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Abstract 

While rovers have traditionally been used to explore extraterrestrial bodies, they 

reduce the total area explored on the ground as they are limited by traversing the surface. 

For this reason vertical takeoff and landing crafts are explored. The major downfall of 

this type of craft for exploration is the extra fuel costs which must be carried into orbit. 

Reducing the fuel burn for a given maneuver allows the mission to either bring less 

propellant or to explore further.  In either case, it is highly advantageous to reach 

destination points with the least amount of fuel. This paper looks at fuel-optimal 

trajectory planning for these reasons. A combination of optimal control theory with 

sequential quadratic programming and rapidly exploring random trees is proposed to 

achieve a robust, real time optimal trajectory.  
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Chapter 1: Background 

1.1 Introduction 

Trajectory or path planning has applications in a wide variety of fields and is the 

topic of much work to date.  If it is desired to not only produce a viable trajectory, but 

also one that optimizes some cost function (such as time, distance traveled or energy 

used) optimal control theory gives an excellent foundation. Unfortunately, most problems 

of practical use are sufficiently complex such that solving analytically for an optimal 

solution is not possible. Instead a numerical approach such as nonlinear optimization 

must be utilized [1]. This process can be computationally intensive and therefore difficult 

to implement in real time for higher order systems.  

Sampling based planning algorithms such as the probabilistic road map (PRM) [2] 

and rapidly exploring random trees (RRT) [3] produce feasible trajectories for potentially 

high order systems in short time. These methods trade optimality for time to run. 

Fortunately, there are many methods to increase the performance of such algorithms 

while maintaining their speed.  

While rovers have traditionally been used to explore extraterrestrial bodies, they 

reduce the total area explored on the ground as they are limited by traversing the surface. 

For this reason vertical takeoff and landing crafts are explored. For this reason vertical 

takeoff and landing crafts are explored. The major downfall of this type of craft for 

exploration is the extra fuel costs which must be carried into orbit. Reducing the fuel burn 
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for a given maneuver allows the mission to either bring less propellant or to explore 

further.   

 

1.2 Assumptions, State Equations and Basic Derivations 

 A generalized VTOL spacecraft may be viewed as a having three degrees of 

freedom (DOF) in translation and three in rotation. Additionally, as the craft will have 

mass, rate for each DOF would need to be included. Fortunately, we may look at the 

system in two dimensions without loss of generality. The x axis may be oriented such that 

it produces a line between starting location and the goal position and may be seen in 

figure one. This removes the need to concern ourselves with yaw and motion in the z 

axis. Additionally, rate of change in roll of the spacecraft is assumed to be zero and 

therefore is neglected. These simplifications leave three dimensions for control and 

optimization. 

Figure 1: Aligning the x axis with x_init and x_goal allows the y axis to be neglected. 

The circle represents all of the possible landing locations given the same trajectory and a 

reorientation of the coordinate system 
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For the control of the lander craft, it is assumed that acceleration will be applied 

in line with the center of gravity of the craft. This thrust can be applied at any arbitrary 

level between an upper and lower bound. The final control input is the angle at which the 

thrust is vectored. This input is also bounded between some maximum and minimum 

angle.  

Initially, the trajectories considered are close to the surface of a celestial body 

absent of an atmosphere or one with a sufficiently thin atmosphere to be neglected such 

as the moon. The system has a five dimensional state space   of horizontal 

position       ), vertical position       ), horizontal velocity       ), vertical 

velocity       ) and mass       ).  This vector may be seen formally in Eq 1.  

  

     

     
     

     

     

 

Equation 1. 

Figure 2 illustrates the forces being applied to the vehicle close to the terrestrial body’s 

surface.  

 

 

 

 

Figure 2: Forces applied to the craft
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1.3.1 Ideal Trajectory 

 Regarding fuel burn, a slow decent is relatively inefficient [7]. An easy way to 

think of this is to consider the lander as it descends. Taken to an extreme, the lander 

would eventually be hovering in place burning fuel to increase the time of flight. Taken 

to the other extreme, the craft could free fall and just before impact with the surface apply 

an impulse to negate its velocity. This impulsive maneuver would result in the fuel 

optimal trajectory [7].  

 Unfortunately, real system constraints do not allow for the infinite thrust such a 

maneuver would require [7]. Fortunately other methods of solving while considering the 

system constraints exist and will be explored later in this paper. Even though this solution 

is realistically infeasible, the output can serve as a lower bound to compare solutions 

against. Additionally, it can provide useful initial guesses for several of the proposed 

algorithms. 

1.3.2 Impulsive Burn-Coast-Burn 

 The ideal impulsive maneuver is comprised of three phases. The first stage is an 

impulsive maneuver where the change in velocity may be called       . The final velocity 

will be called        The second stage is simply coasting to the destination. The final stage 

is an impulsive maneuver fired in the opposite direction of the craft to negate      . This 

change in velocity will be called       Figure 3 illustrates these three stages. 
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Figure 3: Initial burn is shown in red, coast in green and final burn in blue 

When the system constraints are ignored and the rocket is able to produce 

impulses, the system may be analyzed with basic equations of ballistic motion [7]. If the 

altitude of       and       are equal, then the distance traveled by the craft,    is defined 

as [10]: 

  
         

 
 

Equation 2. 

From equation 2 it is easily seen that   
 

 
 would yield the greatest distance traveled. 

Under these assumptions, the time of flight is defined as [10]:  

    
  

 
  

Equation 3. 

Solving equation 2 for   and subbing the solution into equation 3 yields the following 

equation for time of flight: 
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Equation 4.  

Where g is the acceleration due to gravity near the surface of the terrestrial body.  

 

1.4 Thrust and Mass Flow 

 For the craft to develop any change in velocity, it will require some thrust. Thrust 

may be described as: 

          

  

  
 

Equation 5. 

where    1 is the specific impulse of the chosen rocket,    is the gravity on the surface of 

the earth and m is the mass of the vessel [8]. As the total amount of thrust used is reliant 

upon the mass flow, it creates an excellent metric to compare different trajectories. Mass 

flow may be described by the following: 

    
 

     
   

Equation 6. 

Where    is the mass flow and    is the change in time.  

 

 

                                                 
1
     is defined as the thrust per sea level weight rate per second of propellant consumption. Otherwise 

written as     
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1.5 Dynamic Equations 

 Based on the definition of the states put forth in section 1.2 and in equation one 

may define the system dynamics in the following way: 

   

  

  

        

  

        

  
  

  

 

Equation 7.  

where T as defined in section 1.2 and is described by equation 5.   is as defined in 

section 1.2. The input vector   is comprised of thrust,   , and the angle at which the 

rocket is directed,   . This means equation 7 may be rewritten as  

   

  

  

          

  

          

  
  

  

     

 

Equation 8. 

When the craft is farther from the surface relative to the radius of the body, a uniform 

distribution of gravity can no longer be assumed. In this case the model must be changed 

to accommodate. However, as none of the trajectories take the vessel beyond 1% of the 

radius of the terrestrial body, the uniform assumption remains valid.  
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Chapter 2: Optimal Control Theory 

2.1 Trajectory Planning with Optimal Controls 

 Finding the set of control inputs which brings the system from an initial state to a 

desired goal state is equivalent to solving for the trajectory itself [1]. This statement can 

be made as the state equations may be integrated forward to produce the trajectory. For 

this reason, optimal controls are explored. 

 Given a system, a control input is desired that takes the system from an initial state, 

        , at an initial time of    to a goal state,      , at some teminal time    where 

     . Additionally, it is desired that the input is selected such that it minimizes some 

cost function  . In the example provided, we let the cost function be a function of the 

mass flow, or put differently the fuel burnt, in our maneuver. The cost function may be 

seen in equation 3. 

      

  

 

    
  

 

 

Equation 3. 

 Only for simple systems is it possible to solve analytically for the optimal control 

strategy. Because of this, some numerical method is required to solve the system. One 

such method is nonlinear optimization.  

 



 

10 

 

2.2 Time as a Free Variable 

 Termination time can be fixed ahead of optimization. However, in many optimal 

controls problems time is either the variable to be minimized or does not matter as long 

as it is less than  . In these cases, a transformation of time from         to  0 1] is 

desirable. After the transformation, termination time may be left as a free variable to be 

optimized.  

 

 2.2 Nonlinear Optimization 

 Under this method the control inputs are parameterized and the problem is 

discretized with   points [3]. Thus any continuous constraints will be replaced with     

discrete constraints spaced out by    
  

 
. After this the problem may be written as: 

Find           

Minimizing             

Subject to                                  

                       

                        

 

Once the problem is written in this form, a gradient based nonlinear optimization problem 

(NLP) solving algorithm, such as sequential quadratic programming (SQP), may be used. 

SQP requires an initial guess for each discretized point. This guess can vastly effect the 

time to convergence and even the final solution. As these methods are gradient methods 

by nature, they are subject to finding locally optimal solutions. Fortunately in the 
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particular problem proposed, producing a good first guess is easy enough. For a more 

complex system, a different global solver may be used first to seed the SQP[1].  

 The SQP solves a NLP problem iteratively by recursively solving a quadratic 

programming (QP) problem. At the termination of each iteration, the estimate for the 

solution is improved by taking a step in the direction of the solution of the QP problem. 

Many implementations for this technique exist but this paper used MATLAB 

Optimization Toolbox’s FMINCON.  
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Chapter 3: Rapidly Exploring Random Trees 

3.1 RRT for Trajectory Planning 

 An alternative to the classic optimal control solution can be found in sample based 

planning such as rapidly-exploring random trees (RRT). These methods sacrifice 

optimality for time of calculation. In fact, it has been shown that the RRT cannot reach an 

optimal solution [4]. However, variations of the algorithm such as RRT* asymptotically 

approach an optimal solution [4]. 

 The goal of the algorithm is to find the control input  , which creates a feasible path 

from the initial state to the goal state while obeying the dynamics of the system. 

Additionally it is desired that the resulting trajectory minimize the cost function. To do 

so, RRT and RRT* develop a tree,  , comprised of a set of states   and a set of edges 

linking the states  .  

 

3.2 RRT Algorithm 

 The main components of the algorithm and its pseudo-code are shown below: 

 Sample: the function Sample returns random state samples from the free 

configuration space,        
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 Steer: provided two input states   and     , the function Steer creates a path which 

connects the two states. In case of a holonomic system this is typically a straight line. 

Otherwise, this function must obey the system dynamics. 

 Nearest Neighbor: provided a point, x and a tree,        ,  the function Nearest 

Neighbor returns a vertex that is closest to the point given some distance function. For the 

purposes of this paper, we may assume the distance to be calculated with the Euclidian 

distance. 

Algorithm 1:           

1.  
 
         

 
    

2. for i=1 to n do 

3.       
 
      ; 

4.          
 
               

 
    ; 

5.                      

6. end for 

7. return T 

where             is defined as seen in algorithm 2: 

 

Algorithm 2:             

1.      
 
                       

2.     
 
                 

3. if                           then 

4.       
 
        

5.       
 
                

6. end if 

7. return T 

 The RRT algorithm begins by initializing its tree at the initial state,      . The 

algorithm then samples the free configuration space,               may be defined as the 
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set of all configruations the craft may move through without colliding with obstacles. The 

RRT then finds the closest vertex in the current tree and attempts to connect it via the 

Steer function. Typically a collision check is done to verify that no obstacles are present 

along the path between       and     . If no collision is detected, the point becomes part 

of the tree by adding its vertex and edge to    In the instance of a collision, the point will 

not be added to the tree. One step of this process is shown in figure four.  

 

 

 

  

 

 

 

 

Figure 4: One step of the RRT visualized 

 

 This process is continued iteratively until the goal state is found or the maximum 

number of iterations,  , have been completed. The samples quickly search the space, 

providing a feasible trajectory very quickly, albeit a sub-optimal one [4]. An example of 

an RRT in action can be seen in figure 5. This figure shows just the first 100 samples of a 

simple, holonomic search. 
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Figure 5: First 100 samples of a simple RRT implementation. Only the x and y axes are 

shown.      is          . 

 

The RRT is probabilistically complete, meaning as the number of samples 

approaches   the probability of finding a fiesable path if one exists approaches one and 

will come arbitrarily close to the goal state [5]. In practice, one would like for the planner 

to return a feasible path quickly. To speed convergence to the goal state, one may 

augment the function Sample by assigning some probability,  , to which the function 

returns the goal state. 

This greedy sampling can allow the RRT to converge to a solution much faster. 

However, if   is increased too high, the RRT will run the risk of getting stuck in local 

minima [1-2][5]. 

 

 



 

16 

 

3.3 RRT* Algorithm 

While the RRT is probabilistically complete, the algorithm will return a sub-

optimal trajectory even as the number of samples approaches  . Because of this 

characteristic of the basic RRT, RRT* (pronounced RRT star) was developed and 

introduced by Karaman and Frazzoli in [4]. It was shown to be asymptotically optimal 

[4]. 

 RRT* differs only slightly from the original algorithm. The RRT* will rewire the 

tree to reduce cost on each iteration. After sampling, it reviews all vertices in a ball 

defined by some distance and discerns if each of vertices would have a lower cost being 

routed through the newly sampled point. If a vertex does cost less being routed through 

the new point, the tree is reconfigured to reflect the change.  

 The rewiring of the RRT* effectively removes the odd zigzags and loops that can 

be present due to the random sampling in the original RRT.  
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Chapter 4: Simulation Results 

4.1 Proposed Implementation 

Much work with planetary landers has been done involving NLP techniques. 

These methods have the benefits of many years of research and plenty of actually flown 

trajectories to give the methods validity. Unfortunately, when it comes to space 

trajectories, RRT does not have near the same background. However, the RRT does an 

excellent job of searching a high dimensional configuration space in a short amount of 

time.  

The proposed implementation solves with a SQP while the vessel is on the 

ground. While on the ground, the vessel is not burning any fuel or having to worry about 

collisions so calculation time is no longer an extremely important design consideration. 

Once in flight, the navigation loop runs the RRT* algorithm with a three second update 

cycle.  

If no new obstacles or changes in the goal state have been presented, the 

navigation loop continues along the previously calculated trajectory. If something does 

arise, the RRT* computes a new trajectory in flight.  

 

4.2 Input Parameters 

The following chart serves as a guide to what input values were used for the 

presented results unless otherwise noted:  
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Parameter Abbreviation Value 

Translation Length               500m 

Initial Mass       100kg 

Maximum Thrust               

Minimum Thrust      0 N 

Maximum Theta        
 

 
 

Minimum Theta        

 
 

Gravity   1.662 
 

   

Table 1. 

The following table contains the input “option” values for the MATLAB’s NLP 

SQP implementation, fmincon:  

Parameter Value 

'Algorithm' 'sqp' 

 

'TolX' 1e-5 

 

'TolFun' 

 

1e-9 

 

'TolCon' 

 

1e-9 

 

'MaxFunEvals' 

 

2e6 

 

'MaxIter' 

 

10000 

 

'DiffMinChange' 1e-9 

 

Table 2. 
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4.3 Simulation Results 

Using the input parameters as seen in figures 1 and 2, the following optimal 

trajectory shown in figure 6 was found. This trajectory can be seen to have a similar three 

stage burn-coast-burn maneuver topology as discussed in section 1.3.2.  

 

Figure 6: Vertical and Horizontal position of optimal trajectory compared against the 

optimal, impulsive maneuver. 
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Figure 7: Thrust Profile 

Figure 8: Angle Profile 
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 Figure 6 compares the calculated optimal trajectory for the given system 

parameters versus the impulsive, ballistic trajectory. As the thrust to weight ratio is 

relatively high, the calculated trajectory closely resembles the impulsive trajectory. As 

this value is lowered the calculated trajectory continues to differ greater and greater, as 

seen in Figure 9 where the maximum thrust is reduced by twofold and again twofold.  

 

Figure 9: A comparison of a thrust to weight ratio of 5 and 2.5.A higher ratio produces a 

closer approximation to the impulsive trajectory shown in blue 

 

 Of interest in Figure 7 is the asymmetry in the initial burn versus the landing burn. 

A slight reduction in total thrust or    can be seen. The reduction in the landing portion 

of the maneuver can be attributed to the reduction of mass from the burn on launch. As 
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mass was expelled to make the launch possible, the landing now takes place with a lighter 

vessel.  

 Figure 8 shows the angle of the craft varying immensely during the period 

between about four seconds and 24 seconds. The angle seems to vary without much 

reason which raises questions regarding the validity of the result. When considered in 

conjunction with the thrust profile it begins to be much more reasonable. As the vessel 

has entered the coast phase the thrust is reduced to zero and therefore the angle of   has 

no bearing on the state of the lander.  

In reality the angle would need to be ignored during this phase of the maneuver. 

Alternatively, the lower bound for thrust could be increased very slightly. This increase 

could be low enough to not affect the overall trajectory but still serve to give the NLP 

solver something to keep the angle reasonable. 
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Figure 10: Example of RRT* update 

Figure 11: Example of RRT* Trajectory 
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 Figure 10 shows the RRT* running in the loop for one update cycle. If no new 

obstacles are found or the goal state did not change the loop will return with the same 

trajectory with which it was seeded.  Figure 11 shows an example of a completely RRT 

formed trajectory. In both figures, the RRT looks to have very densely searched the area. 

However, only position is visualized by these plots. In reality the algorithm is searching 

across velocity in both dimensions as well.  

 

4.4 Closing Remarks 

 Solving with a SQP seems to produce high quality trajectories. Unfortunately, its 

complexity makes it poor candidate for a real time planner for a lander. The RRT* shows 

that it can be utilized to produce a real time solution. 
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Appendix I: Matlab Implementation 

 

Introduction 

 A large portion of the work for this thesis went into the development of effective 

implentetations of the SQP and RRT for the specific application of the lunar lander. The 

code provided in this appendix gives the main functions for each written for Matlab. The 

entirety of the code is provided in supplemental files.  

SQP Main Function 

 
function dvarO = runOptimal( ) 
transLength=500; %(m)  

  
T = 25; % terminal time 
N =15; % number of control stages 

  
rho = 15; % weight on missing the final target 
beta = 4.9038e12; % parameters of the external force 
x0 = zeros(5,1);% initial state 
x0(5) = 100; %starting mass 
thrustMax=2.5*x0(5); 

  
xf=[transLength,0,0,0,0]; %our goal state 

  
tic 
% Options for ODE & NLP Solvers 
optODE = odeset( 'RelTol', 1e-2, 'AbsTol', 1e-2); 
optNLP = optimset('LargeScale', 'off','GradObj','off',...                   

'GradConstr','off','DerivativeCheck', 'off', 'TolX', 1e-5,... 
     'TolFun', 1e-9, 'TolCon', 1e-9, 'MaxFunEvals',2e6,... 

'MaxIter', 10000, 'DiffMinChange',1e9,'Algorithm','sqp',... 
'Display','iter'); 

  

  
% Remark: Due to the nonconvex nature of this problem, you may end up 

with 
% an optimal point that is local and not global.  
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%for i=1:5 % use for creating multiple repetitions  
ts = 0:(1/N):  1; 

  
dvar = [repmat(thrustMax/2,1,N),pi()/4:pi()/(2*(N-

1)):3*pi()/4,xf(1:4),T*1.1]; % design variable contains N components of  
% u, N components of theta and the final position 
lb = -Inf(1,2*N+5);  
lb(1:N) = 0.00000000001; % enforce lower bound on  Thrust 
lb(N+1:2*N)=pi()/6; 
lb(end)=T+1; 

  
ub = Inf(1,2*N+5); 
ub(end)=T*2; 
ub(1:N) = thrustMax; % enforce upper bound on Thrust  
ub(N+1:2*N)=5*pi()/6; 

  

 
% Sequential Approach of Dynamic Optimization 
 [dvarO,JO] = fmincon(@(dvar) costFunction(x0, ts,tf,dvar, rho, N, 

beta, optODE),... 
     dvar,[],[],[],[],lb,ub, ... 
     @(dvar) constraintFunction(x0, dvar, ts,tf, N, beta, 

optODE),optNLP); 

  
toc %reads out the total time the calculation took 

  
ts=dvarO(end)*ts; 
hold on 
[topt,xopt,uopt,thetaopt] = plotTrajectory( 

x0,N,ts,dvarO,beta,rho,optODE ); % Produces Trajectory plot, thrust  

% profile and angle profile 
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RRT Main Function 

function [path ] = BUILD_RRT_STAR(start,goal ) 
% RRT implementation with system contraints 
% start is our initial state and goal is our goal state 
% 
clc 
close all 
time=3; % time allowed in the navigation loop 
%% Define the searchable configuration space 
xMin=start(1); 
xMax=goal(1); 
yMin=goal(2); 

  
dotMag=[0,2]; 
g=1.622; % gravity 
yMin=0;  
if start(4)>=0 
yMax=start(2); 
else  
    yMax=start(2)*2; 
end 

  
segmentLength =1.75; 
world = [ xMin,xMax,yMin,yMax ]; 
%% 

  
%create random ground 
ground = createGround( start, goal); 

  
tree=start; %initalize tree with goal state 
figure % for visualiztion  
hold on 

  
tic 

  
if (norm(start(1:2)-goal(1:2))<segmentLength) && ... 
        (collision(start,goal,world)==0) % obstacle detection 
    path=[start,goal];  
else 
    numPaths=0; 
    i=0; 
    while toc <time 
        [tree,flag] = 

extendTree(tree,goal,segmentLength,world,ground,dotMag,g,numPaths); 
        numPaths = numPaths +flag; 
        i=i+1; 
    end 
    toc 
    iterations=i 
end 
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path = findMinimumPath(tree,goal); % outputs our Trajectory 
toc; 
if path==0 
else 

    
    plot(path(:,1),path(:,2),'LineWidth',1) %plots our output 
end 
end 
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