brightness constancy assumption are attributed only to the temporal 

component of the image gradient by writing: 

 ,T

sj hj tjg v ε=
�

 (1.13) 

where ( ),
T

sj xj yj
g I I=
�

is the error free vector of spatial image gradient components. 

Expressing each random variable 
tj

ε  in the joint ( ) ( )
1

 
N

tjj
pdf p pε ε

=
= ∏

�
, the likelihood 

function ( )| ,t sp g v g
� � �

 is given by: 

 ( )
( )

( )11

1
| , exp .

N

t s j hjj
L

p g v g g v
Z

α ψ
α =

 = −
 ∑

� � � � �
 (1.14) 



 8 

The prior ( )p v
�

 encodes the prior information/assumptions about the optical flow, i.e. the 

smoothness of the field, and then the pdf  corresponding to the smoothness assumption is 

given by: 

 ( )
( )

( ) ( )2 2 2 2

2 21

1
exp ,

N

x x y y x yj

p

p v u u v v
Z

β ψ β ψ
β =

 = − + + +
 ∑

�
�  (1.15) 

where ( ),
T

x y
β β β=
�

 in the more general anisotropic case.   

After substituting (1.14) and (1.15) in (1.12), the objective function ( )N
E  is given by: 

 ( ) ( ) ( ) ( ) ( )( )ln .
N

L p L p
E E E Z Zα β α β= + +  (1.16) 

The regularization parameter /λ β α= , in the isotropic case 
x y

β β β= = ,  is expressed 

in terms of the hyper parameters ,  and α β  which are the parameters of the prior 

distributions. Subtracting ( ) ( )( )ln
L p

Z Zα β  from (1.16), taking the limit and dividing by 

α gives: 

 

( ) ( ) ( )( )( )

( ) ( )( )

( ) ( )( )

2 2

1 2

2 2

1 2

lim ln

.

N

L p
N

T

h

T

h

E E Z Z

g v u v dxdy

g v u v dxdy

α β

αψ βψ

ψ λψ

→∞

Ω

Ω

= −

= + ∇ + ∇

= + ∇ + ∇

∫∫

∫∫

� �

� �

 (1.17) 

When the objective function is minimized, rather than choosing ad-hoc values for ,α  and 

β  these are inferred using prior knowledge of the flow field, i.e ground truth is used to 

compute moments of functions of the motion field. Using the maximum entropy principle 

[18], the hyper parameters are calculated by constructing the prior ( )p v
�

 and 

incorporating all the constraints imposed on v
�

. 
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The advantage of this method is that the use of probabilistic models for motion estimation 

produces a method for estimating regularization parameters through velocity 

distributions. However, image motion requires specific spatio-temporal information that 

is not easily described through this approach. As an example, it is not clear how this 

model will be used to effectively describe a variable rate expansion field [19]. 

Furthermore, for more accurate estimation specific prior knowledge needs to be 

incorporated into the method. It is not clear how to produce such prior knowledge when 

dealing with video sequences without ground truth. This is a drawback to the scope of the 

MML/MAP estimator. Instead, this dissertation proposes to calculate a globally optimal 

solution to the estimation of motion parameters; where for different types of motion even 

if no ground truth is available, an approximate interval of parameters will lead to accurate 

estimations. 

1.3 Regularization parameter choice for inverse problems 

Inverse problems involve the estimation of unknown quantities of interest based on some 

related observations. Noise can lead to significant errors in the estimation, and the 

observations could not guarantee a unique solution if one exists. These types of systems 

are known as ill-posed. In order to deal with these systems, regularization, a 

mathematical operator, was developed to better constraint the problems and find a 

suitable solution.  

In image and video processing, ill-posed inverse problems are common. Image 

restoration is arguably one of the most common examples. The goal is to recover a 
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desired unknown image ( ),f x y  based on a distorted observation ( ),g x y . The 

degradation process is modeled with a forward operator H  and additive noise ( ),x yη . 

The observed and unknown images ( ),g x y  and ( ),f x y  are made up of individual 

pixels, 
i

g  and 
i

f , and using matrix-vector notation the image restoration problem can be 

written as: 

 g Hf η= +  (1.18) 

The purpose of regularization is to allow prior knowledge to be used in the inverse model 

and to avoid noise dominated reconstructions [20].  Thus, the regularized estimate is the 

solution to the following minimization problem: 

 ( )
2 22

2 2

ˆ arg minf g Hf Lfα α= − +  (1.19) 

The first term, ( )
2

1 2
,J f g g Hf= − , ensures fidelity to the unknown image, and the 

second term, ( )
2

2 2
J f Lf= , incorporates prior knowledge about f  penalizing 

departures from some expected behavior trough the regularization operator L . The 

smoothing parameter, α , controls the trade off between data fidelity and regularization 

terms. 

Inverse problems like image restoration are very common in the literature [21], and 

methods to estimate the correct value of the regularization parameter have already been 

developed [22-24]. These interactions are similar to the ones found in motion estimation 

models. Thus, it is necessary to explore possible adaptations of the following methods to 

set the value of the regularization parameter in the solution of velocity vector fields using 

optical flow models. 
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1.3.1 The discrepancy principle 

Knowledge of the noise variance 
n

λ  allows the discrepancy principle to bound the 

residual norm to: 

 
2

.qg Hf λ− ≤  (1.20) 

When the regularization parameter α  is set to a small value, the result is excessive noise 

amplification [20]. Thus, the idea is to make the value of α  large enough to achieve the 

equality: 

 ( )
2

ˆ .
q

g Hf α λ− =  (1.21) 

Generally, the regularization parameter provided by the discrepancy principle leads to an 

over-regularized solution since the actual noise variance may be smaller than the used in 

(1.21). 

1.3.2 The L-curve method 

The L-curve method [25] involves the analysis of the trade off between the fidelity data 

term and the regularization term. A log-log scale plot of the behavior of these two terms 

as α  varies is called the L-curve because it exhibits a characteristic “L” shape, and the 

optimal value of the regularization parameter, *α , is considered to be at the corner of the 

curve (figure 1.1). This corner represents the transition between over and under-

regularized solutions and it is achieved for *α . 

Possible definitions for the corner of the curve include the point of maximum curvature 

and a point of tangency with a slope of -1. This last definition leads to a α  value that 

satisfies: 
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( )

( )

2

2 2

2

2

ˆ

.
ˆ

g Hf

Lf

α
α

α

−
=  (1.22) 

 

 

 

 

 

 

 

Figure 1.1. Shape of the L-curve 

1.4 Thesis statement 

This dissertation will demonstrate that global optimization methods can be used to 

provide accurate pixel motion estimates of video sequences. First, a full-reference global 

optimization method will be developed for estimating the best parameters in realistic 

motion simulations (training set). Second, a no-reference global optimization method will 

be developed for estimating the best motion parameters in synthetic benchmark videos, 

real video sequences, and clinical videos of ultrasound atherosclerotic plaques. For the 

benchmark and clinical video simulations, agreement between the full-reference and no-

reference approaches will be demonstrated. Applications of the optimization approaches 

will be shown on motion estimation and strain imaging of atherosclerotic plaques. 

1.5 List of Contributions 

The contributions of this dissertation include: 

( )
2

log Lf α

( )
2

log g Hf α−

 too smallα

 too largeα
*α
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• The development of a full-reference global optimization methodology for 

estimating the best regularization and other relevant motion parameters in the 

computation of motion vectors when ground truth is available.  

• The development of a no-reference global optimization method when no ground 

truth is available. Unreliable velocity estimates are identified using new 

confidence maps that are associated with the disagreement between methods. 

Thus, the no-reference global optimization method can provide reliable motion 

estimation without the need for realistic simulations or access to ground truth 

• The agreement between the full-reference and no-reference methods on standard 

benchmark videos and clinical ultrasound simulations. 

• The application of the optimization approaches to motion estimation and strain 

imaging of ultrasound atherosclerotic plaques. 

 

1.6 Dissertation Overview 

This section contains a brief description of the all the work that is presented in this 

dissertation.  

• Chapter 2 presents background on pixel based motion estimation methods using 

optical flow models.  Global and local solutions using optimization theory are 

presented starting from the original work of Horn and Schunk [1], until more 

recently developed methods. The review will cover a period of three decades of 

active research in the area. 
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• Chapter 3 describes the full-reference global optimization approach and provides 

comparative results on standard benchmark videos. 

• Chapter 4 describes the no-reference global optimization method and provides 

comparative results with the full-reference approach. 

• Chapter 5 provides applications on motion and strain imaging of atherosclerotic 

ultrasound plaques. 

• Chapter 6 gives concluding remarks. 
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Chapter 2  

Optical Flow Model Solutions using 

Optimization Theory  

This chapter presents an overview of optical flow based methods for motion estimation 

with special focus on optimization theory applied towards the minimization of energy 

functionals. Global and local solutions are studied using the calculus of variations and 

least-squares methods. 

2.1 Overview of motion estimation and optical flow 

The study of motion estimation from digital video will be restricted to the process of 

identifying pixel correspondences between different frames and assigning a velocity 

vector to each point in the image. However, note that 2-d motions are not always 

observable [26]. Instead, only the apparent motion of pixels is observed. Optical flow is 

the perceived motion of image intensity brightness patterns and is used to approximate 

the 2-d motion field of objects from a 3-d scene.  

The work of  Horn and Schunk [1] opened up the area of motion estimation using optical 

flow models with the classical assumption that the image intensity should be conserved 

under small displacements. At the same time, Lucas and Kanade [6] proposed a local 

solution to the conservation of image intensities using a weighted least squares fit. Five 

years later, Nagel [8] proposed an oriented smoothness constraint for estimating the 
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optical flow motion field. The conservation of the image intensities was applied to the 

image gradient by Uras et. al [10], and Fleet and Jepson [3] were the first to use image 

phase information in the estimation of the motion field. 

At this point, Barron et. al [27] published a comprehensive survey of optical flow 

techniques. This work gave quantitative comparisons among differential methods (eg: 

[1], [6], [8], [10]), block matching [16], energy based [4],  and phased based techniques 

([3], [11]). For the comparisons, Barron et. al. [27] used synthetic images for which 

ground truth was available. Estimation performance was summarized in terms of the 

density of the flow field (percentage of the number of pixels with motion estimates as a 

fraction of all the pixels) and the angular error between ground truth and the estimated 

field. 

Negahdaripour [9] modified the framework to allow changes in the pixel brightness 

intensities along their motion path. Then, local and global solutions to motion estimation 

using optical flow models were merged by Bruhn and finally. More recently, the intensity 

conservation assumption was assumed over multiple scales in conjunction with amplitude 

modulation frequency modulation (AM-FM) image models [7]. A complete list of each 

method assumptions and energy functionals are shown in table 2.1 and table 2.2. 
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Table 2.1. Energy Functionals for Optical Flow Techniques 

 

Authors Assumptions Energy 

Functionals 

Comments 

Horn & 

Schunk 

1981 

[1] 

• Intensity conservation. 

• Small displacements. 

• Field smoothness. 

EOFC, ES Adv.: Simple linear model. 

Disadv.: Intensity conservation often 

violated. Errors at object boundaries. 

Lucas & 

Kanade 

1981 

[6] 

• Weighted intensity 

conservation.  

• Small displacements. 

• Constant motion over 

blocks. 

EWOFC Adv.: Noise Robustness 

Disadv.: Low field density. 

 

Nagel H.H. 

1986 

[8] 

• Intensity conservation. 

• Small displacements. 

• Oriented smoothness. 

EOFC, EOS Adv.: Better handling of Occlusion. 

Disadv.: Approximation of second 

order derivatives. 

 

Uras et al. 

1988 

[10] 

• Conservation of image 

gradient. 

• No rotation or dilation of 

image intensities. should 

be present 

EG Adv.: One constraint that provides 

two equations per pixel. 

Disadv.: Low field density. Requires 

approximation of second order 

derivatives 

Fleet & Jepson 

1990 

[3] 

• Conservation of phase 

information. 

• Small displacements. 

EPhase Adv.: Phase information is more 

robust than amplitude (intensity) 

information. 

Disadv.: Filter is tuned to only 

certain frequencies. 

Negahdaripour 

1998 

[9] 

• Non constant Brightness 

• Small displacements. 

• Field smoothness 

• Radiometric smoothness 

ENCB 

 

ES 

ESrad 

Adv.: Realistic Model 

Disadv.: Underdetermined model 

that requires smoothness across 

velocity and scene variation 

parameters. 

Bruhn et al. 

2002 

[2] 

• Local-Global intensity 

conservation 

• Small displacements. 

ECLG Adv.: Combines global and local 

Optical Flow approaches 

Disadv. Integration scale of local-

global region is chosen heuristically. 

Murray & 

Pattichis 

2007 

[7] 

• Image intensity 

preservation translated into 

AM and FM constraints. 

• Assumes motion continuity 

EAM 

 

EFM 

Adv.: Three equations for each 

channel filter per pixel. 

Disadv.: Filterbank frequency should 

match the underlying motion to be 

estimated. 
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Table 2.2.Optical flow energy functionals used to constraint the motion present in a 2D scene. 

 

Authors Parameter 

Horn & Schunk 

1981 

[1] 

• Spread of Gaussian smoothing filter σ . 

• Weight of smoothness constraint α . 

Lucas & Kanade 

1981 

[6] 

• Spread of Gaussian smoothing filter σ .  

Nagel H.H. 

1986 

[8] 

• Spread of Gaussian smoothing filter σ . 

• Weight of smoothness constraint α . 

Uras et al. 

1988 

[10] 

• Spread of Gaussian smoothing filter σ . 

Fleet & Jepson 

1990 

[3] 

• Spread of Gaussian smoothing filter σ . 

• Threshold on local frequencies outside filter’s 

tuning range. 

Negahdaripour 

1998 

[9] 

• Spread of Gaussian smoothing filter σ . 

• Weight of smoothness constraint λ  

• Weight of radiometric smoothness constraint β . 

Bruhn et al. 

2002 

[2] 

• Noise scale ρ . 

Murray & Pattichis 

2007 

[7] 

• Weight of AM contraint 
AM

α  

• Weight of FM constraint 
FM

β . 

2.2 Constant brightness optical flow model for motion estimation 

Let the image brightness intensity of a pixel with coordinates ( ),x y  at time t , be denoted 

as ( ), ,I x y t .  Optical flow techniques assume that the image brightness intensities 

remain constant along their motion path under a sufficiently small time interval tδ  giving: 

 ( ) ( ), , , , .I x x y y t t I x y tδ δ δ+ + + =  (2.1) 
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Expanding the left hand side of  (2.1) into a first order Taylor series, and ignoring high 

order terms gives: 

 ( ) ( ), , , , .
I I I

I x y t x y t I x y t
x y t

δ δ δ
∂ ∂ ∂

+ + + =
∂ ∂ ∂

 (2.2)   

After subtracting ( ), ,I x y t  from both sides of  (2.2), dividing by tδ , and taking the limit 

as 0tδ → , equation (2.3) becomes the optical flow constraint (OFC): 

 0.
x y t

I u I v I+ + =  (2.3) 

Global deviations from the OFC are measured using the following energy functional 

 ( )
2

OFC x y t
E I u I v I d

Ω

= + + Ω∫∫  (2.4) 

which is minimized over the entire image domain Ω . 

Alternatively, the OFC can be rewritten as: 

 
t

I v I∇ ⋅ = −
� �

 (2.5) 

where ( ),x y
I I I∇ =  is the spatial intensity gradient, 

t
I  is the first order temporal 

derivative, and v
�

is the optical flow field with components given by /u dx dt=  and 

/v dy dt= .  

The solution to equation (2.5) is the velocity component in the direction of the spatial 

intensity gradient given by: 

 
2

2

.t
n

I I
v

I

− ∇
=

∇

�
�

 (2.6) 

This is known as the aperture problem; only the velocity component in the direction of 

the spatial intensity gradient can be estimated with the OFC. The component orthogonal 

to this direction, which is the component along contours of constant brightness intensity, 
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can not be determined. The velocity in the direction of the spatial gradient (2.6) is known 

as the normal velocity i.e. the flow normal or orthogonal to local intensity structure, and 

only at locations where there is sufficient intensity structure full image velocity can be 

estimated [28].  The OFC is a single equation in two unknowns. The constraint can be 

expressed as a line in the velocity space and all the points ( ),u v  on that line are valid 

solutions. The normal velocity is the solution with the smallest magnitude on that line, 

and the problem of estimating full image velocity yields to introducing additional 

constraints. 

2.3 Non constant brightness intensity optical flow model for motion estimation 

Geometric transformations provide only one set of changes that result in optical flow 

changes.  Brightness changes induced by non-uniform light source, light source changes, 

shading, and surface reflection are present in time-varying images and all induce optical 

flow changes that violate the brightness constancy assumption. To overcome the 

shortcomings of the image brightness constancy model, Negahdaripour [9] proposed a 

more general model for optical flow estimation that allows brightness intensity variations 

between successive time instants.  

The brightness intensity change of a pixel after a small time interval can be modeled as 

 ( ) ( ) ( ) ( ), , , , , , ,m x y t I x y t c x y t I x x y y t tδ δ δ+ = + + + +  (2.7) 

where the new terms ( ), ,m x y t  and ( ), ,c x y t  allow the approximation of brightness 

variations as a linear transformation of the intensity patterns using a multiplier ( ), ,m x y t  

and offset ( ), ,c x y t  fields. 
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Expanding the right hand side of (2.7) in a first order Taylor series and neglecting high 

order terms, yields to 

 ( ) ( ) ( ) ( ), , , , , , , ,
I I I

m x y t I x y t c x y t I x y t x y t
x y t

δ δ δ
∂ ∂ ∂

+ = + + +
∂ ∂ ∂

 (2.8) 

for small time intervals, tδ , the multiplier field is expected to be close to one, and the 

offset field is expected to be close to zero. This allows to approximate the multiplier and 

offset fields using ( ), , 1m x y t mδ= +  and ( ), , 0c x y t cδ= + . Equation (2.8) is reduced 

to: 

 .
x y t

I m c I x I y I tδ δ δ δ δ+ = + +  (2.9) 

After dividing by tδ , and taking the limit as 0tδ →  the Generalized Dynamic Image 

Model (GDIM) is expressed as: 

 0.
x y t t t

I u I v I Im c+ + − − =  (2.10) 

Equation (2.10) reduces to the OFC when 0
t t

m c= = .  

Deviations from the GDIM are penalized using the following energy functional 

 ( )
2

.
NCB x y t t t

E I u I v I m I c d
Ω

= + + − − Ω∫∫  (2.11) 

2.4 Global Solutions via functional optimization 

Both the constant brightness model and the non constant brightness intensity model are 

underdetermined systems. Global methods assume that the motion field is continuous and 

differentiable in space and time [28] along with a global smoothness regularization term 

to compute dense optical flow estimates. If pixels in an image move independently, there 
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is little hope to recover the flow field [1]. In what follows, the assumption is that velocity 

field of the image varies smoothly over the spatial support of the image. 

2.4.1 Constant brightness model (CBM) solution 

The OFC (2.3) is not enough to fully estimate both components of the flow field ( ),u v  

since it is a single equation with two unknowns per pixel. Additional constraints need to 

be introduced to the model formulation in order to calculate the optical flow field. Horn 

and Schunk [1] measured the smoothness of the field by minimizing the square of the 

magnitude of the gradient of the velocity vector over the whole image in the following 

energy functional: 

 ( )2 2 2 2 .
S x y x y

E u u v v d
Ω

= + + + Ω∫∫  (2.12) 

The solution to the CBM is the velocity field that minimizes the sum of the errors in the 

following combined functional: 

 ( )

( )

2

2

2 2 2 2

,

,

.

CBM OFC S

OFC x y t

S x y x y

E E E

E I u I v I d

E u u v v d

α

Ω

Ω

= +

= + + Ω

= + + + Ω

∫∫

∫∫

 (2.13) 

In (2.13), α is a parameter that weights the departure from the smoothness functional, 

S
E , relative to the optical flow constraint functional 

OFC
E . If brightness measures are 

accurate, this parameter should be small and large if they are noisy [17].  

Quantization error and noise affect the calculation of image intensity derivatives. Thus, 

the OFC will not always equal to zero. Meanwhile, 
S

E  only vanishes for constant 

velocities, i.e. 0
x y x y

u u v v= = = = . For non-constant velocities, the smoothness 
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functional is non-zero. The weight on the smoothness constraint is supposed to account 

for some of these errors. Clearly though, the choice of the correct regularization 

parameter is critical and optimizing for the best value is not a trivial task as shown in our 

previous work [7, 14, 29].  

Minimizing a combined functional of the form of (2.13) is a problem for the calculus of 

variations [30, 31]. The associated Euler-Lagrange equations are: 

 

2 2 2

2 2 2

x x y x t

x y y y t

I u I I v u I I

I I u I v v I I

α

α

+ = ∇ −

+ = ∇ −
 (2.14) 

where finite differencing is used to approximate the Laplacian of the velocities. System 

(2.14) depends on the regularization parameterα , and a suitable value needs to be chosen 

in order to find a solution. The most of common approach is a heuristic trial and error 

process that leads to inaccuracies in the estimated vector field [7, 13-15]. 

There are two equations per pixel and solving (2.14) using one of the standard methods 

like Gauss-Jordan elimination will be very costly. Thus, an iterative scheme [1] is used to 

calculate the new velocity values ( )1 1,k ku v+ +  from local velocity neighborhood averages 

at the previous iteration ( ),k ku v  and brightness intensity derivatives using:  

 

1

2 2 2

1

2 2 2

,

.

k k

x x y tk k

x y

k k

y x y tk k

x y

I I u I v I
u u

I I

I I u I v I
v v

I I

α

α

+

+

 + + = −
+ +

 + + = −
+ +

 (2.15) 

Numerical differentiation is always a source of considerable error and authors in [27] 

applied a spatiotemporal Gaussian pre-smoothing filter to enforce continuity of the image 

brightness patterns and attenuate the effects of noise. However, too much smoothing 
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destroys local image structure, and some optimization will be needed in order to control 

the spread of the Gaussian filter. 

2.4.2 Constant Brightness Model with Oriented Smoothness Constraint 

In this model, as in the original approach by Horn and Schunk [1], the OFC is combined 

with a smoothness constraint. Here, the smoothness constraint was modified to limit the 

variation of the motion field [32]. The variation of the motion field is captured in the first 

derivatives of the two velocity components. 

Nagel accomplished this by minimizing the flow variation that is orthogonal to the image 

gradient I∇ . The oriented smoothness constraint is formulated as: 

 
( ) ( ) ( )

2 2
2 2 2 2

2
.

2

x y y x x y y x x y x y

OS

u I u I v I v I u u v v
E dxdy

I

δ

δ

 − + − + + + +  =
∇ +

∫∫  (2.16) 

The solution to the CBM with oriented smoothness constraint is the flow field ( ),u v  that 

minimizes the following combined functional: 

 ( )

( ) ( ) ( )

2

2

2 2
2 2 2 2

2

,

,

.
2

CBMOS OFC OS

OFC x y t

x y y x x y y x x y x y

OS

E E E

E I u I v I d

u I u I v I v I u u v v

E dxdy
I

α

δ

δ

Ω

Ω

= +

= + + Ω

 − + − + + + +  =
∇ +

∫∫

∫∫

 (2.17) 

The parameter α weights the departure from the oriented smoothness constraint relative 

to the error in the OFC, and δ  was introduced for numerical stability and equals to 1.0  

[27]. Using the Gauss-Seidel iterations, the solution can be expressed as: 
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( )
( ) ( )( )

( )
( ) ( )( )

1

2 2 2

1

2 2 2

,

.

k k

x x y tk k

x y

k k

y x y tk k

x y

I I u I v I
u u

I I

I I u I v I
v v

I I

ξ ξ
ξ

α

ξ ξ
ξ

α

+

+

+ +
= −

+ +

+ +
= −

+ +

 (2.18) 

In (2.18), k  denotes the iteration number, Here, ( )kuξ  and ( )kvξ  are given by: 

 
( ) ( )
( ) ( )

2 ,  and

2 ,

k k k T k

x y xy

k k k T k

x y xy

u u I I u q u

v v I I v q v

ξ

ξ

= − − ∇

= − − ∇
 (2.19) 

Where q  and W  are given by: 

 

 
2 2

1
2 , and

2

yy xy xx xyT

xy xx xy yyx y

I I I I
q I W

I I I II I δ

 −   
= ∇ +    

−+ +      
 (2.20) 

 ( )
2

1
2 2

2
2 .

y x y

x y

x y x

I I I
W I I

I I I

δ
δ

δ

−  + −
= + +   − + 

 (2.21) 

Here, k

xyu , k

xyv  denote estimates of the partial derivatives. Also, k
u  and k

v  denote local 

neighbourhood averages of k
u  and k

v . 

2.4.3 Generalized Dynamic Image Model (GDIM) Solution 

Conservation of image intensity is the basis of most optical flow techniques but when 

intensities are not constant, true in most real video sequences, the OFC is severely 

violated yielding unreliable estimates. To overcome the shortcomings of the image 

brightness constancy model, a generalized brightness variation model was proposed by 

Negahdaripour [9] where not only image geometric transformations are considered but 

also transformations of image brightness patterns (2.11). Originally, Negahdaripour [9] 
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developed a local solution for the GDIM using a least square fit over block regions of 

9×9 pixels. Such local solutions do not yield high density fields because of regions where 

the least square system is ill-conditioned due to lack of or weak texture. In this paper, a 

global solution for the GDIM is computed using the calculus of variations. 

Errors in the GDIM are penalized using the non-constant brightness energy functional 

NCB
E : 

 ( )
2

.
NCB x y t t t

E I u I v I m I c d
Ω

= + + − − Ω∫∫  (2.22) 

Assuming that the unknowns ( ), , ,t tu v m c  vary smoothly, the minimization problem can 

be formulated as one of estimating the functions ,, ,
t t

u v m c  that minimize the combined 

energy functional: 

 

( )

( )

( )

2

2 2 2 2

2 2 2 2

. Where

,

,

.

GDIM NCB Srad S

NCB x y t t t

Srad tx ty tx ty

S x y x y

E E E E

E I u I v I m I c d

E m m c c d

E u u v v d

λ β

Ω

Ω

Ω

= + +

= + + − − Ω

= + + + Ω

= + + + Ω

∫∫

∫∫

∫∫

 (2.23)  

The system of associated Euler-Lagrange differential equations is given by: 

 

( )
( )
( )

( )

2

2

2

2

,

,

,  and

.

x y t t t x

x y t t t y

x y t t t t

x y t t t t

I u I v I m I c I u

I u I v I m I c I v

I u I v I m I c I m

I u I v I m I c c

λ

λ

λ β

λ β

+ + − − = ∇

+ + − − = ∇

− + + − − = ∇

− + + − − = ∇

 (2.24) 

The Laplacian of the velocities is approximated using finite differencing. The final 

system to solve can be written as: 
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2

2

2

1

1
.

x tx x y x x

y tx y y y y

t t tx y y

t t tx y

u u I II I I I I I

v v I II I I I I I

m m I II I I I I I

c c II I I

λλ λ λ λ

λλ λ λ λ

β λλ λ λ β λ

β λλ λ λ β λ

  −+ − −    
     −+ − −     =
     +− − +
     

+− − +      

 (2.25) 

The Gauss-Seidel iteration scheme used by Horn and Schunk to solve system (2.14) is 

applied to system (2.25). This gives: 

 

( )

( )

( )

1

2 2 2

1

2 2 2

1 1

2 2 2

1 1

,
' 1 '

,
' 1 '

' ,  and
' 1 '

'

k k k k

x y t t tk k

x

x y

k k k k

x y t t tk k

y

x y

k k k k

x y t t tk k

t t

x y

k

xk k

t t

I u I v I Im c
u u I

I I I

I u I v I Im c
v v I

I I I

I u I v I Im c
m m I

I I I

I u I
c c

β λ

β λ

β
β λ

β

+

+

+ +

+ +

 + + − −
 = −

+ + + +  

 + + − −
 = −

+ + + +  

 + + − −
 = −

+ + + +  

+
= −

( )2 2 2
.

' 1 '

k k k

y t t t

x y

v I Im c

I I Iβ λ

 + − −
 

+ + + +  

 (2.26) 

Here, note that 'β  and 'λ  are used and they are defined to be 1/ β  and 1/ λ  

respectively. Then, when 'β  is large, 
t

m  and 
t

c  equal to zero and the GDIM 

approximates to the CBM method proposed by Horn. The optimization methods 

developed in this dissertation proposal will be applied towards finding the optimal values 

for 'λ and 'β . 

2.4.4 Amplitude Modulation-Frequency Modulation Motion Model 

The Amplitude Modulation Frequency Modulation (AM-FM) motion estimation model 

was recently developed in [7]. The interest for this method arises from the fact that 

motion vectors can be estimated independently using AM constraints alone, FM 
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constraints alone, and the combination of both. The influence of the AM-FM constraints 

is controlled by weights on the energy functional formulation. 

Amplitude Modulation Frequency Modulation is a model that represents images in terms 

of amplitude and phase functions using: 

 ( ) ( ) ( )
1

, , , , cos , , .
M

n n

n

I x y t a x y t x y tϕ
=

≈∑  (2.27) 

The idea is to let the amplitude modulated (AM) components ( ),na x y  to capture slow-

changing spatial variability in the image intensity, as well as the energy attributed to each 

component. The frequency modulation components (FM) come from the cosine terms, 

are used to describe texture variations. 

For a single AM-FM component approximation to the input video we have: 

 ( ) ( ) ( )( ), , , , exp , , .I x y t a x y t j x y tϕ=  (2.28) 

Assuming the OFC, the authors in [7] used equation (2.28) to derive: 

 0,  and
x y t

a u a v a+ + =  (2.29) 

 0.
x y t
u vϕ ϕ ϕ+ + =  (2.30) 

Combining (2.29) and (2.30) with a smoothness constraint on the velocity estimates, the 

problem of estimating the optical flow field ( ),u v  reduces to minimizing the following 

combined energy functional over the entire image: 

 

( )

( )

( )

2 2 2 2

2

2

,

,

,

.

AMFM s AM AM FM FM

s x y x y

AM x y t

FM x y t

E E E E

E u u v v d

E a u a v a d

E u v d

α β

ϕ ϕ ϕ

Ω

Ω

Ω

= + +

= + + + Ω
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 (2.31) 
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As in the case of the CBM and the GDIM models, the solution to (2.31) is computed after 

approximating derivatives with finite difference methods, and using an iterative scheme 

to get: 
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(2.32) 
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(2.33) 

2.5 Local solutions via least squares 

Local solutions assume a constant velocity model and use least-squares (LS) fits over 

pixel neighborhoods. Local solutions have the advantage that are robust in the present of 

noise  [2, 27] but suffer from low density field estimates wherever the system of 

equations to solve is ill-conditioned. 

2.5.1 Lucas and Kanade least squares solution 

Instead of adding further constraints to the CBM, Lucas and Kanade [6] chose to 

minimize a weighted version of the OFC assuming that nearby pixels share the same 2D 

velocity:  

 ( ) ( )
2

,
OFCW x y t

E W x y I u I v I d
Γ

= + + Γ∫∫  (2.34) 
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where the weighted functional (2.34) is minimized over a local spatial neighborhood Γ . 

In discrete form, this becomes: 

 ( ) ( )
2

, .x y t

x

W x y I u I v I
∈Γ

 + +  ∑  (2.35) 

The associated Euler-Lagrange equations of  (2.34) are: 

 
( )( )
( )( )
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2

0,  and

0.

x x y x t

x y y y t

W x I u I I v I I

W x I I u I v I I

+ + =

+ + =
 (2.36) 

The weight function ( ),W x y  is assumed to be separable ( ) ( ) ( )1 2,W x y W x W y=  and a 

function of distance from the center. The idea is to give more emphasis to measurements 

at the centre of the window than at the periphery. The constraint errors are added over a 

5×5 region, leading to  
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 (2.37) 

The least square estimator that minimizes the sum of the squared errors in (2.35) gives 

the solution to (2.37) as: 

 
1

T Tv A WA A Wb
−

 =  
�

 (2.38) 

where 
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( ) ( )

1

1

, , ,

,

, , ,

T

n

T

T

t t n

A I x I x

W w w

b I x I x
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= ×

= −   

…

…

 (2.39) 

and v
�

 denotes the velocity estimates for n  points ( ),i ix y ∈Γ  at a single time t . 

There is a closed form solution to v
�

 when T
A WA  is non-singular given by: 
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 (2.40) 

 with summations taken over the entire window. Here, matrix T
A WA  has to be full rank 

and depends on accurate image gradient calculations [33]. Pre-smoothing is applied to the 

image sequences to attenuate the effect of quantization noise and the amplitude of high 

order terms in (2.3).  For high levels of noise and significant values of the higher order 

terms, sufficient smoothing will be needed to ensure the accuracy of the estimation. On 

the other hand, too much smoothing will also lead to inaccurate estimates since it 

destroys local image structure. The smoothing is controlled by adjusting the spread, σ , 

of a spatial Gaussian filter. 

2.5.2 Uras’s second order differential technique 

Uras et al. [10] used the Hessian of the image brightness intensity to locally constraint the 

image velocity assuming the conservation of the image intensity gradient. Locally, they 

solved an over-determined system of equations over regions where the Hessian is non-

singular. The conservation of image gradient energy functional is given by: 

 ( )
2

.
G x y t

E I u I v I d
Γ

= ∇ + + Γ∫∫  (2.41) 

The associated Euler-Lagrange equations are: 

 
0,  and

0,

xx xy xt

xy yy yt

I u I v I

I u I v I

+ + =

+ + =
 (2.42) 

and can be solved wherever the Hessian of the image brightness intensities is non 

singular. In practice, for robustness [27], the authors divide the image into 8×8 pixel 

regions. For each region only the eight estimates that best satisfies: 
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 ,T

t
M I I∇ ∇≪  (2.43) 

where TM  is the transpose of 2×2 matrix: 

 ,

u u

x y
M

v v

x y

∂ ∂ 
 ∂ ∂
 =

∂ ∂ 
 ∂ ∂ 

 (2.44) 

are considered to calculate their Hessian condition number, and the estimate with the 

smallest condition number is selected as the velocity field of the 8×8 region. 

The main problem with the conservation of I∇ , / 0d I dt∇ = , is that it is a far more 

restrictive assumption than the conservation of image intensities because first order 

deformations of image intensities, e.g rotations or dilations, should not be present in the 

permissible motion field. In addition, second order derivatives can not be approximated 

accurately. 

2.5.3 Phase-based technique for motion estimation 

The use of phase information for the computation of optical flow was first introduced in 

[3]. The input image is decomposed into band-pass channels using complex Gabor filters 

to extract amplitude and phase information. Each filter output can be written as: 

 ( ) ( ) ( ), , exp ,R x t x t i x tρ φ=   
� � �

 (2.45) 

and space-time surfaces of constant phase, ( ),x t cφ =
�

, are used to estimate the velocity 

component normal to level phase contours. Differentiating these surfaces leads to the 

phase energy functional which is given by: 

 ( ) .
Phase x y t

E u v dφ φ φ
Γ

= + + Γ∫∫  (2.46) 
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The velocity that minimizes (2.46) is called component velocity and is the velocity 

normal to level phase contours, 
n

v sn=
� �

 given by: 
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 (2.47)  

The computation of optical flow from the conservation of phase information is a 

differential technique applied to phase rather than image intensity, and it is motivated 

from the claim that phase information is more stable under changes in mean intensity and 

contrast than amplitude information [34]. However, phase instabilities do occur and the 

authors in [3] detect them using: 

 ( ) ( )0 0, , ,
k

k w k w σ τ− ≤  (2.48) 

where ( )0 0,k w  denotes the spatiotemporal frequency to which each filter is tuned, 
k

σ  

denotes the standard deviation of the filter’s amplitude spectrum, and τ  is a threshold 

that can be used to reject local frequencies that are far from the nominal tuning range of 

the filter [3]. Finally, using the measurements of component velocities, a linear velocity 

model: 

 ( ) ( )0 1 2 0 1 2, ,
T

v x t x y x yα α α β β β= + + + +
�
ɶ  (2.49) 

is fitted to 5×5 regions yielding a linear system 
n

Ra v=
�

 that is solved using least 

squares. The estimated full 2d velocity was taken to be the constant parameters 

( )0 0,
T

v α β=
�

,  in (2.49). 
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2.6 Combining global and local optical flow solutions 

The combination of global and local methods, known as the combined local-global 

method, has been studied in [35]. Here, the methods by Horn and Schunk [1] and Lucas 

and Kanade [6] are merged in a hybrid technique using a structural tensor at different 

integration scales creating the combined local-global functional which gives a robust 

solution on local neighbourhoods. The approach also yields high density fields. 

Considerer the image sequence ( ), ,I x y t , and also the fact that it is common to smooth 

with a Gaussian ( ),K x yσ  of standard deviation σ : 

 ( ) ( ) ( ), , , ,f x y t K I x y tσ= ∗  (2.50) 

 where σ  can be assumed to correspond to the noise scale. Then, assuming the 

conservation of image brightness intensities for small displacements gives: 

 0.
x y t

f u f v f+ + =  (2.51) 

Now, recall that Lucas and Kanade assumed constant velocities within some 

neighborhood of size ρ . The Lucas and Kanade method is reformulated as one of using 

weighted least squares to solve: 

 ( )( )2

.
LK x y t

E K f u f v fρ= ∗ + +  (2.52) 

In (2.52), ρ  serves as an integration scale over which the influence of the weighted least 

squares is controlled [2].  In order to develop the combined local-global method, the 

following symbols are introduced: 
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 (2.53) 

Now, equation (2.52) can be expressed as: 

 ( ) ( )3 .T

LKE w w J f wρ= ∇  (2.54) 

The constant brightness model combined energy functional (2.13) 
CBM

E  becomes: 

 ( )( )22

0 3 .T

CBM
E w J f w w dxdyα

Ω

= ∇ + ∇∫∫  (2.55) 

By replacing the matrix ( )0 3J f∇  in (2.55) with the structure tensor ( )3J fρ ∇  with some 

integration scale 0ρ > . The combined local-global energy function can be written as: 

 ( )( )22

3 ,T

CLG
E w J f w w dρ α

Ω

= ∇ + ∇ Ω∫∫
� �

 (2.56) 

and the associated Euler-Lagrange equations are: 
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 (2.57) 

The system (2.57) is solved iteratively using the Successive Over Relaxation method 

(SOR) method with finite differences. 

2.7 Summary of other Emerging Techniques 

Motion estimation for video tracking under variation of image illumination was studied 

by  Hager and Belhumeur [36] using a parametric model. A target dependent basis for 

illumination changes is computed a priori and used to project the image to a low 
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dimensional linear sub-space. The models are later incorporated into the tracking 

algorithm which can handle object deformations, changes in geometry, occlusion and 

illumination variations. 

Following Nagahdaripour’s work [9] and modeling brightness transformations with 

physical models, Haussecker and Fleet in [37] parameterized brightness changes in an 

attempt to model high-order brightness variations. They created models for changes due 

to light diffusion, exponential brightness decay, non-uniform moving illumination 

envelopes, and surface rotation under directional illumination. Using an anisotropic 

diffusion approach for modeling illumination changes,  Alvarez et al. [38] created an 

energy functional that is invariant to linear brightness changes with the additional claim 

that their method can handle the estimation of large motion fields up to ten pixels per 

frame.  

In order to improve numerical stability and robustness, many researches have focused on 

using different operators to improve the robustness of the solution of optical flow. Robust 

statistical estimators were introduced in the computation of optical flow  [32, 39, 40] in 

order to better handle outliers, pixels that violate the assumptions, and reduce the 

estimation error due to discontinuity of the flow at object boundaries. Structural tensor 

based methods combined with diffusion approaches [41-45] proved to be a reliable tool 

for noise reduction, and the use of total variation TV-L
1
 [46, 47] has been used to 

minimize the energy functionals by replacing quadratic norm penalties with a L
1
 penalty 

norm that allows for discontinuities in the motion field.  
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Chapter 3  

Full-reference Global Optimization for 

Motion Estimation 

Pixel based motion estimation is a very active research area. Most of the innovations 

have come either as changes to the theoretical framework as new constraints and 

assumptions, or as improvements to the numerical solution methods. Much less attention 

has been focused on the selection of the model parameters. This chapter will demonstrate 

the importance of selecting the correct regularization parameter and any other motion 

related parameter so that accurate velocity vectors can be estimated. Optimization 

methods will be applied to minimize the error of the estimated motion field. 

The term “full-reference” is used to refer to the fact that the ground truth is known. 

Therefore, the optimization approach described here is only applicable to simulated 

motions. A no-reference approach that can be applied to any given video with unknown 

motion field will be described in Chapter 4. 

3.1 Regularization parameter selection based on inverse problems methods 

The estimation of optical flow is an inverse problem since the models try to calculate the 

velocity vectors from measurements of image intensity values that are related to the 

unknown motion field. The following methods [21, 22, 24, 25, 48] have been proposed 
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for calculating the associated regularization parameter in general inverse problem 

applications. Some of the most important methods will be reviewed next. 

3.1.1 The Discrepancy Principle 

In the case of the Horn and Schunk technique, the optical flow variational formulation 

(2.13) leads to the solution of an associated system of Euler-Lagrange equations that 

depend on a regularization parameter given by: 

 

2 2

2

2 2
.

x tx x y

y tx y y

I II I I u u

I II I I v v
α

−     ∇ 
= +       − ∇       

 (3.1) 

System (3.1) needs to be solved for every pixel in the image. In general form, it can be 

re-arranged using a lexicographical ordering that leads to: 

 
2 22

2 2
arg min ,K Lα α= − +f f b f  (3.2) 

 where K  is the forward operator composed of image intensity derivatives, the 

measurement vector is 
T

x t y t
I I I I = − − b , and L  is the regularization operator that acts 

on the unknown velocity vector [ ]
T

u v=f . In system (3.1), the Laplacian of the 

velocities is the operator L , and can be approximated using finite differencing. 

The discrepancy principle [23] makes use of available statistical information regarding 

the error or noise levels present in the data fidelity using the model:  

 ,
true

K= +b f ηηηη  (3.3) 

where ηηηη  is assumed to be an n-vector realization of white noise with variance 2λ , and 

true
f  is the true solution. Thus, one seeks to find the largest regularization parameter α  

that satisfies: 
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α λ− ≤f b  (3.4) 

The dependency of the optical flow model on α  is explicit from (3.1), but this is not the 

only parameter that needs to be calculated. Image intensity derivatives depend on the 

spread σ  of a Gaussian pre-smoothing filter that controls the amount of averaging 

necessary to calculate intensity derivatives. The discrepancy principle only allows 

selecting an approximate value of the regularization parameter while the spread of the 

pre-smoothing filter has to be considered fixed. Thus for a given value of σ , the largest 

α  that satisfies (3.4) will be calculated. 

3.1.2 The Generalized Cross Validation 

The generalized cross validation (GCV) method [24] does not require prior knowledge of 

the error in (3.3). The GCV estimate of the regularization parameter is the one that 

minimizes:  

 ( )
( )

2

2

1

1

K
nV

trace I A
n

α

α

α
−

=
 

−  

f b

 (3.5) 

where ( )
1

T TA K K K L Kα α
−

= + . The numerical implementation of the ( )trace I Aα−  is 

the main disadvantage of the GCV even for small systems. Practical applications of this 

operation rely on the singular value decomposition (SVD) of Aα  [21]. In our case this is 

not an option since the computational complexity of this algorithm for video frames is 

prohibitive. Moreover, this method like the others presented so far, cannot estimate the 

spread of the Gaussian pre-smoothing filter. 
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3.2 Multi-Objective optimization 

A multi-objective optimization problem has a number of conflicting objective functions 

that are to be minimized, and usually there is not a single solution that simultaneously 

minimizes all the objectives. Instead, there is a feasible set of solutions with conflicting 

values for each objective [49]. Along with the objective functions, there are also a 

number of constraints that any feasible set of solutions must satisfy. 

Denote the general multi-objective optimization problem as: 

 

( )

( )

( )
( ) ( )

min   , 1,2, , ,

subject to 0, 1,2, , ,

                0, 1, 2, , ,

, 1,2, , .

m

i

k

L U

i i i

E x m M

g x j J

h x k K

x x x i n

=

≥ =

= =

≤ ≤ =

�
…

�
…

�
…

…

 (3.6) 

A solution n
x ∈
�
R  is the optimization vector variable, and associated with the problem 

there are constraints 
i

g , 
k

h , and bounds 
( )L

i
x , and 

( )U

i
x . If a solution x

�
satisfies all the 

constraints and bounds, it is called a feasible solution, and the set of all feasible solutions 

is called the feasible region. 

3.2.1 Optimal Point 

In a multi-objective optimization problem, an optimal point *
x  satisfies: 

 ( ) ( ) ,  1,2, ,
m m

E x E y m M∗ ≤ = …  (3.7) 

for every feasible y . Therefore, x
∗  is simultaneously optimal for each of the objective 

functions. Most multi-objective optimization problems do not have an optimal point and 

optimal value, but it does occur in especial cases when the objectives are not competing 

against each other.  
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3.2.2 Pareto optimal points 

Pareto points are feasible points for which improvement in one objective can only occur 

with the worsening of at least one other objective [50]. Instead of a unique optimal 

solution to (3.7), there is a set of Pareto optimal solutions that lies in the boundary of 

achievable objective values whose shape indicates the nature of the trade-off between the 

objectives [51] (figure 3.1). 

Formally, a feasible point is a Pareto optimal point po
x
�

 if and only if there is no feasible 

x
�

such that ( ) ( )po

m m
E x E x≤
� �

 with at least one strict inequality.  In particular, if a point is 

not Pareto optimal, then there is at least one other point that is better [51]. 

 

Figure 3.1. Set of achievable values for a multi-opjective optimization problem in R
2
, see [51]. The 

depicted problem does not have a minimum value. Pareto optimal points are presented by the thicker line 

over the lower left boundary of the feasible solution region O. The point labeled E0(x
po

) is a Pareto optimal 

value, and 
po

x
�

 is a Pareto optimal point. 

3.2.3 Trade off analysis 

Suppose x
�

 and y
�

 are Pareto optimal points. Then, we have: 
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� �
 (3.8) 

where , ,A B C  represents a partition of all the constraints with { }1, 2, , .A B C M∪ ∪ = …  

Note here that x
�

 has achieved better objective values for m A∈ after trading off worse 

objective values for m C∈ . Trade off analysis is the study of what set of objective values 

are achievable. The optimal trade-off surface (when 2m > ) or curve ( 2m = ) is the set of 

Pareto optimal values for a given multi-objective optimization problem [51] 

3.2.4 Weight sum method 

The weight sum method is a technique to find Pareto optimal points that minimizes the 

following weighted sum objective: 

 ( ) ( )0

1

m M

m m

m

E x w E x
=

=

= ∑
� �

 (3.9) 

when x
�

 is optimal, the solution to (3.9) is Pareto optimal if the weights are positive for 

all the objectives [50]. The weight of an objective is chosen in proportion to the 

objective’s relative importance in the problem, and it can be thought of as quantifying the 

desire of making 
m

E small or large. This ad-hoc adjustment of the weights allows the 

exploration of optimal trade-off surfaces in order to find Pareto optimal points. 

For motion estimation, the objectives 
m

E  will come from discretized versions of the 

energy functional models and the weights will come from the values of the regularization 

parameters. Thus, optical flow models for motion estimation can be expressed in terms of 

(3.9). 



 43 

3.2.5 The L-curve method 

The L-curve is a logarithmic plot of the norm of the regularization term against the norm 

of the data fidelity term in (3.2) for different values of α . The method is called “L-

curve” because the plotted relationship typically exhibits an “L” shape, and the optimal 

regularization parameter, *α , is the one that corresponds to the “corner” of this curve 

which represents the transition between over and under- regularized solutions, see . 

Possible definitions for the corner of the curve include the point of maximum curvature 

and a point of tangency with a slope of -1. This last definition leads to the α  value that 

satisfies: 

 
( )

( )

2

2 2

2

2

ˆ

.
ˆ

g Hf

Lf

α
α

α

−
=  (3.10) 

In [22] it is shown that under certain assumptions the “L-curve” has the characteristic 

vertical and horizontal parts of an “L”. However, note that problem (3.1) might not 

satisfy those conditions, and the “L” shape of the curve is not guaranteed unlike the case 

of standard Tikhonov regularization problems [48].  
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Figure 3.2. Shape of the L-curve. The optimal regularization parameter α ∗  is the one that corresponds to 

the corner of the curve. 

 

3.3 Lipschitz optimization 

Consider to following minimization problem: 

 
( )min    

s.t.    

f x

x D∈
 (3.11) 

When nD ∈R represents a compact set { }: : ,n nD x a x b a b= ∈ ≤ ≤ < ∈R R , and ( )f x  is a 

real valued Lipschitz function on a compact set P D⊃ .  The problem (3.11) is called a 

Lipschitz optimization problem [52]. 

3.3.1 Lipschitz functions  

A real valued function f  is called Lipschitzian or a Lipschitz function on a set nP ⊂ R  if 

there is a (Lipschitz) constant ( ), 0L L f P= > such that 

 ( ) ( )2 1 2 1 1 2 for all , .f x f x L x x x x P− ≤ − ∈  (3.12) 
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If f  is Lipschitzian on P  with constant L , then f  is also Lipschitzian on P  with all 

constants 'L L> . When P  is a real interval, L  provides an upper bound for the absolute 

value of the slope of any line joining two points on the graph of f  [52]. 

Let nP ⊂ R be convex, and let f  be continuously differentiable on an open set containing 

P  with bounded gradient on P . Then f  is Lipschitzian on P  with constant 

 ( ){ }sup : .L f x x P= ∇ ∈  (3.13) 

The supremum can be replaced by the maximum of ( )f x∇  over P , when P  is a 

bounded closed set and ( )f x∇  is continuous and bounded [52]. 

3.3.2 Branch and Bound 

Branch and bound is a method in which the feasible set is partitioned into more and more 

refined parts (branching), over which lower and upper bounds of the minimum objective 

function value are determined (bounding). Parts of the feasible set with lower bounds 

larger than the best upper bound found at a certain stage are deleted from further 

consideration (pruning) because these parts of the domain cannot contain the optimum. 

3.3.3 Lower bounds 

Let P  be an n-rectangle and let L  be a Lipschitz constant of the function f  on P . Then, 

for ,x y P∈  the following holds: 

 ( ) ( ) .f x f y L x y− ≤ −  (3.14) 

It follows from (3.14) that, for all ,x y P∈  

 ( ) ( )f x f y L x y≥ − −  (3.15) 
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If y P∈  is fixed, then the concave function 

 ( ) ( )F x f y L x y= − −  (3.16) 

underestimates ( )f x  on P . 

Suppose that the diameter 

 ( ) { }: sup : ,P x y x y Pδ = − ∈  (3.17) 

is known. Let T P⊂  denote a finite sample of points in P  where the function values of 

f  have been evaluated. Then 

 ( ) ( ) ( )max
y T

P f y L Pµ δ
∈

= −  (3.18) 

is a lower bound for ( ){ }inf :f x x P∈ . When P  is a rectangle or a simplex the set 

T often coincides with the vertex set ( )V P  [52]. 

A worthwhile interior point to take into account is the midpoint ( ) / 2m a b= +  of an n-

rectangle a x b≤ ≤ . This gives: 

 ( ) ( ) ( ) / 2.P f m L Pµ δ= −  (3.19) 

3.3.4 Lipschitz optimization over rectangles 

Consider the following realization of the branch and bound method for solving 

 
( )min   

 s.t  

f x

x≤ ≤

�

�
a b

 (3.20) 

where ( )1, ,
T

n
a a= …a , ( )1, , ,

T n

n
b b= ∈ <…b a bR , and { }: :f R x x= ≤ ≤ →

�
a b R  is 

Lipschitzian on R  with Lipschitz constant L .  shows the algorithm [52] that performs 

branch and bounding with global Lipschitz optimization. 
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Figure 3.3. Branch and bounding global Lipschitz optimization algorithm. 

Initialization: 

Set ( ) { } ( ){ }/ 2, , , , min :R Rx a b Q a b x f x x Qγ← + ← ← ∈ ; 

Choose v Q∈  satisfying ( )f v γ= ; 

Set ( ) ( ) ( ){ } ( ){ }max max , , / 2
R

R f a f b L b a f x L b aµ ← − − − − ; 

Set ( ) { }; ; , 1R M R stop false kµ µ← ← ← ← ; 

while stop = false do 

if γ µ=  then 

stop ←  true ( v  is an optimal solution, and γ  the optimal objective function value) 

else 

 Compute { }max : 1, , , and set
j j i i

b a b a i n− = − = …  

( )( )1 1

1 1 1
, , , , / 2, , ,

T

j j j j n
a a b b b b a a a− +← ← +… …  

{ } { }1 1 2 2

1 2: , : ,R x a x b R x a x b← ≤ ≤ ← ≤ ≤  

( ) ( )
1 2

1 1 1 1
/ 2, / 2;R Rx a b x a b← + ← +  

Set 

( ) ( ) ( ) ( ){ } ( ){ }
1

1 1 1 1 1 1

1
max ,max , , ,

R
R R f a f b L b a f x L b aµ µ← − − − −  

( ) ( ) ( ) ( ){ } ( ){ }
2

2 2 2 2 2 2

2
max ,max , , ;

R
R R f a f b L b a f x L b aµ µ← − − − −  

Set { } ( ){ }
1 2

1 2
, , , , , min : ;R RQ v b x a x f x x Qγ← ← ∈  

Update v  satisfying ( ) ;f v γ=  

Set 

{ }( ) { }1 2\ , ,M M R R R← ∪  

( ){ }: .R M Rµ γℜ ← ∈ <  

( ){ }min : , if 

,                             if 

R Rµ
µ

γ

 ∈ ℜ ℜ ≠ ∅
← 

ℜ = ∅
 

Choose 

R ∈ℜ  satisfying ( )Rµ µ= ; 

Update ,a b  such that { }: .R x a x b= ≤ ≤  

end if 

Set , 1.M k k← ℜ ← +  

end while 
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This algorithm uses combinations of the bounds (3.18) and (3.19) and bisection of 

rectangles at the midpoint of one of the longest edges. The proof of  algorithm 

convergence is included in the appendix section for completeness and was originally 

published in [52]. 

3.3.5 Full-reference global optimization 

Figure 3.4 shows the block diagram of the full-reference approach. The techniques of 

Horn [1] and Lucas [6] are trained on a set of benchmark video sequences in order to find 

the motion parameters that minimize the mean squared error (MSE) of the estimation. 

Once the optimal parameters are calculated, they are tested on natural video sequences 

(videos without ground truth).  

Lipchitz optimization requires a real valued objective function to be Lipchitz continuous 

over a set, i.e. the slope of the objective functions needs to be bounded. For motion 

estimation, the objective function is set to be the MSE of the velocity magnitudes. The 

goal is to find the vector, p
�

, of motion estimation parameters that minimizes the MSE 

between the magnitudes of the ground truth velocities, GTMag , and estimated velocities, 

( )ESTMag p
�

.  The MSE is calculated for all pixels ( ),i j  in the image with 1, ,i M= …  

and 1, ,j N= … .  

 ( ) ( )

( ) ( )( )

2 2

2 2

1 1
2

0 0

( ) ( )

1
.

gt gt gt

est est est

M N

ij ij

i j

GTMag v u v

ESTMag p v p u p v p

f p ESTMag p GTMag
MN

− −

= =

= = +

= = +

= −∑∑

�

� � � � �

� �

 (3.21) 
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( )

( )

,

or

α σ

σ

 
Figure 3.4. Block diagram of the full-reference global optimization approach. 

 

The vector p
�

 is composed of the motion estimation parameters that govern the optical 

flow models and it varies for each method. In the case of the Horn and Schunk method 

[1], the parameter vector is ( ),p α σ=
�

, and optimization was carried out for the spread of 

the spatiotemporal Gaussian pre-smoothing filter, σ ,  and the value of the regularization 

parameter α  that controls the influence of the smoothness constraint 
S

E  in the optical 

flow model (2.13).   

The parameter space P  is defined to be large enough so that regularization parameter 

values reported in the literature [1, 17, 27] are included in the optimization process. The 

range of values of the Gaussian pre-smoothing filter, σ , is limited by the number of 

frames in the video sequence. For each of the ground truth sequences, the biggest σ  is 

set to be the maximum possible value based on the number of video frames. A closed set 

{ }2 :P p a p b= ∈ℜ ≤ ≤
�� � �

 for ( ),
T

p α σ=
�

 is defined. Table 3.1 shows the parameter space 

values for each video sequence. 
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Table 3.1. Motion estimation parameter space for Horn’s method. 

 

 Translating Tree Divergence Tree Yosemite 

 a  b  a  b  a  b  

α  0.1 50 0.1 50 0.1 50 
σ  0.5 4.0 0.5 1.75 0.25 1.25 

 

The Lipschitz constant L  could be calculated using equation  (3.13),  but the dependency 

of the MSE  on the motion parameters is implicit only with respect to α  in equation 

(3.22). Here, recall that the velocity estimates are given by: 

 

1

2 2 2

1

2 2 2

,

.

k k

x x y tk k

x y

k k

y x y tk k

x y

I I u I v I
u u

I I

I I u I v I
v v

I I

α

α

+

+

 + + = −
+ +

 + + = −
+ +

 (3.22) 

The dependency of the velocity estimates with respect to σ  arises from the convolution 

operation of the image intensity values ( ), ,I x y t  with a separable Gaussian filter Kσ  

prior image differentiation. Here: 

 ( ) ( )( ), ,
x

I K x I x y t
x

σ

∂
= ∗

∂
 (3.23) 

 ( ) ( )( ), ,
y

I K y I x y t
y

σ

∂
= ∗

∂
 (3.24) 

 ( ) ( )( ), , .
t

I K t I x y t
t

σ

∂
= ∗

∂
 (3.25) 

Substituting equations (3.23)-(3.25) into (3.22) leads to an implicit expression that relates 

the velocities estimates to the motion parameters. Unfortunately, the gradient of the MSE 

with respect to ( ),α σ  is a very complicated expression for which a closed form solution 
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even though calculated, could not be used to set a value of L . Instead, the fact that the 

objective function, f , is Lipschitzian on P  with constant L  will be used to find another 

constant 'L   such that 'L L>   also satisfies (3.12) [52]. 

Figure 3.5 shows the flowchart of the algorithm used to heuristically verify that an 

appropiate L  has been used. The algorithm starts with a large value of 'L  and a large 

number of iterations for which a minimum of the objective value is found. Alternatively, 

the algorithm always stops if the difference between the current minimum value of the 

objective function and the best lower bound is smaller than a given tolerance, 0.01ε = . 

This minimum is going to be used as a reference for successive runs where 'L  is 

decreased. When the algorithm stops after a small number of iterations returning a worse 

minimum of the objective function, then at this point 'L  cannot be decreased anymore 

because relationship (3.12) is no longer satisfied. In theory an infinite number of 

iterations are necessary to find the optimal value, but in practice starting with a large L  

along with enough number of iterations works. This process, even though heuristic, 

appears to work very well. 
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Global

Optimization

N=MaxIter

Start

MaxIter=Nmax

L=L1

T=MSE1

L>>L1

Lk=Lk-1/2

Global

Optimization

MSEk>T
no

L’=LK-1

Stop

no

yes

k=k+1

yes

 

Figure 3.5. Flowchart of the algorithm used to verify that the correct Lipschitz constant, L, has been used to 

minimize the MSE. 
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3.4 Results 

For comparison and evaluation of the optimization methods, the mean squared error 

(MSE) is the objective function. On the other hand, note that the average angular error 

(AAE), 
AE

µ , and the standard deviation angular error (STD), 
AE

δ , between the estimated 

field and the ground truth are the most used benchmarks [27]. Here, it is important to note 

that when the MSE equals zero, then there is convergence to the ground truth. The same 

cannot be said for the AAE and STD because they only measure the direction of the flow 

and not the magnitude of the velocity. Nevertheless, but they will also be used to evaluate 

the performance of optimization methods as a reference. 

3.4.1 Synthetic Image sequences 

Three standard test video sequences: the Divergence Tree, the Translating Tree, and the 

Yosemite videos are used to evaluate the performance of the optimization methods. The 

advantage of using synthetic video sequences is that the true displacement field or ground 

truth is available to quantify performance. These three sequences are widely used in the 

literature [2, 15, 27, 38, 53, 54] because they  allow the estimation of translational 

motion, divergent motion, expanding motion fields, and a wide range of velocity values. 

The main characteristics of each one are: 

• Diverging Tree Sequence: The camera moves closer to the textured surface 

along the camera’s line of sight with the velocity field expanding about the center 

of the image. The speeds are 1.29 pixels/frame on the left side, and 1.86 

pixels/frame on the right. 
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• Translating Tree Sequence: It simulates pure translational camera motion. All 

velocities are parallel to the image x-axis. The speeds are between 1.773 and 2.26 

pixels/frame. 

• Yosemite Video Sequence: By far the most difficult test case. The motion on the 

top part of the image, the cloud region, is supposed to be translational but 

violations to the brightness intensity conservation assumption occur. This is the 

reason why errors for this sequence are reported with the clouds and without 

them. The velocities of the lower left part of the image are around 4 pixel/frame. 

These values violate the small displacement assumption and are difficult to 

estimate.  

3.4.2 Discrepancy principle results 

The velocity MSE plots for the motion estimation parameters that satisfy the discrepancy 

principle are shown from figure 3.6 to figure 3.8. Values of the error variance for the 

Divergence Tree video sequence were 2 0.1,  0.25,  and 0.5
DT

λ = , noise variances for the 

Yosemite video sequence were 2 1,  10,  50,  and 150
Y

λ = , and for the Translating Tree 

sequence were 2 0.01,  0.25,  and 0.5
DT

λ = . The choice of the error variance value is done 

heuristically since it is not possible to a priori know how large this value should be. 

Results for the three sequences are summarized in table 3.2 to table 3.4 The density of the 

velocity estimation for all three sequences was 99% . 

3.4.3 L-curve results 

The L-curve was calculated for values of the regularization parameter, α , ranging from 
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Figure 3.6. Velocity MSE values obtained by applying the discrepancy principle to the Divergence Tree 

video sequence for different error noise variances, 
T

λ . (a) Velocity MSE 0.1
T

λ = . (b) Velocity MSE 

0.25
T

λ = . (c) Velocity MSE 0.5
T

λ = . (d) The minimum MSE is obtained for 1.5σ =  and 0.4α = . 

 

 

0.1α =  to 150α = . Figure 3.9 shows the L-curve results. Plots of MSE vs. the norm in 
 

logarithmic scale of the data fidelity and regularization terms are also provided in figure 

3.10 for the Divergence Tree and Yosemite sequences. Translating Tree sequence results 

are shown in figure 3.11, and summarized in table 3.5 to table 3.7. 
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Table 3.2. Estimated motion parameters, MSE, and Av. Ang. error using the discrepancy principle on the 

Divergence Tree video sequence. 

 
2 0.1

T
λ =  2 0.25

T
λ =  2 0.50

T
λ =  

σ  α  MSE 
AE

µ  
AE

δ  σ  α  MSE 
AE

µ  
AE

δ  σ  α  MSE 
AE

µ  
AE

δ  

0.5 1 0.078 11.3
◦
 10.3

◦
 0.5 1 0.078 11.3

◦
 10.3

◦
 0.5 1 0.078 11.3

◦
 10.3

◦
 

1.0 2.5 0.023 4.9
◦
 2.5

◦
 1.0 5 0.033 5.6

◦
 3.5

◦
 1.0 5 0.033 5.6

◦
 3.47

◦
 

1.5 5 0.040 6.5
◦
 4.6

◦
 1.5 5 0.040 6.5

◦
 4.6

◦
 1.5 10 0.063 8.1

◦
 6.35

◦
 

2.0 5 0.039 6.7
◦
 5.0

◦
 2.0 10 0.059 8.2

◦
 6.4

◦
 2.0 10 0.059 8.2

◦
 6.35

◦
 

 

 

Table 3.3 Estimated motion parameters, MSE, and Av. Ang. error using the discrepancy principle on the 

Yosemite video sequence 

 
2 1

Y
λ =  2 10

Y
λ =  2 50

Y
λ =  

σ  α  MSE 
AE

µ  
AE

δ  σ  α  MSE 
AE

µ  
AE

δ  σ  α  MSE 
AE

µ  
AE

δ  

0.5 1 2.62 

 

28.1
◦
 25.6

◦
 0.5 2.5 2.12 25.4

◦
 22.6

◦
 0.5 2.5 2.12 25.4

◦
 22.6

◦
 

0.75 1 1.98 

 

17.4
◦
 19.2

◦
 0.75 5 1.5 14.8

◦
 14.4

◦
 0.75 10 1.4 15.7

◦
 14.1

◦
 

1.0 2.5 1.41 

 

12.3
◦
 14.4

◦
 1.0 10 1.34 15.6

◦
 14.4

◦
 1.0 20 1.6 21.5

◦
 16.9

◦
 

 

Table 3.4. Estimated motion parameters, MSE, AAE, and STD using the discrepancy principle on the 

Translating Tree video sequence. 

 
2 0.01

TT
λ =  2 0.25

TT
λ =  2 0.5

TT
λ =  

σ  α  MSE 
AE

µ  
AE

δ  σ  α  MSE 
AE

µ  
AE

δ  σ  α  MSE 
AE

µ  
AE

δ  

0.5 0.3 1.24 

 

28.5
◦
 23.9

◦
 0.5 0.7 1.03 26.7

◦
 22.1

◦
 0.5 0.9 0.98 25.9

◦
 21.3

◦
 

1.0 

 

1.0 0.03 2.2
◦
 2.1

◦
 1.0 2.5 0.07 3.2

◦
 3.4 1.0 5 0.17 5.5

◦
 5.7

◦
 

1.5 

 

2.5 0.12 4.6
◦
 5.1

◦
 1.5 5 0.24 7.2

◦
 7.3

◦
 1.5 5 0.24 7.2

◦
 7.3

◦
 

2.0 

 

2.5 0.17 6.3
◦
 6.3

◦
 2.0 5 0.31 9.4

◦
 8.5

◦
 2.0 5 0.31 9.4

◦
 8.5

◦
 

2.5 2.5 0.24 8.0
◦
 8.1

◦
 2.5 5 0.38 11.2

◦
 9.9

◦
 2.5 5 0.38 11.2

◦
 9.9

◦
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Figure 3.7. Velocity MSE plots produced with the motion estimation parameters that satisfy the 

discrepancy principle for different values of error variance, 
Y

λ , in the Yosemite video sequence. (a) 

Velocity MSE for 1
Y

λ = . (b)  Velocity MSE for 10
Y

λ = . (c) Velocity MSE for 50
Y

λ = . (d) Velocity 

MSE for 150
Y

λ = . 

 

. 
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Figure 3.8. Velocity MSE plots produced with the motion estimation parameters that satisfy the 

discrepancy principle for different values of error variance, 
TT

λ , in the Translating Tree video sequence. (a) 

Velocity MSE for 0.01
TT

λ = . (b)  Velocity MSE for 0.25
TT

λ = . (c) Velocity MSE for 0.5
TT

λ = . (d) The 

minimum MSE is obtained for 1.5σ =  and 0.1α = . 
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Figure 3.9. L-curve plots for (a) Divergence Tree, (b) Yosemite, and (c) Translating Tree sequences. The 

point that achieves the minimum MSE is marked with a dark diamond. Note that in (a)-(c) the optimal point 

is not associated with the lowest curve.  The lowest curve provides lower values for the energy functionals. 



 60 

 

10
0

10
2

10
4

10
6

10
8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

log || Kf
α
 - b ||

 M
S

E
 

 MSE vs log || Kf
α
 - b ||

 

 

Sigm = 0.5

Sigm = 1.0

Sigm = 1.5

Sigm = 2.0

 
10

1
10

2
10

3
10

4
10

5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

log || Lf
α
 ||

 M
S

E
 

 MSE vs log || Lf
α
 ||

 

 

Sigm = 0.5

Sigm = 1.0

Sigm = 1.5

Sigm = 2.0

 
(a)      (b) 

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1

2

3

4

5

6

7

log || Kf
α
 - b ||

 M
S

E
 

 MSE vs log || Kf
α
 - b ||

 

 

Sigm = 0.5

Sigm = 0.75

Sigm = 1.0

Sigm = 1.25

10
2

10
3

10
4

10
5

10
6

1

2

3

4

5

6

7

log || Lf
α
 ||

 M
S

E
 

 MSE vs log || Lf
α
 ||

 

 

Sigm = 0.5

Sigm = 0.75

Sigm = 1.0

Sigm = 1.25

 
(c)      (d) 

Figure 3.10. Plots of the MSE vs. the norm in logarithmic scale of the data fidelity and regularization terms. 

(a)-(b) Divergence Tree sequence. (c)-(d) Yosemite sequence. 

 

Table 3.5. L-curve parameter values for the point that achieves the minimum MSE for the Divergence Tree 

sequence. 

σ  α  K α −f b  L αf  MSE 
AE

µ  
AE

δ  

0.5 5 43.45 10×  35.58 10×  0.048 7.8
◦
 5.5

◦
 

1.0 0.9 309.4 31.45 10×  0.019 4.8
◦
 2.5

◦
 

1.5 0.4 27.3 711.57 0.018 4.7
◦
 2.48

◦
 

2.0 0.3 11.7 575.79 0.020 5.1
◦
 3.14

◦
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Table 3.6. L-curve parameter values for the point that achieves the minimum MSE on the Yosemite 

sequence. 

σ  α  K α −f b  L αf  MSE 
AE

µ  
AE

δ  

0.5 20 59.77 10×  59.17 10×  1.75 21.7
◦
 17.3

◦
 

0.75 10 51.83 10×  36.65 10×  1.40 15.7
◦
 14.1

◦
 

1.0 5 44.22 10×  36.28×10  1.31 12.9
◦
 13.6

◦
 

1.25 5 44442.63×102.63×102.63×102.63×10  33334.18×104.18×104.18×104.18×10  1.29 13.5
◦
 14.8

◦
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(a)      (b) 

Figure 3.11 Plots of the MSE vs. the norm in logarithmic scale of the data fidelity (a) and regularization 

terms (b) for the Translating Tree sequence. 

 

Table 3.7. L-curve parameter values for the point that achieves the minimum MSE on the Translating Tree 

sequence. 

σ  α  K α −f b  L αf  MSE 
AE

µ  
AE

δ  

0.5 15 53.8 10×  36.5 10×  0.67 15.95
◦
 17.3

◦
 

1.0 0.6 208.62 32.42 10×  0.022 2.17
◦
 2.11

◦
 

1.5 0.1 2.9 924.96 0.015 1.70
◦
 1.93

◦
 

2.0 0.1 2.07 664.12 0.04 2.68
◦
 3.38

◦
 

2.5 0.1 1.66 514.92 0.09 4.18
◦
 5.21

◦
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3.4.4 Results for full-reference global optimization 

Figure 3.12 shows the contour plots of the MSE of the velocity magnitude for the 

diverging tree. The minimum MSE value is ( )
2

0.018 /pixels frame  for 0.39α = , and 

1.52 pixelsσ = . Figure 3.13 presents the velocity magnitude error in logarithmic scale, 

and figure 3.14 shows the ground truth field and the optimal estimated field. The optimal 

parameters along with the performance metrics are shown in table 3.8. 

Results for the Yosemite sequence were computed in the same manner as those 

previously published in the literature. Since this is a very challenging sequence, there are 

results with the clouds and without them because this is a region where the image 

intensities are not constant.  Thus, global optimization is applied to the video with and 

without the clouds. Results are presented in figure 3.15 and figure 3.16. The minimum 

MSE is 1.27   for 4.5α =  and 1.2σ = .  Results for the Translating Tree sequence are 

shown in figure 3.17 and figure 3.18. Table 3.8 shows the optimal parameters along with 

the performance metrics for all three test videos. 

Table 3.8. Global optimization results for Horn’s method on the three test video sequence. 

 

 Div. Tree Trans. Tree Yosemite   

w/o clouds 

Yosemite 

σ  1.51 1.26 1.25 1.19 

α  0.39 0.2 0.68 4.53 

MSE 0.0180 0.014 0.158 1.28 

AE
µ  4.73

◦
 1.65

◦
 5.23

◦
 12.94

◦
 

AE
δ  2.52

◦
 1.96

◦
 7.07

◦
 14.67 

Density 99.7% 99.7% 77.1% 99.7% 
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For Lucas’ technique, optimization is performed to find the value of the spread of 

Gaussian pre-smoothing filter. The closed set values { }:P a bσ σ= ∈ℜ ≤ ≤  for both test 

video sequences is shown in table 3.9. 

Table 3.9. Motion estimation parameter space. Lucas’ method. 

 

 Divergence Tree Translating Tree Yosemite 

 a  b  a  b  a  b  

σ  0.25 1.75 0.25 4.0 0.25 1.25 

 

Global optimization results for this motion estimation method are shown in figure 3.19 

and figure 3.20 for the divergence tree sequence. The filter’s spread that produces the 

minimum MSE error of 0.013 (pixels/frame)
2
 is 1.53σ =  pixels. Figure 3.21 and figure 

3.22 show results for the Yosemite sequence. The minimum attained MSE is 0.71 

(pixels/frame)
2
 for a filter spread 1.25σ =  pixels. The minimum MSE of the Translating 

Tree sequence is 0.017 (pixels/frame)
2
 for a filter spread 1.75σ =  pixels. 

Table 3.10. Optimal results obtained with Lucas’s technique. 

 Div. Tree Trans. Tree Yosemite 

w/o clouds. 

Yosemite 

σ  1.53 2.85 1.25 1.25 

MSE 0.013 0.0012 0.111 0.71 

AE
µ  4.35

◦
 0.62

◦
 4.11

◦
 8.68

◦
 

AE
δ  1.9

◦
 0.53

◦
 5.89

◦
 14.9

◦
 

Density 84.1% 66.6% 63.6
◦
 73.7% 

 

Optimization for the average angular error was also performed on the three test videos. 

The results are presented in table 3.11 for Horn’s method, and table 3.14 for Luca’s 

technique. Additionally, error plots of the angular error are also provided. 
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(a)      (b) 

Figure 3.12. (a) Minimum MSE values as a function of number of iterations. (b) MSE contours plot for 

Horn’s motion estimation technique on Divergence Tree video sequence. Optimal point is marked with a 

blue ‘*’. 
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(a)         (b) 

Figure 3.13. (a) Divergence Tree video frame. (b) Logarithmic scale plot of the velocity magnitude error 

calculated with the optimal motion estimation parameters of Horn’s technique. 
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  (a) 

 
  (b) 

Figure 3.14. (a) Ground truth velocity field and (b) estimated field over a frame of the Divergence Tree 

sequence. The difference or error in the estimation is shown in figure 3.13. 
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Figure 3.15.  (a) MSE surface and (b) contour plots for the Yosemite video sequence. The minimum MSE 

is marked with a blue ‘*’.  
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Figure 3.16. (a) Yosemite video frame. (b) Logarithmic plot of the velocity magnitude error using Horn’s 

technique. 
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Figure 3.17. MSE contour for the Translating Tree video sequence. The minimum MSE is marked with a 

blue ‘*’.  
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(a)            (b) 

Figure 3.18. (a) Estimated velocity field and (b) logarithmic plot of the velocity magnitude error of the 

Translating Tree sequence. Horn’s method. 
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Figure 3.19. MSE as a function of the filter spread. Luca’s method on Divergence Tree sequence. 
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Figure 3.20. (a) Divergence tree video frame. (b) Logarithmic scale plot of the velocity magnitude error 

using Lucas’s technique. 
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Figure 3.21. MSE as a function of the filter spread. Lucas’s method on Yosemite sequence. Note that the 

maximum value of 1.25σ =  pixels is due to the limited number of frames. See section 3.3.5. 
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(a)     (b) 

Figure 3.22. (a) Yosemite video frame. (b) Logarithmic scale plot of the velocity magnitude error using 

Lucas’s technique. 
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(a)            (b) 
Figure 3.23. Lucas’s method results on the Translating Tree sequence. (a) Estimated velocity field and (b) 

logarithmic plot of the velocity magnitude error 
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Table 3.11. Angular optimization results obtained with Horn’s technique. 

 

 Div. Tree Trans. Tree Yosemite 

w/o clouds. 

Yosemite 

α  1.11 0.1 1.07 1.66 

σ  1.28 1.38 1.25 1.25 

MSE 0.0188 0.0148 0.1645 1.42 

AE
µ  4.63

◦
 1.67

◦
 5.13

◦
 11.67

◦
 

AE
δ  2.22

◦
 2.14

◦
 6.75

◦
 15.8

◦
 

Density 99.8% 99.6% 77.1% 99.7% 

 

Table 3.12. Angular optimization results obtained with Lucas’s technique. 

 

 Div. Tree Trans. Tree Yosemite 

w/o clouds. 

Yosemite 

σ  1.51 2.82 1.25 1.25 

MSE 0.0132 0.0013 0.1114 1.16 

AE
µ  4.35

◦
 0.62

◦
 4.11

◦
 9.04

◦
 

AE
δ  1.9

◦
 0.53

◦
 5.89

◦
 15.38

◦
 

Density 84.4% 66.17% 63.6
◦
 74.42% 
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(a)            (b) 

Figure 3.24. (a) Divergence Tree video frame. (b) Horn’s angle error results in logarithmic scale. 
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(a)            (b) 

Figure 3.25. (a) Translating Tree video frame. (b) Horn’s angle error results in logarithmic scale. 
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(a)            (b) 

Figure 3.26. (a) Yosemite video frame. (b) Horn’s angle error results in logarithmic scale. 
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(a)            (b) 

Figure 3.27. (a) Divergence Tree video frame. (b) Lucas’s angle error results in logarithmic scale. 

 

 

 

 

 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

 
(a)            (b) 

Figure 3.28. (a) Translating Tree video frame. (b) Lucas’s angle error results in logarithmic scale. 
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(a)            (b) 

Figure 3.29. (a) Yosemite video frame. (b) Luca’s angle error results in logarithmic scale. 
 

3.5 Discussion 

This section analyzes the results obtained with the methods presented in this chapter and 

compares them with previously published results. The motion estimation parameter 

values for the Divergence Tree, Translating Tree, and Yosemite sequences are taken from 

[27] were 1.5σ =  for both Tree sequences, and 1.25σ =  for Yosemite. The 

regularization parameter of Horn’s technique was set to 0.5α =  for all three videos. 

Table 3.13 and table 3.14 show the error metrics produced with those parameter values 

for these video sequences. 

Table 3.13. Published error metrics for Horn’s method. 

 

Video MSE 
AE

µ  
AE

δ  % 

Divergence Tree 0.0179 4.69
◦
 2.41

◦
 100 

Translating Tree 0.0249 2.02 2.27 100 

Yosemite w.c. 1.85 12.05
◦
 16.8

◦
 100 

Yosemite w/o c. 0.16 5.35
◦
 7.35

◦
 77.1 
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Table 3.14. Published error metrics for Lucas’s method. 

Video MSE 
AE

µ  
AE

δ  % 

Divergence Tree 0.0131 4.35
◦ 1.9

◦ 84.5 
Translating Tree 0.0025 0.81

◦
 0.93

◦
 74.5 

Yosemite w.c. 1.16 9.0
◦ 15.38

◦ 74.4 
Yosemite w/o c. 0.11 4.11

◦ 5.89
◦ 63.6 

 

3.5.1 Discussion for inverse problem approaches to select the regularization 

parameter 

The discrepancy principle relies on knowledge about the size of the residual norm, 

2
K α −f b , which changes considerable for different motion patters as shown in figure 

3.6 and figure 3.7. 

Note that according to equation (3.4), the calculated regularization parameters in table 3.2 

and table 3.3 do not produce the smaller MSE nor beats previously published results, see 

table 3.13 and table 3.14. In order to achieve this optimal value, the variance of the error 

in the discrepancy principle should be set to smaller values, but since it is always safer to 

over-estimate this parameter, then the optimal value is most likely to be missed. Prior 

knowledge about the error is only based on subjective expectations.  

Results for Yosemite sequence provide a good example of how unfounded expectations 

about the behavior of the regularized residual lead to inaccurate velocity estimations. 

Notice that variance values of 10 and 50 (really high values) had to be used in order to 

obtain a low MSE.  

The optimal regularization parameter value is linked to the underlying video motion. In 

order to pick up a good value, there has to be some prior knowledge of the underlying 

motion. Such knowledge is very difficult to obtain or assume even when working with 
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ground truth sequences. Moreover, there is no clear method to estimate the bound on the 

residual norm for non-ground truth based sequences that guaranties accurate solutions. If 

one chooses to only minimize the residual norm, the solution will be over-fitted to the 

data fidelity term, 
2

K α −f b , which depends exclusively on the ill-posed system of 

equations .Kf = b  Therefore, it is logical to not bound the residual norm to small values, 

so that the regularization term can influence the solution. However, in this case over-

regularized estimates are most likely to be calculated since knowledge of λ  is difficult to 

quantize.  

In either case, the optimal parameter values are not found. The MSE as shown in figure 

3.6 and figure 3.7 is further reduced by the correct choice of the pre-smoothing spread. 

The discrepancy principle does not allow the estimation of this parameter. Its application 

to video sequences without ground truth will be considerably limited because guessing a 

bound for the residual norm will lead to a heuristic approach that will certainly be the 

source of considerable inaccuracies. This method does not solve the problem of 

calculating the optimal regularization parameter, and it is not different from current 

arbitrary choices. At the end, the heuristic choice of α is replaced by another heuristic. 

One that chooses the value of λ . 

In the case of the L-curve method, the idea is to find some correlation between the 

regularization parameter that produces the smallest MSE and the corner of the L-curve. 

The logarithmic scale plots do not show a clear “L” shape, but there is an approximate 

corner for the divergence tree sequence, figure 3.9(a). The values of log K α −f b  and 

log L αf  for which the minimum MSE is attained are marked with a dark diamond in the 
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“L-curve” plots, see figure 3.9, and located on the left side of the curves where the 

regularization parameter is not too big (avoiding over-regularization).  

The approximate corners of the curves correspond to over-regularized solutions that 

produce large data fidelity norm values. The plots of the MSE vs. the norm of the data 

fidelity and regularization terms confirm that under- and over-regularization greatly 

affect the estimation error, and that picking the correct α  value is critical in order to 

achieve accurate velocity estimates. As in the case of the discrepancy principle, the “L-

curve” method does not address how to pick the right amount of smoothing controlled by 

σ .  Moreover, the corner of the curve, if it exists, does not estimate the optimal 

regularization value that minimizes the MSE or the other error metrics. The “L-curve” 

plots can be produced for videos without ground truth but from the results, there is no 

evidence that suggests that α  values at the corner of the curve will produce accurate 

velocity estimates. Note that the approximate corner does not produce the smallest MSE 

in the simulations. 

3.5.2 Discussion for calculating the Lipschitz constant 

The objective of the algorithm described in figure 3.5 is to find a Lipschitz constant, 'L , 

that allows the minimum of the objective function to be found. Unfortunately, for motion 

estimation, relationship (3.13) cannot be directly evaluated. The devised alternative 

approach is based on a large number of iterations and setting the initial value of 'L  to a 

big value. Here, note that to apply Lipschitz optimization, the only condition is that the 

graph of the objective function, f , should not go to infinite. Thus, all jumps among 

points on the graph of f  must be bounded [52], and this bound equals L .  Starting with 
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an 'L  such that 'L L>  , does not stop the algorithm from minimizing .f  For successive 

runs of the algorithm, 'L  is decreased until relationship (3.12) is no longer satisfied. At 

this point, the algorithm finds a worse minimum than the ones previously found and stops 

after few iterations. 

Table 3.15 provides the values returned by the algorithm for five runs starting with 

' 10L =  and 1100MaxIter =  when estimating the minimum MSE for the Translating Tree 

sequence using Horn’s algorithm. The bold faced columns indicate the found 'L  value 

and its associated error metrics. The columns in italic are extra runs of the algorithm. 

Table 3.15. Optimal point and minimum MSE of the Translating Tree sequence for different values of 'L . 

 

 ' 10L =  ' 5L =  ''''L = 2.5L = 2.5L = 2.5L = 2.5  ' 1.25L =  'L = 0.625  

Iterations 1100 1100 1100 989 185 

MSE 0.014 0.014 0.014 0.0144 0.0148 

α  0.2 0.2 0.2 0.3 0.1 

σ  1.26 1.26 1.26 1.26 1.375 

 

The algorithm is also applied to the other two test video sequences and the results are 

presented in table 3.16 and table 3.17. 

Table 3.16. Optimal point and minimum MSE of the Divergence Tree sequence for different values of 'L . 

 

 ' 10L =  ' 5L =  ' 2.5L =  ' 1.25L =  ' 0.625L =  ''''L = 0.3125L = 0.3125L = 0.3125L = 0.3125  'L = 0.1563  

Iterations 1100 1100 1100 1100 1100 392 96 

MSE 0.018 0.018 0.018 0.018 0.018 0.018 0.0184 

α  0.39 0.39 0.39 0.39 0.39 0.39 0.29 

σ  1.51 1.51 1.51 1.51 1.51 1.51 1.59 
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Since the three video sequences simulate different types of motion and range of 

velocities, it is safe to use their optimization results as reference to set the value of L  for 

future motion estimation on other video sequences. The largest 'L  among all test video 

sequences that still satisfies condition (3.12) is chosen. Thus, ' 2.5L =  is set. 

Table 3.17. Optimal point and minimum MSE of the Yosemite sequence for different values of 'L . 

 

 ' 10L =  ' 5L =  ''''L = 2.5L = 2.5L = 2.5L = 2.5  ' 1.25L =  'L = 0.625  

Iterations 2000 2000 2000 828 43 

MSE 1.28 1.28 1.28 1.30 1.37 

α  4.53 4.53 4.53 7.26 13.74 

σ  1.19 1.19 1.19 0.97 0.75 

 

3.5.3 Discussion for Lipschitz global optimization results 

Using the branch and bound strategy, Lipschitz optimization starts by partitioning the set 

P  in rectangles for which lower bounds of the velocity magnitude MSE are calculated. 

The region 
i

P  with the smallest lower bound is selected for further branching and 

bounding; and regions with lower bounds bigger than the current minimum value of the 

objective function are removed from further branch and bounding. This procedure 

continues until a maximum number of iterations is reached or when the difference 

between the current minimum value of the objective function and the lower bound is less 

than a given tolerance 0.01ε = . This tolerance value provides a reasonable approximation 

of the lower bound to the current minimum value of the objective function. Additionally, 

a tolerance in the order of  210−  is a convenient value to pick.    
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The flat regions where there is no error reduction in figure 3.12 are due to the fact that the 

algorithm explores subsets of the parameter space where no better minimum value is 

found, and the optimization proceeds with the current minimum. 

When optimizing for the correct value of the spread of the Gaussian pre-smoothing filter 

and regularization parameter, global optimization results for Horn’s technique using the 

divergence tree sequence accomplish an order of magnitude in MSE reduction, see figure 

3.12, The estimated flow shown in figure 3.14 presents higher errors at the periphery of 

the image, see figure 3.13, because at these regions the velocity field is expanding at a 

maximum speed of 2.7 pixels/frame. The Yosemite video sequence is far more 

challenging than the divergence tree sequence. Bigger errors are expected especially over 

the cloud regions where the intensity conservation assumption is violated and over the 

image borders where the velocity reaches speeds of 4.5 pixels/frame. The estimation of 

the correct motion parameters helps to reduce the error as shown in figure 3.15, specially 

for complicated video sequences because they yield higher errors. 

Lucas’s technique produces similar MSE values than those produced with Horn’s 

technique but at the cost of lees pixels with velocity estimates, density of the results, 

because the local solution to (2.35) fails to produce velocity estimates for image regions 

that lacked texture. Results for the Yosemite sequence are greatly affected by the lack of 

conservation of image intensity in the cloud region and the large velocity values of the 

mountains. The problem of estimating large motions arises because of the linear 

approximation to (2.1) using a Taylor series expansion when the spatial displacements 

are not small. 
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The optimal parameters found with the proposed Lipschitz optimization strategy produce 

error metrics that are comparable with published results. In the case of the Divergence 

Tree sequence, the minimum MSE is almost the same value as the one produced with the 

parameters published in [27]. The difference is in the order of 310− . The angular error 

metrics are not as good as those of  [27] but the differences are not significant.  

For the Translating Tree sequence, the error metrics produced with the optimal 

parameters outperform previously published results for both Horn’s and Luca’s 

techniques, see table 3.8, table 3.10,  table 3.13, and table 3.14, not only on MSE error 

but also on the angular metrics. 

The real advantage of the implemented optimization algorithm can be seen when the 

motion of the Yosemite sequence is estimated. Given that this video exhibits a complex 

motion, the selection of the motion estimation parameters becomes more relevant than in 

the previous case. The optimal parameters of table 3.8 for Horn’s technique produce a 

minimum MSE value that is thirty percent smaller than the one calculated with the 

parameters of [27]. Smaller values of the angular errors are also obtained with the 

optimized parameters. It is important to note that these results are obtained at the same 

density value. When the cloud region is not considered for calculating error metrics, the 

optimized parameters also outperform previous published values. 

Optimization for the average angular error also produces smaller values than those 

published in [27] at the same density of estimates. For Horn’s technique the optimal 

errors are smaller for all three sequences, while for Lucas’s method only for the 

Translating Tree sequence optimization yields better results. For the other two sequence 

the optimal values are almost the same as those of  [27]. 
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3.6 Concluding Remarks 

The importance of optimizing for the correct motion estimation parameter values has 

been established with the results presented in section 3.4. The contributions of this 

chapter include: 

• The identification of the motion parameters that affect the accuracy of the velocity 

estimates. 

• The implementation of a full-reference global optimization algorithm for motion 

estimation that successfully calculates the optimal sets of motion parameters. 

• The application of the discrepancy principle and L-curve methods to calculate the 

regularization parameter of motion estimation techniques. 

• An algorithm that finds the Lipschitz constant when the maximum of the gradient 

of the objective function cannot be calculated. 

It is important to note that the accuracy of the velocity estimation also depends on the 

complexity of the motion that is being tried to estimate. When ground truth is available, 

there are a few options to pick these values even thought some are better than others.  

Performance measures can be evaluated and decisions can be made regarding the motion 

parameters.  

The problem of selecting the correct parameters increases in complexity when there is no 

ground truth or reference to evaluate the performance measures. This latter case occurs in 

reality when video sequences are taken with digital recording devices. The true 

displacement field is unknown, and accurate velocity estimates are required. 

The reminder of this dissertation deals with the estimation of motion parameters when 

ground truth is not available. This process is analog to walking in the darkness. There is 
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no light or reference to guide our algorithms to the most accurate velocity estimates. That 

is why a blind platform will be introduced that calculates the motion parameters that 

estimate accurate velocity fields when there is no ground truth.  
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Chapter 4  

No-Reference Global Optimization for 

Motion Estimation 

4.1 Motivation 

The accuracy of motion estimation techniques when no ground truth is available cannot 

be qualitatively measured. This problem is present when velocity estimation is performed 

on any real video sequence because the true motion field is unknown. Performance 

metrics cannot be evaluated, and the error in the estimation cannot be measured. This is a 

serious limitation of the motion estimation techniques. So far, for real image sequences, 

the evaluation of the velocity estimates is drawn from subjective evaluations [27]. 

4.2 Introduction 

The no-reference global optimization platform proposed in this dissertation aims to find 

the optimal motion estimation parameters when there is no reference or ground truth to 

guide us to the correct answer. The motion estimation algorithms are blind to the true 

displacement field, but with the application of the proposed methodology, they will still 

be able to estimate accurate velocities with certain confidence.  

The main contribution of this chapter is to extend the global optimization platform for the 

application of motion estimation algorithms to real video sequences.  The concept behind 
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the blind validation approach is to optimize for agreement among the estimations. The 

fact that the true displacement field is unknown does not mean its estimation is not 

possible. The correct velocity field exists and it is unique. If different motion estimation 

techniques estimate similar values, then it is expected that the estimates are close to the 

correct answer. Of course, absolute certainty is not possible.  

4.3 Assumptions 

This section lays out the theoretical framework for the no-reference global optimization 

methodology to work. There are only two assumptions: 

• With proper parameter optimization, the motion estimation techniques should be 

able to provide an estimate of the unknown displacement field. 

• The estimation methods are sufficiently different so that their agreement will 

likely correspond to the estimation of the globally optimal motion. 

The first assumption also requires that each of the methods can produce a close estimate 

of the unknown motion field. Since the approach is based on agreement in the estimation, 

one technique cannot outperform the other. Otherwise, the underachieving method will 

drive the better method to the wrong estimation. As an example, in chapter three, the 

motion estimation results on both tree sequences were more accurate than the results on 

the Yosemite sequence. This is due to the large displacements present in the Yosemite 

sequence. Velocity values close to 5 pixels/frame are difficult to estimate with motion 

estimation techniques that rely on finite differencing and small displacement 

assumptions. Thus, if one of the methods is able to successfully estimate large 

displacements and the other does not, then when agreement is maximized, the final 
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estimated field will not be close to the true unknown velocities because one of the 

methods is not able to estimate the correct answer. The performance of the techniques has 

to be similar. When the true displacement field is within the bounds of what the 

techniques can estimate, then there is a combination of motion parameters that make the 

algorithms estimate the unknown motion field sufficiently well. 

The second assumption is perhaps the most important one. The idea of the proposed 

method relies on maximizing agreement between the techniques. Some disagreement is 

unavoidable, but what it is important is to minimize the amount by which the methods 

disagree. So when the methods converge to the same or almost the same answer, then the 

estimated field is close to the true velocity field.  

4.4 No-Reference Global Optimization 

Without loss of generality, the techniques of Horn and Schunk [1] and Lucas and Kande 

[6] are used to test and develop the no-reference approach. Note that from section 4.3 the 

only requirement is to use methods capable of independently estimating the true 

displacement field. 

When a set of motion parameters is used with each technique, the results are compared in 

order to measure their agreement. One way to compare the results and decide whether or 

not they agree is to apply the Bland and Altman [55, 56] statistical measures of analysis. 

Figure 4.1 shows a block diagram of the no-reference global optimization approach. 
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 Figure 4.1. Diagram block of the no-reference global optimization approach. 

4.4.1 Measuring agreement between methods 

Agreement is measured [55, 56] by quantifying the variation in between-method 

differences.  If two motion estimation techniques produce exactly the same results, then 

when the velocity estimates are plotted against each other, all points must lie in the line 

of equality. Figure 4.2 shows an example of perfect estimation. 
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(a)      (b) 

Figure 4.2 Equality plots for both motion components. Perfect velocity estimation of the (a) horizontal and 

(b) vertical velocities. Note that all points line on the equality line, i.e. y = x. 

 

The second tool used to measure agreement in the estimation is the plot of the difference 

of the methods against their mean. This plot allows us to quantify the magnitude of the 

disagreement, spot outliers, and indentify if there is any bias. The bias is given by the 
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mean of the difference, when the centroid of the difference is away from zero. For 

example if bias = 1 pixel/frame, then one method could be estimating a value of  0.5 

pixels/frame and the other 1.5 pixels/frame. Figure 4.3 shows this plot when perfect 

velocity estimation is achieved. 

The plot of the estimates of one method against the other when there is disagreement will 

not have all the points lying on the identity or equality line. An example of dispersion can 

be seen in figure 4.4. Figure 4.5 shows the plot of the difference against the mean of the 

estimates. Here, note that there are several outliers that are more than two standard 

deviations away from the mean. 
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Figure 4.3 Difference against the average of the estimation. Case of perfect velocity estimation. The 

difference equals zero, no bias, and the average of the estimates can be considered as the best estimate of 

the actual velocity values. 
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Figure 4.4 Line of equality of the velocity estimates for two methods that do not share the same estimates. 

(a) Horizontal motion component. (b) Vertical motion component. 
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  (b) 

Figure 4.5 Difference against the average of the estimation. Outliers are points that lie more than two 

standard deviations away from the mean of the difference. (a)  Horizontal motion component. (b) Vertical 

motion component. 
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The objective of the no-reference global optimization approach is to make most of the 

points lie on the line of equality, and make difference points lie no more than two 

standard deviations away from their mean. 

4.4.2 Maximizing agreement in the estimation 

Here, we note that agreement or convergence of the estimation is not equivalent to 

calculating the true displacement field nor should it be understood that the estimated field 

is the same as ground truth motion. The no-reference approach only seeks to find a good 

estimate of the motion using the results of two independent algorithms that have been 

optimized to produce accurate estimates as long as the assumptions of section 4.3 are 

met. It is important to stress that in the absence of ground truth motion, optimizing for the 

agreement of two independent methods is most likely to produce accurate velocity 

estimates. Thus, the no-reference approach provides a good alternative to the current state 

of the art of heuristically choosing the motion parameters of each technique.  

Maximizing the agreement in the estimation is equivalent to minimize the disagreement. 

Therefore, the disagreement of the methods, measured by the difference in the estimation, 

can be treated as the error that needs to be minimized. In order to minimize the error, the 

difference will be assumed to follow a zero mean normal distribution. The amount by 

which the methods disagree can be controlled by fixing the standard deviation of the 

distribution. This value is the approximate precision of the estimation. Since about 95% 

of the values drawn from a normal distribution are within two standard deviations away 

from the mean, the outliers or pixels for which agreement on the estimation was not 
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possible can be easily spotted. Two standard deviations away from the mean is the value 

set for the limits of agreement. 

The global optimization algorithm of section 3.3 will be applied to minimize the relative 

entropy, ( )D p q , between two discrete probability mass functions ( )p x  and ( )q x , and 

it is defined as: 

 ( ) ( )
( )
( )

log .
x

p x
D p q p x

q x∈Χ

=∑  (4.1) 

The relative entropy measures the inefficiency of assuming that the true distribution is 

( )q x  when the true distribution is ( )p x  [57]. The relative entropy is always non-

negative and is zero if and only if ( ) ( )p x q x=  [57]. 

The true continuous distribution of the error, ( )p x , is approximated by the histogram of 

the measured differences. The discrete target error distribution ( )q x  is generated by 

drawing numbers with ( )( ) 0,0.02q x N∼ . The normal distribution has to be zero mean in 

order to remove any bias in the estimation. Also, the value of the distribution standard 

deviation controls the accuracy of the estimation. Keeping it to a small value guarantees 

that large velocity estimation errors will be avoided. Thus, the selected value of 0.02 

pixels per frame for 
n

σ  will help in the calculation of very accurate results. 

The optimization returns the set of motion estimation parameters that generate an error 

with distribution ( )p x  closest to ( )q x . Here, note that the histogram approach can be 

easily modified to accommodate any other distribution of the error. 
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4.4.3 Parameter space for no-reference optimization 

The motion estimation parameter space is set to be the same as the reference optimization 

parameter space for sequences with ground truth, see table 3.1 for Horn’s method and 

table 3.9 for Lucas’s technique. For real video sequences, the range of values is given in 

table 4.1 and  

table 4.2. The values of the regularization parameter are selected to cover values used in 

the literature for ground truth sequences. The spread of the pre-smoothing filter for both 

techniques is set so that the temporal support of the frames is not exceeded. 

Table 4.1. Motion estimation parameter space for Horn’s method. 

 

 Taxi Sequence Rubik’s Cube Sequence 

 a  b  a  b  

α  0.1 0.5 0.1 0.5 
σ  0.5 2.25 0.5 2.5 

 

Table 4.2. Motion estimation parameter space. Lucas’ method. 

 

 Taxi Sequence Rubik’s Cube Sequence 

 a  b  a  b  

σ  0.25 2.25 0.25 2.25 

 

4.4.4 Confidence maps 

The mean and standard deviation of the measured difference probability are used to 

produce confidence maps of the velocity estimates. The limits of agreement between the 

estimations are set to two standard deviations away from their mean. Thus, a map of 

unreliable velocity estimates can be generated by locating all the points that lie outside 

these limits.  

The limits of agreement for the target distribution have values of +/-0.04 pixels per 

frame. Realistic values expected in the measured distribution of the error would be 
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ranging from 0.1 to 0.15 pixels per frame. This means that if the measured error perfectly 

follows a normal distribution, then 95% of the estimates are within the limits of 

agreement. Differences of +/-0.1 pixels per frame in the estimation translate to very 

accurate velocity values. 

4.5 Results 

The methodology is first tested on videos with ground truth. The results obtained with the 

“blind parameters” are compared against the ones found in section 3.4. Then, results for 

natural video sequences will be computed. 

4.5.1 Natural video sequences 

Two standard natural video sequences were used. Even though the true displacement 

field remains unknown, general guidelines for these sequences were found in [27]. The 

description of each one is as follows: 

• Rotating Rubik Cube: This video shows a counter-clockwise rotating Rubik’s 

cub on a turntable. The cube is rotating with velocities less than 2 pixels/frame 

while velocities of the turntable range from 1.2 to 1.4 pixels/frame. 

• Hamburg Taxi Sequence: This is a street video sequence that shows four 

moving objects: a taxi turning the corner, a car in the lower left (driving from left 

to right), a van in the lower right (driving from right to left), and a pedestrian in 

the upper left. Image speeds are approximately 1.0, 3.0, 3.0 and 0.3 pixel/frame 

respectively. 
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4.5.2 Results on synthetic videos 

Results for the three test sequences are compared with those obtained with the global 

optimization algorithm of section 3.4.1. Additionally, the error histograms along with the 

equality and difference against average plots will be provided. The “blind parameters” 

and their error metrics are presented in table 4.3 for Horn’s technique, and table 4.4 for 

Lucas’s method. 

Table 4.3. Blind validation results for Horn’s method on the three test video sequence. 

 

 Div. Tree Trans. Tree Yosemite   

w/o clouds 

Yosemite 

σ  1.44 1.38 1.25 1.25 

α  0.78 0.1 0.88 0.88 

MSE 0.0207 0.0148 0.1598 1.61 

AE
µ  4.76

◦
 1.67

◦
 5.16

◦
 11.77

◦
 

AE
δ  2.58

◦
 2.14

◦
 6.87

◦
 16.4

◦
 

Density 99.7% 99.7% 77.1% 99.7% 

 

Table 4.4. Blind validation results for Lucas’s method on the three test video sequence. 

 

 Div. Tree Trans. Tree Yosemite   

w/o clouds 

Yosemite 

σ  1.56 1.65 1.25 1.25 

MSE 0.0132 0.0019 0.11 1.16 

AE
µ  4.4

◦
 0.72

◦
 4.11

◦
 9.0

◦
 

AE
δ  1.9

◦
 0.82

◦
 5.98

◦
 15.4

◦
 

Density 83.8% 76.3% 63.6% 74.4% 
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(c)      (d) 

Figure 4.6. Equality plots of the estimated velocities against ground truth on horizontally Translating Tree 

video sequence. (a) Horizontal motion component for Horn’s method. (b) Vertical motion component for 

Horn’s method. (c) Horizontal motion component for Lucas’s method. (d) Vertical motion component for 

Lucas’s method. 

 

The equality plots of the estimated velocities on the Translating Tree sequence against 

the ground true velocities are shown in figure 4.6. These plots are provided as a reference 

to evaluate how well the estimated velocities agree with the true displacement field. Note 

that despite the evident dispersion for some velocity values, the overall estimated 

velocities follow the equality line. Large deviations are observed for the estimation of the 

vertical velocity component. To see if this artifact affects only the velocities produced 
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with the blind parameters, the equality plots against ground truth of the optimal velocities 

(the ones computed with the optimal parameters of section 3.4.4) are also provided in 

figure 4.7. The same artifact is present in these velocities which can be attributed to a 

limitation of the motion estimation techniques rather than the velocities produces with the 

blind parameters. Finally, equality plots of the estimated velocities against each method 

are presented in figure 4.8. 

Figure 4.9 shows the difference against the average of the estimation plot. The limits of 

agreement include estimations for which their difference is within two standard 

deviations away from the mean. These are convenient limits since approximately 95% of 

the samples drawn from a normal distribution fall inside these limits. Estimations outside 

this range are considered outliers or pixels for which the confidence in the motion 

estimation is low.  Outliers account for 6.7% of the horizontal velocities, and 8.3% of the 

vertical velocities.   

The histogram of the total difference in estimation, from the difference of each velocity 

component a single one is created, is shown in figure 4.10. This difference is produced 

with the blind parameters, and it is the closest distribution to the theoretical normal used 

for the optimization. 

Equality plots of the estimated velocities for the Divergence Tree sequence are shown in 

figure 4.11. Most of the velocity estimates lie on the equality line, showing good 

agreement between the estimates of both methods. To measure how close the estimated 

velocities are to the ground truth velocities, equality plots against the true displacement 

field are provided in figure 4.12. These plots show a tendency of the estimated velocities 
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to underestimate the actual value. This artifact especially affects pixels with larger 

velocity values and shows on both techniques as well as velocity components. As in the 
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(c)      (d) 

Figure 4.7. Equality plots of the optimal velocities against ground truth on horizontally Translating Tree 

video sequence. (a) Horizontal motion component for Horn’s method. (b) Vertical motion component for 

Horn’s method. (c) Horizontal motion component for Lucas’s method. (d) Vertical motion component for 

Lucas’s method. 

 

the case of the Translating Tree video, equality plots of the optimal velocities against the 

true displacement field are provided to identify whether this is due to some limitation of 

the optical flow techniques or to not finding the optimal parameters. 
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(a)      (b) 

Figure 4.8. Equality plots of the estimated velocities on horizontally Translating Tree video sequence. (a) 

Horizontal velocity component. (b) Vertical velocity component. 
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(a)      (b) 

Figure 4.9. Difference-average plot of the estimated velocities on Translating Tree video sequence for the 

(a) horizontal velocity component, and (b) vertical velocity component. 
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Figure 4.10. Histogram of the total difference in estimation for the horizontally Translating Tree sequence. 

The target distribution is set to lower errors than the measured ones. The measured distribution is the 

closest distribution to the target from all the distributions calculated with the no-reference optimization 

algorithm.  
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(a)      (b) 

Figure 4.11. Equality plots of the estimated velocities for the Divergence Tree video sequence. (a) 

Horizontal velocity component. (b) Vertical velocity component. 



 101 

 

Figure 4.13 shows that the underestimation problem is also present in the velocities 

produced with the globally optimal parameters of section 3.4.4. The difference between 

the estimates by the two methods against their average is shown in figure 4.14 for both 

velocity components. The limits of agreement include 92.2% of the horizontal velocities 

and 91.8% of the vertical velocities. The distribution of the total difference of the 

estimates is shown in figure 4.15 along with the target one. The true distribution is 

produced with the blind parameters.  

The equality plots of the velocity estimates for the Yosemite sequence are shown in 

figure 4.16. The estimates lie on the equality line, but the estimated values are well 

outside what motion estimation techniques can calculate. The large displacements present 

in this sequence make accurate estimation almost impossible. This is an example of poor 

estimation but not because the no-reference strategy fails to produce accurate results. The 

failure is on the motion estimation techniques themselves because they are not able to 

estimate the velocity field. For this particular example, the first assumption of the no-

reference strategy does not hold.  

Figure 4.17 shows the lack of accuracy in the estimation. Most of the errors are 

concentrated for the velocities of the cloud regions (big spikes in the equality line). The 

non-conservation of the image intensities really drives down the performance of the 

motion estimation algorithms. Large dispersion is also noticeable for velocity values 

bigger than two pixels per frame. Here, note that the motion estimation techniques 

assume small displacements along the motion path. The difference versus average plot,  

figure 4.18, shows the limits of agreement of the estimated velocities.  
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(c)      (d) 

Figure 4.12. Equality plots of the estimated velocities against ground truth on Divergence Tree video 

sequence. (a) Horizontal motion component for Horn’s method. (b) Vertical motion component for Horn’s 

method. (c) Horizontal motion component for Lucas’s method. (d) Vertical motion component for Lucas’s 

method. 

 

For this particular case, the information conveyed by the graph is not very informative 

due to the poor performance of the motion estimation techniques. The values of the limits 

of agreement do provide some information regarding the quality of the estimates. The 

particular high values for these limits are an indication that unreliable velocities are 

estimated.
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(c)      (d) 

Figure 4.13. Equality plots of the optimal velocities against ground truth on Translating Tree sequence. (a) 

Horizontal motion component for Horn’s method. (b) Vertical motion component for Horn’s method. (c) 

Horizontal motion component for Lucas’s method. (d) Vertical motion component for Lucas’s method. 
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Figure 4.14. Difference-average plot of the estimated velocities on the Divergence Tree sequence for the (a) 

horizontal velocity component, and (b) vertical velocity component. 
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Figure 4.15. Histogram of the total difference in estimation for the Divergence Tree sequence. The smaller 

distribution is the theoretical difference distribution. The observed or true difference distribution is the 

bigger one, and is the closest distribution to the theoretical from all the distributions calculated with the 

blind optimization algorithm.  
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(a)      (b) 

Figure 4.16. Equality plots of the estimated velocities for the Yosemite sequence. (a) Horizontal velocity 

component. (b) Vertical velocity component. 
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(c)      (d) 

Figure 4.17. Equality plots of the estimated velocities against ground truth for the Yosemite sequence. (a) 

Horizontal motion component for Horn’s method. (b) Vertical motion component for Horn’s method. (c) 

Horizontal motion component for Lucas’s method. (d) Vertical motion component for Lucas’s method. 

 

To provide representative results on the Yosemite sequence, the cloud region is removed 

from the no-reference optimization. This region is where most of the error is located 

because the image intensities are not constant during the motion path. The parameters 

found with the no-reference approach produce an error that is almost the same as the one 

found with the global optimization algorithm of section 3.4.1 when the cloud region is 

removed. The equality plots, figure 4.19, of the estimation against the ground truth 

velocities still reveal errors for the largest velocity values. 
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( a)      (b) 

Figure 4.18. Difference-average plot of the estimated velocities for the Yosemite sequence. (a) Horizontal 

velocity component, and (b) vertical velocity component. 

 

The equality plots of the estimation between the two methods, figure 4.20, show good 

agreement with most of the points on the equality line despite the evident errors due to 

the large displacements. Smaller values but still above optimal ones of the limits of 

agreements can be seen in figure 4.21 and figure 4.22. The ideal values would be between 

0.1 and 0.15 like those of the tree sequences. The limits are important features to spot 

outliers or unreliable velocity estimates. In this case, given the challenging nature of the 

motion, it is expected that locations that undergo large displacements will lie outside the 

limits of agreement or even within them due to their big values, +/- 0.2 and +/-0.25 pixels 

per frame. Thus, instead of using two standard deviations away from the mean, only 

locations with differences smaller than one standard deviation away from the mean can 

be considered as reliable estimates. Using this information, a map of the locations outside 

these limits can be generated. Figure 4.23 shows the confidence map of the estimates for 

the Yosemite sequence without the clouds. Locations with high disagreement are 
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considered unreliable and they are located where the large displacements occur along 

with the cloud region which was removed from the estimation. 
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Figure 4.19. Equality plots of the estimated velocities against ground truth for the Yosemite sequence 

without the cloud region. (a) Horizontal motion component for Horn’s method. (b) Vertical motion 

component for Horn’s method. (c) Horizontal motion component for Lucas’s method. (d) Vertical motion 

component for Lucas’s method. 
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(a)      (b) 

Figure 4.20. Equality plots of the estimated velocities for the Yosemite sequence without clouds. (a) 

Horizontal velocity component. (b) Vertical velocity component. 
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Figure 4.21. Difference-Average plot of the estimated horizontal velocities for the Yosemite sequence 

without the cloud region. (b) The value of the limits of agreements is approximately +/-0.2 pixels/frame 

which is still high. 
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Figure 4.22. Difference-Average plot of the estimated vertical velocities for the Yosemite sequence without 

the cloud region. (b) The value of the limits of agreements is approximately +/-0.25 which is still high. 
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(a)      (b) 

Figure 4.23. Confidence map of the velocity estimates (a) Magnitude of the ground truth velocity field. (b) 

Dark regions are locations where the difference in the estimation by the two methods is bigger than one 

standard deviation away from the mean. Notice that most of these areas have velocity magnitudes bigger 

than 2.5 pixels/ frame in the bottom left part of the image and the cloud region which was removed from 

the estimation. 
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(a)      (b) 

Figure 4.24. Confidence map of the velocity estimates including the cloud region(a) Magnitude of the 

ground truth velocity field. (b) Dark regions are locations where the difference in the estimation by the two 

methods is bigger than one standard deviation away from the mean. In this case the limits of agreement 

were +/-0.2 pixels per frame. Notice that most of these areas have correspond to the largest velocities and 

the cloud region. 

 

A confidence map that includes velocity estimates of the cloud region is also presented in 

figure 4.24. Notice how regions with large displacements as well as and the top part of 

the image, cloud region, are identified as unreliable velocity estimates. 

Table 4.5 shows the mean of the differences and their corresponding limits of agreement 

for the three test sequences. If the mean of the estimates is different than zero, then it 

means that there is some bias in the estimation. Small or nearly zero bias is the preferable 

result. 

Table 4.5. Mean of the difference in estimation by the two method and the agreement limit values. 

 Translating Tree Divergence Tree Yosemite 

w/o clouds 

Yosemite 

Diff. Mean U -0.025 -0.006 0.0047 -0.0020 

Upper Limit U 0.124 0.0722 0.2068 0.4066 

Lower Limit U -0.1734 -0.0847 -0.1975 -0.4106 

Diff. Mean V -0.002 0.0003 -0.0096 0.0044 

Upper Limit V 0.0885 0.0619 0.2458 0.4144 

Lower Limit V -0.0926 -0.0612 -0.2650 -0.4056 
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4.5.3 Results on natural video sequences 

Results for the real videos include equality plots and the difference against average plot 

between methods. Figure 4.25 shows the equality plots of the taxi sequence. Most of the 

points lie in this line, and it can be observed form figure 4.25(a) that most of the values of 

the horizontal motion component are concentrated between -1 to 1 pixels/frame, but there 

are clusters close to 3 and -3 pixels per frame. Values for the vertical velocity are 

concentrated between -1 to 1 pixels/frame. 

The difference-average plots, figure 4.26 and figure 4.27, also reveal these values for the 

velocities. The limits of agreement include 91% of the estimated horizontal velocities and 

91.8% of the estimated vertical velocities. 

Equality plots for the Rubik’s cube sequence, figure 4.28, show lack of agreement 

between both methods particularly in the horizontal component of the motion. There is 

underestimation for velocity value between 0.5 and 1.5 pixels per frame. The equality 

plot of the vertical velocities has most of the values lying on the equality line but still 

there are problems at the ends of the range of the estimated velocity values. 

The plots of the difference against the average of the estimates (figure 4.29 and figure 

4.30) reveal that there is more agreement in the estimation of the vertical velocities than 

the horizontal ones. Thus, estimation of one motion component is more reliable than the 

other since better agreement was found for the vertical velocities. Also, the scatter plot of 

figure 4.29 reveals that the error is not following a normal distribution and there is even 

some correlation between the magnitude of the differences and the value being tried to 

estimate. These findings re-enforce the notion that the estimation of one component of 

the motion is unreliable. A solution is to perform another run of the no-reference 
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approach but only for the horizontal component in order to find a different set of motion 

parameters that produce more accurate results. Additionally, note that the difference-

average plot is not suppose to be a test for normality. Instead, the correct procedure is the 

use of a q-q plot. The difference-average plot is visualization tool that helps in the 

evaluation of the estimated velocities.  

Finally, the mean of the differences and the values of the limits of agreement for the two 

natural video sequences are shown in table 4.6. 
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(a)      (b) 

Figure 4.25. Equality plots of the estimated velocities for the Taxi sequence. (a) Horizontal velocity 

component. (b) Vertical velocity component. 
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(a)      (b) 

Figure 4.26. (a) Difference in horizontal velocity estimation by the two methods against their average for 

the Taxi sequence. (b) Closer look at the middle cluster reveals that most of the values lie within the limits 

of agreement. 
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Figure 4.27. (a) Difference in vertical velocity estimation by the two methods against their average for the 

Taxi sequence. (b) Closer look at the middle cluster reveals that most of the values lie within the limits of 

agreement. 
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(a)      (b) 

Figure 4.28. Equality plots of the estimated velocities for the Rubik’s cube sequence. (a) Equality plot of 

the horizontal component. (b) Equality plot of the vertical component. 
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(a)      (b) 

Figure 4.29. (a) Difference in horizontal velocity estimation by the two methods against their average for 

the Rubik’s sequence. (b) Closer look at the middle section of the plot reveals a slight bias and high values 

of the limits of agreement.  
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(a)      (b) 

Figure 4.30. (a) Difference in vertical velocity estimation by the two methods against their average for the 

Rubik’s sequence. (b) Closer look at the middle section of the plot indicates almost zero bias and better 

limits of agreement values than the horizontal component results. 

 

 

Table 4.6. Mean of the difference in estimation by the two methods and the agreement limit values for real 

sequences. 

 Taxi Rubik 

Diff. Mean U -0.0053 0.0328 

Upper Limit U 0.1245 0.2378 

Lower Limit U -0.1351 -0.1721 

Diff. Mean V -0.003 0.0032 

Upper Limit V 0.0933 0.1166 

Lower Limit V -0.0993 -0.1102 
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(a)      (b) 

Figure 4.31. Horizontal velocity estimates for the Taxi sequence. (a) Horn’s estimates. (b) Lucas’s 

estimates.
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(a)      (b) 

Figure 4.32. Vertical velocity estimates for the Taxi sequence. (a) Horn’s estimates. (b) Lucas’s estimates. 

 

 
Figure 4.33. Confidence map of the velocity estimates. Dark areas with low confidence are located on the 

objects with the largest velocities close to 3 pixels per frame. 
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(a)      (b) 

Figure 4.34. Horizontal velocity estimates for the Rubik’s cube sequence. (a) Horn’s estimates. (b) Lucas’s 

estimates. 
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(a)      (b) 

Figure 4.35. Vertical velocity estimates for the Rubik’s cube sequence. (a) Horn’s estimates. (b) Lucas’s 

estimates. 

 
Figure 4.36. Confidence map of the velocity estimates for the Rubik’s sequence. Dark areas with low 

confidence are located on the borders of the turntable. 

 

4.6 Discussion 

4.6.1 Discussion for synthetic sequences 

The results on the three test video sequences provide good examples of the performance 

of the no-reference global optimization strategy. Results for the Tree sequences are far 
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better than the results of the Yosemite video.  The blind parameters produce error values 

comparable to those produced with the optimal parameters. The difference of MSE for 

the Translating Tree sequence is in the order of 48 10−×  which for all practical purposes is 

an insignificant amount.  Differences for the angular errors are also very small. Here, 

note that the blind parameters produce smaller error metrics than those published in [27]. 

In the case of the Divergence Tree sequence, the difference in MSE between the blind 

strategy and the global optimization is 32.7 10−× , and the differences in angular error is 

also very small.  

Results for the Yosemite sequence are far from satisfactory. This is not a failure of the 

blind approach rather it can be attributed to the limitations of the motion estimation 

algorithms. Note that the first assumption of the blind approach states that the optical 

flow methods should be able to estimate the unknown velocity field. Thus, there should 

exist a set of motion parameters that produce accurate estimates. For this example, this is 

clearly not the case. This is a realistic and really important assumption in order to have 

success when estimating the parameters blindly. 

The equality plots provide a good graphical tool to asses the agreement in the estimation. 

The blind approach relies heavily on maximizing agreement, and most of the estimates 

should lie on the equality line. More revealing are the equality plots of the velocity 

estimates against the ground truth. Most of the errors can be observed for the larger 

velocity values. This is a limitation of the techniques that assume small displacements 

and use finite differencing to compute image and velocity derivatives. Theoretically, the 

error should be independent of the value being tried to estimate, but from the examples 

this is not the case. As long as the majority of velocity values are not large, there should 
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not be a problem applying the motion estimation techniques. In any case, the blind 

strategy can be applied to any technique.  If there is a motion estimation implementation 

that overcomes the small displacement limitation, then it can be used with an 

implementation of similar performance to produce accurate velocity estimates. 

Another possible solution is to identify clusters of velocities and optimize for those 

values independently. Thus, different parameters can be used to accurately estimate 

certain velocity values. The final velocity estimates can be produced by combining the 

individual results. Right now, one set of parameters is used to estimate all the velocity 

values of the motion field, but the evidence suggest that improved performance could be 

achieved by changing the parameters and combine the estimates in one motion field. The 

same idea could be applied to each velocity component by optimizing separately for each 

component. Then an improved velocity field could be produced with the combination of 

each optimized component. This strategy makes sense if the values of the horizontal and 

vertical velocity components are very different from each other. 

The limits of agreement can be used as a confidence metric on the estimation provided 

that their values are small. For example, these values for both tree sequences are 

acceptable but not those of the Yosemite sequence. In this latter case, the limits have 

values close to half a pixel per frame. Considering that the goal was to produce a 

difference distribution close to zero mean normal with 0.02 of standard deviation, 

agreement values ten times bigger than the goal is not acceptable. Limits around 0.1 to 

0.15 can still be considered acceptable. Let’s keep in mind that if the differences were to 

follow a normal distribution, then 95% of the estimated velocities would lie within these 

limits. 
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4.6.2 Discussion for natural sequences 

The estimated velocity values for the Taxi sequence agree with the guidelines obtained 

for this sequence, section 4.5.1. The limits of agreement provide a confidence map of 

reliable velocities. It is expected that most of the disagreement or unreliable velocities are 

located on the objects moving at 3 pixels per frame as shown in figure 4.33. The velocity 

estimation for the pedestrian and taxi show good agreement and most of the reliable 

velocities belong to these objects. 

The velocity values for each method, figure 4.31 and figure 4.32, show that despite 

having objects moving at different velocities, the “blind parameters” are able to produce 

velocities that are within the range of the expected velocity values for these objects. The 

results of Lucas’s technique seem to be closer to the guideline values, but suffer from low 

density. Meanwhile, Horn’s method is able to estimate velocities for most of the image, 

higher density, but it seems to struggle to estimate values close to 3 pixels per frame. The 

difference in density is due to the local and global solutions of the methods, see sections 

2.4 and 2.5. 

The confidence of the Rubik’s cube sequence shows that reliable estimates are located on 

the cube with velocity values within the range of the expected velocity values. Most of 

the disagreement occurs for the estimation of the turntable which according to the 

guidelines range from 1.2 to 1.4 pixels per frame, but both methods are estimating 

velocities in the range of 1.5 pixels per frame, figure 4.34 and figure 4.35. From the 

confidence map, figure 4.33, it can be seen that most of the error is concentrated at the 

borders of the turntable. Velocities for the borders of the objects are always difficult to 

estimate due the change of the spatial intensity gradient. This effect is more noticeable 
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when the objects are close to the edges of the image like in this case. Notice that there is 

high confidence in the estimates of the middle section of the turntable with values within 

the expected velocities for this object.  

It is interesting to note that there is little disagreement in the estimates of the vertical 

velocities suggesting that different parameters are needed for vertical and horizontal 

velocities. 

4.7 Concluding remarks 

The proposed no-reference optimization strategy shows that it is possible to obtain 

accurate or reliable velocity estimates despite not having access to the unknown motion 

field. Throughout the different results presented in this chapter, it has been shown that 

maximizing agreement between the estimation of different motion estimation techniques 

leads to more accurate velocity estimate than those produced with the standard approach 

of heuristically choosing the motion parameters. Moreover, a confidence map of the 

estimation can be created which allows the identification of areas where velocity 

estimation is not performing well. This is a very important contribution because the 

confidence in the estimation comes from the estimated velocity value depending if it is 

close or not to the true unknown velocity. Most of the confidences metrics in the 

literature depend on heuristics like thresholds on the magnitude of the intensity gradient 

[1, 17, 27]. 

The no-reference optimization shows that it is possible to select motion parameters that 

produce reliable velocity estimates for real video sequences. This contribution is one of 

the most important made in this dissertation because it extends the application of motion 
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estimation techniques to real video sequences producing accurate velocity estimates 

despite not having access to the true displacement field. 
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Chapter 5  

Applications to Motion, Strain, and Pixel 

Trajectory Estimation of Carotid Artery 

Plaques 

This chapter presents the application of the full reference and no-reference optimization 

techniques to the study of carotid artery plaque motion. Optimization is used in 

calculating the motion parameters able to produce accurate pixel velocity estimates of 

ultrasound videos of carotid artery plaques. 

The pixel velocities are used with Kalman filters to provide motion trajectories 

throughout the cardiac cycle. K-means clustering is used in identifying different motion 

patterns present in the video. Strain maps of atherosclerotic plaques are produced with a 

2-D strain tensor that identifies the deformation directions. 

5.1 Motivation 

Biomedical applications are of great interest for computer aided diagnosis systems. In the 

case of ultrasound videos of carotid plaque artery, the main motivation is to develop 

verifiable methods for the estimation of plaque motion and reconstruction of plaque 

trajectories with the expectation that plaque and wall motion analysis will provide 

additional information about plaque instability. Plaque build-up is a characteristic of 
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atherosclerosis, and a consequence of progressive intimal accumulation of lipid, protein, 

and cholesterol esters in the blood vessel wall [58] which results in a significant reduction 

of blood flow. Atherosclerosis is the primary cause of strokes and the third cause of death 

in the United States [59] with almost twice as many people dying from cardiovascular 

diseases than from the combined deaths due to cancer. 

Motion estimation of ultrasound videos of carotid artery plaques provides important 

information regarding plaque deformation and feature extraction to distinguish between 

stable and unstable plaques or symptomatic and asymptomatic plaques [60].  

5.2 Introduction 

Previous studies [2, 28, 54] have assessed the accuracy of optical flow based techniques 

by generating ground truth video sequences that capture standard video motion 

characteristics like translational constant motion, non-deformable body motion, wide 

range of velocity values, diverging velocity fields, and occluding edges using a uniform 

light source. Despite this generalized use, there are not, to the best of my knowledge, 

biomedical motion models to simulate the displacement of plaques and artery walls on 

carotid ultrasound videos.  

Atherosclerotic plaque motion has been previously studied. Block matching using cross 

correlation was the most common technique found [61-63]. However, block matching 

does not provide motion estimation resolution at the pixel level. Since it provides a single 

motion vector for an entire block of pixels, and is not accurate enough for video image 

analysis applications 
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To provide high-resolution motion estimates, it is standard practice to use optical flow 

methods. Motion estimation using optical flow models has been proven to be a useful 

non-invasive tool for diagnosis of symptomatic and asymptomatic atherosclerotic plaques 

[60]. Results using this increased resolution will yield better understanding of the 

mechanics and deformations of atherosclerotic plaques during the cardiac cycle, and can 

be potentially used to predict their rupture. 

5.3 Methodology 

Prior research [62] does not address some of the unique characteristics associated with 

ultrasound imaging of atherosclerotic plaque motion. Thus, for the full-reference global 

optimization approach, a realistic motion simulator was developed based on clinical 

expectations using ultrasound images of atherosclerotic plaques.  

The simulations cover a variety of periodic motions due to the cardiac cycle along with 

their discontinuities that mimic sudden plaque and artery wall movements during systole 

and diastole. These simulations are used to estimate globally optimal parameters that 

would be applicable to a wide variety of realistic conditions. Once the optimal parameters 

are found, they are used to calculate the motion of clinical ultrasound videos with special 

focus on the plaque which is segmented using an automated algorithm [64].  

The developed methodology considers that speckle is a major source of inaccuracies 

when estimating ultrasound video motion due to loss of coherence that causes changes in 

image intensities. Here, it is important to note that prior research did not address the need 

to account for significant levels of ultrasound speckle.  
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The simulated examples were corrupted with speckle noise following the model proposed 

in [65]. This model assumes that after logarithmic compression of the envelop detected 

signal, speckle can be modeled as independent and identically distributed  (i.i.d) additive 

white Gaussian noise (AWG). Thus, proper optimization is carried out to find the limits 

of the motion estimation techniques by corrupting the simulations with different levels of 

speckle signal to noise ratios (SNR). This is used to calculate the set of optimal input 

parameters that produce the most accurate velocity estimates at a given SNR.  

The no-reference approach will also be used on clinical ultrasound videos in order to find 

the set of motion parameters that can accurately estimate video motion. Moreover, the 

confidence maps will identify regions with reliable velocity estimates for better analysis 

of plaque and artery motion.  

The estimated velocities calculated with the set of optimal parameters (full-reference and 

no-reference) are fed to a Kalman filter [66] that reconstructs pixel trajectories, and these 

trajectories are used to analyze plaque motion patterns using Principal Component 

Analysis (PCA).  

Pixel velocity estimates also allow the study of plaque elastic behavior in a new non-

invasive approach by computing a 2D strain tensor that quantifies the deformation of the 

different plaque components with the amount of deformation depending on the tpoissue’s 

mechanical properties. These deformations could lead to the differentiation of stable and 

unstable plaques. 

A block diagram of the developed plaque motion and deformation analysis system is 

presented in figure 5.1. 

 



 127 

 

Figure 5.1. Block diagram of the developed plaque motion and deformation analysis system. 

5.3.1 Motion model for ultrasound videos of carotid artery plaque 

Periodic motion in ultrasound videos of carotid plaque artery can be observed, and it 

comes from the fact that the artery follows the cardiac cycle. Clinical verification on 

atherosclerotic plaque videos was given in previous work published in [29][14][67] and 

also reported by Lever et al. [68], Golemati et al. [61], and Stoitsis et al. [62] where a  

cyclical pattern along with its discontinuities was observed. In this dissertation, these 

periodic motions (including their discontinuities) are simulated using a Fourier Series 

expansion. The motion period can be determined from the videos, and motion 

discontinuities are expected during the cardiac cycle.  These discontinuities produce 

Fourier harmonic coefficients that are inversely proportional to the fundamental 

frequency [69]. 

A realistic motion model is created by taking the first frame of the video sequence and 

applying a set of coordinate transformation equations in order to displace the pixel 
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intensity values to new coordinates. The coordinate transformation creates image pixel 

displacements governed by the following set of equations: 

 ( ) ( ) ( ) ( )
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where the amplitude of the axial motion component (5.1) is given by 
a

A  while the lateral 

motion amplitude is represented by 
l

A  (see figure 5.2 for definitions of the axial, ( )y t , 

and lateral, ( )x t , directions). Similarly, lateral and axial motion frequencies are referred 

by 
l

f  and .
a

f  In (5.1) and (5.2) N  is the total number of frames in the simulation and t  

is the index time parameter. Note that amplitudes are decaying at a rate that is inversely 

proportional to the fundamental frequency simulating motion discontinuities that can be 

induced by random events like for example lung motions [7, 14].  

The simulator works under the assumption that plaques with low degree of stenosis 

(stenosis is the narrowing of the carotid artery due to plaque build up) move at larger 

amplitudes than plaques with high stenosis since the narrowing of the artery increases 

with the stenosis degree. The simulation parameters are given in table 5.1, and figure 5.2 

shows an ultrasound video frame with the axial and lateral directions. 
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Table 5.1. Synthetic motion simulation parameters. Amplitudes, frequencies, and degree of stenosis for 

each simulation case. These parameters are set to cover different motion patterns observed in clinical 

ultrasound videos. The resolution of the videos is 0.15 mm per pixel. 

 

Synthetic Motion Parameters 

Video Number #1 #2 #3 #4 

Stenosis (%) 73% 60% 52% 26% 

Axial Frequency (cycles per video length) 5 3 5 5 

Lateral Frequency (cycles per video length) 6 2.5 4 4.5 

Axial Motion Amplitude (pixels) 1.5 1 3.5 5.5 

Lateral Amplitude (pixels) 2 2 2.5 3.0 

Frame Dimensions (pixels x pixels) 100x240 221x251 125x250 125x250 

Number of frames 300 200 300 300 

Maximum Velocity Magnitude (pixels/frame) 0.5 0.3 1.1 1.8 

 

 

Figure 5.2. Single frame of a carotid ultrasound image. The figure illustrates the axial and lateral directions. 

 

For generating synthetic velocities, an automated segmentation method [64] was used to 

separate the plaque from the rest of the video image. Both the plaque and the non-plaque 

regions were originally set using two separate Fourier Series expansions. Since plaques 

are extensions of the carotid artery, convolution was applied on the boundary to make the 

motion smoother. 

5.3.2 Speckle noise simulations 

Speckle generally modeled as a form of multiplicative noise corrupts ultrasound images 

and makes visual inspection difficult even for the most trained specialists [70]. Speckle 

also degrades the accuracy of the motion estimation algorithms. 
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When the envelope signal is captured at the output of the beamformer before logarithmic 

compression, speckle can be modeled as a multiplicative form of noise following a 

Rayleigh distribution [70]. Then, logarithmic compression is applied to the signal in order 

to fit it to the display range. The effects of logarithmic compression have been studied in 

[71][72], where it was shown that it affects the tails of the Rayleigh distribution in a 

manner that speckle can now be expressed as additive white Gaussian noise (WGN). 

Therefore, the multiplicative noise model transforms into a classical additive one [65]: 

 .
ij ij ij

g f n= +  (5.3) 

The term 
ij

g  is the ultrasound displayed pixel after logarithmic compression, and the 

terms 
ij

f  and 
ij

n  are the noise-free pixel and noise component after logarithmic 

compression. The spatial coordinates in the 2D image plane are given by i  and j . 

Using (5.3), independent and identically distributed (i.i.d) GWN of different variances 

were added to the simulated video in order to generate corrupted videos of 10 db, 20 dB, 

30 dB, 40 dB, and 50 dB signal to noise ratios (SNR), and they are used to calculate the 

set of optimal input parameters that produce the most accurate velocity estimates at a 

given SNR.  

5.3.3 Full-reference global optimization for biomedical simulations 

The model (5.1)-(5.2) is used to create five synthetic carotid artery plaque motions 

according to the parameters in table 5.1. The goal for each simulation case and motion 

estimation technique is to find the set of parameters that minimize the MSE between the 

estimated velocities and ground truth. The full-reference optimization algorithm of 

section 3.3 is used to find the optimal parameters that minimize the MSE of the velocity 
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estimation. Intersecting the optimal interval results of all the simulated cases leads to a 

common optimal point that will be used as the starting value of the motion parameters 

when estimating motion of clinical ultrasound videos. 

5.3.4 No-reference global optimization 

The no-reference approach is used to find the motion parameters that produce accurate 

motion estimates of clinical ultrasound videos. The velocity estimates are used to 

calculate strain maps of atherosclerotic plaques. 

5.3.5 Trajectory reconstruction 

Once the optimal parameters are calculated, they are used in clinical ultrasound videos in 

order to estimate the corresponding velocity field. For tracking the motions, Kalman 

filters were used for every pixel. The goal is to predict the position of a pixel given its 

initial coordinates and velocity estimates throughout the video sequence. The linear 

models for trajectory reconstruction applied independently to the lateral and axial 

directions are given by: 
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The state vector is composed of position and velocity, and the index k  indicates the 

video frame numbers. The velocity estimates, ( )u k and ( )v k , are the measurements and 

can be treated as observations in the Kalman filter framework. The vector 

( ) ( )
T

t t
u k v k    represents the motion vector. Process noise and observation noise are 

modeled as zero-mean, uncorrelated, white-noise ( )kξ , and ( )kη  processes 

respectively. The covariance matrix of the process noise and variance of the observation 

noise are given by: 
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=

 (5.6) 

5.3.6 Principal Component Analysis (PCA) 

PCA [73] is applied to the plaque trajectories in order to find patterns from which plaque 

motion can be characterized. The goal is to differentiate among plaque regions that 

undergo different motions and identify these patterns along the cardiac cycle. 

The motion of a point consists of n  samples in each of the two directions (axial and 

lateral), and can be represented by the vector: 

 ( )1 1, , , , .
T

n n
q x x y y= … …  (5.7) 

Before creating the data matrix, location dependency is removed from each trajectory. 

Then, the trajectories are placed as measurements in the 2n p×  data matrix of 

standardized trajectories given by: 
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where 2N n= , 
1

1 p

i ij

j

q q
p =

= ∑ , and ( )
2

1

1 p

ii ij i

j

s q q
p =

= −∑  with 1, ,i N= … . The principal 

components (PC) are obtained from the covariance matrix ( )Cov Z  with eigen-value-

eigenvector pairs ( ) ( ) ( )1 1 2 2, , , , , ,
p p

λ λ λ…e e e . Only the k  PC that account for 90% of 

total variance are retained.   

The matrix whose columns are the of eigenvectors ( )1 , ,
k k

Φ = …e e  is used to 

approximate any standardized trajectory 
i

z  by: 

 ,
i k

z z≈ + Φ ib  (5.9) 

and the k-dimensional vector ib  is calculated as: 

 ( ).T

k iz zΦ −ib =  (5.10) 

The PCs define a k-dimensional plane, and the elements of the k-dimensional vector ib  

are the coordinates of the projection of each trajectory onto this low dimensional sub-

space [73]. The ib  vectors are inputted to a k-means clustering algorithm [73] that is used 

to distinguish between different motion patterns.  

Finally, the same motion analysis is also applied independently to the axial and lateral 

directions in order to gain more insight about the movement of the plaque. The 2D model 
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presented in (5.7)-(5.8) is equivalent to the 1D models when the motion in the axial and 

lateral directions are independent. 

5.3.7 Strain calculation and principal axis of deformation 

Pixel velocity estimates allow the study of plaque elastic behavior by computing a 2D 

strain tensor that quantifies the deformation of the different plaque components. For 

every plaque pixel, a strain tensor that measures the elastic behavior of the underlying 

tissue is estimated.  

When an object deforms, the distance between points changes, and the amount of 

deformation depends on the tissue’s mechanical properties. These deformations along 

with other indicators of stroke can help to differentiate between stable and unstable 

plaques. 

In 2-D object deformation, there are four strain components of a 2×2 strain tensor matrix.  

The diagonal entries 
xx

ε  and 
yy

ε  give the extensions or contractions, deformations 

normal to the object borders, and the off-diagonal entries 
xy

ε  and 
yx

ε  give the shear, 

deformations parallel to the object border. The 2-D tensor, E , is given by: 

 .
xx xy

yx yy

E
ε ε

ε ε

 
=  
 

 (5.11) 

 

The total deformation of a point is measured by the trace of E . The components of the 

tensor are computed from the gradient of the velocity field. The strain is the spatial 

derivate of the tissue velocity and each component in (5.11) is calculated according to: 
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The gradient of the velocity field is calculated using a 2-D Gaussian derivative filter. The 

spread of the Gaussian will need to be adjusted according to characteristic of the motion 

field. Here, higher spreads are used to suppress noise (inaccurate estimates), and smaller 

spreads are used when the velocity estimation is accurate, see section 5.3.8 and results in 

section 5.4.6.  

The directions of pure extensions and contractions are the principal axes of deformation 

(no shear occur along these axes) with associated vectors that point into the directions of 

these deformations. The principal axes are given by eigenvectors of the 2-D strain tensor 

(5.11). The sign of the associated eigenvalues distinguishes between positive and 

negative deformations (stretching or shortening) in the direction of their corresponding 

eigenvectors. Thus, for each pixel with an associated strain tensor the principal 

deformation axes can be visualized as an ellipsoid with axis length proportional to the 

magnitude of its eigenvalue. The shape of the ellipsoid, governed by the ratio of the 

eigenvalues, determines how an infinitesimal circular area is deforming. When the 

deformation is concentrated along a single direction, the thinner and line-like the 

corresponding ellipsoid is. On the other hand, when the deformation is equally distributed 

along both axes, the ellipsoid resembles a circle. 
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5.3.8 Differentiation of velocity fields 

In order to select the best derivative filter, a deterministic motion field was created using 

chirp functions that span a wide range of frequencies. Independent identically distributed 

(i.i.d) zero mean White Gaussian Noise (WGN) of different noise levels was added to the 

simulated velocities. 

Three filters were used to calculate the velocity derivatives from the noisy estimates. One 

was a 9-tap derivative filter developed by Farid and Simoncelli [74], and the other two 

were: a four point difference mask with a Gaussian pre-smoother, and a two dimensional 

Gaussian derivative filter. In both Gaussian cases, optimization was carried out to find 

the best value of the filter spread that can suppress noise and accurately calculate the 

velocity field derivatives for different frequencies. 

The chirp field linearly sweeps low and high frequencies with the following equation: 
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The vertical field is the horizontal and vertical mirrored version of the horizontal field 

generated using: 

 ( ) ( )( )( ), ,v x y fliplr flipud u x y=  (5.14) 

 

The gradient of the field is given by: 
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and: 
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For (5.13), table 5.2 summarizes the simulation parameters. 

Table 5.2. Chirp velocity field parameters. 150N =  pixels. 

 

 fmin fmax α  β  

Low Freq. Simulation (cycles/pixel) 0.001 0.05 (fmin + fmax)/2 (2 fmax - α )/N 

High Freq. Simulation (cycles/pixel) 0.05 0.1 (fmin + fmax)/2 (2 fmax - α )/N 

 

The Signal to Noise Ratio (SNR) of the noisy velocities where simulated at levels of 

( )5  0.8105dB σ = ,  ( )10  0.4558dB σ = , ( )20  0.0456dB σ = , and ( )30  0.014dB σ = .  

5.4 Results 

This section presents all the results obtained with the methods presented in section 5.3. 

The results will be broken in two sections starting with global optimization results on 

simulated ultrasound videos (full-reference) and followed by results on clinical videos 

(no-reference). 

5.4.1 Full-reference motion estimation parameter optimization 

Horn’s technique depends on two parameters: the spread of the Gaussian pre-smoothing 

filter σ , and the regularization parameter α  in model (2.13). Lucas’s technique depends 

only on the Gaussian pre-smoothing spread.  The spread of the Gaussian pre-smoothing 

filter was allowed to vary 0.5 4σ = −  pixels for both techniques, and the values of the 

regularization parameter α  varied 1 50α = −  for Horn’s technique. 
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Smooth velocity fields of small amplitudes were simulated for synthetic motions with 

high stenosis values (see table 5.1). Low stenosis values for simulations #3 and #4 allow 

the simulation of non-smooth velocity fields of higher amplitudes and frequencies. High 

velocity fields are difficult to estimate using optical flow models due to the fact that finite 

differencing errors and large motions do not satisfy the small displacement assumption.  

The estimation error is measured in terms of the maximum velocity magnitude: Relative 

Error = Magnitude Error / Max. Magnitude. Results of Horn’s technique are presented in 

figure 5.3(a)-(d), and from table 5.3 to table 5.6. The contour plots along with the tables 

indicate the relative error for a combination of input parameters.  For example, in table 

5.4, for 1.0α =  and 1.0σ = , the error is 0.1.  This means that on average, the error is 

10% of the maximum ground truth velocity. Figure 5.4 shows the relative error as a 

function of the Gaussian pre-smoothing step for Lucas technique.  

The information of the contour plots and relative error tables is used to select a set of 

parameter values that produces the smallest error among all the simulated cases. For 

Horn’s technique, the optimal parameter values are: 1.0,  1.25α σ= = . In the case of 

Lucas’ method, the optimal spread of the smoothing filter can vary in the range 

0.5 2.25.σ = −  The optimal parameters are used as a starting point to estimate pixel 

velocities on clinical ultrasound videos.  

5.4.2 Speckle simulation results 

Speckle degrades the accuracy of the ME algorithms. Thus, following [65] the model in 

(5.3) adds independent and identically distributed (i.i.d) GWN of different variances to 

the simulations in order to generate degraded videos of  10 dB, 20 dB, 30 dB, 40 dB, and 
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50 dB signal to noise ratios (SNR).  The studied example is based on simulation # 3 (see 

table 5.1). 

The goal is to use the global optimization algorithm to find a set of input parameters able 

to calculate the best possible velocity estimates. Contour levels of the relative error are 

shown in figures for the different SNRs. As expected, the estimation error is bigger for 

videos with low SNR than for videos with higher SNR values.  Compared to the noise 

free simulations, higher regularization parameter and filter spread values are necessary to 

obtain reliable velocity estimates.   

The regularization parameter varies from 2.5 15α = − , and the filter spread can take 

values from 1.0 2.5σ = −  pixels. 

5.4.3 Trajectory reconstruction of simulated motion of ultrasound carotid artery 

plaques 

Figure 5.6 shows a frame of simulation #3 (52% stenosis) with three selected points for 

which lateral and axial trajectories are reconstructed. These trajectories are shown in 

figure 5.7 (a)-(b). The MSE error for trajectory reconstruction is shown in table 5.7 with a 

maximum value of 20.033 pixels  in the lateral direction, and 20.093 pixels  in the axial 

direction.  

Trajectory reconstruction results for simulation #1 using Lucas’s technique are shown in  

figure 5.8, figure 5.9,  and table 5.8. Maximum MSE values of 20.002 pixels  in the 

lateral direction and 20.005 pixels  in the axial direction were achieved. 
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(c)      (d) 

Figure 5.3. Contour plots of relative error for full-reference Horn’s technique. (a) Relative error for 

simulation #1. (b) Relative error for simulation #2. (c) Relative error for simulation #3. (d) Relative error 

for simulation #4.  
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Figure 5.4. Full-reference relative error of Lucas’ technique. Errors smaller than 0.1 (10%) are acceptable. 
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Table 5.3. Full-reference values for Horn’s technique of the velocity estimation relative error for simulation 

#1 (73% stenosis).
(max)

0.5 /
GT

v pix frame= .  

 

 Smoothing Filter  Spread ( )σ  

Reg. Par. ( )α  0.5 0.93 1.37 1.81 2.25 2.68 3.12 3.56 4.0 

1.0 0.17 0.08 0.08 0.11 0.15 0.19 0.23 0.26 0.31 

1.7 0.15 0.02 0.09 0.11 0.15 0.18 0.23 0.27 0.31 

2.5 0.15 0.08 0.10 0.12 0.15 0.19 0.23 0.27 0.32 

3.3 0.86 0.91 0.89 0.87 0.84 0.81 0.77 0.72 0.67 

4.0 0.86 0.90 0.88 0.86 0.83 0.80 0.76 0.71 0.67 

5.5 0.86 0.89 0.87 0.84 0.82 0.79 0.75 0.70 0.65 

7.1 0.86 0.87 0.85 0.83 0.81 0.77 0.74 0.68 0.64 

8.6 0.85 0.86 0.84 0.81 0.79 0.76 0.72 0.67 0.62 

 

Table 5.4. Full-reference values for Horn’s technique of velocity estimation relative error for simulation #2 

(60% stenosis). 
(max)

0.3 / .
GT

v pix frame=  

 

 Spread Smoothing Filter ( )σ  

Reg. Par. ( )α  0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 

1.0 0.14 0.10 0.10 0.21 0.13 0.16 0.18 0.19 0.21 

1.4 0.14 0.12 0.13 0.15 0.18 0.21 0.22 0.23 0.24 

2.1 0.14 0.15 0.18 0.21 0.24 0.26 0.26 0.26 0.27 

2.5 0.15 0.18 0.21 0.25 0.27 0.28 0.28 0.28 0.28 

2.8 0.16 0.19 0.23 0.26 0.28 0.29 0.29 0.29 0.29 

3.0 0.17 0.21 0.24 0.27 0.31 0.30 0.30 0.29 0.30 
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Table 5.5 Full-reference values for Horn’s technique of velocity estimation relative error for simulation #3 

(52% stenosis). 
(max)

1.1 / .
GT

v pix frame=  

 

 Spread Smoothing Filter ( )σ  

Reg. Par. ( )α  0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 

1.0 0.87 0.92 0.93 0.93 0.91 0.90 0.88 0.85 0.83 

2.5 0.89 0.92 0.92 0.92 0.91 0.89 0.87 0.85 0.82 

4.0 0.89 0.92 0.92 0.91 0.90 0.88 0.86 0.84 0.82 

5.5 0.89 0.91 0.91 0.90 0.89 0.87 0.85 0.83 0.80 

8.6 0.89 0.91 0.90 0.89 0.87 0.85 0.83 0.80 0.78 

10.1 0.89 0.90 0.89 0.88 0.86 0.84 0.81 0.79 0.76 

11.6 0.89 0.90 0.89 0.87 0.85 0.83 0.80 0.77 0.74 

13.1 0.89 0.89 0.88 0.87 0.84 0.81 0.78 0.75 0.72 

14.5 0.88 0.89 0.88 0.86 0.83 0.80 0.76 0.73 0.71 

 

Table 5.6. Full-reference values for Horn’s technique of velocity estimation relative error for simulation #4 

(26% stenosis). 
(max)

1.8 / .
GT

v pix frame=  

 Spread Smoothing Filter ( )σ  

Reg. Par. ( )α  0.5 0.87 1.25 1.62 2.0 2.37 2.75 3.12 3.5 

1.0 0.28 0.13 0.12 0.13 0.16 0.18 0.21 0.23 0.26 

3.7 0.23 0.14 0.13 0.15 0.17 0.20 0.22 0.25 0.27 

6.4 0.23 0.15 0.15 0.17 0.19 0.22 0.24 0.26 0.28 

9.2 0.23 0.16 0.17 0.20 0.22 0.25 0.27 0.29 0.30 

11.9 0.23 0.17 0.20 0.22 0.25 0.28 0.30 0.32 0.33 

14.7 0.23 0.19 0.22 0.25 0.28 0.31 0.33 0.35 0.37 

17.4 0.23 0.21 0.25 0.28 0.31 0.34 0.36 0.39 0.41 

20.1 0.23 0.24 0.28 0.31 0.34 0.37 0.40 0.43 0.45 
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(c)      (d) 

Figure 5.5. Contour plots of the relative error for speckle simulations of SNR =10dB (a), 20 dB (b), 30 dB 

(c), and 40 dB (d). Compared to noise free cases, higher regularization parameters and filter spreads are 

necessary to obtain reliable velocity estimates. 
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Figure 5.6. Three selected points of simulation #3 (52% stenosis) for trajectory reconstruction. 
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(a)      (b) 

Figure 5.7. Lateral (a) and axial (b) trajectory reconstructions of three selected points of Figure 5.6. Ground 

truth is shown in solid black line. Point ‘x’ is shown on a blue ‘. line’, point ‘+’ shown on a red ‘-. line’, 

and point ‘*’ shown a magneta ‘-- line’. 

 

Table 5.7. MSE table of lateral and axial trajectory reconstruction for simulation #3 (52% stenosis) for 

Horn’s method. 

MSE 

Point Lateral Axial 

‘x’ 0.028 0.093 

‘+’ 0.032 0.063 

‘*’ 0.033 0.046 
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Figure 5.8. Three selected points of simulation #1 for trajectory reconstruction. 
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(a)      (b) 

Figure 5.9. Lateral (a) and axial (b) trajectory reconstructions of three selected points of Figure 5.8. Ground 

truth is shown in solid black line. Point ‘x’ is shown on a blue ‘. line’, point ‘+’ shown on a red ‘-. line’, 

and point ‘*’ shown a magneta ‘-- line’. 

 

Table 5.8. MSE table of lateral and axial trajectory reconstruction of simulation #1 (73% stenosis). Lucas’ 

method. 

 

MSE 

Point Lateral Axial 

‘x’ 0.001 0.003 

‘+’ 0.002 0.005 

‘*’ 0.002 0.003 
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5.4.4 Motion estimation of clinical ultrasound videos 

Velocity estimation of clinical ultrasound videos was performed on a set of twelve 

videos.  

First, the full-reference optimal parameters found in section 5.4.1 are used to estimate 

video motion. The evaluation of the estimated velocities is done visually. For visual 

validation, the velocities are first fed to Kalman filters to reconstruct pixel trajectories. 

The clinical video is then played back with the tracked points overlaid over the plaque. 

Visual inspection of the tracked points can help detect if the tracked points agree with our 

expectations. When a large majority of the pixel motions appear to be tracked correctly, 

there is quality motion estimation. Else, the motion estimation is found to be of poor 

quality. This process identifies if the current motion parameters are doing a good job at 

estimating the true displacement field. When the trajectories appear to lose track of the 

plaque, a new set of input parameters need to be used. Significant levels of speckle is the 

cause that the velocity estimates produced with the optimal parameters cannot track 

certain plaque regions. For these cases, the motion parameters are changed to the ones 

found in the full-reference speckle simulations, section 5.3.2. The full-reference motion 

estimation parameter values for each clinical video are given in table 5.9. Out of the 

twelve videos, quality motion estimation was possible on nine. On the remaining three 

videos the amount of speckle de-correlation, plaque deformation, large displacements, 

and change of pixel intensity values did not allow for accurate motion estimation. For the 

remaining nine videos, the velocity field is estimated for every frame of the video and 

pixel trajectories are reconstructed for the plaque.  
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Figure 5.10 shows a frame of video #4. The velocity field is overlaid on top of the frame 

with the velocity vectors pointing in the direction of the estimated displacements. 

Trajectories for video #7 are shown in figure 5.11. This figure shows the motions of 

points located over the plaque and near the plaque-artery wall boundary. For these 

examples, evidence of periodic motion, one of the main assumptions of the motion 

simulator, can be observed. The periodicity of the motion trajectories is evident in figure 

5.12 where two dominant harmonics can be observed.  

Table 5.9.  Parameter values used to estimate clinical ultrasound video motion for Horn’s method. 

 

Parameter Values 

Video α  σ  

1 10 1.5 

2 1 1.25 

3 15 1.25 

4 15 1.25 

5 10 1.5 

6 10 1.5 

7 15 1.25 

8 15 1.25 

9 15 1.25 

10 N/A N/A 

11 N/A N/A 

12 N/A N/A 
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Figure 5.10. Estimated velocity field of clinical video #4. The arrows point in the direction of the 

displacement  
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(a)      (b) 

Figure 5.11. Estimated trajectories of a clinical ultrasound video. (a) Frame of video #7 with three selected 

points. (b) Reconstructed trajectories for the three points shown in Figure 5.11a. Evidence of periodic 

motion is found in the reconstructed trajectories. 

 

Consistency in the reconstructed trajectories for clinical video #2 can be observed in 

figure 5.13. This is evidence that when two different motion estimation algorithms 

produce almost the same estimates, they are most likely close to estimating the true video 

motion. When the incorrect input parameters are used on two different methods, it is easy 

for the methods to produce different and wrong estimations, but when the correct 

parameters are used both methods will most likely converge close to the true velocity 

field. 
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Figure 5.12. Windowed DFT amplitudes of the three selected points on Figure 5.11a. (a) Windowed DFT 

amplitude of point ‘x’. (b) Windowed DFT amplitude of point ‘+’. (c) Windowed DFT amplitude of point 

‘*’. A hamming window is used for windowing the trajectory amplitude. 
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(b)      (c) 
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(d)      (e) 

Figure 5.13. Reconstructed trajectories of three plaque points using Horn’s and Lucas’s techniques. (a) 

Plaque points. (b) Horn axial motion. (c) Lucas axial motion. (d) Horn radial motion. (e) Lucas radial 

motion. Similar trajectories produced with two different methods indicate that the correct pixel velocities 

are being calculated. 
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Figure 5.14. Regions of clinical video #2 that exhibit different motion patterns. Identification of these 

patterns is done with PCA and a k-means clustering algorithm. 

 

PCA is also performed on the trajectories to identify motion patterns over different 

plaque regions which can help to better understanding of how the plaque moves during 

the cardiac cycle especially at systole and diastole. For video # 2, PCA retained four 

principal components that account for 90% of the total variance of the trajectories. The 

coefficient vector ib  was calculated according to equation (5.10), and the k-means 

algorithm clustered the motions in three different clusters. Figure 5.14 shows a frame of 

this video with the plaque region separated into clusters according to their motion 

patterns. The motion of this video shows three noticeable patterns. The left part of the 

plaque is mainly dominated by axial motion. The right part is dominated by movement in 

the lateral direction. The motion of the middle section is affected by speckle noise and 

changes in image intensities created a distinctive motion that was recognized by the 

clustering algorithm. 

5.4.5 No-reference motion estimation results 

The no-reference approach was run first on the simulated videos and then on clinical 

cases. For the simulations, the range of parameters are 1.2 1.7α = −  and 
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1.0 1.25 pixelsσ = −  for Horn’s technique, and 1.25 pixelsσ =  for Lucas’s technique. 

These values are within the range found with the full-reference optimization, section 

5.4.1. Figure 5.15 shows the distribution of the error for two simulations. The smallest 

error is for the simulation with low motion amplitudes, and the bigger error belongs to the 

non-smooth velocity field with low stenosis. 

Figure 5.16 shows the difference-average plots for clinical video # 1. Notice the limits of 

agreement are inside the preferred value of 0.15 pixels. The agreement in the estimation 

of the axial motion component, figure 5.16(b), is higher than the agreement of the lateral 

component. This suggests that axial velocities are more reliable than lateral ones. Here 

note that the ultrasound beam travels in the axial direction. Thus, higher accuracy is 

expected when estimating this component. This fact has been noticed in other ultrasound 

motion studies [75, 76]. A solution to improve the agreement in the lateral motion 

component and potentially its accuracy is to only optimize for this component. In the no-

reference results section, it was noted that the same motion parameters did not produce 

the same level of accuracy for both components.   

The confidence map, figure 5.17, shows that there is high confidence for the estimates of 

the plaque region. 

The parameters returned by the no-reference optimization algorithm for video # 1 were 

9.2α =  and 0.75σ =  pixels for Horn’s technique. Table 5.10 summarizes the parameter 

values found in five clinical videos. These values are close to the ones used when 

estimating the clinical motion using the full-reference approach, see table 5.9, especially 

the value of the regularization parameter. 
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Figure 5.15. Measured difference distributions. (a) Simulation # 1. (b) Simulation # 3. 
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Figure 5.16. Difference-average plots for clinical video #1. (a) Horizontal motion component. (b) Vertical 

motion component. 

 

 
Figure 5.17. Confidence map of clinical video # 1. There is high confidence in the estimation of plaque 

velocities. 
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Table 5.10.  No-reference parameter values used to estimate clinical ultrasound video motion for Horn’s 

method. 

 

Parameter Values 

Video α  σ  

1 9.23 0.75 

2 1.57 2.5 

3 1.1 2.38 

4 1.38 2.38 

7 1.38 2.5 

 

5.4.6 Differentiation filter results 

Mean square errors of the velocity gradient field estimation are calculated for three 

different derivative filters. The simulated deterministic velocity field is a chirp signal that 

linearly sweeps from low to high frequencies (see table 5.2). The goal is to find the filter 

that produces the smallest MSE of the gradient field estimation. For the Gaussian filters, 

optimization was performed in order to find the best value of the filter spread that 

produces the most accurate estimates while suppressing noise levels of different SNR. 

Low frequency results for the four point finite differencing filter with 1-D Gaussian pre-

smoother are shown in figure 5.18. Results for the high frequency range are presented in 

figure 5.19. 

MSE plots for the 2D Gaussian derivative filter are shown in figure 5.20 for the low 

frequencies, and figure 5.21 for the high frequencies. Table 5.11 shows the optimal filter 

spreads of both Gaussian filters at different noise levels. 
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The optimal filter spreads of the Gaussian filters were used to estimate the total MSE in 

the calculation of the velocity gradient field. The performance of the nine-tap Simoncelli 

derivative filter was also compared with the errors of the Gaussian filters in order to 

select the best derivative filter.  The results for the low frequency derivative calculation at 

different noise levels for the three filters are shown from figure 5.22 to figure 5.26. High 

frequency derivative calculation results are shown from figure 5.27 to figure 5.31. 

The filter that produced the smallest error in the calculation of the velocity gradient field 

among all noise levels was the 2D-Gaussian filter. When calculating the plaque strain 

tensor, the spread of the 2D Gaussian filter needs to set according to the accuracy of the 

velocity estimates. The noise levels simulated in this section, accounted for inaccurate 

velocity estimates. A filter spread of 1 pixel provides a good compromise between noisy 

and accurate velocities. Thus, this value is used in the calculation of the strain tensor. 

Table 5.11. Optimal spreads of Gaussian filters for different noise levels. 

 Low Frequencies High Frequencies 

 4-pts. 1D-G 2D-G 4-pts. 1D-G 2D-G 

5db 1.85 pixels 1.88 pixels 0.91 pixels 0.96 pixels 

10db 1.57 pixels 1.60 pixels 0.72 pixels 0.83 pixels 

20db 1.17 pixels 1.16 pixels 0.5 pixels 0.5 pixels 

30db 0.83 pixels 0.84 pixels 0.5 pixels 0.5 pixels 

40db 0.54 pixels 0.57 pixels 0.5 pixels 0.5 pixels 
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(a)      (b) 

Figure 5.18. Mean Square Error (MSE) of the derivative estimation at low frequencies using a four point 

finite difference mask with a 1-D Gaussian pre-smoother filter. (a) MSE plot. The filter spread varied from 

0.5-10 pixels. (b) Closer view of the MSE at the region where the minimum MSE was obtained.  
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Figure 5.19. Mean Square Error (MSE) of the derivative estimation for high frequencies using a four point 

finite difference mask with a 1-D Gaussian pre-smoother filter. (a) MSE plot. The filter spread varied from 

0.5-10 pixels. (b) Closer view of the MSE at the region where the minimum MSE was obtained.  
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Figure 5.20. Mean Square Error (MSE) of the derivative estimation for low frequencies using a 2-D 

Gaussian derivative filter. (a) MSE plot. The filter spread varied from 0.5-10 pixels in both directions. (b) 

Closer view of the MSE at the region where the minimum MSE was obtained.  
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Figure 5.21. Mean Square Error (MSE) of the derivative estimation for high frequencies using a 2-D 

Gaussian derivative filter. (a) MSE plot. The filter spread varied from 0.5-10 pixels in both directions. (b) 

Closer view of the MSE at the region where the minimum MSE was obtained.  
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Figure 5.22. Low frequency derivative estimation at SNR = 5dB. (a)-(b) Derivatives of the horizontal 

component of the velocity field. (c)-(d) Derivatives of the vertical component of the velocity field. (e)-(f) 

MSE of the velocity magnitude error for derivative estimation. 
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Figure 5.23. Low frequency derivative estimation at SNR = 10dB. (a)-(b) Derivatives of the horizontal 

component of the velocity field. (c)-(d) Derivatives of the vertical component of the velocity field. (e)-(f) 

MSE of the velocity magnitude error for derivative estimation. 
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Figure 5.24. Low frequency derivative estimation at SNR = 20dB. (a)-(b) Derivatives of the horizontal 

component of the velocity field. (c)-(d) Derivatives of the vertical component of the velocity field. (e)-(f) 

MSE of the velocity magnitude error for derivative estimation. 
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Figure 5.25. Low frequency derivative estimation at SNR = 30dB. (a)-(b) Derivatives of the horizontal 

component of the velocity field. (c)-(d) Derivatives of the vertical component of the velocity field. (e)-(f) 

MSE of the velocity magnitude error for derivative estimation. 
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Figure 5.26. Low frequency derivative estimation at SNR = 40dB. (a)-(b) Derivatives of the horizontal 

component of the velocity field. (c)-(d) Derivatives of the vertical component of the velocity field. (e)-(f) 

MSE of the velocity magnitude error for derivative estimation. 
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Figure 5.27. High frequency derivative estimation at SNR = 5dB. (a)-(b) Derivatives of the horizontal 

component of the velocity field. (c)-(d) Derivatives of the vertical component of the velocity field. (e)-(f) 

MSE of the velocity magnitude error for derivative estimation. 
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Figure 5.28. High frequency derivative estimation at SNR = 10dB. (a)-(b) Derivatives of the horizontal 

component of the velocity field. (c)-(d) Derivatives of the vertical component of the velocity field. (e)-(f) 

MSE of the velocity magnitude error for derivative estimation. 
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Figure 5.29. High frequency derivative estimation at SNR = 20dB. (a)-(b) Derivatives of the horizontal 

component of the velocity field. (c)-(d) Derivatives of the vertical component of the velocity field. (e)-(f) 

MSE of the velocity magnitude error for derivative estimation. 
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Figure 5.30. High frequency derivative estimation at SNR = 30dB. (a)-(b) Derivatives of the horizontal 

component of the velocity field. (c)-(d) Derivatives of the vertical component of the velocity field. (e)-(f) 

MSE of the velocity magnitude error for derivative estimation. 
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Figure 5.31. High frequency derivative estimation at SNR = 40dB. (a)-(b) Derivatives of the horizontal 

component of the velocity field. (c)-(d) Derivatives of the vertical component of the velocity field. (e)-(f) 

MSE of the velocity magnitude error for derivative estimation. 
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5.4.7 Strain measurements on clinical ultrasound videos 

Accurate velocity estimates provide not only information regarding the motion but also 

can be used to analyze plaque deformation. The derivatives of the pixel velocities create a 

2D tensor that enables the study of the elastic behavior of the underlying tissue. The 

tensor can be potentially used to identify plaque materials like lipid deposits or 

calcifications based on their mechanical properties. The total strain of a point is measured 

by the trace of tensor with positive values indicating stretching and negative ones 

indicating contraction. 

The principal axes of deformation will be shown over the plaque.  They are given by the 

eigenvectors of the strain tensor, and point in the directions of pure extensions or 

contractions. Thus, for each pixel with an associated strain tensor, the principal 

deformation axes can be visualized as an ellipsoid with axis length proportional to the 

magnitude of the eigenvalues. The shape of the ellipsoid, governed by the ratio of the 

eigenvalues, determines how a point is deforming. When the deformation is concentrated 

along a single direction, the thinner and line-like the corresponding ellipsoid is. On the 

other hand, when the deformation is equally distributed along both axes, the ellipsoid 

resembles a circle.  

The positive bright areas of figure 5.32(b) indicate stretching, and the dark negative 

values compression. The strain map indicates that the middle section of this plaque is 

expanding while there is compression on the top plaque boundaries. 

The axes of deformation for video # 7 are shown in figure 5.33. The zoomed in section 

analyzes the left-bottom region of the plaque.  
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(a)      (b) 

Figure 5.32. Total strain of an atherosclerotic plaque. (a) Plaque delineation. (b) The total strain is given by 

the trace of the strain tensor. 
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(b) 

Figure 5.33. Plaque principal axis of deformation. (a) Plaque delineation. (b) The vectors point in the 

direction of the deformation. 
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Note that mostly, there is only one axis. This indicates that the deformation is 

concentrated in one direction only. When there are two arrows, the deformation is 

distributed on both directions. 

Strain measurements were calculated for video # 1 using the no-reference parameters. 

The total strain of the plaque in video #1 is shown in figure 5.34. The inner part of the 

plaque is expanding while the boundaries show compression. These results are in line 

with those obtained with the full-reference parameters.  
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Figure 5.34. Total strain of the atherosclerotic plaque on clinical video #1. 

 

5.5 Concluding Remarks 

Motion analysis of carotid artery plaques provides us with a tool to help differentiate 

between stable and vulnerable plaques that could lead to stroke. The accuracy of the pixel 

estimates are related to the selection of the motion parameters.  

The developed motion simulator is a first step to help find the range of parameters that 

can be used on clinical videos. The simulated motion needs to resemble the motion 

present in the clinical videos, so that the parameter values can produce accurate 

estimates.  
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The speckle simulation provides insight regarding how the parameters can to be adjusted 

when considerable levels of speckle affect the videos.  

When estimating velocities of clinical videos it is important to obtain high density fields 

because the more dense the estimated field, the more information can be assessed from 

the video. Thus, global techniques are preferred over local methods because they produce 

higher density fields.  Local methods can be used to measure the agreement of the 

estimation in the no-reference approach. This is an extra layer of validation that provides 

confidence in the estimation of pixel velocities. 
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Chapter 6  

Conclusions and Future Work 

6.1 Conclusions 

The methods presented in this dissertation have demonstrated that the developed 

optimization methods lead to improved performance of motion estimation techniques. 

The full-reference and no-reference approaches find motion parameters that produce 

more accurate velocity estimates than the fields estimated with current heuristic choices 

of the parameters. 

The agreement between the full-reference and no-reference optimization results 

demonstrates that accurate velocity estimation is possible when ground truth is not 

available. Thus, the no-reference global optimization approach can be applied to any 

video sequence expecting estimates that will be of accuracy that is comparative to full-

reference optimization.  

For real video sequences with unknown velocity fields, the detection of unreliable 

velocity estimates can be done with a novel confidence map that grades the estimates 

based on their expected accuracy rather than on ad-hoc metrics that do not correlate with 

the properties of the velocity field. 

The no-reference optimization approach has been shown to provide with reliable velocity 

estimates that can be obtained by maximizing the agreement in the estimation of different 

motion estimation techniques. The developed optimization methods are independent of 
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currently available motion estimation techniques. The work of this dissertation can be 

applied to any existing motion estimation technique or any technique that will be 

developed in the future. The flexibility of the implemented optimization strategy is such 

that new methods that handle large displacements will benefit the most achieving 

superior performance than currently available techniques. 

For ultrasound videos of carotid artery plaques, it has been shown that the developed 

optimization methods produce velocity estimates that enable the study of motion and 

deformation patterns that can potentially identify vulnerable plaques that lead to stroke. 

6.2 Future work 

Even though the global optimization algorithm used in the full-reference and no-

reference approaches obtains the optimal motion parameters and minimizes the error of 

the velocity estimates, an expression that explicitly relates the parameters to the value of 

this constant, L , was not fully developed. Improved convergence and reduced number of 

function evaluations can be attained by avoiding the problem of significantly over-

estimating L . 

For carotid artery plaques, a full reference and a no-reference approach for strain 

estimation will need to be developed. This work will add another layer of confidence in 

the elastography maps to identify vulnerable plaques. 

The medical validation of the motion analysis and strain estimation of carotid artery 

plaques still needs to be performed. A team of doctors will need to grade the cases as 

symptomatic and asymptomatic. After this, a classification algorithm that assigns the 

atherosclerotic plaques to those two categories will need to be developed. Once correct 
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classification is achieved, the ultimate goal is to identify the asymptomatic cases that 

could become symptomatic. 
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Appendix A 

A.1 Convergence Proof of Lipschitz Global Optimization Algorithm 

In order to proof convergence of the algorithm the conditions of Theorem A.1 must be 

fulfilled using Lemma A.2 and Proposition A.3. 

Theorem A.1 

If for any inifinite sequence { } ( )
1

,  1, 2, ,
q q qk K k

P P P q
+

⊃ = …  of successively refined 

partition sets the bounds at iterations 
q

k  satisfy: 

 ( )( )lim 0,
q qk k

q
Pγ µ

→∞
− =  (A.1) 

then, 

 ( )lim lim limk k k
k k k

u f vµ γ γ
→∞ →∞ →∞

= = = =  (A.2) 

and every accumulation point v
∗  of the sequence { }kv  is an optimal solution of 

( ){ }min :f x x D∈ . 

Lemma A.2 Successive bisection of n-rectangles at the midpoint of one of its longest 

edges is exhaustive. 

Proof: Let ( ){ }min :f x x D∈  and { }q
R , 1q ≥ , be a decreasing sequence of rectangles, 

where 1q
R +  is obtained from 

q
R  by bisection at the midpoint of one of the longest edges 

of 
q

R . Let ( ) 1, ,i i ic b a i n= − = …  be ordered such that ( )1 2, ,ic c i n≥ = … . Let 

( )1 1, ,
T n

c c c= ∈… ℝ , and consider the n-cube { }1 :C x a x a c= ≤ ≤ +  and the sequence 
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{ } ,  1
q

C q ≥  of rectangles,  where 1q
C +  is obtained from 

q
C  by bisection at the midpoint 

of one of the longest edges of 
q

C . Clearly: 

 ( ) ( )     .
q q

R C qδ δ≤ ∀ ∈ℕ  (A.3)  

Moreover, after n bisections, the cube 1n
C +  with edges of length 1 / 2,c  i.e.   

 ( ) ( ) ( )1 1 1

1
.

2
n n

R C Cδ δ δ+ +≤ =  (A.4) 

It follows that ( ) 0q
q

Cδ
→∞
→  and hence ( ) 0q

q
Rδ

→∞
→  q.e.d. 

Let , , , ,  and 
k k k k k

R Q u vγ  stand for , , , ,  and R Q u vγ  respectively at the beginning of 

iteration k . 

Proposition A.3 If algorithm 3.1 is infinite, then 

 ( )lim  lim  lim  ,k k k
k x k

u f vµ γ γ
→∞ →∞ →∞

= = = =  (A.5) 

and every accumulation point v
∗  of the sequence { }kv  is an optimal solution of 

( ){ }min : .f x x R∈  

Proof: According to theorem A.1 it suffies to show that for every decreasing sequence 

1
,

q q qk k k
R R R

+
⊃ , of successively refined rectangles the corresponding bounds satisfy 

 ( )( )lim 0.
q qk k

q
Rγ µ

→∞
− =  (A.6) 

Let  

 { } ( ): ,  / 2,
q q q k q qq

k k k R k k
R x a x b x b a= ≤ ≤ = +  (A.7) 

and  
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 ( ) ( ) ( ){ } ( ){ }' max max , , / 2 .
q q q q q q q qk k k k k R k k

R f a f b L b a f x L b aµ = − − − −  (A.8) 

Moreover, let 

 ( ) ( ){ }min : .
q q qk k k

R f x x Q Rγ = ∈ ∩  (A.9) 

It follows from Lemma 3.2 that { }
1

lim
q qk k

q
q

R R s
∞

→∞
=

= =∩  for some point s , and hence  

 ( ) ( ) ( )'lim lim ,
q qk k

q q
R R f sγ µ

→∞ →∞
= =  (A.10) 

since f  is continuous and ( ) 0.
q q qk k k

q
R b aδ

→∞
= − →  Using  ( )

q qk k
Rγ γ≥  and 

( ) ( )' ,
q qk k

u R u R≤  then  ( ) 0
q qk k

q
Rγ µ

→∞
− →  holds q.e.d. 
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