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Abstract

Hardware prefetching is an efficient way to hide cache miss penalty due to long

memory access latency. Accuracy, coverage, and timeliness are three primary met-

rics in evaluating hardware prefetcher design. Highly accurate hardware prefetches

are required to predict complex memory access patterns in multicore systems. In

this paper, we propose a long short term memory (LSTM) prefetcher—a neural

network based hardware prefetcher to achieve high prefetch accuracy and cover-

age while improving prefetch timeliness. The proposed LSTM prefetcher achieves

higher accuracy and coverage by training neural networks to predict long memory

access patterns. LSTM can improve timeliness in two approaches. First, multi-

ple prefetch can be issued on a single cache access. Second, a simple Next-N-Line

prefetcher is integrated with the LSTM prefetcher to accelerate predictions when

good spatial locality exists. The proposed LSTM prefetcher is the first prefetcher

design that uses recurrent neuron network. Three case studies are presented, which

show that proposed LSTM prefetcher can achieve 98.6%, 83.5%, and 61% accuracy

respectively, while the state-of-art variable length delta prefetcher (VLDP) achieves

0%, 75% ,and 26.6% accuracy in predicting the sequences in the case studies.

vii



Chapter 1

Introduction and Motivation

The latency gap between processor and main memory continues to be a bottle-

neck. Although processor frequency no longer grows, the "memory wall" [1] prob-

lem is still getting worse due to the increased number of cores, and the limited

off-chip bandwidth in the multicore era. Complexed memory hierarchies help alle-

viate the latency problem by exploiting spatial and temporal localities, but these are

not enough to solve the problem. Out-of-order execution and multithreading are

useful in hiding latency in L1 caches, however, between the LLC and main memory,

long memory access latency is still the show-stopper that hinders microprocessor

performance scaling.

Hardware prefetching is a powerful and well-studied approach in dealing with

long memory access latency. It can captures the run time access patterns and fetch

useful data earlier before they are demanded. As a result, performance can be im-

proved due to decreased demand cache misses or reduced miss penalty.

Accuracy, coverage and timeliness [2] are three primary metrics in evaluating

prefetcher efficiency. Accuracy is the number of useful prefetches divide by the

number of total issued prefetches. Coverage is the number of useful prefetches

divide by the total number of demand misses. Timeliness shows how long it is

before a prefetched cache line is touched by a demand access. These three metrics

have to be optimized together.

High coverage can be achieved by naively increasing the total number of issued

prefetches. However, this could pollute the cache, increase the unnecessary DRAM

traffic, and lead to performance degradation. So high accuracy is required. Time-

liness is important too. If a useful prefetch place the data in cache too early, the

1



prefetched line will waste precise cache space. If too late, demand access to the line

will experience miss penalty.

Among prior prefetcher designs, next-N-line prefetch [3] is simple and effective.

Later improvements of this design include using a stream buffer to track multiple

interleaved streams in parallel while avoiding cache pollution (stream prefetcher)

[4] , predicting stride rather than always fetch the adjacent data (stride prefetcher)

[5], and using feedback mechanisms to control aggressiveness (Feedback Directed

Prefetcher [6]). These designs work well when good spatial locality exists. However,

complex patterns exhibit applications with linked data structure, compressed data

format, and data dependent control flow. In order to keep high accuracy while

achieving good coverage for these applications, advanced prefetcher are proposed.

Sandbox prefetcher (SBP) [7] design uses a bloom filter to find the best per-

formed prefetcher among several aggressive prefetheres. Best Offset Prefetcher

(BO) [8] targets on fetching data with the most frequently seen offset after learn-

ing memory access patterns. BO is good in timeliness since it uses a delay queue

to record order information for each offsets. But both SBP an BO are not accurate

enough. Because they only fetch the most possible patterns, many critical patterns

that do not appear frequently can be skipped.

Access map pattern matching (AMPM) [9] and Spatial memory streaming (SMS)

[10] are two designs that exploit recurring memory footprints within a spatial region

to learn complex patterns. After observing access patterns within a memory region,

all of the accessed blocks are marked and will be fetched together upon the next ac-

cess to the same spatial region. Performance gain of this kind of prefetchers mainly

comes from the high coverage. By prefetching all of the spatially correlated data

within a region, more prefetching chance can be exploited. Although these prefetch-

ers are more accurate than previous ones in fetching complex patterns, they do not

consider the timeliness issue. No information on access order is recorded within

the memory region. Thus lead to many early prefetches, which prevent AMPM and

SMS from effectively utilizing caches and bandwidth.

Global History Buffer (GHB) [11] and Variable Length Delta Prefetcher (VLDP)

[12] both memorize the offset difference between two adjacent accesses (delta)

within an OS page in the history order to learn the data correlation. While GHB
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can only make prediction based on one delta history, VLDP uses cascaded delta

prefetching table (DPT) to enable prediction on multiple delta history length. This

kind of prefetchers can be more accurate and efficient because timeliness is consid-

ered. However, many applications have long delta sequence while VLDP is limited

to recognizing short delta patterns. In VLDP, increasing in recorded delta length

will result in adding additional DPT tables, thus lead to more storage overheads.

Since every sub-sequence will be stored when recording a string of delta, the storage

requirement increased exponentially. DPT table can not hold all of the history se-

quence within its limited entry. DPT miss will prevent VLDP from achieving higher

coverage. The proposed design aims at finding a new way to solve the problem of

recording long history delta sequence with high coverage.

Artificial neural networks show a great potential in accurate pattern prediction.

It has a huge impact in image processing, audio processing, and natural language

processing [13] [14] [15] . Recently, neural network have been widely used in com-

puter architecture design and have made great contribution in improving the sys-

tem performance [16] [17] [18]. Among existing neural network algorithms, Recur-

rent Neural Network (RNN), which includes feed-back connections within the net-

work, is especially powerful in sequence predicting, and becomes a natural choice

to predict memory access sequence.

Nowadays, bandwidth per core becomes a major limitation in multi-core sys-

tem, and larger DARM capacity lead to even longer access latency, which together

make mis-prefetch more expensive than before. In this case, accuracy becomes more

and more important. In order to capture the missing chance for previous VLDP de-

sign (which is the best approach in balancing accuracy, coverage and timeliness in

complex pattern predicting area) and meet the emerging system requests, we pro-

posed the long short term memory prefetcher (LSTMP), which is based on a power-

ful neural network algorithm [19]. The contributions of this work include:

1) This is the first prefetcher design that uses recurrent neuron network (RNN)

2) This design achieves higher accuracy and coverage by the ability of recording

long history delta sequence using LSTM network parameters

3



Chapter 2

Background

2.1 Prefetch Complex Pattern

Among prior prefetcher designs, memory address predictions are either based

on memory address pattern histories, or values stored in previously accessed mem-

ory locations. Indirect memory prefetcher (IMP) [20] is an example in the later cate-

gory, which can prefetch indirect memory accesses in the form A[B[i]]. IMP specifi-

cally targeting on machine learning, graph analytics, and sparse matrix based appli-

cations. The proposed design predict memory addresses based on delta history, and

targeting on a wider range of applications which include complex delta patterns.

Variable length delta prefetcher [12] is one of the prior work on complex mem-

ory access pattern prediction based on history address sequence. In this design,

memory access delta sequence are recorded for each OS page in delta history buffer

(DHB). When prefetch triggering event happens, which include cache misses and

cache hits to prefetched lines, per page delta history will be used to index to mul-

tiple global delta history tables (DPT) with different history lengths. If hit in DPT,

delta associated with matching history pattern will be used to calculate the pre-

dicted address. If miss in DPT, new patterns are added to the DPT table. Existing

pattern which leads to incorrect address prediction can be promoted to an upper

level DPT with longer history length.

Our design is an improvement on VLDP, some similarity includes: 1) LSTMP is

recording successive delta history within OS page boundary, and making prediction

based on global delta patterns. 2) LSTMP takes action on the same prefetch trigger

event as VLDP does. However LSTMP uses neuron network algorithm, rather than
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the cascaded tables to predict long delta sequence. 2) LSTMP can predict based

on learned pattern all the time, rather than VLDP’s "reactive" way (only update

global history when miss prediction occurs). These improvement can help LSTMP

to achieve higher accuracy and coverage as compared to VLDP.

Signature Path Prefetcher (SPP) [21] improves VLDP design too. However, it

gains performance improvement mainly by increasing the prefetcher depth, which

lead to more timely prefetching. LSTMP can be more timely by issuing multiple

prefetches upon one demand access, but the main performance gain comes from

accuracy improvement. SPP stores delta history within an OS page boundary too,

but in a compressed way. However, SPP is still a table based design with limited

number of table entries, it can not store all of the useful history information. And

the compressed history can lead to more aliasing, which prevent SPP design from

accurate prediction.

2.2 Machine Learning in Prefetcher Design

There are several prior prefetchers that uses machine learning algorithms. One

type of designs use machine learning to select the best performed prefetcher [22] or

optimal prefetcher configuration [23]. Another uses machine learning to detect pat-

terns. LSTMP falls into the second category. A prior work named adaptive prefetch-

ing (AP) [24] also uses neural network to predict patterns. This design uses a table

to record memory reference and simplify the information needed for training. The

input for the network is table indices. AP record memory access history in table,

which prevent it from capturing all the useful information. AP design uses a single

layer time delay neural networks (TDNN), while LSTMP is based on RNN, which

is a more accurate algorithm for time series prediction.

2.3 LSTM Algorithm

LSTM [19] is one of the RNN algorithms, which is especially useful in long term

dependence sequence prediction. Because LSTM solves the vanishing gradients

problem [25] in traditional RNN. Fig. 2.1 shows a simple LSTM network used to
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predict odd sequence. The given network only have three layers, input layer, output

layer and a single hidden layer. Only one LSTM block exists in the hidden layer.

Arrows among the input layer, the output layer, and the LSTM blocks represent

parameters in the network, which includes weights and bias. Weights show how

strong each connection is, and bias are extra values added to each connection, which

are used to shift the input-output curve in order to generate correct results.

3 4 7

output layer

input layer

hidden layer

σ 
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input

input
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tanh 
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input gate
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ct ct-1

FIGURE 2.1: Long short term memory basic

Like other machine learning algorithms, LSTM algorithm has two operations:

training and predict. During the prediction process, data is given one by one to the

network in sequence. When one system input is given to the network, for example

3 in Fig. 2.1 at T2, one output will be computed (4 in Fig. 2.1 at T2), which is

the prediction result. Then the network parameters are updated to minimize the

difference between the predicted result (4 in T2) and the actual next input (5 at T3)

(loss), which is the training process. We refer to the interval between an input given

to the network and the network parameters fully updated as a time step (e.g, in Fig.

2.1, T1, T2, T3 are three time steps).

Each output is used as part of the block input in the next time step. The block

input comprises of two part, current system input (one data within the sequence),
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and the output of the network generated by a previous input. An unfolded structure

of LSTM network is shown in Fig. 2.1 to demonstrate inputs and outputs at different

time steps. After the network is iteratively trained, the predicted result is expected

to match incoming data for sequences that have patters.

A single cell exists within each LSTM block. The cell state is like a conveyor belt

which let information flow through. A tanh layer creates a vector of new candidate

input values to the cell. A structure called gate controls the amount of information

add to or remove from the cell, it is composed by a sigmoid layer and a point mul-

tiplication operation. Three gates exist within each block, an input gate, an output

gate, and a forget gate. Since sigmoid function outputs between 0 and 1, these gates

can let entire information flow through by outputting 1, or let nothing flow through

by outputting 0. The gate design is the key for the LSTM algorithm, which gives

LSTM network the ability to remember long-term dependencies.

The prediction process is also called "front propagation (FP)", and the training

process is referred to as "back propagation (BP)". Eq. (2.1) to Eq. (2.6) shows the

prediction process at time step t. x

t

is one of the data in the given sequence. h

t�1

is the predicted output at previous time step. i
t

, f
t

, o
t

are three gate control values

between 0 and 1. g

t

is the currently generated input vector to the cell. c

t�1 is the

previous cell state. c
t

is current cell state. h
t

is the final output of the network, which

is the predicted data.

i

t

= �(W
i

· [h
t�1, xt] + b

i

) (2.1)

f

t

= �(W
f

· [h
t�1, xt] + b

f

) (2.2)

o

t

= �(W
o

· [h
t�1, xt] + b

o

) (2.3)

g

t

= tanh(W
g

· [h
t�1, xt] + b

g

) (2.4)

c

t

= f

t

⇥ c

t�1 + i

t

⇥ g

t

(2.5)

h

t

= o

t

⇥ c

t

(2.6)

In the back propagation process, loss of the network at each time step is calcu-

lated by Eq. (2.7). Total system loss from time 1 to time T is given by L(t) in Eq.
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(2.8). Optimized weights and bias need to be find in order to minimize L(t). Gra-

dient descent algorithm is typically In BP process. In gradient descent algorithm,

partial derivatives of all the weights and bias, including W

i

,W

f

,W

o

W

g

, b

i

, b

f

, b

o

, b

g

,

need to be calculated by the derivative chain rule. Eq. (2.9) to Eq. (2.12) shows how

all the partial derivatives of weights are calculated, bias are calculated in a similar

way. In the equation, T is the total number of time steps, M is the total number of

LSTM blocks. Learning rate (↵) represents the learning speed, the parameters are

updated by adding the product of learning rate and parameter derivatives.

l(t) = (h
t

� y

t

)2 (2.7)

L(t) =
TX

t=1

l(t) (2.8)

dL

dw

o

=
TX

t=1

MX

m=1

dL(t)

dh

m(t)

dh

m(t)

do

m(t)

do

m(t)

dw

(2.9)

dL

dw

i

=
TX

t=1

MX

m=1

dL(t)

dh

m(t)

dh

m(t)

dc

m(t)

dc

m(t)

di

m(t)

di

m(t)

dw

(2.10)

dL

dw

f

=
TX

t=1
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m=1

dL(t)

dh

m(t)

dh

m(t)

dc

m(t)

dc

m(t)

df

m(t)

df

m(t)

dw

(2.11)

dL

dw

g

=
TX
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dh
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dh
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dw

(2.12)

w

o
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dL

dw

o

⇥ ↵ (2.13)

w
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dL

dw

i
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w
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+ =
dL

dw

f

⇥ ↵ (2.15)

w

g
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dL

dw

o
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Chapter 3

System Overview

The proposed prefetcher is attached to the last level cache (LLC) and snoops

every LLC demand hit and miss (Fig. 3.1). This prefetcher relies on local delta

history to predict the addresses of future memory accesses. This section provides

an overview of the proposed prefetcher architecture.

LLC

MSHR

Memory

LSTM
prefetcher

demand hit

demand miss

demand access

miss

prefetch request

FIGURE 3.1: LSTM prefetcher in memory hierarchy

LSTM prefetcher predicts within the OS page boundary. It uses an offset table to

hold the offset of the first access within a page, and a page table to record the local

delta history. Offset table is indexed by page offset, and each entry stores a delta

value associated with the page offset. Page table holds the recent delta histories and

page numbers for different OS pages. Each page table access searches all of the page

table entries to check if there is a page number match. An example page table entry

is shown in Fig. 3.2. Each entry has six data fields: 1) page offset of the previously

accessed address (preAddr), 2) encoded page number (pageSign) that forms part of

the system input in delta prediction process, 3) four lasted delta values (pre4Delta),

4) four page offsets of the recently issued prefetches (pre4FetchAddr), 5) accuracy

bit that helps to control the number of multi-degree prefetches, 6) state information
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for the local delta sequence is stored in the preState field. We choose to store four

previous deltas because experiments show that history of the length of four can

provide enough information for accurate predictions.

pageNum preAddr pageSign pre4Delta pre4FetchAddr accurate bit preState

FIGURE 3.2: Page table entry

Every demand access first checks the table to get history information before

starting the prediction process. The entire prediction process includes two steps:

delta prediction and system training. After the prediction process, page table will

be updated. In Fig. 3.3, hardware components (1), (2), (3), (4), (5), (6), (7) will be

used for delta prediction, and (8), (7), (6), (4), (3) will be used for system training.

(1) Page TableLLC access

(3) Parameters 
Wi, Wf , Wo, Wg                       

bi, bf , bo, bg 

(7) 5 State Space
i, f, o, g, c, h

encoded input (4) Dot Product Unit (5) Activation Unit
tanh/sigmoid

(6) Basic Calculation Unit
adder/multiplier

preState
update state

predict delta

(8) Loss Calculateion

update parameters

front propagation 
back propagation 

update preState

(2) Offset Table

FIGURE 3.3: Internal architecture of LSTM prefetcher

In order to implement LSTM algorithm introduced in Section 2.3, a LSTM data

path is built in hardware, which includes LSTM storage, run-time state storage

space and functional units. Although local history for each OS page is stored sepa-

rately in page table, only one LSTM data path is required to predict addresses based

on both local and global histories. All pages share the same set of LSTM parameters

(Fig. 3.3(3)), which are initiated to randomly generated values between �10�5 and

10�5.

Similar to VLDP, the proposed LSTM prefetcher stores the history delta patterns

in a pattern history table, and uses local delta histories as the indexes to search the
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matching string. LSTM algorithm provides a different mechanism for the pattern

storing and searching process than VLDP. A detailed explanation for this mecha-

nism will be discussed in 6.2. In principle, LSTM network remembers all of the

history patterns by training the models and updating the parameters, and it makes

prediction by using 5 delta histories (four stored in page table, one calculated on

access) together with their page sign as the system inputs to predict the next ad-

dress. The five state space (Fig. 3.3(7)) is the runtime storage space to store all the

state value vectors which have been calculated during five time steps. Those vec-

tors need to be stored because they will used to update parameters sequentially

after the delta prediction process. However, unlike parameters which will be hold

during the entire application running process, at the end of each prediction process,

the state space will be flushed and all of the internal values will be discarded after

the parameters update.

In order to calculate the state vectors and to update the parameters, serval func-

tional units are required. Dot Product Unit (Fig. 3.3(4)) is used for matrix multiplica-

tion in Eq. (2.1-2.4, 2.10). The Activation Unit (Fig. 3.3(5)) applies tanh and sigmod

activation functions to calculate the values for state vectors i, f, o, g in Eq. (2.1-2.4).

The Basic Calculation Unit (Fig. 3.3(6)) includes adders and multipliers, which help

satisfy the rest of the computational requirements. The Loss Calculation Unit (Fig.

3.3(8)) is part of the basic calculation unit, it is shown separately in Fig. 3.3 because

the loss function is only calculated for the training process. Chapter 5 will discuss

the organizations and implementations of these functional units in details.
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Chapter 4

LSTM Prefetcher Operation

Each basic prediction process is activated by a meaningful LLC access and in-

cludes two steps: delta prediction and system training. Page table is updated after

the training process. In addition to predicting the next address, LSTM prefetcher

can issue more prefetches based on prediction results to be more aggressive. This

section will discuss two operation mode of the proposed LSTM prefetcher.

4.1 Predict The Next Address

4.1.1 Meaningful LLC Access

Although LSTM prefetcher checks every LLC access, it only activate the predic-

tion process on meaningful LLC accessed, which captures the LLC demand misses

as if no prefetch operation happens. A meaningful LLC access is either a demand

miss or a demand hit on a previously prefetched cache block. When a new access

enters the LSTM prefetcher, page number is used to search the page number field

of the page table. If the access misses in the page table and is a meaningful access,

a new entry will be added. The least recently used entry will be evicted if the page

table is full. If hit in the page table and the offset matches one of the pre4FetchAddr

stored in page table, this access will be considered as a meaningful access, which

will activate a prefetch. Since the fetched address are stored in the order they may

be used, four fetched addresses are enough.
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4.1.2 Delta Prediction

LSTM prefetcher use a similar offset table as the offset table in the VLDP [12] to

predict the first access to a page. The page offset of the first access is used to search

the offset table. If no match, a new entry will be allocated. On the second access to

the same page, delta is calculated and stored in the offset table associated with the

offset of the first access. If hit in the offset table, the delta stored with the offset will

be used to calculate the prefetch address.

On a meaningful LLC access, if there is a page table hit (which means the page

has been accessed at least for the second time), a delta value will be calculated using

the current offset and the offset of the previous access in this page. The 4 history

deltas, current calculated deltas and the pageSign are encoded and input to the

LSTM. The encoding scheme will be introduced in section 5.1.

The prediction process is also known as the front propagation process in LSTM

algorithm, which includes five time steps in the proposed prefetcher. Inputs are

given to the network in different time steps one by one in sequence. At each time

step, 6 state value vectors (i
t

, f
t

, o
t

, g
t

, c
t

, h
t

) for each LSTM block are calculated (Eq.

(2.1) to Eq. (2.6)). Among them the output vector (h) and current cell state vector (c)

will be used for the state value vectors calculation in the next time step. After the

5th state value vectors are calculated, the output vector without the pageSign will

be used as the predicted delta value. This process is shown as the solid lines in Fig.

3.3. A detailed figure unfold in time is shown in Fig. 4.1.

When a page is accessed the first time, there is no previous output vector (c
t�1)

or cell state vector (h
t�1). These two vectors are both set to zero when calculating

the first set of state value vectors. Thus, preState is initialed with two zero vectors,

and they will only be updated until the 5th access in this page. When the delta

prediction process completes for the 5th access, the state value vectors c1 and h1

stored in the first state space will be recorded to the page table as preState, and

everything else in the state space will be flushed. At the 6th access, first delta in

this page is removed, but preState is holding the information of the first delta and

will be used as c0 and h0 for the first time step calculation in 6th access. At each the

following accesses, delta sequence stored in page table is shift left one. The oldest
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delta is removed and preState that holds the information of the evicted delta will be

used in calculation.

s1 s2 s3 s4 s5preState

c1 h1 c2 h2 c3 h3 c4 h4

predict delta

c0 h0

s1 s2 s3 s4update weigth

diff c h diff c h diff c hdiff c h

delta1 delta3 delta4 delta5delta2
diff h diff h diff h diff h

h5

FIGURE 4.1: Time steps for delta prediction and system training

4.1.3 System Training

System Training also known as the back propagation process in LSTM algorithm

(imaginary line shown in Fig. 3.3 and Fig. 4.1). This process minimize the system

loss by updating weights, so that the trained network model can best predict the

delta sequence.

Loss of the system comes from the difference between predicted delta and the

correct delta at each time. In the example shown in Fig. 4.1, five system output

vectors are generated and stored in state space after the delta prediction process.

Upon observing the next access to the same page and calculating the new delta, the

difference between the correct output and the last predicted output (h) is calculated

by Eq. (2.7). In order to minimize loss, partial derivatives of the parameter ma-

trices need to be computed. In the computation process, loss at each time step is

required, and derivatives of the output vectors (h) and the cell state vectors (c) from

previous state space are computed. The partial derivatives of the parameter matri-

ces are computed, and the parameters are updated to minimize the loss [19]. After

the LSTM network gets enough amount of training with an appropriate learning

rate, the parameters will converge, and the correct prediction can be expected when

repeating patterns occur.
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4.1.4 Page Table Update

When a page table entry validate for the first time, an uniq pageSign related

to entry number will be given as table index, and preAddr in the page table are

updated. After the second access, deltas will be computed for each access to the

same page, and the latest four deltas are recored in the pre4Delta list. If a prediction

is made, the predicted offset will be shifted to the pre4FetchAddr. The accuracy

bit is a one-bit flag indicating whether any of the most four recent predictions are

correct or not. It’s updated by comparing the address of the upcoming LSTM access

with the pre4FetchAddr. If any of the previous prefetch matches, the accuracy bit

will set to one. If none of the previous prefetch matches, the accuracy bit will set

to zero. preState can only be updated until the fifth access. When a page entry is

evicted, all of the data will be discarded except pageSign.

4.2 Multi-Degree Prefetch

The proposed prefetcher can predict multiple addresses upon one LLC access

by taking the predicted addresses as the new histories for high-degree prefetches.

Multi-degree prefetch for LSTM prefetcher only happens on LLC hit. If a mean-

ingful LLC hit happens and the accuracy bit for this page entry is already set to

1, this means the current prediction is on the right path, then three more prefetch

requests will be issued to catch the opportunity for timely prefetches. But once a

multi-degree prefetch is issued, before the accuracy bit is set to zero, no more multi-

prefetch can be issued in this page.

When multi-degree prefetch happens, after the normal prediction output is com-

puted, state vectors c and h generated at the last time step will be used as input to

calculate the next delta. Fig. 4.2 shows an example of multi-degree prefetches. Since

the delta prediction process is a sequential process, when degree depth increase, the

prediction latency will increase too. However, the extra prediction process can be

overlapped with the training process, so the total process time for each access will

not increase. No extra space is needed for implementing multi-degree prefetch. This

is because the calculation process is sequential, and same state space can be shared

among the additional time steps.
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s1 s2 s3 s4 s5preState

c1 h1 c2 h2 c3 h3 c4 h4

Three higher-degree prefetches

c0 h0

s1 s2 s3 s4update weigth

diff c h diff c h diff c hdiff c h

delta1 delta3 delta4 delta5delta2
diff h diff h diff h diff h

s5 s5 s5

c5 h5 c6 h6 c7 h7

h5 h6 h7 h8

FIGURE 4.2: Multi-degree prefetch

4.3 Leveraging Next-line Prefetcher to Accelerate Prefetches

In many applications, +1 is a commonly seen delta. When predicting +1 pat-

terns, next-line prefetcher is the most efficient approach with low cost and easy

implementation. However, next-line prefetcher can not predict complex delta pat-

terns. In the contrast, LSTM prefetcher suffers from complex calculation and long

latency in predicting simple patterns. In order to efficiently predict both simple and

complex patterns, a combined design is proposed.

In the combined design, a simple next-line prefetcher is implemented at the LLC

level and monitors the previous four delta patterns stored in the LSTM prefetcher.

If two continues +1 delta is seen, then the system assumes that there will be good

spatial locality around this area, and the next-line prefetcher will be activate. It will

generate three prefetch requests all with +1 delta in order to utilize the spatial local-

ity. In the mean while, the LSTM prefetcher is still running the prediction process

and getting trained. Because LSTM prefetcher needs continues trace to make future

prediction. After the the long latency for LSTM prefetcher, if the predicted value is

not +1, the LSTM prefetcher will issue the new prefetch, because this prediction is

considered to be more accurate than the next-line prefetcher. If the predicted value

is +1, no repeated prefetches need to be issued and the prediction is accelerated by

the next-line prefetcher. An additional two-bit saturating counter is required by the

next-line prefetcher to calculate the global accuracy for itself, if the global accuracy

is below a threshold, then the next-line prefetcher will be turned off to avoid further

pollution.

A simple example is given to show when accelerate prefetch works. Consider
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pattern (a, 1, 1, 1, 1, 1, b) continues repeating in a single page, while (a, 1, 1, 1, 1, 1) is

trained to predict (b), prediction of the last three 1 in the +1 string will get accelerate.

In this way, more prefetch requests can be issued more timely, and catch more hit

opportunity.

Table based prefetcher can predict +1 pattern in a short time (longer than next-

line but short than LSTM prefetcher), and it works well when continues +1 delta

and complex delta pattern shows in the different pages. Because in this case, the +1

pattern is always holding one DPT entry during the entire application running time.

However, when patterns shown in the above example exists, since cascade table has

limited length, the +1 entry in the DPT table will be messed up by other patterns.

Because (1,1,1 -> 1), (1,1,1 -> a), (1,1,1 -> b) exists simultaneously, and keep kicking

out each other in the same entry. So combined LSTM and next-line prefetcher design

can be more efficient than traditional table based design in predicting this kind of

patterns.
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Chapter 5

Implementation of the LSTM

Prefetcher

For neuron network algorithm, hardware implementation is a traditional chal-

lenge, since this kind of approach generally requires large amount of calculation

and huge storage space. In this section, data encoding mechanism and different

hardware design choice are analyzed to show that the given LSTM algorithm can

be implemented with affordable hardware overhead, and acceptable latency.

5.1 Delta Representation

System input for LSTM network consists of two parts, one part is pageSign,

the other part is delta. The reason of having two parts is to provide opportunities

for weight sharing and to help reducing the aliasing problem. The two parts are

encoded in binary representations separately. Since delta could be a negative value,

two’s complement representation is used. System output is the predicted binary

results for pageSign and delta, output without pageSign part is used to predict the

next address.

5.2 Intermediate

In addition to input and output, intermediate data required by LSTM include

parameters and state vectors. Using floating point to store the intermediate data

will lead to a high accuracy. However, floating point operation requires complex

functional units.
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The alternative is to use the fix-point representation. An offline LSTM network

experiment shows that the dynamic range of this application is not very large: the

largest value for the intermediate data is 32, and the smallest value is 0.001. A 16

bit fix point representation can be used with a 6 bit signed integer part and a 10 bit

fractional part.

5.3 Functional Units

5.3.1 Total Computation Needs

When certain input is given, LSTM network requires computation to get the

output results. The computation process on each meaningful LLC access comprised

two parts, delta prediction and system training. Functional units can be shared

between these two processes at different time steps.

Delta prediction is a sequential process with five time steps (at each time steps

a different input is given). After the delta prediction process, a prediction result

is generated by the network and the prefetch requests can be sent. On the critical

path for each time step, one dot product computation, two additions, two multipli-

cations, and 1 activation are required. Every elements in the same matrix or vector

are processed in parallel. So the total latency for the prediction process is

5⇥ (T
dot

+ 2⇥ T

add

+ 2⇥ T

multiply

+ T

activation

)

For the training process, losses are calculated during four sequential time steps

to update the network parameters. At each time step, one dot product computa-

tion, four additions, and four multiplications are needed. The total latency for the

training process is

4⇥ (T
dot

+ 3⇥ T

add

+ 4⇥ T

multiply

)

Trade-offs exist between latency and hardware overheads. Parallel processing

reduces the latency while increase hardware overheads. Calculations within a delta

prediction or training process are sequential among different time steps. However,

individual operation (e.g, vector operations) can have data-level parallelisms. In

addition, upon observing an LSTM access, the prediction and training can be pro-

cessed in parallel. An example is given in the following paragraph to demonstrate
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both the sequential and the parallel approaches. In this example, k LSTM blocks

are assumed in the network. Dot product computation, addition, and activation all

exhibit a one-cycle latency, while multiplications has two-cycle latency.

For the sequential design, the new delta prediction process starts after the previ-

ous training process is done, and the state is updated. Upon receiving a new LSTM

access, if the previous training have completed, the total latency will be 40-cycle

prediction latency. If the previous training have not completed, the prediction can

wait upon to 48 cycles to start. The sequential implementation does not allow more

than one prediction in the system. If two access arrive within 40 cycles, the second

one is dropped. For the parallel design, delta prediction process can be overlapped

with the previous training process, so the latency will always be 40 cycles. How-

ever, In the parallel implementation, all of the states need to have a second copy, so

there will be more storage overheads. Hardware can be shared in both approaches,

only one dot product unit and one activation unit are needed, for the basic compu-

tational units, 6⇥ k multipliers and 4⇥ k adders are needed to maximize data level

parallelisms at the operation level.

5.3.2 Implementing Activation Function

The activation function transforms an input to an output using a given function.

LSTM network uses two activation functions, sigmoid function and hyperbolic tan-

gent function tanh (Fig. 5.1). Multiple mechanisms have been proposed for imple-

menting these two functions in hardware [26] [27] [28] [29].

FIGURE 5.1: Activation function (left: sigmoid, right: tanh)
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Look up table (LUT) [30] [31] [32] [26] is the most commonly used approach to

implement the sigmoid and tanh functions. In this approach, the function curve

is divided into different segments and the corresponding output values for each

input segment are stored in a table. Only one memory access time is required to

get the function outputs, thus LUT is the fastest implementation as compared to

other techniques. However, in order to get better accuracy, large storage space are

required for LUT implementation. Conventional LUT design requires more than

1KB memory space. A recent optimized LUT design[33] decreases this size to less

than 15B, while having the maximum error distance less than 0.02.

Piecewise linear approximation (PWL) and piecewise nonlinear approximation

are two alternative implementations [34] [35]. These two approaches use some sim-

ple functions to approximate the complex activation functions. The advantage is

they do not have large storage overhead. However, the computations need longer

latency than LUT based implementation.

For LSTM prefetcher design, since latency is the most critical parameter directly

related to prefetcher performance, we choose to use LUT to implement both sigmoid

and tanh funcion.

5.3.3 Implementing Matrix-Vector Multiplication

FIGURE 5.2: An example of mapping vector-matrix multiplication to
RRAM crossbar array (adapted from [1])

When doing matrix-vector multiplication, the emerging nonvolatile memory

(NVM) crossbar array shows a great potential. As shown in Fig. 5.2, the function

21



of calculating the current in a crossbar array has similar format as a matrix-vector

multiplication. If the input vector are properly mapped to the input voltages and

the weight matrix is programmed to the resistors, the matrix-vector multiplication

can be done by simply sampling the current flowing in each array. Thus lead to a

fast efficient implementation of matrix-vector multiplication.

The resistance is programmable, before getting the result of matrix-vector mul-

tiplication, resistance array need to be set proportional to the correspond weight

matrix values. If this mapping process happens frequently, the latency will be long

due to the long write latency of NVMs. Luckily, for LSTM network, since pattern

exists during the entire application trace, after the states are converged, the weight

matrix will not change. So the average latency will be acceptable. By using NVM-

based crossbar, dot product computation can be done within a single clock cycle.
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Chapter 6

Case Study

In this section, our design configurations for LSTM network is given, and hard-

ware overheads for this proposed design is calculated in section 6.1. An offline case

study is conducted in order to further analyze the prefetching mechanism. Results

of the offline case study are shown in section 6.2.

6.1 Prefetcher Configurations

We simulated LSTM prefetcher with one 64-entry offset table, one 64-entry page

table, and one LSTM network. We choose 4KB os page size and 64B cache block

size. Page offset ranges from 0 to 63, and the delta value is between -63 to 63. We

use a 7-bit 2’s complement binary representation for deltas, and a 6-bit binary rep-

resentation for the pageSign. The total input length is 13 bits.

In the LSTM network, 13 LSTM blocks form a hidden layer, which connects to 13

input and 13 output nodes. The network structure is shown in Fig. 6.1. There are 4

weight matrices (W
g

,W

i

,W

f

,W

o

) related to each gate within each block, each with

a size of 13*26 bits. Each gate also requires 4 bias vectors (b
g

, b

i

, b

f

, b

o

), each of which

has 13 bits. We choose history length of 5, thus, 5 history deltas are used as inputs

in 5 time steps to make the prediction. Each of the five state spaces contains 6 state

vectors (i, f, o, c, s, h) with a size 13. Data stored in the matrices are all 32 bit floating

point values. The learning rate is set to 0.2, which gives the best performance for

the system. Total storage overhead for this design is calculated in Table 6.1. With

a 16-bit fix-point inner data representation, total storage overhead for this design

could be decreased to 4.4KB. In this design, we choose the sequential approach for

delta prediction and system training.
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h1 h2 h13

x1 x2 x13

[h1- h13]

… …

… …

[x1- x13]

FIGURE 6.1: Network structure

TABLE 6.1: LSTM Prefetcher Storage Overheads

Component size in bit size in Byte

offset table 64⇥ (6 + 7) 104B
page table 64⇥ (20 + 6 + 4⇥ 7 + 4⇥ 6 + 1 + 2⇥ 13) 840B
weight matrices 4⇥ 13⇥ 26⇥ 32 5408B
bias vectors 4⇥ 13⇥ 32 208B
state vectors 5⇥ 6⇥ 13⇥ 32 1560B
total 7.9KB

6.2 Offline Result and analysis

Although the idea of using delta history to predict the address of future memory

access for LSTM is similar with VLDP [12] and signature path prefetcher (SPP) [21],

LSTM algorithm is different from traditional table based algorithms. We conducted

an offline study to analyze the performance of LSTM prefetcher on three selected

traces.

We build both LSTM prefetcher and VLDP prefetcher offline without multi-

degree prefetching or leveraging the next-line prefetches. Generated traces are used

TABLE 6.2: Comparison Between VLDP and LSTMP Prediction Ac-
curacy

Prefecher / Trace a1a2a3...a65 a[ˆa]{20,20}b[ˆa]{20,20}c[ˆa]{20,20} a{6,6}[ˆa]

VLDP Accuracy 0% 75% 26.6%
Num of issued prefetch 0 17991 46979

LSTMP Accuracy 98.6% 83.5% 61%
Num of issued prefetch 0 17989 46991
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to test accuracies of these two prefetchers. The traces are represented by regular

expressions. To ensure fairness, the VLDP is built with five DPTs to support delta

pattern searches with history length of five, which is the same as the number of time

steps in LSTM prefetcher. The number of useful prefetches is counted by compar-

ing each newly arrived delta value with the last prefetched delta value. Accuracy

results and the number of issued prefetches are shown in the table 6.2.

The first trace consists of a long repeating pattern (a1, a2, a3...a65), VLDP can

not make any prediction because the useful sub-string information will be flushed

before it is encountered again. For example, when (a1, a2) get accessed, sub-string

(a1, a2) will be recorded to DPT table. However, in the following accesses, (a2,

a3), (a3, a4) ... (a64, a65) will be recorded in the DPT table. Since the DPT table

has limited number of entries, (a1, a2) will be flushed before encountering the next

(a1, a2) pattern. As a result, VLDP will lose all of the prediction opportunities.

The result shows VLDP issues zero prefetch, and the accuracy is zero. However,

for the LSTM prefetcher, the network remembers the entire sequence directly. After

training properly, any delta in this sequence given the network inputs will result

in an output which is the exact next delta in the same sequence. These feature

gives LSTM prefetcher the potential in remembering long sequence in a simple way,

thus leads to a higher accuracy. The test results show that LSTM can achieve 98.9%

accuracy in predicting the first trace.

The second trace consists of pattern a[ˆa]{20,20}b[ˆa]{20,20}c[ˆa]{20,20}, which

means delta (a) is followed by another delta other than (a), these pattern repeats

20 times, then delta (b) is followed by another delta other than a, which is also re-

peats 20 times. An example could be (a, b, a, c, a, d ... b, b, b, c, b, d ... c, b, c, c, c,

d ... a, b, a, c, a, d ... ). In this kind of patterns, (a, b) only lead to (a) in the entire

sequence. However, since next (a, b -> a) pattern only appears after a long time,

previous information is already flushed since VLDP only has limited entry. Thus

prevent it from making correct prediction. Our experiment shows a 27.4 % accu-

racy for VLDP on this trace. For LSTM prefetcher, 63.7 % accuracy can be achieved.

The third trace includes a repeating pattern a{6,6}[ˆa], which means six deltas (a)

is followed by a delta different from a, for example (a, a, a, a, a, a, b, a, a, a, a, a, a, c, a,

a, a, a, a, a, d ...) is one of such traces, VLDP shows a 77.7 % accuracy, whereas LSTM
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prefetcher shows a 85 % accuracy. LSTM works better because VLDP suffers from

the aliasing problem. Limited history length of the DPT table prevent VLDP from

get enough history information to make correct predictions. Since delta history (a,

a, a, a, a) can lead to different next deltas (a), (b), (c), (d) ... , no matter how many

times these patterns appears, VLDP will always lose the chance to correctly predict

the delta other than (a). What’s more, entry (a, a, a, a, a -> a) can be messed up

too, which leads to more performance degradation. LSTM prefetcher has aliasing

problem too, which leads to its mis-prediction on (b), (c), (d)..., however, it can

correctly predict all of the (a)s. This is because LSTM prefetcher is better at tolerating

noises.

Using previous state of an newly evicted delta as one of the prediction input

is another specific design choice made for the LSTM prefetcher. Since local delta

history shift left once on each access, and a certain delta will be evicted after four

following delta accesses in the same page, all of the input data will be trained for

five times. When a delta is evicted, it can not be trained in future accesses. However,

the information of the evicted delta is still used in future predictions. Therefore, the

actual local history used in the LSTM prefetcher is more than five. This property

can help increase accuracy.

When making predictions, table based schemes use local delta string to search

the global table, while LSTM prefetcher needs to do computation to calculate the

state vectors. Calculation takes longer time than searching the tables. However,

LSTM prediction latency can fit in most of the memory access intervals.

While having the advantages mentioned above, LSTM mechanism has it is own

disadvantages too. Warm up time is one major draw back. In the beginning of

the entire access string, LSTM needs to get four to five inputs before it can make

a prediction, because the LSTM network needs time to get trained. This problem

can be alleviated by the global pattern mechanism. If pattern (a, b, c) is a pattern

which has already appeared for serval times globally, when a new page is accessed,

even if delta (a) is observed in the first several access, a prediction (b) can still be

made. However, in some cases where repeating pattens exists in the beginning of

the access sequence within a single page, LSTM prefetcher will lose chances as well.

This side effect of LSTM prefetcher will get amplified when many pages are access
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in an interleaved way and a certain page is frequently evicted and added.

Another disadvantage shown when the aliasing problems frequently appear in

a single page. In this case, LSTM prefetcher will always use the latest observed

sequence to make the prediction. The worst case happens when patterns like (a,

a, b) and (a, a, c) interleaves without any pattern. When this situation happens,

LSTM prefetch will always be wrong in predicting different deltas (b and c) for both

sequences. One possible way to help this scenario is to use the offset other than the

delta as inputs, to provide more information to avoid aliasing, which remains as

one of our future works.
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