
Lehigh University
Lehigh Preserve

Theses and Dissertations

2011

Coding for storage: disk arrays, flash memory, and
distributed storage networks
Nattakan Puttarak
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Puttarak, Nattakan, "Coding for storage: disk arrays, flash memory, and distributed storage networks" (2011). Theses and Dissertations.
Paper 1144.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1144?utm_source=preserve.lehigh.edu%2Fetd%2F1144&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

CODING FOR STORAGE: DISK

ARRAYS, FLASH MEMORY AND

DISTRIBUTED STORAGE

NETWORKS

by

Nattakan Puttarak

A Dissertation

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Lehigh University

September 2011

c⃝ Copyright 2011 by Nattakan Puttarak

All Rights Reserved

ii

This dissertation is accepted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

(Date)

Professor Tiffany Jing Li
(Dissertation Advisor)

(Accepted Date)

Professor Tiffany Jing Li
(Dissertation Advisor)

Professor Shalinee Kishore

Professor Meghanad D. Wagh

Professor Liang Cheng
(Department of Computer Science and Engineering)

iii

iv

To my parents, my sister, my brother-in-law, and my niece.

v

vi

Acknowledgements

This PhD work would not have been completed without a great deal of support

and guidance from a number of people. In order to show my gratitude towards

these people, I would like to dedicate this page to them.

First of all, I would like to deeply thank the most important person that

made this dissertation possible, my advisor, Professor Tiffany Jing Li, for

giving me the opportunity to join this research group. With her constant

guidance, expertise, energy and inspiration, she has been my best mentor, and

advisor. I have developed not only my technical skills, attitudes and knowl-

edge, but also unconsciously learned how to attain an optimistic perspective

of life from her. This work would not have been possible without her.

I would also like to express my gratitude to the rest of my committee mem-

bers: Professor Shalinee Kishore, Professor Meghanad D. Wagh and Professor

Liang Cheng who have provided valuable feedback, direction and support in

my research.

I would like to thank Thai Government and the King Mongkut’s Institute

of Technology Lardkrabang (KMITL) for the scholarship which has supported

me throughout the entire graduate program in US.

I would not have gone through my PhD experience without the constant in-

teraction with my fellow lab colleagues and friends. Many thanks to Dr. Peiyu

Tan, Dr. Xingkai Bao, Dr. Kai Xie, Phisan Kaewprapha, Dr. Vitchanetra

vii

Hongpinyo, and Yang Liu for the invaluable discussion, great support, uncon-

ditional help, and friendship.

Last but not least, I would like to dedicate this dissertation to my family.

I am so grateful to my parents, sister, brother-in-law and my niece whom I

could not have asked for anything more, for their support and encouragement

and for always being there for me when I am facing hardships. I will not be

the person I am today without them.

viii

Contents

Acknowledgements vii

Abstract 1

1 Introduction 3

1.1 Disk Drives and The Distributed Data Storages 6

1.1.1 Notations and Definitions of Disk Arrays 8

1.1.2 Backgrounds of the RAID levels and erasure-correcting

codes . 9

1.2 Coding Theory for Data Storages 13

1.2.1 Reed-Solomon (RS) Codes 15

1.2.2 LDPC Codes . 17

1.2.3 Parity Array Codes . 19

1.3 Flash Drives . 25

1.3.1 NOR vs. NAND Flash Memory 27

1.4 Outline . 30

2 MDS codes for disk arrays 33

2.1 Introduction . 33

2.1.1 MDS Codes and Their Properties 34

2.1.2 Literature Reviews . 35

2.2 CGR Codes . 37

2.2.1 Code Construction and Algorithms 37

ix

2.3 Proofs of CGR Array Codes 44

2.3.1 Proofs of an MDS Property of CGR Codes 44

2.3.2 Perfect One-Factorization (P1F) as the Inter-Ring Edges

Shifting Index Assigning Algorithm 52

2.4 Dual CGR Codes . 58

2.4.1 Proofs of Duality of CGR Codes 59

2.5 Connection to B-Codes . 63

2.5.1 Discussion . 67

2.6 Low-Density MDS Array Codes 69

2.6.1 Low-Density CGR Codes 71

2.6.2 Data Recovery via Parity-Check Matrix 76

3 Nested codes with Hierarchical protection for distributed stor-

age networks 81

3.1 Introduction . 82

3.1.1 Background of Luby Transform (LT) Codes 84

3.2 The MDS-LT Nested Codes 87

3.2.1 The Code Construction 88

3.2.2 The Consideration of Hierarchical Nested Erasure Codes 92

3.3 The Horizontal-Vertical Single Parity Check (HVSPC) Codes . 99

3.3.1 Simulation Results and Analysis 101

3.4 Summary . 104

4 Coding for flash memory 107

4.1 Introduction . 107

4.1.1 How Flash Memories work? 108

4.1.2 Literature Reviews . 110

4.1.3 The Number of Writes Consideration 115

4.2 The Word-write Efficient and Bit-write Efficient (WEBE) Codes 116

4.2.1 Problem Formulation and New Concepts 118

4.2.2 Design WEBE Codes for k = 2 122

x

4.2.3 Design WEBE Codes for General k 130

4.3 Flash Marker (FM) Codes . 137

4.3.1 FM Code Construction 139

4.3.2 Simulation Results . 145

4.3.3 Discussion . 148

4.4 Conclusion . 150

5 Summary and Future Works 151

5.1 Data Disks . 152

5.2 The Distributed Storage Networks 152

5.3 Flash Memories . 153

Bibliography 155

xi

xii

List of Tables

1.1 Strengths and weaknesses of standard RAID levels 14

1.2 An example of a simple EVENODD code 20

1.3 An (5× 5) array of X-code . 21

1.4 An (4× 6) array of RDP code 22

1.5 An (4× 8) array of STAR code 23

1.6 Erasure codes for disk storage arrays 25

1.7 The properties and performances of NOR and NAND flash

memories . 30

2.1 B0 . 50

2.2 B1 . 51

2.3 B2 . 52

2.4 B3 . 53

2.5 B4 . 54

2.6 B5 . 55

2.7 B6 . 56

2.8 Update complexity and decoding complexity 69

2.9 The array CGR(K2, C5) code 73

xiii

xiv

List of Figures

1.1 The wireless communication system model 4

1.2 The data read/write model . 5

1.3 The illustration of terminology in an horizontal erasure code . 8

1.4 Optional caption for list of figures 11

1.5 The Reed Solomon (RS) codes for disk arrays 16

1.6 An example of a simple LDPC code with n = 3,m = 2 17

1.7 The HoV ertv,h[r, c] codes. 24

1.8 MOS memory tree . 26

2.1 CGR graphs constructed from base graphs. Left: base graphs

K2 and K4; right: resultant CGR graphs CGR(K2, C5) and

CGR(K4, C7). 38

2.2 Labeling of 3-regular CGR(K2,C5). 40

2.3 Complete graph K6. 43

2.4 A ring of complete graph of (K4, C7) 48

2.5 A Hamiltonian cycle formed by 2 survivors of (K4, C7) 57

2.6 Complete graph K4 after trimming K6 57

2.7 Graph representing a row in H 62

2.8 Graph representing a row in H of the dual code 63

2.9 A super graph represents a CGR(K4, C7) code, where each super

node has 7 nodes and there are 7 edges represented in each inter-

edge. 64

2.10 (a) Structure of CGR code. (b) Structure of B2n+1 code . . . 68

xv

2.11 Optional caption for list of figures 74

2.12 A row-decoding process of the H matrix of CGR(K2, C5) code 78

2.13 A column-decoding process of the H matrix of CGR(K2, C5) code 79

3.1 Two types of stripe layouts of GRID(SPC,EVENODD) codes . 83

3.2 The decoding process when there are u − 1 input symbols are

undecoded . 86

3.3 The basic structure of nested codes with Hierarchical protection

for distributed storage networks 89

3.4 Code array structure where M global disks are all parity disks

constructed from LT codes . 92

3.5 The probability of residual disk errors versus the raw disk failure

rate (Pe). 93

3.6 The ability of the hierarchy nested erasure code to recover failed

disks in time period t. 94

3.7 Comparisons the probability of disk errors between Grid codes

and hierarchy nested erasure codes 95

3.8 The EXIT chart of LT codes and MDS codes 97

3.9 The array structure . 100

3.10 The organization of MDS local code in the array of size x× y 100

3.11 The probability of disk failures after applying the layered coding

scheme. 101

3.12 The probability (in log-scale) of disk failures after applying the

layered coding scheme. 102

3.13 The comparison of HVSPC codes and GRID(STAR,STAR) codes103

4.1 Schematic cross section of flash memory. 109

4.2 A (3, 2)2 flash code that achieves the maximum word-write ef-

ficiency 2. 121

xvi

4.3 A (3, 2)2 flash code (floating code in [46]) that achieves the

maximum bit-write efficiency, but not the maximum word-write

efficiency. 122

4.4 Relation between bit-write optimality and word-write optimality.123

4.5 The proposed (3, 2)q flash code. 127

4.6 An example of a simple (6, 3)q WEBE code 134

4.7 A (6, 3)2 WEBE code that achieve an asymptotically optimal

word-writes . 134

4.8 One example of layout structures of (n, k)q WEBE code 138

4.9 The number of word-writes (5, 3)q and (6, 3)q WEBE codes for

the various value of q. 138

4.10 The relation of s marker states, s spare cells of (N,K, s)q FM

code . 142

4.11 An example of cell-state updates of (15, 4, 1)4 FM code shown

in Example 6 (all cells shown in the parentheses are spare cells). 146

4.12 The number of bit-writes of (N,K, s)q FM codes when the num-

ber of spare-cell units (s) is increased 147

4.13 The number of word-writes of (N,K, s)q FM codes when the

number of spare-cell units (s) is increased. 149

xvii

Abstract

The explosive demand for digital data storage with higher areal density, larger

storage capacity, higher reliability and fault tolerance, easier accessibility,

cheaper management and better scalability, poses tremendous challenge on

the storage industry. Researchers and practitioners have been working hard

to tackle the problem in various aspects from system architecture to signal

processing, coding, control and storage media. This doctoral research explores

emerging coding technologies that will potentially lead to new and better stor-

age systems to meet some of the above demanding goals. In this dissertation,

we consider three important storage systems: hard disk arrays consisting of

few disks, distributed storage networks consisting of hundreds of and thou-

sands of disks, and flash memories. However, the coding for disk storages and

the one for flash memories are different in terms of purposes, functionality,

and technology.

In the case of disk arrays, we propose to develop new erasure codes to

achieve optimal spatial efficiency while requiring only minimal encoding and

decoding complexity. Specifically, we demonstrate the idea of constructing

class of nested graphs, termed complete-graph-of-ring (CGR) graphs, and use

them to form a class of optimal array codes, termed CGR codes. CGR codes

are maximum distance separable (MDS), and hence achieve the best space

efficiency. Systematic and concrete constructing methods for CGR codes and

1

their dual codes are developed. It is shown that these codes not only deliver

optimal erasure protection with low complexity, but they also provide a rich

array of code rates and code lengths, many of which are suitable for storage

systems. The MDS array codes are also presented as the systematic low-

density (sparse) array codes shown by the generator matrix and parity-check

matrix.

For large distributed storage networks, we propose to develop layered cod-

ing strategies to achieve good erasure protection, without causing unbearable

communication overhead. By dividing the entire system in layered clusters

and designing appropriate erasure coding for each layer, we show that a good

trade-off between protection capability, redundancy overhead, communication

overhead, and computational complexity can be achieved. Additionally, the

proposed strategy also provides the flexibility and scalability much need for

large systems.

In the case of flash memories, we propose to develop new coding schemes

to best map cell states to data bits and vice versa. Our goal is to maximize the

writing time in each cell state before a block-erased process is required. The

existing strategies can at the best achieve the “conventional bound” under the

assumption that any one bit update will inevitably cause a cell state rises. We

demonstrate an idea which allows some two-bit updates to be represented by

only one cell state rises (rather than two cell states rise), a direction that peo-

ple have not thought before. We also introduce the concept of word-write effi-

ciency and optimality, and propose new classes of “word-efficient bit-efficient

(WEBE) codes” and “word-optimal bit-optimal (WOBO) codes.” To achieve

flexibility and adaptivity, and further improve the lifespan of flash memories,

we introduce the “flash marker (FM) codes,” which reserve a set of cells for the

most active bits in order to avoid a block erasure. From all of the above, we

have beaten the conventional performance bound and opened new possibilities

for data representation in flash memories.

2

Chapter 1

Introduction

We live in a “YouTube” age, in which an enormous amount of digital informa-

tion is created every day. The explosive surge of data poses a serious demand

for cheaper, better, and more reliable data storage that is portable (e.g. flash

memory) and/or accessible anywhere and anytime (e.g. storage networks).

Today’s data storage industry is undergoing a paradigm shift, from a single

prevailing media (e.g. magnetic hard disks) to a rich variety of media (e.d.

magnetic hard disks, CD, DVD, and solid state storage), and from individ-

ual disks or small arrays of disks to very large storage networks comprising

hundreds or thousands of (distributed) storage nodes. What this implies in

research is the need to invent new storage technologies and improve existing

ones.

The demand for massive storage comes with not just the requirement for

a high storage capacity, but also for a high density (i.e. small space), fast

accessibility, better reliability and fault tolerance, easy management, and good

scalability. In the end, the efficiency of the storage technology is also measured

by the per-unit (dollar) cost to store and maintain digital data, and every

3

effort is made to minimize this cost while maintaining a high availability and

reliability of the system.

Compared to the wireless communication system model as shown in Fig.

1.1, instead of transmitting encoded symbols/information from source to re-

ceiver via various communication channels, in case of data storage, we read/write

(store) information in the same disk for the numerous times. As shown in Fig.

1.2, the error on a storage device might be sporadic or bursty. In the latter

case, the error source may be the classical scratch, the error from read/write

failure, or controller [2].

Figure 1.1: The wireless communication system model

This dissertation is centered around two types of storage devices: hard

disk drives, which are and will remain the dominant large-volume data storage

devices for the foreseeable near future, and flash drives (or flash memories),

which are the dominant portable storage device that is gaining an increasingly

large market for small to medium volumes. The “Coding Theory” is commonly

called upon to improve and achieve the ability to efficiently store, access and

4

Figure 1.2: The data read/write model

transfer information in data disks and flash memories in a reliable way.

Since today’s massive data can not be handled by only a single hard disk,

but rather must rely on the collection of multiple disks, we consider two levels

of hard disk collections: in the small scale, we consider disk arrays, and in the

large scale, we consider data centers (or distributed data storage systems) con-

sisting of hundreds of or thousands of storage nodes, each of which comprising

an array of disks. To achieve reliable and fast-recovery data storage that is

essential to support data availability, persistence, and integrity, we exploit ad-

vanced erasure coding technology. Array codes– a class of linear erasure codes–

play an important role in storage systems, due to their simplicity such that

the encoding and decoding procedures are performed only by exclusive-OR

(XOR) operations. Specifically, (array) codes that achieve the maximal spa-

cial efficiency or the Singleton bound are called maximum distance separable

(MDS) (array) codes. We propose to search for new directions and new ways

to construct MDS array codes. We will look specifically into constructions re-

lating to graph and set theory. Our research goal is to achieve MDS with rich

choices of code lengths and rates, and with minimal encoding and decoding

complexity possible.

Flash drives are a young technology but potentially very promising. They

5

have desirable properties including high data density, fast reading time, phys-

ical robustness (can withstand drops) and small sizes. Hence, they have found

wide application in portable devices such as MP3 player, mobile phones, dig-

ital cameras, or computer laptops. Compared to hard disks and optical disks

where the media provide two distinctive states to represent (i.e. store) 0s and

1s, flash memories have many levels of cell states that can be used to represent

digital data. The state can be easily increased by injecting an electron into

the cell level, but to decrease the cell state level one must erase the entire

block and reprogram all the cells, a procedure called black erasure which is

both costly and slow [45]. Hence, in order to achieve the full efficiency of flash

memories, the proposed research targets developing strategies to maximize the

limited life cycle of flash memories, namely the life span, or to maximize the

number of writing before the erasing process is needed. Here we will investi-

gate new ideas and ways to efficiently map information bits into cell states and

to represent the writing levels when a charge is added (written) into a flash

memory.

1.1 Disk Drives and The Distributed Data Stor-

ages

Since a huge amount of information is stored and transferred among many

storage and data centers, data loss due to disk failure (i.e. erasure) is a major

issue that may affect the reliability of this system. Reliability and performance

of storage systems are a big concern, and are an important aspect of the

reliability and performance of the overall cyber infrastructure. A recent trend

in storage is that, instead of using a very expensive, high performance, and

large capacity disk storage to store voluminous data, a group of several cheaper,

low-density and lower capacity disks are combined into one logical unit called

6

a “disk array”. Disk arrays provide a cost-effective means to mitigate the

problem of data loss, since they contain multiple redundant disk drives to

address the fault tolerance. There are several key aspects in this multiple disk

storage mechanism as mentioned in the following.

• Reliability: fault tolerance and robustness, which must be built into the

system to recover/tolerate disk failures. If there is a failure, the system

is not reliable.

• Availability: the ability for the system to work in times of individual

disk failure. When a system can continue to work even in the presence

of a failure of one or more disks, the system is called to be available.

• Scalability: the ability to gracefully support a system when a data center

grows in size or when two data centers merge.

• Flexibility: the ability to be arranged or configured in different ways to

satisfy different system requirements.

• Capacity: the ability to handle thousand of disks within the same net-

work to collectively provide massive storage capability.

• Speed: time efficiency in accessing required information. The faster the

access speed, the better the delay time should be minimized as much as

possible.

The well-known disk arrays used in industry are the Reliable/Redundant

Arrays of Inexpensive/Independent Disks (RAID) system was proposed by

Patterson, et al. in 1988 [17]. RAID systems can offer fault tolerance and a

higher throughput level than a single hard drive. In addition, RAID provides

a combination of outstanding data availability, highly scalable performance,

high capacity, and recovery.

7

1.1.1 Notations and Definitions of Disk Arrays

For clarity and consistency of the use of common terms in storage and erasure

codes, we express and state all the definitions here to avoid confusion. Follow-

ing the convention in [9], [11], and [39], the terminology used throughout this

dissertation is represented in Fig. 1.3, which shows a horizontal erasure code.

Figure 1.3: The illustration of terminology in an horizontal erasure code

Data is a chunk of bytes or blocks containing unmodified user data, while

parity is a chunk of bytes or blocks that hold the redundancy generated from

user data (by erasure code, typically XOR operations). The element is a unit

of data or parity which corresponds to a bit within a code symbol. The stripe

is a set of data or parity elements that can be referred as a codeword in the

coding theory terminology. In addition, a set of elements in a stripe stored in

the same disk is called a strip, which is known as a code symbol. The disk

array system is a collection of a “pile” of multiple stacks that fills the disk’s

capacity. Note that a stack is a collection of many stripes. A horizontal code

is an array code in which data and parity elements are in the same stripe but

in the separate strip as shown in Fig.1.3. A vertical code is an array code in

which each strip contains both data and parity within a stripe, or there are

both data and parity strips stored in one disk.

8

1.1.2 Backgrounds of the RAID levels and erasure-correcting

codes

RAID or the Reliable/Redundant Arrays of Inexpensive/Independent Disk

system is now an industry standard. It is a popular classification for disk arrays

[32] which was first introduced as RAID0 in the late 1980s. Since then there

are many versions of RAID using techniques based on replication and erasure

coding that have been introduced to allow the recovery of disk failures and to

provide high reliability. Instead of providing only a single disk, RAIDs employ

an array of independent disks, accessed in parallel to collectively achieve a

high throughput.

• RAID0: This does not provide redundancy or any fault tolerance, but

only improve performance by providing additional storage and maximiz-

ing the access speed. The technique used in this RAID0 is solely on

striping for load balancing purposes. The probability of disk failures

increases when the number of disk drives increases.

• RAID1: Data is written and stored in the redundant disk known as

mirroring disk. Whenever data is written into one disk, the same data is

also written into a redundant one, so that it uses twice as many disks as

a non-redundant disk array. This offers the benefit of reliability at the

cost of doubling the storage space.

• RAID2: This RAID can tolerate one erasure using a Hamming code.

Three parity disks are required to protect four data disks. So, its redun-

dancy is one less than mirroring.

• RAID3: This RAID employs single parity check coding scheme that

can recover 1 disk failure. However, in this level data is conceptually

interleaved bit-wise over the data disks and a single parity disk is added

9

to tolerate any single disk failure. From Fig.1.4(d), the parity disk stores

the XORing data from all data disks; for example, P1 = D1⊕D6⊕D11.

• RAID4: This can handle one erasure by using a block-interleaved parity

disk array which is similar to the bit-interleaved parity disk array but

data is interleaved in blocks rather than in bits. So, in Fig.1.4(e) each

data D and parity P is represented in block. The size of these blocks is

called the striping unit. Parity is easily computed by XORing the new

data for each disk. It is similar to RAID3 in that P1 = D1⊕D6⊕D11,

but since it is in a larger size, this parity disk may easily become a

bottleneck.

• RAID5: The fault tolerance is covered by the capacity of one disk among

N disks, but this level reduces the problem of a bottleneck in RAID4 by

using the block-interleaved distributed parity disk array. The advantage

of this method is that data are distributed over all of the disks rather

than over all but one, so it allows all disks to participate in read/write

operations. As shown in Fig.1.4(f), a parity disk P0 is computed by

XORing data over stripe units D1, D5, D9, and D13. This property also

reduces disk conflicts in the large requests. Even when a single disk fails,

data can still be recovered from the parity information that reside in the

rest of the disks.

• RAID6: This RAID level provides fault tolerance up to two erasures

by providing P + Q redundancy. It is different from RAID5 as it has

two additional disks to recover the loss of two disks. This RAID level

utilizes several different types of erasure coding techniques such as Reed-

Solomon (RS) code, EVENODD code, or X-code. However, each code

has its own limitation which will be discussed later.

To summarize, RAID0 solely provides an organization of all stripes on the

disks in order to balance load for performance purpose. RAID1 can protect one

10

(a) RAID0 (b) RAID1

(c) RAID2 (d) RAID3

(e) RAID4 (f) RAID5

(g) RAID6

Figure 1.4: The structure of disk arrays of the standard RAID technology

11

erasure by using a ”mirroring” technique, whereas RAID2, RAID3, and RAID4

can also protect one erasure but using various techniques of coding. RAID6

can tolerate two erasures by providing double parity disks constructed from

special designed parity codes such as EVENODD code, or Reed Solomon (RS)

code. To achieve a highly available and reliable RAID system, the technique

of bitwise parity checking is heavily exploited to correct errors and tolerant

disk failures.

RAID performance is evaluated from the update complexity and the num-

ber of check disk overheads [33]. The update complexity refers to the number

of XOR operations required for encoding and decoding if there is at least one

disk failure. Additionally, the encoding/decoding complexity is also used to

measure the complexity of the code construction by monitoring the number of

XOR operations the code uses when encoding and decoding.

The Markov chain reliability models are also used to estimate the mean

time to data loss (MTTDL). To compute the MTTDL , two important param-

eters: (1) the mean time to failure (MTTF), and (2) the mean time to repair

(MTTR) which is the expected time to recover a system from a failure, are

used based on the reliability model [32]. Let the disk failure rate be λ and the

repair rate be µ, so that MTTR=1/µ and MTTF =1/λ. For example, in the

single error-correcting RAID, where there are nG disk-array groups each with

G data disks and 1 check disk, we can compute the MTTDL as follows [34]:

MTTDL =
(MTTFdisk)

2

nGG(G+ 1)MTTRdisk

(1.1)

The strengths and weaknesses of the afore-mentioned standard RAID levels

are shown in Table 1.1. There are special RAIDs called “Nested (Hybrid)

12

RAIDs” [18], which provide redundancy by combining two or more of the

standard levels of RAID. For example, RAID 0+1 (or RAID 01) is used for

both replicating and sharing data among disks by building from many chunks

of RAID0 and then mirroring (RAID1), and RAID 1+0 (or RAID 10) provides

fault-tolerance by creating a striped set from a series of mirrored drives, but

it still has the same cost problem as RAID1. The difference between RAID 01

and RAID 10 is the location of RAID system: RAID 01 is a mirror of stripes

while RAID 10 is a stripe of mirrors [18]. Moreover, the RAID parity (or

RAID s) provides an error-protection scheme called “parity” by simple XOR

operations. Although, this special RAIDs may better fault-tolerance than the

standard ones, they also increase the complexity for implementation.

1.2 Coding Theory for Data Storages

This section will investigate the practical and popular existing erasure codes in

disk storages for tolerating disk erasures/failures. An erasure code is designed

to recover the erasures (i.e. bits loss or erased) rather than to correct errors

(i.e. bits altered or flipped). The key property of an (n, k) erasure code, which

encodes k parts of source data to a total of n parts of encoded data and which

guarantees to correct e erasures, is that the original k parts of data can be

reconstructed from any (n−e) parts of encoded data. The number of erasures

that can be recovered is upper bounded by e ≤ dmin − 1, where dmin is the

minimum distance of the code.

The optimal (n, k) erasure codes have the property that any k out of n

coded bits/data are sufficient to recover the original message. An optimal

erasure code is known as a maximum distance separable (MDS) code, since its

minimum distance is dmin = n−k+1, the largest possible distance promised by

the theory. In this work, we study 3 types of erasure codes that are relevant to

13

RAID Levels Strengths Weaknesses
RAID0 Highest performance No data protection, any

disk fails results in data loss
RAID1 Very high performance and

data protection, very mini-
mal penalty on write perfor-
mance

High redundancy cost over-
head, wasteful in storage ca-
pacity

RAID2 Previously used for RAM
error environments correc-
tion (known as a Hamming
Code) and in disk drives be-
fore the use of embedded er-
ror correction

No practical use; Same per-
formance can be achieved
by RAID3 at lower cost

RAID3 Excellent performance for
large, sequential data re-
quests

Not well-suited for
transaction-oriented net-
work applications; Single
parity drive does not sup-
port multiple, simultaneous
read and write requests

RAID4 Data striping supports mul-
tiple simultaneous read re-
quests

Write requests suffer from
same single parity-drive
bottleneck as RAID3 and
RAID5 offers equal data
protection and better
performance at same cost

RAID5 Best cost/performance
for transaction-oriented
networks; Very high per-
formance, very high data
protection; Supports multi-
ple simultaneous reads and
writes; Can also be opti-
mized for large, sequential
requests

Write performance is slower
than RAID0 or RAID1

RAID6 Allows up to two hard
drives to crash, high avail-
ability solutions

Require a minimum of 5
drives, servers with large ca-
pacity requirements

Table 1.1: Strengths and weaknesses of standard RAID levels

14

data storage networks which are Reed-Solomon (RS) codes, low-density parity

check (LDPC) codes, and array codes.

1.2.1 Reed-Solomon (RS) Codes

Reed-Solomon (RS) codes are the most well-known and the most used MDS

codes in communications. They achieve the Singleton bound with equality,

dmin ≤ n − k + 1, and are therefore MDS. RS codes were first introduced in

1960 by Reed and Solomon. This code construction is based on Galois Field

(GF (2W)) operation for W is positive integer. RS codes provide a wide range

of code rates from 0 to 1. However, Galois Field arithmetic is rather complex,

especially for large fields. RS codes are generally considered not very scalable.

A simplified construction [19] of RS codes for data storage is described in

the form of Vandermonde matrices assuming there are m data symbols and e

erasures (where m + e ≤ 1 + 2n). The length-(m + e) codeword is computed

by multiplying the length-m vector of the data by an m-by-(m + e) coding

matrix. In addition, this code can be made systematic by simple row reduction

of the coding matrix, which diagonalizes the initial m-by-m portion of the

matrix. So, the encoding matrix can be constructed by an m-by-m identity

matrix followed by an m-by-e checksum computation matrix. Note that a

Vandermonde matrix is a type of matrix that has a geometric progression in

each row as shown below.

1 α1 α2
1 · · · αn−1

1

1 α2 α2
2 · · · αn−1

2

1 α3 α2
3 · · · αn−1

3
...

...
...

. . .
...

1 αm α2
m · · · αn−1

m

15

Further, an Vandermonde matrix has the property that any square subma-

trix has full rank and is invertible.

Figure 1.5: The Reed Solomon (RS) codes for disk arrays

For disk array application that targets n data disks and m parity disks

such that the entire pool of (n+m) disks can tolerate any m disk failures, the

RS code must be defined in GF (2W) where 2W ≥ n + m. An illustration is

shown in Fig. 1.5.

RS codes in general require complex GF arithmetics. Although, the Van-

dermonde matrix representation makes encoding and decoding of an RS code

a little simpler than otherwise, it nevertheless remains a dense code. Hence,

every time fresh data written into the disks or data gets modified, many asso-

ciated disks need to be read in order to compute the new parity. This causes

severe impairments to the computation load and especially the input/output

(I/O) throughput of the system.

16

1.2.2 LDPC Codes

A class of linear block codes called the low-density parity check (LDPC) code

was first introduced by R. Gallager in the early 1960s [20]. The codes are con-

structed using bipartite graphs and promise performance closed to the Shannon

limit. In a bipartite graph representation, a set of vertices represented columns

in an LDPC parity check matrix and another set represent rows. The ith left

vertice (variable nodes) is linked to the j th right vertice (check nodes), if and

only if there is “1” in the j th row and ith column of the parity check ma-

trix. A good LDPC code usually require a large girth, g, which is the smallest

cycle in the graph. A large girth improves the decoding performance of the

sum-product algorithm.

Figure 1.6: An example of a simple LDPC code with n = 3,m = 2

LDPC codes can be encoded and decoded by using simple XOR operations.

LDPC codes are shown to be asymptotically optimal codes which means that

they achieve the Singleton bound when n → ∞. However, for small values of

n, such as a few or a few tens, an LDPC code is far from MDS. An example of

a bipartite graph describing a simple LDPC code is shown in Fig.1.6. There

are n = 3 data disks d1, d2, and d3, and m = 2 parity disks which are computed

by XORing the data disks. The parity p1 is computed by XORing d1, d2, and

d3, while the parity p2 is computed by XORing d2 and d3. The corresponding

parity matrix is shown below.

17

H =

[
1 1 1 1 0

0 1 1 0 1

]

This parity check matrix, H, has dimension m× (m+ n) for a (5, 3) code.

However, for a matrix to be called low-density, the number of 1’s in the matrix

should be sparse. In general, there are two types of LDPC codes that have

been described in the academic literature.

1. Regular LDPC Codes: A LDPC code is called (wc, wr)-regular if a parity

matrix H contains exactly wc 1’s per column and wr = wc
n

m
1’s per

row, where wc ≪ m.

2. Irregular LDPC Codes: If the number of 1’s per row or per column is

not constant, the code is called an irregular code.

Irregular LDPC codes usually outperform regular LDPC codes for very

large code lengths.

The code rate of the LDPC code is R=
n

n+m
. The overhead factor (f)

is defined as the average number of fn of disks that need to be accessed to

reconstruct the n lost data disks (note that f > 1). A carefully optimized

irregular LDPC code can become space optimal (f → 1), when the size of n

goes to infinite (n → ∞).

18

1.2.3 Parity Array Codes

Recently, a class of very promising codes based solely on XOR operations,

while maintaining good storage efficiency, are introduced when carefully de-

signed their performances can be optimal or nearly optimal. Thus, these codes

are more efficient and ubiquitous than the RS code in terms of computation

complexity.

Definition 1.2.1. An array code is an erasure-correcting code that is solely

computed by simple binary XOR operations. The information and parity(redundant)

bits are placed in a two-dimensional array of size (m× n) rather than a one-

dimensional vector.

In an array code, data- and parity-bits are usually represented in a 2-

dimensional array. Each column can be viewed as a disk, while each row can

be viewed as a strip of the disk. There are 2 types of parity array codes: (1)

the horizontal parity array codes where disks store all data or all parity, and

(2) the vertical parity array codes where all devices store both data and parity.

The vertical parity array codes are more preferable since they have symmetry,

such that encoding/decoding complexity is distributed evenly across the disks.

An example of an array code with one parity row that can recover from any

two column erasures is given below. The first row contains pure information

bits and the second row contains parity bits that are computed from the infor-

mation bits as specified. Hence this code is a vertical parity array code that

involves 4 disks altogether with a code rate of
1

2
, and can tolerate 2 concurrent

disk failures.

a b c d

c⊕ d d⊕ a a⊕ b b⊕ c

19

For the decoding process, for example, if disk (column) 1 and 3 are lost,

recovering data a and c can be done by the following computations.

a = d⊕ (d⊕ a) (1.2)

c = b⊕ (b⊕ c) (1.3)

EVENODD Codes

EVENODD codes are known as the “grandfather” of array codes introduced

in 1995 [7]. This code is a horizontal MDS array code which can protect

and recover 2 erasures. The code word is two-dimensional horizontal and

geometrical array with two additional parity columns: one horizontal strip

and the other along the diagonals through the stripe. However, the number of

data columns (p) needs to be a prime number. The number of rows is r=p−1,

and the strip count is n= p + 2. The layout example for p = 3 in Table 1.2

shows the basic construction. The code is a (5, 3) MDS code defined by a 2×5

array.

d0,0 d0,1 d0,2 P0 Q0

d1,0 d1,1 d1,2 P1 Q1

Table 1.2: An example of a simple EVENODD code

The first parity is computed by Pi =
⊕p−1

j=0 di,j, where 0 ≤ i ≤ p − 2. To

compute the second parity (Q), we first compute the syndrome (S), which is

Si=
⊕p−1

j=0 dp−1−j,j, and then Qi=S ⊕
⊕p−1

j=0 di−j,j.

20

X-Codes

The X-code was presented as a nother simple optimal MDS code. This code

is a vertical parity array code constructed by m = 2, n = p− 2, where p is the

prime number. The (n+ 2)× p code array is represented by n rows of data, 2

rows of parity, and p=n+ 2 columns. So X-code can correct 2 erasures [8].

An example of p = 5 is given in Table 1.2.3. The left plot shows the pattern

of computing the first row of parity elements, while the right plot shows the

second row of parity elements. Each parity element is represented by an upper

case letter and such a parity element is computed by XORing the set of data

elements labeled by the corresponding lower case letter.

(a) The first row of parity
elements

a b c d e
b c d e a
c d e a b

D E A B C
* * * * *

(b) The second row of
parity elements

a b c d e
e a b c d
d e a b c

* * * * *
C D E A B

Table 1.3: An (5× 5) array of X-code

From the construction of X-code, it is clear that two parity rows are in-

dependently obtained, and each information bit affects only one parity bit in

each parity row. Thus, all parity bits depend solely on information bits, but

not from among themselves. The update complexity is exactly 2 since a single

data bit needs only updating in two parity bits [8].

21

The Row-Diagonal Parity (RDP) Codes

The row-diagonal parity (RDP) code [37] is proposed as a double fault tolerant

array code, which like the X-code, is also a variation of the EVENODD code.

The code is described by a (p− 1)× (p+ 1) array, where p is a prime number

greater than 2. It provides the last two columns as two parity columns, so the

first p− 1 columns contain information bits.

(a) The first column of par-
ity elements

a a a a A *
b b b b B *
c c c c C *
d d d d D *

(b) The second columns of
parity elements

d c b a * D
c b a * d C
b a * d c B
a * d c b A

Table 1.4: An (4× 6) array of RDP code

Table 1.4 illustrates an example layout to construct two columns of par-

ity of (4 × 6) RDP code. The first and second parity columns are named as

the row parity column and the diagonal parity column, respectively. Also,

each parity element is represented by an upper case letter and such a parity

element is computed by XORing the set of data elements labeled by the cor-

responding lower case letter. In this code, the missing diagonal does not have

a corresponding diagonal parity.

Array codes that can correct more than 2 erasures

For large systems, array codes which can handle more than two erasures are

required to improve the reliability of disk storage. Here are some examples

that are MDS or nearly MDS codes.

22

1. STAR codes: This MDS code is an extended version of EVENODD codes

that protects 3 erasures [35].

a * d c b * * A
b a * d c * * B
c b a * d * * C
d c b a * * * D

Table 1.5: An (4× 8) array of STAR code

The first two parity columns are computed the same as the ones of

EVENODD codes by using the syndrome, so without the third parity

column the STAR codes are just the EVENODD codes. The third parity

is computed by XORing the information symbols within the diagonal line

of slope -1 as shown in Table. 1.5.

2. WEAVER codes: This code is a vertical parity array code that can tol-

erate higher failures. There exist specific realizations of WEAVER codes

of m = 2, n = 2 and m = 3, n = 3, which tolerate double and triple

disk failures, respectively, and are MDS. However, WEAVER codes in

general are not MDS codes.

3. HoVer codes: This code is a combination of horizontal and vertical parity

array code. The general parameters of HoVer codes are HoV ertv,h[r, c],

where t is the number of fault tolerance this code can handle, v is the

number of coding rows (vertical parity), h the number of coding columns

(horizontal parity), r is the number of data rows, and c is the number

of data columns. All parameters are illustrated with the array structure

in Fig. 1.7. Even through, this code is not an MDS code, it is still

interesting as it provides good flexibility in code design. This code is

also known as turbo product code or block turbo code [9].

23

Figure 1.7: The HoV ertv,h[r, c] codes.

4. B-Codes: A novel technique to construct an MDS array code using a

perfect 1-factorization (P1F) of the graph theory is introduced and pro-

posed in [8]. This code has dimension n × 2n, where n is an integer

greater than 2. The first n − 1 rows store information bits, while the

bits in the last row are parity bits. Because of the property of P1F

technique, any two information bits are not used to compute any pair

of parity bits and result in each information bit is protected by exactly

2 parity bits contained in other columns. This code reaches the optimal

update complexity.

B-codes achieve the Singleton bound, so they are optimal in terms of

space efficiency. There are a lot of researches inspired by this code and

they are presented in [15], [53], [40], to name but a few.

Table 1.6 summarizes these three types of important erasure codes: RS

codes, LDPC codes, and array codes.

24

Erasure code Characteristics
1. Optimal MDS code, space efficient
2. Flexible code length and rate since it
works for any n and m

Reed-Solomon Codes
3. Use GF (Galois field) operations, compu-
tationally complex, and hence expensive
4. Dense code, so I/O throughput can be
poor
1. Binary encoding/decoding
2. Good performance at long code lengths

LDPC Codes
3. Less structural (hardware implementation
can be tricky)
4. Performance is far from optimal at short
lengths (storage systems use short erasure
codes)
1. Well structured
2. Space efficient

Array Codes
3. Binary encoding and decoding (suitable
for hardware implementation)
4. There are not many MDS array codes, and
most of them correct only 2 to 3 erasures

Table 1.6: Erasure codes for disk storage arrays

1.3 Flash Drives

The past decade has witnessed an explosive growth in semiconductor memo-

ries, especially the flash memory, driven by cellular phones and other electronic

portable devices such as GPS and MP3 players. The semiconductor memories

are divided into two branches which are based on the complementary metal-

oxide-semiconductor (CMOS) technology as shown in Fig. 1.8.

This section will explain the technology of flash memories, an important

class of solid-state memory, and their current trend in industry fields. Flash

25

memory is a particular type of EEPROM or Electronically Erasable Pro-

grammable Read Only Memory. It is a non-volatile memory that maintains

stored information without requiring a power source. Compared to the hard

disks and optical disks which provide two distinctive states to represent 0s

and 1s, flash memories have many levels of cell states that can represent the

digital data. To increase the cell state level can be achieved by injecting the

electron into the cell level is easy, but to decrease its level is both costly and

slow since it has to erase the whole block. Furthermore, frequent block erasing

can deteriorate the life time of flash memories since the overall life time is

limited by the counting of erase operations.

Figure 1.8: MOS memory tree

There are 2 different types of flash memories in terms of logical technologies

to map data: NAND and NOR flash memories which are described in the

following.

• NOR Flash: In NOR flash memory, a standard MOSFET is resembled

in each cell and each cell has two gates which are stacked vertically. The

common drain connection called bit line is connected to each cell and

can be read directly in order to fast read for the fast program execution.

26

• NAND Flash: The memory cells are connected in series and also con-

nected to the bit line and source line through two selected transistors in

order to increase capacity and decrease cost of flash memory. It has a

smaller cell size and lower die cost than NOR flash [44].

In both types, write operations can only clear bit or change their cell value

from 1 to 0. To set bit or change their cell value from 0 to 1 needs to erase

an entire block of memory [51]. Since each bit in a NOR flash is cleared once

per erase cycle, it suffers from high erase times. Unlike a NOR flash, a NAND

flash is not directly addressable by the processor. It is accessed by a page (or

block). However, after a page is full, an erase cycle must be required. Because

of this properties, the storage management techniques for each type of flash

memory are different from the magnetic disks.

1.3.1 NOR vs. NAND Flash Memory

There are some difference between NOR and NAND flash memories because

of their performance and different using propose. NOR flash is very similar to

a Random Access Memory (RAM) device and has enough address pins to map

its entire media which allows for easy access to each and everyone of its bytes.

NAND flash has more complicated I/O interface since it is interfaced to each

other serially between bit line that may vary from one device to another or from

vendor to vendor. The basic cell in NAND flash is a MOSFET transistor with

a floating gate which tunnels a charge during write operations and removes

during erasing operations. NAND Flash, which was designed with a very small

cell size to enable a low cost-per-bit of stored data, has been used primarily as

a high-density data storage medium for consumer devices such as digital still

cameras and USB solid-state disk drives.

27

NOR flash is suitable and ideal for low-density, high-speed read applica-

tions, which are mostly read only, so it is often referred to as code-storage

applications. Because code can be directly executed in place, NOR is ideal for

storing firmware, boot code, operating systems, and other data that changes

infrequently. On the other hand, NAND flash is developed for higher-density

data storage, and achieves a smaller cell size that leads to a smaller chip size

and lower cost-per-bit since it can connect eight memory transistors in a se-

ries. Thus, NAND flash systems perform faster write and erase operations by

programming blocks of data, so that it is ideal for low-cost, high-speed pro-

gram/erase applications and usually referred to as data-storage applications

[31].

However, to increase the performance and reliability of flash hardware, the

well-designed software strategies are effectively applied. The proposes of flash

memory management software include [51]:

1. Avoiding data loss: The most important goal in managing flash memory

is to assure that no data is lost due to an interrupted operation or the

failure of device. Several techniques can achieve this goal, for example,

(i) rewrite operations: new data can be written and verified before the

old data is deleted, so that neither power loss nor other interruption

can result in the loss of both old and new data, and (ii) bad block

management: this is the software management that can prevent data

being written to failed memory blocks since it can check which blocks

are bad and avoid writing to those block from the beginning. Moreover,

at the nearly the end of flash memory life, the good software management

can implement a fruitful strategy such as placing the entire flash unit in

a read-only state, thereby avoiding data loss when the number of block

errors exceeds a predefined number [51].

2. Improving the effective performance: There are two ways to improve the

28

performance which are compaction and multi-threading. Compaction

identifies which block is obsolete or full that can be erased, then copies

any valid data to a new location before erasing the blocks to make them

available for reuse. Multi-treading system helps to organize read oper-

ations by allowing high-priority read requests to interrupt low-priority

maintenance operations. It can reduce read latency by orders of magni-

tude compared to a single-thread solution.

3. Maximizing flash memory life span: The Wear-levelling algorithm is a

famous technique that can prevent overuse of memory blocks. It can

monitor block usage to identify high-use areas and low-use area contain-

ing static data, then swap the static data into the high-use areas. Also,

it balances write operations across all available blocks by choosing the

optimal location for each write operation.

The decision between NAND and NOR memory will ultimately depend on

both technical and pricing requirements of the device being built. Whatever

type or combination of flash is used, it is prudent to include memory man-

agement software to prevent data loss while improving the performance and

maximizing the lifespan of the memory [2].

We can conclude the properties and performances of both NOR and NAND

flash memories in Table 1.7.

In data storage applications, NAND flash memory is often used because of

its characteristics we described above. However, the major drawback/limitation

of NAND flash memory is that it has the limitation in updating (writing) times

so it degrades the lifespan of flash memory. In this work, we will apply coding

techniques to solve this problem. The objective is to maximize the number of

writes before a memory needs to be erased and reset the whole block to be

ready to write a new data again.

29

NAND Flash NOR Flash
core cells connected in series (nor-
mal 8 or 16 cells)

core cells connected in parallel
(common ground)

high density lower density
medium read speed high read speed
high write speed slow write speed
high erase speed slow erase speed
an indirect or I/O like access
(good for data storage)

a random access interface (good
for code execution)

Table 1.7: The properties and performances of NOR and NAND flash memo-
ries

1.4 Outline

In the rest of this dissertation, we will discuss coding techniques for disk arrays

in Chapter 2 and for distributed large-scale data centers in Chapter 3, and for

flash memory are in Chapter 4.

In Chapter 2, we propose a new class of optimal MDS codes constructed

from graphs which can achieve the Singleton bound and which are based only

on simple XOR operations. These codes termed complete-graph-of-ring (CGR)

codes can recover the maximal disk failure with minimal spare disks and are

particularly useful for disk arrays. Additionally, these codes can be considered

as a modification of LDPC codes.

Extending the MDS coding results developed in Chapter 2 as well as those

proposed in the literature, next in Chapter 3, we tackle the data protection

and disk recovery issue in the context of large data centers. Accounting for the

possibility of splitting a data center and merging two data centers, we propose

layered protection, and develop a nested coding architecture with hierarchical

protection for distributed storage networks.

30

Chapter 4 presents and discusses coding schemes for flash memories. The

goal is to improve their life cycles and maximize the number of writing times

before a block erasure. Both word-efficient bit-efficient (WEBE) codes and

flash marker (FM) codes are introduced and analyzed in terms of the number

of bit-writes and the number of word-writes they can guarantee before the

block erasure is needed. We present the new code design idea, discuss its

feasibility and efficiency, and estimate its performance.

Chapter 5 concludes this dissertation and discusses the future industrial

trends of both disk storages and flash memory. In the research work, many

coding techniques have been studied, improved, and generated in the pipeline.

We can extend our work and develop our codes for various applications.

31

32

Chapter 2

MDS codes for disk arrays

This chapter presents practical coding techniques for data disks in order to

combat disk failures or erasures. We investigate various types of array codes,

due to their simplicity and high I/O throughput. Since maximum distance

separable codes are space optimal, we focus on graph constructions of MDS

array codes or nearly-MDS array codes. We also study MDS array codes in

the form of “low-density (sparse)” matrices and propose the algorithm for

encoding/decoding.

2.1 Introduction

Storage of digital data has become a necessary part of our life in today’s

information age. Huge volumes of data information are created, transferred,

and stored everyday. Reliable and fast-recovery data storage is essential to

support data availability, persistence, and integrity. Various techniques for

increasing storage reliability have been actively exploited, including powerful

33

error correction codes applied inside each block/sector of a disk to protect

against bit errors or bit loss, and, more recently, efficient erasure codes applied

between disks (or blocks and sectors) to protect against a disk (block/sector)

failure [3]-[13]. The latter, generally referred to as redundant/reliable arrays of

inexpensive/independent disks, or, RAID, is becoming an important industrial

standard [16]. A key technical challenge of RAID is the design of efficient

erasure codes that can recover a target number of device failures with minimal

redundancy, namely, maximum distance separable codes. An array code is not

always MDS, but an MDS array code is particularly desirable for combating

data loss caused by disk failure in disk arrays. The properties of MDS codes

will be discussed later in the next section.

2.1.1 MDS Codes and Their Properties

Space-optimal or MDS codes have several desirable properties.

Theorem 2.1.1. [35] Consider an (n, k) error correcting code that encodes k

message (data) symbols to n codeword symbols, where n ≥ k. Such a code

can usually tolerate a loss of e symbols during transmission, where e ≤ n− k.

When e=n − k, the code meets the Singleton Bound, and is called an MDS

code.

Theorem 2.1.2. [36] An (n, k, d) code C with a generator matrix G = [I, A] ,

where I is a rank-k identity matrix and A is a k × (n− k)-matrix, is an MDS

code if and only if every square sub matrix of A is nonsingular.

Theorem 2.1.3. Let C be an (n, k) linear code with minimum distance dmin,

then the following statements are equivalent:

34

1. C is an MDS code.

2. The code C ′ dual to C is an MDS code.

3. dmin = n− k + 1.

4. The code can correct any set of e = n− k erasures.

5. Any k columns of the k-by-(n − k) generator matrix for C are linearly

independent.

6. If a generator matrix for C is in the standard form [I, A], then every

square submatrix of A is nonsingular.

7. Given any dmin coordinate positions, there is a (minimum weight) code

word whose non-zero entries are in precisely these positions.

The MDS codes achieve the largest possible minimum distance (dmin)

among linear codes of the same size, and therefore provide the best data loss

recovery capability within a given code size.

2.1.2 Literature Reviews

We provide a quick review of the existing array codes. More detailed discussion

can be found in Chapter 1.

The EVENODD codes [7] are the first and the most well-known class of

MDS array codes that have inspired many subsequent designs of good array

codes. The perspective of this code is to overcome the drawback of traditional

array codes which is the linear increase of the update complexity as the number

of columns increases. EVENODD codes and their generalizations are designed

35

based on independent parity columns resulting in a more efficient information

update.

However, EVENODD codes have only two logic parity symbols, which

means that they can recover up to two disk failures, while the generalized

EVENODD code can tolerate three disk failures. Hence, the general question

arises as whether it is possible to develop MDS array codes with larger erasure

correcting capability and with similar low complexity. X-Codes developed in

[8] provides a good answer. X-Codes boast a simple geometrical structure

and an update complexity of exactly 2. Since the distance of X-codes is 3,

it can recover up to 2 disk failures with lower complexity. Another class of

MDS codes, named B-Codes, and their dual codes [3] also have distance 3 and

their update complexity is also optimal, which is exactly 2. Additionally, a

perfect one-factorization (P1F) of complete graphs is a technique to construct

B codes. Both P1F technique and a graphical structure make B-code simply to

implement and easy to construct an array code. Efficient decoding algorithms

are introduced for both erasure and error correcting for B-codes.

There are some array codes that can tolerate more than 3 erasures. These

codes [7, 6, 8, 3] have parity in either horizontal or vertical positions. J. Hafner

also introduced the code which has parity bits in both horizontal and vertical

positions, termed HoVer codes [9]. The HoVer codes proposed by Hafner can

tolerate more than 3 erasures, but unfortunately they are only approximately

MDS codes.

This work is inspired by the beauty of graph representation of these array

codes, especially B-codes, and their MDS properties. We are interested in

finding answers to the following questions. What kind of graphs would lead

us to MDS codes? What would be the conditions and the properties of such

graphs? How could we construct an MDS code from such a graph? The

experiments in [9] suggest that some code settings are MDS codes, but some

36

are not, while [3] successfully constructs the code based on a specific setting

of graphs. Here, we explore the possibility of finding generalized ideas for the

array codes based on graph structures as well as looking for systematic ways

to construct such codes. Our study results in a new class of MDS codes from

a new class of graphs in the next section.

2.2 CGR Codes

In this section, we propose a new erasure code construction technique to re-

duce disk failures and increase the capability of fault tolerance. The pro-

posed method systematically builds MDS codes from an efficient class of nested

graphs, termed complete-graph-of-rings (CGR). The resultant codes, termed

“CGR codes”, and theirs dual codes require minimal encoding/decoding com-

plexity.

2.2.1 Code Construction and Algorithms

The proposed CGR codes are constructed in three steps:

1. Building the appropriate CGR graph of the appropriate parameters

2. Mapping the CGR graph to an array code

3. Reordering by left-cyclically shifting rows (following the perfect 1-factorization

technique) in the array code to achieve MDS

The notations and definitions:

37

Let Kv be a complete graph (or base graph) with v vertices and
v(v − 1)

2
edges, and each vertex has a degree of v− 1. The ring graph is denoted by Cn

with n edges. So, we can define the CGR graph by CGR(Kv1 , Cv2), where we

replace each vertex of a complete graph Kv1 with a ring graph Cv2 , and replace

each edge connecting two vertices in Kv1 with a group of v2 parallel edges

connecting the respective vertices in two rings. The examples of CGR(K2, C5)

and CGR(K4, C7) are illustrated in Fig. 2.1.

Figure 2.1: CGR graphs constructed from base graphs. Left: base graphs K2

and K4; right: resultant CGR graphs CGR(K2, C5) and CGR(K4, C7).

The sufficient conditions that allow a CGR graph to convert to an MDS

code is given as follows.

Theorem 2.2.1. If a CGR graph Υv1,v2 constructed from a complete graph

Kv1 and a ring graph Cv2 satisfying the following conditions: (1) v1 is even,

and (2) v2 = v1 + 3, then there exists a way to place all the vertices and

38

edges in an array of
v2v1
2

× v2. When the vertices are interpreted as data bits

and the edges connecting two vertices are interpreted as parities associated

with two data bits, the resultant array defines an array code of parameters

(N,K, dmin)=(v1, 2, dv1 − 1) capable of correcting up to (v2 − 2) erasures. Its

dual code is a (v2, v2− 2, 3) MDS code capable of correcting up to 2 erasures.

We now present the detailed algorithms for each of the three steps in con-

structing an MDS CGR code.

Algorithm 1: Graph Construction and Labeling

This algorithm constructs a (v1+1)-regular CGR graph Υv1,v2 from a complete

graph Kv1 and a set of v1 rings Cv2 , where v2 is even and v2=v1 + 3.

1. Take a set of v1 number of rings Cv2 . Label the vertices of the first

ring counter-clockwise as 0, 1, · · · , v2 − 1; label the vertices of the next

ring similarly as v2, v2 + 1, · · · , 2v2 − 1, and so on, until all the rings are

labelled. We have altogether v1 rings or v1 sets of vertices, where the

vertices of the jth ring are labelled byVj={jv2, jv2+1, · · · , (j+1)v2−1},
for j=0, 1, ..., v1 − 1.

2. Each edge inside a ring, termed a ring edge, is marked by the pair of

vertices on both ends. We have altogether v1 sets of ring edges, where

the edges of the jth ring are labelled by Ej={(jv2, jv2+1), (jv2+1, jv2+

2), ..., ((j+1)v2−2, (j+1)v2−1), ((j+1)v2−1, jv2)}, for j=0, 1, ...v1−1.

3. For any pair of rings, connect their indexes using v2 parallel inter-ring

edges, such that the lowest index of one ring is connected to the lowest

index of the other, the next lowest is connected to the next lowest, and

39

so on. We have altogether v1(v1 − 1)/2 sets of inter-ring edges, labelled

respectively as Ei.j={(iv2, jv2), (iv2 + 1, jv2 + 1), ..., ((i + 1)v2 − 1, (j +

1)v2 − 1)}, for 0 ≤ i < j ≤ v1 − 1.

Example 1: An example of labeling the vertices for CGR(K2,C5) is shown

in Fig. 2.2. Each vertex has 2 ring edges and 1 inter-ring edges connect-

ing between rings. This graph possesses many desirable properties, including

symmetry and regularity (all vertices have the same number of degree 3).

Figure 2.2: Labeling of 3-regular CGR(K2,C5).

Algorithm 2: CGR array code construction

This process describes how to map CGR graph codes constructed by Algorithm

1 to arrays. We map the vertices to information bits and edges to parity bits,

which can be computed by XORing two information bits on both ends of the

edge. Let us consider constructing a CGR array code using CGR(Kv1 , Cv2)

labelled by Algorithm 1. The array code will consist of v1(v1 + 3)/2= v1v2/2

rows and v2 columns (recall v2=v1 + 3 and v1 is an even integer).

1. The v1 sets of vertices, each corresponding to a ring, are placed in the

40

first v1 rows as systematic bits. By default, the vertices in each set is

placed in ascending order from left to right to form a row.

2. The v1 sets of ring edges, each corresponding to a ring, are placed in

the next v1 rows as parity bits. By default, the edges of the same ring

are placed in ascending order, with the one connecting the two smallest

indexes being the first, and the wrap-around edge that connects the

biggest index and the smallest index being the last.

3. The v1(v1− 1)/2 sets of inter-ring edges, each connecting a pair of rings,

are placed in the remainder v1(v1 − 1)/2 rows as parity bits. The edges

in each set is placed in ascending order, with the one connecting the

two smallest indexes being the first, and the one connecting the largest

indexes being the last.

4. Next, cyclically shift the elements in each row according to an offset

vector. An offset vector is a pre-determined vector in the form of

(α0, α1, ..., α(v1v2)/2−1) ∈ {0, 1, ..., v2 − 1}(v1v2)/2.

Cyclically shift the jth row to the left by αj positions, or, equivalent,

strip off the first αj elements in the jth row and append them to the end

of row. When the offset vector is appropriately designed, such as using

Algorithm 3, then the array code is MDS.

Example 2: Consider CGR(K2, C5) with vertices labelled from 0 to 9 as

shown in Fig. 2.2. According to Algorithm 2, we can place all the vertices

(information bits) and edges (parity of two information bits) in a (5 × 5)

array, with the first 2 rows for vertices, the next 2 rows for ring edges and

the last one row for inter-ring edges. Suppose that we are given an offset

vector (0, 1, 2, 2, 4), then these five rows should be cyclically shifted by 0,1,2,2,4

positions to the left, respectively, giving rise to the following arrays:

41

Before cyclic shifting:

0 1 2 3 4

5 6 7 8 9

0⊕ 1 2⊕ 3 3⊕ 4 4⊕ 0 1⊕ 2

5⊕ 6 7⊕ 8 8⊕ 9 9⊕ 5 6⊕ 7

0⊕ 5 4⊕ 9 1⊕ 6 2⊕ 7 3⊕ 8

After cyclic shifting:

0 1 2 3 4

6 7 8 9 5

2⊕ 3 3⊕ 4 4⊕ 0 0⊕ 1 1⊕ 2

7⊕ 8 8⊕ 9 9⊕ 5 5⊕ 6 6⊕ 7

4⊕ 9 0⊕ 5 1⊕ 6 2⊕ 7 3⊕ 8

Algorithm 3: Offset Vector Determination

This algorithm determines the offsets for the rows of the inter-ring edges of

CGR(Kv1 , Cv2), by applying P1F on a larger complete graph Kv1+2, and then

trimming it down to Kv1 .

1. First label the vertices in Kv1+2 with 0, 1, ..., v1 − 1 and −∞ and +∞,

where v1 is even.

2. Place all the vertices in a wheel, with −∞ in the center, and all the

others in a ring (spaced evenly) surrounding the center. Connect any

pair of vertices with an edge.

42

3. Apply the well-known P1F technique discussed in [12],[53] to group all

the edges of Kv1+2 in v1+1 factors, such that each factor consists of a

center-pointing edge (i.e. edge (−∞, i) where i ∈ {0, 1, ..., v1 − 1,∞})
and a set of v1/2 edges that are diagonal to (“ perpendicular to”) it.

4. Assign the (−∞,∞) group an offset v1+2, and assign to the other groups

distinct offsets chosen arbitrarily from 0, 1, ..., v1 − 1.

5. Remove from each factor the edges that are incident with vertices −∞
or ∞. What remains are all the edges from the base graph Kv1 and their

corresponding offsets, which are the offsets for all the inter-ring-edge-

rows.

Figure 2.3: Complete graph K6.

Example 3: Consider CGR(K4, C7). To determine the offsets for the inter-

ring-edge-rows, consider P1F on K6, as illustrated in Fig. 2.3. The vertex

−∞ is placed in the center, and the vertices 0, 1, 2, 3,+∞ may take arbitrary

positions in the cycle. The P1F partitions all the edges in 5 factors as shown

below.

43

center-point edge diagonal edges offsetA offsetB

(−∞,+∞) (0, 3), (1, 2) 6 6

(−∞, 0) (1,+∞), (2, 3) 1 0

(−∞, 1) (0, 2), (3,+∞) 3 1

(−∞, 2) (1, 3), (0,+∞) 0 2

(−∞, 3) (0, 1), (2,+∞) 2 3

Note that the offset vector for any CGR(Kv1 , Cv2) code is not unique, but

all of them can generate MDS.

2.3 Proofs of CGR Array Codes

This section shows all proofs of MDS properties of CGR array codes. In

addition, the perfect one-factorization technique used to construct the offset

vector presents the relation of the inter-ring edges and the flexibility to choose

various offset vectors for any CGR(Kv1 , Cv2) code.

2.3.1 Proofs of an MDS Property of CGR Codes

Lemma 2.3.1. For any 2 columns of an vertical (n, 2, n− 2 + 1) MDS array

code, it is sufficient to recover from the erasures.

Proof. According to the definition and MDS code theorems: A bridged code

is a pair of MDS codes with the same structure, let S1i, P1i be the systematic

bits and parity bits of a column in B1 respectively, as well as S2j,P2j be the

systematic bits of a column in B2. The P3ij is S1 ⊕ S2.

44

Lemma 2.3.2. Given any two columns of a bridged code, one fromB1 denoted

as S1i, another from B2 as S2j, and P3, it is sufficient to recover from erasures.

Proof. Since P3=S2 ⊕ S1, We can obtain S1j=S2j ⊕ P3 and P1j=P2j ⊕
P3. Then, from Lemma 2.3.1, S1i and S2j is sufficient to decode.

Lemma 2.3.3. For a CGR(Kv1 , Cv2 code, it can be decomposed into v2 sub

codes, each of which is a B-code, which is also an MDS code.

Proof. Apply the CGR-B code shortening algorithm to every ith vertices in

the rings, i = 0, 1, .., v2 − 1. Full details are described in Chapter 2, section

2.5.

Lemma 2.3.4. Given an ith sub B-code, the column of this code resides only

in (i − k) mod v1, k = 0, 1, .., v2 − 1. And does not occupy 2 consecutive

columns in the CGR code.

Proof. The structure of the CGR code is defined by Kv1 and Cv2 . Since v2=

v1 + 2, the sub complete graph spans (occupies) only the v1 column of the

CGR code.

Lemma 2.3.5. Given a column in CGR code, there are 2 consecutive sub

codes that do not occupy this column.

Proof. According to Lemma 2.3.4, and from the cyclically shift pattern, for

any 2 consecutive sub codes Bi,Bi+1, if Bi does not occupy the jth and (j+1)th

columns, then Bi+1 does not occupy (j+1)th and (j+2)th columns. Thus the

(j+1)th column does not contain any part of the code from Bi and Bi+1.

45

Lemma 2.3.6. Given 2 columns in the CGR code, there are two possible

cases that:

• if the 2 columns are not consecutive, 4 out of v2 sub codes are not self-

sufficiently decodable.

• if the 2 columns are consecutive, 3 consecutive sub codes out of v2 sub

codes are not self-sufficiently decodable.

Proof. It is easy to verify from Lemma 2.3.5 for the first case. Then, for

the second case, if Bi, Bi+1 and Bi+2 are consecutive sub codes, and jth and

(j + 1)th are the non-occupying columns of Bi, then (j + 1)th, (j + 2)th and

(j+2)th, (j+3)th are the non-occupying columns ofBi+1 andBi+2 respectively.

Consider (j + 1)th and (j + 2)th columns, which are 2 consecutive columns,

there are 3 consecutive sub codes Bi, Bi+1 and Bi+2 that do not belong to

these columns of the CGR code.

Lemma 2.3.7. It is a necessary condition for a vertical (n, 2, n− 2+ 1) MDS

array code that n−1 versions of information bits occupy n−1 out of n columns.

Proof. This guarantees that any two columns will contain at least a version

of an information bit, otherwise this information bit will be wiped out an

impossible to decode.

Lemma 2.3.8. For any information bit of a sub B-code, two of the XORed

versions of this bit reside in the column where this sub code does not occupy.

Proof. According to Lemma 2.3.7, this fact must hold for both sub code itself

and the CGR code. So for the total v2−1 versions of an information bit,

46

v1 − 1 = v2 − 2 versions must occupy inside the sub code and we have 2

versions left which are fit with the other two remaining columns of the CGR

code.

Lemma 2.3.9. For any 2 columns of the CGR code, there exists a pair or two

of consecutive sub codes. The pair forms a bridged code, and thus decodable.

Proof. Since for each column of CGR codes, there are connections that is

connected by edges. Thus, if we provide any pair column of a consecutive sub

code, there is always a bridge between them and yield to decode.

Lemma 2.3.10. Any 2 columns of the CGR code is enough for recovering

data from erasures.

Proof. We show that all sub codes fall in 2 cases which are decodable.

• the sub code which are self-sufficient, it is decodable.

• the sub code that are not self-sufficient, then decodable by Lemma 2.3.9.

Theorem 2.3.11. The CGR code is an MDS code.

Proof. Because 2 columns of the CGR code is sufficiently decodable. Thus,

from Lemma 2.3.1, this is an MDS code.

47

Example A.1: Let consider a CGR(K4, C7) as a ring of complete graph

which is simply to prove that this code is achieve an MDS code property. First

of all, we rewrite the structure of CGR graph to be in the ring of complete

graph (RCG) which makes all inner-edges in CGR be the inter-edges (dotted

line) of each complete graph as shown in Fig. 2.4.

Figure 2.4: A ring of complete graph of (K4, C7)

Then, from the Fig. 2.4 the dotted lines show all edges which connect the

nodes inside each ring. However, they are closely considered here to prove that

CGR codes achieve the singleton bound.

Recall that the array MDS code of CGR(K4, C7) code is:

48

0 1 2 3 4 5 6

8 9 10 11 12 13 7

16 17 18 19 20 14 15

24 25 26 27 21 22 23

4,5 5+6 6+0 0+1 1+2 2+3 3+4

11+12 12+13 13+7 7+8 8+9 9+10 10+11

18+19 19+20 20+14 14+15 15+16 16+17 17+18

25+26 26+27 27+21 21+22 22+23 23+24 24+25

2+9 3+10 4+11 5+12 6+13 0+7 1+8

3+17 4+18 5+19 6+20 0+14 1+15 2+16

6+27 0+21 1+22 2+23 3+24 4+25 5+26

13+20 7+14 8+15 9+16 10+17 11+18 12+19

7+21 8+22 9+23 10+24 11+25 12+26 13+27

15+22 16+23 17+24 18+25 19+26 20+27 14+21

Note that the second set of this array code contains parity bits which are

come from XORing between inner-ring edges. In order to understand it more

clearly, we can separate and consider this code in terms of B-codes without

showing inner-edges. Now, we have B0−B6 as shown in Table 2.1- Table 2.7.

From all sub arrays B0−B6, we can separately consider them into two cases:

1. a complete case, which has either one information bit and three par-

ity bits, or two information bits and two parity bits so that they can

completely recover others in the same group of complete graph with-

out asking for any help from inner-ring edges; i.e., column 1 and 2 of

B0, B1, B2, and B3.

2. an incomplete case, which has either one information bit and one parity

49

Table 2.1: B0

0 - - - - - -
- - - - - - 7
- - - - - 14 -
- - - - 21 - -

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -

- - - - - 0+7 -
- - - - 0+14 - -
- 0+21 - - - - -
- 7+14 - - - - -

7+21 - - - - - -
- - - - - - 14+21

bit, or no any bit survived; i.e., column 1 and 2 of B4, B5, and B6, so that

this complete graph cannot recover itself. Now, we will only consider the

second case which is the worst case where we need some help form the

inner-ring edges.

We can notice that for any set of B if we consider the worst case of this

array which there are only two columns left (2 survivors) for recovering all

information bits, all loss bits are recovered by some help of the inner-edges.

In Table 2.1 and Table 2.3, for example, we consider in the case that column

4 and 5 are survivors, the structure of graph is shown in Fig.2.5.

Clearly, we can see that a Hamiltonian cycle is constructed from node 21,

edges of 0 + 14, 2 + 23, and 9 + 16 by an assistance of all inner-ring edges

(dotted lines): 0+ 1, 1+ 2, 7+ 8, 8+ 9, 14+ 15, 15+ 16, 21+ 22, and 22+23,

50

Table 2.2: B1

- 1 - - - - -
8 - - - - - -
- - - - - - 15
- - - - - 22 -

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -

- - - - - - 1+8
- - - - - 1+15 -
- - 1+22 - - - -
- - 8+15 - - - -
- 8+22 - - - - -

15+22 - - - - - -

which are connected via middle ring (or layer) between them. In this case, a

Hamiltonian cycle is always occurred to connect all nodes in a CGR graph.

To make a clearer view of CGR structure, we will relabel all nodes as

V (K4, C7), where K4 represents a vertex in a complete graph ith of K4 which

i=0, 1, · · · , 6, and C7 represents a vertex that has a connection in the same

ring jth which j=0, 1, · · · , 4. For example, node 0 is denoted by V (0, 0), and

node 1 is denoted by V (1, 0).

51

Table 2.3: B2

- - 2 - - - -
- 9 - - - - -
16 - - - - - -
- - - - - - 23

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -

2+9 - - - - - -
- - - - - - 2+16
- - - 2+23 - - -
- - - 9+16 - - -
- - 9+23 - - - -
- 16+23 - - - - -

2.3.2 Perfect One-Factorization (P1F) as the Inter-Ring

Edges Shifting Index Assigning Algorithm

In this section, we will describe how we use one of the known P1F technique

to label the base graph. By definition, a one-factorization of a graph is a

partitioning of the set of its edges into subsets such that each subset is a graph

of degree one [12]. A perfect one-factorization is a particular one-factorization

in which the union of any pair of one-factors forms a Hamiltonian cycle.

Remark 2.3.1. A Hamiltonian cycle is a cycle in an undirected graph which

visits each vertex exactly and only once and also returns to the starting one.

For a base graph Kv1 , we assign vertex number as 0, 1, 2, · · · , v2. Then we

add two more vertices denoted by −∞,+∞ in to the base graph. Now, the

graph becomes Kv1+2. Next, draw a complete graph in a cycle form having the

52

Table 2.4: B3

- - - 3 - - -
- - 10 - - - -
- 17 - - - - -
24 - - - - - -

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -

- 3+10 - - - - -
3+17 - - - - - -
- - - - 3+24 - -
- - - - 10+17 - -
- - - 10+24 - - -
- - 17+24 - - - -

vertex −∞ at the center, Fig. 2.3 demonstrates the case of K4 with 2 extra

vertices added.

Then, we label the edges into v1+1 sets, each set consists of

Ei={(−∞, i)}

and edges that are diagonal to the (−∞, i). The following table shows the

labeling result from Fig 2.3.

53

Table 2.5: B4

- - - - 4 - -
- - - 11 - - -
- - 18 - - - -
- 25 - - - - -

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -

- - 4+11 - - - -
- 4+18 - - - - -
- - - - - 4+25 -
- - - - - 11+18 -
- - - - 11+25 - -
- - - 18+25 - - -

set edges

(−∞,+∞) (0, 3), (1, 2)

(−∞, 0) (1,+∞),(2, 3)

(−∞, 1) (0, 2),(3,+∞)

(−∞, 2) (1, 3),(0,+∞)

(−∞, 3) (0, 1),(2,+∞)

Then, remove all edges connected to −∞ and +∞, we have the following

edges left as shown in Fig. 2.6 and the table below.

54

Table 2.6: B5

- - - - - 5 -
- - - - 12 - -
- - - 19 - - -
- - 26 - - - -

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -

- - - 5+12 - - -
- - 5+19 - - - -
- - - - - - 5+26
- - - - - - 12+19
- - - - - 12+26 -
- - - - 19+26 - -

set edges

(−∞,+∞) (0, 3), (1, 2)

(−∞, 0) (2, 3)

(−∞, 1) (0, 2)

(−∞, 2) (1, 3)

(−∞, 3) (0, 1)

Next, we can label edges in each group by using the following rules.

1. Edges in the (−∞,+∞) are label as v1+2.

2. Edges in the other sets can be labelled any number from 0, 1, · · · , v1−1.

3. For any edge, the number labelled must not be equal to the vertex num-

ber at both ends of the edge.

55

Table 2.7: B6

- - - - - - 6
- - - - - 13 -
- - - - 24 - -
- - - 27 - - -

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -

- - - - 6+13 - -
- - - 6+20 - - -

6+27 - - - - - -
13+20 - - - - - -

- - - - - - 13+27
- - - - - 20+27 -

So we can have several possibilities of this labeling, for example, like the

tables shown below.

set edges label

(−∞,+∞) (0, 3), (1, 2) 6

(−∞, 0) (2, 3) 1

(−∞, 1) (0, 2) 3

(−∞, 2) (1, 3) 0

(−∞, 3) (0, 1) 2

56

Figure 2.5: A Hamiltonian cycle formed by 2 survivors of (K4, C7)

Figure 2.6: Complete graph K4 after trimming K6 .

set edges label

(−∞,+∞) (0, 3), (1, 2) 6

(−∞, 0) (2, 3) 0

(−∞, 1) (0, 2) 1

(−∞, 2) (1, 3) 2

(−∞, 3) (0, 1) 3

According to the numbers labelled on all edges of the base graph Kv1 , we

suppose that an edge (i, j) in the base graph is labelled with x, then a row in

57

an array code containing all (inter-ring) edges connecting between ring i and

j is shifted by x.

2.4 Dual CGR Codes

To construct the dual code of a CGR code is simple, and can be achieved

by swaping the duty of vertices and edges in the CGR graph. Now let each

edge represent an information bit, and each vertex represent a parity bit by

XORing information bits depended on a degree of each vertex. So we can

rearrange CGR(Kv1 , Cv2) in an array of
v1v2
2

× v2. From the previous example

of CGR(K2, C5), we will get its dual code as shown in the below example.

Example 4: The (5 × 5) array code in Example 2 is a (5, 2) 3-erasure-

correcting MDS code constructed from CGR(K2, C5) in Fig. 2.2. The same ar-

ray arrangement can be mapped to a dual MDS code with 2-erasure-correcting

capability, by reversing the roles of edges and vertices (i.e. letting edges repre-

sent data bits and vertices represent parity bits). To ease the representation,

we re-label the edges using alphabets a, b, ...o as in Fig. 2.2, and interpret the

vertices of degree 3 as parities on 3 information bits. The (5, 3) dual code

takes the following form:

a⊕l⊕e a⊕m⊕ b b⊕ n⊕ c c⊕ o⊕ d d⊕ k ⊕ e

m⊕g⊕h h⊕ n⊕ i o⊕ i⊕ j j ⊕ k ⊕ f g ⊕ l ⊕ f

c d e a b

i j f g h

k l m n o

58

This dual code is also an MDS code where its proof is shown as follows.

2.4.1 Proofs of Duality of CGR Codes

This section presents all proofs of duality of codes constructing based on CGR

graph. From one CGR graph, we can construct two codes, the CGR code

and its dual. The original CGR code is constructed by viewing vertices as

systematic bits and edges as parity bits. Its dual code uses vertices as parity

bits while edges as information bits. We show that the CGR code and its dual

are dual codes of each other, e.g. H matrix of the code is equivalent to G

matrix of the dual, and vice versa.

Definition 2.4.1. Consider a graph G(V,E), we define construction methods

for the CGR code and its dual from the graph as follows.

CGR code construction

1. For each node v ∈ V , v represents an information bit.

2. For each edge e ∈ E, e represents a parity bit.

3. By grouping these nodes and edges into a set of symbols, we obtain Si

where Si is an ith symbol consisting of r edges and k nodes.

4. A set of symbols Si forms a CGR code.

CGR dual code construction

1. For each node v ∈ V , v represents an parity bit.

2. For each edge e ∈ E, e represents a information bit.

59

3. By grouping these nodes and edges into a set of symbols, we obtain Si

where Si is an ith symbol consisting of r edges and k nodes.

4. A set of symbols Si forms a CGR code.

The H matrix of the code will be in the form of block matrix, where each

column corresponds to a symbol Si.

H ≡

h1,1 h1,2 .. h1,m

h2,1

..

hn,1 hn,m

where

hi,j =

{
[0̄ I] , (i = j)

[Pi,j 0̄] , (i ̸= j)

}

We can define G as follow.

G ≡

g1,1 g1,2 .. g1,n

g2,1

..

gm,1 gm,n

 ,

where

gi,j =

{
[I 0̄] , (i = j)[
0̄P T

i,j

]
, (i ̸= j)

}

60

Proposition 2.4.2. If HGT is in the form
[
P I

] [I

P

]
and HGT is valid

under multiplication, then HGT = 0.

Lemma 2.4.3. For the matrix H and G of CGR code,

HGT = 0

Proof. Consider the matrix H of CGR code,

H ≡

h1,1 h1,2 .. h1,m

h2,1

..

hn,1 hn,m

we can perform column-wise re-ordering by separating each element of [0̄ I]

and [Pi,j 0̄] into 2 groups as shown below.

H ≡

P1,1 P1,2 .. P1,m I 0 0 0

P2,1 0 I 0 0

.. 0 0 I 0

Pn,1 Pn,m 0 0 0 I

Exact transformation can be applied to G.

G ≡

I 0 0 0 P T

1,1 P T
1,2 .. P T

1,n

0 I 0 0 P T
2,1

0 0 I 0

0 0 0 I P T
m,1 P T

m,n

61

Assume P̄ =

P1,1 P1,2 .. P1,m

P2,1

..

Pn,1 Pn,m

, then we can writeHGT =
[
P̄ I

] [I

P̄

]
.

From Proposition 2.4.2, HGT =
[
P̄ I

] [I

P̄

]
= 0

Theorem 2.4.4. Given a graph G(V,E), two codes, that are constructed

with different approaches A and B, are dual codes of each other, e.g. H of the

original code is G of the dual code.

Proof. From the construction of H of the code, each row in P̄ represents two

nodes connecting an edge as in Fig. 2.7.

Now consider H matrix of the dual code, from the definition of graph

construction, each row in P̄ ′ represents a node connecting edges as in Fig. 2.8.

If P̄ and P̄ ′ are produced from the same graph, then P̄ ′= P̄ T , hence H of

the dual code equals to G of the original code, because G of the original code

is in form of P̄ T . The same prove can be applied where H of original code

equals to G of the dual code.

Figure 2.7: Graph representing a row in H

62

Figure 2.8: Graph representing a row in H of the dual code

2.5 Connection to B-Codes

The CGR code has some similarity to the B-codes in both of graph structure

and data layout algorithm. This is due to the fact that our code consists of

complete-graph-like structure as well as the labeling algorithm that used for

data array arrangement.

The new code, however, has different properties/parameters. The connec-

tion between the CGR code and B-codes in [3] can be viewed via a transfor-

mation process that shorten the CGR code to B-codes. The basic idea behind

this connection is that when we view in another way, e.g. the CGR graph

as a graph consisting of multiple layers, each layer forms a single complete

graph. These sub layers are connected via the edges E(i,j), (i+1) mod K,j for all

K. Obviously, each individual layer can be used to form a B-Code. Hence,

decomposing CGR code will result in B-Code, or, B-code can be considered as

a reduced form of CGR code. Inversely, connecting complete graphs together

as a super ring forms a CGR code. Data layering procedure helps glueing this

code to be one MDS code by shifting each layer before placing each vertex

element into disk array.

Another notable difference between CGR codes and B-Codes is the sym-

metry in the array structure. The B-code B2n+1 constructed from K2n graph

has the structure shown in Fig. 2.10 (b), which is not symmetric in the num-

ber of information bits versus the number of parity bits per column, while the

63

Figure 2.9: A super graph represents a CGR(K4, C7) code, where each super
node has 7 nodes and there are 7 edges represented in each inter-edge.

CGR code constructed from a similar K2n super graph is in the symmetric

form which is shown in Fig. 2.10 (a).

Example 5: Consider a CGR code and a B-code constructed fromK2n graph

where n = 2. Fig. 2.9 illustrates the CGR(K4, C7) code constructed from a

complete graph K4 and 4 ring graphs of 7 nodes each. The code can be written

in the array form as follows.

64

0 1 2 3 4 5 6

8 9 10 11 12 13 7

16 17 18 19 20 14 15

24 25 26 27 21 22 23

4+5 5+6 6+0 0+1 1+2 2+3 3+4

11+12 12+13 13+7 7+8 8+9 9+10 10+11

18+19 19+20 20+14 14+15 15+16 16+17 17+18

25+26 26+27 27+21 21+22 22+23 23+24 24+25

2+9 3+10 4+11 5+12 6+13 0+7 1+8

3+17 4+18 5+19 6+20 0+14 1+15 2+16

6+27 0+21 1+22 2+23 3+24 4+25 5+26

13+20 7+14 8+15 9+16 10+17 11+18 12+19

7+21 8+22 9+23 10+24 11+25 12+26 13+27

15+22 16+23 17+24 18+25 19+26 20+27 14+21

Note that each vertex denoting the data is labeled by a number from 0−27.

Each row possesses a shifted cyclic symmetry.

Now, consider only the first vertex of each ring and all the edges connected

between the selected vertices. The other vertices and edges are punctured as

below.

65

0 - - - - - -

- - - - - - 7

- - - - - 14 -

- - - - 21 - -

- - - - - - -

- - - - - - -

- - - - - - -

- - - - - - -

- - - - - 0+7 -

- - - - 0+14 - -

- 0+21 - - - - -

- 7+14 - - - - -

7+21 - - - - - -

- - - - - - 14+21

Then, vertically and horizontally compact and rewrite the new array as

follows.

Horizontal compacting:

0 0+21 - - 21 14 7

7+21 7+14 - - 0+14 0+7 14+21

Vertical compacting:

0 0+21 21 14 7

7+21 7+14 0+14 0+7 14+21

Reordering:

66

0 7 14 21 0+21

7+21 14+21 0+7 0+14 7+14

This essentially leads to a B2n+1 code.

a1 a2 a3 a4 a1+a3

a2+a3 a3+a4 a4+a1 a1+a2 a2+a4

Thus, we have shown the shortening procedure that slices part of the CGR

code and maps it to a B2n+1 code. From this transformation, we can conclude

that B-codes are degeneration of CGR codes.

2.5.1 Discussion

We now discuss and analyze the properties of our CGR codes. CGR graphs

are nested graphs with a complete graph as the base graph, and B-codes can

be constructed from complete graphs. Hence, it should not be surprising that

CGR codes subsume B-codes as contracted codes. However, in addition to the

significantly more complex structure of CGR codes, another notable difference

is that CGR codes are by nature cyclically symmetric, whereas B2n+1 codes

have an asymmetric structure as shown in Fig. 2.10.

We consider the complexity of CGR codes.

Definition 2.5.1. The update complexity is defined as the number of parity

updates required while a single information bit is changed or updated, averaged

over all the information (systematic) bits [13].

67

Figure 2.10: (a) Structure of CGR code. (b) Structure of B2n+1 code

Definition 2.5.2. The decoding complexity is defined as the number of bit

operations (e.g. XOR, AND, shift) required in order to recover the erased

symbols (columns) from the survivors, averaged over all the information sym-

bols.

Recall that the proposed CGR codes based onKv1 and Cv2 where v2=v1+3.

For updating a single information bit, since every information bits involves

v1+1 parity bits, it will give rise to the update of (v1+1) parity bits. Hence,

averaged over v1v2 information bits, the update complexity will be
v2 − 2

v2(v2 − 3)
.

The update complexity for different code configurations is listed in Table 2.8.

Since the code is one with parameters (n, k)= (v2, 2), the update complexity

decreases linearly with the “code-length” v2 and goes to zero asymptotically.

To compute the decoding complexity, we can consider that all the
v1v2
2

bits

in an arbitrary missing column takes one XOR operation per bit, or, one XOR

operation for the entire symbol. In the worst case, the code has a payload of

two systematic symbols (or v1v2 systematic bits), so the decoding complexity

is
1

2
per erased symbol, irrespective of the code lengths.

68

Kv1 Cv2 code update complexity decode complexity
K2 C5 (5,2) 3/10 = 30% 1/2 = 50%
K4 C7 (7,2) 5/28 = 18% 1/2 = 50%
K6 C9 (9,2) 7/54 = 13% 1/2 = 50%
K8 C11 (11,2) 9/88 = 10% 1/2 = 50%
K10 C13 (13,2) 11/130 = 8% 1/2 = 50%

Table 2.8: Update complexity and decoding complexity

In conclusion, our main contributions are the systematic code representa-

tion and algorithmic construction based on a special type of graph called the

complete-graph-of-rings graph. The P1F is used as a tool for labeling and

mapping graphs to array codes. This code achieves the MDS property and is

an optimal code. The dual code is also discussed and is an MDS code. We have

also shown the direct relation of the new code to the B-code and provided the

transformation scheme that shortens the new code to B-code. Even though

the code has shown its elegant well-structured code representation, however,

the code rate is relatively low and approaching zero as the erasure recovering

capability (the number of redundancy), increases.

2.6 Low-Density MDS Array Codes

Any block code can be described by a generator matrix (G) and parity-check

matrix (H) [10], [11]. In this section, we consider representing CGR codes in

terms of matrices, and draw connection to LDPC codes. Note that an array

code is considered as a low density code if it has the smallest possible update

complexity for its parameters [15].

69

Since from the previous section, we have introduced and generated a CGR

code based on a complete-graph-of-ring graph, here we will investigate an MDS

array code based on other graphs and show that it is a low-density MDS array

code. Such a new code construction based on graphs which we assign and

place all vertices and edges into an appropriate array size aims to achieve the

strong MDS property of an MDS array code which is defined in Definition

2.6.1:

Definition 2.6.1. An array code of size m× n with mk information bits and

(n−k)m parity bits has the MDS property, if, for any given r columns and any

given series of positive integers ai, where k ≤ r ≤ n, 0 ≤ ai ≤ m, 1 ≤ i ≤ r,

and
∑r

i=1 ai = mk, there always exist ai bits from the ith column such that the

mk information bit can be recovered from these mk bits from the r columns.

To describe an MDS array code in the matrix form, the array code of size

m×n arranged in an array of m rows and n columns with mk information bits

and (n − k)m parity bits. Then, this code has a code rate of
k

n
. Each row is

defined as a strip and each column contains an n−part encoded symbols and

is viewed as one disk. If this (m× n) array code guarantees t fault tolerance,

it means that after losing any set of t columns, the remainder n − t columns

are sufficient to recover all symbols or all loss columns.

Let G be a generator matrix of size km × nm and H be a parity-check

matrix of size (n− k)m× nm. An example of a 2× 4 array code is shown in

both the array form and the matrix. For a given information sequence x of

length km, the codeword y still holds y = xG and yHT = 0, where GHT = 0.

a b c d

b⊕ c c⊕ d d⊕ a a⊕ b

70

With n = 4,m = 2, k = 2, its parity-check matrix can be described as

follows.

H =

0 1 0 0 1 0 1 0

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

0 0 1 0 1 0 0 1

Accordingly, its generator matrix is as follows.

G =

1 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 1 0 0 1 0 0 1

0 1 0 1 0 0 1 0

This (2× 4) array code has a code rate of 1/2 and tolerate t = 2 erasures.

Additionally, we can consider the dual of array codes as the one for a one-

dimensional linear block code as a definition given below.

Definition 2.6.2. Let C be a linear array code of size n×m over GF (q), then

its dual code C⊥ is defined as C⊥ = {u ∈ GF (q)nm : u · v = 0 for all v ∈ C},
where · is the conventional dot product of vector.

Naturally followed by the given definition of dual codes, the parity-check

matrix of an array code is the generator matrix of its dual code.

2.6.1 Low-Density CGR Codes

We now illustrate CGR code in matrices including both parity-check matrix

and generator matrix, which are both sparse and systematic. We show that this

71

code is not only in a sparse code, but also is in a systematic form. The parity-

check matrix and generator matrix shown below are from the CGR(K2, C5)

code whose layout is illustrated in Table 2.9. In the previous section, this code

and its dual are proved and expressed as MDS codes that can tolerate 3 and

2 erasures, respectively.

H =

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1

Since GHT = 0, its generator matrix, G is as follow.

72

G =

1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

This CGR(K2, C5) code, which is the (m×n) = (5×5) array code, has the

parity-check matrix of size (mk × nm) = (15× 25), and the generator matrix

of size ((n−k)m×nm) = (10×25), where k = 2. This code can tolerate triple

disk failures, while its dual code has double disk failures toleration.

d0 d1 d2 d3 d4
d6 d7 d8 d9 d5

p0 = 2⊕ 3 p1 = 3⊕ 4 p2 = 4⊕ 0 p3 = 0⊕ 1 p4 = 1⊕ 2
p5 = 7⊕ 8 p6 = 8⊕ 9 p7 = 9⊕ 5 p8 = 5⊕ 6 p9 = 6⊕ 7
p10 = 4⊕ 9 p11 = 0⊕ 5 p12 = 1⊕ 6 p13 = 2⊕ 7 p14 = 3⊕ 8

Table 2.9: The array CGR(K2, C5) code

To show that the code is systematic, the parity check matrix can also be

rewritten in Fig. 2.11(a). This new parity check matrix takes the following

systematic form as:

73

(a) The relation between a systematic parity-check matrix and disk array of an CGR(K2, C5) code

(b) A systematic parity-check matrix of an CGR(K2, C5)
code

Figure 2.11: The parity check matrix of CGR(K2, C5) array code

74

H =
[
CM×K IM

]
=

C3

m 0m Im 0m 0m

0m C3
m 0m Im 0m

C2
m C2

m 0m 0m Im

 , (2.1)

where CM×K is an M × K = 15 × 10 quasi-cyclic matrix and IM is an

M × M = 15 × 15 identity matrix which is a combination of identity sub

matrices of size m×m = 5×5. The cyclic matrix CM×K is also separated into

6 sub matrices with size m×m = 5×5 each. Note that C3
m and C2

m, are cyclic

squares with 2 and 1 diagonals and are 3- and 2-bits left cyclically shifted,

respectively, and 0m is the zero matrix of size m × m. We can consider the

codeword as c= (d0, d1,, dK−1, p0, p1, ..., pM−1), where di is an information

bit (i ∈ 0, 1, ..., K − 1), and pj is a check bit (j ∈ 0, 1, ...,M − 1).

Therefore, for general array sizes of

(
k(k + 3)

2
× (k + 3)

)
CGR codes,

where k is an even integer of information-bit rows and k ≥ 2, this code over

GF (2) can be defined by the following parity-check matrix:

H :=

Cs1

k+3 0k+3 ... 0k+3 Ik+3 0k+3 0k+3

0k+3 Cs2
k+3 0k+3 0k+3 Ik+3 0k+3

...
.

...
...

. . .
...

CsM
k+3 CsM

k+3 ... CsM
k+3 0k+3 ... Ik+3

 , (2.2)

Note that the size of this parity-check matrix is M -by-(K + M), which

equals to (k
k + 1

2
)-by-(

k(k + 3)2

2
), and si is the offset vector of left-cyclically

shifting of row ith.

75

Theorem 2.6.3. Consider the parity-check matrix (H) of CGR (Kv1 , Cv2)

MDS array code of size
k(k + 1)

2
× k(k + 3)2

2
, where k is the number of data

disks (or nodes in CGR graph) and k = v1v2, its column weight (wc) equals to

the degree of each node, wc = v1 + 1, and its row weight (wr) is 3.

Proof. From the structure of CGR graph, each parity (an edge in CGR graph)

is computed by XORing 2 data bits (nodes in CGR graph), so in each row

of H, when the parity columns are represented in an identity matrix, the row

weight (wr) is 3.

Then, the column of systematic bits in H is a part of a group of quasi-cyclic

square matrices, which correspond to the nodes of CGR graph. To place all

nodes into an array, they will first appear as data disks, and they will also

appear to construct parity disks. Thus, their appearances are depended on

the degree of nodes which equals to v1 + 1 resulting in the column weight of

H, wc = v1 + 1.

2.6.2 Data Recovery via Parity-Check Matrix

We consider storage systems when t disks are lost or deleted, and therefore t

columns of an (m × n) MDS array code has been deleted. Thus, the original

parity-check matrix of size (M × (K +M)), where M = (n− k)m. t erasures

will affect not only t rows, but they also delete all rows and columns that are

represented symbols stored in the same disk.

Now, the systematic parity-check matrix of erasure correcting code after t

disks are failed/loss is expressed as follows:

H(n−k)(m−t)×n(m−t) =
[
C(n−k)(m−t)×(n−k)t I(n−k)(m−t)

]
,

76

where C(n−k)(m−t)×(n−k)t is an (n− k)(m− t)× (n− k)t left-cyclically shift

matrix (followed by the offset vector), and I(n−k)(m−t) is the (n− k)(m− t)×
(n − k)(m − t) identity matrix. So, to recover the disk failures, we define H t

as a parity-check matrix of t disk failures with the size shown above.

Theorem 2.6.4. A (n−k)m×nm parity-check matrix (H) of an (n×m) CGR

MDS array codes contained km informations bits and (n−k)m parity bits will

be reduced into a parity-check matrix H t of size (n − k)(m − t) × n(m − t)

after there are t disk failures.

Proof. The construction of CGR codes is based on the connection of CGR

graphs where the number of data nodes in each ring is k + 3 from a total k

rings, and their edges represent parity bits computed by XORing two nodes

at both ends, then we place both data bits and parity bits into an array of

size n ×m. This code is a vertical array code, so that each column contains

both data and parity bits. When there are t erasures, we will have only m− t

survivors to recover all loss data (note that we have already proved that the

survivors can recover all failures back if t ≤ d − 1), so the new array code

of size n × (m − t) will also construct the new parity-check matrix of size

(n− k)(m− t)× n(m− t).

Here the first (n− k)t columns in H t correspond to information bits in the

survivor disks and the last (n−k)(m−t) columns correspond to the parity bits

of survivors. Fig.2.12 and Fig.2.13 shows the example of row-operation and

column-operation decoding of 3-disk failures of an CGR(K2, C5) code where

its original parity-check matrix is shown in Fig. 2.11(a). Note that all red

columns is labeled as the loss information and parity bits in all disk failures.

To recover all loss data, we start with the row-operation decoding as shown

77

Figure 2.12: A row-decoding process of the H matrix of CGR(K2, C5) code

in Fig.2.12. We first check the parity columns in order as shown in the number

(in the circle) next to the grey line and the bit which is in circle is now recovered

by XORing its associated survivor data and parity bits. Then, if there are not

enough survivor data bits in the same row of such survivor parity bit, we move

to the column-operation decoding. Illustrated in Fig. 2.13, the process is in

order shown next to the columns and data bits which are illustrated in squares,

stars, and triangular are recovered.

Therefore, we can summarize the decoding algorithm, namely “the row- and

column-operation decoding algorithm,” for the parity-check matrix H t after the

t disk failures occur.

Row- and Column-Operation Decoding Algorithm

1. In the row ith of a survivor parity-check matrix, check the associated

data bits of this parity if they are lost or not. If there is only one

78

Figure 2.13: A column-decoding process of the H matrix of CGR(K2, C5) code

associated data bit loss, recover it by XORing this parity bit with other

associated data bits. If there are not enough survivor data bits, go and

take a process at the column-operation decoding.

2. In the column jth of an associated information bit, (i) check the data

bit of the disk that may recover from the row ith, (ii) at the jth column,

and the iith row, where ii ̸= i, XORing this data bit with the parity bit

of this row again, (iii) stop when all data and parity bits are recovered.

Unlike traditional LDPC codes, there are correlations between some columns

of the parity check matrix, since they correspond to the same disk. When the

disk fails, all data and parity bits stored in these strips are lost. Thus, the set

of strips in the same disk will be either alive or dead at the same time. Array

codes differ from LDPC codes by adding restrictions to their code graph based

on array column locations.

79

In the future, we can exploit the parity check matrix to shed insight into

constructing new MDS codes.

80

Chapter 3

Nested codes with Hierarchical

protection for distributed

storage networks

In this chapter we introduce the erasure-correcting code which can provide

the erasure protection and fault tolerance for a large-scale storage network

or a data center with a huge number of disks. Inspired by the concept of

hierarchical protection, we firstly consider code schemes that “nest” MDS

optimal code with LT codes, and evaluate their trade off and complexity. We

next propose an erasure coding scheme based on a rigid structure of MDS

local codes wrapped by single parity check (SPC) codes in both horizontal

and vertical dimensions.

81

3.1 Introduction

Data centers, or, distributed storage networks are on the high rise, where hun-

dreds of or thousands of storage nodes are pulled together to provide massive

storage capacity. Each storage node may be physically implemented by a cheap

computer, each of which consists of and controls an array of, say, ten, hard

disks like the RAID’s systems. As the system grows, the chance of component

failures and the number of disk failures also increase, so efficient techniques to

protect against data loss become more important and necessary.

In the previous Chapter, we have proposed the CGR codes [23, 24] which

are based on graph structure in order to handle disk failures in disk arrays.

In this chapter, we extend these codes (and other existing MDS or near-MDS

codes) to achieve better failure protection and handle a larger number of fail-

ures for large storage networks. The new scheme we have developed, termed

“nested codes with hierarchical protection for distributed storage networks”,

target large storage systems. Since the distributed storage network is large,

a general challenge is to provide data consistency while preventing failures

and allowing concurrent access [41]. Our goal is to achieve highly-scalable,

space-efficient and access-efficient (n, k) MDS codes, where n− k ≤ k, that is,

the number of redundant (spare) nodes is no greater than the number of data

nodes.

In the context of error-correcting codes or erasure-correcting codes for large

storage systems, GRID codes [39] are one good example of multidimensional

codes in distributed disk arrays. This class of codes are completely XOR-

based, non-MDS codes which can tolerate up to 15 and higher disk failure.

They use a concept of matched codes (a group of codes that are chosen to con-

struct a GRID code) to construct a GRID code. This code has a very regular

structure, which is constructed by a simple grid of rows and columns, denoted

82

by GRID(coder, codec), and each row and column represent various types of

component codes defined by coder and codec, respectively. After the first code

is mapped to the strips, the second code is mapped to the corresponding sub

stripes that do not contain parity. The component codes can be, for exam-

ple, a single parity code (SPC), a STAR code [35], an EVENODD code [6],

and an X-code [8]. These codes can also be extended from two-dimensional

to m-dimensional, denoted as GRID(code1, code2, ..., codem). When designed

carefully, these codes can provide high fault tolerance and achieve good stor-

age efficiency, while is the major trade off for erasure codes of storage systems.

To assign all elements into an array, GRID codes provide two layouts: (1) a

row-first layout and (2) a column-first layout, as shown in Fig. 3.1 which the

matched codes are SPC code and EVENODD code.

Compared to other coding techniques, the authors claim that GRID codes

require simpler operations and have better performance in large systems. Nev-

ertheless, these codes are not MDS, and they require quite some overhead and

lose approximately 20% storage efficiency compared to an optimal code.

Figure 3.1: Two types of stripe layouts of GRID(SPC,EVENODD) codes

83

Motivated by these two classes of codes, GRID codes and regenerating

codes, we explore efficient ways for large storage systems. The proposed idea

is to generate layered protection, such as local protection, regional protec-

tion and global protection, to increase the fault tolerance, reduce the network

traffic, and provide the scalability much needed for large systems, while still

maintaining the benefits given by traditional erasure codes. We start by con-

structing a base graph (the first layer) to generate the base code with local

parities (or local protection), and then move to the second layer called regional

protection, which provides regional parity to connect local protection. Finally,

the peel layer is defined as a global protection which can protect all the disks

in the system by global parities.

In this chapter, we study a concatenation techniques to construct erasure

codes for multi-layer hierarchical protection of data storages with the consec-

utive MDS and LT codes. We introduce the L groups of MDS codes which

contain both information disks and parity disks called local parity disks. Then,

we construct the second layer protection (or global parity disks) by randomly

select degree d distribution mentioned in [25] and [26]. This technique will get

both local and global parity disks connected and can protect all information

disks. Our contributions from this work is that this code outperforms and can

recover an arbitrary number of disk failures when the probability of disk errors

is high.

3.1.1 Background of Luby Transform (LT) Codes

Luby Transform (LT) codes were the first practical rateless codes, where the

number of encoding symbols that could be generated from the data was lim-

itless [25]. LT codes have simple encoding and decoding procedures, and re-

gardless of the erasure model, encoding symbols can be generated as needed

84

and sent over the channel until a sufficient number of symbols arrive at the

decoder to recover the data. To create an encoded symbol, a set of d data

bits are chosen to be XORed randomly and independently, where d follows the

robust soliton distribution. For the decoding part, it uses the belief propaga-

tion algorithm [25] which the decoder will begin with the identifying encoded

symbols of degree 1 thus yields the value of some other input symbols. For

example, let x be the known input symbol, and then given x ⊕ y, one can

deduce y and so on.

Definition 3.1.1. [The Robust Soliton Distribution] [25] Let

ρ(i) =

1/k : i = 1

1/i(i− 1) : i = 2, . . . , k
(3.1)

τ(i) =

R/(ik) : i = 1, . . . , k/R− 1

2e2(R log
R

δ
)/k : i = k/R

0 : i = k/R + 1, . . . , k

(3.2)

R = c ln k/δ
√
k (3.3)

β =
k∑

i=1

(ρ(i) + τ(i)) (3.4)

85

Thus, the Robust Soliton Distribution µ(i) for i=1, . . . , k is

µ(i)=(ρ(i) + τ(i))/β. (3.5)

The decoder receives K output symbols, and tries to recover the k input

symbols from the neighbors of the output symbols in the bipartite graph. As

shown in Fig.3.2, the decoding process will initiate all message symbols are

unrecovered. Then, at the first step all degree one encoding symbols will get

released to cover their neighbors. At any time t, these sets of recovered message

symbols now form a ripple that later is selected randomly and processed.

An encoding symbol which has degree one is removed and its neighbors are

recovered (selected from the cloud contained the set of output symbols of

reduced degree > 1) and added in the ripple. The process ends when the

ripple is empty and all message symbols are recovered.

Figure 3.2: The decoding process when there are u − 1 input symbols are
undecoded

As shown in [25], LT codes require only k+o(k) encoding symbols to de-

code with high probability, when using encoding symbols with average degree

O(ln k). For affordable complexity, the constant average degree is needed and

the decoding time will be O(k). However, this cannot be done in LT codes.

One can easily show that for every message node to have at least one neighbor

when there are O(k) encoding symbols, the average degree must be at least

Ω(ln k).

86

One of the disadvantages of LT codes is that they are not systematic.

Thus, it cannot guarantee that the input symbols can be reproduced among a

selected set of output symbols [22].

3.2 The MDS-LT Nested Codes

Borrowing ideas from systematically-layered graphs, we construct a multilayer

MDS codes, namely nested codes with hierarchical protection for distributed

storage networks. The local code may be either the CGR code proposed in

the previous chapter, or other short-length, simple, and space-efficient erasure

codes that have well-defined regular structures. The upper layer codes will

subsume a random structure to allow for scalability.

1. Constructing the base code to provide local protection.

2. Constructing a second layer code to group several base codes together

to generate common regional parities.

3. If necessary, constructing the third layer code to provide overall global

parities that allow all the storage nodes and disks in the entire system

to be connected and protected.

The basic structure of this idea is illustrated in Fig. 3.3. The primary

benefit of such as structure is complexity, which comes in several aspects.

First, to construct a good, simple and long erasure code for a large system

all at once is extremely difficult. The layered structure offers an alternative

approach by decomposing the difficult problem into several smaller and more

tractable problems. In doing so, it also makes it possible to leverage the

existing rich results in the coding literature. Second, even though a good long

87

code may be constructed, the implied communication overhead may be very

large. This is because disks that are physically far apart from each other will

likely participate in the same check, and hence to recover any failed disk will

almost always involve the reading from several distant disks, causing a large

input/output (I/O) overhead. Third, to deploy such a long code is extremely

difficult. It may take several hours or several days to initially structure and

encode all the data disks according to the long code, and the process should

in general not be interrupted; that is, while implementing the erasure code in

the system, new data, for example, should not enter into the system. Forth,

after the initial implementation, scalability may also be an issue. As new

data enter or two or multiple data centers merge, to efficiently and sufficiently

protect the incoming data disks may be complicated. When the long code has

a random structure, it is possible to add additional checks, but adding new

checks may change the degree profile that was previously optimized and make

it less efficient. Also the new data disks will likely have weaker protection than

the old ones.

In comparison, the layered structure allows the data disks are firstly and

foremost protected by neighboring disks. Only when local protection is in-

sufficient (which should happen rather infrequently), will one resort to the

regional protection and eventually global protection. As new data enter, new

local clusters with local codes can be formed, and regional and global checks

can be added on later and gradually. Below we discuss each of the three steps

toward constructing the overall layered code.

3.2.1 The Code Construction

We detail the process to construct the hierarchical MDS-LT nested erasure

code as followings:

88

Figure 3.3: The basic structure of nested codes with Hierarchical protection
for distributed storage networks

Step1: Base Code Construction

The CGR codes presented in the previous chapter, or other good erasure

codes available in the literature, can be readily applied as a base code, as

shown in Fig. 3.3. Local codes are generally short codes, and it is desirable to

use MDS codes, especially codes with symmetric or cyclic structures to provide

simplicity and space-efficiency. It is possible to use not just one specification

of (CGR) MDS codes, but (slightly) different specification of (CGR) MDS

codes in one system, to handle the quality difference of different types of hard

disks that may co-exist in a storage system. For example, industry-grade hard

disks are more robust and less prone to errors and disk failures, so a lower-

protection erasure code with a higher code rate (i.e. payload) such as a (7, 5)

89

MDS code may suffice for clusters of these disks; on the other hand, near-line

hard disks are more prone to failures, and hence a higher-redundancy lower-

rate erasure code, such as an (7, 4) MDS code or (5, 3) MDS code, should be

used in exchange for a stronger erasure protection capability.

Step2: The Second Layer Code Construction

In this second layer, several local codes will be grouped together to form

regional clusters, upon which regional erasure codes are developed. All the

storage disks of the local codes of the same regional cluster, be it data disks

and parity disks, will all be treated as the systematic disks for the region code,

and a common set of spare disks will be used as regional parities and coded

across these local codes. Unless local codes, which are usually dense-graph

codes, regional codes should in general be sparse-graph codes, so that they

can minimize the communication overhead involved in each recovery.

Step3: The Third Layer Code Construction

The global code unifies all the regional codes in a way very similar to a

regional code unifies the local codes, except that the scale here is even larger

and the underlying graph is even more sparse.

As an experiment, we consider two coding layers. Our storage system

is constructed from L disk groups. Among all L disk groups, there are kL

information disks and (n − k)L local parity disks which are constructed by

any local (n, k) MDS code. The local code may be either the CGR code

proposed in [24], or other short-length, simple, and space-efficient MDS codes

that have well-defined regular structures. Then, we construct the second layer

of data loss protection, namely “global parity disks” by using the idea of LT

codes. To achieve the practical purpose, we generate the degree by the robust

90

degree distribution technique.

The system model we used in this work to construct the hierarchy nested

erasure codes as shown in following assumptions 1.

1. We use and construct CGR(K2, C5) [24] code which has the same per-

formance and ability to recover disk failures as an MDS(5, 3) code for

all L groups.

2. Construct a set of global parity disks by XORing data disks from totally

L local MDS code groups follows by the rule of degree distribution of

LT codes (which is in this work, we construct d-degree to random select

which disks we will use for constructing global parity disks follow the

method called “Robust Soliton Distribution”), so that the number of

XORed data disks which is used to construct each parity will be different

and depended on the probability of disk failures. From the randomly

degree d we are chosen, we construct M global parity disks to be the

second layer protection of this code, where the number of global parity

disks (M) is computed by the appropriate ratio of M over L which

M=qL, where 0 < q < 1.

3. Assign all disks in the array as shown in Fig.3.4.

1Throughout this work proposed in here, we have generated only two layers which are
the local and global layers, and they are encoded by MDS codes and LT codes, respectively.
More than two layers construction will be left for the future works

91

Figure 3.4: Code array structure where M global disks are all parity disks
constructed from LT codes

3.2.2 The Consideration of Hierarchical Nested Erasure

Codes

Since the hierarchy nested erasure code is the concatenated code from LT

codes and MDS codes, we have to consider its characteristics from both codes.

Lemma 3.2.1. [25] For LT codes with Robust Soliton distribution, k original

source blocks can be recovered from any k + O(
√
k ln2(k/δ)) encoded output

blocks with probability 1 − δ. Both encoding and decoding complexity is

O(k ln(k/δ)).

Lemma 3.2.2. For any (n, k) MDS code with the minimum distance, d =

n − k + 1. An MDS code can recover disk/node failures up to t = n − k

disks/node.

Simulation Results

In this section we illustrate all the simulation results of this code and the com-

parison with GRID codes. In this simulation, we assume that the (L,M, n, k)

92

codes are based on L groups of an (n, k) MDS code, and M = qL, where

0 < q < 1. The rate of this code is given by R =
kL

(L+M)n
.

Fig. 3.5 illustrates the probability of residual disk errors after our hierarchy

nested codes. For the number of local disks (L) are 150, 200, 250, and 300, and

each disk is encoded by an (5, 3) MDS code, we can see that their probabilities

of disk errors are approximately the same. Since in this work all (L, 0.1L, 5, 3)−
nested erasure code have the same code rate, it is intuitively considered that

their performance on any number of disks will be similar. At the lower rate

of probability of disk failures (Pe < 0.3), our nested erasure code can make a

100% error recovery, and then for Pe > 0.3 we can recover and correct disk

failures approximately by 20-30%. Note that in practical systems, the raw

disk failure rate is very small (Pe ≪ 0.3).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

10
0

The Probability of disk errors after we recovered
some disk failures responded by Pe

Pe

Pr
ob

. o
f

di
sk

 e
rr

or
s

K = 450 (L = 150)
K = 600 (L = 200)
K = 750 (L = 250)
K = 900 (L = 300)

Figure 3.5: The probability of residual disk errors versus the raw disk failure
rate (Pe).

93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

Pe

Pr
ob

. o
f

di
sk

 e
rr

or
s

The ability of Nested code recovered the disk failures back
after the period of read/write time

t = 1500 microsec, L = 100
t = 2500 microsec, L = 100
t = 3500 microsec, L = 100
t = 3500 microsec, L = 50
t = 2500 microsec, L = 50
t = 1500 microsec, L = 50
L = 50, static
L = 100, static

Figure 3.6: The ability of the hierarchy nested erasure code to recover failed
disks in time period t.

Fig. 3.6 shows the dynamic simulation of MDS-LT nested codes based on

(5, 3) MDS codes in which the processing time for read/write operations and

error recovery are taken into account. When disk errors occur, the failures will

be detected and corrected before information can be read/written again. In

this simulation, based on a real situation of reading/writing data on disks that

whenever errors occur, the hierarchy nested erasure code tries to recover and

correct failures as fast as possible. The result in Fig 3.6 shows the probability

of disk failures under the condition of constant repair. The period of processing

time (t) is set for recovering/correcting some failures before they reach some

value of randomly errors as in the static case in Fig. 3.5. Thus, we can see

that the probability of disk failures is greatly reduced.

Compared to Grid(STAR, STAR) codes in [39], as shown in Fig. 3.7, our

94

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

10
0

Comparison between Hierarchy Nested Erasure Codes
and GRID(Star,Star) Codes

Pe

Pr
ob

. o
f

di
sk

 e
rr

or
s

Grid(Star,Star) Code, K = 121 (11*11)

Grid(Star,Star) Code, K = 289 (17*17)

Grid(Star,Star) Code, K = 361 (19*19)

Grid(Star,Star) Code, K = 529 (23*23)

Nested Code, K = 120 (L = 40)

Nested Code, K = 270 (L = 90)

Nested Code, K = 360 (L = 120)

Nested Code, K = 510 (L = 170)

Figure 3.7: Comparisons the probability of disk errors between Grid codes and
hierarchy nested erasure codes

code outperforms the Grid(STAR, STAR) at the similar number of information

disks (K). We assume Grid(STAR,STAR) code can recover up to 15 failed

disks. Fig. 3.7 shows that the GRID(STAR,STAR) code can handle the

fault tolerance very well when the probability of disk errors (Pe) is low (not

greater than 0.3), but its limitation is that the maximum number of disk

correcting/recovery is only 15 failed disks (t ≤ 15) so it will fail when Pe gets

larger (Pe ≥ 0.4). Nevertheless, the hierarchy nested erasure code performs

well and has the ability to recover failed disks among thousands of disks in the

network.

95

Analysis and Discussion

According to the characteristic of MDS codes, in each group it can tolerate

up to (n−k) failed disks. In order to reduce the complexity of decoding, we

can recover the lost data back from their priority bits inside their own group

without considering the others, and if there are too few parity bits left for

decoding (there are more than n−k disk failures), we can consider and use

others in the global level selected by their relations. So, the local parity bits

in each local disk have higher priority than all global parity disks and are the

first to consider when disks are failed. To achieve the best performance, the

value of parameters c and δ will be carefully chosen.

Consider the probability of error occurred from the finite length LT codes,

Theorem 3.2.3. [28] For any original code with k input symbols and n =

k(1 + δ) output symbols (encoded by LT codes) received for decoding with

Ωi = 1, · · · , D, where D is the maximum degree of an output symbol, the

probability that an input symbol is of degree i when undecoded input symbols,

u = k + 1, k, · · · , 1. Pu is a recursive form of the error probability when the

decoding process fails.

Pu−1(x, y) =

Pu

(
x(1− pu) + ypu,

1

u
+ y(1− 1

u
)

)
y

−
Pu

(
x(1− pu),

1

u

)
y

,

(3.6)

96

where x, y are the input and output symbols, respectively, and

Pu (x, y) =
∑

c≥0,r≥1

pc,r,ux
cyr−1 (3.7)

is the state generating function of the LT decoder when the cloud size is d, the

ripple size is r, the associate probability in this state is pc,r,u, and pu is also

shown in [28].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The EXIT chart of MDS codes and LT code

Pe (input of LT code)

Pe
 (

in
pu

t o
f

M
D

S
co

de
s)

(5,3) MDS code
(5,2) MDS code
(5,4) MDS code
LT Codes

Figure 3.8: The EXIT chart of LT codes and MDS codes

We can also view the nested coding scheme as a concatenation, and use

the extrinsic information transfer (EXIT) charts to visualize the performance

and convergence.

From this EXIT Chart, we consider the error probability starting from the

97

high-error level. As shown in Fig. 3.8 the iterative decoding will asymptoti-

cally converge and eventually decode all erasures.

There are several trade-off issues in the scheme we developed here. The

cumulative protection capability of all the layers provide the overall fault tol-

erance capability of the system, but how should the protection capability be

divided and distributed among the three layers. Let α be the probability that

a local code fails to recover a broken data disk, let β be the probability that

the combination of the local codes and the regional code fails to recover a data

disk, and let γ be the probability that all the three layers fail to recover a

data disk. Following the high industry standard of five 9’s, we may set γ be

0.99999. What are good values for α and β? Note that the bandwidth over-

head is a function of α and β, as well as the size of local and regional clusters

and the overall storage network. Hence, the problem may be formulated as

a minimization problem (minimizing the bandwidth overhead) while meeting

certain constraints for α, β and γ.

It should be noted that, depending on the actual size and other require-

ments and constraints of the storage networks, the system need not be limited

to three layers. Shorter systems are better off using only two layers (i.e. local

and global), while very large systems may go with four layers (or even more).

In our initial study, we have experimented on a simple system with two layers.

We specifically choose short MDS codes in the lower layer and use long LT

codes in the upper layer. Several combinations of the code configuration are

simulated, and it is found that the robust soliton degree distribution of the LT

codes work better in the layered structure than the ideal soliton distribution.

It is desirable to provide useful engineering rules for the number of layers and

the preferred degree distribution for the upper layer codes.

In conclusion, this code is constructed based on the optimal MDS code and

98

then we construct the upper level (global) of parity disks by randomly select-

ing “d: degree” local disks and XORing them. This code not only protects

the arbitrary disk failures, but also recovers the loss data back. Compared

to the existing erasure codes such as GRID codes [39], the hierarchy nested

erasure codes have a better performance when the disk error rate is more than

0.65 and more suitable to the distributed data storage system with more than

hundreds of disks. However, this code does not efficient enough since its ran-

domly degree selective technique might degrade the performance and cause too

many overheads in the system from the limitless of LT codes resulted in unfair

comparison with GRID codes. Thus, in general this code will not as efficient

as the number of disks is increased in the systems. From these drawbacks,

we will propose an idea to construct an erasure code with fixed structure and

maintain the MDS property or nearly-MDS with low overhead.

3.3 The Horizontal-Vertical Single Parity Check

(HVSPC) Codes

A major drawback of the previous MDS-LT nested code is that the random

structure of LT codes does not promise definite or guaranteed recovery. Here

we propose a fixed layered structure instead of the random structure in order

to provide guaranteed performance.

For this code construction, we use various MDS codes as local codes for the

local protection and use the horizontal single parity check (HSPC) code for

the second protection, followed by a set of vertical single parity check (VSPC)

codes. The code structure is shown in Fig. 3.9. The HSPC is parity set

based on the horizontal SPC code which is computed by XORing all data in

each row. The VHPC is parity set based on the vertical SPC code which is

99

computed by XORing all data in each column. The CC is check on check.

Assume that the array size of MDS local array code is x × y. The array size

of the overall code is (x+ 1)× (y + 1).

Figure 3.9: The array structure

However, this code has an special structure for MDS local codes. In stead of

assigning each MDS code in each row or column, we assign them in a diagonal

and cyclical fashion. As shown in Fig. 3.10, all the symbols are labeled by the

same letter form a local MDS code.

Figure 3.10: The organization of MDS local code in the array of size x× y

100

A big advantage of this code is flexibility. We can construct the MDS local

protection codes in any array size. In Fig. 3.10, we use (7,5)MDS codes and

construct a parity array code with x = 8 rows and y = 9 columns. Thus, the

overall code size is 9× 10. Note that we will fill 0’s for some empty blocks, as

7 is not divisible by 8 · 9.

3.3.1 Simulation Results and Analysis

The simulation results are shown in Fig.3.11 and Fig. 3.12. We construct

this code based on various (n, k)MDS codes, including (6, 2), (7, 5), (8, 3) and

(11, 9), and they can tolerate different numbers of disk failures.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe before decoding

Pr
ob

. o
f

di
sk

 e
rr

or
s

af
te

r
de

co
di

ng

(6,2)MDS

(7,5)MDS

(8,3)MDS

(11,9)MDS

Figure 3.11: The probability of disk failures after applying the layered coding
scheme.

101

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

Pe before decoding

Pr
ob

. o
f

di
sk

 e
rr

or
s

af
te

r
de

co
di

ng

(6,2)MDS
(7,5)MDS
(8,3)MDS
(11,9)MDS

Figure 3.12: The probability (in log-scale) of disk failures after applying the
layered coding scheme.

102

Both graphs show that the probability of disk failures is reduced after we

apply this code to recover failures. However, there are still some unrecoverable

erasures left. From the simulation, this code can recover most failures when

the probability of raw disk failures (Pe) is low (Pe ≤ 0.2). It is intuitive that

the code based on MDS code with a larger number of redundancy can tolerate

more disk failures. As expected, the codes based on (6, 2) (4 overheads) and

(8, 3) (5 overheads) local MDS codes give a better performance in erasure

tolerance than the ones based on less overheads.

The merits of this code are (1) scalability: we can construct this code in

arbitrary any array size, (2) flexibility: we can use any size of MDS array

codes as local codes, in accordance with the number of disk failures we would

like to tolerate, and (3) fault tolerance: this code can handle a large number

of erasures depending on how large the data center is and how many erasures

the local MDS code can recover.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of HVSPC codes and GRID(star,star) codes

Pe before decoding

Pe
 a

ft
er

 d
ec

od
in

g

(7,5)MDS, R=0.5469
(10,7)STAR Grid, R=0.49
(9,7)MDS, R=0.63
(16,13)STAR Grid, R=0.6602
(11,9)MDS, R=0.6875
(5,3)MDS, R=0.4167

Figure 3.13: The comparison of HVSPC codes and GRID(STAR,STAR) codes

103

The results shown in Fig.3.13 are the probability of disk failures after we

compare the performance of this HVSPC code with the GRID(STAR,STAR)

code. For a fair comparison, we plot and show simulation results for both

codes in the same code rates. This codes appear to perform on par with each

other.

Like the GRID codes, HVSPC codes are not MDS codes so they do not

achieve the optimal space efficiency, but our codes are more flexible to con-

struct. We can apply any set of (n, k) MDS codes for the local protection and

then cover them with the HVSPC codes for the global protection. This tech-

nique outperforms the one of the MDS-LT nested erasure codes by reducing

the number of overheads and increasing the code rate.

3.4 Summary

This Chapter purpose is to construct the MDS or nearly-MDS codes for the

distributed storage systems. We have proposed the concept of hierarchical

structure where all disks are set by different priorities: the local, regional and

global protection layers. In this work, we have introduced two layers which

are local and global ones. The local disk arrays are protected and encoded

by a set of MDS codes, then they are covered up by the global protection

code. Both random and fixed code constructions have been analyzed and

simulated compared to the GRID(STAR,STAR) codes. Unfortunately, our

codes, MDS-LT nested codes and HVSPC codes, can handle less disk failures

than GRID(STAR,STAR) comparison at the same code rate.

Additionally, there are some open problems for the future works. First of

all, we will analyze its performance in terms of encoding/decoding complexity,

and compute the maximum number of disk failures that HVSPC codes can

104

tolerate. Then, other classes of MDS codes may be applied instead of SPC

codes in here in order to improve the ability to handle more disk failures and

still maintain the property of MDS codes.

105

106

Chapter 4

Coding for flash memory

In Chapter 2 and Chapter 3, we have proposed ideas and strategies for code

construction for disk array systems. In this Chapter, we will discuss and design

coding techniques for flash memories which work differently from disk array

systems. Since flash memories are free from any mechanical moving parts and

consume less power, and since the price of the flash memories has dropped

considerably (thanks to the more mature technology), it is believed that the

trend to use flash memories in large-scale storage system would be in the (near)

future. Coding for flash memories, together with other technologies, is a pillar

supporting this new product.

4.1 Introduction

Flash memories are becoming an important part in many electronic devices

such as MP3 player, PDAs, digital camera, or computer laptop due to its small

size with large memory capacity. Unlike hard disk drives, flash drives do not

107

contain any internal moving part which cause to the mechanical failure issues.

This reason makes flash drives are smaller and durable. However, there are two

main limitations in storing and updating (read/write) data into flash memory.

First, bits can only be cleared by erasing a large block of flash memory when

it reaches the highest state level. Second, each block has a limit number in

erasing process, after that it can no longer store or write any coming data.

In this research area, we are interested in multi-level flash memories rather

than single-level flash memories, since the former has a higher storage density

and a higher speed programming, which allows the number of stored bits

in a cell to be drastically increased. However, one major drawback of flash

memories is that although it can be read or programmed a byte or a word

at a time in a random access fashion, it must be erased a block at a time.

The theories on data representation for flash memories are introduced and

discussed for a better improvement and development.

4.1.1 How Flash Memories work?

Since flash memories are non-volatile memories (NVM), they work differently

from the traditional disks. They do not contain any moving/mechanical part

which may cause some noise like in magnetic disk drives, therefore being more

robust. They are also known as solid-state storage device because of none of

any moving parts – everything is electronic instead of mechanical.

NVM memories have been continuously growing in the industrial market

in the past few years and further growth in the near future, especially for flash

memory. Flash memory is a forms of chip called EEPROM or Electronically

Erasable Programmable Read Only Memory which contains a grid of columns

and rows within a cell that has 2 transistors known as a floating gate and a

control gate at each intersection as shown in Fig.4.1. They are separated by

108

a thin oxide layer. The floating gate links to the row or word line through

a control gate. In order to update/change a cell state to be ‘0’, the Fowler-

Nordheim tunnelling is required, otherwise the cell state has a value ‘1’ (as

long as the link is in place) [2]. On one hand, if we use two discrete charge

levels to store data, the cell is called “single-level” cell (SLC) and can store

one bit. On the other hand, if we use more than 2 (q > 2) discrete charge

levels to store data, the cell is called “multi-level” cell (MLC) and can store

log2 q bits [63].

Figure 4.1: Schematic cross section of flash memory.

The tunnelling mechanism is the process to alter the placement of electrons

in the floating gate. The charge (e.g.,electrons) comes from the bit line to the

floating gate, and drain to the ground. The excited electrons are pushed

through and trapped on other side of the thin oxide layer, giving it a negative

charge. These negatively charged electrons act as a barrier between the control

gate and the floating gate. The charge is stored in the floating gate layer of

the transistor. If the flow through the gate is above the 50 percent threshold,

it has a value of 1. When the charge passing through drops below the 50-

percent threshold, the value changes to 0. A blank EEPROM has all of the

gates fully open, giving each cell a value of 1. The electrons in the cells of a

flash-memory chip can be returned to normal (“1”) by the application of an

109

electric field, a higher-voltage charge. To inject charge into the cell is called

“writing/programming,” remove charge is called “erasing,” and measuring the

charge level/state is called “reading”. Flash memory uses in-circuit wiring to

apply the electric field either to the entire chip or to predetermined sections

known as blocks. This erases the targeted area of the chip, which can then

be rewritten. Flash memory works much faster than traditional EEPROMs

because instead of erasing one byte at a time, it erases a block or the entire

chip, and then rewrites it [63].

Flash memory has asymmetric properties since the changes in the cell levels

have asymmetric distribution where they are frequently changed in the up and

down direction, and the errors in different cells can be correlated. Due to this

property, it is easy to increase a charge level, but very expensive to decrease it

because to lower a cell’s level, block erasure is needed. From this problem, the

coding scheme for rewriting data is interested and would lead to allow data

to be rewritten many time before block erasure is needed and hence can be

lengthen the lifespan of flash memory.

4.1.2 Literature Reviews

Flashed back to the single cell flash memory which was studied in the write-

once memories (WOM) codes in“How to reuse a write-once memory” [47],

the write-asymmetric memory (WAM) could be used several times. A ‘write-

once’ bit position defined as a ‘wit’ contained two states in each cell (for

example, punch cards), then they came up with the lemma that only 3 wits

were needed to write 2 bits twice without resetting any cell. Since then, there

were numerous papers that were motivated and built based on their work such

as [48]-[50], to name but a few. In the WOM model, its codes needed to solve

the problem that what the minimum number of cell n required to stored k bits

110

t times should be. So, the WOM codes was designed with the WOM-rate Rt

with the t writes was defined in [55] as the ratio of the total number of bits

written to the memory, kt, to the number of cells, n, Rt =
kt

n
. In [48], they

studied the generalization WOM and reused them for successive cycles under

the condition that the encoder knows the previous state of the memory, but

the decoder does not. This work can be the extension of Wolf, Wyner, Ziv, and

Korner for the binary WOM to the generalized WOM. The cost to rewritten

the data in WOM also presented in [50]. They gave a characterization of the

basic quantity of WOM and showed the related quantities that are useful for

following works.

However, in recently the multi-level flash memory cell is invented in order

to increase the number of stored bit in a cell. This property as well as its

high storage density and high speed programming has made the flash memory

popular for the portable devices and technologies. Flash memories have prop-

erties that work differently from traditional memories since they have many

levels of cell state which are used to store data: (1) a block erasure when

any cell is full, a block contained such cell must be erased, (2) the direction

of updating: there are only two operations on cells which are increasing the

charge level (charging) or erasing the contents of the cells (discharging), and

(3) the limited lifetime of cells because the number of block erasures is finite.

Recently, in [45], Jiang discussed the generalization of error-correcting

WOM codes for the flash memory model. Consider a block of multi-level

flash memory with many levels of cell states for storing data. Assume that

each cell has q states: 0, 1, ..., q − 1, where currently q typical ranges from 2

to 4 states, but the possibilities of q are in a much wider range between 2 and

256. Note that Flash memory offers random-access reading and programming

operations but it cannot offer random-access rewrite or erase operations. The

state of a flash memory can be easily increased from a lower state to a higher

one by injecting an electron into the cell level, but to decrease the state of a

111

cell a flash memory is difficult and is typically achieved by erasing the whole

block and re-programming (resetting) all the cells in the block [45]. In general,

the block size can be thousands of or hundreds of thousands of cells, so to erase

the whole block is not only time consuming, but it also degrades the efficiency

and quality of flash memories. Since it is much more costly to decrease than to

increase the state of cells, decreasing cell states should be avoided or delayed

as much as possible.

Floating codes [45] are designed for k variables taking values {0, ..., l − 1}
represented data stored in a block of n q−ary cells. This code consists of

2 functions: decoding function: {0, 1, ..., q − 1n} → {0, 1, ..., l − 1k}, which
maps a cell state vector to a variable vector, and update function: {0, 1, ..., q−
1n}×{1, 2, ..., k} → {0, 1, ..., q−1n}, which updates the block to reflect a data

change in the selected element of the variable vector. This code guarantees

the number of rewriting times (t) as

t ≤

[n− k(l − 1) + 1](q − 1) + ⌊ [k(l − 1)− 1](q − 1)

2
⌋ if n ≥ k(l − 1)− 1

⌊n(q − 1)

2
⌋ if n < k(l − 1)− 1

The floating codes whose average block erasure period is better than the

existing one in [45], [46] are proposed in [56]. The codes are based on the Gray

code and have a simple implementation by concatenating the codes. Codes

for n = 2m, k = 2, and l = 2 can be obtained where n is the number of cells

in a block, k is the number of input information symbols, l is the number of

levels of input, and m is a positive integer.

In addition, the multidimensional flash code [54] improves on the floating

112

codes in [45] to achieve more precise measure of optimality than the asymp-

totically optimality. The two main contributions of this work are a new mea-

surement called write deficiency to decide how good a code is, and their new

floating codes. The purpose of constructing this code are to eliminate the

need for discrete cell level, and to overcome the overshoot errors (errors in

which too many electron are added), which is a serious problem that reduces

a writing speed during cell programming. The both basic and enhanced mul-

tidimensional construction constructed recursively on k and assume that q is

only an odd number are successfully introduced.

Compared to floating code [45, 46], this code construction is simpler in the

case of storing 2 bits using an arbitrary number of q-level cells. However, for

the case of 4 bits, the drawback is it still has high write deficiency which is

depended on the number of cells.

Furthermore, the indexed code [45] try to sacrifice some small number of

cells as indexed cells to remember which cell group store which variable group

by using the permutation of the number of group. This strategy is complicated

and hard to implement when the number of cells, n, is really large and it has

to sacrifice more cells to store the permutation. It also needs a mapping table

between permutations and variable vectors.

Therefore, an important goal of this research area is to maximize the lim-

ited life cycle of a flash memory, or, in the other way, to maximize the number

of times data can be rewritten between two block erasures [45]. The key

questions thereof are: How should flash memory change its data structure or

data representation and how should the cell states change as a bit representa-

tion(variables)? The solution lies in the design of good codes that map digital

data to cell states and vice version. Unlike the erasure codes discussed in the

previous two Chapters which are error-correcting codes or channel codes, here

the codes are data representation codes or source codes.

113

Present research work on coding for flash memories investigates how to

effectively/efficiently write, read, and program data, and then analyzes their

performance. Another objective this research is that to correct some error

of data representation. Rank Modulation codes [57],[58],[60] claim to be the

first code that can correct errors/erasures written in flash memory. It is a

scheme that uses the relative orders of cell levels to represent data. Instead

of using the real value of data stored in cells, the ranks of cells are used

and mapped to the information bits. The charge level in each cell induces a

permutation that can measure the corruption of a stored information. This

code makes more robust to program flash memory cells. Several works later

investigate the potential error-correcting codes to improve the reliability of

flash memories such as in [61]. This coding scheme is based on the premise

of cells whose levels are higher than other need not to be increased, but this

introduces errors called “controllable errors” in the recorded data and then

can be corrected by this code. However, the complexity of the encoder and

decoder is essentially involved in identifying the controllable errors, so in the

practical implications the encoder/decoder implementation is more complex

than the traditional flash coding schemes which aim to maximize the number

of writes only.

In this dissertation, we study and focus on the multilevel flash memory

where every cell has q > 2 states (q ∈ 0, 1, 2, ..., q − 1). It will change the state

of cell by injecting (programming) or removing (erasing) charge into/from the

cell [62]. To avoid/delay the erasing process, we try to extend the life cycles of

flash memories by maximizing the number of writes as much as possible. We

will introduce the new performance measurement termed the “word-writes”

to record the number of writes from the user’s view before the block erasure

is required. In addition, we consider and discuss two coding techniques to

construct two new codes for different applications for flash memories which is

the topic of this Chapter.

114

4.1.3 The Number of Writes Consideration

To consider the performance of flash memories, many researchers define some

definitions and measurements to analyse their performance, especially in term

of the number of writes they can achieve and guarantee. Unlike the traditional

channel codes, coding techniques for flash memory cannot be measured their

performance by the same method in terms of code rate R, minimum distance

dmin, or encoding/decoding complexity.

The efficiency of a flash code may be measured by its best-case, average-

case, or, more commonly, worst-case (i.e. guaranteed) write efficiency, which

is limited by the most undesirable sequence of variable vector updates that

leads to the least number of state vector updates (valid programming) before

any cell exceeds its maximum state level. Formally, we have the following

definitions:

Definition 4.1.1. A flash code guarantees t bit-writes, if every sequence of up

to t bit-writes in the variable vector is possible, i.e. can find the corresponding

sequence of update rules in the transition map before a block erase.

Definition 4.1.2. [54] Let x = (x1, x2, ..., xn) denote the state vector of the

n cells, where 0 ≤ xi ≤ q − 1 denotes the level of the ith cell. The weight of

the state vector, or, simply, the cell state weight is defined as wx =
∑n

i=1 xi.

It should be noted that, all the research work in literature has, by default,

considered a “write” operation as a “write of a single bit”, and therefore has

used the number of bit-writes, as a figure of merit. Further, under the assump-

tion that each write operation will increase the cell state weight by at least

one, a trivial upper bound for the number of bit-writes can be derived:

115

t ≤ n(q − 1) (4.1)

This bound can be achieved by, for example, k = 1. With this upper

bound, a concept of write deficiency results, which is defined as the difference

between the guaranteed number of bit-writes of a flash code and the upper

bound n(q − 1) [54]. The write deficiency is zero when a code is optimal.

Additionally, a tighter upper-bound on t is also derived in [46]:

Theorem 4.1.3. [Bit-Write Upper-Bound] [46] For all (n, k)q flash codes that

guarantee t bit-writes before erasing, t is upper-bounded by1

t ≤ Tb(n, k, q) (4.2)

∆
=

{
(n−k+1)(q−1)+⌊ (k−1)(q−1)

2
⌋, if n≥k−1,

⌊n(q−1)
2

⌋, if n<k−1.

4.2 TheWord-write Efficient and Bit-write Ef-

ficient (WEBE) Codes

Motivated by the construction of flash code, we generate a new class of code

called the “Word-write Efficient and Bit-write Efficient” code or WEBE code

that not only consider a bit-write, but also a word-write which the defini-

tion will be provided below. This section considers the design of flash codes.

Unlike all the previous work that targets optimal bit-write efficiency, here we

1Throughout this part, we assume the variable vectors are binary vectors, as in today’s
digital computer and communication systems. The general case of arbitrary variable alpha-
bet size l can be found in [57] [58] [54].

116

emphasize word-write efficiency. It may appear that to write a word inevitably

involves the update of individual bits, and hence it seems sufficient to focus

on maximizing bit-writes.

Definition 4.2.1. For every time some/all bits need to be written/updated,

if there are always available cells to be increased their level, it can be counted

as one word-write. Otherwise, either errors occur or this block needs to be

erased.

However, the fundamental difference is that, when word-writes are in con-

cern, the intermediate steps of updating each individual bits need not (and

probably should not) be explicitly expressed. That is, when dealing with a

word-write that involves the update of several bits, instead of treating it as a

sequence of individual bit-writes in succession and hence associating it with

a cell state of a rather high “rank”, it may be beneficial to provide a “short-

cut” and assign it a separate cell state of low rank. This could significantly

reduce the rank-increase in a worst-case scenario (when a word-write involves

all the bit-writes) and therefore increase the supportable number of word-

writes. We will show that bit-writes and word-writes are indeed related but

different philosophies that will in general lead to rather different designs, and

that optimality in one does not necessarily imply optimality in the other.

Specifically, we propose a class of word-write efficiency codes for k=2 and

arbitrary n and q, and analyze their performance. Our codes are simple but

guarantee more word-writes than the existing (bit-write) optimal codes [46]

[54]. In addition, we provide a generalization of this code for arbitrary k, n

and q, and also discuss its performance and future works.

117

4.2.1 Problem Formulation and New Concepts

We consider the design of representation codes for flash memories, or, simply,

flash codes. A set of n q-level cells have altogether qn possible state values.

An (n, k)q flash code, as defined in [54], is a coding mechanism that arranges

n q-level cells to store k < log2(q
n) = n log2 q variable bits, that is, storing

less bits than possible, so that variable updates can be achieved through cell

programming rather than trigger a block erasure. In practice, it is common to

have k ≤ n, but not necessarily since we may have a single 8-state cell that

can be used to represent 2 variable bits. One can also define
k

n
log2 q ∈ (0, 1)

as the code rate for the flash code, but the code rate is not a very important

concept in flash codes.

A conventional code, such as a channel code or a (lossless) source code,

is completely defined by a codebook, or, a map between the source (variable

vectors) to the codewords (state vectors). In comparison, a flash code generally

involves two maps: the decoding map and a transition map [54]. A decoding

map specifies the value of the corresponding variable vector associated with

each (valid) cell state vector, and is similar in flavor to the conventional concept

of codebook. The transition map, which is unique to flash codes, specifies

the set of rules of updating/programming the state vector, such that each

update corresponds to a possible change in the variable vector. Sometimes,

it is convenient to represent the transition map using a directed graph, such

as in float codes [46] [54]. Note that the state (the charge level) on a cell can

only be increased or set to zero.

All the previous work has laid solid foundation in the theory and practice

of flash codes. However, instead of focusing solely on the number of bit-writes,

in this work we propose to also consider word-write, i.e. write of the entire

variable vector, and to design flash codes that can maximize the guaranteed

118

number of word-writes. Word-writes are relevant and of paramount practical

interests, because real-world applications such as digital computers usually

perform the write operation in the word level, rather than the bit level, where

a word can be, for example, 8 bits, 16 bits or 32 bits. Each word-write may

consist of anywhere from 1 to k bit-writes, and hence bit-write efficiency does

not linearly transform to word-write efficiency. We claim that the design for

bit-writes and the design for word-writes are two related but different philoso-

phies that will in general lead to different designs. Since a bit-write optimal

code may not be equally optimal in word-writes and vice-versa, we propose to

account for both criteria, and to design codes that are both Word-write Op-

timal and Bit-write Optimal (WOBO), or, at least Word-write Optimal and

Bit-write Efficient (WOBE), or Word-write Efficient and Bit-write Optimal

(WEBO).

Following the idea of WOBO, we first develop the following concepts and

bounds:

Definition 4.2.2. A flash code guarantees t word-writes, if every sequence of

up to t variable vector writes/updates are possible before triggering a block

erasure.

Theorem 4.2.3. [Word-Write Upper-Bound] Suppose an (n, k)q flash codes

guarantees t word-writes before erasing. t is upper-bounded by

t ≤ min

(⌊
qn − 1

2k − 1

⌋
, Tb(n, k, q)

)
, (4.3)

Proof. Since the set of the word-write sequences subsumes all the bit-write

sequences, the number of guaranteed word-writes cannot exceed the number

of guaranteed bit-writes Tb(n, k, q). We now show t ≤ ⌊(q
n − 1)

(2k − 1)
⌋. There are

altogether qn different states for n q-level cells. Since the flash code must be

unequivocally decodable, each state can represent at the most one variable

119

value. Let the k-bit variable vector start from the all-zero value. To guarantee

one word-write would require all the other (2k−1) variable values to have

distinct representations from the cell states. Hence, it takes at least 1+(2k−1)

distinct states (including the initial state) to achieve one arbitrary word-write.

In the tth (t≥2) word-write, consider the variable value that corresponds

to the state (or one of the states) having the largest state weight (among all

the already-allocated states). Clearly, this variable may be updated to any

of the other (2k − 1) possible values, and hence requires an additional set

of (2k − 1) cell states to represent them. None of these (2k − 1) cell states

may be re-cycled from any of the previously allocated states, because of the

asymmetry in state reduction. Hence for t arbitrary word-write, it requires

the flash memory to have at the least 1 + t(2k − 1) distinct cell states, which

results in t ≤ ⌊(q
n − 1)

(2k − 1)
⌋.

Definition 4.2.4. If a flash code that guarantees t word-writes, then its word-

write deficiency is defined to be δw = ⌊(q
n − 1)

(2k − 1)
⌋ − t.

Remark 4.2.5. The bound in (4.3) is simple, and not tight in general. How-

ever, it is tight and achievable for certain non-trivial cases. Below we show an

example of (n, k)q=(3, 2)2 flash code that achieves this bound with equality.

Example 1: Consider using 3 2-level cells to represent a variable word of 2

bits. From Theorem 2, the maximum number of guaranteed word-writes is 2.

The flash code in Fig. 4.2 achieves the bound with equality and is therefore

word-write optimal (WO). An acyclic directed graph is used to represent the

transition map, with the decoding map also embedded. Each state is denoted

by “state-value / variable-value.”

Theorem 4.2.6. The relation between bit-writes and word-writes:

120

1,0,0 / 1,0 0,1,0 / 0,1 0,0,1 / 1,1

0,0,0 / 0,0

1,0,1 / 0,1 0,1,1 / 1,0 1,1,1 / 0,01,1,0 / 1,1

Figure 4.2: A (3, 2)2 flash code that achieves the maximum word-write effi-
ciency 2.

(i) A flash code that guarantees t word-writes also guarantees t bit-writes.

(ii) A flash code that guarantees t bit-writes does not necessarily guarantee

t word-writes.

(iii) Bit-write optimality does not necessarily imply word-write optimality

in terms of guaranteed writes.

Proof. The statement in (i) is easy to prove, as any sequence of t bit-writes is

also a sequence of t word-writes. To show (ii) and (iii), it is enough to show a

counter-example, Example 2 in Fig. 4.3.

Example 2: The (3, 2)2 flash code in Fig. 4.3 is an instance of the bit-write

optimal code (termed floating code) in [46]. It achieves the bit-write bound

Tb = 2 in (4.2). However, this code only guarantees 1 word-write (e.g. a

word-write sequence (0, 0) → (1, 1) → (0, 1) cannot be satisfied.), and hence

falls short from the maximum possible word-writes (which is also 2, see the

example in Fig. 4.2).

121

1,0,0 / 1,0 0,1,0 / 0,1

1,1,0 / 0,0 1,0,1 / 1,1

1,1,1 / 1,0 erase / 0,1

0,0,0 / 0,0

0,1,1 / 1,1

Figure 4.3: A (3, 2)2 flash code (floating code in [46]) that achieves the maxi-
mum bit-write efficiency, but not the maximum word-write efficiency.

It is clear from the examples in Fig. 4.2 and 4.3 that the design for bit-

write efficiency, a practice that has prevailed the literature, does not guarantee

word-write efficiency. The question then arises as whether word-write efficiency

will automatically imply bit-write efficiency. Our answer is no. In general, we

believe that the set of bit-write optimal codes and the set of word-write optimal

codes relate to each other as shown in Fig 4.4, and the intersect is not empty,

i.e. the code in Example 1 in Fig. 4.2 is an example of WOBO code.

4.2.2 Design WEBE Codes for k = 2

In this case, we introduce the WEBE code that can be represented by two

binary bits, whereas the general case for an arbitrary k is shown later in next

section.

122

Figure 4.4: Relation between bit-write optimality and word-write optimality.

The Special Case of n = 3

Here, for the sake of simply illustration we first describe the code construction

for there are three cells in a block and represented by two bits. It is clear from

the previous discussion that one should account for both word-writes and bit-

writes, and design WOBO codes that achieve both bounds. Note that WOBO

codes exist, but may not for any parameters. In what follows, we will present

a design of WEBE (word-write efficient and bit-write efficient) codes for k = 2

and arbitrary n and q. The special case of n = 3 and q = 2 results in the

WOBO code in Example 1.

To help illustrate, we first discuss the code in terms of n = 3, and then

generalize it to arbitrary n. We will present bounds on its write efficiency, and

compute them with the existing bit-write optimal codes.

The proposed (3, 2)q code is based on a simple but profound observation: A

2-bit (binary) variable has only three possible word-updates, change the first

bit, change the second bit, and change both bits, where each can be replaced

by the combination of the other two. For example, if one wishes to change

123

only the first variable bit, he can either perform “change first”, or perform

“change second” followed by “change both” (or the other way around since

the order does not matter).

This motivates us to employ n = 3 cells to track and record these three

kinds of word-updates respectively, and, if any cell becomes saturated, the

other two can come to help, until, of course, a second cell also becomes satu-

rated, in which case, an arbitrary word-update cannot be performed/recorded.

A rigorous mathematical definition of the code is given in Algorithm 1.

124

Algorithm 1: A class of (3, 2)q WEBE codes:

Notation:

x=(x1, x2, x3) : the state vector, where xi=0, 1, ..., q−1.

u=(u1, u2): the variable vector, where ui=0 or 1.

Starting state: x=(0, 0, 0), u=(0, 0).

Decoding Map:

u1 = mod(x1, 2)⊕mod(x3, 2), (4.4)

u2 = mod(x2, 2)⊕mod(x3, 2), (4.5)

where ⊕ denotes binary addition (i.e. exclusive OR, XOR), and

mod(xi, 2) is a modulo 2 operation.

Transition Map:

• (u1, u2) → (u1+1, u2):

Increase x1 by 1 if possible; otherwise, increase both x2 and x3

by 1.

• (u1, u2) → (u1, u2+1):

Increase x2 by 1 if possible; otherwise, increase both x1 and x3

by 1.

• (u1, u2) → (u1+1, u2+1):

Increase x3 by 1 if possible; otherwise, increase both x1 and x2

by 1.

The WEBE codes constructed in Algorithm 1 have the following properties.

Each word-write causes the overall state weight to increase by either 1 or 2.

For a cell state vector x with weight w =
∑

i xi, we know it has gone through

a minimum of ⌈w
2
⌉ word-writes, and a maximum of w word-writes. If the

125

weight w ≤ (q − 1), then the cells have gone through exactly w word-writes,

and we know what these writes are, although we do not know the exact order

at which they are performed. Further, the all-saturated state (xi = q−1,∀i)
always corresponds to the all-zero variable (0, 0) irrespective of q.

Theorem 4.2.7. The (3, 2)q code in Algorithm 1 guarantees t=2(q−1) word-

writes (i.e. worst case), and can support up to n(q− 1)=3(q− 1) word-writes

in the best case.

Proof. The best-case performance bound is trivial. We prove the worst-case

by showing t≤2(q−1) and t≥2(q−1).

Every word-write increases the state weight by either 1 or 2. In any case,

the first (q−1) word-writes (call it Stage 1) will not cause any cell to saturate,

and hence each word-write increases the state weight only by 1, resulting

in a total state weight of (q−1). Since the maximum state weight can be

n(q − 1)=3(q − 1), so there remains 2(q − 1)s state weights for Stage 2. It is

possible that Stage 1 has saturated a cell, such that every word-write in Stage

2 causes the state weight to increase by 2. Hence stage 2 can support at the

most (q−1) word-writes, that is a total of t ≤ 2(q − 1) word-writes that can

be supported.

We now show t ≥ 2(q − 1). Consider an arbitrary state vector x that has

supported b word-writes and can no longer support another arbitrary word-

write. From the transition map, at least two of the cells are saturated. Without

loss of generality, assume x = (q−1, q−1, a) (0 ≤ a ≤ q−1). We show b ≥ 2(q−1)
by contradiction. If b ≤ 2(q− 1)− 1, then the cells must have gone through at

least (a+1) word-writes each of which has caused the state weight to increase

by 2. (This is because the total weight is 2(q−1)+a, and the first (q−1) word-

writes are always weight-1 word-writes. So the remainder b − (q−1) ≤ q−2

word-writes must cause the weight to increase to (q − 1 + a).) These (a+1)

126

020/00 101/01 011/10 002/00110/11200/00

000/00

100/10 001/11010/01

12
0/

10

02
1/

11

10
2/

10

01
2/

01

00
3/

11

03
0/

01

20
1/

11

21
0/

01

11
1/

00

30
0/

10

(A) (3, 2)q code with “Stage 1” (first (q−1)) word-writes.

020/00 101/01 011/10 002/00110/11200/00

000/00

100/10 001/11010/01

12
0/

10

02
1/

11

10
2/

10

11
2/

11

01
2/

01

12
1/

01

20
1/

11

21
1/

10

11
1/

00

21
0/

01

21
2/

01

22
2/

00

12
2/

10

02
2/

00

11
2/

11

20
2/

00

22
1/

11

22
0/

00

12
1/

01

21
1/

10

212/01 222/00 122/10221/11

222/00
non−guaranteed

stage 2

stage 1

(B) A (3, 2)3 WEBE code that guarantees 2(q−1)=4 word-writes and
supports up to n(q−1)=6 word-writes.

Figure 4.5: The proposed (3, 2)q flash code.

127

weight-2 word-writes must happen after some cell is saturated, and must cause

the other two cells to each increase by (a+1). That is, none of the three cells

can be in a level smaller than (a+1), which contradicts with the supposed cell

state x = (q−1, q−1, a).

Example 3: Fig. 4.5 presents a graph illustration of the proposed (3, 2)q

code. Fig. 4.5(A) shows Stage 1 (self-sufficient stage) for arbitrary q, and

Fig. 4.5(B) shows the complete diagram for q = 3, including Stage 1, Stage

2 (mutual-leveraging stage) and beyond (non-guaranteed word-writes). It is

clear, from the proof of Theorem 4 and from this example, that it is a big

benefit in the design for the cells to be able to leverage each other, as the

mutual-leveraging stage supports as many possible word-writes as the self-

sufficient stage.

The Case of General n

The coding ideas and constructions discussed in Algorithm 1 can be generalized

to an arbitrary number of n. Suppose we have n > 3 q-level cells to represent

k = 2 binary variable bits. The idea is to divide the n physical cells in 3 groups,

each representing one “virtual cell,” and then apply the previous (3, 2)q code.

For example, if we have n = 6 4-level cells, we can combine every 2 cells, and

make the flash memory act like three virtual cells of 6-level each.

If one has a priori knowledge about what word-writes are more possible,

then the three groups may be arranged unequally to reflect the application

needs. For example, if the application tends to change the first variable more

often than the second, then a larger group may be formed for the first virtual

cell. In general, such knowledge is either unavailable, or all the three kinds

of word-writes tend to be equally probable. Further, considering the fact that

128

when a group (super cell) is exhausted, the other two can always come to

rescue, it is therefore reasonable to evenly divide the cells into groups. When

n is not divisible by 3, the surplus cell(s) may either join some of the groups,

or be used altogether by the two variable bits to indicate value change; see

Algorithm 2.

Theorem 4.2.8. The (n, 2)q code described in Algorithm 2 guarantees t =

2m(q − 1) + ⌊pq
4
⌋ word-writes of any type, where n=3m+ p, and p=0, 1, 2.

Proof. From Theorem 4.2.7, the (3, 2)m(q−1) code guarantees 2m(q − 1) word-

writes. The additional p surplus cells support ⌊q/4⌋ word-writes for p = 1 and

⌊q/2⌋ word-writes for p = 2.

Comparison with the existing flash codes: The bit-write optimal flash codes

proposed in literature do not come close to our design in terms of guaranteed

word-writes. For example, the floating codes in [46] and the multidimensional

flash codes in [54] (at k=2) both guarantee about 1
2
n(q−1) word-writes. In

comparison, our (n, 2)q WEBE codes promise about 2
3
n(q−1) word-writes,

a 33% increase in worst-case performance. On the other hand, our codes fall

short in terms of guaranteed bit-writes (except the case n=3, q=2). Our codes

guarantee 2
3
n(q−1) bit-writes, whereas the bit-write optimal codes guarantee

close to n(q−1) bit-writes.

129

Algorithm 2: (n, 2)q WEBE codes

1. Suppose n= 3m + p, p= 0, 1, 2. Evenly divide the last 3m cells

into three groups, each of which contains m q-level physical cells

and can be used to mimic a m(q−1)-level virtual cell.

2. Apply the (3, 2)m(q−1) WEBE code discussed in Algorithm 1 on

these 3m cells.

3. When the these 3m cells can no longer support a requested word-

write, saturate all of them and go to the remainder p surplus cells.

If p = 1, then this one extra cell with levels 0, 1, 2, 3, 4, · · · , q − 1

can be used to represent variable values (0, 0), (0, 1), (1, 0) (1, 1),

(0, 0), and so on, and can therefore support ⌊q/4⌋ additional word-
writes of any type. If p = 2, then these two physical cells are

used to represent the two variable bits in the natural way. That

is, (x1, x2) represents (u1, u2), where u1 = mod(x1, 2), and u2 =

mod(x2, 2). These two extra cells can support ⌊q/2⌋ word-writes

of any type.

4.2.3 Design WEBE Codes for General k

In previous section, the WEBE codes represented two binary bits are shown

and discussed. The upper-bounds of bit-writes and word-writes are asymp-

totically optimal. Now, we provide the extension idea for WEBE codes to

construct general binary bits k for any value of n and q. In this work, we

introduce two types of cells as following definitions.

Definition 4.2.9. The data-state cell is a cell of flash memory stored the

130

data that will be represented by the variable bit in the corresponding position.

The number of groups(units) of data-state cells is equal to the number of

groups(units) of variable bits.

Definition 4.2.10. The parity-state cell is a cell of flash memory stored the

information from XORing the corresponding multiple variable bits that are

updated at the same time to increase the state of all corresponding cells.

Since in this case, we assign both kinds of cells to store data, but the

difference from the previous work is that instead of using a virtual cell to

rescue and support a large group as soon as it is saturated, we apply the

parity-state cells to be like the redundancy in the traditional error-correcting

codes. The parity-state cells are computed by XORing any a variable bits,

where 0 ≤ a ≤ k. The general case of parameters n and k will be discussed in

section 4.2.3.

The Simply Case of (6, 3)2 WEBE code

Before we extend and construct the WEBE code for general k, in this section

we will start showing the simply case of (6, 3)2 WEBE code. The layout

structure of this code illustrate in Fig.4.6, where we have 3 data-state cells

and 3 parity-state cells. The parity-state cells will increase every time there

are 2 bits changed/updated at a time. For example, the x4 stores the XORed

data of bits u1 and u2, so when u1 and u2 are flipped/updated at the same

time, instead of increase both x1 and x2, we only increase x4 by 1.

All stored information will be represented by 3 variable bits and Algo-

rithm 3 shows and concludes this code construction both in decoding map and

transition map.

131

Algorithm 3: A class of (6, 3)q WEBE codes:

Notation:

x=(x1, x2, x3, x4, x5, x6) : the state vector, where xi=0, 1, ..., q−1.

u=(u1, u2, u3): the variable vector, where ui=0 or 1.

Starting state: x=(0, 0, 0, 0, 0, 0), u=(0, 0, 0).

Data-state cells: x1=u1, x2=u2, x3=u3

Parity-state cells: x4=u1 ⊕ u2, x5=u2 ⊕ u3, x6=u1 ⊕ u3

Weight of branch: Wi =
∑n

i=1 xi

Wu1 = min(x1, x2 + x4, x3 + x6, x2 + x5 + x6, x3 + x4 + x5), (4.6)

Wu2 = min(x2, x1 + x4, x3 + x5, x1 + x5 + x6, x3 + x4 + x6), (4.7)

Wu3 = min(x3, x1 + x6, x2 + x3, x1 + x4 + x5, x2 + x5 + x6) (4.8)

Note that xi must not be a full cell to be considered as a subset of minimum

weight.

Decoding Map:

u1 = x1 ⊕ x4 ⊕ x6, (4.9)

u2 = x2 ⊕ x4 ⊕ x5, (4.10)

u3 = x3 ⊕ x5 ⊕ x6 (4.11)

where ⊕ denotes binary addition or XOR.

Transition Map:

• (u1, u2, u3) → (u1 ⊕ 1, u2, u3):

Increase x1 by 1 if possible; otherwise, increase the 2 or 3 related

minimum-weight cells by 1.

• (u1, u2, u3) → (u1, u2 ⊕ 1, u3):

Increase x2 by 1 if possible; otherwise, increase the 2 or 3 related

minimum-weight cells by 1.

• (u1, u2, u3) → (u1, u2, u3 ⊕ 1):

Increase x3 by 1 if possible; otherwise, increase the 2 or 3 related

minimum-weight cells by 1.

• (u1, u2, u3) → (u1 ⊕ 1, u2 ⊕ 1, u3):

Increase x4 by 1 if possible; otherwise, increase the 2 or 3 related

minimum-weight cells by 1.

• (u1, u2, u3) → (u1, u2 ⊕ 1, u3 ⊕ 1):

Increase x5 by 1 if possible; otherwise, increase the 2 or 3 related

minimum-weight cells by 1.

• (u1, u2, u3) → (u1 ⊕ 1, u2, u3 ⊕ 1):

Increase x6 by 1 if possible; otherwise, increase the 2 or 3 related

minimum-weight cells by 1.

• (u1, u2, u3) → (u1 ⊕ 1, u2 ⊕ 1, u3 ⊕ 1):

Increase 2 related minimum-weight cells by 1 if possible; otherwise, in-

crease the 3 related minimum-weight cells by 1.

132

Example 4: Consider using (6, 3)2 WEBE code in 6 q−level cells to repre-

sent a variable word of 3 bits where there are 3 data-state cells, 3 parity-state

cells and their relations are shown in Fig.4.6. Let q = 2, and Fig. 4.7 presents

a graph illustration when cells are written from an empty state. From Algo-

rithm 3, using the minimum-weight selection method to choose which cells we

need to update after the bit is updated. The number of word-writes will be

increased and asymptotically optimal.

The Case for General k

To extend the technique of constructing WEBE code in the previous work for

general k, we have introduced the parity-state cell which can be computed and

defined by XOR operations. In this work, we let the number of total cells be n

which are separated into k data-state cells and n− k parity-state cells, where

k ≤ n. These cells store information and are represented k variable bits.

However, to construct the WEBE code for arbitrary k and n, there are

various possibilities to generate the parity-state cells. The maximum and

optimal number of parity-state cells are m=n− k=2k − 1. Also, the number

of data-state cells that the parity-state cells have to be covered is not fixed.

We can assign 2,3,4, or more data-state cells to be XORed and represented in

one parity-state cells that can return and transform the updated data keeping

in such cell into the updated variable bits (or let’s say a bits to be XORed,

where 0 ≤ a ≤ k). This technique will help to extend the time to erase the

whole block of cells when one cell is full and cannot be increased to the higher

state any more, since there are always the parity-state cells that cover/backup

such cell and we can write/update the information into them.

133

Figure 4.6: An example of a simple (6, 3)q WEBE code

Figure 4.7: A (6, 3)2 WEBE code that achieve an asymptotically optimal
word-writes

134

Example 5: Shown in Fig. 4.8 is one example of various layout structures

to construct an (n, k)q WEBE code. This layout illustrates that there are k

variable bits to represent n q−level cells, where there are k data-state cells and

n − k parity-state cells. From a graphical structure, each parity-state cell is

computed by XORing any 2 adjacent bits (a = 2), since we use a cycle graph

to define which cells are written when some sets of variable bits is updated.

The edges of a graph represent each parity-state cell that can be computed by

XORing two data-state cells at both ends.

Algorithm 4 shows the concise and rigorous mathematical definition and

process to construct an (n, k)q WEBE code.

135

Algorithm 4: A class of general (n, k)q WEBE codes:

Notation:

x=(x1, x2, ..., xn) : the state vector, where xi=0, 1, ..., q−1.

u=(u1, u2, ..., uk): the variable vector, where ui=0 or 1, and k ≤ n, n=k +m.

Starting state: x=(0, 0, ..., 0), u=(0, 0, ..., 0).

Data-state cells (k): x1=u1, x2=u2, ..., xk=uk

Parity-state cells (m): xk+1=u1 ⊕ u2, xk+2=u2 ⊕ u3, ..., xn=uk ⊕ u1

(Note that this scheme is only one subclass of all possibilities to construct (n, k)q

WEBE codes. We can XOR a sets of bits, where 0 ≤ a ≤ k).

Weight of branch: Wi =
∑n

i=1 xi

(Note that xi must not be a full cell to be considered as a subset of minimum

weight.)

Decoding Map:

ui = xi ⊕ xj ⊕ xl, (4.12)

where xj and xl denote the cells that related to cell xi (two connecting edges of

xi.)

Transition Map:

• 1 bit changed ui, i ∈ 1, 2, ..., k:

Increase xi by 1 if possible; otherwise, increase the 2 or more related

minimum-weight cells by 1.

• 2 bits changed (ui, uj):

Increase the cell stored ui ⊕ uj by 1 if possible; otherwise, increase the 2 or

more related minimum-weight cells by 1.

• more than 2 bits changed (m bit changed):

Increase the least number of cells that related to all changed bits and has

minimum weight by 1 if possible; otherwise, increase more cells that can be

XORed and covered all changed bits by 1.

136

The (n, k)q WEBE code will be optimal if and only if the number of cells

n=2k − 1. Nevertheless, the simulation results in Fig. 4.9 show the number

of word-writes for (6, 3)q, and (5, 3)q WEBE codes. Additionally, the optimal

one (from (7, 3)q WEBE code) also shown in this graph.

Fig. 4.9 also shows the comparison between the random selection method

when we randomly select any subset of cells to rewrite/update into flash mem-

ory, and the minimum-weight selection method when we use for this WEBE

code. Clearly, the minimum-weight selection method outperforms the random

one and the curve is closed to the optimal (7, 3)q WEBE code when we re-

move 1 cell from the optimal case. However, in general case the (n, k)q WEBE

codes are flexible to construct so that the number of parity-state cells (m) is

not fixed and the maximum of m is m=(2k − 1)− k.

It should be noted that the case of general (n, k)q WEBE code shown in

Fig.4.8 is only a subsume of all possibilities to construct this code. In practical,

we can flexible construct the parity-state cells by XORing 2, 3, or any k data-

state cells. In future work, we can extend this code to detect and correct some

errors that may occur during data processing.

4.3 Flash Marker (FM) Codes

In this section, we propose a new code termed the “Flash Marker (FM)” code

for arbitrary n, k, and q applied for the strategy that there is some cell stored

often-updated data to be more suitable for the practical use, thus this cell

has the highest probability among all cells to be written and be the first one

to reach the highest cell state level (qi = q − 1). Our code will provide and

reserve spare cells for this frequently used cell to lengthen the time to reset

137

Figure 4.8: One example of layout structures of (n, k)q WEBE code

2 4 8 16 32 64 128 256 512
0

500

1000

1500

2000

2500

3000

The number of cell levels, q

nu
m

be
r

of
 w

or
d−

w
rit

es

(5,3) random selection
(5,3) min. weight selection
(6,3) random selection
(6,3) min.weight selection
Optimal (7,3)

Figure 4.9: The number of word-writes (5, 3)q and (6, 3)q WEBE codes for the
various value of q.

138

the whole block of cells. Our goal is to maximize the writing times– the writes

we consider here are both bit-writes and word-writes defined in the previous

work when the value of at least one of K data bits is changed.

The motivation of this code is in practical, the uneven writings, which

some data may be updated more frequently than others, are usually hap-

pened. Then, the worst case will occur when the most updated bit (and its

corresponding cells) has exhausted its states, even there may be many other

unexhausted cells in the block, so that the whole block will be reset. Also,

there is no means of knowing what bits will be updated beforehand, so a fixed,

uniform resource allocation is not optimal. Thus, a run-time on-demand re-

source allocation is desired to extend the time to reset the cell block and try

to efficiently use all cells before block erasure.

4.3.1 FM Code Construction

To construct (N,K, s)q FM code, we design the system model as the assump-

tions shown following. Note that the total number of cells is N = (k + s)n,

where k is the number of fixed-assignment of cell/variable bit-pair units with n

cells each, and s is the number of spare-cell units (the on-demand assignment).

Thus, the number of total variable bits is K=2k.

Assumptions and Notations:

1. k units(groups) of data cells and s units of spare cells in any flash memory

2. In each unit, there are n cells and each cell has q states (for q is an even

integer)

3. In each unit, each cell can be written either from left side to right side

or vice versa, when there are only any 2 consecutive cells left in each

139

block that still have some level to increase, we have to consider which

cell is the next to write and which cell will be an marker cell which we

will explain later.

4. Each bit pair in variable vector is represent the value of cell in each

correspondent unit in cell, so the totally number of variable bits K = 2k.

5. If the marker cell reach the lowest state of marker state(state iith) which

is qii = q− s, it points to the spare cell mii and start writing in that cell.

Consideration of marker states of marker cell

• If there are only 2 consecutively active cells available to update and either

cell is empty, this unit can be updated from both left or right sides.

• If there are only 2 consecutively active cells available to update, one cell

has lower state level than the other, and the higher state cell is at the

state q− s, this unit can write new data in the lower one and the higher

cell can be an marker cell and start counting as an marker state if it can

point to spare cells which are still available to write.

• If there are only 2 consecutively active cells available to update, one cell

has lower state level than the other, the higher state cell is higher than

the state q− s, and the lower on is lower than or at state q− s, this unit

can write new data in the lower one and the higher cell is an marker cell

and already counting as a marker state if it can point to spare cells which

are still available to write. However, if spare cells are unavailable and

already reserved by another marker cell, this cell can be written until it

reaches the highest state, q − 1.

• If there is only one active cell available to update, this unit can update

its data by increasing the state level of this cell and this cell is called a

140

marker cell, then it will start writing on spare cells as soon as it reaches

the state q − s and spare cells are available to write.

In each unit we can represent its stored data as 2 variable bits. Let x=

{x0, x1, · · · , xk−1} be the information storing in each cell in any unit, m =

{m0,m1, · · · ,ms−1} be the spare-cells unit that are the extension of s marker

states of the marker cell from any group that can first access to this spare cell

(or the first unit that fills up the marker states) as shown in Fig.4.10. Note

that the number of marker states is equal of the number of spare cells.

Encoding or Transition map (xK → vK):

1. In each unit of cells, we start writing data into flash memory from either

left- or right-edge of cell. As soon as any unit writes on the marker cell

and reaches the spare cell unit, other units cannot use and access to that

spare cell unit.

2. At the s highest states of marker cell of the first written unit, xm =

{xq−s, xq−s+1, · · · , xq−2, xq−1} will be indicated to the s spare cells where

xq−s → m0, xq−s+1 → m1, · · · , xq−1 → ms.

Decoding map (vK → xK):

1. From any vK={v1, v2, v3, · · · , vK}, where K is an even integer, K = 2k,

we can group this variable vectors as k groups, so we also have k sets of

a bit pair.

2. In each group, the decoding process is the same as the previous section.

141

Figure 4.10: The relation of s marker states, s spare cells of (N,K, s)q FM
code

142

Therefore, both transition map and decoding map are given in the concise

and rigorous mathematical definition and process as shown in Algorithm 5 to

construct an (N,K, s)q FM code.

143

Algorithm 5: A class of (N,K, s)q FM codes:

Notation:

x = (x0, x1, ..., xn−1|, xn, xn+1, ..., x2n−1)|,|, x(k−1)n, x(k−1)n+1, ..., xkn−1) : the cell-

state vector, where xi=0, 1, ..., q−1.

At any unit jth, all n cells can be separated into 3 groups: x1, x2, x3, where x3 is a

marker cell.

m=(m0,m1, ...,mn−1|,mn,mn+1, ...,m2n−1)|,|,m(s−1)n,m(s−1)n+1, ...,msn−1) : the

spare-state vector, where mi=0, 1, ..., q−1.

u=(u1, u2|, u3, u4|, ...|, u2k−1, u2k): the variable vector, where ui=0 or 1.

Starting state: x=(0, 0, 0, ..., 0), m=(0, 0, 0, ..., 0), u=(0, 0, 0, ..., 0).

Decoding Map: At any unit jth of variable vector and cell-state vector, where j =
1, 2, ..., k and xj = x1, x2, x3:

u2j−1 = mod(x1, 2)⊕mod(x3, 2), (4.13)

u2j = mod(x2, 2)⊕mod(x3, 2), (4.14)

where ⊕ denotes binary addition (i.e. exclusive OR, XOR), and mod(xj, 2) is a

modulo 2 operation.

Transition Map:

• (u2k−1, u2k) → (u2k−1+1, u2k):

Increase x1 by 1 if possible, then, increase both x2 and x3 by 1; otherwise

increase mii.

• (u2k−1, u2k) → (u2k−1, u2k+1):

Increase x2 by 1 if possible, then increase both x1 and x3 by 1; otherwise,

increase mii.

• (u2k−1, u2k) → (u2k−1+1, u2k+1):

Increase x3 by 1 if possible, then, increase both x1 and x2 by 1; otherwise

increase mii.

Note that mii is the iith spare-cell unit when x3 reaches the area of marker states

(x3 ≥ q − s).

144

Example 6: Let n = 5, q = 4, then qii ∈ {0, 1, 2, 3} in each cell. Let

k = 2, s = 1, then the number of cells is N=n(k+s)=15 cells The parameters

of variable bits are K = 2k, l = 2, so that lj ∈ {0, 1}. If we begin with the

empty state where all cells have not been written yet and contain all 0’s, one of

simple ways to represent the data that will be written in cells is shown below.

Cell state: 00000 00000 00000 → 10000 00001 00000 → 20000 00001 00000

→ 30000 00001 00000 → 31001 00001 00000 → 32002 00002 00000 → 33003

10002 00000→ 33103 20002 00000→ 33213 30002 00000→ 33323 30002 00000

→ 33333 31002 00000 → 33333 31003 10000 → 33333 32013 20000.

Variable bit: 00 00 → 10 01 → 00 01 → 10 01 → 01 01 → 10 00 → 01 10

→ 11 00 → 00 10 → 11 10 → 10 00 → 11 01 → 10 10.

Fig. 4.11 shows some stages of the cell-state updates in Example 6, and

it is clearly shown that a spare cells will be written when the first group of

cells is full (since this group is more frequently updated than the others). So,

instead of erasing the entire block as soon as the first group is full/saturated,

this block of flash memory still has some available cell (both spare cells and

cells in the other group) to be written.

4.3.2 Simulation Results

To consider the number of bit-writes compared to the number of word-writes,

we have simulated (N,K, s)q FM codes under the assumptions which are men-

tioned in the previous section. The results are represented in the bar graphs

in Fig. 4.12 and Fig. 4.13.

Fig. 4.12 shows the number of bit-writes of (N,K, s)q FM codes. The

145

Figure 4.11: An example of cell-state updates of (15, 4, 1)4 FM code shown in
Example 6 (all cells shown in the parentheses are spare cells).

146

(a) The number of bit-writes when k = 8, q = 8, and all bits have equally likely probability to update

(b) The number of bit-writes when k = 16, q = 16, and all bits have equally likely probability to update

Figure 4.12: The number of bit-writes of (N,K, s)q FM codes when the number
of spare-cell units (s) is increased

147

number of bit-writes of FM codes with an equally likely probability to update

bits when the number of spare cell units is increased for both (q = 8) and

(q = 16) flash memories are shown in Fig.4.12(a) and Fig.4.12(b), respectively.

The results show that the number of bit-writes is still depended on the number

of cells and the number of bit-writes per cell is almost constant while the

number of spare cells (s) is increasing.

In Fig.4.13 the interesting result is that the more the number of spare cell

units, the less the number of word-writes. So, we consider the case of an

unequally weight probability to update bits which we always reserve the spare

cell units for cell units that are frequently used/written. The results are shown

in Fig.4.13(a) and Fig.4.13(b) for q = 8 and q = 16, respectively. Clearly, we

have more word-writes when we know which cell units need spares and always

reserve one for them.

4.3.3 Discussion

To consider the write deficiency, the optimal number of writes from our codes

is N(q−1) when N , is large. We can see that our codes are also asymptotically

optimal codes.

Theorem 4.3.1. If there are N q−level cells, where N = (k + s)n with k

cell units and s spare cell units, then the FM code can guarantee at least

t = {(n− 1)(q − 1) + (q − s)}(k + s).

Proof. Consider each unit of cell, at the worst case where both bits are up-

dated at the same time, the left and right side cells are written and increased

their levels up to the higher states before they both reach the marker cell si-

multaneously, so it is at most t = (n− 1)(q − 1) writes. Then, at the marker

cell, this cell can be increased up to q − s levels. Thus, in each unit we have

148

(a) The number of word-writes when q = 8, k = 8 with unequally weight flipped bits

(b) The number of word-writes when q = 16, k = 16 with unequally weight flipped bits

Figure 4.13: The number of word-writes of (N,K, s)q FM codes when the
number of spare-cell units (s) is increased.

149

the number of bit writes, t = (n−1)(q−1)+(q−s) and since there are totally

k + s units, so this code guarantees t = {(n− 1)(q − 1) + (q − s)}(k + s).

In conclusion, the FM code, which are a combination of fixed cell allocation

and adaptive cell allocation, can achieve asymptotically optimal in terms of

the number of writes when applying for the model that we know which cells

and which units are frequently updated and always reserve spare-cell units for

those cells (non-uniform manner). The update strategy of these codes is more

efficient and extends a life cycle. Additionally, we can update two data bits at

a time from only changing one bit in cell state vector.

4.4 Conclusion

We have proposed two novel ideas of coding for flash memory. The contribu-

tions from this work are: (1) we have introduced and defined the “word-write”

to measure how much this code can be support the number of writes from the

user’s view before the block erasure is needed, (2) the (n, k)q WEBE codes are

simple to construct and proved that they are efficient in terms of bit-writes and

achieve more word-writes compared to the existing codes in [46] and [54], and

(3) the (N,K, s)q FM codes are designed for specific applications when there

is some file/data bit frequently been updated/written (non-uniform manner).

Additionally, other improvements on both codes are the promising area for

future works. We can also extend this code for a capability to detect and

correct some errors in order to improve the reliability of flash memory.

150

Chapter 5

Summary and Future Works

This dissertation investigates an erasure-correction code technology in the area

of data storage including in disk arrays, large-scale data storage systems, and

flash memories.

With the explosive increase of digital data everyday, data storage is becom-

ing the center of today’s cyber infrastructure. Due to the high competition

in industry, the desirable data storage solution should have high capacity, re-

liability, speed in write/read operations, and low overhead. To improve the

performance of data storages, we have proposed the coding techniques applied

on both disk drives and flash drives in different perspectives. In disk drives,

our goal is to protect and recover all disks from data loss due to disk failures.

The designed codes should have ability to recover and handle disk failures in

an effective and efficient way. In flash drives, we focus on lengthening their

lifespan by using coding techniques to maximize the number of writes before

a block of cells need to be erased. The work presented in this dissertation also

set the corner stone for future generalization and extension.

151

5.1 Data Disks

For the coding techniques applied on data disks, we have investigated new

ways of generating MDS array codes. We have directly applied the graphi-

cal representation called the complete-graph-of-ring (CGR) graph to construct

the CGR array codes which are optimal MDS codes. Their dual codes are

also MDS. These codes have low decoding/updating complexity and simple

implementation that uses only the XOR operations.

Additionally, we can consider this CGR array code as a modified LDPC

code. We have defined the difference between our code with the traditional

LDPC codes. Erasures can be recovered by using row- and column-operations

with efficiency. The code is suitable for direct-decoding in distributed storage

systems.

In the future, one can research a longer MDS array code for a larger data

network with different graph models. It is beneficial to study a generalized

form of compound graph codes with more flexibility and more choices for rates

and sizes. Constructing MDS array codes in terms of the parity-check matrix

H and generator matrix G, especially in the form of quasi-cyclic LDPC matrix,

is also a promising research direction.

5.2 The Distributed Storage Networks

For a large-scale data center/network, we have investigated coding techniques

to help recover and protect data loss that may occur from several reasons. We

especially focused on data loss caused by broken/failed data disks. Here, we

concatenated optimal MDS codes and LT codes, called “the MDS-LT nested

152

codes,” to provide a larger erasure correcting capability. Moreover, to ease

the implementation and reduce encoding/decoding complexity we constructed

them in hierarchical protection with local, regional, and global parity disks.

The overall code is not an MDS code, and still leaves room for development

and improvement.

In addition, we have also proposed the fixed, rigid structure to construct

layered erasure codes by applying a set of MDS codes for local protection and

then protected by the higher protection of two-dimensional SPC code. This

code, namely “ the horizontal-vertical single parity check (HVSPC) code,” is

easy to implement and flexible to construct for different number of erasures.

Comparison with the MDS-LT nested codes, the HVSPC codes require less

overhead. The overall code is nevertheless not MDS.

For future work, we intend to consider other structures of nested codes and

MDS codes to achieve the space optimality as much as possible. We will also

consider codes with more than two layers, as well as unequal error protection

(UEP).

5.3 Flash Memories

Flash memory is an emerging data storage technology that may eventually

replace all disk drives in the near future. Recently, most of the research of

coding techniques for flash memory are published in U.S. patent documents.

This research field is expected to receive more attention in the future.

The downside of flash memory is the limited number of writes before a

block erasure (aka block reset) must occur, resulting in a shorter lifespan of

this flash memory. We developed the WEBE codes, first for n = 3 q−states

153

cells and k = 2 data bits, and then for the general case with an arbitrary

n and k. The algorithms and methods developed here will likely find useful

applications in an area not only for data storage, but also for data accessing

organization.

In addition, we have developed the flash marker (FM) codes specially de-

signed to address the issue when data do not have the same probability to

be written. FM codes will adaptively assign spare cells for the cells storing

frequently-updated data. The marker states of a marker cell connects to spare

cells. This code can increase the number of word-writes as shown in the sim-

ulation results.

In both codes we have developed, we have first introduced the number of

word writes to measure the performance of our code instead of counting only

the number of bit writes.

For future work, one can apply error-correcting codes to both represent

stored data in flash memory and correct some errors that may happen during

data processing. It is also fruitful to extend and improve the WEBE codes to

be able to correct some errors since it has 2 types of cells: data-state cells and

parity-state cells, like a traditional error-correcting code that we use to detect

and correct errors.

154

Bibliography

[1] B. Vasic, and E. M. Kurtas, Coding and Signal Processing for Magnetic

Recording Systems, CRC Press, 2004.

[2] R. Micheloni, A. Marelli, and R. Ravasio, Error Correction Codes for

Non-Volatile Memories, 2008.

[3] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner, “Low-Density MDS

Codes and Factors of Complete Graphs,” IEEE Trans. on Information

Theory, vol.45, pp.1817-1826, Sept. 1999.

[4] J. S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-Tolerance in

RAID-like Systems,” Software Practice and Experience, 27(9), pp.995-

1012, Sept. 1997.

[5] A. Dholakia, E. Eleftheriou, X. Yu, I. Iliadis, J. Menon, and K. Rao,

“A New Intra-Disk Redundancy Scheme for High-Reliability RAID Stor-

age Systems in the Presence of Unrecoverable Errors,” ACM Trans. on

Storage, pp.1-42, May 2008.

[6] M. Blaum, P. Farrell, and H. van Tilborg. Array codes. “Handbook of

Coding Theory,” V.S. Pless and W.C. Huffman, pp.1805-1909.

[7] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An Effi-

cient Scheme for Tolerating Double Disk Failures in RAID Architectures,”

IEEE Trans. on Computers, vol.44, pp.192-202, Feb. 1995.

155

[8] L. Xu, and J. Bruck, “X-Code: MDS Array Codes with Optimal Encod-

ing,” IEEE Trans. on Information Theory, vol.45, pp.272-275, Jan.1999

[9] J. L. Hafner, “HoVer Erasure Codes for Disk Arrays,” IBM Research

Report, Almaden Research Center, July 2005.

[10] J. L. Hafner, V. Deenadhayalan, and KK Rao, “Matrix Methods for Lost

Data Reconstruction in Erasure Codes,” FAST’05:4th USENIX Confer-

ence on File and Storage Technologies, pp.183-196, 2005.

[11] J. L. Hafner, V. Deenadhayalan, T. Kanungo, and KK Rao, “Performance

Metrics for Erasure Codes in Storage Systems,” IBM Resaerch Report,

Almaden Research Center, Aug. 2004.

[12] W.D. Wallis, One-Factorization, Norwell, MA: Kluwer, 1997.

[13] Y. Cassuto, “Coding Techniques for Data-Storage Systems,” Thesis, Cal-

ifornia Inst. of Tech., Dec. 2007.

[14] Y. Cassuto, and J. Bruck, “Array Codes for Clustered Column Erasures,”

ISIT, pp.1726-1730, July 2008.

[15] Y. Cassuto, and J. Bruck, “Cyclic Lowest Density MDS Array Codes,”

IEEE Trans. on Information Theory, pp.1721-1729, Apr. 2009.

[16] C. M. Kozierok, “Redundant Arrays of Inexpensive Disks,” The PC

Guide, Pair Networks, April, 2001.

[17] D. A. Patterson, G. Gibson, and R. H. Katz, “A Case for Redundant

Arrays of Inexpensive Disks (RAID,)” Proceeding ACM SIGMOD, pp.109-

116, June 1988.

[18] P. Guide, “Multiple (Nested) RAID Levels,”

http://www.pcguide.com/ref/hdd/perf/raid/levels/mult.html, Apr. 2007.

156

[19] M. S. Manasse, C.A. Thekkath, and A. Silverberg,“A Reed-Solomon

Code for Disk Storage, and Efficient Recovery Computations for Erasure-

Coded Disk Storage,” Proceeding in Informatics, pp.1-11, Available at:

http://research.microsoft.com/pubs/64690/wdas.pdf

[20] R. Gallager, “Low-Density Parity Check Codes,” IRE Trans. on Infor-

mation Theory, pp.21-28, Jan. 1962.

[21] H. Kaneko, and E. Fujiwara, “Reconstruction of Erasure Correcting Codes

for Dependable Distributed Storage System without Spare Disks,” IEEE

22nd International Symposium on Defect and Fault Tolerance in VLSI

Systems, pp.349-357, 2007.

[22] A. Shokrollahi, “Raptor Codes,” IEEE Trans. on Information Theory,

pp.2551-2567, June 2006.

[23] P. Kaewprapha, N. Puttarak, and J. Li, “Nested Erasure Codes to Achieve

the Singleton Bounds,” Proc. CISS, 2009.

[24] N. Puttarak, P. Kaewprapha, and J. Li, “A New Class of MDS Erasure

Codes based on Graphs,” IEEE GlobeCom, 2009.

[25] M. Luby, “LT Codes,” Proceeding of the 43rd Annual IEEE Symposium

Foundations of Computer Science, 2002.

[26] P. Cataldi, M. P. Shatarski, M. Grangetto, and E. Magli, “Implementa-

tion and Performance Evaluation of LT and Raptor Codes for Multimedia

Applications,” Intelligent Information Hiding and Multimedia Signal Pro-

cessing, pp.263-266, Dec. 2006.

[27] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Efficient

Erasure Correcting Codes,” IEEE Trans. on Information Theory, pp.569-

584, Feb.2001.

[28] R. Karp, M. Luby, and A. Shokrollahi, “Finite Length Analysis of LT

Codes,” ISIT 2004, June 2004.

157

[29] B. Gaidioz, B. Koblitz, and N. Santos, “Exploring High Performance

Distributed File Storage Using LDPC Codes,” Elsevier, Jan. 2007.

[30] J. S. Plank, and M.G Thomason, “On the Practical Use of LDPC Erasure

Codes for Distributed Storage Applications,” Sept.2003.

[31] White paper, “NAND vs. NOR Flash Memory Technology Overview,”

Toshiba.

[32] A. Thomasian, and M. Blaum, “Higher Reliability Redundant Disk Ar-

rays: Organization, Operation, and Coding,” ACM Transaction on Stor-

age, vol.5, Nov.2009.

[33] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A. Pat-

terson, “Coding Techniques for Handling Failures in Large Disk Arrays,”

3rd International conference of Architectural Support for Programming

Languages and Operating Systems (ASPLOS III), March, 1989.

[34] M. Schulze, G. Gibson, R. Katz, and D. Patterson, “How Reliable is a

RAID?,” IEEE, 1989.

[35] C. Huang, and L. Xu, “STAR: An Efficient Coding Scheme for Correcting

Triple Storage Node Failures,” IEEE Trans. on Computers, pp.889-901,

July 2008.

[36] J. Lacan, and J. Fimes, ”Systematic MDS Erasure Codes Based on Van-

dermonde Matrices,” IEEE Commu. Letters, vol.8, pp. 570-572, Sept.

2004.

[37] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and

S. Sankar, “Row-Diagonal Parity for Double Disk Failures,” FAST’04,

pp.1-14, 2004.

[38] P. Sobe, and K. Peter, “Flexible Parameterization of XOR based Codes

for Distributed Storage,” IEEE Sym. on Network Computing and Appli-

cations, pp.101-110, 2008.

158

[39] M. Li, J. Shu, and W. Zheng, “Grid Codes: Strip-Based Erasure Codes

with High Fault Tolerance for Storage Syatems,” ACM Transactions on

Storage, vol.4, pp.15:1-15:22, Jan. 2009.

[40] M. Li, and J. Shu, “On the Equivalence between the B-Codes Construc-

tions and Perfect 1-Factorization,” ISIT 2010, pp.993-996, June 2010.

[41] M. Aguilera, R. Janakiraman, and L. Xu, “Using Erasure Codes Effi-

ciently for Storage in a Distributed System,” ICDCS, pp.106-120, Oct.

2003.

[42] H. Fujita, and K. Sakaniwa, “Modified Low-Density MDS Array Codes

for Tolerating Double Disk Failures in Disk Arrays,” IEEE Trans. on

Computers, pp.563-566, Apr. 2007.

[43] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni (Ed.), Flash Memories,

Kluwer Academic Publishers, 1st Edition, 1999.

[44] S. K. Lai, “Flash Memories: Successes and Challenges,” IBM J. Res. and

Dev., Vol.52, pp.529-535, July/Sep. 2008.

[45] A. Jiang, and J. Bruck, “Joint Coding for Flash Memory Storage,” ISIT

2008, pp.1741-1745. July 2008.

[46] A. Jiang, V. Bohossian, and J. Bruck, “Floating Codes for Joint Informa-

tion Storage in Write Asymmetric Memories,” ISIT 2007, June 2007.

[47] R. Rivest, and A. Shamir, “How to reuse a ‘write-once’ memory,” ACM

1982, pp. 105-113.

[48] F. Fu, and A. J. Han Vinck, “On the Capacity of Generalized Write-

Once Memory with State Transition Described by an Arbitrary Directed

Acyclic Graph,” IEEE Trans. on Information Theory,, pp. 308-313, Jan.

1999.

159

[49] F. Fu, and R. W. Yeung, “On the Capacity and Error-Correcting Codes

of Write-Efficient Memories,” IEEE Trans. on Information Theory, pp.

2299-2314, Nov. 2000.

[50] R. Ahlswede, and Z. Zhang, “Coding for Write-Efficient Memory,” Infor-

mation Computer, 1989.

[51] E. Gal, and S. Toledo, “Algorithms and Data Structures for Flash Mem-

ories,” ACM Computing Surveys, pp.138-163, June 2005.

[52] V. Bohossian, A. Jiang and J. Bruck, “Buffer Coding for Asymmetric

Multi-Level Memory”, ISIT 2007, June 2007.

[53] V. Bohossian, and J. Bruck, “Shortening Array Codes and the Perfect 1-

Factorization Conjectures,” IEEE Trans. on Information Theory, pp.507-

513, Feb. 2009.

[54] E. Yaakobi, A. Vardy, P. H. Siegel, and J. K. Wolf, “Multidimensional

Flash Codes,” Proc. 46th Annual Allerton Conf. on Commu. Control and

Computing, 2008.

[55] E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple Error-

Correcting WOM-Codes,” ISIT 2010, pp.1933-1937, June 2010.

[56] H. Finucane, Z. Liu, and M. Mitzenmacher, “Designing Floating Codes for

Expected Performance,” Proc. 47th Allerton Conf., pp.1389-1396, Sept.

2008.

[57] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank Modulation

for Flash Memories,” ISIT 2008, pp.1731-1735, July, 2008.

[58] A. Jiang, M. Schwartz, and J. Bruck, “Error-Correcting Codes for Rank

Modulation,” ISIT 2008 , pp. 1736-1740, July 2008.

[59] S. W. Golomb, and L.R. Welch, “Perfect Codes in the Lee Metric and the

Packing of Polyominoes,” Siam J. Appl. Math, pp. 302-317, Jan., 1970.

160

[60] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank Modulation

for Flash Memories,” IEEE Trans. Information Theory, pp. 2659-2673,

June, 2009.

[61] Q. Huang, S. Lin, and K. Abdel-Ghaffar, “Error-Correcting Codes for

Flash Coding,” IEEE Information Theory and Applications Workshop

(ITA), pp. 1-23, Feb. 2011.

[62] I. Tamo, and M. Schwartz, “Correcting Limited-Magnitude Errors in

the Rank-Modulation Scheme,” IEEE Trans. Information Theory, pp.1-9,

July 2009.

[63] F. Balasa, Data Storage, Vienna:In-Tech, 2010.

161

Vita

Nattakan Puttarak received a Bachelor Degree in Electronics and Telecom-

munications Engineering from the King Mongkut’s University of Technology

Thonburi (KMUTT), Bangkok, Thailand in 2003. She joined the graduate

school of Lehigh University under the support from Thai Government schol-

arship to pursue the Doctor of Philosophy degree. She successfully got Master

Degree in Electrical Engineering in 2007, and continued on with her Ph.D

Degree at Lehigh. She joined Prof. Tiffany Jing Li’s group since she first

started her Master’s thesis in 2005, and is expected to get her Ph.D degree in

Electrical Engineering in August 2011.

Nattakan’s research interests fall in the area of data storage, including both

the mainstream systems of hard drives and the emerging technology of flash

drives. She has specifically focused on coding techniques for storage systems.

This includes designing new error correction coding strategies and decoding

algorithms to combat disk failure and recover lost data for small-scale disk

arrays as well as large-scale data centers, analyzing their performances, and

identifying best practices. This also includes developing new source coding

and labeling techniques for flash memories to minimize the number of reset

operations and increase the lifespan of the device.

Nattakan will work for the King Mongkut’s Institute of Technology Lard-

krabang (KMITL), Bangkok, Thailand, as a lecturer. She wishes to apply

all the knowledge and experience she gained from Lehigh to help lift up the

academic and educational level in her country.

162

	Lehigh University
	Lehigh Preserve
	2011

	Coding for storage: disk arrays, flash memory, and distributed storage networks
	Nattakan Puttarak
	Recommended Citation

	tmp.1363264564.pdf.5QLNV

