
Lehigh University
Lehigh Preserve

Theses and Dissertations

2015

Fuel-Optimal Trajectory Planning of a VTOL
Spacecraft Using SQP and RRT
Ian Miller
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Miller, Ian, "Fuel-Optimal Trajectory Planning of a VTOL Spacecraft Using SQP and RRT" (2015). Theses and Dissertations. 2728.
http://preserve.lehigh.edu/etd/2728

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2728?utm_source=preserve.lehigh.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

i

Fuel-Optimal Trajectory Planning of a VTOL Spacecraft

Using SQP and RRT

by

Ian Miller

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of Master of Science

in

Electrical Engineering

Lehigh University

December 2015

ii

Copyright by Ian Miller

December 2015

iii

Certificate of Approval

This thesis is accepted and approved in partial fulfillment of the requirements for

the Master of Science.

Date

Terry Hart, Thesis Advisor

William Best, Co-Advisor

Filbert J. Bartoli, Chairperson of Department

iv

Acknowledgements

I would like to thank Professor Terry Hart for providing me with the opportunity

to pursue this project for a Master’s thesis. His expertise and guidance allowed me to

even take the first steps in this project. His aid in the necessary background topics of this

topic was critical to my understanding of the material and the field at large.

 I would also like to thank Professor William Best for his assistance and guidance

for the last four years. His unwavering support for all that I did through my

undergraduate and graduate career has truly made a difference in my education and

development into the engineer I am today.

I would like to thank my friends and family who pushed me to strive for greatness

and to achieve. Without your encouragement I would never have been able to accomplish

such great things.

v

Table of Contents

Abstract ... 1

Chapter 1: Background ... 2

1.1 Introduction ... 2

1.2 Assumptions, State Equations and Basic Derivations .. 3

1.3.2 Impulsive Burn-Coast-Burn ... 5

1.5 Dynamic Equations ... 8

Chapter 2: Optimal Control Theory .. 9

2.1 Trajectory Planning with Optimal Controls .. 9

2.2 Time as a Free Variable .. 10

2.2 Nonlinear Optimization .. 10

Chapter 3: Rapidly Exploring Random Trees ... 12

3.1 RRT for Trajectory Planning .. 12

3.2 RRT Algorithm ... 12

3.3 RRT* Algorithm ... 16

Chapter 4: Simulation Results .. 17

4.1 Proposed Implementation ... 17

4.2 Input Parameters ... 17

4.3 Simulation Results .. 19

vi

4.4 Closing Remarks ... 24

Bibliography ... 25

Appendix I: Matlab Implementation ... 26

Introduction ... 26

SQP Main Function .. 26

RRT Main Function .. 28

Vita .. 30

vii

List of Tables

Table 1: System Parameters ……………..………………………………………………18

Table 2: FMINCON input parameters……………………....…...………………………18

viii

List of Figures

Figure 1: Reorientation of the coordinate system ... 3

Figure 2: Forces applied to the craft ... 4

Figure 3: Basic form of trajectory ... 6

Figure 4: One step of the RRT visualized ... 14

Figure 5: First 100 samples of a simple RRT implementation. .. 15

Figure 6: Vertical and Horizontal position of optimal trajectory 19

Figure 7: Thrust Profile ... 20

Figure 8: Angle Profile ... 20

Figure 9: A comparison of a thrust to weight ratio of 5 and 2.5. 21

Figure 10: Example of RRT* update .. 23

Figure 11: Example of RRT* Trajectory .. 23

1

Abstract

While rovers have traditionally been used to explore extraterrestrial bodies, they

reduce the total area explored on the ground as they are limited by traversing the surface.

For this reason vertical takeoff and landing crafts are explored. The major downfall of

this type of craft for exploration is the extra fuel costs which must be carried into orbit.

Reducing the fuel burn for a given maneuver allows the mission to either bring less

propellant or to explore further. In either case, it is highly advantageous to reach

destination points with the least amount of fuel. This paper looks at fuel-optimal

trajectory planning for these reasons. A combination of optimal control theory with

sequential quadratic programming and rapidly exploring random trees is proposed to

achieve a robust, real time optimal trajectory.

2

Chapter 1: Background

1.1 Introduction

Trajectory or path planning has applications in a wide variety of fields and is the

topic of much work to date. If it is desired to not only produce a viable trajectory, but

also one that optimizes some cost function (such as time, distance traveled or energy

used) optimal control theory gives an excellent foundation. Unfortunately, most problems

of practical use are sufficiently complex such that solving analytically for an optimal

solution is not possible. Instead a numerical approach such as nonlinear optimization

must be utilized [1]. This process can be computationally intensive and therefore difficult

to implement in real time for higher order systems.

Sampling based planning algorithms such as the probabilistic road map (PRM) [2]

and rapidly exploring random trees (RRT) [3] produce feasible trajectories for potentially

high order systems in short time. These methods trade optimality for time to run.

Fortunately, there are many methods to increase the performance of such algorithms

while maintaining their speed.

While rovers have traditionally been used to explore extraterrestrial bodies, they

reduce the total area explored on the ground as they are limited by traversing the surface.

For this reason vertical takeoff and landing crafts are explored. For this reason vertical

takeoff and landing crafts are explored. The major downfall of this type of craft for

exploration is the extra fuel costs which must be carried into orbit. Reducing the fuel burn

3

for a given maneuver allows the mission to either bring less propellant or to explore

further.

1.2 Assumptions, State Equations and Basic Derivations

 A generalized VTOL spacecraft may be viewed as a having three degrees of

freedom (DOF) in translation and three in rotation. Additionally, as the craft will have

mass, rate for each DOF would need to be included. Fortunately, we may look at the

system in two dimensions without loss of generality. The x axis may be oriented such that

it produces a line between starting location and the goal position and may be seen in

figure one. This removes the need to concern ourselves with yaw and motion in the z

axis. Additionally, rate of change in roll of the spacecraft is assumed to be zero and

therefore is neglected. These simplifications leave three dimensions for control and

optimization.

Figure 1: Aligning the x axis with x_init and x_goal allows the y axis to be neglected.

The circle represents all of the possible landing locations given the same trajectory and a

reorientation of the coordinate system

4

For the control of the lander craft, it is assumed that acceleration will be applied

in line with the center of gravity of the craft. This thrust can be applied at any arbitrary

level between an upper and lower bound. The final control input is the angle at which the

thrust is vectored. This input is also bounded between some maximum and minimum

angle.

Initially, the trajectories considered are close to the surface of a celestial body

absent of an atmosphere or one with a sufficiently thin atmosphere to be neglected such

as the moon. The system has a five dimensional state space of horizontal

position), vertical position), horizontal velocity), vertical

velocity) and mass). This vector may be seen formally in Eq 1.

Equation 1.

Figure 2 illustrates the forces being applied to the vehicle close to the terrestrial body’s

surface.

Figure 2: Forces applied to the craft

5

1.3.1 Ideal Trajectory

 Regarding fuel burn, a slow decent is relatively inefficient [7]. An easy way to

think of this is to consider the lander as it descends. Taken to an extreme, the lander

would eventually be hovering in place burning fuel to increase the time of flight. Taken

to the other extreme, the craft could free fall and just before impact with the surface apply

an impulse to negate its velocity. This impulsive maneuver would result in the fuel

optimal trajectory [7].

 Unfortunately, real system constraints do not allow for the infinite thrust such a

maneuver would require [7]. Fortunately other methods of solving while considering the

system constraints exist and will be explored later in this paper. Even though this solution

is realistically infeasible, the output can serve as a lower bound to compare solutions

against. Additionally, it can provide useful initial guesses for several of the proposed

algorithms.

1.3.2 Impulsive Burn-Coast-Burn

 The ideal impulsive maneuver is comprised of three phases. The first stage is an

impulsive maneuver where the change in velocity may be called . The final velocity

will be called The second stage is simply coasting to the destination. The final stage

is an impulsive maneuver fired in the opposite direction of the craft to negate . This

change in velocity will be called Figure 3 illustrates these three stages.

6

Figure 3: Initial burn is shown in red, coast in green and final burn in blue

When the system constraints are ignored and the rocket is able to produce

impulses, the system may be analyzed with basic equations of ballistic motion [7]. If the

altitude of and are equal, then the distance traveled by the craft, is defined

as [10]:

Equation 2.

From equation 2 it is easily seen that

 would yield the greatest distance traveled.

Under these assumptions, the time of flight is defined as [10]:

Equation 3.

Solving equation 2 for and subbing the solution into equation 3 yields the following

equation for time of flight:

7

Equation 4.

Where g is the acceleration due to gravity near the surface of the terrestrial body.

1.4 Thrust and Mass Flow

 For the craft to develop any change in velocity, it will require some thrust. Thrust

may be described as:

Equation 5.

where 1 is the specific impulse of the chosen rocket, is the gravity on the surface of

the earth and m is the mass of the vessel [8]. As the total amount of thrust used is reliant

upon the mass flow, it creates an excellent metric to compare different trajectories. Mass

flow may be described by the following:

Equation 6.

Where is the mass flow and is the change in time.

1
 is defined as the thrust per sea level weight rate per second of propellant consumption. Otherwise

written as

8

1.5 Dynamic Equations

 Based on the definition of the states put forth in section 1.2 and in equation one

may define the system dynamics in the following way:

Equation 7.

where T as defined in section 1.2 and is described by equation 5. is as defined in

section 1.2. The input vector is comprised of thrust, , and the angle at which the

rocket is directed, . This means equation 7 may be rewritten as

Equation 8.

When the craft is farther from the surface relative to the radius of the body, a uniform

distribution of gravity can no longer be assumed. In this case the model must be changed

to accommodate. However, as none of the trajectories take the vessel beyond 1% of the

radius of the terrestrial body, the uniform assumption remains valid.

9

Chapter 2: Optimal Control Theory

2.1 Trajectory Planning with Optimal Controls

 Finding the set of control inputs which brings the system from an initial state to a

desired goal state is equivalent to solving for the trajectory itself [1]. This statement can

be made as the state equations may be integrated forward to produce the trajectory. For

this reason, optimal controls are explored.

 Given a system, a control input is desired that takes the system from an initial state,

 , at an initial time of to a goal state, , at some teminal time where

 . Additionally, it is desired that the input is selected such that it minimizes some

cost function . In the example provided, we let the cost function be a function of the

mass flow, or put differently the fuel burnt, in our maneuver. The cost function may be

seen in equation 3.

Equation 3.

 Only for simple systems is it possible to solve analytically for the optimal control

strategy. Because of this, some numerical method is required to solve the system. One

such method is nonlinear optimization.

10

2.2 Time as a Free Variable

 Termination time can be fixed ahead of optimization. However, in many optimal

controls problems time is either the variable to be minimized or does not matter as long

as it is less than . In these cases, a transformation of time from to 0 1] is

desirable. After the transformation, termination time may be left as a free variable to be

optimized.

 2.2 Nonlinear Optimization

 Under this method the control inputs are parameterized and the problem is

discretized with points [3]. Thus any continuous constraints will be replaced with

discrete constraints spaced out by

. After this the problem may be written as:

Find

Minimizing

Subject to

Once the problem is written in this form, a gradient based nonlinear optimization problem

(NLP) solving algorithm, such as sequential quadratic programming (SQP), may be used.

SQP requires an initial guess for each discretized point. This guess can vastly effect the

time to convergence and even the final solution. As these methods are gradient methods

by nature, they are subject to finding locally optimal solutions. Fortunately in the

11

particular problem proposed, producing a good first guess is easy enough. For a more

complex system, a different global solver may be used first to seed the SQP[1].

 The SQP solves a NLP problem iteratively by recursively solving a quadratic

programming (QP) problem. At the termination of each iteration, the estimate for the

solution is improved by taking a step in the direction of the solution of the QP problem.

Many implementations for this technique exist but this paper used MATLAB

Optimization Toolbox’s FMINCON.

12

Chapter 3: Rapidly Exploring Random Trees

3.1 RRT for Trajectory Planning

 An alternative to the classic optimal control solution can be found in sample based

planning such as rapidly-exploring random trees (RRT). These methods sacrifice

optimality for time of calculation. In fact, it has been shown that the RRT cannot reach an

optimal solution [4]. However, variations of the algorithm such as RRT* asymptotically

approach an optimal solution [4].

 The goal of the algorithm is to find the control input , which creates a feasible path

from the initial state to the goal state while obeying the dynamics of the system.

Additionally it is desired that the resulting trajectory minimize the cost function. To do

so, RRT and RRT* develop a tree, , comprised of a set of states and a set of edges

linking the states .

3.2 RRT Algorithm

 The main components of the algorithm and its pseudo-code are shown below:

 Sample: the function Sample returns random state samples from the free

configuration space,

13

 Steer: provided two input states and , the function Steer creates a path which

connects the two states. In case of a holonomic system this is typically a straight line.

Otherwise, this function must obey the system dynamics.

 Nearest Neighbor: provided a point, x and a tree, , the function Nearest

Neighbor returns a vertex that is closest to the point given some distance function. For the

purposes of this paper, we may assume the distance to be calculated with the Euclidian

distance.

Algorithm 1:

1.

2. for i=1 to n do

3.

 ;

4.

 ;

5.

6. end for

7. return T

where is defined as seen in algorithm 2:

Algorithm 2:

1.

2.

3. if then

4.

5.

6. end if

7. return T

 The RRT algorithm begins by initializing its tree at the initial state, . The

algorithm then samples the free configuration space, may be defined as the

14

set of all configruations the craft may move through without colliding with obstacles. The

RRT then finds the closest vertex in the current tree and attempts to connect it via the

Steer function. Typically a collision check is done to verify that no obstacles are present

along the path between and . If no collision is detected, the point becomes part

of the tree by adding its vertex and edge to In the instance of a collision, the point will

not be added to the tree. One step of this process is shown in figure four.

Figure 4: One step of the RRT visualized

 This process is continued iteratively until the goal state is found or the maximum

number of iterations, , have been completed. The samples quickly search the space,

providing a feasible trajectory very quickly, albeit a sub-optimal one [4]. An example of

an RRT in action can be seen in figure 5. This figure shows just the first 100 samples of a

simple, holonomic search.

15

Figure 5: First 100 samples of a simple RRT implementation. Only the x and y axes are

shown. is .

The RRT is probabilistically complete, meaning as the number of samples

approaches the probability of finding a fiesable path if one exists approaches one and

will come arbitrarily close to the goal state [5]. In practice, one would like for the planner

to return a feasible path quickly. To speed convergence to the goal state, one may

augment the function Sample by assigning some probability, , to which the function

returns the goal state.

This greedy sampling can allow the RRT to converge to a solution much faster.

However, if is increased too high, the RRT will run the risk of getting stuck in local

minima [1-2][5].

16

3.3 RRT* Algorithm

While the RRT is probabilistically complete, the algorithm will return a sub-

optimal trajectory even as the number of samples approaches . Because of this

characteristic of the basic RRT, RRT* (pronounced RRT star) was developed and

introduced by Karaman and Frazzoli in [4]. It was shown to be asymptotically optimal

[4].

 RRT* differs only slightly from the original algorithm. The RRT* will rewire the

tree to reduce cost on each iteration. After sampling, it reviews all vertices in a ball

defined by some distance and discerns if each of vertices would have a lower cost being

routed through the newly sampled point. If a vertex does cost less being routed through

the new point, the tree is reconfigured to reflect the change.

 The rewiring of the RRT* effectively removes the odd zigzags and loops that can

be present due to the random sampling in the original RRT.

17

Chapter 4: Simulation Results

4.1 Proposed Implementation

Much work with planetary landers has been done involving NLP techniques.

These methods have the benefits of many years of research and plenty of actually flown

trajectories to give the methods validity. Unfortunately, when it comes to space

trajectories, RRT does not have near the same background. However, the RRT does an

excellent job of searching a high dimensional configuration space in a short amount of

time.

The proposed implementation solves with a SQP while the vessel is on the

ground. While on the ground, the vessel is not burning any fuel or having to worry about

collisions so calculation time is no longer an extremely important design consideration.

Once in flight, the navigation loop runs the RRT* algorithm with a three second update

cycle.

If no new obstacles or changes in the goal state have been presented, the

navigation loop continues along the previously calculated trajectory. If something does

arise, the RRT* computes a new trajectory in flight.

4.2 Input Parameters

The following chart serves as a guide to what input values were used for the

presented results unless otherwise noted:

18

Parameter Abbreviation Value

Translation Length 500m

Initial Mass 100kg

Maximum Thrust

Minimum Thrust 0 N

Maximum Theta

Minimum Theta

Gravity 1.662

Table 1.

The following table contains the input “option” values for the MATLAB’s NLP

SQP implementation, fmincon:

Parameter Value

'Algorithm' 'sqp'

'TolX' 1e-5

'TolFun'

1e-9

'TolCon'

1e-9

'MaxFunEvals'

2e6

'MaxIter'

10000

'DiffMinChange' 1e-9

Table 2.

19

4.3 Simulation Results

Using the input parameters as seen in figures 1 and 2, the following optimal

trajectory shown in figure 6 was found. This trajectory can be seen to have a similar three

stage burn-coast-burn maneuver topology as discussed in section 1.3.2.

Figure 6: Vertical and Horizontal position of optimal trajectory compared against the

optimal, impulsive maneuver.

20

Figure 7: Thrust Profile

Figure 8: Angle Profile

21

 Figure 6 compares the calculated optimal trajectory for the given system

parameters versus the impulsive, ballistic trajectory. As the thrust to weight ratio is

relatively high, the calculated trajectory closely resembles the impulsive trajectory. As

this value is lowered the calculated trajectory continues to differ greater and greater, as

seen in Figure 9 where the maximum thrust is reduced by twofold and again twofold.

Figure 9: A comparison of a thrust to weight ratio of 5 and 2.5.A higher ratio produces a

closer approximation to the impulsive trajectory shown in blue

 Of interest in Figure 7 is the asymmetry in the initial burn versus the landing burn.

A slight reduction in total thrust or can be seen. The reduction in the landing portion

of the maneuver can be attributed to the reduction of mass from the burn on launch. As

22

mass was expelled to make the launch possible, the landing now takes place with a lighter

vessel.

 Figure 8 shows the angle of the craft varying immensely during the period

between about four seconds and 24 seconds. The angle seems to vary without much

reason which raises questions regarding the validity of the result. When considered in

conjunction with the thrust profile it begins to be much more reasonable. As the vessel

has entered the coast phase the thrust is reduced to zero and therefore the angle of has

no bearing on the state of the lander.

In reality the angle would need to be ignored during this phase of the maneuver.

Alternatively, the lower bound for thrust could be increased very slightly. This increase

could be low enough to not affect the overall trajectory but still serve to give the NLP

solver something to keep the angle reasonable.

23

Figure 10: Example of RRT* update

Figure 11: Example of RRT* Trajectory

24

 Figure 10 shows the RRT* running in the loop for one update cycle. If no new

obstacles are found or the goal state did not change the loop will return with the same

trajectory with which it was seeded. Figure 11 shows an example of a completely RRT

formed trajectory. In both figures, the RRT looks to have very densely searched the area.

However, only position is visualized by these plots. In reality the algorithm is searching

across velocity in both dimensions as well.

4.4 Closing Remarks

 Solving with a SQP seems to produce high quality trajectories. Unfortunately, its

complexity makes it poor candidate for a real time planner for a lander. The RRT* shows

that it can be utilized to produce a real time solution.

25

Bibliography

[1] Choset, Howie M. Principles of Robot Motion: Theory, Algorithms, and

Implementation. Cambridge, Mass.: MIT Press, 2005.

[2] D. J. Webb and J. V. D. Berg, "Kinodynamic RRT-: Optimal motion planning for

systems with linear differential constraints," arXiv:1205.5088v1, submitted.

[3] Rao, A. V., “A Survey of Numerical Methods for Optimal Control,” AAS/AIAA

Astrodynamics Specialist Conference, AAS Paper 09-334, Pittsburgh, PA, August 2009.

[4] S. Karaman and E. Frazzoli, "Incremental sampling-based algorithms for optimal

motion planning," in Proc. Robotics: Science and Systems (RSS), 2010.

[5] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. International

Journal of Robotics Research, 20(5):378--400, May 2001.

[6] Curtis, Howard D. Orbital Mechanics for Engineering Students. Amsterdam: Elsevier

Butterworth Heinemann, 2010. Print.

[7] ebrary, Inc., and Andrew Ball. Planetary Landers and Entry Probes. Cambridge:

Cambridge University Press, 2007.

[9] D. G. Hull, “Conversion of Optimal Control Problems into Parameter Optimization

Problems,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 1, 1997, pp. 57–60

26

Appendix I: Matlab Implementation

Introduction

 A large portion of the work for this thesis went into the development of effective

implentetations of the SQP and RRT for the specific application of the lunar lander. The

code provided in this appendix gives the main functions for each written for Matlab. The

entirety of the code is provided in supplemental files.

SQP Main Function

function dvarO = runOptimal()
transLength=500; %(m)

T = 25; % terminal time
N =15; % number of control stages

rho = 15; % weight on missing the final target
beta = 4.9038e12; % parameters of the external force
x0 = zeros(5,1);% initial state
x0(5) = 100; %starting mass
thrustMax=2.5*x0(5);

xf=[transLength,0,0,0,0]; %our goal state

tic
% Options for ODE & NLP Solvers
optODE = odeset('RelTol', 1e-2, 'AbsTol', 1e-2);
optNLP = optimset('LargeScale', 'off','GradObj','off',...

'GradConstr','off','DerivativeCheck', 'off', 'TolX', 1e-5,...
 'TolFun', 1e-9, 'TolCon', 1e-9, 'MaxFunEvals',2e6,...

'MaxIter', 10000, 'DiffMinChange',1e9,'Algorithm','sqp',...
'Display','iter');

% Remark: Due to the nonconvex nature of this problem, you may end up

with
% an optimal point that is local and not global.

27

%for i=1:5 % use for creating multiple repetitions
ts = 0:(1/N): 1;

dvar = [repmat(thrustMax/2,1,N),pi()/4:pi()/(2*(N-

1)):3*pi()/4,xf(1:4),T*1.1]; % design variable contains N components of
% u, N components of theta and the final position
lb = -Inf(1,2*N+5);
lb(1:N) = 0.00000000001; % enforce lower bound on Thrust
lb(N+1:2*N)=pi()/6;
lb(end)=T+1;

ub = Inf(1,2*N+5);
ub(end)=T*2;
ub(1:N) = thrustMax; % enforce upper bound on Thrust
ub(N+1:2*N)=5*pi()/6;

% Sequential Approach of Dynamic Optimization
 [dvarO,JO] = fmincon(@(dvar) costFunction(x0, ts,tf,dvar, rho, N,

beta, optODE),...
 dvar,[],[],[],[],lb,ub, ...
 @(dvar) constraintFunction(x0, dvar, ts,tf, N, beta,

optODE),optNLP);

toc %reads out the total time the calculation took

ts=dvarO(end)*ts;
hold on
[topt,xopt,uopt,thetaopt] = plotTrajectory(

x0,N,ts,dvarO,beta,rho,optODE); % Produces Trajectory plot, thrust

% profile and angle profile

28

RRT Main Function

function [path] = BUILD_RRT_STAR(start,goal)
% RRT implementation with system contraints
% start is our initial state and goal is our goal state
%
clc
close all
time=3; % time allowed in the navigation loop
%% Define the searchable configuration space
xMin=start(1);
xMax=goal(1);
yMin=goal(2);

dotMag=[0,2];
g=1.622; % gravity
yMin=0;
if start(4)>=0
yMax=start(2);
else
 yMax=start(2)*2;
end

segmentLength =1.75;
world = [xMin,xMax,yMin,yMax];
%%

%create random ground
ground = createGround(start, goal);

tree=start; %initalize tree with goal state
figure % for visualiztion
hold on

tic

if (norm(start(1:2)-goal(1:2))<segmentLength) && ...
 (collision(start,goal,world)==0) % obstacle detection
 path=[start,goal];
else
 numPaths=0;
 i=0;
 while toc <time
 [tree,flag] =

extendTree(tree,goal,segmentLength,world,ground,dotMag,g,numPaths);
 numPaths = numPaths +flag;
 i=i+1;
 end
 toc
 iterations=i
end

29

path = findMinimumPath(tree,goal); % outputs our Trajectory
toc;
if path==0
else

 plot(path(:,1),path(:,2),'LineWidth',1) %plots our output
end
end

30

Vita

 Ian Miller was born in Phoenixville, Pa on August 3
rd

, 1991 to Wolfe and Claire

Miller. After graduating from Holy Name High School in West Reading, Pa he attended

Lehigh University in Bethlehem Pennsylvania. In May of 2014 he completed a Bachelors

of Science in Electrical Engineering. He then continued his studies at Lehigh with a

Master of Science in Electrical Engineering. He will be graduating with honors in

December of 2015.

	Lehigh University
	Lehigh Preserve
	2015

	Fuel-Optimal Trajectory Planning of a VTOL Spacecraft Using SQP and RRT
	Ian Miller
	Recommended Citation

	tmp.1498661647.pdf.Bdmy_

