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Abstract 
 
 

The importance of having low-cost and practical technology for improving the efficiency of 

solid-state lighting is key for the practical implementation of this technology for general illumination 

market. The thin-film flip-chip (TFFC) LED has been pursued as the state-of-the-art LED technology, 

which has been shown to have improved extraction by 1.6 times over the conventional planar LED 

technology. The combination of the thin-film concept with flip-chip technology provided surface 

brightness and flux output advantages over conventional LED, and currently the TFFC LEDs are 

widely used in industry for improved performance. To improve the light extraction further in TFFC 

LEDs, both surface roughness and photonic crystal methods had been implemented.  

In this thesis, the use of self-assembled colloidal microlens arrays with rapid convective 

deposition (RCD) method will be demonstrated in both GaN and organic LEDs. The use of rapid 

convective deposition method enables roll-to-roll printing process of microsphere and nanosphere 

arrays on large wafer area applicable for manufacturing of large area LED technology. 

Comprehensive studies were carried out to analyze the light extraction efficiency of conventional 

top-emitting III-Nitride LEDs with microsphere arrays and TFFC LEDs with microsphere arrays 

deposited via rapid convective deposition process. The device structure was engineered to achieve 

optimum light extraction by varying refractive indices of spheres, the diameters of spheres, packing 

density and packing geometry of microsphere arrays. The optimized device structure is TFFC LED 

with hexagonal close-packed TiO2 sphere arrays. The use of hexagonal close-packed monolayer 

of TiO2 microsphere arrays on TFFC LED results in light extraction of 75%, which is 3.6 times higher 

than that of TFFC LEDs with planar surface. Further optimization by using microlens arrays on 

TFFC LED results in light extraction efficiency of 86%, which is 1.3 times higher than that of state-

of-the-art TFFC LED with surface roughness approach. The key advantage of the self-assembled 

colloidal process is the ability for implementation of roll-to-roll printing method for large wafer scale 

manufacturing process.  
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Chapter 1 Introduction 

1.1 III-Nitride based Light-emitting Diode for Solid-State Lighting 

Group III Nitride semiconductors have three different crystal structures: wurtzite, zinc 

blend, and rock salt [1]. Among these three structures, the wurtzite structure is 

thermodynamically stable. The wurzite structure is of hexagonal unit cell and it contains 

six atoms of each type. The space group is P63mc. The wurtzite structure consists of two 

interpenetrating hexagonal close-packed sublattices, each with one type of lattices, offset 

along the c-axis by 5/8 of the cell height.  

 

Figure 1-1. The band gap and lattice constant of InxGa1-xN, AlxIn1-xN, and 

AlxGa1-xN with various compositions [1]. 

GaN, InN and AlN as well as their ternary and quaternary alloys are considered as 

one of the most important groups of semiconductor after Si for their various applications 

in general illumination, displays, consumer electronics, lasers, detectors, solar cells due 

to their excellent optical, electronic properties, as well as their tunable band gap from 0.7 

eV to 6 eV as shown in Figure 1-1[1].  
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Solid-state lighting (SSL) is a lighting technology which uses semiconductor light-

emitting diode, organic light-emitting diode and polymer light-emitting diode as source of 

illumination instead of electrical filaments, plasma and gas. In recent years, it has emerged 

as a promising new lighting technology that could fundamentally improve lighting system 

and has the potential to reduce the energy consumption by one half. SSL is controllable 

and directional, with the potential to change the way we illuminate buildings and outdoor 

areas by putting the light where it is needed, when it is needed, while eliminating the 

wasted light and drawing just a fraction of power used by traditional light sources. 

Light-emitting diode (LED) directly converts the electricity to light. It is a p-n junction 

device and it converts electrical power into visible light through spontaneous emission, the 

wavelength of which is determined by the bandgap of semiconductor and the photons 

emitted in random directions.  The advent of bright-blue LEDs based on InGaN materials 

in the mid-1990s is a landmark achievement in SSL [2]. White-light sources based on 

InGaN LEDs have a promising future in general illumination with the advantages over 

conventional light sources (e.g., incandescent, fluorescence and high intensity discharge 

lamps), as they are energy-saving, compact, and environmentally friendly. There are three 

approaches to generate white light [2, 3]: 1) blue LED pumps yellow phosphors or green 

and red phosphors, 2) UV LED pumps blue and yellow phosphors or blue, green and red 

phosphors [4-6], and 3) multi-chip approach that combines blue, green, and red LEDs.  

The first two approaches bases on phosphor-converted LEDs with advantage of low cost, 

high efficiency and color stability over a wide range of temperatures. White light based on 

the blue LEDs is commonly used as a simple long-life white-light source due to its 

efficiency and stability. Among them, the most popular approach for commercial white 

LEDs is made by coating an InGaN blue LED with a yellow-emitting phosphors, which has 

led to its wide use in the various outdoor lighting applications. The first as well as the most 
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widely used yellow phosphor is Ce3+-doped Y3Al5O12 (YAG: Ce3+) owing to its many 

favorable properties such as strong absorption of blue light (~420-480 nm), broad 

emission band in the visible region (500-700 nm), fast luminescence decay time (<100 ns), 

high external quantum efficiency (~90% under blue LED excitation) [7], remarkable 

chemical and thermal stability and easy to synthesize. Due to these advantages, white 

LEDs made of the blue LED and YAG: Ce3+ phosphors are currently the mainstream in 

the LED market and are being widely used in not only point light sources, but also wide-

illumination equipment, back-lighting of liquid-crystal TVs and high-power automotive 

headlights. However, the color rendering index of YAG: Ce3+ is ~70, which is lower than 

the desired value for general illumination and the correlated color temperature is 4,000 K, 

which is too high [8]. Thus, developing the new green and red phosphor which can be 

used in the InGaN-based LED will advance the SSL technology. 

1.2 Research Work Accomplished 

1.2.1 FDTD Calculation of Light Extraction Efficiency of Top-Emitting LED 

The Finite-Difference Time-Domain (FDTD) method was employed to calculate the 

light extraction efficiency of top-emitting GaN-based LEDs with sphere arrays. Specifically, 

the refractive index and diameter of spheres were optimized to achieve high light 

extraction. The results shows that the diameter and refractive index of sphere have 

significant effect on the light extraction efficiency. The optimized device structure is the 

LED with 400-nm anatase TiO2 sphere arrays, which resulted in the 2.4 times 

enhancement in the light extraction efficiency. 

1.2.2 Deposition of Monolayer, Submonolayer, and Multilayer Sphere Arrays 

The low-cost, large-scale rapid convective deposition (RCD) method was employed 

to deposit spheres with various refractive indices and diameters to form sphere arrays. 

The monolayer, submonolayer, and multilayer sphere arrays have been obtained by 
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tuning the deposition speed, suspension concentration, humidity, temperature et.al. The 

hexagonal close-packed sphere arrays with diameter of 100 nm, 250 nm, 400 nm, and 1 

μm have been obtained. The deposition of binary sphere arrays was also carried out and 

the microlens arrays with various aspect ratio has been achieved by tuning thermal 

annealing time. 

1.2.3 Implementation of TiO2 Sphere Arrays on the Top-Emitting LED 

The anatase TiO2 as well as amorphous TiO2 sphere arrays was implemented on the 

top-emitting GaN LED, which results in 1.8 times enhancement in the output power. This 

is attributed to the enlarged light escape cone and reduced Fresnel reflection. The use of 

‘refractive-index’ matched layer enables a strong coupling of light from the GaN layer into 

the TiO2 scattering layer, which in turn results in optimum extraction structure.  

1.2.4 Overcome the Fundamental Limit of Light Extraction Efficiency of TFFC 
LED by Self-assembly Colloidal Microlens Arrays 

GaN-based Thin-Film Flip-Chip (TFFC) LED is the state-art of LED technology, which 

is used in combination with green and red phosphors, to generate white light for general 

illumination and display technologies. However, the low efficiency and high fabrication 

cost have been hindering the widely adoption of white LED. Cost-effective method is 

required to improve the overall efficiency of TFFC LED. The extraction efficiency of TFFC 

LED is significantly enhanced by employing the self-assembly microsphere or microlens 

arrays on the top of LED. The light extraction efficiency of 75% has been achieved by 

employing hexagonal-close packed 400-nm anataseTiO2 sphere arrays. Further 

enhancement is achieved by forming the microlens arrays on the LED. The light extraction 

efficiency of 86% has been achieved by embedding 400-nm TiO2 sphere arrays in 75 nm 

polystyrene layers on the TFFC LED, which is 1.3 times higher than that of the TFFC LED 
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with surface roughness. This result represents a state-of-the-art method to achieve 

improved light extraction efficiency in nitride-based LEDs with cost-effective manner.  

1.2.5 Implementation of Microlens Arrays on the Organic Light-Emitting Diode 
(OLED) 

The self-assembly 500-nm and 1-μm sphere arrays deposited by RCD method were 

employed as imprinting template to fabricate OLED with corrugated structures, which 

results in 1.8 times enhancement in output power compared to that of conventional planar 

OLED. This is attributed to the whisper gallery mode due to the Mie scattering of individual 

grating structure and Bragg diffraction resulted from the periodical arrangement of 

structures.  

The light extraction efficiency of OLED with corrugated structures was computed for 

OLED employing 400-nm and 300-nm SiO2/PS microlens arrays with various aspect ratio 

as template. The use of microlens arrays as imprinting template to fabricate OLED results 

in significant enhancement in light extraction efficiency. The light extraction efficiency 

depends on both the sphere diameter and aspect ratio of microlens arrays. Specifically, 

the use of 400-nm SiO2/PS microlens arrays as template results in light extraction 

efficiency of 59%. The use of 300-nm SiO2/PS microlens arrays results in the light 

extraction efficiency of 91%. Both the diameter of sphere and aspect ratio of microlens 

have significant effect on the light extraction. The optimized device structure is OLED 

employing 300-nm SiO2/PS microlens arrays with depth of 100 nm from the top. The use 

of microlens and imprinting method in OLED with colloidal method results in 3-times 

enhancement in power conversion efficiency over traditional OLED. 

1.2.6 Eu3+-doped TiO2 Nanospheres for GaN-based White LED 

The monodisperse TiO2 spheres were prepared by mixed-solvent method; ammonia 

plays an important role in forming the spherical TiO2 particles. The ratio of acetonitrile to 
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acetone is the key factor to form monodisperse TiO2 particles. In the presence of ammonia, 

we obtained monodisperse spherical TiO2 particles when the ratio of acetonitrile to 

acetone is 3:1. The size of TiO2 particles can be tuned by changing the precursor’s 

concentration and reaction temperature. We have also demonstrated that these spherical 

TiO2 particles could be converted from amorphous to anatanse and then to rutile by 

annealed at elevated temperatures. The optical properties of Eu3+-doped TiO2 was 

investigated, we found that there are some strong absorption in blue region and emit red 

light. Especially for the anatase TiO2. This leads to potential applications for the Eu3+-

doped TiO2 in high efficiency LED devices. 

1.3 Dissertation Organization 

This dissertation report comprises of nine chapters.  The brief introduction of III-nitride 

materials and their applications will be presented in Chapter 1. The current challenges of 

III-based LED for high power and high efficiency solid-state lighting applications will be 

discussed in Chapter 2. The numerical calculation of light extraction efficiency of LED 

based on finite-difference time-domain (FDTD) method will be discussed in Chapter 3. 

After providing the motivation for the device engineering, the report will move on to 

the discussion of experimental works. Chapter 4 will introduce self-assembly microlens 

arrays by the rapid convective deposition method (RCD). The deposition condition was 

investigated and hexagonal close-packed monolayer sphere arrays were obtained by 

tuning the suspension concentration, deposition speed. Chapter 5 will show device 

applications of self-assembly sphere arrays by RCD method. The deposition of anatase 

TiO2 microsphere arrays on the LED was demonstrated, which results in significant 

enhancement in light extraction efficiency.  
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In chapter 6, we implemented the colloidal microsphere arrays on state of art of LED 

technology, the thin-film flip-chip (TFFC) LED, to advance the solid-state lighting 

technology. The refractive index of microsphere arrays, the quantum well position, and the 

cavity thickness were tuned to achieve maximum light extraction efficiency. The microlens 

arrays was also implemented on the TFFC LED to further improve the light extraction 

efficiency. In chapter 7, I will show that the applications of self-assembly microlens arrays 

on the OLED structures and it is resulted in 1.8 times enhancement in light extraction 

efficiency. 

In chapter 8, I will show the high efficiency white LED can be realized by implementing 

Eu3+-doped TiO2 nanospheres on the top of LED, which not only can serve as red 

component of white light emission but also can improve the light extraction efficiency of 

LED. In chapter 8, the research work is summarized, and the future outlook for III-Nitride 

base solid-state lighting is discussed and presented. 
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Chapter 2 III-Nitride LEDs for Solid-State Lighting 

2.1 Device Physics of GaN Light-Emitting Diode 

LED is a semiconductor device in which the light emission originates from a very thin 

crystalline layer composed of semiconductor compounds, such as InGaN, AlGaN, AlInN 

when an electrical current is flowing through it. The thin active layer materials formed by 

InGaN material, which is sandwiched between the p-GaN and n-GaN, is called quantum 

well. The typical top-emitting LED device structure is shown in Figure 2-1. The n-GaN is 

grown on the sapphire substrate with buffer layer and followed by InGaN/GaN quantum 

wells and p-GaN growth. The metal contacts are deposited on the n-GaN and p-GaN by 

e-beam metal evaporation. When the p-n junction is connected to an electrical power 

source, current flows from the p side to the n side. The electrons are injected into the 

InGaN/GaN quantum well from n-GaN and holes are injected from the p-GaN. The 

electrons and holes are located in the different energy levels in the quantum well region 

separated by Eg. The energy is released in the form of a photon with the energy equivalent 

to the band gap energy when the electrons and holes meet and recombine subsequently. 

The color emitted by LED depends on the materials used to make the diode. The emission 

of color can be tuned by composition and thickness of quantum well [1].  

 

Figure 2-1. Schematics of conventional top-emitting LED device structure. 

n-GaN

InGaN/GaN QWs
p-GaN

Sapphire

ElectronHole



 

11 
 

 

 

 

 

 

 

 

Figure 2-2. Schematic diagram of a light-emitting diode [2].  

The light generated in the quantum well region escapes from the LED to the free 

space, which can be used for general illumination and display technology. The quantum 

efficiency of LED depends on the three factors [3]: 1) injection efficiency, which is defined 

as the ratio of current injected into the quantum well region to the current injected into the 

device; 2) radiative efficiency, which is defined as the ratio of radiative recombination rate 

to total recombination rate; 3) light extraction efficiency, which is defined as the ratio of 

light escaped from the device to light generated in quantum well region.   

The electrical efficiency of LED is defined as the ratio of energy of emitted photon to 

the applied voltage, which can be expressed as the following [4]: 

 
_ int

photon rad
wall plug el ext el extr inj extr inj

rad non

E

qV


        

 
         


  (2.1). 

The improvement in light extraction efficiency in LED devices is critical in determining 

power conversion efficiency. The progress in both injection and radiative efficiencies in 

LED technologies have been accomplished in the past 5 years, and the key limitation in 

achieving high extraction efficiency with cost-effective method remains important. 
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2.2 Low Light Extraction Efficiency 

2.2.1 Introduction and Possible Causes 

The III-Nitride materials have a considerable amount of device applications, such as 

solid-state lighting [5-12], thermoelectrics [13, 14], diode lasers [15, 16], transistors [17-

19], solar cells and solar hydrogen [20-22]. Among these applications, GaN-based light-

emitting diodes (LEDs) have been attracted tremendous attention due to various 

advantages over the conventional light sources. However, the quantum efficiency is still 

low and fabrication cost is high at current stage, which is hindering the widely adoption of 

LED. Thus, quantum efficiency of LED needs to be further improved for realizing the next 

generation high efficiency and high power LED devices. The internal quantum efficiency 

and light extraction efficiency are the two main factors that have great impact on the 

quantum efficiency [4]. The internal quantum efficiency has been increased to the limit by 

optimizing the active region and growth conditions in the past few years [23-29]. However, 

the light extraction efficiency of conventional LED is still low due to large refractive index 

contrast between GaN and free space as shown in Figure 2-3.  

 

 

Figure 2-3. The refractive index of GaN as a function of wavelength. 
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As shown in Figure 2-3, the refractive index of GaN is 2.5 in the visible region and the 

refractive index of free space is 1. Assuming that the angle of incidence in the 

semiconductor at the semiconductor-air interface is given by θs. Then angle of the 

refracted ray, θair, can be obtained by Snell’s law 

 s in s ins s a ir a irn n    (2.2). 

The critical angle of for total internal reflection is obtained by setting 90oair  . According 

to the Snell’ law, the critical angle can be expressed as 

 sin sin90oair air
c

s s

n n

n n
     (2.3), 

and 

 arcsin air
c

s

n

n
    (2.4). 

For the GaN-based LED, the critical angle can be determined as 23.5o. The light emitted 

into the light escape cone can partly escape from GaN, whereas light emitted outside the 

escape cone will be totally reflected back to LED devices. 

For the light emitted into the light escape cone, part of light can escape from the LED 

device to free space, and part of light will be reflected back to the device, which can be 

described by Fresnel reflection.  For s-polarized light, the reflection can be expressed as   
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  (2.5), 
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and for p-polarized light, it can be expressed as  
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  (2.6). 

For the case of light emitted from the GaN to free space, the reflectivity as a function of 

incidence angle is plotted in Figure 2-4 for TE (s-polarized) and TM (p-polarized) polarized 

lights. 

 

Figure 2-4. The reflectivity at GaN and free space interface for both TE 

polarized light and TM polarized light. 

The light extraction efficiency of LED is calculated as the ratio of light emitted into free 

space to the total light emitted by the quantum well, which can be expressed as 
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The light emitted from the conventional hetero structures is isotropic, thus the light 

extraction efficiency can be calculated as ratio of surface area of the spherical cone with 

radius of r to the surface areas of whole spheres. As shown in Figure 2-5, the surface area 

is expressed as  

  2

0
2 sin 2 1 cos

c

cA dA r rd r



    


       (2.8). 

Assume that light is emitted from a point source in LED with a total power of sourceP  . The 

power that can escaped from LED is given by  

  2

2

2 1 cos

4
c

escape source

r
P P

r

 



   (2.9), 

and the light extraction can be expressed as  

  1
1 cos

2
escape

extr c
source

P

P
      (2.10). 

 

 

Figure 2-5. (a) Definition of the escape cone. (b) Area element Da. (c) Area 

of calotte-shaped section of the sphere defined by radius and angle ϕc [30]. 

Due to the small critical angle for the high refractive index materials, the cosine term 

can be expanded into power series using Taylor’ expansion. By neglecting the higher 

order terms, the light extraction efficiency can be expressed as  
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  (2.11). 

For the GaN-based conventional top-emitting LED devices, only 4% of light generated in 

the quantum well region can be extracted out. Thus the light extraction efficiency needs 

to be improved. This limitation in extraction efficiency is critical in limiting the efficiency of 

the LED devices, and the use of microphotonics and nanophotonics structures are 

required to address the low extraction issue. Another important consideration for achieving 

high extraction method is related to the need for cost consideration in achieving improved 

structure.  

2.2.2 Approaches for Enhancing Light Extraction Efficiency 

Tremendous efforts have been devoted to improving the light extraction efficiency of 

GaN-based LED: 1) surface roughing [31-35], 2) sapphire microlenses [36], 3) oblique 

mesa sidewall [37], 4)  nanopyramid [38], 5) photonic crystals [39-43], 6) graded refractive 

index [44], 7) self-assembled lithography p-GaN patterning [45], 8) GaN micro-domes [46, 

47], and 9) TiO2 micro-pillars [48]. The surface roughening approach utilizes chemical 

etching, which causes non-uniform surface. The photonic crystals and sapphire microlens 

approaches require the use of e-beam lithography or holography lithography [36], which 

leads to more expensive and / or complex fabrication process. Therefore, other low-cost 

and large area scalable method is highly desirable for implementation for low-cost and 

practical LEDs technologies. 

2.2.3 Self-Assembly Colloidal Microlens Arrays to Improve Light Extraction 
Efficiency 

The rapid convective deposition method developed in our laboratory is self-assembly 

microsphere arrays under capillary force and electrostatic force [49-51]. The deposition of 

500-nm SiO2 microsphere arrays on the LED has been resulted in significant 
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enhancement in light extraction efficiency for GaN-based LED [52-54]. Further 

enhancement of light extraction efficiency was achieved by deposition of 1-μm SiO2/PS 

binary sphere arrays on the LED, followed by thermal annealing process to form microlens 

arrays with various aspect ratios [55]. The thickness of PS layer was tuned by adjusting 

the annealing time. The results show that the aspect ratio of microlens arrays have 

significant effect on the light extraction efficiency. The optimum light extraction efficiency 

of GaN-based LED has been achieved by tuning the thickness of PS layer. 

 

Figure 2-6. Schematic diagram of enhancement of light extraction efficiency 

of GaN-based LED with microlens arrays [54]. 

2.3 Challenges in Red Emitters  

Solid-state lighting sources based on the GaN-based white LED have advantages 

over conventional light sources, such as incandescent lamp, and fluorescence lamps due 

to the high efficiency. The white light emission requires three color emitters. High efficient 

orange and red LEDs can be obtained using AlGaInP materials and the blue/violet LED 

can be obtained using InGaN materials. The strong charge separation and poor material 

quality for red emitter InGaN LEDs result in challenges in achieving practical red emitters 

with the conventional InGaN QW technology. The difficulty in growing high quality InGaN 
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materials with high In-content results in additional limitation in achieving high performance 

red emitters. The integration of InGaN-based LEDs with red or yellow phosphors become 

critical for achieving practical white LED emitters. 
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Chapter 3 Light Extraction Efficiency of Top-Emitting Light-Emitting 

Diode 

3.1 Light Extraction of Light-Emitting Diodes 

The III-Nitride materials have a huge applications for addressing device technologies 

applicable in solid state lighting [1-4], thermoelectrics [5-10], diode lasers [11-14], and 

solar cells and solar hydrogen [15-17]. Among them, GaN-based light-emitting diodes 

(LEDs) have drawn tremendous attention in recent years for a variety of applications in 

flat-panel displays, mobile electronics, automobiles, traffic signals, large outdoor displays, 

and general lighting. However, for the next generation of applications of high-efficiency 

LEDs, further improvement of quantum efficiency of LEDs is required. The quantum 

efficiency depends on the internal quantum efficiency and light extraction efficiency [18]. 

The advances in active region optimization and growth methods have led to improvement 

in internal quantum efficiency in recent years [19, 20]. However, the light extraction 

efficiency of conventional LED is still low due to large refractive index contrast between 

GaN (~2.5 in the visible region) and free space. Therefore, various of methods have been 

employed to improve the light extraction efficiency of LEDs: 1) surface roughing [21-25], 

2) sapphire microlenses [26], 3) oblique mesa sidewall [27], 4)  nanopyramid [28], 5) 

photonic crystals [29-34], 6) graded refractive index [35], 7) self-assembled lithography p-

GaN patterning [36], 8) GaN micro-domes [37, 38], and 9) TiO2 micro-pillars [39]. The 

surface roughing approach utilizes chemical etching, which causes non-uniform surface. 

The photonic crystals and sapphire microlens approaches require the use of e-beam 

lithography or holography lithography [40], which lead to more expensive and complex 

fabrication process. Therefore, other low-cost and large area scalable method is highly 

desirable for implementation for cost-effective and practical LEDs technologies.  
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Previously, we have demonstrated the use of SiO2 microsphere arrays and SiO2 / PS 

microlens arrays, deposited via rapid convective deposition (RCD) method, leads to 

improvement in light extraction efficiency in III-Nitride LEDs [41-44]. The use of RCD 

method leads to the ability for deposition of large area (wafer scale) microspheres (and / 

or microlens) arrays structures on top of LEDs device structures [45-47]. Recently, this 

colloidal lithography method have been used as imprinting template for forming concave 

microstructure arrays for light extraction enhancement in GaN-based LEDs [42] and 

organic-based LEDs [48, 49]. The selection of SiO2 as the microspheres in our previous 

works had been primarily motivated from the ease in obtaining the silica-based spheres 

with wide range of dimensions commercially. However, the material choices (ie. refractive 

indices) and dimensions of the spheres are design parameters that need to be optimized 

for maximizing the light extraction efficiency from nitride-based LEDs. In addition, the 

selection of spheres with various refractive indices and dimensions will also affect the far-

field radiation pattern of the LEDs over wide angular distribution.  

 

Figure 3-1. Angular dependent reflectivity at the interface of GaN and free 

space, SiO2, amorphous TiO2 and anatase TiO2 for TE polarized light. 
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According to Snell’s law, the total internal reflection takes place when the light travels 

from high refractive index material to low refractive index materials. The critical angle 

decreases with the increase in the refractive index difference. Based on the equation(2.5), 

the reflectivity at the interface between the GaN and free space, SiO2, amorphous TiO2, 

and anatase TiO2 are plotted in Figure 3-1. The refractive index has significant effect on 

the reflectivity and higher refractive index material will decrease the reflectivity. Based on 

this consideration, in this work, we present the numerical simulation studies based on 

finite-difference time-domain (FDTD) method for analyzing the light extraction efficiency 

of III-Nitride LEDs employing microsphere arrays with various refractive indices and 

dimensions. Specifically, the light extraction characteristics of III-Nitride LEDs with 

anatase-TiO2 and amorphous-TiO2 microsphere arrays will be compared with those of III-

Nitride LEDs with SiO2 microsphere arrays. The refractive indices of anatase-TiO2 and 

amorphous-TiO2 microsphere arrays are higher than that of SiO2 microsphere, which will 

lead to the improved extraction characteristics for III-Nitride LEDs employing the TiO2 

microsphere arrays. The comparison of the light extraction efficiency enhancement for 

LEDs employing lower refractive index sphere SiO2, medium refractive index sphere 

amorphous-TiO2, and higher refractive index sphere anatase-TiO2 with various diameters 

will be presented. The current study will be limited to the optimization of the LEDs 

employing only the microsphere arrays, and note that the fabrication of the microlens 

arrays can be formed by embedding the microsphere arrays with polystyrene (PS) 

materials (ie. SiO2 / PS microlens arrays [38-41]). 

3.2 FDTD Calculation of Light Extraction Efficiency 

The InGaN/GaN multiple quantum wells (MQWs) LED device structure analyzed in 

this study is shown in Figure 3-2.  The n-GaN template was grown on sapphire substrate 

and followed by the growth of active region with total thickness of 12 nm. Then 0.1 μm p-
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doped GaN layer was grown on top. Afterwards, the hexagonal close-packed (HCP) 

microsphere arrays were deposited on top of LED by employing rapid convective 

deposition (RCD) method [38-42]. The deposition of the microspheres or nanospheres 

can be performed with high uniformity in close-packed 2-D hexagonal pattern, and the 

scanning electron microscopy of the 100-nm diameter nanosphere arrays are shown in 

Figure 3-2.  

 

Figure 3-2. Schematic side view of the simulated microsphere LED device, 

and the corresponding SEM images of 100-nm SiO2 sphere arrays. 

The LED devices were treated as 3-D structures solved by taking into consideration 

of appropriate boundary conditions for ensuring efficient computation time. The 3-D FDTD 

method requires a large amount of memory and computation time.  Therefore, the size of 

the simulation volume has to be reduced. Perfect matched layers boundary (PML) 

conditions were applied on the boundaries in order to avoid unnecessary reflection of light 

at the boundaries of domain as well as reduce the domain size. To reduce the size of the 

calculation, we have taken the simulation domain to be 5.5 μm x 5.5 μm. The thickness of 

n-GaN reduced to 0.1 μm and sapphire substrate was reduced to 0.2 μm. 

A single dipole source within a finite computational domain was chosen and 

positioned in the center of x-y plane and also in the center of the InGaN/GaN active layer 
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in the vertical direction. In addition, inhomogeneous mesh was used during the simulation; 

the grid size was 10 nm in the bulk and 2.4 nm in the interface. The refractive index of 

GaN and InGaN layer is set as 2.5 and 2.6, respectively. The absorption coefficient of 

InGaN was chosen to be 2000 cm-1 [15]. The emission wavelength used in all our 

computation is set as  = 500 nm. The light extraction efficiency was calculated as the 

ratio of the optical output power radiated through the microlens array to the total output 

power generated in the InGaN/GaN MQWs active region. The numerical simulation 

formulation of the light extraction efficiency were performed by calculating the ratio of the 

power collected by the detector placed above the devices to the total power generated 

from the dipole sources. 

3.3 Effect of Refractive Index on the Light Extraction Efficiency 

 

Figure 3-3. Ratio of light extraction efficiency of microsphere array LED with 

various refractive index to that of planar LED. 

To investigate the effect of the refractive index of microsphere arrays on the light 

extraction efficiency of III-nitride LEDs, light extraction efficiency of GaN LEDs with 

microsphere (dmicrosphere = 500 nm) arrays and planar LED were calculated for various 
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refractive indices. The ratios of the light extraction efficiencies of the LEDs with 

microsphere arrays to those of the planar LED are shown in Figure 3-3. Light extraction 

efficiency increases with the increase in refractive index of microsphere, and ~2.2 times 

enhancement is achieved when the refractive index of microsphere matched with that of 

GaN. 

The enhancement started to decrease with further increase in the refractive index of 

the microspheres, which is expected due to the increased light trapping in microspheres 

(for n > 2.5). To compare suitable microsphere materials applicable for the experiments, 

the following microspheres were investigated as follow 1) SiO2 (n~1.5), 2) amorphous TiO2 

(n~1.8), and 3) anatase TiO2 (n~2.5). The computational analysis indicated that the use 

of SiO2 microsphere arrays (dSiO2 = 500 nm) leads to an increase of 1.7-times in the light 

extraction efficiency of the devices, which is in good agreement with the experimental 

results (~1.69 times increase) [39] and the simulation results employing ray tracing method 

(1.75 times enhancement) [39]. Note that simulation results using FDTD method is much 

closer to the experimental results compared to that of using ray tracing method. By using 

amorphous and anatase TiO2 microsphere arrays, the light extraction efficiencies of the 

LEDs increase by1.91-times and 2.19-times over that of planar LEDs. As the microsphere 

refractive indices increase beyond n > 2.5, the light trapping in the microspheres leads to 

reduction in the light extraction to free space.  

The increase in the refractive indices of the microspheres up to n ~ 2.5 provides 

minimal Fresnel reflection between the GaN and spheres and results in light captured in 

the spheres, which will then extracted out efficiently by the increased escape cone from 

the strong curvature surfaces introduced by microsphere arrays.  
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Figure 3-4. Ratio of light extraction efficiency of LED with 500-nm planar 

SiO2 layer to that of planar LED. 

As an comparison, anti-reflection layer was deposited on the GaN LED to reduce the 

Fresnel reflection [50]. The ratio of light extraction efficiency of LED with planar SiO2 anti-

reflection layer to that of planar LED was plotted in Figure 3-4. The planar SiO2 layer 

deposited on the LEDs as antireflection coatings reduces the Fresnel reflection and 

increases the light extraction efficiency. Maximum enhancement of 1.2 times is achieved 

for LED with planar SiO2 layer, which is much lower than that of LED with SiO2 spheres 

(1.7 times). Following the Snell’s law, the critical angles are 23.5o, 36.9o, and 41.8o for the 

light emission from GaN to free space, from GaN to SiO2 film, and from the SiO2 film to 

free space, respectively. However, the overall critical angle for the light emission from GaN 

to air is 23.5o, the same as that without SiO2 film. The role of the microsphere or 

nanosphere arrays is to provide strong scattering centers to extract light out beyond the 

critical angle, which in turn results in the increase in light extraction efficiency for the 

microsphere LEDs over LEDs with only planar SiO2 anti-reflecting film. 
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Figure 3-5. Contour plot of far-field radiation patterns of (a) planar LED, (b) 

LED with SiO2 microsphere arrays, (c) LED with amorphous TiO2 

microsphere arrays, and (d) LED with anatase TiO2 microsphere arrays, (e) 

LED with 500-nm planar SiO2 layer, and (f) LED with 500-nm planar 

amorphous TiO2 layers. 

To investigate the effect of microsphere arrays on the light emission, the far-field 

radiation patterns were calculated for the LED with 500-nm SiO2 sphere arrays [Figure 3-5 

(b)], LED with 500-nm amorphous TiO2 sphere arrays [Figure 3-5 (c)], LED with 500-nm 

anatase TiO2 sphere arrays [Figure 3-5(d)]. The far-field emission patterns of planar LED 

[Figure 3-5 (a)], LED with 500-nm planar SiO2 layer [Figure 3-5(e)], and LED with 500-nm 

planar amorphous TiO2 layer [Figure 3-5(f)] were also calculated as comparison. The far-

field radiation pattern for planar LEDs, as expected, exhibited Lambertian radiation pattern 

with only angular () dependent, while the symmetrically azimuthal () distribution. The 

light emission intensity is weak in both normal direction and large angular directions, which 

results in the low light extraction efficiency. The intensity slightly increases for the LED 
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deposited with 500-nm planar SiO2 layer and 500-nm planar amorphous TiO2 layer, which 

leads to slightly increase in light extraction efficiency. Note that the far-field radiation 

patterns still shows perfect circular shape, which is same as that of planar LED. As 

expected, significant increase in light emission is observed for the LED with microsphere 

arrays [see Figure 3-5 (b), (c) and (d)] and the far-field radiation patterns exhibit both 

angular () and azimuthal () dependent. The significantly higher intensity in both the 

normal and large angular distribution result in improved light extraction efficiency for these 

LEDs. Note that the comparison of the light extraction efficiency ratio for the microsphere 

LEDs and planar LEDs were carried out by taking the total output power integrated in all 

angular () and azimuthal () directions. 

To provide a quantitative comparison, the far-field radiation patterns for these LEDs 

are plotted at a particular azimuthal direction of  = 0 [as shown in Figure 3-6(a)]. The 

angular dependent (in  direction) power density comparison data for microsphere LEDs 

and planar LED are also plotted for comparison purpose [as shown in Figure 3-6(b)]. The 

microsphere array LEDs exhibit significant increase in the far-field emission for all angular 

directions. More importantly, the contribution of the large angular  component in the far-

field radiation pattern is significantly increased for anatase TiO2 microsphere arrays LEDs, 

which results in increase in power density extracted from this microsphere LEDs.  

Note that the choice of the refractive indices of the materials (SiO2, amorphous TiO2, 

and anatase TiO2) strongly affects the radiation pattern, extraction efficiency, and power 

density profile at large angular direction. The studies presented in Figure 3-5 and Figure 

3-6 assume identical diameters for all the microspheres investigated. However, both the 

refractive indices and diameters of the spheres are important as optimization parameters 

in LEDs extraction. 
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Figure 3-6. (a) Polar plot of far-field intensities of microsphere LEDs with 

various refractive indices, and (b) angular dependent power density of 

microsphere array LED with various refractive indices. 
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3.4 Effect of Sphere Diameters on the Light Extraction Efficiency 

In order to further optimize the light extraction efficiency of LEDs with microsphere 

arrays, the effect of diameter of spheres on the light extraction efficiency of microsphere 

LEDs was also investigated [as shown in Figure 3-7(a), (b), and (c)]. Figure 3-7(a) shows 

the light extraction efficiency enhancement of LEDs with SiO2 (n~1.5) microsphere arrays 

as a function of diameters of spheres at  = 500 nm. All the three microsphere LEDs 

exhibited strong dependency on the diameter of the microsphere arrays employed in the 

structures. The optimum dimensions for each types of sphere materials occur at different 

dimensions resulting in maximum allowed extraction enhancement in the microsphere 

LEDs. The comparison of the light extraction efficiencies for microsphere LEDs were 

carried out with that of planar LEDs serving as reference LEDs. 

For the case of SiO2-based microsphere LEDs, the maximum extraction 

enhancement of 1.85 times is expected for diameter of ~ 1 m. Large range of SiO2 

microsphere diameter exists for enhancement in extraction  efficiency by ~ 1.6 times of 

higher. Specifically, the diameters in the range of 0.4 m up to 1.2 m are expected to 

result in relatively favorable increase in light extraction in LEDs.  

For the case of amorphous TiO2 microsphere LEDs, the increase up to 2.1 times is 

observed for LEDs using optimum diameter d ~ 0.8m. The use of amorphous TiO2 

microspheres with diameters ranging from 0.4 m up to 0.9 m is expected to result in 

increased extraction efficiency by 1.9 times or higher. By using the anatase TiO2 

microsphere arrays, the optimum diameter for this structure was obtained as d ~ 0.4 m. 

The use of this optimum anatase TiO2 microsphere arrays with d ~ 0.4 m results in 2.4 

times increase in light extraction efficiency over that of planar LEDs.  
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Figure 3-7. Ratio of the light extraction efficiency of microsphere LEDs with 

various diameters to that of planar LED: (a) LEDs with SiO2 microsphere 

arrays; (b) LEDs with amorphous TiO2 microsphere arrays and (c) LEDs 

with anatase TiO2 microsphere arrays. 

From our finding, the optimum diameter range for high extraction efficiency for each 

type of microsphere arrays reduces, as the refractive indices increas to n ~ 2.5 (nGaN). 

However, the maximum light extraction enhancement for the LEDs can be obtained from 

the microspheres with the refractive index closest to n ~ 2.5 (anatase TiO2).  

To further investigate the effect of sphere diameter on the device performance, the 

far-field radiation patterns were calculated. Figure 3-8 shows the far-field radiation 

patterns of LED with SiO2 sphere arrays with various sphere diameters. The far-field 

radiation pattern of planar led is plotted in the same figure as comparison. For the planar 
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LED, the far-field radiation pattern shows perfect circular symmetry due to the large 

refractive index contrast between the GaN and free space which leads to the Lambertian 

like radiation pattern. The light escape is very small, and only a small amount of light can 

be extracted out from the LED.  

        

            

             

Figure 3-8. Far-field radiation pattern of LED with SiO2 sphere arrays with 

diameter of (a) 0 nm, (b) 100 nm,(c) 400 nm, (d) 500 nm, (e) 750 nm, (f) 

1μm, (g) 1.2 μm and (f) 1.5 μm. 

When microsphere arrays are deposited on the top of LED, the scattered radiation 

pattern are seen and light emission spread over the entire surface. Note that the far-field 

radiation pattern strongly depends on the diameter of spheres. The far-field radiation 

pattern of LED with 100-nm sphere arrays is very similar with that of planar LED, which 
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results in the slightly enhancement in light extraction efficiency. The light emission in the 

large angular direction starts to increase when the sphere diameter increases to 250 nm, 

and further enhancement is achieved at sphere diameter of 400 nm. The dramatic 

increase in the light emission is observed at normal direction when sphere diameter 

increases to 500 nm and it keeps increasing with the increase in the sphere diameter. 

 

Figure 3-9. (a) Far-field radiation patterns of SiO2 microsphere array LEDs 

with various SiO2 sphere diameters. (b) Angular dependent power density 

comparison of SiO2 microsphere array LEDs. The planar LED is included 

as reference. 
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Figure 3-10. (a) Far-field radiation patterns of anatase TiO2 microsphere 

array LEDs with various sphere diameters. (b) Angular dependent power 

density comparison of anatase TiO2 microsphere array LEDs. The planar 

LED was included as reference. 

The comparison of the far-field radiation patterns of the SiO2 and anatase TiO2 (as 

optimized material) microsphere arrays for various diameters are shown in Figure 3-9 and 
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Figure 3-10. The comparison of the far-field radiation patterns for both SiO2 [Figure 3-9(a)] 

and TiO2 [Figure 3-10(a)] microspheres were taken with azimuthal  = 0 direction, in order 

to provide quantitative comparison between the two materials with various diameters. The 

comparison of the angular power density distributions for both SiO2 and TiO2 microsphere 

LEDs for various diameters are also shown in figures Figure 3-9(b) and Figure 3-10(b), 

respectively (with azimuthal  = 0 direction).  

In the case of SiO2 microsphere array LEDs [Figure 3-9(a) and (b)], the microsphere 

diameters were varied from 0.1 m, 0.4 m, 0.5 m, 0.75 m and 1 m. The use of small 

SiO2 microsphere (dSiO2 < 0.1 m) leads to an increased in light extraction at large angular 

component, while LEDs with larger sphere arrays (dSiO2 > 0.5 m) results in significant 

increase in the output power in the normal direction. The large contribution of diffuse light 

output power can be attributed from the increased photon escape cone in the structure.  

In the analysis of the anatase-TiO2 microsphere array LEDs [Figure 3-10(a) and (b)], 

the diameters were varied from 0.25 m, 0.4 m, and 0.75 m. As shown in Figure 3-10(b), 

the far-field radiation patterns for the anatase TiO2 microsphere array LEDs were strongly 

enhanced in comparison to that of planar LEDs. Similar to the SiO2 microsphere LEDs, 

the use of smaller anatase TiO2 spheres resulted in strong enhancement in the large 

angular emission. In contrast, the dominant component leading to enhancement in 

extraction efficiency for larger anatase TiO2 spheres can be attributed to the stronger 

normal light emission. 

In summary, the effects of refractive indices, material choices, and sphere diameters 

were investigated for optimizing the far-field radiation patterns and light extraction 

efficiency in III-Nitride based LEDs with microsphere arrays. The analysis was carried out 

by using 3-D vectorial FDTD with PML boundary condition. The results show that the use 
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of microsphere arrays with high refractive index as favorably for achieving maximum light 

extraction efficiency in microsphere array LEDs. Specifically, the use of anatase TiO2 

microsphere arrays is expected to result in more than 2.4 times increase in light extraction 

efficiency over that of planar LEDs. The optimum diameters of the spheres are found to 

strongly affect the radiation patterns and light extraction efficiency in microsphere LEDs. 

The use of smaller spheres results in significant enhancement in light extraction at large 

angular component, while the larger sphere appears to result in stronger enhancement in 

normal light emission. The current work is limited to the optimization of LEDs with 

microsphere arrays, and this finding will serve as useful guide for optimizing the light 

extraction in microsphere array LEDs deposited by RCD method. Future works will also 

include the optimization of the microlens array LEDs, which can be formed by embedding 

the microsphere arrays in polystyrene (PS) materials (ie. SiO2 / PS microlens arrays).  
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Chapter 4 Rapid Convective Deposition of Microsphere Arrays  

4.1 Introduction to Rapid Convective Deposition Method 

Rapid convective deposition (see Figure 4-1), uses the horizontal deposition of a 

microliter droplet where a concentrated suspension is injected between the deposition 

blade and substrate. The small droplet of suspension is held by the capillary force between 

the blade and substrate. The substrate is then translated by linear motor. As the substrate 

is pulled away from the bulk suspension. The meniscus stretches out and sweeps across 

the substrate. The thickness of the meniscus gradually decreases from the bulk to the 

contact line where crystallization occurs.  

 

Figure 4-1. The schematic of rapid convective deposition process. 

The 2D particle arrays were formed under the tradeoff between electrostatic and 

capillary forces [1-4]. The lateral capillary forces are capable of gathering particles into 

layered arrays [5-7]. When the spheres are partially immersed in a liquid on horizontal 

solid substrate, the meniscus are formed due to the deformations of liquid-gas interface 

(see Figure 4-2). The shape of meniscus depends on the distance between the particles 

S1+S2, the thickness of liquid 0l and the contact angle . This leads to the strong and 

long-range interparticle capillary forces [3, 8, 9].  
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Figure 4-2. Schematics of two spheres partially immersed in a liquid layer 

a horizontal substrate. [9]  

The inclination of the three-phase contact lines at the particle surface leads to two 

capillary effects: 1) pressure effect, which is caused by the higher hydrostatic pressure in 

the gas phase than the pressure in the liquid, this pressure difference contributes to the 

attraction of particles; 2) surface force effect: the slope of liquid surface varies along the 

contact line. The surface tension effect is much larger than then pressure effect for the 

micrometer-size and smaller particles [3, 8]. The capillary can be expressed as[5]  

   2 2 12 s inc cF r L    (4.1) 

Where δ is the surface tension of the liquid, cr  is the radius of three-phase contact 

line at the particle surface, c  is the mean meniscus slope angle at the contact line. From 

equation(4.1), liquid deformation increases with the decrease in thickness of film, which 

results in stronger inter-particle attraction.  

The particles most possibly self-assemble into a hexagonal close-packed structure at 

the “crystal front” a result of large capillary force generated when the particles confined in 

the thin film near where the three phase of the air/liquid/substrate meet. The horizontal 
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component of the capillary forces results in the directional motion of particles towards the 

order arrays. The directional particle motion is attributed to the convective water flux which 

carriers along the particles toward the ordered phase. The convective transport of the 

particles can be speed up or slowed down by the increasing or decreasing the water 

evaporation rate. The level of water between the particles decreases with the increase in 

the water evaporation, which leads to increase in the curvature of the menisci. This 

increases the local sucking capillary pressure and drives the water influx to the ordered 

arrays. In the opposite, when water evaporation rate decreases due to high humidity of 

atmosphere, the pressure decreases, which results in the decrease in the particle 

convective influx. Further increase in the humidity will lead to complete stopping of the 

process of ordering and even to disintegration of the ordered arrays and restoration of the 

chaotic particle motion.  

Thus, the following ways are able to control the ordering process: 1) control of the 

speed of convective flow by adjusting the rate of water evaporation. This can be realized 

by tuning the temperature and humidity of atmosphere; 2) control of profile of the liquid 

meniscus around the ordered arrays. This can be realized by adjust the suspension 

concentration. 

Controlling the relative position of array’s leading edge is the key in producing large-

sized, homogenous particle arrays. Control of the acceleration or deceleration of the array 

production by changing environmental conditions, such as humidity, temperature, and 

particle volume fraction [10]. 

The homogenous formation of a monolayer or multilayer was successfully maintained 

by carefully withdrawing the substrate together with the already formed particle arrays 

from the suspension. The centimeter-sized monolayer particle arrays was obtained [10]. 
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Convective transfer of particles from the bulk of the suspension to the thin wetting film 

due to water evaporation from the film surface and interactions between the particles that 

lead to the specific textures [10]. The primary driving force for the convective transfer of 

particles is the water evaporation from the freshly formed particle arrays. 

 
(1 )(1 )
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  (4.2) 

 where vw is the substrate withdraw speed; vc  is the film growth speed; h is the height  

of the film; β is the interaction between the particle-particle and particle-substrate and 

should vary from 0 to 1. The stronger the interaction, the smaller the value of β. For 

nonadsorbing particles and dilute suspensions, β approaches 1. Therefore, we set β as 1; 

je is the water evaporation rate and it depends on the temperature and humidity; φ is the 

volume fraction of the particles; ϵ is the packing density of particles, which is 0.605 for the 

hexagonal-close-packed monolayer arrays and 0.52 for square closed packed monolayer 

arrays. 

For the monolayer crystal growth, the contact line is assumed to be the crystal front. 

If the height of meniscus at the crystal front is less than the particle diameter, then the 

incoming particle will not form a close-packed structure. On the contrary, if the height of 

crystal is higher than the particle diameter, then the multilayer crystals are formed. 

The interactions between particles confined in the thin films can be attributed to 

electrostatic and lateral capillary forces. 

4.1.1 Optimization Parameters to Deposit Microsphere Arrays 

According to equation(4.2), the growth rate of microsphere arrays depends on the 

particle volume fraction, φ, water evaporation rate, je, diameter of particles, thickness of 

layers, and an experimentally determined constant, the product βl. 
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Deposition Speed  

The substrate moving speed has significant effect on the microsphere quality: 1) the 

multilayer sphere arrays will be formed if the substrate moving speed is lower than the film 

growth speed; 2) the monolayer sphere arrays will be formed if the substrate moving speed 

is equal to the film growth speed; 3) the submonolayer sphere arrays will be formed if the 

substrate moving speed is higher than the film growth speed. 

Suspension Concentration  

In order to deposit homogenous sphere arrays, the suspension concentration is an 

important parameter needed to be optimized. Our experiment results (see Figure 4-3) 

showed that optimized suspension concentration is different for different diameter of 

spheres. Suspension concentration increased with sphere diameters.  

 

Figure 4-3. Deposition speed and suspension concentration as a function 

of sphere diameters for forming hexagonal closed monolayer sphere arrays. 
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Figure 4-3 shows the deposition speed and suspension concentration as a function 

of sphere diameter for the monolayer sphere arrays deposition. Forming monolayer 

sphere arrays for the bigger sphere requires lower deposition speed and high volume 

fraction of suspension. 

4.1.2 Comparison of RCD Method and Spin-Coating Method 

            

Figure 4-4. Comparison between rapid convective deposition method (left) 

and spin-coating method (right). 

Spin coating is another method which is used to self-assemble sphere arrays. The 

comparison of RCD method and spin-coating method is shown in Figure 4-4 (a) and (b). 

The deposition speed is constant across the whole substrate for the RCD method. 

However, for the case of spin-coating method, the deposition speed can be expressed as  

 v r   (4.3) 

Thus the deposition speed is radius dependent, which leads to: 1) multi-layer sphere 

array deposition in the center region of wafer due to lower deposition speed; 2) monolayer 

sphere deposition in an mm x mm region of wafer [see Figure 4-4 (b)]; 3) sub-monolayer 

sphere array deposition at the edge of the wafer resulted from the high deposition speed. 

The large-area sphere coverage cannot be obtained due to the non-homogenous speed 

across the whole wafer [11].  
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4.2 RCD Deposition of Microsphere Arrays 

4.2.1 Suspension preparation: 

The colloidal suspensions used in this work were purchased from the Polysciences 

Incorporation. The silica spheres are dispersed in deionized (DI) water. The concentration 

of silica spheres in suspension was tuned by adjusting the ratio of silica spheres to the DI 

water. The suspension is dispersed using an ultrasonic machine (fisher scientific) and 

stirred for 10 min using standard vortex mixer (fisher scientific).  

4.2.2 Substrate preparation: 

Plain microscope slides with dimension of 25 mm x 75 mm x 1.0 mm from Fisher 

Scientific are used as the deposition blade and substrate. All the glass slides are immersed 

in a piranha solution with 5:1 of sulfuric acid to hydrogen peroxide overnight and then 

rinsed with DI water. After that, they are immersed in DI water. The back and bottom of 

glass deposition blade were added with a thin coating parafilm from fisher scientific to 

make them hydrophobic. The angle between the blade and substrate keeps as 45o. The 

7 μL droplet was add between the blade and substrate. 

4.2.3 Deposition: 

The experimental setup is shown in Figure 4-1. The deposition was carried out at 

room temperature. The deposition blade was placed 10 μm above the substrate. 1μm 

suspension was injected between and bladed and substrate. The microsphere arrays were 

formed as the substrate was pulled away by the linear motor. 
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Figure 4-5. SEM images of hexagonal sphere arrays deposited by rapid 

convective deposition method 

The comprehensive studies were carried out to investigate the deposition conditions 

of monolayer sphere arrays for SiO2 sphere with various diameters. The concentration of 

suspension and deposition speed were tuned while the blade angle, temperature and 

humidity keep constant. We found that the monolayer sphere arrays can only be formed 

at specific volume fraction and deposition speed for a specific diameter of spheres. The 

deposition condition for 100-nm sphere arrays are volume fraction of 5% and deposition 

speed of 116μm/s. The deposition conditions for 250-nm sphere arrays are volume 

fraction of 7.5% and deposition speed of 100μm/s. The deposition conditions for 400-nm 

sphere arrays are volume fraction of 11% and deposition speed of 87μm/s. The deposition 

conditions of 1-μm microsphere arrays are volume fraction of 14% and deposition speed 

of 53 μm/s. 
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4.3 RCD Deposition of Binary Microsphere Arrays 

For the deposition of SiO2/PS sphere arrays, the SiO2 and PS spheres were mixed in 

DI water and SiO2/PS suspension was formed.  7μL suspension was injected between the 

substrate and plain glass slides forming a wedge with the substrate at the angle of 45o or 

55o and then the blade swept across the substrate at a certain speed to achieve monolayer 

deposition. 

 

Figure 4-6. SEM images of hexagonal close-packed binary sphere arrays:1) 

500-nm SiO2/75-nm PS binary sphere arrays, 2) 1-μm SiO2/75-nm PS 

binary sphere arrays. 

Comprehensive study was carried out to investigate the deposition conditions of 

monolayer binary sphere arrays for sphere with various diameters. We found that in 

addition to the atmosphere temperature, humidity, deposition speed and concentration of 

SiO2 spheres, the ratio of SiO2 concentration to PS concentration, and the ratio of the SiO2 

diameter to PS diameter have significant effect on the formation of hexagonal close 

packed sphere arrays. 

We investigated the deposition conditions of 1-μm SiO2 and 500-nm SiO2/ PS binary 

sphere arrays. For the 1-μm SiO2 spheres, to form hexagonal close packed monolayer 

sphere arrays, the ratio of SiO2 to PS should be 14% to 4%, and the deposition speed is 

47μm/s with the blade angle of 55o. For the 500-μm SiO2 spheres, the optimized conditions 

are deposition speed of 65μm, blade angle of 45o and SiO2/PS ratio of 14%/4%. The SEM 
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images of hexagonal close packed monolayer of 500-nm sphere arrays and -μm sphere 

arrays embedded in the PS are shown in Figure 4-6. 

The deposition for 400-nm/75 nm PS binary sphere arrays requires more optimization 

due to the smaller SiO2 / PS diameter ratios (400 nm versus 75 nm) and larger variation 

in SiO2 diameter distribution. The optimized deposition conditions are volume fraction of 

8.8% for 400-nm SiO2 spheres and volume fraction of 3.5% for 75-nm PS spheres. 

The microlens arrays were obtained by heat treatment of SiO2/PS binary sphere 

arrays which resulted in the hexagonal-close packed monolayer SiO2 sphere arrays 

embedded in the planar PS layer (see Figure 4-7 ). The PS thickness was tuned by 

adjusting the annealing time at annealing temperature of 140oC, which resulted in the 

microlens arrays with various aspect ratio. 

 

Figure 4-7. The SEM images of 400-nm SiO2/75-nm PS binary sphere 

arrays and the 400-nm SiO2/PS microlens arrays. 

4.4 Light Extraction Efficiency Enhancement of LED with Microsphere and 

Microlens Arrays [12-16] 

The enhancement of light extraction efficiency of InGaN quantum wells LEDs 

employing SiO2/PS microlens arrays deposited by RCD method was demonstrated 
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experimentally [12]. The use of microlens arrays on the top of InGaN quantum well LED 

increased the light escape cone and reduced the Fresnel reflection. 

The schematic device structure of InGaN quantum well LED is shown in Figure 4-8. 

The 1-m SiO2/PS microsphere arrays were deposited on the top of InGaN QW LED 

structure [12]. The refractive index of GaN in the visible region is 2.5, while the refractive 

indices of SiO2 and PS are 1.46 and 1.58, respectively. The SiO2 spheres are embedded 

in the planar PS layer, which forms close-packed microlens arrays. The utilization of these 

lens arrays increases the light escape cone due to the curvature formed between the SiO2 

and free space. 

 

Figure 4-8. Schematic of InGaN QWs LEDs structure with SiO2/PS 

microsphere or microlens arrays [12]. 

Electroluminescence measurement shows that the use of microlens arrays has 

resulted in increased light output from the top of LED as shown in Figure 4-9. The output 

power as a function of driving current for up to 100 mA for both LED with and without 

microlens arrays was measured. The results show that output power of LED with 

microlens arrays is 219% higher than that of planar LED. The significant enhancement in 

the light extraction efficiency is attributed to the enlarged escape cone. In addition, the use 

of intermediate refractive index materials, SiO2 and PS reduces the Fresnel reflection 

between GaN and free space. 
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Figure 4-9. Electroluminescence of InGaN LED with and without SiO2/PS 

microlens arrays [12]. 

  

Figure 4-10. (Left) Photoluminescence intensity of LED with and without 

1.0m SiO2/PS microlens arrays. (Right) Photoluminescence intensity of 

LED with and without 0.5 m SiO2/PS microlens arrays.[12] 

To further enhance the light extraction efficiency of InGaN QW LED. The device 

structure of LED with SiO2/PS microsphere/microlens arrays was engineered by tuning 

diameter of SiO2 spheres [13]. The results shows that the size of SiO2 spheres has 

significant effect on the light extraction. The deposition of 0.5-m sphere arrays on the 

LED results in 1.69 times enhancement in light extraction efficiency while the use of 1m 
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sphere arrays leads to 2.00 times enhancement in output power compared to that of planar 

LED [13]. 

The effect of aspect ratio of microlens on the light extraction efficiency of LED with 

1m SiO2/PS microlens arrays was also investigated [17]. 

 

Figure 4-11.  SEM images of 1.0-m SiO2/PS microlens arrays LEDs with 

PS thickness of (a) 650 nm, (b) 350 nm, (c) 250 nm, (d) 0 nm. [17] 

The deposition of SiO2/PS microlens arrays were carried out on GaN-based top-

emitting LED device by using RCD method. The obtained the SiO2/PS binary sphere 

arrays was annealed at 140oC to melt the PS nanospheres. This leads to forming a planar 

PS layer surrounding the SiO2 microspheres. The thickness of PS is tuned by adjusting 

the annealing time. The SiO2/PS microlens arrays with various aspect ratio are obtained 

by tuning the annealing time. 
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The effect of aspect ratio of microlens on the light extraction was investigated by 

measuring the electroluminescence of microlens LED with various aspect ratio which is 

compared to that of planar LED.  

 

Figure 4-12. Electroluminescence spectra of InGaN quantum well microlens 

arrays LED with various PS thickness and planar LED for normal at angle 

of 0o. [17] 

Figure 4-12 is the EL spectra at normal direction of LED with microlens arrays and 

planar LED at current density of 80 A/cm2. 2.40, 2.60, 2.03, and 1.96 times enhancement 

in output power has been achieved for microlens LED with PS thickness of 0 nm, 250 nm, 

650 nm, and 810 nm.  

To investigate the effect of microlens aspect ratio on the output power, the output 

power was plotted as a function of PS thickness. Figure 4-13 shows the total output power 

versus PS thickness of SiO2/PS microlens arrays LED at current density of 80mA/cm2.  

The implementation of the optimized PS layer thickness in the SiO2/PS microlens arrays 

leads to enhancement in the output power. The controllability of PS thickness is critical in 

the extracting the light from the LED devices. 
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Figure 4-13. Total output power as a function of PS thickness of LED with 

SiO2/PS microlens arrays. [17] 

 

4.5 Light Extraction Efficiency of LED with Concave Structures[18] 

The enhancement in light extraction of GaN LED using polydimethylsiloxane (PDMS) 

concave microstructures arrays was also demonstrated. 

The process flow of forming PDMS concave structures is shown in Figure 4-14. The 

SiO2/PS microlens arrays deposited via RCD method was employed as template for 

forming concave structures on PDMS via soft-lithography. The PDMS was deposited on 

the top of LED. The PDMS-coated LED wafer was then imprinted by the monolayer SiO2 

microsphere arrays template. The PDMS-coated wafer was heated to a temperature of 

80oC for 45 minutes to cure the PDMS layer. 

The electroluminescence measurements were conducted for the LED with and 

without PDMS concave microstructure arrays.  The output power of InGaN MQWs LED, 

with the inject current density ranging from 0 to 80 A/cm2 are shown in Figure 4-15. The 

results show that 1.60 times enhancement in the output power has been achieved for LED 

with concave structures compared to that of planar LED. 
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Figure 4-14. Process flow of depositing PDMS concave microstructures 

arrays on InGaN QWs LEDs.[18] 

 

Figure 4-15. Comparison of electroluminescence intensity of InGaN QW 

LEDs with and without 3.0 m thick PDMS layer. [18]
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4.6 Implementation of Self-Assembled Microlens Arrays on Organic Light-

Emitting Diode [19-21] 

The microsphere arrays deposited via RCD method was also used as imprinting 

template to form corrugated structures on the organic light-emitting diodes (OLEDs) to 

extract waveguide modes [19, 22]. 

 

Figure 4-16. Current efficiency and power efficiency for 1.0 m grating (filled 

symbols) and reference (open symbols) devices. [20] 

The SiO2 sphere arrays were fabricated by depositing SiO2 spheres and 100-nm PS 

spheres on glass substrate by RCD method. After deposition, the sample was heated at 

140oC to melt the PS spheres, and the microlens arrays was formed. The obtained 

microlens arrays were used as template on which the PDMS was deposited and cured to 

form the PDMS replica. To fabricate the resin coated substrates, a drop of resin was 

placed on the resin-coated substrates. Then the silica sphere array patterns of PDMS 

replica were transferred to UV-curable resin layer.  

The use of 0.5 m grating (Figure 4-16) and 1.0 m grating resulted in 70% and 90% 

enhancement in power efficiency.  
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In summary, the comprehensive study were carried out to investigate deposition of 

microsphere or microlens arrays by using rapid convective deposition method. The results 

showed that monolayer, submonolayer, and multilayer sphere arrays can be obtained by 

tuning deposition speed, suspension concentration, temperature, humidity, and blade 

angle. The rapid deposition method can be used to deposit microsphere arrays with 

various diameters and refractive indices. The use of microsphere or microlens arrays 

resulted in significant enhancement in light extraction for both GaN-based LED and 

organic LED. 
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Chapter 5 Light Extraction Efficiency of GaN LED with TiO2 Sphere 

Arrays 

5.1 Importance of TiO2 Microsphere Arrays for GaN LEDs  

Our previous works showed that the deposition of hexagonal-close packed 500-nm 

or 1-μm SiO2 microsphere or SiO2/PS microlens arrays on GaN-based LED devices by 

rapid convective deposition (RCD) method has resulted in significant enhancement in light 

extraction efficiency of GaN-based LED devices [1-4]. Recent calculation results by 

employing finite-different time-domain (FDTD) method  demonstrated that the advantages 

of using Anatase TiO2 sphere arrays over SiO2 sphere arrays to extract light from GaN-

based LED devices [5, 6]. The RCD method is a robust method which can be used to 

deposit wafer-scale microsphere arrays with various packing density (sub monolayer, 

monolayer, and multilayer) and geometry (hexagonal-closed packed sphere arrays and 

square-close packed sphere arrays) [7, 8]. RCD method could easily lead to highly uniform 

monolayer deposition in wafer scales compared with other deposition methods, such as 

spin coating which results in uniformity within relatively small region (mm x mm) scale [9, 

10].  

Here, we present detailed experimental studies on the use of self-assembled 2-D 

anatase TiO2 monolayer microsphere arrays to improve the light extraction efficiency of 

InGaN QW LEDs (see Figure 5-1). The refractive index of anatase TiO2 in the visible 

spectrum range is 2.5 [11], thus the implementation of anatase TiO2 microsphere arrays 

provides higher refractive index that can match with that of GaN. This results in larger light 

coupling from GaN to the TiO2 microsphere arrays and improves LED light extraction 

efficiency compared with those of LEDs with SiO2 microsphere arrays [5, 6]. Note that the 

current work focuses on the deposition studies of 2-D TiO2 microsphere arrays on GaN 

LEDs, without the PS layers required to form the microlens arrays. 
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Figure 5-1. Schematic of InGaN QWs LEDs utilizing TiO2 microsphere 

arrays on the top surface of LEDs. 

5.2 Deposition of Microsphere Arrays on GaN LED 

To obtain long-range and close-packed TiO2 microsphere arrays, the rapid convective 

deposition (RCD) method was used for the deposition of TiO2 microsphere arrays. Figure 

5-2 shows schematic of experimental setup of RCD for the deposition of anatase TiO2 

microsphere arrays. Similarly, the RCD was also performed in the class-1000 clean room 

and the standard optical lithography was used to cover the n- and p-metal contacts of the 

LEDs by photoresist for lifting off TiO2 microspheres afterwards. Prior to deposition, the 

TiO2 microsphere water suspension was immersed in the ultrasonic bath for 1 hour and 

then were thoroughly shaken by the vortex for 1 minute. Previously, the RCD method was 

employed for the deposition of SiO2 / PS microlens arrays, and hence the experimental 

setup of RCD for the TiO2 microspheres is similar to that for the SiO2 / PS microlens arrays. 

However, the deposition of the TiO2 microsphere arrays was found to require more 

optimization than that of the SiO2 / PS microlens arrays, which was attributed to the less 

mature synthesis process of TiO2 microspheres, as compared to that of SiO2 microspheres, 

leading to relatively poor monodispersity of the size of TiO2 microspheres. The 

monodispersity of the microspheres is critical to achieve fully close-packed and defect-

free microsphere arrays in our experiments, therefore the future development of TiO2 
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microsphere synthesis can reduce difficulty in depositing TiO2 microsphere arrays by RCD 

method. 

 

Figure 5-2. Schematic of the experimental setup of rapid convective 

deposition method for the deposition of TiO2 microsphere arrays on InGaN 

QW LEDs. 

As the synthesis of TiO2 microspheres is less mature, the crystalline phase and the 

refractive index of the TiO2 microspheres used in the RCD deposition were characterized 

by Raman spectroscopy measurement at room temperature. The details of the Raman 

spectroscopy measurement can be found in reference [11]. As shown in Figure 5-3, the 

TiO2 microspheres shows strong Raman bands at 150 cm-1, 400 cm-1, 515 cm-1, and 634 

cm-1, indicating TiO2 microspheres consisted of crystals of anatase TiO2 with index of 2.5 

that matches with that of GaN [12]. 

 

Figure 5-3. Raman spectrum (532 nm) of TiO2 microsphere used in the 

RCD. 
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The surface morphologies of deposited TiO2 microsphere arrays by RCD method are 

affected by the deposition temperature, humidity, and blade hydrophobicity, volume 

fraction of TiO2 suspension, deposition speed, and blade angle. The RCD experiments 

were carried in the class-1000 clean room with invariable temperature (25OC) and humidity 

(45%). The glass blades were covered by a layer of parafilm (Parafilm M Laboratory 

Wrapping Film) to ensure the hydrophobic of the surface. Therefore, the volume fraction 

of TiO2 suspension, blade speed, and blade angle are the three most important factors for 

optimizing the deposition condition. 

 

Figure 5-4. SEM images of TiO2 microsphere deposited by RCD method on 

the emission surface of InGaN QW LEDs with unoptimized conditions 

leading to (a) submonolayer and (b) multilayer of TiO2 microsphere arrays. 

 

Figure 5-5. SEM images of 520-nm anatase TiO2 microsphere deposited 

via the RCD method on the emission surface 
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In our RCD experiments, the blade angle was fixed at 55° while the blade speed and 

volume fraction were adjusted to obtain the optimized condition that results in close-

packed monolayer TiO2 microsphere arrays. The SEM measurements were carried out to 

investigate the surface morphology of TiO2 microsphere arrays after the deposition. Figure 

5-4 (a) and (b) show the SEM images of 520-nm anatase TiO2 microsphere arrays 

deposited by the RCD method with unoptimized deposition conditions. As shown in Figure 

5-4(a), the lower volume fraction or faster deposition speed in comparison with the 

optimized conditions led to the submonolayer morphology of TiO2 microsphere arrays. 

Figure 5-4(b) shows that the higher volume fraction or slower deposition speed in 

comparison with the optimized conditions resulted in the multilayer morphology of TiO2 

microsphere arrays. 

Figure 5-5(a) and (b) show the SEM images of 520-nm anatase TiO2 microsphere 

arrays deposited by the RCD method with optimized conditions. The optimized deposition 

conditions for monolayer 2-D close-packed TiO2 microsphere arrays were obtained as the 

following condition: volume fraction of 10%, blade speed of 12 µm/s, and blade angle of 

55°. As shown in Figure 5-5(a) and (b), the post-deposited TiO2 microspheres formed 

large-scale, monolayer and close-packed arrays by employing the optimized RCD 

condition. The point defects in the microsphere arrays is attributed to the poorer 

monodispersity of the TiO2 microsphere diameter. 

5.3 EL Measurement of LED Devices with TiO2 Sphere Arrays 

In order to provide comparison of the EL characteristics of planar LEDs and LEDs 

with anatase TiO2 microsphere arrays deposited by RCD method, the InGaN QW LEDs 

employing 4 periods of InGaN QW with GaN barriers emitting at 490 nm were used. All 

LEDs structures studied here were grown on 3.0m n-GaN template on c-plane sapphire 
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substrates. The n-GaN is Si-doped with doping level of 5×1018 cm−3. The p-GaN was 

grown utilizing 200 nm thick Mg-doped GaN with doping level of 3×1017 cm−3 at 970 °C, 

followed by annealing at 780 °C in the N2 ambient. The LED devices were fabricated as 

top-emitting hexagonal devices with the device area of 7.5×10-4 cm2, and Ti/Au as n-

contact and Ni/Au as p-contact were evaporated followed by contact annealing. The LED 

devices were fabricated as top-emitting hexagonal devices with the device area of 7.5×10-

4 cm2. The on-wafer CW power measurements were performed at room temperature.  

 

 

Figure 5-6. (a) Light output power vs current density and (b) EL spectra (J 

= 80 A/cm2) of InGaN QW LEDs emitting at 490 nm with and without 520-

nm anatase TiO2 microsphere arrays deposited via the RCD method. 
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Figure 5-6(a) shows the light output power as a function of current density for the 490-

nm emitting InGaN QWs LEDs with and without 520-nm anatase TiO2 microsphere arrays. 

As shown in  Figure 5-6(a) and (b), the CW power-current and EL spectra measurements 

exhibit 1.83 times improvement in the output power for the LED device with TiO2 

microspheres arrays at the current density of 80 A/cm2, as compared to that of LED without 

microspheres arrays. The significant increase in the output power is primarily attributed to 

significantly enlarged light escape cone between GaN (n=2.5) and anatase TiO2 

microspheres (n=2.5). 

5.4 Far-field Radiation Pattern 

To study the far-field emission patterns of LEDs with TiO2 microsphere arrays, the 

output power measurement was carried at the current density of 80A/cm2 on the 450-nm 

emitting InGaN QW LEDs with the device area of 6.75x10−4 cm2. The far-field emission 

patterns of the LEDs with and without 520-nm anatase TiO2 microsphere arrays deposited 

by the RCD method were measured.  

 

Figure 5-7. Schematic of LED far-field measurement set up employed in the 

radial far-field EL measurements 
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As shown in Figure 5-7, the far-field measurement setup consists of a semicircular 

structure on which the optical fiber can be rotated 180° in a single plane. The measured 

LEDs were placed in the center of the semicircular structure, hence the optical fiber kept 

equidistant away from the measured LED as the optical fiber rotated through 180° in the 

plane to collect the emission at varying angles [see Figure 5-7]. The distance between the 

optical fiber and measured LEDs was kept at 2.5 cm which was much larger than the 

dimension of the measured LEDs (161 μm), in order to ensure sufficient large distance for 

the far-field measurements [59]. In our current studies, the far-field radiation patterns of 

the LEDs were measured from emission angle from θ=0o up to θ=90o. 

 

 

Figure 5-8. (a) Far-field emission patterns of the LEDs with and without and 

520-nm anatase TiO2 microsphere arrays deposited by the RCD method, 

and (b) enhancement ratio of output power as a function of far-field angle. 

The far-field radiation patterns of the LEDs were measured from emission 

angle from θ=0° up to θ=90°. Note that the results for θ=-90° up to θ=0° 

range, which are presented for completeness purpose, are identical with 

those of θ=0° up to θ=90° range. 
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As shown in Figure 5-8(a), the output power of the emission is radially plotted, with 0° 

as normal to the LED emitting surface. The Figure 5-8(a) shows that the far-field emission 

pattern of the LED with TiO2 microsphere arrays exhibits overall stronger radiant intensity 

over that of the conventional LED. Hence TiO2 microsphere arrays significantly increased 

the light extraction efficiency from widely enhanced light far-field pattern. From Figure 

5-8(a), the measured far-field emission of the TiO2 coated LEDs was much larger than 

that of the conventional LED. However, the enhancement of the far-field emission at 

varying angles is different. To illustrate this, the far-field emission of the TiO2 coated LEDs 

was normalized to that of the conventional LED for obtaining the enhancement ratio of 

output power as a function of far-field angle, as shown in Figure 5-8(b).  

 

Figure 5-9. Comparison of integrated light output powers as a function of 

current density (J = 80 A/cm2) of InGaN QW LEDs emitting at peak ~ 490 

nm employing 520-nm anatase TiO2 microsphere arrays deposited via the 

RCD method, as compared to planar LEDs. 

Figure 5-8(b) shows that the far-field intensity enhancement ratio of the TiO2 coated 

LED is more significant at lower angles from 0° to 60° than that at higher angles from 60° 

to 90°. From Figure 5-8(b), three peaks of enhancement ratio at 0°, 30° and 50° are 
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observed, indicating that the output power enhancement brought by TiO2 microsphere 

arrays is directionally dependent.  

Based on Figure 5-8(a), the total output power of the LEDs with and without TiO2 

microsphere arrays was obtained by integrating the far-field output power over all the 

angles. The total output power of the LED with 520-nm anatase TiO2 microsphere arrays 

exhibits ~71% enhancement [Figure 5-9], in comparison to that of the conventional LED. 

It is important to note that the enhancement of total output power is smaller than 83% 

enhancement of the output power measured in the normal direction [Figure 5-6]. The 

decrease in the enhancement is attributed to the non-uniform enhancement ratio 

especially the reduced enhancement ratio at higher angles from 60° to 90°, as shown in 

Figure 5-8(b). 

In summary, the deposition of anatase TiO2 sphere arrays was carried out and a 

monolayer of sphere arrays was obtained by tuning deposition speed, blade angle, and 

suspension concentration. EL measurement shows that much higher EL intensity was 

observed for the LED with anatase TiO2 sphere arrays than that of planar LED, which 

resulted in 1.8 times enhancement in output power. The details of this work were 

performed in collaboration with other group members, specifically Xiaohang Li, and the 

work was published in reference 13. 

References 

 

[1] Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, "Enhancement of 

light extraction efficiency of InGaN quantum wells light emitting diodes using 

SiO2/polystyrene microlens arrays," Appl. Phys. Lett., vol. 91, Nov 2007. 

[2] Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, "Light 

extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with 



 

76 
 

polydimethylsiloxane concave microstructures," Opt. Express, vol. 17, pp. 13747-

13757, Aug 2009. 

[3] Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. P. Zhao, J. F. Gilchrist, et al., 

"Optimization of Light Extraction Efficiency of III-Nitride LEDs With Self-Assembled 

Colloidal-Based Microlenses," Ieee J Sel Top Quant, vol. 15, pp. 1218-1225, Jul-Aug 

2009. 

[4] H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, "Nanowire 

arrays with controlled structure profiles for maximizing optical collection efficiency," 

Energy & Environmental Science, vol. 4, pp. 2863-2869, Aug 2011. 

[5] P. Zhu, J. Zhang, G. Liu, and N. Tansu, "FDTD Modeling of InGaN-Based Light-

Emitting Diodes with Microsphere Arrays," in Proc. of the IEEE Photonics Conference 

2012, Burlingame, CA, 2012. 

[6] P. F. Zhu, G. Y. Liu, J. Zhang, and N. Tansu, "FDTD Analysis on Extraction Efficiency 

of GaN Light-Emitting Diodes With Microsphere Arrays," J Disp Technol, vol. 9, pp. 

317-323, May 2013. 

[7] P. Zhu, P. O. Weigel, G. Liu, J. Zhang, A. L. Weldon, T. Muanganphor, et al., 

"Optimization of Deposition Conditions for Silica/Polystyrene Microlens and 

Nanolens Arrays for Light Extraction Enhancement in GaN Light-Emitting diodes," in 

Proc. of the SPIE Photonics West 2013, San Francisco, CA, 2013. 

[8] P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, "Investigation of the 

Deposition of Microsphere Monolayers for Fabrication of Microlens Arrays," 

Langmuir, vol. 24, pp. 12150-12157, Nov 2008. 

[9] H. K. Lee, Y. H. Ko, G. S. R. Raju, and J. S. Yu, "Light-extraction enhancement and 

directional emission control of GaN-based LEDs by self-assembled monolayer of 

silica spheres," Opt. Express, vol. 20, pp. 25058-25063, Oct 22 2012. 

[10] T. Ogi, L. B. Modesto-Lopez, F. Iskandar, and K. Okuyama, "Fabrication of a large 

area monolayer of silica particles on a sapphire substrate by a spin coating method," 

Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 297, pp. 

71-78, 4/5/ 2007. 

[11] Y. F. Gao, Y. Masuda, and K. Koumoto, "Micropatterning of TiO2 thin film in an 

aqueous peroxotitanate solution," Chem Mater, vol. 16, pp. 1062-1067, Mar 23 2004. 

[12] E. I. Ross-Medgaarden, I. E. Wachs, W. V. Knowles, A. Burrows, C. J. Kiely, and M. 

S. Wong, "Tuning the Electronic and Molecular Structures of Catalytic Active Sites 

with Titania Nanoligands," J Am Chem Soc, vol. 131, pp. 680-687, Jan 21 2009. 



 

77 
 

  



 

78 
 

Chapter 6 Overcome Fundamental Limit of Extraction Efficiency of 

LED 

6.1 Introduction of Thin-Film Flip-Chip LED 

The deposition of GaN was introduced by Murska and Tietjen at RCA Laboratories 

employing hydride vapor-phase epitaxy on a sapphire substrate in 1969 [1]. Since then, 

tremendous efforts has been devoted to the growth of wurtzite GaN and InGaN, control of 

conductivity of p-GaN and growth of LED structures [2-4]. These progress had been led 

to the invention of high-brightness blue LED in 1993 [5, 6]. 

However, one of major challenges for GaN-based LED is the poor electrical 

conductivity of p-GaN [7, 8]. This leads to a major problem for the current spreading 

underneath p-electrode, which results in nonhomogeneous light emission form the LED 

chip. This problem is solved by the deposition of semitransparent Ni/Au layer on the p-

GaN [9, 10], which overcome the current spreading problem in p-GaN, however, the light 

extraction efficiency is reduced due to the absorption of Ni/Au layer. The performance of 

LED is a tradeoff between the current spreading and light extraction. Specifically, thicker 

Ni/Au can improve the current spreading of p-GaN, in the meantime, the light extraction 

efficiency will be significantly reduced; thinner Ni/Au layer can improve the light extraction 

efficiency, but the current spreading issue will exist. To eliminate the light absorption of 

the semitransparent metal, while keep good current spreading, the flip chip technology is  

implemented on LED devices [11]. In this approach, the thick Ni/Au metal is deposited on 

the p-GaN and the light is taken from the sapphire substrate. However, the refractive index 

of GaN is 2.5 and the refractive index of sapphire is 1.8, which are much larger than 

refractive index of free space. According to smell’s law, the total reflection will be occurred 

both at the interface between GaN and sapphire and sapphire and free space, which leads 

to light being trapped in the GaN slab and thick sapphire substrate. To extract the guided 
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modes out of the devices, the laser-liftoff method is applied to the LED device to remove 

the sapphire substrate and followed by thinning down the n-GaN [12].  

6.2 Microcavity Effect on Light Extraction Efficiency 

The conventional LED structure is grown on the sapphire substrate by MOCVD 

method.  The Thin-Film Flip-Chip LED is fabricated by laser-liftoff process to remove the 

sapphire substrate and followed by chemical-mechanical polishing (CMP) to thin down the 

n-GaN, which results in the TFFC LED structure with tunable n-GaN thickness [13]. The 

p-GaN thickness can be tuned in the MOCVD process. Thus, TFFC LED structure with 

various p-GaN and n-GaN thickness can be achieved by tuning growth time and CMP 

time. 

The metal contact on the p-GaN side in the TFFC LED are able to reflect the light 

back to LED, which leads to the interference of light between the forward travelling light 

and the reflected light. Proper design of quantum well position will maximize the light 

extraction efficiency. In addition, a fraction of forward travelled electromagnetic wave will 

reflected back to the LED at the interface of GaN and free space, which will lead to 

interference too. Thus the thickness of cavity formed by LED will have significant effect on 

the light extraction efficiency, too [14-25]. 

6.2.1 Interferences between the up emitted light and down reflected light 

 

Figure 6-1.  The effect of quantum well position on the light extraction 

efficiency. 

Metallic layer

L
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Figure 6-1 is schematic diagram of TFFC LED structure. The distance between 

quantum well and metallic layer is labelled as d2 and the total cavity thickness is L. The 

quantum well emits light in the isotropic media, thus the electromagnetic radiation have 

the same intensity (I0) in all directions. The light which is traveling towards the metallic 

mirror will reflected back to the LED with phase shift of π and interferes with light which is 

traveling forward. According the interference theory, the total light intensity can be 

expressed as [26]  

   1
2 0 1 0 1 0 1 0 1(x,y,z) 2 cos , , 2 cos 2

d n
I I I I I x y z I I I I  


                  

 (6.1), 

where the I1 is the light intensity of reflected light, which is the same as the incident light 

intensity for the lossless mirror; n is the refractive index of material, which is ~2.5 in the 

visible region; ∆ d is the optical path difference between the forward travelled light and the 

reflected light, which is 2d2 in the normal direction, thus total light output accounting for 

interference effect at normal direction can be expressed as 

 2 1
2 0 0

2
(x,y,z) 2 2 cos 2

d n
I I I  


         

  (6.2). 

The enhancement of light intensity at particular position due to interference effect are 

plotted in Figure 6-2, here wavelength of 500 nm was chosen in this plotting. The 

maximum light intensity was achieved at  2 12
2 2 1

d n
m 


      

 
, and minimum light 

intensity was achieved at  2 12
2 2

d n
m 


     

 
. Thus, light output can be optimized by 

engineering quantum well position. 
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Figure 6-2. The light intensity variation due to interference effect as a 

function of quantum well position  

6.2.2 Resonant Cavity Effect on the Light Extraction Efficiency  

The light generated in the quantum well region bounds back and forth for many times 

in LED cavity and finally a fraction of light will be extracted out. The cavity thickness plays 

a significant role and the correct design of cavity thickness will significantly enhance the 

light extraction. When the electromagnetic waves with intensity of I2 reaches the interface 

between the GaN with refractive index of n1and free space with refractive index of n2, 

some of electromagnetic wave will be reflected back to LED and reflected again by metallic 

mirror and interfere with forward traveling wave. The light reflected can be calculated as  

 

2

21 2
3 2 2

1 2

(x, y,z)
n n

I I I r
n n

 
   

  (6.3) 

The total light intensity after interference will be  

 4 2 3 2 3 2 2

2 2
(x,y,z) 2 cos 2 1 2 cos 2

L n L n
I I I I I r I rI   

 
                            

 

 (6.4) 
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The light bounces back and forth for many times inside the LED. The final light intensity 

can be calculated as  

   1
2 2

2
(x,y,z) 1 2 cos 2n n n

L n
I I r I rI  

 
           

  (6.5) 

From this equation, the final light intensity depends on the cavity thickness, the 

wavelength and refractive index of material. For a particular wavelength and particular 

material, there is optimized thickness, at which, the light intensity will be significantly 

enhanced.  

 

Figure 6-3. The light intensity enhancement due to interference as a 

function of cavity thickness for TFFC LED. 

Figure 6-3 shows the light intensity enhancement for TFFC LED at wavelength of 500 

nm. The maximum light output can be achieved at  12
2 2 1

L n
m 


      

 
 and 

minimum light output can be achieved at  12
2 2

L n
m 


     

 
. Thus, both quantum 

well position and cavity thickness play important role in the maximum light extraction of 

LED. 
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6.3  FDTD Calculation of Light Extraction Efficiency of Thin-Film Flip-Chip 

LED 

The FDTD method [27, 28] was employed to calculate the light extraction efficiency 

of TFFC LED. The TFFC LED device structure analyzed in this study is shown in Figure 

6-1. InGaN/GaN quantum well is sandwiched by p-GaN and n-GaN. The refractive index 

of GaN was set to 2.5. The metallic mirror was attached to the bottom of LED which is 

assumed to be a perfect mirror with 100% reflectance. The 3-D FDTD method requires a 

large amount of memory and computation time. It takes long time and a lot of resources 

to simulate such a big device. Therefore, in this calculation, we have taken the simulation 

domain to be 10 μm x 10 μm with perfect matched layer (PML) boundary conditions 

applied to the lateral boundaries and perfect electric conductor (PEC) boundary conditions 

to the bottom of LED. The grid size was set to be 10 nmto make sure the accurate results. 

The simulation time was set to be big enough to make sure the stabilized field output. 

 One dipole was chosen as light source within the quantum well region and positioned 

in the center region of quantum well. The emission wavelength used in this calculation 

was set as  = 500 nm. The light extraction efficiency was calculated as the ratio of the 

optical output power extracted out from the top of LED to the total output power generated 

by dipole. 

6.3.1 The Effect of Quantum Well Position on the Light Extraction Efficiency for 
Planar Thin-Film Flip-Chip LED with Cavity Thickness of 700 nm 

As mentioned earlier, cavity thickness can be tuned by engineering the p-GaN 

thickness and n-GaN thickness. In this calculation, the cavity thickness was chosen as 

700 nm and the quantum well position was tuned to investigate the effect of quantum well 

position on the light extraction efficiency of TFFC LED. 
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Figure 6-4. The quantum well position dependent light extraction efficiency 

of TFFC LED with cavity thickness of 700 nm. 

 Figure 6-4 shows the light extraction efficiency of TFFC LED at wavelength of 500 

nm with cavity thickness of 700 nm. The extraction efficiency shows strong p-GaN 

thickness dependent. The higher efficiencies were achieved at p-GaN thickness of 50 nm, 

150 nm, 250 nm, and 350 nm; the lower efficiencies were obtained at p-GaN thickness of 

100 nm, 200 nm, and 300 nm. This finding shown here is consistent with the interference 

theory we mentioned earlier. 

6.3.2 The Effect of Cavity Thickness on the Light Extraction Efficiency for the 
Planar Thin-Film Flip-Chip LED with p-GaN Thickness of 150 nm 

To investigate resonant cavity effect on the light extraction efficiency, the light 

extraction of TFFC LED was also calculated for LED with various cavity thickness for the 

p-GaN thickness of 150 nm. p-GaN of 150 nm was chosen as it is one of optimized p-GaN 

thicknesses and physically implementable. 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500

E
x

tr
a

c
ti

o
n

 R
a

ti
o

 

p-GaN Thickness (nm)

Cavity thickness: 700 nm =500 nm
n=2.5



 

85 
 

 

Figure 6-5. The light extraction efficiency of TFFC LED with various cavity 

thickness for the p-GaN thickness of 150 nm 

The extraction efficiency is plotted as a function of cavity thickness for quantum well 

position of 150 nm where the maximum extraction efficiency was obtained in Figure 6-4. 

As shown in Figure 6-5, periodic modulation of the extraction efficiency with varying cavity 

thickness was observed, which is attributed to the interference effect of multiple reflection 

of light inside the LED. The extraction efficiency of ~27% was achieved for cavity thickness 

of 250 nm, which is more than 7 times enhancement than the conventional top-emitting 

LED devices. The modulation depth decreases as cavity thickness increases. At small 

cavity thickness, only a small number of the Fabry-Perot modes exist and the extraction 

efficiency is higher. Fabry-Perot modes increased with the increase in the cavity thickness, 

which led to averaging the many modes and the interference effect becomes weak.  
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From our previous calculation, the light extraction efficiency reach maximum at cavity 

thicknesses of 250 nm, 350 nm, 450 nm, 550 nm, 650 nm, and 750 nm. However, the 

maximum extraction efficiency decreases with the increase in the cavity thickness. We are 

especially interested in the thickness of 650 nm and 750 nm cavity as these thicknesses 

are experimentally implementable and has reasonable light extraction efficiency. Thus, we 

further optimized quantum well position for LED with cavity thickness of 650 nm and 750 

nm to optimize light extraction efficiency. 

 

Figure 6-6. Quantum well position dependent light extraction efficiency of 

TFFC LED with cavity thickness of 650 nm 

Figure 6-6 and Figure 6-7 show the light extraction efficiency as a function of quantum 

well position for TFFC LED with cavity thickness of 650 nm and 750 nm. The maximum 

light extraction efficiency of 20% and 19% was achieved at p-GaN thickness of 150 nm 

for LED with cavity thickness of 650 nm and 750 nm, respectively.  
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Figure 6-7. Quantum well position dependent light extraction efficiency of 

TFFC LED with cavity thickness of 750 nm 

6.4 Thin-Film Flip-Chip LED with Microsphere Arrays 

6.4.1 The Effect of Sphere Diameter on the Light Extraction Efficiency 

Although, the light extraction efficiency of TFFC LED is much higher than that of 

conventional top-emitting LED, The widely adoption of GaN-based LED requires to further 

improve the quantum efficiency and cut down fabrication cost. Various methods has been 

employed to further enhance the light extraction efficiency of TFFC LED. Photonic crystal 

and surface roughness are two of effective approaches to enhance the light extraction of 

TFFC LED [29-34]. Light extraction efficiency of 65% has been achieved for the LED with 

surface roughness using photochemical etching. However, the electrical properties of LED 

could be degraded due to the photochemical etching process. In addition, it has little 

control over the light emission direction. The LED with photonic crystal showed high output 

and Light extraction efficiency of 72% has been achieved [29]. However, the high 
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fabrication cost of photonic crystals using electron beam lithography is a big obstacles. 

Other methods is relatively less effective to improve the light extraction efficiency. 

Our goal is to employ the low-cost method to improve the performance of LED devices. 

The self-assembly microsphere or microlens arrays has been proven to be a very effective 

method to improve the light extraction efficiency of top-emitting LED devices as well as 

organic light-emitting diodes [28, 35-43]. However, the effect of microsphere or microlens 

array on the TFFC has not been investigated. In this work, the FDTD method is employed 

to investigate effect of microsphere arrays on the light extraction efficiency of TFFC. The 

comprehensive study was carried out to optimize the TFFC LED device structure with the 

goal of improving the device performance. 

 

Figure 6-8. The light extraction efficiency of microsphere LED with 

microsphere arrays. 

Monodisperse TiO2 spheres can be synthesized by mixed-solvent method [44]. The 

diameter of spheres can be engineered by tuning concentration of ethanol, acetonitrile. In 

this work, the light extraction efficiencies of microsphere array TFFC LED with diameters 

of 250 nm, 400 nm, 500 nm, 600 nm, 750 nm, 850 nm and 1 μm were calculated and the 
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results are shown in figure 2. The light extraction is changing with the diameter of sphere. 

The extraction efficiency of 39%, 63%, 38%, 28%, 53%, 46% and 27% were achieved for 

LED with sphere diameter of 250 nm, 400 nm, 500 nm, 600 nm, 750 nm, 850 nm and 1 

μm, respectively. Note that only 20% of light can be extracted out for the planar LED with 

same cavity thickness and quantum well position. The light extraction efficiency is 

significantly enhanced by deposition of TiO2 spheres on the LED. This is attributed to the 

enlarged light escape cone due to the curvature formed between the sphere and free 

space. The light outside of escape cone initially cannot be extracted out, however, it can 

be extracted out after TiO2 sphere deposition. Note that the diameter of sphere has 

significant effect on the light extraction efficiency of LED. LED with 400-nm sphere results 

in the extraction efficiency of 63%. Matter is composed of discrete electric charges such 

as electron and proton. When the light is incident on a particle, these charges are set in 

oscillation where the net effect is manifested in the emission of secondary radiation known 

as scattering. Light can be scattered and redirected in many directions. Particularly, when 

size of particles is comparable to the wavelength of the incident light, the Mie scattering 

happens. When the light collides with the TiO2 sphere with size comparable to its 

wavelength, the light scatters strongly along the forward direction. This enhances the light 

extraction. 

6.4.2 The effect of cavity thickness on the light extraction efficiency 

The light extraction efficiency of TFFC LED with microsphere was further optimized 

by engineering the cavity thickness. p-GaN thickness  was chosen as 170 nm, which is 

reasonable thickness for real LED fabrication. The Cavity thickness was tuned from 640 

nm to 700 nm.  Figure 3 shows the light extraction efficiency of TFFC LED with various 

cavity thickness. The extraction efficiencies of 46%, 59%, 74%, 62.7%, 59% and 50% 

were achieved for cavity thickness of 643 nm, 653 nm, 663 nm, 673 nm, 678 nm and 683 
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nm, respectively. The efficiency varies from 42% to 62.7%. The modulation of extraction 

efficiency with varying the cavity thickness is due to the interference of multiple reflection 

in the Fabry-Perot cavity structure. The extraction efficiency of 63% is achieved at cavity 

thickness of 673 nm, which is ~16 times enhancement than that of conventional top-

emitting LED.  

 

Figure 6-9. The cavity dependent of light extraction efficiency of TFFC LED 

with microsphere arrays. 

6.4.3 The Effect of p-GaN Thickness on the Light Extraction Efficiency 

The TFFC LED structure was further optimize by the tuning the quantum well position. 

The p-GaN thickness was varied from 140 nm to 190 nm. As shown in Figure 6-10, the 

extraction efficiency increases first and then decreases. The maximum extraction 

efficiency of 75% is achieved at p-GaN thickness of 160 nm. The light extraction 

efficiencies of planar TFFC LED with same p-GaN thickness and cavity thick are also 

plotted in Figure 6-10 for comparison purpose. The similar trend was observed, however, 

the efficiency is much lower than that of TFFC LED with microsphere arrays. The improved 

light extraction for TFFC LED is attributed to the cavity effect, and light-sphere interaction. 

The light which were trapped in the LED can be extracted out. 
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Figure 6-10. The p-GaN thickness dependent light extraction efficiency of 

TFFC with microsphere arrays. 

In order to further investigate the cavity effect on the light extraction efficiency, the 

angular dependent light emission was calculated for the planar TFFC LEDs with various 

n-GaN thickness while the p-GaN thickness was kept as 170 nm. The far-field radiation 

pattern of conventional top-emitting LED (LED_con) was also plotted in Figure 6-11 (a) for 

comparison. The far-field radiation patterns were taken from θ=-90o to θ=90o. As shown in 

Figure 6-11 (a) and (b), the light intensity is radially plotted, with 0o as normal to the LED 

emitting surface. The far-field radiation patterns of conventional LED shows Lambertian-

like radiation patterns [see Figure 6-11(a)] due to large refractive index contrast between 

the GaN and free space [45]. However, far-field intensity of TFFC LED in different 

directions depends on the cavity thickness. The emission intensity increases in the normal 

direction with the increase in the cavity thickness [as shown in Figure 6-11(a)], which in 

turn results in the improved light extraction efficiency as shown in Figure 6-9. Further 

increase in the n-GaN thickness, the emission intensity started to increase in the larger 

0

0.2

0.4

0.6

0.8

1

100 120 140 160 180 200
p-GaN Thickness (nm)

E
xt

ra
ct

io
n

 E
ff

ic
ie

n
cy

Anatase TiO2 spheremax = 75%

 ~ 500 nm

TFFC_Microsphere

Planar TFFC

dsphere = 400 nm 

Tn-GaN = 500 nm

Conventional LED
Without cavity effect



 

92 
 

angular direction, while that of normal direction starts to decrease as shown in Figure 6-11 

(b). The maximum light extraction efficiency is obtained when the n-GaN thickness 

increases to 500 nm.  

 

 

Figure 6-11. Far-field radiation patterns of planar TFFC LED with p-GaN 

thickness of 170 nm, the n-GaN thickness varied from 450 nm to 540 nm. 

The light emitted from the quantum well is isotropic, the forward travelled light 

interfere with backward travelled light after total reflection by the metallic mirror which was 

attached to the p-GaN. Constructive interference will happen when optical length 

difference between the forward travelled light and backward traveled equal to integer of 

wavelength. The optical length difference depends on the cavity thickness and light 

emission direction. Cavity thickness is different for the different direction light in order for 

the constructive interference to happen. The total light intensity is the integration of light 

in all the directions above LED. The light emitted in the normal direction will have strongest 

interference effect, on the other hand, there are more light emitted in the oblique direction, 
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however, there suffer more reflection problem according to the Fresnel reflection. Thus 

the optimum light extraction efficiency was obtained at certain cavity thickness, at which 

the tradeoff between the reflection and emission was achieved.  

 

Figure 6-12. Schematics of interference between the forward travelled light 

and backward travelled light: (a) normal direction; (b) oblique direction. 

The effect of quantum well positions on the light emission was also investigated by 

calculating the angular dependent emission intensity for the TFFC LEDs with various p-

GaN thickness while the n-GaN thickness was kept as 500 nm for all the LEDs. Far-field 

radiation patterns of LEDs with various p-GaN thickness were plotted in two figures for 

better data presentation. The far-field emission intensity dramatically changes with the 

increase in the p-GaN thickness. The overall intensity is lower for the p-GaN thickness of 

100 nm, 110 nm, 120 nm, 130 nm and 140 nm, which results in the light extraction 

efficiency as shown in Figure 6-10. The intensity in the normal direction increases with the 

increase in the p-GaN thickness and it reaches the maximum when the p-GaN thickness 

increased to 150 nm. Further increase the p-GaN thickness, the emission intensity in the 

normal direction started to decrease, while significant enhancement in the intensity 

emission at the larger angular direction was observe which resulted in optimum light 

extraction efficiency at the p-GaN thickness of 160 nm as shown in Figure 6-10. The 

emission intensity further decreases when the p-GaN thickness increases to 170 nm, while 
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only small increase in the larger angular direction is observed. This leads to the decrease 

in the light extraction efficiency.  

 

 

 

Figure 6-13. Far-field radiation patterns of planar TFFC LEDs with various 

p-GaN thickness. The n-GaN thickness was kept as 500 nm. 

In summary, the quantum well position and cavity thickness have significant effect on 

the light emission from LED. The optimum light extraction efficiency will achieved by tuning 

the p-GaN thickness and cavity thickness.  

6.4.4 The Effect of Packing Density on the Light Extraction Efficiency  

The fabrication of microsphere arrays on top of LED was performed by rapid 

convective deposition method (RCD). RCD is a self-assembly process of the negative 

charged particles under the capillary force based on the following equation[46]: 
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 (1 )(1 )c
Kv

h


 


    (6.6) 

Here, the vc is the thin film growth rate; K depends on the evaporation rate, which is 

determined by the temperature and humidity; h is the height of thin film;  is porosity 　　

of the colloidal crystal, in other words, 1-ϕ is the packing fraction of colloidal crystal, which 

is 0.605 for hexagonal close packed sphere arrays and 0.52 for the square close packed 

spheres arrays; ε is the volume fraction of suspension.  The monolayer was obtained when 

the substrate withdraw speed was equal to film growth rate. The submonolayer was 

obtained when substrate withdraw speed was higher than crystal growth rate. The 

multilayer was obtained when substrate withdraw speed was lower than crystal growth 

rate. Microsphere arrays with various packing density and packing geometry: 

submonolayer [Figure 6-14 (c)], hexagonal close-packed monolayer [Figure 6-14 (a)], 

multilayer [Figure 6-14 (d)], and the square close-packed monolayer [Figure 6-14 (b)] were 

obtained by tuning the deposition speed (vd).  

In order to investigate effect of packing density of microsphere arrays on the light 

extraction efficiency of microsphere LED, the light extraction efficiency of microsphere (n 

= 2.5) array LEDs with submonolayer, monolayer, multilayer hexagonal packed shape 

were calculated. Figure 6-15 shows the light extraction efficiency of microsphere array 

LEDs with various Rd/p. Here, Rd/p is defined as the ratio of diameter to the lattice period. 

For example, the hexagonal close-packed monolayer sphere array has an Rd/p of 1. For 

the Rd/p smaller than 1, it is submonolayer, and for the Rd/p larger than 1, it is multilayer. 

The ratios of the light extraction efficiencies of the LEDs with microsphere arrays to those 

of planar LED are shown in Figure 6-15. Light extraction efficiency increased with the 

increase in Rd/p and light extraction efficiency of 75% is achieved when monolayer of 
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microsphere is deposited on the LED. The extraction efficiency starts to decrease with 

further increasing the Rd/p. 

 

 

Figure 6-14. Schematic of microsphere LEDs with hexagonal close-packed 

sphere arrays (a), with square close-packed sphere arrays (b), with 

submonolayer sphere arrays (c), and with multilayer microsphere arrays (d).  

 

Figure 6-15. Extraction efficiency of microsphere TFFC LED with various 

packing density. 
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The comparison for the far-field radiation patterns for the planar LED, LEDs with 

submonolayer sphere arrays, LEDs with monolayer sphere arrays, and LEDs with 

multilayer sphere arrays is presented in Figure 6-16. The Far-field radiation pattern for 

planar LED [as shown in Figure 6-17 (e). exhibits Lambertian radiation patterns with only 

angular dependent, while symmetrically azimuthal distribution. The far-field intensity is 

much weaker in all angular direction compared to the microsphere LEDs due to the small 

light escape cone and only a small fraction of light can be extracted out from the LED 

device. The inner and outer radiation rings are attributed to the direct emission from the 

InGaN QWs and reflected emission by PEC reflectors, respectively. The LEDs with 

microsphere arrays exhibits both angularly and azimuthally dependent as shown in figure 

3(a)-3(f). The significantly higher intensity is observed for far-field radiation patterns for 

microsphere array LEDs for both the normal and large angular distribution, which in turn 

results in the improved light extraction efficiency for these LEDs. The far-field intensity of 

LEDs with microsphere arrays exhibits hexagonal symmetry due to hexagonal packed 

nature of sphere arrays. However, the light distributions along angular direction and 

azimuthal direction for the LEDs with submonolayer sphere arrays, monolayer arrays and 

multilayer arrays are very different. For the LED with monolayer microsphere arrays, most 

of light were extracted out in the larger angular direction, which resulted in the enhanced 

light extraction efficiency,  while only a small amount of light were extracted out in the 

smaller angular direction. For the case of LED with submonolayer sphere arrays, the light 

is spread over larger surface, and it can be extracted out in relatively larger angular range, 

however the overall intensity is lower than that of LED with monolayer sphere arrays. The 

same phenomenon is observed for the LED with multilayer sphere arrays, but the light 

intensity is much lower than that of LED with monolayer of sphere arrays. This leads to 

the relatively lower light extraction ratio compared to the LED devices with monolayer 

sphere arrays. Note that the comparison of light extraction efficiency ratio for microsphere 
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array LEDs and planar LED were carried out by taking the total output power integrated 

over the whole solid angle. 

  

   

Figure 6-16. Far-field radiation pattern of microsphere TFFC LED with 

submonolayer, monolayer, and multilayer sphere arrays: (a) with packing 

density of 0.67; (b) with packing density of 0.8; (c) with packing density of 

1; (d) with packing density of 2; (e) with packing density of 3 and (f) with 

packing density of 4. 

6.4.5 The Effect of Packing Geometry on the Light Extraction Efficiency  

In addition to hexagonal close packed lattice structure [see figure 5 (c)], we also 

investigated the square close packed lattice structure [see Figure 6-17 (d)]. As we 

mentioned in the third part of this manuscript earlier, the packing fraction for square close 

packed structure is 0.52 and the square close packed monolayer are obtained when 

substrate withdraw speed was equal to the crystal growth speed under the condition of 1-

 equal to 0.52. The overall light extraction of LED with square close packed monolayer 

sphere arrays is lower than that of LED with hexagonal close-packed monolayer structure. 
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The light extraction efficiency for LED with square close-packed is 47%, which is lower 

that of LED with hexagonal close packed sphere arrays. We recall that packing fraction 

for hexagonal close packed sphere arrays is 0.6 while it is 0.52 for the square close packed 

sphere arrays, which leads to the relatively lower light extraction efficiency for the square 

close packed sphere arrays. Another thing we should notice is that there are 4 nearest 

neighbors for the square close packed sphere arrays and 6 nearest neighbors for 

hexagonal close packed sphere arrays. The difference in the scattering center leads to 

different light extraction efficiency. 

 

         

Figure 6-17. Far-field radiation pattern of microsphere TFFC LED with 

different packing geometry: a) with hexagonal close-packed geometry, b) 

with square close packed geometry, (e) planar LED. 

In addition to difference of light extraction efficiency, the far-field radiation patterns 

are also different.  Far field radiation patterns [see Figure 6-17 (a) and (b)] show that 

significant enhancement of light extraction efficiency in larger angular direction is observed 
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for the LED with hexagonal close-packed monolayer sphere arrays. The enhancement of 

light extraction efficiency of LED with square close-packed sphere arrays is observed both 

in the large angular direction and normal direction. However, Far-field intensity exhibit 

different symmetry, which is hexagonal shaped pattern for the microsphere LED with 

hexagonal close-packed structure, while it has square-shaped radiation pattern for the 

microsphere array LED with square close-packed symmetry due to different microsphere 

arrangement. The sphere array arrangement has significant effect on the far-field radiation 

pattern due to the scattering effect of light. The RCD method is an easy to be implemented 

method. It provides low cost ways to fabricate microsphere arrays on the TFFC LED, which 

leads to the tremendous improvement in light extraction efficiency. This method is 

applicable for the large scale roll-to-roll printing method. 

The Finite-Difference Time-Domain method was employed to calculate the light 

extraction efficiency of thin-film flip-chip LEDs with TiO2 based microsphere arrays. 

Specifically, the light extraction efficiency of TiO2 microsphere array LED with different 

diameter to lattice ratio: submonolayer, monolayer, and multilayer, and different packing 

geometry: square close-packed and hexagonal close-packed geometry, are compared. 

The optimized packing density and packing geometry is hexagonal close-packed 

monolayer of TiO2 sphere arrays. The use of hexagonal close-packed monolayer of TiO2 

microsphere arrays is expected to result in 3.6 times enhancement of light extraction 

efficiency compared to that of planar LED. 

6.5 Thin-Film Flip-Chip LED with Microlens Arrays 

6.5.1 The Effect of PS Thickness on the Light Extraction Efficiency 

The use of hexagonal-close packed anatase TiO2 sphere arrays has resulted in 

significant enhancement in light extraction efficiency for TFFC LED. This is attributed to 

the enlarged escape cone due to curvature formed between the sphere and free space. 
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However, limitation of using microsphere is that the chance for the light from GaN couple 

into the sphere is relatively low. Thus the coupling efficiency should be improved in order 

to further enhance the light extraction efficiency. 

The microlens arrays which some portion of spheres is embedded in the PS layer can 

improve the light coupling efficiency. Our previous work regarding the SiO2/PS microlens 

array LEDs have proved that microlens arrays have advantages over microsphere arrays 

regarding enhancement of light extraction efficiency [41]. 2.7 times enhancement in the 

light extraction efficiency has been achieved for the LED with microlens arrays, which is 

much higher than that of LED with microsphere arrays [41]. 

 

Figure 6-18. (a) Schematics of LED devices with hexagonal close-packed 

microlens arrays. (b) Schematics of LED device with concave structures. 

The work on the SiO2/PS microlens arrays showed that the aspect ratios of microlens 

have significant effect on the light extraction ratio as well as the light emission distribution 

in the far-field region. In order to optimize the light extraction efficiency of LED with 

microlens arrays regarding TiO2 microsphere, FDTD calculation were conducted to 

investigate the effect of microlens aspect ratio on the light extraction efficiency of the thin-

film flip-chip LED. The TiO2 microlens arrays [see Figure 6-18 (a)] can be obtained by 

melting the TiO2/PS binary sphere arrays. First, TiO2/PS binary sphere arrays are 

deposited on the top of GaN LED devices. Then, these binary sphere arrays are melted 
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at 140oC. The thickness of the PS layer can be adjusted by tuning the annealing time. The 

thickness of PS layer can be tuned from 0 to the diameter of sphere by adjusting the 

annealing time. The PS fills the Gap between the TiO2 spheres. In this calculation, the 

diameter of microsphere is 0.40 m, while tuning the thickness of PS layer which is 

corresponding to aspect ratio from 0 to 1. Here, the aspect ratio is defined as the thickness 

of PS  layer to the diameter of microsphere.  

 

Figure 6-19. Schematics of Thin-Film Flip-Chip LED with Planar PS layer 

(a) and LED with microlens arrays (b). 

The light extraction efficiencies of microlens array LEDs with various aspect ratio are 

shown in Figure 6-20. The light extraction efficiency increases with the increase in the 

aspect ratio, and the maximum light extraction efficiency is obtained at PS thickness of 75 

nm. Further increase the PS thickness, the extraction efficiency starts to decrease. For 

the case of the PS thickness is smaller than the 75 nm, less photon are coupled into the 

microlens arrays for light extraction. Therefore, the maximum effective photon escape 

cone is achieved, when the optimum PS thickness is used, as it allows for the optimum 

amount of photons to be coupled into the microspheres.  

As comparison, the light extraction efficiency of TFFC LED with planar PS layer was 

also calculated and plotted in the same figure.  As shown in Figure 6-20, the same trend 

is observed as in the case of LED with microlens arrays. The extraction efficiency varies 

with PS thickness. However, the overall extraction efficiency is much lower than that of 

LED with microlens arrays. The PS layer was deposited on the top LED, which can be 
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served as anti-reflecting coating to reduce the Fresnel reflection. In the planar PS 

antireflection coating film, the Fresnel reflection will be reduced. The extraction efficiency 

depends on the thickness of PS as shown in Figure 6-20. The constructive interference 

can be achieved by tuning the thickness of PS layer, which led to the enhancement in the 

light extraction efficiency. 

 

Figure 6-20. The light extraction efficiency of Thin-Film Flip-Chip LED with 

microlens arrays compared with LED with planar PS layer, the planar Thin-

Film Flip-Chip as references. 

To further understand the effect of planar PS layer on the light extraction efficiency. 

The angular dependent light emission from TFFC LED with PS layers is plotted at a 

particular azimuthal direction of ϕ =0 (as shown in Figure 6-21). The PS thickness varies 

from 30 nm to 150 nm. Angular dependent light emission of the planar LED without PS 

layer is also plotted for comparison purpose. Strong emission in the normal direction is 

observed for the planar LED due to the strong constructive interference effect in the normal 

direction. The light emission in the normal direction starts to decrease and that of larger 

angular direction starts to increase with the increase in the PS thickness. This is attributed 
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to the increased constructive interference of light in the larger angular direction with 

increase in PS thickness. The optimum light extraction efficiency is obtained at PS 

thickness of 30 nm, at which the tradeoff between the constructive interference and 

reflection was achieved. Further increase the PS thickness, the light intensity increased 

more, however, the light extraction efficiency started to decrease due to the increased 

Fresnel reflection. The light intensity in larger angular direction starts to decrease and that 

of normal direction starts to increase when the PS thickness increased to 100 nm, which 

in turn results in the decrease in the light extraction. Light emission in the normal direction 

dramatically increases at PS thickness of 150 nm, and the light extraction efficiency starts 

to increase. 

 

 

Figure 6-21. Far-field radiation patterns of planar TFFC LED with various 

PS thickness. 

In summary, the light extraction efficiency of TFFC LED with microsphere arrays and 

microlens arrays was investigated.  Light extraction efficiency of 86% has been achieved 
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by tuning the quantum well position, cavity thickness, sphere refractive index, sphere 

diameter. The use of microlens arrays method on TFFC LEDs is expected to overcome 

the limitation presented in state-of-the-art TFFC LEDs by improving the extraction from 

65% to 86%.  
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Chapter 7 Light Extraction Efficiency of Organic Light-emitting Diode  

7.1 Introduction to Organic Light-emitting Diode 

Organic light-emitting diodes (OLEDs) are one of promising candidates for the next-

generation light sources due to advantages of a wide viewing angle, low operating voltage, 

fast response time and flexibility [1]. There have been great interests and advances in the 

OLEDs in recent years. However, to successfully replace conventional light sources, the 

quantum efficiency needs to be further improved. The quantum efficiency of OLEDs is 

determined by the internal quantum efficiency and light extraction efficiency. Although the 

internal quantum efficiency of OLED devices has already been increased to close to 100% 

[2], light extraction efficiency of conventional bottom-emitting OLED devices is low due to 

total internal reflection at ITO (n~1.8)/ glass (n~1.5) and glass/air interfaces [3, 4]. Only 

~20% of light generated in the organic layer can be extracted out from the device.  

Previously, the self-assembly microsphere or microlens arrays was deposited on the 

top of GaN LED, which resulted in the significant enhancement in light extraction efficiency 

[5-13]. The concave structure fabricated by imprinting method using microlens arrays as 

template was also implemented on GaN LED to improve light extraction [14]. However, it 

is more challenging to extract the light emitted in the organic active region to free space 

due to the complicated structure of OLED devices. The refractive index differences 

between transparent electrode (n=1.7-2) and glass substrate (n=1.5), the glass substrate 

and the free space (n=1), led to the light was trapped in the organic layer and substrate. 

Some of the substrate wave guiding modes can be extracted out by modifying glass/air 

interface, such as introducing microstructures or nanostructures [15-17]. However, the 

ITO/organic wave guiding modes remain unchanged due to thick glass substrate. 
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 Various approaches have been employed to enhance the light extraction efficiency 

of OLED devices. One of the approaches is to employ substrate with higher refractive 

index and the ITO/organic-wave guiding modes can be effectively coupled into the 

substrate due to the matching of the refractive indices [18]. In this case, the refractive 

index matched material, such as microsphere or microlens arrays can be deposited on the 

substrate to help extract the substrate modes out [19].  However, high refractive index 

materials are too expensive for use in the large area panels. An alternative way is to 

fabricate photonic crystals between the glass substrate and ITO Layer to extract the 

ITO/organic layer guiding modes out [20-23]. However, the fabrication process is 

complicated and expensive.  

Recently, the micro-spherically textured structures which can effectively extract the 

organic mode attracted tremendous attention [24].  The use of micro-spherical structure 

increased surface area which reduced resistivity of device and enhanced the extraction of 

organic mode. However, the microsphere arrays was formed by spin-coting method, which 

is not homogenous due to radius dependent velocity. In addition, fabrication of micro-

spherical structure is complicated.  

Therefore, other lower cost approaches and easy to implemented solutions are still 

needed. Previously, we employed rapid convective deposition (RCD) method to fabricate 

microsphere arrays or microlens arrays on the GaN LEDs, and light extraction efficiency 

is significantly enhanced [6-8, 14, 25] due to the increased light escape cone and reduced 

Fresnel reflection. The advantage of RCD method is simple, inexpensive, and scalable[26]. 

While other methods, such as spin coating, suffer non-uniformity in large area due to the 

radius dependent centrifuge force which results in the coexist of  multilayer, monolayer, 

and submonolayer [27]. Furthermore, the self-assembly microslens arrays was also used 
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as imprinting template to form the concave structures on GaN-based LED, which resulted 

in significant enhancement in the light extraction efficiency [14].  

In this work, the microsphere arrays which was deposited by rapid convective method 

was used as imprinting template to fabricate the OLED with corrugated structures and the 

output power was measured and compared to that of conventional LED.  

7.2 Fabrication OLED Device with Corrugated Structures 

The schematics of device fabrication process was shown in Figure 7-1.  

 

Figure 7-1. Schematics of device fabrication process of LED with 

corrugated structures 

The hexagonal-close packed microlens arrays was prepared by the rapid convective 

deposition method. Binary suspension of 14% Silica and 4% polystyrene was prepared by 

dispersing 1.0-μm or 0.5-μm silica microspheres and 100-nm/75-nm polystyrene 

nanospheres into distilled water. The obtained suspension was injected between blade 

and substrate and then the substrate was translated by a linear motor. The microsphere 

arrays were obtained under the tradeoff between the electrostatic force and capillary force.  

A typical SEM images of 500-nm SiO2 sphere embed in the 75-nm PS sphere is shown in 
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Figure 7-2 (a). The microlens arrays was obtained by thermal annealing process and the 

500-nm SiO2 hexagonal-close packed sphere arrays was embedded in the planar PS to 

form the lens structure as shown in Figure 7-2(b). The aspect ratio of the lens was tuned 

by controlling thermal annealing time to adjust the PS thickness. The detailed 

experimental results can be found in reference [8].  

 

Figure 7-2. (a) SEM image of 500-nm SiO2 sphere arrays embedded in 75-

nm PS spheres before heat treatment. (b) SEM images of SiO2 sphere 

arrays embedded in PS layer after heat treatment. 

In general, the diffraction efficiency of the grating increases with the depth of grating, 

however, too high depth will cause the device failure due to the high leakage current paths. 

Thus, over here, the grating depth of 75 nm and 185 nm was selected for 500-nm grating 

and 1-μm grating, respectively. To form the OLED with corrugated structures, the 

polydimethylsiloxane (PDMS) concave structure was made by using SiO2/PS microlens 

arrays as template. Subsequently, the PDMS concave structure was stamped onto the 

UV-curable resin coated glass substrate. Finally, the corrugated resin layer having HCP 

close-packed structures were used for grating. Note that the microlens arrays was 

deposited by RCD method, which is a self-assembly process.  The non-uniformity of 

microsphere will cause the locally HCP structure but lack of longer ordering.   
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During the fabrication of OLED devices, the following layers were deposited on the 

corrugated and flat resin layers coated glass substrate: a 120-nm ITO, a 50-nm NPB N,N'-

bis(naphthalene-1-yl)-N,N'-bis-(phenyl)benzidine), a 60-nm-thick Alq3 (tris-(8-

hydroxyquinoline)-aluminum), a 1.0-nm-thick lithium fluoride (LiF), and a 100-nm-thick 

aluminum (Al). The schematic device structure is shown in Figure 7-3.  

 

Figure 7-3. Schematics of organic light-emitting diode with corrugated 

structures. 

7.3 Output Power Enhancement of OLED with Corrugated Structures 

The typical current densities (mA/cm2) and luminances (cd/m2) for the devices with 

and without 1.0 μm grating are plotted as a function of applied voltage in (a). The 1.0 μm 

grating device shows a higher current density and a higher luminance at a constant 

voltage compared with to that of the reference device. The leakage current of the grating 

device below turn-on voltage showed little difference with that of the reference device on 

a log-log scale, indicating smooth surface of the corrugated structure for the grating device.  
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Figure 7-4. (a) Current density (mA/cm2) and luminance (cd/m2) and (b) Current 

efficiency (cd/A) and power efficiency (lm/W) for the 1.0 μm grating (filled symbols) and 

reference (open symbols) devices. (c) Enhancement ratio of EL intensity, plotted by 
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dividing the spectrum of the grating device by that of the reference devices. Inset: EL 

spectra of the grating () and reference (‒ ‒) devices. 

Much higher current density in the grating device is attributed to increased surface 

area due to the grating and enhanced electric field resulted from non-uniformity of the 

organic layer thicknesses in a corrugated structure. Despite of the increased current 

density, the higher enhancement of the luminance in the grating device represents the 

extraction of the waveguide modes. The current (cd/A) and power efficiencies (lm/W) at a 

current density of 40 mA/cm2 are 2.6 cd/A and 1.64 lm/W for the reference device and 3.5 

cd/A and 2.5 lm/W for the grating device ( (b)). The grating device shows 35% and 50% 

enhancements in the current and power efficiencies compared to the reference devices. 

The higher enhancement in the power efficiency than the current efficiency is due to the 

lower operating voltage in the grating devices, as shown in (a). The electroluminescence 

(EL) spectra of the grating and reference devices at normal direction show that there is no 

spectral change due to the 1.0-μm grating (inset of (c)). Dividing the EL intensity of the 

grating device by that of the reference device, the enhancement ratio for the emission 

wavelengths is obtained and the results are shown in (c). The enhancement ratio is fairly 

uniform across the EL spectrum with slightly higher intensities at around 500 and 650~700 

nm. 

Figure 7-5(a) shows the current densities and luminances for the 0.5-μm grating 

device and the reference device. Similar to the 1.0-μm grating device, the 0.5-μm grating 

device exhibits a higher current density and higher luminance than those of the reference 

device. However, the enhancement of the current density in the 0.5-μm grating device is 

lower than that in the 1.0 μm grating device because of the lower surface area ratio of the 

0.5-μm grating (~7%) than the 1.0 μm grating (~12%). The current and power efficiencies 

at a current density of 40 mA/cm2 in Figure 5(b) are 2.57 cd/A and 1.58 lm/W for the 
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reference devices, and 4.38 cd/A and 2.95 lm/W for the grating devices, respectively. 

Enhancements of ~70% and ~90% were achieved for the current and power efficiencies 

due to the 0.5 μm grating. The larger enhancement of the 0.5 μm grating device, compared 

to the 1.0 μm grating device, is associated with the larger grating vector of the 0.5-μm 

grating. The EL spectra of the grating and reference devices at normal direction again 

show a broad enhancement over all emission wavelengths (inset of Figure 7-5(c)). The 

enhancement ratio in Figure 7-5(c) represents two strong intensities at around 470 and 

700 nm. Noted that the enhancements at both ends of the spectrum are slightly larger 

compared to the 1.0 grating device. 

 

 

 

 

  

Figure 7-5. (a) Current density (mA/cm2) and luminance (cd/m2) and (b) 

Current efficiency (cd/A) and power efficiency (lm/W) for the 0.5 μm grating 

(filled symbols) and reference (open symbols) devices. (c) Enhancement 

ratio of EL intensity. Inset: EL spectra of the grating () and reference (‒ 

‒) devices. 
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A defective silica sphere array pattern having locally HCP structure but lack of long 

ordering was fabricated by rapid convective deposition. The defective silica array pattern 

was incorporated into the devices as grating to extract the ITO/organic modes and 

additionally the substrate mode via a thin glass substrate. The results showed that the 1.0-

μm grating devices showed the 35% and 50% enhancements in the current and power 

efficiencies by transferring the ITO/organic modes to the substrate mode and then 

scattering the substrate mode. The 0.5-μm grating devices were able to effectively extract 

the ITO/organic modes, thereby improved the current and power efficiency by 70% and 

90%, respectively, without spectral changes and directionality. With the low-cost and 

large-area processing, the defective HCP silica array pattern can supply a practical 

solution for light extraction in the field of OLED applications. 

7.4 FDTD Calculation of Light Extraction Efficiency of Organic LED 

Recently, our works have demonstrated the use of corrugated structures led to 

improvement in power efficiency in OLED [9]. These grating structures were obtained by 

employing 500-nm and 1-m SiO2/PS microlens arrays as template.  However, this is not 

optimized device structure. It necessary to further investigate other grating dimensions to 

achieve maximum light extraction efficiency in OLED.  

In this work, we present the numerical simulation studies based on finite-difference 

time-domain (FDTD) method for analyzing the light extraction efficiency of OLEDs with 

corrugated structures. Specifically, the light extraction characteristics of OLEDs with 

corrugated structures will be compared with those of planar OLEDs. The grating period 

and depth were optimized to achieve optimum light extraction. 
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Figure 7-6. The schematic device structure of OLED with corrugated 

structures. 

 

Figure 7-7. The light extraction efficiency of corrugated OLED with grating 

period of 300 nm as a function of grating depth. 

The OLED device structure analyzed in this study is shown in Figure 7-3 and the 

fabrication process are shown in Figure 7-6. The device was fabricated by imprinting 

method employing the microlens arrays as template. The deposition of SiO2/PS binary 
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sphere arrays were carried out by using rapid convective deposition (RCD) method and 

the microlens arrays with various aspect ratio was obtained by thermal annealing process. 

The structure consists of glass substrate, ITO, NPB, Alq3, and Aluminum as cathode. In 

order to calculate the light extraction efficiency of OLEDs with corrugated structures, the 

OLED devices are considered as three-dimensional structure solved by vectorial method. 

The simulation for optimizing the dimension of microstructures were carried out by using 

FDTD method with perfect electric conductor (PEC) boundary conditions employed for the 

bottom and sides of the OLEDs. The light extraction efficiency of OLEDs with corrugated 

structures were obtained by integrating the light output power at the far-field region with 

the power of the light source at active region.  

The light extraction efficiency of OLED with corrugated structures was computed for 

OLED employing 400-nm and 300-nm SiO2/PS microlens arrays with various aspect ratio 

as template. The use of microlens arrays as imprinting template to fabricate OLED 

resulted in significant enhancement in light extraction efficiency. The light extraction 

efficiency depends on both the sphere diameter and aspect ratio of microlens arrays. 

Specifically, the use of 400-nm SiO2/PS microlens arrays as template resulted in light 

extraction efficiency of 59%. The use of 300-nm SiO2/PS microlens arrays resulted in the 

light extraction efficiency of 91%. Both the diameter of sphere and aspect ratio of microlens 

have significant effect on the light extraction. The optimized device structure is OLED 

employing 300-nm SiO2/PS microlens arrays with depth of 100 nm from the top as shown 

in Figure 7-7.  

In summary, the effects of grating dimensions and grating depth on the light extraction 

efficiency of OLEDs employing SiO2/PS microlens arrays as template were investigated. 

The use 300-nm SiO2/PS microlens arrays as template is expected to lead to optimized 
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light extraction efficiency in microsphere LEDs, and the optimization of grating dimension 

is important for engineering the far-field radiation pattern in OLED.  
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Chapter 8 Eu3+- doped TiO2 Nanospheres for White LED 

8.1 The Important of TiO2 Spheres to Solve Light Extraction Issue 

GaN-based light-emitting diodes (LEDs) are rapidly emerging as the best choice for 

future lighting and display technology due to their potential superior efficiency.  High-

efficiency LEDs have been realized due to the breakthroughs in GaN-based material 

growth leading to substantial improvement in its internal quantum efficiency, and in the 

implementation of high light extraction efficiency structures [1, 2]. However, the light 

extraction efficiency is still low due to large refractive index contrast between GaN (~2.5 

in the visible region) and free space which led to most of light trapped in the LED devices 

and only 4% of light is extracted out for conventional LED.   

A number of approaches have been employed to improve the light extraction 

efficiency, such as LEDs grown over patterned substrate as well as shaped, flip-chip, thin-

film and thin-film rough-surface LEDs [3, 4]. Surface roughening is among the most widely 

used approaches, and relies on randomizing the light reflected at the interfaces destroying 

the light propagation in straight paths and leading to multiple attempts to escape the LED 

devices within the critical angle [5]. Although surface roughening offers high extraction 

efficiency in LEDs, it provides little control on the direction of the light emission in the 

device, and result in Lambertian radiation patterns.  The photonic crystal led to improved 

performance [6]; however, light emission directionality remains largely restricted to the 

emission angles close to the surface normal. Also, the fabrication of photonic crystal is 

complicated and expensive.  

In our previous work, the rapid convective method was employed to deposit 500-nm 

and 1-μm SiO2 microsphere arrays on the top of LED to improve the light extraction 

efficiency. This method is low cost, easy to be implement, and can be scaled up to wafer 
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scale deposition [7-11]. Previously, SiO2 was selected as the microspheres in our 

experiment owning to the ease to obtain monodispersed SiO2 spheres with various 

diameters from several nanometers to hundreds of micrometers. The enhancement of light 

extraction efficiency of LED devices with SiO2 sphere arrays is consistent with our Ray-

tracing and FDTD calculation results [11], and the results from FDTD calculation are much 

more close to the experimental results, which indicated that FDTD calculation is more 

accurate than ray-tracing calculation. 

 

Figure 8-1. The enhancement of light extraction of LED with microsphere 

arrays as a function of refractive index. 

  The refractive index of SiO2 is 1.5 which is lower than that of GaN (2.5 in the visible 

region).  According to the Snell’ law, only the incident light within 37o  incident range can 

have chance to go into the SiO2 spheres and later on, being extracted out. Obviously, the 

SiO2 is not the best material choice for the microsphere arrays, and we carried out light 

extraction calculation of LEDs with higher refractive index material spheres employing 

FDTD method. The results (see Figure 8-1) showed that light extraction efficiency of LED 

with amorphous, anatase and rutile TiO2 sphere arrays are higher than that of LED with 

SiO2 sphere arrays. Specifically, 2.1 times enhancement is obtained for LED employing 
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amorphous TiO2 (n~1.8) sphere arrays, 2.4 times enhancement is achieved for the LED 

employing anatase TiO2 (n~2.4) sphere arrays (see Figure 8-2) and 2.3 times 

enhancement is obtained for the LED with rutile TiO2 (n~2.9) sphere arrays. The best 

material choice for the microsphere arrays is antase TiO2 with refractive index of 2.5 which 

is matched with that of GaN.  

 

Figure 8-2. Effect of diameter of Anatase TiO2 sphere on the light 

extraction efficiency. 

The deposition experiments were also carried out for amorphous TiO2 and anatase 

TiO2 microspheres arrays in our previous experiments, and resulted in 1.8 times 

enhancement in power efficiency, which is lower than that from our FDTD calculation (2.1 

times enhancement for LED with amorphous TiO2 sphere arrays and 2.4 times 

enhancement for LED with anatase TiO2 sphere arrays). [12] The discrepancy between 

the experimental results and calculation results is due to nonhomogenous deposition of 

TiO2 spheres, which is caused by the large size variation of TiO2 spheres in our previous 

experiment. [12] The nonhomogeneous deposition results in co-exist of the monolayer, 

submonolayer and multilayer. According to our calculation, hexagonal-close-packed 

monolayer sphere arrays is highly desirable for the light extraction efficiency purpose and 
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the highest efficiency is obtained by employing hexagonal-closed packed monolayer 

sphere arrays. [13] Therefore, the measured light extraction efficiency of LED with TiO2 

sphere arrays is lower than that from FDTD calculation.  

However, the TiO2 spheres with high quality are not commercially available and the 

growth condition is quiet critical. Obtaining monodisperse homogenous spheres is quiet 

challenging due to the high hydrolysis rate nature of titanium tetrabutoxide. This led to the 

non-uniformity of deposition of TiO2 microsphere arrays on the LED and the decrease in 

light extraction efficiency for LED with TiO2 sphere arrays compared to the simulation 

results.[14] Therefore, further investigation of TiO2 growth condition is needed in order to 

further enhance the light extraction efficiency of GaN LED. 

8.2 Phosphor Materials for White LED 

White-light sources based on InGaN LEDs have a promising future in general 

illumination with advantages over conventional light sources (e.g., incandescent, 

fluorescence and high intensity discharge lamps), as they are energy-saving, compact, 

and environmentally friendly. There are three approaches to generate white light: 1) Blue 

LED pumped yellow phosphors or green and red phosphors, 2) UV LED pumped blue and 

yellow phosphors or blue, green and red phosphors, and 3) multi-chip approach that 

combines blue, green, and red LEDs.  The first two approaches based on phosphor-

converted LEDs with advantage of low cost, high efficiency and color stability over a wide 

range of temperatures. White light based on the blue LEDs is commonly used as a simple 

long-life white-light source due to its efficiency and stability compared to the UV LED chip. 

Among them, the most popular approach for commercial white LEDs is made by coating 

an InGaN blue LED with a yellow-emitting phosphors, which has led to its wide use in the 

various outdoor lighting applications. The first as well as the most widely used yellow 

phosphor is Ce3+-doped Y3Al5O12 (YAG: Ce) owing to its many favorable properties such 
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as strong absorption of blue light (~420-480 nm), broad emission band in the visible region 

(500-700 nm), fast luminescence decay time (<100 ns), high external quantum efficiency 

(~75% under blue LED excitation), remarkable chemical and thermal stability and easy to 

synthesize. Due to these advantages, white LEDs made of the blue LED and YAG: Ce 

phosphors are currently the mainstream in the LED market and are being widely used in 

not only point light sources, but also wide-illumination equipment, back-lighting of liquid-

crystal TVs and high-power automotive headlights. Despite their wide applications and 

high luminous efficacy (>100 lm W-1), the disadvantage for white LEDs using only YAG: 

Ce is that they are limited to high correlated color temperature (CCT; usually ~6000 K) 

and low color rending index (CRI: usually < 75), due to the lack of sufficient red spectral 

component. The resulting cool, bluish-white light makes such devices undesirable for 

indoor use. For indoor lighting, the white light should be warm (CCT<4000 K) with 

sufficient color rendition (CRI>80). On the other hand, the white LED based on the 

multichip approach can provide high color rendition, high stability of chromacity, however, 

the low efficiency of green LED, and the high fabrication cost hinder the further 

applications. To obtain warm-white LEDs for general illumination, two strategies have 

generally been adopted to modify the phosphors. One strategy is based on a single-

phosphor, multi-emitting centers-conversion model, in which additional red-emitting 

centers are introduced into the YAG: Ce lattice to compensate the red spectral deficiency 

of YAG: Ce. The other strategy is based on a multiphosphors-conversion model in which 

either a red-emitting material is blended with YAG: Ce powder, or a variety of blue, green, 

yellow and red emitting phosphor are mixed together. Both the multi-emitting-centers 

model and multi-phosphor model can produce warm-white light with sufficiently high CRI 

values (80-98); The development of the new green and red phosphors that are efficiently 

excited by blue LED encourage the use of these phosphors to produce the white LED with 

high color rendering index and high color temperature.  
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In the pc-wLEDs, phosphor materials play an important role in the quality of LEDs, 

such as luminous efficacy, color rendering index, color temperature, lifetime, and etc. Thus, 

to realize the high efficiency and reliable LED, it is of great importance to choose 

appropriate phosphors. There are several considerations in choosing phosphor: 

8.2.1 The Excitation Spectrum 

The excitation spectrum is determined by monitoring emission spectrum at the 

wavelength of maximum intensity while the phosphor is excited through a group of 

consecutive wavelengths. To convert the emitted light of LED more efficiently, the 

excitation spectrum should be broad enough to cover the emission spectrum. This 

requires the phosphor to absorb strongly the light of LEDs, and to have flat excitation 

spectrum near the maximum emission wavelength of LEDs. 

8.2.2 The Emission Spectrum 

The emission spectrum records emission intensity as a function of wavelength of 

phosphor when it is excited by a certain wavelength of light. The emission spectrum of a 

phosphor is required to be useful and broad sufficiently to realize the high color rendering 

white light, when it is combined with the LED chip. On the other hand, the emission 

spectrum should be as narrow as possible.  

8.2.3 The Quantum Efficiency 

The quantum efficiency of phosphor is determined by internal quantum efficiency and 

external quantum efficiency. The internal quantum efficiency is the ratio of emitted photons 

to the number of absorbed photons. The external quantum efficiency is the ratio of number 

of emitted photons to the number of absorbed photons. Higher luminous efficiency of white 

LED require high quantum efficiency of phosphor. 
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8.2.4 The Stability of Phosphor 

The stability of a phosphor require the shape of luminescence spectra, luminescence 

intensity, and quantum efficiency do not change over entire operating temperature range 

and lifespan of wLED. The thermal quenching of LED phosphor should be as small as 

possible for enabling high temperature operation. 

8.2.5 The Particle Size and Morphology of Phosphor Particles 

The particle size and morphology of phosphor particles affects the quantum efficiency 

of phosphor as well as luminous efficiency of w-LED. Generally, to reduce the light 

scattering and quantum efficiency, the particle size should be as uniform as possible, and 

the distribution is as narrow as possible. Spherical particles is highly desired for enabling 

uniform deposition process. 

8.2.6 The Production Cost of Phosphor 

The production cost of the phosphor should be as low as possible. The phosphor is 

required to be synthesized cost-effectively for large scale production. 

8.3 The importance of Eu3+-doped TiO2 spheres as red phosphor in GaN 

White LED 

TiO2 is promising phosphor host material due to its low cost, high transparency in the 

visible light region, and good thermal, chemical, and mechanical properties. Phosphors 

with special shape, in particular, small and ideally spherical particles are highly desired in 

luminescent devices because they offer the possibility of improved luminescent 

performance, definition, and screen packing. The idea morphology of phosphor particles 

is spherical shape, narrow size distribution, and nonagglomeration. Owning to the 

advantages of TiO2, Eu-doped TiO2 is becoming promising red phosphor as it is 

transparent in the visible region. Therefore, In addition to the light extraction efficiency 
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applications, TiO2 spheres doped with Eu3+ can serve as red phosphor for GaN blue LED 

based white LED applications.  

However, preparation of monodispersed TiO2 particles with spherical shape is very 

difficult because of the fast hydrolysis rate of Titania precursor at room temperature [7]. 

Xia and Pale showed that the hydrolysis rate of precursors could be slowed by forming a 

coordination complex with ethylene glycol [8, 9]. Recently, mixed-solvent method has 

been developed into an effective method to obtain monodisperse spherical particles, such 

as CeO2, CdS [10, 11]. Adjusting the ratio of mixed solvents affects not only the hydrolysis 

rate but also the diffusion rate of the precursors, both of which have great effect on the 

morphology of the particles.   

Synthesis of TiO2 Spheres has been a challenging task for many years. In this work, 

the growth conditions of the TiO2 spheres were also investigated. The effects of ammonia, 

the ratio of acetonitrile to acetone in the mixed solvents and the concentration of titanium 

tetrabutoxide (TBOT) on the morphology were investigated. The phase transformation 

condition was investigated, from amorphous TiO2, to anatase TiO2, and to rutile TiO2. The 

Eu-doped TiO2 spheres were also synthesized by mixed-solvent method. The strong red 

emission peaking at 610 nm was observed under excitation of 464 nm and 397 nm. 

Especially, for the Eu-doped anatase TiO2 spheres. This leads to the potential applications 

for Eu-doped TiO2 in high efficiency white light emitting diode. Introduction to GaN-based 

White LED 

White light-emitting diode are attracting considerable attention from both academic 

and industrial communities, as they are generally accepted as the next generation energy 

saving and green solid-state lighting devices. The word record of 130 lm/W at 1A drive 

current for white LEDs with the color temperature of the 4700 K was announced by Nichia 

[15], and Cree also claimed a R&D record of 254 lm/W at a drive current of 350 mA. Such 
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performance greatly surpass that of fluorescence tubes (~80-100 lm/W), and far exceed 

that of incandescent (~17 lm/W) and halogen (~25 lm/W) lamps. Due to the tremendous 

progress in optical qualities, white LED are now penetrating the light market very rapidly, 

which are steadily replacing incandescent lamps and fluorescent tubes for general lighting, 

cold cathode fluorescent lamps for automotive headlights. The use of white LEDs will 

significantly save huge electrical energy, and reduce carbon emissions. 

There are three approaches to generate white light: 1) Blue LED pumped yellow 

phosphors or green and red phosphors, 2) UV LED pumped blue and yellow phosphors 

or blue, green and red phosphors, and 3) Multi-chip approach that combines blue, green, 

and red LEDs [16]. The white LED based on the multichip approach provide high color 

rendition, high stability of chromacity. However, the low efficiency of green LED, and the 

high fabrication cost hindered the further applications [17, 18]. While phosphor-converted 

LEDs can overcome these disadvantages [16, 19, 20].  Thus, it is important to further 

explorer new phosphor materials as well as improve the performance of current phosphors. 

The work presented in this section was performed in collaboration with Prof. W. Qin (Jilin 

University). 

In this work, we employ the low-cost mixed solvent method to synthesize the Eu3+-

doped TiO2 nanospheres, which can effectively absorb the blue light emitted from the GaN 

blue chip and emit red color. It will be a very promising red phosphor which can be served 

as red phosphor for GaN-based white LED. 

8.4 Synthesis of TiO2 Spheres by Mixed-Solvent Method 

Ethanol (GR) and ammonia (AR) were obtained from Beijing Chemical Corporation 

(Beijing, China). Titanium tetrabutoxide (TBOT) (AR) and acetonitrile (GR) were from 
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Tianjin Guangfu Chemical Corporation (Tianjin, China). All the reactants were used 

without further purification. 

 

 

 

Figure 8-3. SEM images of TiO2 particles synthesized under the different 

conditions: (a). without ammonia and acetonitrile, (b). with ammonia but 

without acetonitrile, (c). with ammonia and acetonitrile (the insert is an 

enlarged image). 

In order to investigate the effect of ammonia on the morphology of TiO2, the TiO2 

particles were prepared in the Ethanol solvent with and without ammonia, respectively. 

Also, to investigate the effect of acetonitrile on the formation of TiO2 particles, we adjusted 

the ratio of acetonitrile to Ethanol. As a typical synthesis, two identical solutions were 

prepared by mixing acetonitrile and Ethanol with different ratio. The mixed solution was 
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stirred for 30 min. Next, an amount of ammonia and TBOT were added to the two solutions 

respectively. After substantial stirring, the two solutions were mixed and stirred for 2 h. 

The obtained products were centrifuged, washed 4 times with absolute ethanol, and dried 

at 80°C for 12 h. The Eu3+-doped TiO2 was prepared as following: Two identical solutions 

were prepared by mixing acetonitrile and Ethanol. The mixed solution was stirred for 30 

min. Then an amount of ammonia was added to one of two identical solutions. Eu(NO3)3 

and TBOT with different ratio were added to the other solution. After substantial stirring 

for half an hour, these two solutions were mixed and stirred for 2 h. The obtained products 

were centrifuged, washed for 4 time with absolute ethanol, and dried at 80oC for 12 h. The 

as-prepared TiO2 particles were annealed at 350oC, 500oC, 650oC, and 850oC for 2 h, 

respectively. 

The structure of TiO2 particles were analyzed by X-ray diffraction (XRD) (Rigaku 

D/max-2000 X-ray powder diffractometer) using Cu Kα radiation (λ=1.54178Å). The 

overall images and sizes of the particles were characterized by field emission scanning 

electron microscopy (SEM, S-4800).  

Figure 8-3 (a) and (b) shows the SEM images of TiO2 particles prepared in the ethanol, 

without and with ammonia, respectively. Except for the ammonia, the concentrations of 

other chemicals in each reaction are the same. It shows that spherical TiO2 particles were 

formed with addition of ammonia [see Figure 8-3(b)]. However, when the ammonia is 

substituted by distilled water, irregular particles were obtained [see Figure 8-3 (a)]. This 

indicated that NH3·H2O played a very important role in forming the spherical particles. In 

the solution, the ammonia was decomposed into ammonium (NH4
+) and hydroxide (OH-). 

The NH4
+ overcame repulsive barrier and draw the negatively charged TiO  together. 

The formation mechanism of TiO2 spheres can be seen in Figure 2. The NH4
+ is absorbed 

by the negatively charged TiO  and the cores are formed. When TiO migrates to the 
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core, the condensation process occurs. Therefore, the ammonia as a catalyst contributes 

to the formation of spherical TiO2 particles. 

 3 2 4NH H O NH OH      (8.1) 

    4 9 3 4 9 43 3iC H OH TOH NH C H OH TiO NH      (8.2) 

    4 9 4 9 4 9 4 93 3
C H O TiOC H OH C H O TiOH C H O      (8.3) 

 

Figure 8-4. Schematics of sphere formation process in the ethanol and 

acetonitrile. 

However, although the spherical particles is formed under the catalysis of ammonia, 

the particles tend to stick together due to the high solubility of TBOT and its hydrolysates. 

The hydrolysis of TBOT molecules will result in the coexistence of TBOT and its 

hydrolysates in the solution. TBOT and its hydrolysates have high solubility in Ethanol, 

which means that there are relatively strong interactions between the solute and the 

solvent molecules; however, it is not the case for acetonitrile as the solvent because of 

the low solubility of TBOT in it. As a result, when a certain amount of acetonitrile is added 

to the Ethanol solution, the interactions between solutes (TBOT and its hydrolysates) and 

solvents (ethanol and acetonitrile) became weaker. Therefore, the TBOT can easily diffuse 
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onto the surface of hydrolysates and then hydrolyze and condense under the catalysis of 

NH4
+ to form monodisperse spherical TiO2 particles. By adjusting the ratio of acetonitrile 

to acetone, an appropriate diffusion for TBOT and their partial hydrolysates can be 

obtained. Our results show that monodisperse TiO2 spheres can be obtained when the 

ratio of acetonitrile to acetone is 3:1, as shown in Figure 8-3 (c) and (d). 

 

Figure 8-5. XRD patterns of TiO2 at different annealing temperatures. 

When the ratio of acetonitrile to acetone is constant at 3:1, the size of TiO2 particles 

depends on the concentration of TBOT in the mixed solvent. This is because at such a 

ratio almost all TBOT molecules in the mixed solvent can easily diffuse to form spherical 

TiO2 particles. The particle size is determined by hydrolysis rate and condensation rate. 

Hydrolysis rate increases with water concentration, however, decreased with TBOT 

concentration [12].  The particle size decreased with decreasing TBOT concentration. 

Therefore, the particle size can be adjusted by controlling the concentration of TBOT. In 

addition, the reaction temperature has great effect on the particle size. High reaction 

temperature should promote hydrolysis of TBOT and then increase the number of titania 

nuclei. As a result, the size decreased with increasing reaction temperature [13]. 
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Figure 8-5 presents the XRD patterns for the sample with a 300-nm in diameter before 

and after annealed at various temperatures (350oC, 500oC, 650oC, 850oC) for 2 h. The as-

prepared sample did not show any diffraction peaks, indicating that the as-synthesized 

TiO2 is amorphous. When the sample is annealed at 350oC, there were also no peaks, 

until the temperature increased to 500oC, several diffraction peaks appeared and all of 

them is attributed to the anatase phase of TiO2 (JCPDS 21-1272). No other phase such 

as rutile or brookite could be found. However, all the diffraction peaks for the sample 

annealed at 800oC correspond to the rutile phase of TiO2 (JCPDS 21-1276). From the 

XRD patterns, the phase transition from anatase to rutile seems to occur at 650oC, as 

diffraction peaks of both anatase and rutile phase were detected at this annealing 

temperature. 

8.5 Optical Properties of Eu3+-doped TiO2 Nanospheres 

8.5.1 The energy transfer between the TiO2 and Eu3+  

The photoluminescence excitation spectrum corresponding to the 611 nm emission 

of Eu3+ doped TiO2 was shown in Figure 8-6.The spectra exhibit several sharp peaks 

owing to the Eu3+ f→f transition and a broad excitation band with a maximum at 270 nm.  

Tsuboi et al.[21, 22] observed two broad excitation bands in Eu3+ doped TiO2 nanoparticles: 

one is at around 320 nm, the other is at 270 nm. The 320 nm excitation band is the same 

as the absorption band observed in non-doped TiO2. Therefore, the 320 nm band was 

assigned as band-to-band transition in the host lattice while the 270 nm band corresponds 

to the charge transfer (CT) band from the 2p orbital of O2- ligands to the 4f orbital of Eu3+ 

ion. Zeng and coworkers[23] also measured the excitation of Eu3+-doped TiO2 nanotube 

and conclude that the peak at 275 nm is attributed to the charge transfer between Eu3+ 

and O2- and the excitation peak at 312 nm is attributed to the energy transfer from the TiO2 
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nanotube matrix to Eu3+ ions. In our experiment, only the 270 nm band was observed. 

There are two possibilities: it is either CT band or it is absorption band of TiO2. 

 

Figure 8-6. The excitation spectrum of Eu-doped amorphous TiO2 spheres 

monitoring 610 nm emission.  

 

Figure 8-7. (a) The emission spectra of TiO2 spheres under 270 nm 

excitation. (b) The excitation spectra monitoring 380 nm emission. 

In order to clarify this 270 nm broad band absorption, The excitation and PL of pure 

TiO2 spheres annealed at 350oC, 500oC, 650oC, 850oC were measured. The PL spectrum 

under 270 nm excitation exhibits a broad ultraviolet emission band centered at 380 nm 

with full width at half maximum (FWHM) of about 69 nm [see Figure 8-7 (a)], which is 

attributed to electron transition from the conduction band to the valence band. There is no 

obvious peak shift. On the photoluminescence excitation spectra, monitored 380 nm 
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emission, a broad excitation band with maximum at 270 nm was observed [see Figure 8-7 

(b)], which is due to the excitation from the valence band to the conduction band of TiO2. 

Therefore, the 270 nm broad band in Eu3+-doped TiO2 is attributed to the absorption of 

TiO2. When the TiO2 is excited by UV light, the excitation energy absorbed by TiO2 

promotes the electrons from the valence band (VB) to conduction band (CB). The 

electrons are then trapped by the defect states through the nonradiative decay process. 

The recombination of the electrons in the defect states with the holes in the VB result in 

the TiO2 UV emission. Compared with the reported band gap of TiO2 crystals [24-26]. The 

band gap of TiO2 synthesized in this work is larger. The band gap obtained in this work is 

consistent with the results got from Pan and coworkers[27]. However, the FWHM is larger 

than one they got, which is probably caused by the different crystal phase: it is anatase 

phase for their case, while the XRD patterns show that the TiO2 particles we got are 

amorphous. The band gap in the amorphous material will be poorly defined due to its lack 

of ordered crystal structure, and will be larger than for the crystalline titania polymorphs[28]. 

Thus, the 270 nm broad band absorption most possibly originates from the TiO2.This result 

suggested that Eu3+ emission is associated with an energy transfer process from the TiO2 

to the Eu3+. 

More information about the energy transfer between TiO2 and Eu3+ can be obtained 

by investigation of the emission spectra of TiO2 doped with various concentration of Eu3+. 

The photoluminescence spectrum 270 nm excitation for the samples with Eu3+ 

concentration of 0, 1%, 10%, and 15%, respectively, are shown in Figure 8-8 (a). To do 

comparison, the spectrum is normalized by 380 nm emission. The pure TiO2 exhibits only 

the broad UV emission band due to the emission from the pure TiO2 sphere, but upon Eu3+ 

addition, five emission bands  centered at 576, 590, 611, 649, and 697 nm, respectively, 
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was observed, corresponding to the Eu3+ transition from 5D0 to 7FJ (J=0, 1, 2, 3, 4), 

respectively [29].  

 

 

Figure 8-8. The emission (normalized by 380 nm emission) spectra of Eu3+-

doped TiO2 spheres with various Eu3+ concentrations under 270 nm 

excitation. (b) Integrated intensity of emission centered at 610 nm for Eu3+-

doped TiO2 spheres with various concentration. 

These bands show strong inhomogeneous broadening because the ionic radius of 

Eu3+ (0.098 nm) is much larger than that of Ti4+ (0.068 nm) [30] and Eu3+ is distributed in 
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the amorphous titania region. The emission ratio of Eu3+ to TiO2 increases [see Figure 

8-8(b)] with the increase in the Eu3+ concentration. The band-to-band transition of TiO2 

peaking at 380 nm is higher than that of Eu3+ centered at 610 nm at relatively lower Eu3+ 

concentration. The emission of Eu3+ became higher than the emission of TiO2 with the 

increase in the Eu3+ concentration. This finding indicates that the increase in the Eu3+ 

emission in the sacrifice of TiO2 emission. This further proved that there is energy transfer 

process between the TiO2 and Eu3+. The ratio of TiO2 emission (peaking at 380 nm) 

intensity to that of Eu3+ (peaking at 611 nm) decreased with increasing the Eu3+ 

concentration. This is consistent with the conclusion obtained by Zeng et al [31] that the 

5D0 emission of Eu3+ increased with the increase in Eu3+ content in Eu3+-doped TiO2 

particles. Tachikawa et al[32] use time-resolved photoluminescence to prove the energy 

transfer between the TiO2 host and Eu3+ ions. 

8.5.2 Emission spectrum of Eu3+-doped TiO2 under blue light excitation 

 

 

Figure 8-9. (a) The emission spectra of Eu3+-doped TiO2 spheres with 

various Eu3+ concentrations under 394 nm excitation. (b) The emission 

spectra of Eu3+-doped TiO2 spheres with various Eu3+ concentrations under 

465 nm excitation. 
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intensity of these two peaks increase with the increase in the Eu3+ concentration as 

expected. However, the increase rate became slower for the higher Eu3+ concentration, 

which is attributed to the strong interaction between the Eu3+ ions. These two absorption 

peaks located at the blue regime, which is indicate that Eu3+-doped TiO2 can be excited 

by the GaN blue LED and emit red light. Thus, the emission spectrum was also 

investigated for TiO2 with various Eu3+ concentrations under the excitation of 394 nm and 

464 nm.  The intensity for emission under the excitation of 394 nm increased with the 

increase in Eu3+ concentration. This is attributed to the increased luminescent center in 

the TiO2 matrix. The emission spectra were also measured under the excitation of 464 nm. 

The same trend was observed for the Eu3+-doped TiO2 under the excitation of 464 nm.  

8.5.3 The phase transformation and luminescence properties of Eu3+-doped TiO2 
nanospheres 

As mentioned earlier, the anatase TiO2 spheres can be obtained by annealing 

amorphous TiO2 spheres. The more important thing is that light extraction efficiency of 

LED devices with anatase TiO2 sphere is higher than that with amorphous TiO2 spheres. 

This leads us to further investigate the optical properties of Eu3+-doped TiO2 at various 

annealing temperatures. Figure 8 (b) shows the excitation spectrum of 10% Eu3+-doped 

TiO2 sphere at various annealing temperatures. Both 394 nm and 464 nm absorption 

peaks exist for the as-prepared sample and the samples at lower annealing temperatures. 

However, only absorption band centered at 464 nm still exist for the samples at higher 

annealing temperatures, and the absorption band centered at 394 nm disappeared. 

Specifically, the intensity of absorption centered at 394 nm decreases with increasing 

annealing temperature and completely disappeared when the annealing temperature 

increased to 750oC.  The intensity of the absorption centered at 464 nm initially increased 

with annealing temperature, the maximum intensity is obtained at annealing temperature 

of 500oC, which corresponds to the anatase TiO2.  Further increase the temperature, the 
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intensity started to decrease. This also reflected from the emission spectra. The emission 

spectra of 10% Eu3+-doped TiO2 at various annealing temperatures are shown in Figure 

8-10 (a). The emission intensity peaking at 610 nm increased with the increase in the 

annealing temperature, the maximum intensity was obtained when Eu3+-doped TiO2 was 

annealed at 500oC.  

 

 

Figure 8-10. (a) The emission spectra of 10% Eu-doped TiO2 spheres 

annealed at various temperatures under 464 nm excitation. (b) The 

excitation spectra of 10% Eu-doped TiO2 spheres annealed at different 

temperature monitoring 610 nm emission. (c) The normalized excitation 

spectra Eu3+-doped TiO2 spheres annealed at different temperature 

monitoring 610 nm emission. 
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centered at 610 nm almost disappear. Therefore, the Eu3+-doped TiO2 annealed at 500oC, 

which corresponds to the anatase TiO2, have highest emission intensity under excitation 

of 464 nm. To make the comparison more obvious, the normalized excitation spectra 

(normalized by 464 nm excitation) was also plotted in the Figure 8-10 (c).  This result 

shows its potential for usage in white LED application. 

Eu3+ ions are used in spectroscopy to determine the environment around the Eu3+ ion 

in the host as compared to other Ln3+ ions, since its electric dipole transition is 

hypersensitive to its local symmetry. The excitation spectrum change with the annealing 

temperature, which indicate the environment of Eu3+ changed with annealing temperature. 

In summary, the light extraction efficiency can be improved by implementing the 

amorphous, anatase, or rutile TiO2 spheres on the top of LED. This led to enhanced light 

extraction efficiency. However, the TiO2 spheres with small size distribution and large size 

range are not commercially available. This led to the difficulty to implement the TiO2 

sphere arrays on the top of LED and reduced light extraction efficiency compared to the 

simulation results. The monodisperse TiO2 spheres were prepared by mixed-solvent 

method; ammonia plays an important role in forming the spherical TiO2 particles. The ratio 

of acetonitrile to acetone is the key factor to form monodisperse TiO2 particles. In the 

presence of ammonia, we obtained monodisperse spherical TiO2 particles when the ratio 

of acetonitrile to acetone is 3:1. The size of TiO2 particles can be adjusted by changing 

the precursor’s concentration and reaction temperature. We have also demonstrated that 

these spherical TiO2 particles could be converted from amorphous to anatanse and then 

to rutile by annealed at elevated temperatures. The optical properties of Eu3+-doped TiO2 

was investigated, we found that there are some strong absorption in blue region and emit 

red light. Especially for the anatase TiO2. This leads to potential applications for the Eu3+-

doped TiO2 in high efficiency LED devices. 
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Chapter 9 Summary and Future Outlook 

9.1 Summary 

During the dissertation research, several research projects have been successfully 

carried out. The sets of projects will be outlined below consisting of two broad 

classifications. The first broad classification include the methods and analysis for enabling 

improved light extraction efficiency in III-Nitride LEDs, and the second broad classification 

include the investigation of nanomaterials for applications in white LED technology. 

First, finite-difference time-domain (FDTD) method was employed to calculate light 

extraction efficiency of GaN based light-emitting diode (LED). The effect of microsphere 

diameters and refractive indices on the light extraction efficiency was investigated. The 

results showed that the use of 400-nm anatase TiO2 sphere arrays with refractive index of 

2.5, which is matched with that of GaN, resulted in 2.4 times enhancement in light 

extraction efficiency.  

Second, rapid convective deposition (RCD) method was employed to self-assemble 

microsphere/nanosphere arrays. The sphere arrays were obtained under the tradeoff 

between the electrostatic forces and capillary forces. Suspension concentration and 

deposition speed are the two key parameters to achieve monolayer sphere array 

deposition. Hexagonal-closed spheres arrays with diameter from 1 μm down to 100 nm 

have been obtained by tuning suspension concentration and deposition speed.  The 

comprehensive study of deposition of binary sphere arrays were also carried out and 

binary sphere arrays with various diameters were obtained. The microlens arrays were 

obtained by thermal annealing the binary sphere arrays at 140 0C and the aspect ratio of 

microlens arrays was tuned by adjusting the annealing time.  



 

149 
 

Third, the deposition of anatase TiO2 spheres on the GaN-based LED was carried 

out. The deposition conditions to form monolayer sphere arrays was optimized.  The 

Electroluminescence showed that much high light intensity was obtained for the LED with 

anatase TiO2 sphere arrays than that of planar LED, which resulted in 1.83 times 

enhancement in output power. 

Fourth, FDTD calculation was employed to optimize the thin-film flip-chip (TFFC) LED 

device structure. Quantum well position and cavity thickness were tuned to obtain 

optimum light extraction for the planar TFFC LED. The self-assembly microsphere arrays 

were implemented on TFFC LED, light extraction efficiency of 75% has been predicted by 

tuning refractive index and diameter of spheres as well as the quantum well position and 

cavity thickness, which is much higher than that of planar TFFC LED. Further 

enhancement was achieved by embedding the microsphere arrays in planar PS layer to 

obtain microlens arrays. The use of microlens arrays on TFFC resulted in light extraction 

efficiency of 86%. This finding would result in significant improvement in quantum 

efficiency of LED by using cost-effective method. 

Fifth, the rapid convective deposition method and nanosphere lithography were 

employed to fabricate organic light-emitting diodes (OLEDs) with corrugated structures.  

The novel device structure effectively extracted organic mode, which otherwise would be 

trapped in the devices. The use of defective microlens arrays led to broadband light 

extraction.  

Further optimization was carried out employing FDTD method. We found that grating 

period and grating depth have significant effect on the light extraction efficiency. The 

optimized device structure was obtained by tuning the grating period and grating depth. 

Optimum light extraction of 91% has been achieved, which is 4 times higher than that of 

conventional OLED without grating structures. 
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Finally, the monodisperse TiO2 spheres were prepared by mixed-solvent method; 

ammonia plays an important role in forming the spherical TiO2 particles. The ratio of 

acetonitrile to acetone is the key factor to form monodisperse TiO2 particles. In the 

presence of ammonia, we obtained monodisperse spherical TiO2 particles when the ratio 

of acetonitrile to acetone is 3:1. The size of TiO2 particles can be adjusted by changing 

the precursor’s concentration and reaction temperature. We have also demonstrated that 

these spherical TiO2 particles could be converted from amorphous to anatanse and then 

to rutile by annealed at elevated temperatures. The optical properties of Eu3+-doped TiO2 

was investigated, we found that there are some strong absorption in blue region and emit 

red light. Especially for the anatase TiO2. This leads to potential applications for the Eu3+-

doped TiO2 in high efficiency LED devices. 

9.2 Future Outlook 

The topics in solid-state lighting are receiving significant attentions recently. Solid-

state lighting (SSL) technology has the potential to cut lighting energy usage by nearly 

one half. It is anticipated that SSL will play a significant role in realizing global energy cost 

savings within the next several years. Manufacturing cost reductions are critical to ensure 

wildly spread adoption of SSL. Therefore, seeking cost-effective method to improve the 

quantum efficiency is vital important. The progress achieved in this work is expected to 

advance the field of solid state lighting, in particular for enabling wider adoption of 

microlens arrays methods for improving light extraction efficiency in LEDs. 
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