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Abstract 

The Super-Regenerative Receiver invented by Edwin Armstrong in 1922 provides 

simple but effective reception and amplification of modulated radio signals. Despite its 

age and the increased complexity of communication systems over the years, Super-

Regenerative Receivers still find use in various specialized applications due to the 

simplicity and low-power consumption of the design. This paper aims to provide a 

thorough mathematical analysis of Super-Regenerative Receivers applied to both a 

system level model and an electrical band pass circuit while offering a practical 

implementation for receiving amplitude modulated signals to be compared with simulated 

results.
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Chapter 1 

Introduction 

1.1  Brief history of the Super-Regenerative Receiver 

The Super-Regenerative Receiver (SRR) has been used in a wide variety of 

wireless communication applications since its invention by Edwin Armstrong in 1922.  

Throughout the years where vacuum tubes were still prominent in communication 

circuits, SRRs were an economical and sufficient option for both AM and FM radio 

implementations and were widely used in commercial walkie-talkie communication 

devices and military radar identification systems.  As transistors began to replace vacuum 

tubes and receivers with improved selectivity were designed, the SRR withheld 

prominence in specific applications that call for minimal size and cost at the expense of 

limited performance. 

Currently, SRRs still find use in short-distance radio frequency links that require 

low cost and low power consumption. These applications include sensor networks, home 

automation and security systems, and remote-controlled devices such as wireless door 

openers and radio-controlled toys.  

 

1.2  Principle of Regeneration 

The Super-Regenerative Receiver (SRR) is based on Armstrong’s previous 

invention of the Regenerative Receiver in 1912. By definition, a regenerative circuit is 

one that makes use of positive feedback (regeneration) to send a portion of the output 

back to the input in phase to reinforce the signal amplitude. In a regenerative scheme, the 

amount of regeneration or feedback is set to some constant level that achieves maximum 
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sensitivity to desired input signals while just below the threshold level sufficient for the 

system to respond to unwanted input noise. In contrast, the level of regeneration in an 

SRR varies periodically, allowing much higher gains for a portion of time followed by a 

period of reduced gain. By varying the level of regeneration, higher gains are achievable 

to increase the systems sensitivity while still retaining sufficient selectivity. The benefit 

of employing positive feedback is that a minimal number of components with inherently 

low gain can be configured in a way such that the overall system produces much larger 

gains. In effect, this minimizes the cost, complexity and size of a receiver 

implementation, which explains why the SRR is still an attractive option for specialized 

applications. 

Figure 1-1 depicts the block diagram of a classical SRR that will be referenced 

throughout this paper. In the proceeding chapter, the functionality of each component will 

be analyzed and described on a system level while reviewing basic concepts of 

modulation and feedback. This will offer a concise overview to prepare for a deeper 

mathematical analysis of the systems operation in Chapter 3. 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. Block Diagram of the Classical Super-Regenerative Receiver. 
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Chapter 2 

Super-Regenerative Operation & Review of Relevant Concepts  

 

2.1 SRR Input Stage & Review of Amplitude Modulation 

The input stage of an SRR consists of a receiving antenna and a Low-Noise 

Amplifier (LNA). The LNA at the front end provides isolation between the RF oscillations 

of the super-regenerative Oscillator’s input stage and the receiving antenna. Super-

regenerative operation does not depend on the LNA, but its inclusion prevents unwanted 

re-radiation of the SRO signal back to the input antenna. 

SRRs are capable of receiving both amplitude and angle modulated signals, but 

are predominantly used in amplitude modulated communication applications. In an 

amplitude modulation scheme, the amplitude of a high frequency carrier signal is varied 

in proportion to the amplitude of a lower frequency baseband signal. The baseband or 

message signal contains useful transmitted information which could be in the form of a 

continuous wave such as an audio signal, or a discrete digital signal. To generate an AM 

signal, the carrier signal is multiplied by a message signal of some amplitude 𝐴𝑚 with an 

added DC component as shown by: 

𝑚(𝑡) = 𝐴𝑚 cos(ωm𝑡)        (2.1)  

𝑐(𝑡) = 𝐴𝑐 cos(𝜔𝑐𝑡)         (2.2) 

𝑠(𝑡) = [1 + 𝑚(𝑡)] ∗ 𝑐(𝑡)       (2.3) 

𝑠(𝑡) = 𝐴𝑐 cos(𝜔𝑐𝑡) +
𝐴𝑐𝐴𝑚

2
[cos((𝜔𝑐 − 𝜔𝑚)𝑡) + cos((𝜔𝑐 + 𝜔𝑚)𝑡)].   (2.4) 

 

 For successful reception of the signal, it is necessary for 1 + 𝑚(𝑡) to always be positive, 

implying that for an arbitrary amplitude, the message signal must never drop below zero. 

As an example, we shall assume this condition is satisfied and the message signal is a 
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simple low frequency sinusoid. The result of multiplying these signals is shown by the 

compound waveform in Figure 2-1.  

As seen in Figure 2-1a, the compound waveform of this example consists of three 

different frequency components which are depicted in the frequency spectrum shown in 

Figure 2-1b. In effect, the frequency information from the message signal is shifted from 

the baseband to the higher carrier frequency and reflected across the axis of 𝑓𝑐, resulting 

in a total bandwidth of 2𝑓𝑚. To extract the intended message from the transmitted high 

frequency signal, radio receivers must demodulate the compound waveform and shift the 

message back to the baseband. In a simplified sense, this is accomplished by multiplying 

the sinusoidal signal coupled to the antenna by a sinusoid of the same carrier frequency. 

By applying the same results of sinusoidal multiplication from (2.3) and (2.4), 

demodulation produces a new copy of the message signal shifted back to the baseband 

and another copy residing at twice the carrier frequency. Routing this output to a low pass 

filter will isolate the message signal at the baseband and suppress the copies at higher 

frequencies, effectively recovering the intended information.  
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Figure 2-1a. Message Signal (Left), Carrier Signal (Right), and Compound Waveform 

after Multiplication (Bottom). 

 

 

 

 

 

 

 

 

 

 

Figure 2-1b. Frequency Representation of Compound waveform in 2-1a. 

 

 

2.2 Super-Regenerative Oscillator & Review of Feedback 

Like most radio receiver architectures, SRRs utilize a sinusoidal oscillator that is 

set to oscillate at the carrier frequency of the received signal. The Super-Regenerative 

Oscillator (SRO), also known as a positive feedback oscillator, is the defining component 

of an SRR and governs the receivers operation and performance.  
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As seen in Figure 1-1, the basic structure of SRO oscillator consists of a 

frequency selective network and an amplifier in a positive feedback configuration. The 

frequency selective network is a band pass filter whose impulse and frequency response 

are given in Figure 2-2. 

 

Figure 2-2. (a) Impulse Response and (b) Frequency Response of Band Pass 

Filter. 

 

 

Physically this implies that in the presence of an applied impulse at the input, the tuned 

circuit will ring at its resonant frequency characterized by the center frequency of the 

filters passband. When there lacks a continued supply of energy to the network at its 

resonant frequency, these oscillations will decay exponentially as the energy within the 

network dissipates. By utilizing positive feedback, the decaying oscillatory response from 

the initial excitation can be reinforced, allowing a constant level dictated by the feedback 

gain. 

 When the selective network and amplifier are connected in a positive feedback 

configuration, the relationship between each signal path is governed by  

𝑣𝑜 = 𝐵𝑣𝑠          (2.5) 

𝑣𝑎 = 𝐾𝑎𝑣𝑜     (2.6) 

𝑣𝑆 = 𝑣𝑖𝑛 + 𝐾𝑎𝑣𝑜     (2.7) 
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where 𝐵 is the frequency response of the selective network. Rearranging these equations 

allows us to relate the output of the system to its input by  

𝑣𝑜 =
𝐵

1−𝐾𝑎𝐵
𝑣𝑖𝑛  

     =
𝐵

1−𝐿
𝑣𝑖𝑛  

     = 𝐻𝑣𝑖𝑛 ,         (2.8) 

 

where 𝐿 is the open loop gain and 𝐻 is the closed loop gain of the system.  

In practice, oscillator circuits are generators and thus have zero input (𝑣𝑖𝑛 = 0), 

so it may not be initially obvious from (2.8) how such a circuit could start and sustain 

oscillations. Theoretically for the system to oscillate with zero input, the closed loop gain 

𝐻 must be infinite, implying that the open loop gain 𝐿 = 𝐾𝑎𝐵 must be real with zero 

phase and unit magnitude. This requirement for steady oscillation is known as the 

Barkhausen Criterion described in [13]. When the open loop gain is less than unity, the 

oscillations in the circuit will eventually cease. Conversely, if the open loop gain is 

greater than unity, the system becomes unstable and the oscillations will theoretically rise 

to ever increasing levels. In practice however, non-linear characteristics of the gain 

element cause the open loop gain to shift towards unity as the amplitude approaches a 

maximum equilibrium value dependent on the gain element. 

The distinguishing characteristic of SRRs is that their loop gain is manipulated 

such that it varies periodically between levels that are higher and lower than unity. 

Referring to Figure 1-1, the gain of the amplifier 𝐾𝑎 in the feedback path is controlled by 

a time-varying “quench” signal. As the feedback gain varies proportionally with the 

applied quench signal, the system alternates between states of stability and instability, 

causing oscillations to build and decay (or quench) in correspondence with the gain level. 

Thoughtful design of the receiver can allow for “self-quenching” in which the gain 
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element is automatically controlled, but for a manageable linear analysis of the system in 

Section 3, it is assumed that the gain is controlled externally by an oscillating quench 

signal with frequency 𝑓𝑞. In the presence of an RF input, the SRO outputs a series of RF 

pulses with a period of 𝑇𝑞 = 1/𝑓𝑞 until the input signal ceases. In a sense, these pulses 

can be viewed as “analog samples” of the received input signal.  

 SRRs have two modes of operation with respective advantages for different 

communication and modulation schemes. In the linear-mode of operation, the oscillations 

are damped before they reach their equilibrium amplitude characterized by the SRO 

design. Thus, the level of the output pulses are proportional to the amplitude envelope of 

the input signal, which is a desirable result for demodulating AM signals. Feeding these 

pulses through a simple envelope detector and a low pass filter to remove the high 

frequency quench component effectively demodulates the received signal. In the 

logarithmic-mode of operation, the amplitude of the oscillations reaches its limit before 

they are damped, resulting in a saturated output every cycle. In this scheme, the output 

pulses are no longer proportional to the amplitude of the input envelope. Rather, the area 

under the output pulse is proportional to the logarithm of the amplitude of the input. The 

constant amplitude of pulses makes the logarithmic mode suitable for digital modulation 

schemes such as PWM. Though the mathematical analysis presented in proceeding 

sections focuses on the linear mode of operation, deeper analysis of the logarithmic mode 

can be found in [1] and [11]. 
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2.3 Detecting the SRO Output & Review of Demodulation 

Upon reception of an AM signal that oscillates at the selective networks tuned 

frequency, the SRR will output a series of evenly spaced high-frequency pulses with peek 

amplitudes proportional to the message signal amplitude at that instance of time. Any 

network connected to the receiver would only be interested in the information contained 

in the message signal, and so the receiver must demodulate the signal by extracting the 

message from its high frequency carrier.  

To recover the message signal, we shall consider the very simple but popular 

method of non-coherent envelope detection described in [9] and depicted in Figure 2-3. 

 

 

Figure 2-3a. Simple Envelope Detector for AM Signals. 

 

Figure 2-3b. Magnified View of Envelope Detector Output. 
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During the positive cycle of the input signal, the diode is forward-biased which 

allows the capacitor to charge to the peak voltage of the input signal. As soon as the input 

level drops below its peak, the diode becomes reverse-biased and acts as an open circuit. 

The capacitor then discharges through the resistor at a slow rate with a time constant 𝜏 =

𝑅𝐶, slowly reducing the voltage across the capacitor. When the input signal becomes 

positive with respect to the capacitor voltage, the diode is once again forward biased and 

the process repeats.  

 In effect, the voltage across the capacitor roughly follows the envelope of the 

input signal with a small amount of ripple of frequency 𝑓𝑐  due to the carrier wave. This 

high frequency ripple can be reduced by increasing the time constant such that the 

capacitor discharges less between positive cycles. However, increasing the time constant 

too much will hinder the capacitors ability to accurately follow the envelope as can be 

seen in Figure 5b. Thus, time constant 𝜏 should be large in comparison to 1/2𝜋𝑓𝑐 , but 

small compared to 1/2𝜋𝐵𝑊 where 𝐵𝑊 is the highest frequency within the message 

signal. Considering the RC network is simply a first order low-pass filter, higher-order 

filtering of greater complexity can be employed to provide a steeper cutoff and further 

minimize unwanted high-frequency ripple.  
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Chapter 3 

Mathematical Analysis of the Classical SRR  

 

This section offers a solution the characteristic equation of the SRR to be applied 

to specific cases of operation in the following section. Additionally, this section defines a 

new set of parameters that characterize the systems performance and simplify the 

mathematical analysis of the solution. The proceeding mathematical derivations are based 

on the results found in [1] and may be compared to an alternative state-space 

representation of the system presented in [6] and [7]. 

 

3.1 Characteristic Equation of SRR 

Since practical SRRs are non-linear devices, the mathematics describing their 

operation makes numerous assumptions and approximations to linearize the equations 

and present elegant and understandable results for different cases of operation. To begin 

our mathematical approach, we shall assume that the SRO is operating in the linear mode. 

The band pass network has a response centered at frequency 𝜔0 = 2𝜋𝑓0, characterized by 

the generic second-order band pass transfer function: 

𝐻𝑏𝑝𝑓(𝑠) = 𝐾0 ∗
2𝜁0𝜔0𝑠

𝑠2+2𝜁0𝜔0𝑠+𝜔0
2        (3.1) 

Converting this transfer function to the time domain produces the equivalent differential 

equation 

𝑣̈𝑜(𝑡) + 2𝜁0𝜔0𝑣̇𝑜(𝑡) + 𝜔0
2𝑣𝑜(𝑡) = 𝐾02𝜁0𝜔0𝑣̇𝑠(𝑡)    (3.2) 
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where 𝐾0 denotes the maximum amplification of the network and 𝜁0 represents the 

quiescent damping factor. Without feedback, the value of each variable is fixed and 

dependent on the design of the filter. The output of the band pass filter is fed back to its 

input establishing the relationship: 

𝑣𝑠(𝑡) = 𝑣𝑖𝑛(𝑡) + 𝐾𝑎(𝑡)𝑣𝑜(𝑡).     (3.3) 

By substituting this expression for 𝑣𝑠(𝑡) into (3.1), we obtain the closed loop transfer 

function and corresponding linear differential equation: 

𝐻𝑆𝑅(𝑠, 𝑡) = 𝐾0 ∗
2𝜁0𝜔0𝑠

𝑠2+2𝜁(𝑡)𝜔0𝑠+𝜔0
2      (3.4) 

 

𝑣̈𝑜(𝑡) + 2𝜁0𝜔0𝑣̇𝑜(𝑡) + 𝜔0
2𝑣𝑜(𝑡) = 𝐾02𝜁0𝜔0[𝑣̇(𝑡) + 𝐾𝑎(𝑡)𝑣𝑜(𝑡)]  (3.5) 

𝑣̈𝑜(𝑡) + 2𝜁(𝑡)𝜔0𝑣̇𝑜(𝑡) + 𝜔0
2𝑣𝑜(𝑡) = 2𝜁0𝜔0𝑣̇(𝑡).    (3.6) 

When the loop is closed, the damping factor 𝜁 becomes a time-varying signal 

𝜁(𝑡)  = 𝜁0 ∗ (1 − 𝐾0 ∗ 𝐾𝑎(𝑡))      (3.7) 

          = 𝜁0 − 𝜁0𝐾0𝐾𝑎(𝑡)       (3.8) 

          = 𝜁𝑑𝑐 + 𝜁𝑎𝑐(𝑡)        (3.9) 

This damping function plays a critical role in the design and analysis of super-

regenerative receivers, as many measurable and adjustable performance parameters are 

dependent on it. 

 

3.2 Damping Function 

The time-varying damping function characterizes the systems sensitivity – and 

thus, its oscillatory response – to an input signal. One damping cycle corresponds to one 

quench cycle with a period of 𝑇𝑞 = 1/𝑓𝑞. Depending on the value of 𝜁(𝑡) during this 

period, the system response can be undamped (|𝜁| = 0) underdamped (|𝜁| < 1), 

critically damped (|𝜁| = 1), or over damped(|𝜁| > 1). Figure 3-1 from [12] depicts how 
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the pole-zero plot of the system is affected by a linearly decreasing damping function. 

This shall be viewed as a single cycle of a saw tooth quench signal with a time interval 

of [𝑡𝑎, 𝑡𝑏]. 

 

 

Figure 3-1. Effect of a Varying Damping Ratio on Pole-Zero Plot of SRO. 

 

To demonstrate how the damping function affects the systems response in the 

time domain, consider the sinusoidal damping function in Figure 3-2 from [1] with an 

equivalently defined quench interval [𝑡𝑎, 𝑡𝑏]. As 𝜁(𝑡) approaches zero, the poles of the 

system shift closer to the right half plane of the Laplace domain. The receiver is most 

sensitive to input signals at this time and the presence of an input around this time will 

cause an output response. When the damping function drops below zero, the poles cross 

the imaginary axis into the right-half plane causing the system to become unstable. 

Within the interval of the negative portion of the damping function [0, 𝑡𝑏], the system 

gain increases significantly, causing an output pulse 𝑝𝑜(𝑡) to rise exponentially. Then, as 

the damping factor undergoes the positive half cycle, the poles shift back towards the 

left-hand plane, decreasing the systems sensitivity to an input while quenching the RF 

energy buildup from the unstable portion of the cycle. 
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Figure 3-2: (a) Sinusoidal Damping function, (b) sensitivity and output curves, (c) 

applied RF input pulse envelope. 

 

If we define 𝑡𝑜 to be the time at which the damping function becomes negative, 

we see that 𝜁𝐷𝐶  essentially dictates the amount of time the system is in a damped (𝑡𝑎 <

𝑡 < 𝑡0) and undamped (𝑡0 < 𝑡 < 𝑡𝑏) state. The longer the damping factor is positive, the 

more time is allowed for the poles to sit in the left-hand plane to let the output 

sufficiently decay before the next cycle. On the other hand, the negative portion of the 

damping factor should be long enough to allow the output to rise to a sufficient signal 

level for detection. In practice, any arbitrary wave function can be chosen so long as it 

provides sufficient regeneration and quenching by having appropriately sized positive 

and negative portions within each cycle. 
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3.3 Sensitivity  

 As previously mentioned, the value of 𝜁(𝑡) during a quench period dictates the 

sensitivity of the receiver to an input signal. The level of sensitivity is inversely 

proportional to the minimum received signal level necessary to generate an output, and 

the width of the sensitivity envelope defines the duration for which the SRR is influenced 

by that received excitation as explained in [10]. The level of sensitivity exhibits an 

exponential dependence on the damping function, quantitatively expressed as 

𝑠(𝑡) =  𝑒𝜔0 ∫ 𝜁(𝜆)𝑑𝜆
𝑡

0 .         (3.10)  

The sensitivity of the receiver peaks at 𝑡 = 0 when the system is in an undamped state 

and decreases exponentially as time departs from the origin on both sides. When an input 

pulse 𝑝𝑖𝑛 occurs within this period of high sensitivity, an output pulse will occur at the 

end of the cycle. The decaying portion of the output pulse envelope is described by the 

equation:  

𝑝𝑜(𝑡) =  𝑒
−𝜔0 ∫ 𝜁(𝜏)𝑑𝜏

𝑡
𝑡𝑏 .       (3.11) 

It should be noted that when sensitivity is high, even the smallest excitation such 

as thermal noise of electrical components can push the system into oscillation, even when 

there is no appreciable input signal present. However, the smaller the excitation, the 

longer it will take for oscillations to build. Thus, the sensitivity period of the receiver 

should be long enough to present sufficient gains in the presence of an input, but quick 

enough to suppress the slower building oscillations due to electrical noise - A condition 

that is dictated by the frequency of the applied quenching signal. 
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3.4 Solution of the Differential Equation 

Assuming a linear mode of operation, the general solution to the second order 

differential equation (6) can be represented as the sum of the homogenous and particular 

solutions according to  

𝑣𝑜(𝑡) = 𝑣𝑜𝐻(𝑡) + 𝑣𝑜𝑃(𝑡).        (3.12) 

The term 𝑣𝑜𝐻(𝑡) represents the natural (or free) response, which may exist without the 

presence of an input, and 𝑣𝑜𝑃(𝑡) represents the forced response due to an input excitation. 

 

3.4.1 Homogenous Solution: Free Response 

To solve for the homogeneous response, we first set the input𝑣(𝑡) = 0, resulting 

in the homogenous equation 

𝑣̈𝑜𝐻(𝑡) + 2𝜁0𝜔0𝑣̇𝑜𝐻(𝑡) + 𝜔0
2𝑣𝑜𝐻(𝑡) =  0 .     (3.13) 

To simplify analysis, we make the following change of variable from 𝑣𝑜𝐻(𝑡) to 𝑢(𝑡) 

𝑣𝑜𝐻(𝑡) = 𝑢(𝑡)𝑒
−𝜔𝑜 ∫ 𝜁(𝜆)𝑑𝜆

𝑡
𝑡𝑎        (3.14) 

𝑣̇𝑜𝐻(𝑡) = (𝑢̇ − 𝜔𝑜𝜁(𝑡) ∗ 𝑢)𝑒
−𝜔𝑜 ∫ 𝜁(𝜆)𝑑𝜆

𝑡
𝑡𝑎      (3.15) 

𝑣̈𝑜𝐻(𝑡) = (𝑢̈ − 2𝜔𝑜𝜁(𝑡)𝑢̇ + [(𝜔0𝜁(𝑡))
2

− 𝜔0𝜁̇(𝑡)] 𝑢) 𝑒
−𝜔0 ∫ 𝜁(𝜆)𝑑𝜆

𝑡
𝑡𝑎 , (3.16) 

and substitute these expressions into the original equation. This substitution converts the 

homogeneous equation into the Hill Equation as shown in [1]: 

𝑢̈(𝑡) + 𝜔0
2 (1 − 𝜁2(𝑡) −

𝜁̇(𝑡)

𝜔0
) 𝑢(𝑡) =  0.     (3.17) 

To simplify this equation and further analysis, we must satisfy two restrictions 

imposed on the damping function: 

𝜁2(𝑡) ≪ 1         (3.18) 

|𝜁̇(𝑡)| ≪ 𝜔0.         (3.19) 
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The first restriction implies that the instantaneous damping factor must be low enough 

such that the system is underdamped and capable of generating an oscillatory response. 

Considering the quality factor 𝑄 of the system where 

𝑄(𝑡) =
1

2𝜁(𝑡)
 ,         (3.20) 

this restriction equivalently implies that the quality factor (or the frequency selectivity) 

𝑄(𝑡) of the network must be kept high. As shown in Figure 3-3, a low quality factor 

corresponds to a wide receiver bandwidth, making the system more susceptible to signals 

and noise outside the bandwidth of interest.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3. Frequency response of a High-Q (Red) and Low-Q (Blue) System. 

 

The second restriction implies that the damping factor must be slow varying compared to 

the input RF frequency. Since the damping factor varies at a rate of 𝑓𝑞, this restriction 

equivalently states that the quench frequency 𝑓𝑞 should be much lower than the center 

frequency of the selective band pass network 𝑓0. Satisfying these two restrictions reduces 

the Hill equation to: 

𝑢̈(𝑡) + 𝜔0
2𝑢(𝑡) = 0.        (3.21) 
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As can be seen, this representation of the system is linear with constant 

coefficients unlike our original expression in (6). The solution to this equation will not be 

derived in this paper, though it is known to be: 

𝑢(𝑡) =  2𝑅𝑒[𝑉1𝑒𝑗𝜔0𝑡] = 𝑉1𝑒𝑗𝜔0𝑡 + 𝑉2𝑒−𝑗𝜔0𝑡.    (3.22) 

Substituting this expression (3.22) into (3.21) and reversing the change of variables made 

in (3.14), (3.15), and (3.16) provides the general solution to the homogenous differential 

equation: 

𝑣𝑜𝐻(𝑡) =  𝑒
−𝜔0 ∫ 𝜁(𝜆)𝑑𝜆

𝑡
𝑡𝑎 ∗ 2𝑅𝑒[𝑉1𝑒𝑗𝜔0𝑡].     (3.23) 

 

3.4.2  Particular Solution: Forced Response 

To find the particular solution of the equation, we begin by using the method of 

variation of parameters as described in [1]: 

𝑣𝑜𝑃(𝑡) = 2𝑅𝑒[𝑉2(𝑡)𝑏(𝑡) + 𝑉2
∗(𝑡)𝑏∗(𝑡)     (3.24) 

𝑏(𝑡) = 𝑒
−𝜔0 ∫ 𝜁(𝜆)𝑑𝜆

𝑡
𝑡𝑎 𝑒𝑗𝜔0𝑡 .       (3.25) 

According to the method of variation of parameters, the particular solution satisfies the 

complete equation if  

𝑉̇2𝑏 + 𝑉̇2
∗𝑏∗ = 0        (3.26) 

𝑉̇2𝑏̇ + 𝑉̇2
∗𝑏̇∗ = 2𝐾0𝜁0𝜔0𝑣̇.       (3.27)  

Solving this system of equations for 𝑉̇2 yields the expression 

𝑉̇2(𝑡) = −𝑗𝐾0𝜁0
𝑣̇(𝑡)

𝑏(𝑡)
 .         (3.28) 

Integrating both sides of (3.28) provides an expression for 𝑉2 

𝑉2(𝑡) = −𝑗𝐾0𝜁0 ∫
𝑣̇(𝜏)

𝑏(𝜏)

𝑡

𝑡𝑎
𝑑𝜏     

           = −𝑗𝐾0𝜁0 ∫ 𝑣̇(𝜏)
𝑡

𝑡𝑎
𝑒

𝜔0 ∫ 𝜁(𝜆)𝑑𝜆
𝜏

𝑡𝑎 𝑒−𝑗𝜔0𝜏𝑑𝜏    (3.29) 
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and by substituting (3.29) into (3.24),  the expression for the particular solution is 

obtained: 

𝑣𝑜𝑃(𝑡) = 𝑒
−𝜔0 ∫ 𝜁(𝜆)𝑑𝜆

𝜏
𝑡𝑎  ×  

    2𝑅𝑒 [−𝑗𝐾0𝜁0 ∫ 𝑣̇(𝜏)
𝑡

𝑡𝑎
𝑒

𝜔0 ∫ 𝜁(𝜆)𝑑𝜆
𝜏

𝑡𝑎 𝑒−𝑗𝜔0(𝜏−𝑡)𝑑𝜏].   (3.30) 

 

 

3.5 Redefining Gain for a Compact Expression of the Complete Solution 

Though these solutions are complete, they don’t exactly offer an obvious 

understanding of the systems operation. To offer a better interpretation of these 

equations, we may re-write them as a product of several parameters that characterize the 

systems performance while reducing the mathematical complexity of the solution.  

As mentioned earlier, the gain of the overall system is dependent on the time-

varying damping function. The additional gain achieved by closing the loop is typically 

separated into two parameters that are used to describe the performance of the receiver. 

Since these gains arise from the positive feedback (or regeneration) of the closed loop, 

they are referred to as the systems regenerative and super-regenerative gain.  

The regenerative gain of the system 𝐾𝑟 is dependent on the DC component of the 

damping factor, the frequencies of the received signal and tuned oscillator, and the area 

of the input pulse envelope weighted by the sensitivity curve across one quench 

interval [𝑡𝑎 , 𝑡𝑏]:  

𝐾𝑟 =  𝜁0𝜔 ∫ 𝑝𝑖𝑛(𝜏)𝑠(𝜏)𝑑𝜏
𝑡𝑏

𝑡𝑎
.       (3.31) 

The more concentrated the input pulse energy is centered around peak sensitivity, the 

higher the resulting regenerative gain. A wider input pulse of equal energy or a pulse 

occurring away from peak sensitivity will result in a smaller regenerative gain. Note that 

the expression in (3.31) assumes the input frequency matches the frequency of the 
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selective network. The dependence on 𝜔 shows that a greater number of received RF 

oscillations within a quench cycle increases the regenerative gain. In other words, during 

the high sensitivity period each successive RF cycle pushes the output envelop level 

slightly higher. Thus, more RF cycles (higher frequency signal) within the sensitivity 

period results in a larger regenerative gain.  

The super-regenerative gain of the system 𝐾𝑠 is characterized by the exponential 

growth of the oscillation and is determined by the area enclosed by the negative portion 

of the damping function: 

𝐾𝑠 = 𝑒−𝜔0 ∫ 𝜁(𝜏)𝑑𝜏
𝑡𝑏

0 .        (3.32) 

Since 𝜁(𝑡) is negative within[0, 𝑡𝑏], evaluation of the integral produces a positive term in 

the exponential, showing that 𝐾𝑟 is exponentially proportional to the systems period of 

instability. One could also verify from (3.10) and (3.32) that 𝐾𝑠 is defined as the inverse 

of the sensitivity curve 𝑠(𝑡). 

 It is worth noting that since these two parameters are dependent on the damping 

function, they are inherently related to the periodic feedback gain 𝐾𝑎(𝑡). The total or 

peak gain of the system is simply expressed the product of the three defined gains within 

the system: 

𝐾 = 𝐾0𝐾𝑟𝐾𝑠.         (3.33) 

With these new gain parameters defined, we may substitute them into (3.23) and (3.30) to 

obtain the following homogenous and particular solutions in compact form: 

𝑣𝑜𝐻(𝑡) = 𝑉ℎ𝑝(𝑡) cos(𝜔0𝑡 + 𝜙ℎ)      (3.34) 

𝑣𝑜𝑃(𝑡) =  2𝜁0𝐾0𝐾𝑠𝑝(𝑡) ∫ 𝑣̇𝑖𝑛(𝜏)𝑠(𝜏) sin(𝜔0(𝑡 − 𝜏)) 𝑑𝜏
𝑡

𝑡𝑎
.    (3.35) 
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𝑉ℎ and 𝜙ℎ are respectively related to the modulus and angle of the complex constant 𝑉1 

introduced in Section 3.1   Now that the complete general solution to the characteristic 

differential equation has been derived, specific cases related to the practical behavior and 

performance of a super regenerative receiver can be easily analyzed. 

 

3.5.1  SRR Response to an RF Pulse When Tuned to Carrier Frequency 

 In practical implementations, the receiver is designed to accept incoming RF 

signals within the band of interest. With the complete solution clearly defined, we can 

begin to analyze the case of an applied RF pulse in which the carrier frequency is equal to 

the center frequency of the tuned band pass filter. 

 To start, it is assumed the RF pulse is applied within the interval of one quench 

period [𝑡𝑎, 𝑡𝑏] with the expression 

𝑣(𝑡) = 𝑉𝑝𝑖𝑛(𝑡) cos(𝜔𝑡 + 𝜙).      (3.36) 

The function 𝑝𝑖𝑛(𝑡) is the normalized envelope of the incoming RF pulse and V is its 

peak amplitude. Ideally, 𝑝𝑖𝑛 = 0 outside of the defined quench period. Otherwise, a 

fraction of the input signal received in one quench period will carry over into the next 

quench period. In other words, the free response 𝑣𝑜𝐻 during the second quench period 

will be non-zero, and thus the output will no longer be solely described by the forced 

response to an input pulse within this period. The effects of a non-zero free response will 

be explained in later sections, but for now we assume 𝑣𝑜𝑖(𝑡) = 𝑣𝑜𝑃𝑖(𝑡) for every 𝑖𝑡ℎ 

quench period. 

From (35), we see that the forced response 𝑣𝑜𝑃 is related to the derivative of the 

input excitation, which is defined as  
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𝑣̇𝑖𝑛(𝑡) = 𝑉[𝑝̇𝑖𝑛(𝑡) cos(𝜔𝑡 + 𝜙) − 𝑝𝑖𝑛(𝑡)𝜔 sin(𝜔𝑡 + 𝜙)].   (3.37) 

Assuming the input envelope varies slowly compared to its carrier oscillations 

(|𝑝̇𝑖𝑛(𝑡)| ≪ 𝑝𝑖𝑛(𝑡)𝜔), we the input signal is approximated as 

𝑣̇𝑖𝑛(𝑡) ≈ −𝑉𝑝𝑖𝑛(𝑡)𝜔sin (𝜔𝑡 + 𝜙).      (3.38) 

Since the free response 𝑣𝑜𝐻 is assumed be zero, the substitution of (3.38) into (3.30) 

provides the output response of the system expressed as 

𝑣𝑜(𝑡) ≈ −2𝑉𝜁0𝐾0𝐾𝑠𝜔𝑝(𝑡) ×  

∫ 𝑝𝑖𝑛(𝜏)𝑠(𝜏) sin(𝜔𝜏 + 𝜙) sin(𝜔0(𝑡 − 𝜏)) 𝑑𝜏
𝑡

𝑡𝑎
.   (3.39) 

Since the input and sensitivity envelopes are slow-varying compared to 𝜔, the weight of 

the high frequency component within the integral will be much lower than the low-

frequency component, allowing the approximation 

𝑣𝑜(𝑡) ≈ −2𝑉𝜁0𝐾0𝐾𝑠𝜔𝑝(𝑡) ×  

∫ 𝑝𝑖𝑛(𝜏)𝑠(𝜏) cos((𝜔 − 𝜔0)𝜏 + 𝜔0𝑡 + 𝜙) 𝑑𝜏
𝑡

𝑡𝑎
.   (3.40) 

 Recall that the sensitivity curve 𝑠(𝑡) decreases rapidly as 𝑡 departs from the origin 

on both sides, reaching negligibly small values outside of the sensitivity period [𝑡𝑠𝑎, 𝑡𝑠𝑏] 

defined in Figure 3-2. Outside of this interval, one can assume the influence of an input 

pulse on the output is very small. Assuming that 𝑠(𝑡) is small at the end of a quench 

period, the effects of sensitivity on the output envelope and super-regenerative gain can 

be seen by the expression 

𝑠(𝑡𝑏) = 𝑝𝑜(0) =  𝑒𝜔0 ∫ 𝜁(𝜆)𝑑𝜆
𝑡𝑏

0 =
1

𝐾𝑠
≪ 1.        (3.41) 
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These relationships imply that a small sensitivity value at the end of a quench cycle (𝑡 =

𝑡𝑏), results in small output envelope values at 𝑡 = 0 and large super-regenerative gains. 

This reiterates the fact that the output pulse from one cycle should be quenched before 

the next high sensitivity period at 𝑡 = 0 + 𝑇𝑞 in the next cycle. With this satisfied, the 

response is solely dictated by the input signal captured at that time, which is then 

amplified at the end of the cycle 𝑡 = 𝑡𝑏. 

 Now, imposing the assumption that the receiver is tuned to the input carrier 

frequency (𝜔 = 𝜔0), the approximate expression for the output (3.40) is simplified to 

𝑣𝑜(𝑡) = 𝑉𝐾0𝐾𝑠𝑝𝑜(𝑡) [𝜁0𝜔0 ∫ 𝑝𝑖𝑛(𝜏)𝑠(𝜏)𝑑𝜏
𝑡𝑏

𝑡𝑎
] cos (𝜔0𝑡 + 𝜙) .  (3.42) 

Upon closer examination, we can see that factor contained in the brackets is the 

expression for the previously defined regenerative gain 𝐾𝑟 (3.31), allowing an even 

further simplified expression for the output: 

𝑣𝑜(𝑡) = 𝑉𝐾0𝐾𝑟𝐾𝑠𝑝𝑜(𝑡) cos(𝜔0𝑡 + 𝜙)      

            = 𝑉𝐾𝑝𝑜(𝑡)cos (𝜔0𝑡 + 𝜙).      (3.43) 

 

3.5.2 SRR Response to an RF Pulse of Arbitrary Carrier Frequency 

Until this point, it has been assumed that the carrier frequency of the input pulse is 

equal to the tuned frequency of the SRO. To analyze the systems performance for an 

arbitrary input carrier frequency, the regenerative gain and its dependence on the input 

frequency must be considered.  The general response to an excitation at an arbitrary 

carrier frequency 𝜔 can then be given as 

𝑣𝑜(𝑡) = 𝑉𝐾𝑝𝑜(𝑡) (
𝜔

𝜔0
) ∗

∫ 𝑝𝑖𝑛(𝜏)𝑠(𝜏)cos ((𝜔−𝜔0)𝜏+𝜔0𝑡+𝜙)𝑑𝜏
𝑡𝑏

𝑡𝑎

∫ 𝑝𝑖𝑛(𝜏)𝑠(𝜏)𝑑𝜏
𝑡𝑏

𝑡𝑎
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  = 𝑉𝐾𝑝𝑜(𝑡) (
𝜔

𝜔0
) ∗

𝑅𝑒[(∫ 𝑝𝑖𝑛(𝜏)𝑠(𝜏)𝑒𝑗(𝜔−𝜔0)𝜏𝑑𝜏)𝑒^𝑗(𝜔0𝑡+𝜙)
𝑡𝑏

𝑡𝑎
]

∫ 𝑝𝑖𝑛(𝜏)𝑠(𝜏)𝑑𝜏
𝑡𝑏

𝑡𝑎

.  (3.44) 

By defining the complex function 

𝜓(𝜔) =  ∫ 𝑝𝑖𝑛(𝑡)𝑠(𝑡)𝑒𝑗𝜔𝑡𝑑𝑡
∞

−∞
                

              =  𝐹∗{𝑝𝑖𝑛(𝑡) ∗ 𝑠(𝑡)}       (3.45) 

where 𝐹[𝑥] represents the fourier transform of 𝑥, and utilizing the fact that the input 

pulse 𝑝𝑖𝑛(𝑡) = 0 outside of the interval [𝑡𝑎, 𝑡𝑏], the output response can be re-written as 

𝑣𝑜(𝑡) =  𝑉𝐾𝑝𝑜(𝑡) (
𝜔

𝜔0
)

𝑅𝑒[ 𝜓(𝜔−𝜔0)𝑒𝑗(𝜔0𝑡+𝜙)]

 𝜓(0)
       

           =  𝑉𝐾𝑝𝑜(𝑡) (
𝜔

𝜔0
)

 |𝜓(𝜔−𝜔0)|

 𝜓(0)
cos (𝜔0𝑡 + 𝜙 +  𝜙𝜓)   (3.46)  

where 𝜙𝜓 is the angle of 𝜓(𝜔 − 𝜔0).  By defining the frequency dependent component 

of the above expression as 

𝐻(𝜔) =  (
𝜔

𝜔0
)

 |𝜓(𝜔−𝜔0)|

 𝜓(0)
,       (3.47) 

The output response can be condensed to the expression 

𝑣𝑜(𝑡) =  𝑉𝐾𝑝𝑜(𝑡)|𝐻(𝜔)|cos (𝜔0𝑡 + 𝜙 + 𝜙𝐻).    (3.48) 

Note that for the case of an incoming RF pulse with carrier frequency 𝜔 = 𝜔0, the 

magnitude and angle of the frequency dependent component 𝐻(𝜔) are 1 and 0° 

respectively, resulting in a response identical to that of the received pulse in Section 

3.5.1. 

 

3.5.3 Response to a Sinusoidal Input 

With the response to a single RF pulse defined, the case of a steady sinusoidal 

input given as 

𝑣𝑖𝑛(𝑡) = 𝑉𝑐𝑜𝑠(𝜔𝑡 + 𝜙)       (3.49) 
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can be explored. To utilize the results from previous sections, this sinusoid can be viewed 

as a sum of successive RF pulses occurring every 𝑚𝑡ℎ quench period, 

𝑣𝑖𝑛(𝑡) = 𝑉 ∑ 𝑝𝑖𝑛(𝑡 − 𝑚𝑇𝑞)cos (𝜔(𝑡 − 𝑚𝑇𝑞) + 𝑚𝜔𝑇_𝑞∞
𝑚=−∞ + 𝜙), (3.50) 

where the pulse envelope 𝑝𝑖𝑛(𝑡 − 𝑚𝑇𝑞) is square with unit amplitude [8]. By utilizing 

(3.48), the total response to (3.49) can be expressed as a superposition of single responses 

to each  𝑚𝑡ℎ  pulse: 

𝑣𝑜(𝑡) =  𝑉𝐾|𝐻(𝜔)| ×   

   ∑ 𝑝𝑜(𝑡 − 𝑚𝑇𝑞) cos(𝜔0𝑡 + 𝑚(𝜔 − 𝜔0)𝑇𝑞 + 𝜙 + 𝜙ℎ)∞
𝑚=−∞ . (3.51) 

 

3.6   Hangover  

Recall that before this mathematical discussion began, it was assumed that the 

response 𝑣0 to input pulse 𝑝𝑖𝑛 in a given quench cycle did not affect the response in the 

next quench cycle. To achieve this ideality, the system must be sufficiently damped at the 

beginning of a quench period to ensure any remaining energy from past periods is 

extinguished. Thus, the output oscillation in a given quench cycle depends only on the 

incoming signal within the sensitivity period of that quench cycle.  

Hangover occurs when output oscillation in a given quench cycle is generated 

from the remnant of the previous cycle. In other words, energy from the previous bit 

“hangs over” into the next quench cycle. In digital communication schemes, a high level 

of hangover will result in inter-symbol interference, thus increasing the bit-error rate. In 

this case, the effects of appreciable hangover in the time domain result in a phenomenon 

known as multiple resonance which affects the frequency response of the system. As the 

amount of hangover increases, resonant peaks occurring at integer multiples of the 
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quench frequency become increasingly defined. Examples of these effects from [1] can 

be seen in Figure 3-4 and Figure 3-5. 

 
Figure 3-4. SRR Output Pulse Envelope for Different Hangover Percentages. 

 
Figure 3-5. Effect of Hangover in the Frequency Response for Different Hangover 

Percentages (Sinusoidal Steady State). 
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To quantify this behavior, the hangover coefficient is defined as the ratio between 

the peak amplitudes of the second output pulse after time  𝑇𝑞 and that of the first output 

pulse 

𝑝𝑜(𝑡) =  𝑒
−𝜔0 ∫ 𝜁(𝜆)𝑑𝜆

𝑡
𝑡𝑏 = 𝑒−𝜔0𝜁𝐷𝐶(𝑡−𝑡𝑏)𝑒

−𝜔0 ∫ 𝜁𝐴𝐶(𝜆)𝑑𝜆
𝑡

𝑡𝑏    (3.52) 

ℎ =
𝑝𝑜(𝑡𝑏+𝑇𝑞)

𝑝𝑜(𝑡𝑏)
= 𝑒−𝜔0𝜁𝐷𝐶𝑇𝑞 = 𝑒

−2𝜋𝜁𝐷𝐶𝑓0
𝑓𝑞 .     (3.53) 

The term 𝜁𝐷𝐶𝑇𝑞 is the area enclosed by the mean value of 𝜁(𝑡) in one quench cycle, or 

more simply, the difference in area between the positive and negative portions of the 

damping function. To minimize hangover, this difference should be maximized while still 

retaining proper performance. To achieve this practically, compromises have to be made. 

Raising the dc component of the damping function will reduce hangover but will 

decrease the frequency selectivity of the system. On the other hand, lowering the quench 

frequency increases the length of the sensitivity period, resulting in larger regenerative 

gains that will push practical receivers outside their linear region of operation.  

 In practice, the quench rate is restricted to a minimum value dictated by the 

maximum frequency of the modulating message signal. Considering the system is 

essentially sampling the input every quench cycle, the quench frequency must be at least 

twice the bandwidth of the modulating signal (𝑓𝑞 ≥ 2𝐵𝑊) to effectively capture the 

signal information as given by the Nyquist Sampling Theorem. So, to reduce hangover at 

a given quench frequency, 𝜁𝐷𝐶  must be increased to satisfy the following condition: 

𝜁𝐷𝐶 >  
𝑓𝑞

2𝜋𝑓0
ln (

1

ℎ
).         (3.54) 
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Chapter 4 

Simulation of the Classical SRR 

 

4.1  Simulation Model 

The block diagram in Figure 4-1 was created using Matlab’s Simulink program to 

simulate the analytical results obtained in previous sections. This model contains all of 

the components from our original diagram with the exclusion of the optional Low-Noise 

Amplifier.  

 

Figure 4-1. Simulink Model of SRR 

 

The input to the SRR is an amplitude modulated sinusoid with frequency 𝑓𝑐 equal 

to the tuned frequency of the filter 𝑓0, modulated by a random binary sequence with 

bitrate 𝐵𝑅.  The variable gain amplifier in the feedback loop is modeled simply as the 

product of the output signal and a sinusoid oscillating at quench frequency 𝑓𝑞 with an 

amplitude equal to the feedback gain 𝐾𝑎. From (3.7) we can derive the time-varying 

damping function of the system as 

 𝜁(𝑡) = 𝜁0[1 − 𝐾0𝐾𝑎 sin(ωq𝑡)].       (4.1) 
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The output of the SRR is sent to a simple AM envelope detector circuit consisting of a 

diode and 4th order Butterworth low pass filter for a steep roll-off at a cutoff frequency 

higher than 𝑓𝐵𝑅 and lower than𝑓𝑞.  

 

4.2  Simulation of Ideal SRR Operation  

The design parameters for the ideal simulation and corresponding results are 

given in Table 4-1 and Figure 4-2. Figure 4-2a shows the ideal amplitude modulated 

input signal. Received signals in practice are of much lower amplitude, but under 

appropriate operating conditions the receiver response will be similar to the simulation 

results on a per unit basis. The output of the SRR is shown in Figure 4-2b. The peeks in 

the waveform are a result of the damping function reaching an undamped state allowing 

oscillations to rise. Comparing (a) to (b) it is seen that the overall gain of the SRR is 

roughly 4.5 V/V – quite low for typical SRR implementations. With careful observation 

of (4.1), the damping function never actually reaches a value below zero when both 𝐾0 

and 𝐾𝑎 are unity, implying from (3.32) that the super-regenerative gain of the system is 

also unity. This implies that the overall gain increase of this simulation is dictated solely 

by the regenerative gain 𝐾𝑟. Much higher gains are achievable with small increases to 𝐾0 

or 𝐾𝑎 that allow the damping function to reach a negative value and are in fact necessary 

for typically low amplitude input signals. 
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Table 4-1. Parameters for Ideal SRR Simulation. 

 
Figure 4-2. Simulation of Ideal SRR: (a) RF Input (b) SRO Output (c) Envelop Detector. 

Variables Sym Value 

Sample Frequency 𝑓𝑠 10 MHz 

Tuned Frequency of BPF 𝑓0 1   MHz 

Carrier Frequency 𝑓𝑐 1   MHz 

Quench Frequency 𝑓𝑞 40 KHz 

Bit Rate 𝐵𝑅 10 Kb/s 

Damping Ratio 𝜁0 .1 

Open Loop Filter Gain 𝐾0 1 

Feedback Gain 𝐾𝑎 1 

Input Voltage V 1 V 
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Figure 4-3.  Simulation Results Given: Ko=1.5, Ka = 1 (Left) and Ka= 1.5, Ko = 1 

(Right). 

 

 

4.3  Multiple Resonance Due to Increasing Quench Frequency 

 The following results in Figure 4-4 demonstrate the effects on the frequency 

response of the system in the sinusoidal steady state by raising the quench frequency 

while keeping all other parameters constant. Figure 4-4a is the frequency response of our 

original simulation. Figure 4-4(b-d) are the resulting frequency responses from increasing 

the quench frequency. As expected, the gain decreases as the quench frequency increases 

due to the lower amount of high frequency RF cycles within a single quench period. It is 

also apparent that increasing the quench frequency while keeping the DC component of 

the damping function constant accentuates the multiple resonance effect due to hangover 

discussed in section 3.4. Each resonant peak occurs at an integer multiple of the quench 

frequency away from the tuned center frequency of the system.  
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Figure 4-4. Example of Multiple Resonance: (a) 𝑓𝑞 = 40 𝐾𝐻𝑧 (Top Left),   (b) 𝑓𝑞 =

80 𝐾𝐻𝑧 (Top Right),   (c)  𝑓𝑞 = 160 𝐾𝐻𝑧 (Bottom Left),   (d) 𝑓𝑞 = 320 𝐾𝐻𝑧 (Bottom 

Right). 

 

 

4.4  Hangover Due to Reducing the Quiescent Damping Factor 

Figure 4-5 consists of two simulations that demonstrate the hangover effect due to 

a reduction of the quiescent damping factor 𝜁0. The response in (a) is an expected output 

for a system whose damping factor is kept high enough such that the oscillations are 

adequately quenched. The response after decreasing 𝜁0 by a factor of 2 while keeping all 

other parameters constant is shown in (b). First note that this results in a significant gain 

reduction, as both regenerative and super-regenerative gains are exponentially related to 
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the area enclosed by one cycle of the damping function. This reduction also drastically 

effects the system’s ability to extinguish oscillations after an RF input ceases. If this 

single pulse was instead a digital bit stream or a series of pulses, the hangover in (b) 

would cause the comparator portion of the detector to falsely output a logical HIGH value 

despite receiving a logical LOW input at that instance of time.  

 

 

Figure 4-5. SRR response to an input RF pulse given a high (left) and low (right) 

quiescent damping factor. 

 

 

4.5  Simulation with an Amplitude Modulated Input Signal 

 The simulations in this section are intended to provide a closer representation to 

the practical design that will be proposed in Chapter 5. To mimic the electrical limitations 

of the time-varying gain element used in the practical design, a saturation block was 

inserted before multiplication that clips the quench signal for values larger than +/- 



 35 

50mV. Since the feedback gain can no longer be controlled by arbitrary quench signal 

values (which previously corresponded to 𝐾𝑎), two amplifiers with gains of 10 V/V were 

added to the feedback path and at the SRO output to compensate for the gain reduction. 

These modifications to the original simulation model are shown in Figure 4-6. 

Figure 4-6. Modified SRR Model. 

  

The input signal is a noisy AM waveform obtained from the product of a 20 KHz 

sinusoidal message signal of 500mVac with a 1Vdc bias and a 1 MHz, 100mVac carrier 

wave. These values were chosen to represent a typical AM input signal at the maximum 

audible frequency that a practical SRR may receive, demonstrating its suitability for 

receiving continuous AM audio signals. 

 Two simulations were conducted using different quench signal amplitudes to 

demonstrate the linear and saturated operating modes of the practical time-varying gain 

element. The first simulation shown in Figure 4-7 is resultant of a 60 KHz, .05Vac 

sinusoidal quench signal controlling the feedback gain of the SRO. In this case, the 

sinusoidal quench signal controls the gain linearly as it did in previous simulations. From 

top to bottom, the graphs in Figure 4-7 depict the input AM waveform, the output of the 

SRO and the output of the envelope detector with a low pass filter cutoff frequency of 25 

KHz.  
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Figure 4-7. SRR Simulation with an AM Input Signal and Linear Gain Control: (a) AM 

Input Signal (Top), (b) SRO Output (Center), (c) Envelope Detector Output (Bottom). 

 

The second simulation shown in Figure 4-8 is resultant of a 60 KHz, .2Vac sinusoidal 

quench signal that exceeds the imposed 50mV saturation limit of the gain element. The 

clipping of this control signal results in the square wave damping function depicted in the 

upper plot of Figure 4-8. The center and bottom plots again depict the SRO output and 

envelope detector output respectively.  
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Figure 4-8: SRR Simulation with an AM Input Signal and Saturated Gain Control: (a) 

damping function (top), (b) SRO Output (Center), Envelope Detector Output (Bottom). 

 

Not only do these simulations demonstrate the SRRs ability to demodulate practical 

continuous signals, but they also prove that both sinusoidal and square quench signals 

(and thus, sinusoidal and square damping functions) can be used to control the feedback 

gain of the SRR with similar results. This fact reiterates the comments made in Section 

3.2 that the shape of the damping function is arbitrary so long as the system is designed to 

have appropriate durations of sensitivity, regeneration and quenching. 
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Chapter 5  

Electrical Model & Practical Implementation 

 

5.1  Electrical Model 

Now that a strong mathematical understanding of SRR operation has been 

established, the generic results of previous sections can be easily applied to an electrical 

model. Figure 5-1 presents the most common electrical representation to model super-

regenerative operation.  

 
Figure 5-1. Electrical Model of a Super-Regenerative Receiver. 

 

This circuit is simply an LC tank circuit with an added conductance 𝐺 that models the 

tank’s resistive losses, and a time-varying negative conductance 𝑔 in parallel with the 

tank’s inherent conductance. The RF current source 𝑖(𝑡) represents incoming external RF 

signals induced in the tank, which can be thought of as the signal from a receiving 

antenna represented as 

𝑖(𝑡) = 𝐴(𝑡)𝑠𝑖𝑛(𝜔0𝑡).        (5.1) 
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Since we are interested in the operation of the receiver when it is tuned to the input 

carrier frequency, we shall assume that 𝜔𝑐 ≈ 𝜔0 = √
1

𝐿𝐶
  as defined in [5]. 

When the switch is open (𝑡 < 0), the voltage across the tank takes on the 

expression 

𝑣(𝑡) = 𝑣𝑜𝑘𝑒−
𝑡𝐺

2𝐶 ∗ sin(𝜔0𝑡).       (5.2)  

When the switch closes (𝑡 ≥ 0), the negative conductance 𝑔 is added to the tanks 

quiescent conductance 𝐺. To simplify the analysis, we shall assume that the total 

conductance of the network is equal to some positive value G when the switch is open, 

and some new negative value – 𝑔 when the switch is closed. Once the switch is closed, 

the equation describing the circuit via KCL is 

𝐶𝑣̇ + 𝑔𝑣 +
1

𝐿
∫ 𝑣𝑑𝑡

𝑡

0
= 𝑖(𝑡).       (5.3)  

The solution in terms of the tank voltage is then given as 

𝑣(𝑡) = 𝑣𝑜𝑘𝑒+
𝑡𝑔

2𝐶 ∗ 𝐴(𝑡)sin (𝜔0𝑡)       (5.4) 

𝜔0 = √ 1

𝐿𝐶
+ (

𝑔

2𝐶
)

2

         (5.5)  

As can be seen from (5.4) when the negative conductance is introduced the 

voltage across the tank is sinusoidal with an exponentially increasing amplitude envelope. 

Relating this to the generic closed loop model, the damping factor of this system at this 

particular instant is less than or equal to 0, meaning the system is undamped and the 

amplitude of oscillations will rise to ever-increasing levels due to positive feedback. In 

practical cases, non-linearities of oscillatory circuits will cause the amplitude to level off 

over time, making the network a steady oscillator of constant amplitude. However, for the 

purposes of this example it is assumed that the switch will open before the oscillations 
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reach a steady amplitude, thus preserving the receivers’ linear mode of operation. It 

should be noted from (5.4) that introducing a negative conductance will shift the center 

frequency of the band pass network, and so the magnitude of this additional term should 

be kept small enough to minimize its effects on the center frequency. 

When the switch opens again, the voltage across the tank reverts back to a 

decaying sinusoid approaching 0V. Since the state of the switch is dictating weather the 

network is overdamped (open) or undamped (closed), this hard switching scheme is 

equivalent to a square wave quench signal controlling the feedback gain of our generic 

model, alternating the network between stable and unstable states. The switching period 

is equivalent to the quench period of the quench oscillator (and thus, the period of the 

time-varying feedback gain). With this in mind, the switching action of this band pass 

network can be modeled as a time-varying conductance in parallel with the networks 

inherent conductance. 

 
Figure 5-2. Electrical Model with a Time-Varying Conductance. 

 

From this form, all of the general parameters from Chapter 3 can be mapped to equivalent 

electrical parameters which would provide the same mathematical results from an 

electrical perspective as shown in [10] and [12]. Mappings of these parameters are given 

in Table 5-1. 
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 Block Diagram Electrical Model 

Input Signal 𝑣𝑖𝑛 𝑖 

Output Signal 𝑣𝑜 𝑣𝑜 

Tuned 

Frequency 
𝜔0 

1

√𝐿𝐶
 

Filter Gain 𝐾0 𝑍0 =
1

𝐺0

 

Damping Ratio 𝜁0 
1

2𝑅0𝐶𝜔0

=
1

2𝑄0

=
𝑍0

2𝑅
 

Feedback Gain 𝐾𝑎(𝑡) 𝐺𝑎(𝑡) 

Damping 

Function 
𝜁(𝑡) = 𝜁0[1 − 𝐾𝑎(𝑡)𝐾0] 𝜁(𝑡) = 𝜁0[1 − 𝐺𝑎(𝑡)𝑍0] 

Table 5-1. Parameter Mappings for the Equivalent Electrical Model 

 

5.2  Self-Quenching 

As mentioned earlier, quenching can be achieved externally with an oscillator 

controlling the feedback gain, or by designing the band pass network to allow for “self-

quenching.” In fact, a large reason why supper-regenerative receivers were popular in the 

earlier years of communications was because non-linear characteristics of a single device 

(transistor or tube) could be exploited to detect and perform self-quenching at the same 

time, reducing the cost and size of the circuit (an attractive benefit considering the size of 

transistors and tubes at the time).In practice, the transistor acts as a nonlinear negative 

resistance, providing the oscillatory response described for the simple RLC circuit above.  

 

5.3  Colpitts Oscillator  

As a practical example, the single-transistor SRR design presented in [5] shall be 

considered. The core of the receiver discussed in [5] is based on the simple yet popular 

Colpitts oscillator shown in Figure 6-3. The gain element is a bipolar transistor amplifier 

in a common emitter configuration. Rb1 and Rb2 bias the transistor. Resistor  𝑅𝑐 limits 
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the collector current of the transistor. Capacitors 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 act as decoupling 

capacitors to separate and remove the DC component of the AC signal. Capacitor 𝐶𝑒 acts 

as an emitter bypass capacitor that prevents the amplified AC from dropping across 𝑅𝑒. 

Without it, the AC signal will drop across 𝑅𝑒 and alter the DC biasing conditions of the 

Amplifier.  

 
Figure 5-3. Colpitts Oscillator. 

 

The output at the collector is fed back to the base with a resonant LC tank circuit in the 

feedback loop. The two capacitors in the tank form a single “tapped” capacitor whose 

total effective capacitance is determined by  

𝐶𝑡𝑜𝑡𝑎𝑙 =
𝐶1𝐶2

𝐶1+𝐶2
          (5.6) 

When the power is switched on, the capacitors in the tank start charging. When 

fully charged, they start to discharge through the tanks inductor L. When the capacitors 

fully discharge, the stored electrostatic energy is transferred as magnetic flux through the 
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inductor. Once the inductor starts discharging its energy, the capacitors charge up again. 

The energy transfer between these elements form the basis of the circuits oscillation. The 

frequency of oscillation is characterized by the equation  

𝑓 =
1

2𝜋√𝐿𝐶𝑡𝑜𝑡𝑎𝑙
          (5.7) 

In a passive tank circuit, these oscillations will eventually die out as the reactive elements 

reach steady state equilibrium. To sustain oscillations, the lost energy is compensated by 

the common-emitter transistor amplifier. This amplifier configuration takes an input 

signal at the base and outputs a scaled version of the signal shifted 180° at the collector 

output. Grounding the connection between C1 and C2 results in equal voltages of 

opposite polarity across the two elements, thus introducing another 180° phase shift such 

that the feedback signal is in-phase with the input. The resulting positive feedback 

sustains the oscillations at an amplitude level characterized by component values of the 

amplifier. The author of [5] modifies the base-emitter junction of this steady oscillator 

with an added RLC circuit to achieve time-varying gain resulting in self-quenching 

operation. 

 

5.4  Alternative Time-Varying Gain Element 

The initial goals for the practical design offered in this section were focused on 

modifying the single-transistor Colpitts oscillator to achieve self-quenching operation 

with minimal additional components, all while maintaining suitable performance within 

the AM frequency range. Unfortunately, the non-linear gain control of the single-

transistor design could only be partially described by the analysis presented in Chapter 3. 

To conclude the concepts and analysis of this report, this section presents a practical 
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implementation that utilizes a monolithic IC package to realize the time-varying gain 

element of the SRO model. Though this modification sacrifices cost efficiency, it allows 

for a circuit realization that is closely related to the simulation model presented in Section 

4.  

Much like the simulation model, this circuit consists of a selective network whose 

output is fed back to an MC1496 monolithic balanced modulator which is configured to 

act as the externally controlled amplifier in  

Figure 1-1. The schematic for the MC1496 is shown in Figure 5-4.  The design consists 

of a differential amplifier (Q5-Q6) that drives a dual differential amplifier pair (Q1-Q2, 

Q3-Q4). Transistors Q7 and Q8 and connecting bias circuitry form two DC current 

sources to provide proper biasing of the lower differential pair. This circuit topology is 

identical to the four-quadrant multiplier discussed in [13], and is characterized by its 

ability to deliver an output that is proportional to the product of two input signals. As a 

four-quadrant multiplier, the MC1496 permits multiplication of both positive and 

negative input signals, making it an effective building block for numerous RF 

applications of varying complexity. The schematic shown in Figure 5-5 is a simplified 

model to demonstrate and analyze the performance of a four-quadrant multiplier. Note 

that the additional emitter and load resistors 𝑅𝐸 and 𝑅𝐿 are external components used to 

set the appropriate device voltage gain for the design application. 
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Figure 5-4.  Schematic of MC1496 Balanced Modulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5. Analysis Model for the MC1496. 

 

Analysis of the multiplier circuit is based on the assumption that the BJT pairs are 

matched and have negligible base currents. Under this assumption, the following 

expressions for the branch currents can be defined: 

𝐼1 = 𝐼5 ≡ 𝐼𝑏𝑖𝑎𝑠         (5.8) 
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𝐼𝑦 =
𝑉𝑦

𝑅𝐸
     (𝑅𝐸 ≫ 𝑟𝑒)         (5.9) 

 

𝐼2 =
(𝐼1+𝐼𝑦)

1+𝑒
𝑉𝑥
𝑎

,      𝐼3 =
(𝐼1+𝐼𝑦)

1+𝑒
−

𝑉𝑥
𝑎

𝐼4 =
(𝐼1−𝐼𝑦)

1+𝑒
−

𝑉𝑥
𝑎

,      𝐼5 =
(𝐼1−𝐼𝑦)

1+𝑒
𝑉𝑥
𝑎

   }        (5.10) 

Where  

𝑎 =
𝑘𝑇

𝑞
  .        

 (5.11) 

Currents 𝐼𝐴 and 𝐼𝐵 can be represented as sums of these collector currents,  

𝐼𝐴 = 𝐼2 + 𝐼4 =
(𝐼1+𝐼𝑦)

1+𝑒𝑚 +
(𝐼1−𝐼𝑦)

1+𝑒−𝑚

𝐼𝐵 = 𝐼3 + 𝐼5 =
(𝐼1+𝐼𝑦)

1+𝑒−𝑚 +
(𝐼1−𝐼𝑦)

1+𝑒𝑚

   }        (5.12) 

where 𝑚 =  
𝑉𝑥

𝑎
. Taking the difference between Currents 𝐼𝐴 and 𝐼𝐵 as derived in [14] yields 

𝐼𝐴 − 𝐼𝐵 =
2𝐼𝑦(𝑒−𝑚−𝑒𝑚)

(1+𝑒𝑚)(1+𝑒𝑚)
.       (5.13) 

The differential voltage between the two load resistors is then given as  

∆𝑉𝑜 = 𝑅𝐿
2𝐼𝑦(𝑒−𝑚−𝑒𝑚)

(1+𝑒𝑚)(1+𝑒𝑚)
 .       (5.14) 

Combining (5.9) with (5.14) and substituting  
𝑉𝑥

𝑎
 back into the equation forms for the 

complete expression for the voltage gain from the differential output to input 𝑉𝑦 

∆𝑉𝑜

𝑉𝑦
=

2𝑅𝐿

𝑅𝐸

(𝑒
−

𝑉𝑥
𝑎 −𝑒

𝑉𝑥
𝑎 )

(1+𝑒
𝑉𝑥
𝑎 )(1+𝑒

−
𝑉𝑥
𝑎 )

= −
2𝑅𝐿

𝑅𝐸
tanh (

𝑉𝑥

2𝑎
)      (5.15) 

From this expression it can be seen that the voltage gain is a non-linear function of the 

input signal applied to the upper two differential pairs. The hyperbolic tangent function in 

(5.15) is approximately linear for argument values close to zero and levels off to +/- 1 as 

the argument departs further from zero. A large sinusoidal control voltage would appear 
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as a square wave periodically changing the sign of the input voltage.  Alternatively, a low 

voltage control signal can be used to vary the voltage gain linearly, causing the multiplier 

to act as a variable gain amplifier. The amplitude limits imposed on the applied control 

voltage signal for linear operation are further defined in [14], though the typical range is 

+/- 50mV. 

Figure 5-6. Balanced modulator configuration. 

 

 Figure 5-6 depicts the typical configuration for the balanced modulator as 

provided by the MC1496 datasheet [14]. The gain element of the SRO will be 

implemented using this configuration with a few changes to the defined inputs. The 

output voltage 𝑣0 of the selective network will be fed into input 𝑉𝑆 (𝑉𝑦) and the external 

quench signal 𝑣𝑞 will be applied to input 𝑉𝑐 (𝑉𝑥). The differential output of the MC1496 

will feed into a differential amplifier, converting it into a single ended signal to be fed 

back to the selective network input. 
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5.5  Proposed Design & Implementation  

 The schematic of the proposed SRR design for circuit simulation is shown in 

Figure 5-7. Three voltage sources fed into an operational amplifier are used to model a 

300mV AM signal with a carrier frequency of 1 MHz and message frequency of 20 KHz. 

The band pass filter is composed of the simple LC tank that is used as the selective 

network for the Colpitts oscillator. The variable gain amplifier mimics the MC1496 

circuit schematic in Figure 5-4 with the appropriate connections for a balanced modulator 

as given in Figure 5-6. The applied quench signal to the MC1496 is a 50mV sinusoid 

with a frequency of 120 KHz. 60 KHz was sufficient for the ideal model simulated in 

Matlab, however this frequency did not provide sufficient quenching in the practical 

design.  The differential output is fed into a differential amplifier to provide voltage gain 

and convert the output to a single ended voltage signal which feeds back to the selective 

network. The peak detector circuit is designed to have a time constant sufficient for 

reasonable tracking of the output envelope and is cascaded with a low pass filter with a 

cutoff frequency of around 30 KHz to reduce the rippling effect from the quenched 

output pulses. 
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Figure 5-7. Schematic of the Practical SRR Implementation 

 

 The simulation results of this circuit are shown in Figures 5-8. The blue and red 

signals in Figure 5-8a are the input AM signal and the output of the amplifier in the 

feedback loop respectively. The quenching action of the feedback amplifier becomes 

apparent after 200𝜇𝑠 as the pulses occurring every 𝑇𝑞 seconds become more defined. 

Figure 5-8b is a magnified view of 5-8a starting at 200𝜇𝑠 to provide a clearer view of the 

output pulses. Figure 5-8c depicts the output of the peak detector circuit compared to the 

input signal. As can be seen, the peak detector accurately tracks the quenched output 

pulses and successfully extracts the 20 KHz message signal from the modulated carrier 

with a 500mVdc offset.  

 

AM Signal Generator 

Peak Detector + LPF 

Selective Network 

Variable Gain Amplifier 
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Figure 5-8. (a) Feedback Amplifier Output (Top), (b) Magnified View of Feedback 

Amplifier Output (Center), (c) Peak Detector Output (Bottom). 
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5.6  Physical Implementation 

 A physical prototype of the simulated design is given in Figure 5-9. The selective 

network and MC1496 are configured as they were in the simulation, however some minor 

adjustments were made to account for the non-idealities of the practical op-amp used to 

amplify the feedback signal after multiplication. Instead of sending both outputs of the 

MC1496 to a differential amplifier, this circuit feeds a single-ended output to a pair of 

cascaded HA-2515 op-amps in non-inverting configuration. The HA-2515 has a gain-

bandwidth product of 12 MHz which is higher than typical operational amplifiers. 

However, a considerable amount of amplification was needed to boost the low-voltage 

single-ended signal from the balanced modulator. The cascaded design ensures sufficient 

amplification for peak detection can be achieved while still preserving the integrity of the 

signal.  

  

 

 

 

 

 

 

 

 

 

 
 

Figure 5-9. Prototype of the proposed SRR design. 
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 The results of this circuit configuration are shown in Figure 5-10. The input signal 

is a 300mVac 1 MHz AM signal modulated by a 20 KHz message signal. The quench 

signal is a 60mVac sinusoid with a frequency of 120 KHz.  Like the simulated design, a 

quench frequency of 60 KHz did not extinguish the building oscillations sufficiently, 

which compromised the envelope of the 20 KHz message signal. The 150mV signal in 

Figure 5-10a is the single-ended output of the MC1496. The quenched pulses in the 

output waveform are comparable to those shown in Figure 5-8. This signal was fed into 

two cascaded non-inverting op-amps, each providing a gain of roughly 5.2 V/V using 39 

KOhm and 8.2 KOhm resistors. The feedback signal before and after amplification is 

compared in Figure 5-10b by the yellow and blue signals respectively. The 4V signal 

after amplification is sent to the peak detector circuit previously discussed in Section 2.3 

which is cascaded with a low pass filter. The parallel configuration of the 1nF capacitor 

and 18.9 KOhm has a time constant of 18.9𝜇𝑠 (52.9 KHz) which allows the peak detector 

the track the envelope of the 120 KHz output pulses effectively. The passive RC low pass 

filter has a cutoff frequency of 100 KHz to remove some of the ripple caused by the high 

frequency pulses. A comparison of the amplified feedback signal and the output signal of 

the peak detector is given in Figure 5-10c. As can be seen, the SRR circuit successfully 

demodulates the 1 MHz AM signal and outputs the extracted 20 KHz message signal.  

Depending on the requirements of the application, further amplification and higher order 

filtering can be implemented after demodulation to boost the signal strength and improve 

the integrity of the sinusoid. 
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Figure 5-10. (a) Output of MC1496, (b) feedback signal before and after amplification, 

(c) peak detector output compared to amplified feedback signal. 
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Chapter 6  

Conclusions & Future Work 

Despite their age, Super-Regenerative Receivers have proven to be resilient 

options for RF reception in applications where low-power consumption, architecture 

simplicity and cost efficiency are desired. This study has successfully presented a 

mathematical understanding of SRR operation and working implementation to 

demonstrate the theoretical results. Though the final design deviated from the initial goal 

of minimizing cost and complexity, it boasts an architecture that is easily relatable to the 

generic model that has been used to understand SRR operation for decades. The generic 

mathematical analysis and the easily relatable practical implementation can be used as a 

springboard for improved SRR architectures designed for specifically for various 

communication applications.  

Future work will focus on integrating the self-quenching action described in 

Chapter 6 into the current design. The intent of this modification is to allow for optimal 

quenching frequencies across a range of desired carrier frequency inputs without the need 

for an externally controlled oscillator. This improvement would benefit commercial radio 

receivers that are expected to operate consistently across numerous frequency bands in 

the AM and FM range.  

With the increasing relevance of short range communications for RFID and 

sensor network applications, integrating the proposed design into a single package via 

CMOS technology is also worth considering. Such applications include the Internet of 

Things, home automation and remote control operation of consumer devices. The design 

of sensors and RFID tags is highly focused on minimizing the size and power of the 
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device so that they are non-intrusive and have a long battery life. These devices typically 

do not require high-level performance, making the SRR a highly affordable option for the 

intended communication purposes. Integrating the proposed design into a smaller 

package would make for an attractive option as the need for smaller, long-lasting RF 

communication devices continues to grow. 
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