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ABSTRACT

Monolithic integrated circuits (PICs) and optoelectronic integrated circuits

(OEICs) have been a goal actively pursued since early 60s. Over the years, there are

several viable technologies developed for monolithic PICs. These technologies include (i)

selective area epitaxy, (ii) growth and regrowth, (iii) asymmetric waveguide structure,

and (iv) quantum well intermixing (QWI). In this thesis, we investigate the feasibility of

using Cu:Si02 film to induce QWI for GaAs-based quantum well systems.

Intermixing is a technique that can be used to modify the band gap of QW laser

structures. The spatial selectivity inherent in this technique makes it useful for the

monolithic integration of optoelectronic devices having different functionalities. This

process offers a simple and potentially low-cost route for the fabrication of photonic

integrated circuits. To date, several promising QW intermixing (QWI) techniques has

been developed. These techniques have shown to increase the production yield and

performance of photonic integrated circuits (PICs).

Here, we systematically investigate the possible influence of metallic impurity

incorporation into the silica encapsulating layer through ion implantation and co­

sputtering technique to enhance the intermixing rate in the various quantum nanostructure

systems, In our study. we found that the interdiffusion rate can be controlled by

incorporating different concentration of copper (Cu) in the silica cap through either co­

sputtering of Cu and SiO~. or Cu-implanted SiO~ process. Large bandgap shift of o\'er

200 me\' has been obseryed from yarious QW heterostructures such as GaAs/AIGaAs
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QW laser (850nm), InGaP/GaAs red laser (633nm) structure and AIGaAs/GaAs quantum

well laser structure (780nm) using eu-doped sputtered silica process. The results suggest

that this technology is a promising universal intermixing technique for the planar

integration of multiple active/passive quantum heterostructure based devices on a single

chip.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Engineering of optical and material properties of semiconductor quantum

confined nanoheterostructures using interdiffusion or intennixing technology has gained

significant interest. This technique provides a simple and cost effective route to the

realization of monolithic semiconductor photonic integrated circuits (PICs) which allows

active and passive photonic devices such laser, modulators, photodetector and low loss

waveguides to be fabricated on a single chip. By intennixing the quantum-well and

barrier materials, the absorption, emission, and refractive properties can be controlled. In

addition, this technique produces excellent alignment, negligible reflection losses, and

intrinsic mode matching between integrated devices, hence providing a very enticing

vision for the future of high-density PICs. The process takes an advantage of the inherent

metastable III-V compound semiconductor to spatially modify the material bandgap via

the introduction of beneficial impurities or point defects followed by a thermal annealing

stage. Among the well-established intennixing techniques (i.e. dielectric cap annealing,

ion-implantation. impurity diffusion, laser irradiation, plasma exposure), sputtered silica

process has been widely known as a promising and reliable approach to universally tune

the bandgap of various quantum nanohetcrostructures such as quantum-well (QW) and

quantum-dot (QD) [2). Howcyer. thc intcmlixing mcchanism of the sputtercd silica
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process is not well understood. Also, the present knowledge is insufficient to explain why

the intermixing effect occurs at relatively low activation energy as compared to other

processes.

1.2 Quantum Nanostructure (quantum well or quantum dot) Intermixing

Quantum Well Intermixing
InGa As

GaAs ; .. ~. GaAs............... rn••••••••••••••• ,In
::::::::::::::: .Ga
••••••••••••••••••••••••••••••

Non~ntermlxedI;"l.f"
1 -E

9

J:~.n

Intennixed

I~'M

I E~>Eg
: :/'"':-I., .

Figure 1-1 Schematic of quantum well intermixing, and the bandgaps of the as-grown

and the intermixed quantum nanoheterostructures.

Quantum well intermixing (QWI) is a technique that can be applied to spatially

modify the bandgap of the active quantum nanostructurc in semiconductor photonic

structures (Figure 1-1). The modified quantized energy state is usually observed as a

blue-shift of the band edge. that is. an increase in the quantized energy state. Hence

provides a route for the monolithic integration of various optical components that

required different bandgap properties onto a single semiconductor wafer. Intemlixing

technique otTers a planar technology which can be uscd to laterally integrate regions of
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different bandgaps within the same epitaxial layer. Generally, the interface between

quantum well and baniers is metastable. At high annealing temperature, interdiffusion

between elemental atoms in the quantum well and banier occurs that modifies the

composition of the quantum well, hence the bandgap of the active region.

By intermix the quantum well and banier materials, optical properties of the

active region such as absorption, emission, and refractive properties can be controlled.

This process offers a simple and low-cost route for the fabrication of photonic integrated

circuits (PICs). This planar technology will also increase device yield and the

performance of PIes. A range of intermixing techniques has been reported, based on

impurity diffusion, dielectric capping, ion-implantation, laser irradiation and plasma

exposure has been developed to enhance the quantum well intermixing rate in selected

areas of a wafer. Each of these QWI techniques has its advantages and shortcomings.
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1.2.1 Impurity Induced Disordering (110)

Among all of the QWI methods, impurity induced disordering (lID) is a process

that requires the introduction of impurities into the QW materials in order to promote the

intermixing process. It was first observed and demonstrated in the AIAs/GaAs by Laidig

et al [6] in 1981. Later, the mechanism of lID in GaAs/AIGaAs was then proposed by

Deppe and Holonyak [7].

In the impurity-induced disordering (lID) method, impurities, both electrically

active and neutral species, are used to change the equilibrium defect concentration to

enhance the group III or group V self-diffusion in the crystal during high temperature

annealing. Although the technique has shown to be relatively simple and highly

reproducible, the introduction of dopants in to the epi-structures could have adverse

effects on the electrical nature of the device structure [3].
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1.2.2 Impurity Free Vacancy enhanced Disordering (IFVD)

Impurity-free vacancy-enhanced disordering (IFVD) is another commonly used

technique to induce QWI. In the case of IFVD, dielectric cap such as Sia2 is usually used

as the intermixing source to create surface point defects particular vacancies, hence QWI

at high annealing temperature. Take a simple GaAs/AIGaAs QW structure for example,

Si02 encapsulant layer induce Ga outdiffusion, i.e., Group III vacancies, during

annealing. These vacancies will diffuse toward the QW structure and enhance the atomic

interdiffusion rate between QW and barrier materials, hence induce QWI to the structure.

The outdiffusion of group III elements to the Sia2 layer has been attributed to the large

thermal expansion coefficient of between the semiconductor and Sia2. As the thermal

expansion coefficient of GaAs is ten times larger than that of Si02, the thermal stress at

the interface between the GaAs and the Sia2 layer plays a major role. During high

temperature annealing, the bonding in the porous Sia2 may be broken due to the stress

gradient between the GaAs and Sia2 film. Thus, the outdiffuse of Ga occurs and helps to

relieve the tensile stress in the GaAs. Also, As atoms might diffuse into Sia2 as well.

However, since the diffusion coefficient of As in Sia2 is utterly low compared to Ga, Ga

will dominate the out diffuse.

Although IFVD is one of the most promising Q\VI techniques for GaAs/AIGaAs

system. this technique produce low spatial selectivity and low reproducibility in InP­

based material systems.
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1.2.3 Laser Induced Disordering (LID)

Laser-induced disordering (LID) technique involves heating up the quantum well

structure though laser irradiation to accomplish QWI. It is a promising QWI process for

InGaAs/InGaAsP QW systems due to the poor thermal stability in InGaAsP material.

This technique was first demonstrated in a GaAs/AlGaAs structure using a CW Ar laser

irradiation technique [8]. Large thermal spike from the CW laser irradiation results in

melting of semiconductor, hence modifying of the bandgap property of the active

structure. Generally, this technique gives low spatial selectivity, and induces warble to

the sample.
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1.3 Sputtering Deposition or Physical Vapor Deposition (PVD) Review

1.3.1 Sputtering Mechanism

Sputtering deposition which also known as physical vapor deposition (PVD) is

process widely used for depositing thin film of material on semiconductor substrates.

Typically the layers are used as diffusion barriers, adhesion or seed layers, primary

conductors, anti-reflection coatings, and etch stops in the semiconductor manufacturing.

Physical sputtering has been known for more than a hundred years and has been in

common usage for many decades [14]. Physical sputtering is a relatively aggressive,

atomic-scale process in which an energetic ion bombards a material or a "target" which

made of the material to be deposited. As a result, the target atoms will be dislodged or

"sputtered" off. The sputtered atoms will then have enough substantial kinetic energies to

fly to the substrate and coated on it as shown in Figure 1-2.

The degrees of the collision process depend directly on the incident energy and

mass of the bombarding particles. At relatively low energies, the incident particles do not

have enough energy to break atomic bonds of the surface atoms, and the bombardment

process could result in simply desorbing a few lightly bound gas atoms and may ends up

inducing a chemical reaction at the sample surface. or nothing at all. On the other hand, at

relati\'ely high energies. the bombarding particles travel deeply into the substrate and

may also cause deep level disorder in the physical structure. At moderate energies.

usually in thc rangc from scvcral hundred eV to sevcral keV. the bombarding particles
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can cause considerable numbers of near surface broken bonds, atomic dislocations and

sputtering atoms.

Ar
-0+-

healinglcoolilg

I~
!)'-!~~

~r~o~ ~Iasma

o h+

OTarget atom
cooling

Chamber under vacuum

Figure 1-2. The schematic diagram ofthe sputtering system.

Pumping
Unit

Most of the ions necessary for the bombardment of the target are simply extracted

from inert sputtcred gas which is typically Argon plasma. burning betwecn thc targct and

the substrate. Both targct and substrate arc planar plates which serve as the cathode and

anode for thc gas discharge that produces ionized Ar+ and frcc electrons. Since the target

elcctrode is always cathode which is negatively charged, it lvill attract the Ar+ ions and

thus is bombarded by relatively energetic Ar+ ions. Morcover. some target atoms will

makc it to thc substratc to bc coated. others \..ill miss il and some will become ionized

and return to the target. Sputtering offers lots of advantages as following
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• Sputtering can be achieved from large-size targets, simplifying the deposition of

film with uniform thickness over large wafers.

• The film thickness is easily controlled by fixing the operation parameters and

simply adjusting the deposition time.

• The control of the alloy composition, as well as other film properties such as step

coverage and gain structure, is more easily accomplished than by deposition

through evaporation.

However, sputtering has the following disadvantages too:

• High capital expenses are required

• The rates of deposition of some materials such as Si02 are relatively low

• Some materials such as organic solids are easily degraded by ionic bombardment

• Sputtering has a greater tendency to introduce impurities in the substrate than

deposition by evaporation because the former operates under a lesser vacuum

range than the latter.

1.3.2 Radio-Frequenq (RF) sputtering

RF sputtering system uses a RF generator to producc a signal of altcrnating

polarity that is largc enough to causc brcakdown of the proccss chambcr gas. Positivc

ions from thc dischargc arc accclerated toward an electrodc when it is subjected to thc

ncgativc-bias portion of thc \\'~l\'cfonn (and electrons during the positivc-bias

portion). To restrict the sputtering only to the target surface. the electrode
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configuration in the system must be altered. The non-sputtering electrode is

grounded, and this may also be a convenient location for placing the substrate wafers

onto which the sputtered film is to be deposited. If the target is a conductor, a

blocking capacitor is needed to prevent this self-bias voltage from being grounded

through the RF generator as shown in Figure 1-3. If the target were an ideal insulator,

it would not be necessary to use an external blocking capacitor.

BLOCKING
CAPACITOR

TARGET

FORWARD REFLECTED
POWER POWER

r---f t----4 MATCHING t---('/ ./l--....
NETWORK

'-~~ ;;;;;IF-1
ION L J l
SHEATH 4I:='-t'l'----r I RADIO- rl

I VACUUM t----t FREQUENCY .- -J

UBSTRATE - ........~c.;;~~.~_~.; : CHAMBER GENERATOR CABLE
UPPORT 1

BASEPLATE

Figure 1-3. Radio Frequency Sputtering System

However. one of the important requirements that must be met to realize a useful

RF sputter process is to be able to couple the maximum power from the RF generator

to the discharge. The output impcdancc. Zo. of RF powcr supplies used in sputtering

is dcsigned to bc purely rcsistivc while thc load of the discharge XL is much largcr

and thc impcdance is also largcly capacitivc. This impcdancc mismatch can be solvcd

by inscrting an impcdancc matching nctwork bctwcen thc output of the gencrator and
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discharge chamber. Most RF systems use feedback control to tune to network by

automatically maintaining minimum reflected power.

1.4 X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) or also called electron spectroscopy is a

method that uses x-rays to eject electrons from inner-orbital shells. It was developed in

the mid 1960s by Kai Siegbahn and his research group. It is a technique that used to

analyze the surface chemical property of a material. Typically, it is used to analyze the

chemical composition of a surface after some treatment such as: fracturing, cutting or

scraping in air, ion beam etching (surface cleaning) or exposure to heat to study the

changes due to heating, exposure to gases or solutions, ion beam implant, etc.

The analysis is done by irradiating a sample with x-ray to ionize atoms and

releasing photoelectrons. The XPS technique is highly surface specific due to the short

range of the photoelectrons that are excited from the solid. It typically has the sampling

depth of a few nanometers (1-10 nm usually). The energy of the photoelectrons leaving

the sample are collected and analyzed by the instrument to produce a spectrum of

emission intensity versus electron binding energy. Since the binding energy of the peaks

is characteristic of each clement. the peak areas can be used to detennine the composition

of the materials surface. Although XPS is a very useful technique used to detemline what

elements and the quantity of those elements that are presented in the sample surface. it

still has some limitations. It takes relatively long time to survey scan and measure the
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amount of all elements (1-10 minutes). Ultimate detection limit for most elements is

approximately 100 part per million. Finally sample sizes need to be relatively big ranging

between 1x 1 to 3x 3 em.

Photo-Emitted Electrons
escape only from the very top surface

of the sample

Electron
Collection

Lens

Electron Energy Analyzer
{mf-~r~'J/t}.s f.;.:rJf>tK er~rgy of -?/~:t.'(~...,.~·,1

'--
~"

Electron Detector
(counts the electrons)

XPS Signal

Figure 1-4. Basic components ofXPS system*

* Picture from Wikipcdia Encyclopedia (http://cn.wikipedia.orglwikilX-rayyhotoelectron_spectroscopy)

1.50bjcctivcs

In this work. QWI effect induced by Cu-doped SiOl \\';th Cu:Si02 film prepared

by two different methods haw been investigated. Methods that we used to introduce eu

impurity into the SiOl matrix are (i) Cu ion implantation. and (ii) Cu co-sputtering. The
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co-sputtered Cu:SiOz was studied in parallel to compare the rate of intermixing with the

ion-implantation technique.

1.6 Thesis outline

In this thesis, we document the development of a novel QWI process based on

Cu:SiOz. An introduction to the project and a brief review of QWI and process

technology and metrology used in this research is given in Chapter 1. In Chapter 2,

experimental procedures and the process technology are discussed. The experimental

results, XPS results are presented in Chapter 3. The result discussion, conclusion and

future work gi ven in Chapter 4.
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CHAPTER 2

EXPERIMENTAL PROCEDURES

This chapter documents the experimental procedures carried out for the

GaAs/AIGaAs DQW, single quantum-well InGaP/GaAs red laser structure (633nm) and

AIGaAs/GaAs quantum well laser structure (780nm).

The development of the QWI process used in this work began with the study of

Ion implantation. The GaAs/AIGaAs QWs based structure has been implanted with

different concentration of Cu ion ranging in between 1012 cm,2 and 1015 cm,2. Later the

samples were then annealed at different temperature to study the ion implant parameters

and anneal conditions effect the degree of intennixing. The implant species was chosen to

be copper, because copper is known to be a deep level impurity and one of the fastest

diffusing species in Si and dielectric materials, including Si02 when subjected to

moderate tcmperature [19]. Howcver, a concern with excessivc copper is that the

intcraction between Cu and the dielectric may result in the clectrical degradation of thc

insulator, loss of adhesion, or copper may diffuse into active device areas and degrade

dcvicc pcrfomlancc.

Sccond, thc co-sputtcrcd Cu:Si02 was studicd usmg the similar proccdurc to

observe to intcnnixing. Sputtered silica proccss has been widely known as a promising

and reliable approach to univcrsally tune various of bandgap of quantum

nanohetcrostructures (i.c. quantum well and quantum dot). Howcver. thc mcchanism of

the sputtered silica process is not wcll understood. Also. the prescnt knowledge IS
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insufficient to explain why the intennixing effect occurs at relatively low activation

energy as compared to other processes.

2.1 Sample structures

2.1.1 GaAs/AIGaAs DQW structure

The schematic diagram of the wafer structure and photoluminescence (PL) spectra

of the GaAslAIGaAs double quantum well structures used in this project are shown in

Figure 2.1 a and 2.1 b respectively.

Layers Materials - GaAs/AIGaAs QW.
Contact Layer p+GaAs ::::J

ns
Graded p-Alo~ to A~o - ~~OJ

Upper Cladding p-Alo~G30 tAs U
c 4KOJ

Graded Barrier Alo 2G30sAs U
U)

QW GaAs OJ
C

Barrier .-
A~2G30BAs E

QW GaAs ::::J-0
Graded Barrier A~2G30sAs -0

J:
Lower Cladding n·A~.G30rAs 0..

Buffer n-GaAs
775 800 825 850

Substrate ntGaAs Wavelength (nm)

(a) (b)

Figure 2-1 (a) The schematic representation of the GaAslAIGaAs DQW layer struC1llrc
and (17) its Photoluminescencc at -IK and 77K.
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The GaAs/AlGaAs structure consists of two 10 nm well with 10 nm AlozGaosAs

barriers. The structure was completed by Alo.4Gao.6As lower cladding of 1.5 J..lm (with n­

doping) and upper cladding of 1.5 J..lm (with p-doping). The contact layers consist of 100

nm p+ GaAs and 100 nm n+ GaAs. The samples gave a PL wavelength peak at 810 ±10

nm at 77K.

2.1.2 Single Quantum-well InGaP/GaAs red laser structure (633nm)

The schematic diagram of the single quantum well InGaP/GaAs red laser wafer

structure (633nm) used in this project are also shown in Figure 2.2 a and 2.2 b

respectively. The InGaP/GaAs red laser structure consists of single quantum well with 50

nm GalnxP I _x barriers. The structure was completed by Alx1nl_xP lower cladding of 1 J..lm

(with n-doping) and upper cladding of 1 J..lm (with p-doping). The contact layers consist

of 200 nm p+GaAs and 200 nm n+GaAs.
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Layers Materials

Contact Layer p+GaAs

Upper Cladding p-AlxIn\_xP

Barner GaInxP\_x

SQW InGaP

Barrier GaInxP\_x

Lower Cladding n-AlxIn \-xp

Substrate n+GaAs

(a)

GaAs 200nm

AlxIn\_xP 1000 nm

GaInxP\_x 50nm

InGaP QW

GalnxP I _x 50nm

AlxInl_xP 1000 nm

GaAs 300nm

Substrate

(b)

Figure 2-2 (a) The schematic representation oithe /nGaP/GaAs SQW layer structllre and
(b) Schematic representation oithe GaAs/AIGaAs SQW layer structure

2.2 Quantum Well Intermixing (QWI) mechanisms

Quantum wcll intcrmixing is a proccss in which atoms from quantum wclls and

their corrcsponding barners intcrdiffusc. to altcr thc shape and dcpth of thc quantum \\·cll.

thus modifying thc quantizcd cncrgy statc. In gcncral. thc intcrfacc bctwccn quantum

wcll and barner is metastable. in that undcr ccrtain conditions. such as high tcmpcraturc.

the atoms in thc quantum wcll and barncr will intcrdiffusc. FurthemlOrc. thc
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compositional profile of QW is changed from a square to a parabolic profile due to the

influence of injected impurities. After the interdiffusion process, the bandgap increases

and the refractive index decreases. Therefore, blue shifts are possible to obtain from the

process as long as the annealing temperature is below the thermal stability of the

material.

2.3 Experimental Procedure

GaAs/AlGaAs DQW structure bare samples along with a 200 nm Si02 layer

deposited samples using plasma enhanced chemical vapor deposition (PECVD) were

used to investigate the IFVD effect. Three different dosages of 2x 1012 cm-2
, 5x 1013 cm-2

and 2x 10 15 cm-2 copper ion implanted in GaAs/AlGaAs QWs samples were studied.

After dielectric cap deposition and Cu-implantation, all samples were annealed under

nitrogen ambient in a rapid thermal processor (RTP) at temperature between 700°C and

950 °C for 2 minutes. During annealing, samples were sandwiched face-down between

two pieces of fresh GaAs to prevent desorption of the Group V clements. The bare

samples were also annealed as well to provide as the reference. During the annealing

process, not only Q\V intermixing is promoted, but also recrystallizing the implanted

layers will occur as well. The picture of the RTP used in this project is controlled by

computer control unit and shown in Figure 2-3.
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Computer
Control Unit

Figure 2-3. Rapid Thermal Processor (RTP) using in this project

After annealing, Photoluminescence (PL) spectroscopy was performed at 77 K

using 532 nm diode pumped solid state laser as excitation source for GaAs/AIGaAs QWs.

The schematic diagram of the PL setup used in this project is shown in Figure 2-4 and

Figure 2-5.
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Figu.re 2-4. The schematic diagram (~lthe 77K PL setup.
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Figure 2-5. The 77K PL system
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The as-grown material exhibits a single peak at 802 nm was use as a reference for

GaAs/AIGaAs QWs. The 532 nm laser source is used for short wavelength (800 -1200

nm) PL measurement. The laser beam is focused into a 3 dB fiber coupler. The sample is

mounted on top of the fiber and immersed into liquid nitrogen for 17K measurement. The

luminescence from the sample is then collected by one end of the 3 dB coupler and

guided into the monochromator. The PL spectrum is decomposed by an optical grating in

an Oriel monochromator and is detected by a Si photodetector for short wavelength.

Finally computer interface is being used to control the overall PL measurement.

2.3.1 Sputtering Setup

Copper sputtered silica process is also studied in parallel to compare the degree of

intermixing caused by copper. About the same thickness of 200 nm sputtered Si02 was

deposited upon GaAs/AIGaAs samples, single quantum-well InGaP/GaAs red laser

structure (633nm) and GaAs/AIGaAs quantum well laser structure (780nm) samples.

Both InGaP/GaAs red laser (633nm) and AIGaAs/GaAs quantum well laser (780nm)

samples come with thin 120 nm silicon oxide layer on the top surface. Before Sputtering

process. we use buffer HF to remove the silicon oxide layer. Later the deposition of - 200

nm Cu:Si02 was re-deposited.

The schematic diagram of the sputtering setup used in this project shown in

Figure 2-6 consists of the following subsystems: a) the sputter chamber. in which the

substrate holder and sputtering target reside: b) vacuum pumps to keep the chamber
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under the vacuum of2x Hr' Torr; c) RF power supplies; d) sputtering gas supply (Argon)

and the flow controller; and finally the monitoring equipments which are pressure and

voltage gauges.

Pumping
Unit

Gas Flow
Controller

Figure 2-6. The sputtering ,\ystem.

Thickness of the silica cap layer can be controlled by sputtering time. An Alpha

Step Surface Profiler was used to determine the thickness of the sputtered silica film. An

average sputtering rate of about 1.7 nm per minute was obtained from our process. Figure

2-7 show the picture of the Alpha step surface profiler.
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Sample
Table

On/Off Switch

Figure 2-7. Alpha Step Surface Profiler.

The Si02 film deposition was carried out at a RF power 100 Watts and under

vacuum, using Ar gas to generate the sputtering plasma. Pure semiconductor grade

copper sputtering targets (purity > 99.99%) were placed on top of quartz plate in the

center of the chamber. During sputtering process, the pressure inside the chamber is

controlled to be at 2 x 10-3 Torr.

After the sputtering process, the samples were then annealed in a rapid thermal

processor (RTP) at temperatures ranging between 700 °C and 950 °C for 2 mins. During

annealing 'process, the same procedures as the o<?pper implantation samples were carried

out. Again, after annealing, same PL spectroscopy was performid to- determine the·
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bandgap shift using 533 nm laser as excitation source. However, for InGaP/GaAs red

laser (633nm), 444nm blue laser was used as an excitation source instead of the 532 nm.

2.4 Summary

In this chapter, the schematic representations of GaAs/AIGaAs DQW, single

quantum-well InGaP/GaAs red laser structure (633nm) and AIGaAs/GaAs quantum well

laser structure (780nm) used in this project and mechanism of QWI were were explained.

We then discussed the experimental procedures for ion implantation and eu co-sputtering

in detail.

- 26 -



CHAPTER 3

RESULTS

In this chapter, the experimental results performed in chapter 2 are reported. Two

different methods that we used to introduce Cu impurity into the SiOz matrix are (i) Cu

ion implantation, and (ii) Cu co-sputtering. The PL results from the Cu ion implantation

were first discussed follows by the co-sputtered Cu:SiOz PL results. Lastly, XPS results

that carried out to study the diffusivity of copper before and after the rapid thermal

annealing process were discussed.

3.1 Cu-ion Implantation Results

No bandgap shifts were obtained from any of the different ion implanted

GaAslAIGaAs QWs samples when annealed at 850°C and also no significant shifts were

obtained at the annealed temperatures below 925 dc. Moreover, the results show that the

samples that were implanted with 2x 1012 cm·2 Cu-ion yielded the largest bandgap shift

follows by 5x 1013 cm·2 and 2x 1015 cmo2 respectively (Figure 3-1 , Figure 3-2 and Figure

3-3). After annealing at 950°C, the effect of intermixing started to playa significant role

since a bandgap shift of 56 meV (28nm) and 20 meV (IOnm) has been measured from the

GaAs/AIGaAs QWs Si02 capped and the bare samples respectively. The differential

bandgap shift between the GaAs/AIGaAs QWs Si02 capped and the bare surface samples

becomes significant (i.e. 56 me\') after annealing at 925"C. suggesting that the IF\'D



effect mediated by the Ga vacancies begins to dominate. Finally the energy bandgap

shift of all the GaAs/AIGaAs QWs samples were compared and shown in Figure 3-4.
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Figure 3-1. The PL spectra at 77K after rapid thermal annealing at various temperatures
[(i) 875°C, (ii) 900°C, (iii) 925 0C, and (iv) 950°C] (rom (a) the bare (note that the
spectrum of as-grown is included as the dotted line), '(b) SiDl capped 2x /OIl cm,2 of
copper ion implanted GaAslAlGaAs QWs material.
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Figure 3-2. The PL spectra at 77K after rapid thermal annealing at various temperatures
[(i) 875 dc, (ii) 900 dc, (iii) 925 DC, and (iv) 950 DC] from (a) the bare (note that the
spectrum of as-grown is included as the dolled line), (b) Si02 capped 5x JO/3 cm-2 of
copper ion implanted GaAs/AlGaAs QWs material.
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Figure 3-3. The PI spectra at 17K after rapid thermal annealing at various temperatures
[(i) 875 DC, (ii) 900 DC, (iii) 925 DC, and (iv) 950 DC} from (a) the bare (note that the
spectrum of as-grown is included as the dotted line), (b) SiD] capped 2 xl0/5 cm·] of
copper ion implanted GaAs/AIGaAs QJVs material.
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Figure 3-./. The PL energy sh(fts measured at 77K versus annealing temperature from
SiD] capped GaAslAIGaAs QJVs samples at various copper dosages.

In summary for the results from ion implantation, we observed that the implanted

sanlples gave similar PL spectrum shape as compared to as-grown sample. this implies

that the quality of the implanted materials remain good after QWI.

3.2 Cu:Si02 Sputtering Results

Since the results from the ion implantation show that copper which is one of the

fastest electrically elements can be used to promote the degree of intermixing in the

GaAs/AIGaAs QWs therefore. the co-sputtered Cu:Si02 were studied as to compare to

the implantation process.
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Unlike the result from the copper ion implantation, sputtered silica shows the

tremendous blue shift in bandgap energy. The shifts rapidly increase with increasing

annealing temperature. Figure 3-5 shows when the samples were annealed at 875°C the

bandgap shift of 153 meV (72nm) was observed and keep increasing as the annealing

temperature increased. Finally, the bandgap shift of 270 meV (l19nm) was obtained at

annealing temperature equals to 950°C from the GaAs/AIGaAs QWs samples.

(iv) (iii) (ii) (i) as-grown

~
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- -.- _--
750 800

wavelength(nm)

(i) 875°C
(ii) 900°C
(iii) 925 °C
(iv) 950·C

850

FiKllre 3-5. The PI spectra at 77K after rapid thermal annealing at various temperatures
f(i) 875 0C, (ii) 900 0C, (iii) 925 °C and (il~ 950 °C (note that the spectrum ofa~-grown is
included as the dol/cd line)} from Co-spUl/ered Cu:SiO} GaAslAIGaAs QW~ materials.

The results of this study show that the use of sputtered compare to PECVD Si02

clearly leads to a substantial lowering of the threshold temperature for intennixing. We

suspect that during the sputtering process. the atomic bombardment causes the creation of

point defects on the sample surface. which induced the intennixing process. Therefore.
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the increasing of point defect densities compare to PECVD SiOz, help to promote the

outdiffusion of Ga and induffsion of Copper into the substrate [2].

Subsequently we demonstrate the co-sputtered silica onto the single quantum-well

InGaP/GaAs red laser (633nm) structure and GaAs/AlGaAs quantum well laser structure

(780nm) samples. Both InGaP/GaAs red laser (633nm) and AlGaAs/GaAs quantum well

laser (780nm) samples come with thin Silicon oxide layer on the top surface. Before

sputtering process, we use 1: 10 ratio (water: HF) buffer HF to remove the silicon oxide

layer. A good surface morphology was obtained after the removal of the SiOz. Later the

deposition of - 200 nm Cu:SiOz was re-deposited. After gone through the same

annealing process as the double quantum wel1 GaAs/AlGaAs samples,

photoluminescence were performed under 77K for both single quantum wel1 InGaP/GaAs

red laser (633nm) and GaAs/AlGaAs quantum wel1 laser (780nm) using 444 nm blue

laser and 533 nm laser as excitation sources respectively.

Figure 3-6 shows the 17K PL spectrum from single quantum wel1 InGaP/GaAs

red laser (633nm) structure using 444nm blue laser as an excitation light source. It shows

the PL shift was being able to obtain from InGaP/GaAs red laser at various temperatures.

The largest differential PL shift of 150 meV (41nm) has been measured at 900°C, while

there is only a small shift of 25 llleV (8nm) obtained from sample annealed at the starting

temperature of SOO 0c. We also find out the PL shift start to decrease when sample

annealed above 900 "C that is at 925 "c. this may be because of too high tcmperaturc

anncaling has alrcady damaged the matcrial quality. Howc\"cr. no significant broadening



in PL linewidth after annealing has been observed, which indicates that the optical quality

of the samples is not affected by the intermixing process.
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Figure 3-6. The PL spectra at 77K after rapid thermal annealing at various temperatures
[(i) 800°C, (ii) 850°C, (iii) 900 0C, and (iv) 925°C] from co-spuuered Cu.-SiD:! single
quantum well InGaP/GaAs red laser structure.

Similarly for the AlGaAs/GaAs quantum well laser (780nm) sample. the shift of

PL peak is negligible at beginning temperature of 700°C. However. PL peak shift keeps

increasing up to 152 meV (6Inm) shift when annealing temperature goes up to 800°C.

Since there was no evidence PL linewidth change. we can draw a conclusion that the

optical quality of the matcrial was still not affectcd by intermixing proccss as well.
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Figure 3-7. The PL spectra at 77K after rapid thermal annealing at various temperatures
[(i) 700 DC, (ii) 750 DC, (iii) 775 DC, and (iv) 800 DC] from co-sputtered Cu:SiD:
AIGaAs/GaAs quantum well laser structure (780nm).
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From Figure 3-8, bandgap energy shifts obtained from GaAs/AlGaAs QW, single

quantum well InGaP/GaAs red laser material, and AIGaAs/GaAs quantum well laser

(780nm) were plotted together. It is obviously see that all the co-sputtered samples have

presented an influential shift of bandgap energy compared to the implanted samples

shown in Figure 3-4 at the same annealing temperatures. This implies that Cu:Si02

sputtering process has lower activation energy for intermixing process compare to the ion

implantation process.

Based on the overall results of this study, although we observed the enhanced

bandgap shift with no evidence of the saturation of the intermixing rate as the copper

dose increased, the results imply that with too high dosage of copper ion implantation

may cause the higher diffusivity of copper, hence degrade the degree of intermixing. The

lowest dosage of copper ion at 2x 1012 ions-cmo2 gave the highest degree of intermixing

and decrease respectively as the dosage increased. However, the use of sputtered silica

compare to PECVD Si02 clearly leads to a substantial lowering of the threshold

temperature for intermixing. During the sputtering process, the atomic bombardment

causes the creation of point defects on the sample surface, which induced the intermixing

process. Therefore, the increasing of point defect densities compare to PECVD SiOl, help

to promote the outdiffusion of Ga and induffsion of Copper into the substrate [2].

Consequently. reduces the temperature used to promote the same degree of intermixing

and does not effect the optical properties of the material due to insignificant linewidth

change.
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3.3 X-ray Photoelectron Spectroscopy (XPS) Results

In this experiment, the XPS was carried out to study the diffusivity of copper

before and after the rapid thermal annealing process. Especially, when after annealing

process, we expected to observe the diffusion of copper penetrates into the substrate and

as the result promoting the intermixing effect.

Figure 3-9 (a) and (b) shows the XPS result directly after implanted copper ion

into the GaAs based bare sample without process through the thermal process. The results

show that there is a number of copper composition accumulation at the surface of the

sample since the penetration limitation of XPS is only a few up to ten nanometers near

the surface. However, after process the sample through rapid thermal annealing process

of 800 DC, we were barely be able to observe any composition of copper from the same

sample as shown in Figure 3-10 (a) and (b). Since the binding energy of the copper is

around 932-933 eV, the result shown in Figure 3-10 (b) can be interpreted in the way

such that copper was not be able to observe from the sample surface anymore. This result

confirms that copper ion has been diffused into the material after process through rapid

themlal annealing.
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Figure 3-10. X-ray Photoelectron Spectroscopy from copper implallted samples after
rapid thermal annealing. (a) Overall signal from the sample (b) Zoom in binding energy
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Similarly, Figure 3-11 (a) and (b) and Figure 3-12 (a) and (b) show that the same

phenomenon have also taken place in our Cu:Si02 co-sputtered process. However, before

XPS measuring, we have removed the Si02 layer out by using buffer HF in order to be

able to detect stronger signal from the sample.
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removing Si02 layer before rapid thennal annealing. (a) Overall signal from the sample
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3.4 Summary

In this chapter, the possible influence of impurity incorporation into the silica cap

during implantation and sputtered silica process on the enhancement of intermixing of

quantum nanostructure at low activation energy has been systematically investigated. In

our study, we found that the incorporation of a small percentage of copper into the silica

film essentially enhance the degree of intemlixing. The interdiffusion rate can be

controlled by incorporating different concentration of copper in the silica cap. Various

QW hetcrostructures such as GaAs/AIGaAs DQW. single Quantum-well InGaP/GaAs red



laser structure (633nm) and AlGaAs/GaAs quantum well laser structure (780nm) were

used in the copper-doped sputtered silica process and observed the shifts of the bandgap

energy. Although, implantation which is a reproducible process shows to promote

intermixing in GaAs/AlGaAs material system, still cannot compare to the results that

were obtained from the sputtering process.

A differential wavelength shift of as large as 119 nm (i.e. 270 meV) was observed

from sputtered Cu:Si02 GaAs/AlGaAs QWs material system without any significant

change in linewidth. Furthermore our XPS measurement confirms that the diffusion of

copper has taken place into the material after rapid thermal process. Based on the

previous result of the bandgap energy shift, it implies that intermixing process has

occurred. Therefore, we conclude that the diffusion of copper ion into the material help

elevated the degree of intermixing through both 110 and IFVD processes.

In summary, from these results, we conclude that a good quality material can be

obtained using this Cu:Si02 sputtering process and suggest that this technology is a

promising universal intermixing technique for the planar integration of multiple

active/passive quantum heterostructure based devices on a single chip in the future.
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CHAPTER4

DISSCUSSION AND CONCLUSION

In this chapter, we first discuss the experimental results from Chapter 3. Then

follow by the conclusion of this thesis work and the recommendation for future works.

4.1 Discussion

Based on the overall results of this study, although from our result we observed

the enhanced bandgap shift with no evident of the saturation of the intermixing rate as the

copper dose increased. The results imply that with too high dosage of copper ion

implantation may cause the higher diffusivity of copper, hence degrade the degree of

intermixing since the lowest dosage of copper ion at 2x 1012 cm-2 gave the highest degree

of intermixing and decrease respectively as the dosage increased. However, the use of

sputtered silica compare to PECVD Si02 clearly leads to a substantial lowering of the

threshold temperature for intermixing. During the sputtering process, the atomic

bombardment causes the creation of point defects on the sample surface, which induced

the intermixing process. Therefore, the increasing of point defect densities compare to

PECVD Si02• help to promote the outdiffusion of Ga and induffsion of Copper into the

substrate. Consequently. reduces the temperature used to promote the same degree of

intcnllixing and does not effect the optical propcrties of the material due to insignificant

linc\\'idth change.
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4.2 Conclusion

We have successfully developed a versatile postgrowth bandgap engmeenng

technology for GaAs based quantum nanostructures. Both copper ion implantation and

Cu:Si02 sputtering processes develop in this thesis work can control the degree of

bandgap energy shift in wide range of GaAs based quantum well materials. Differential

bandgap shifts between the un-implanted and implanted regions as large as 56 meV

(28nm) has been observed from the copper implanted sample with a dosage of 2x 1012

ions-cm-2. However, the differential bandgap shifts between the GaAs/AlGaAs DQW

bare samples and the Cu:Si02sputtered samples of over 270 meV (119nm) was observed.

Moreover, from the PL results we were barely observed any significant change in

linewidth, this indicates that the quality of the material remains good after quantum well

intermixing (QWI).

From the X-ray Photoelectron Spectroscopy measurement, we have observed the

diffusion of copper from the surface into the well regions of the sample, creating

intermixing process. Based on the over all result of this work, we assure that Cu:Si02

induced QW is a promising and reliable technology for monolithic integration of GaAs

based PICs.



4.3 Recommendation for Future works

For the next challenging step, it is recommended to demonstrate passive and

active photonics device integration using Cu:SiOz intermixing technology. After that

characterization of novel photonic integrated devices should be investigated.

Since this technique has only being apply to GaAs based quantum well structure,

therefore applying Cu:SiOz intermixing technology with other materials such as InP

based materials. and other quantum heterostructures such as quantum dots and quantum

dash-in well will be significant. Later, demonstrations of passive and active photonics

devices using CuSiOz intermixing technology from these quantum heterostructures will

complete the approach of monolithic integrated devices.
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