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Abstract

Since a pulsed power load (PPL) consumes a huge amount of energy within very

short period of time, its deployment might cause large disturbances even instability to a

power system that has limited generation, small inertia, and small ramp rate. To mitigate

the strike during PPL deployment, energy storage system (ESS) is usually installed in

shipboard power system (SPS) to serve as the sole power supply for PPL. To realize fast

charging of the ESS and minimize disturbance during charging, generation control and

charging control of SPS should be well coordinated. For this important but not well

studied problem, this paper presents an adaptive critic design based control algorithm for

a nonlinear model integrating the basic dynamics of synchronous generator and

supercapacitor, which is a popular type of ESS for PPL application. Through interactive

learnings of two neural networks for cost-to-go function approximation and optimal

control approximation, respectively, near optimal control can be realized even under

disturbance and model impreciseness. The algorithm is tested with both detailed single-

and multiple-generator SPS models and tested through both real-time digital and power

hardware-in-the-loop simulations. Simulation results demonstrate the effectiveness of the

developed model and control algorithm.
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1. Introduction

1.1 Background

1.1.1 Shipboard power system

The shipboard power system (SPS) is a microgrid [1] consisting of multiple

generators and a variety of loads. The topology of the notional MVAC SPS model

developed by the Electrical Ship Research and Development Consortium (ESRDC) [2] is

depicted in Fig.1.

Main Generator#1
Port side propulsion

Zonal
Load

Zonal
Load

Zonal
Load

Auxiliary Generator#2 Main Generator#2Starboard side propulsion

PPL

S1 S2

Auxiliary Generator#1

ESS

MVAC (4.16kv,60Hz)
Starboard bus

4.16kv(ac)
-->4kv(dc)

MVAC (4.16kv,60Hz)
Port bus

Zonal
Load

PMSG-3PM SG-1

PM SG-2

PMSG-4

M

M

Figure 1. Topology of the notional MVAC SPS model developed by ESRDC

In the notational MVAC model, four generators (two main and two auxiliaries) are

connected to form a 4.16 kV ac ring bus. Two Propulsion Module (PMs) are connected to

the ring bus through AC/DC/AC back-to-back converters. The back-to-back converter

also allows bidirectional power flow so that the PMs can feed power back to the ring bus

when the PMs decelerate. The ESS that powers the PPL is connected to the ring bus

through a step-down transformer and an AC/DC converter that converts the 4.16 kV ac to

4 kV dc voltages. A large number of circuit breakers are installed on both port and
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starboard buses to switch the SPS between different operating modes, such as cruise

mode and battle mode. The ship service loads are implemented and shown as zonal loads.

More details about the model can be found in [2].

1.1.2 Pulsed power system

Nowadays, naval ships have been equipped with a variety of advanced facilities

including high power radars, electromagnetic launch and recovery systems, and weapons

such as rail guns, which are referred collectively as pulsed power loads (PPL) [3]. Once

triggered, a PPL consumes a huge amount of energy within a very short period of time[4].

The SPS is usually designed to satisfy the loads that is online most of the time instead of

meeting the peak demand of all loads. In addition to a capacity limit, it is nearly

impossible to adjust generations of synchronous generators (SGs) instantaneously due to

the limited generation ramp rates. If a PPL is directly connected to the SPS, the sudden

demand increase could cause huge voltage sags in DC SPS and significant frequency

drop in AC SPS. Under certain conditions,  not only sensitive loads might be tripped

offline but also system-wide instability of the SPS could be incurred [5].

1.2 Motivation

The negative impacts of PPL to SPS have been studied through simulations and

analysis in [6][7][8][9][10][11]. Detailed SPS models are used to investigate the transient

performance and stability of SPS under PPLs of various magnitude, duration, and

frequency. Based on these studies, the first investigated solution for PPL

accommodations is load management. According to the load management solution [4]

[8], the loads that are less critical than PPL for a particular task or during a period of time
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are shed to meet the high power demand of PPL. As can be imagined, the load

management solution will cause degraded or interrupted service. Even if SPS’s

generation after load management can meet the peak demand of the PPL, the generation

might not be able to satisfy the ramp rate requirement of the PPL.

The second solution for PPL accommodation is installing specialized energy storage

systems (ESS). The ESS charging can usually be given a decent amount of time that is

much longer than the duration of PPL deployment, such as 30-second charging vs. 1-

second of PPL deployment. In this way, the huge transient power demand is transformed

into a mild one that can be addressed within a decent amount of time. To further reduce

the negative impacts and overcome the limited ramp rate of SPS, the fully charged ESS

can be disconnected from the SPS and serve as the sole power supply during PPL

deployment. To handle the extreme conditions, a practical PPL solution should integrate

the two solutions of ESS installation and load management.

Currently, the two most popular types of ESS for PPL applications are supercapacitor

and flywheels. There have been discussions on the advantages and disadvantages of these

types ESS in term of initial and maintenance costs, weight, power density, transient

performance, [5] [12][13] [14] [15]. In this paper, supercapacitor is considered due to its

advantages of simple maintenance, good reliability, and high power density [7] [16]. The

concept of controller design can be extended to other types of ESS by considering their

specific static and dynamic properties.

Even though the installation of ESS can alleviate the negative impacts of PPL to SPS,

charging of the ESS still could incur large voltage or frequency disturbances if not

properly handled. Among the few solutions for PPL accommodation in microgrids or SPS,
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the leading ones are limit-based control (LBC) [17] and profile-based control (PBC) [18],

which are used to generate the charging current reference for capacitor-type ESS. Both

algorithms had been tested through experimentation with a medium voltage DC (MVDC)

testbed. The experimental results demonstrated the effectiveness of the algorithms.

However, there is still room for improvement for this important but not well studied

problem. From the experimental results of LBC, one can see that there is a sudden

increase of the output voltage after the capacitor gets fully charged. This is due to the

immediate discontinuation of nonzero charging current. Smooth charging was considered

during PBC design and the interrupted charging current becomes much smaller. In LBC

and PBC, the charging current references are determined in an offline manner and held

fixed after that. Since possible load changes are not considered, the charging current might

become impractical during severe load increase and conservative during durative load

decrease. Aggressive charging will cause large disturbance, and conservative charging will

unnecessarily prolong charging duration.

1.3 Contributions and Organization
To better accommodate the PPL in SPS, improved closed-loop control algorithms that

can provide fast and smooth charging are needed. This can be realized by well

coordinating the charging and generation controls with sufficient consideration of

uncertainties and constraints. To facilitate advanced control design, a simple SPS model

is first developed. The model can represent the basic dynamics of SG and supercapacitor.

Base on the model, an adaptive critic design (ACD)-based cooperative control algorithm

is developed. First proposed by Werbos [19], ACD has been widely accepted as a

promising practical optimal control solution for nonlinear systems in the presence of
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noise and uncertainties [20]. In ACD-based control schemes, there are usually two neural

networks (NNs), a critic NN and an action NN [21] [22] to approximate the cost-to-go

function and the optimal control, respectively. Through continuously interactive learning,

near optimal control can be realized even under disturbance and model impreciseness

[23]. The algorithm is tested with detailed single-generator model through power

hardware-in-the-loop simulation and detailed multiple-generator SPS model through real-

time digital simulation. Simulation results demonstrate that the designed algorithm can

provide fast and smooth charging of the ESS.

The rest of this paper is organized as follows. In Section II, a simple control model

for MVAC SPS is developed. In Section III, the ACD based control algorithm for PPL

accommodation is presented. In Section IV, real-time digital simulation results with both

single- and multiple- generator SPS models are presented and power hardware-in-the-

loop simulation results are also provided. Concluding remarks are given in Section V.

This thesis is mainly based on one of my paper accepted by IET Generation,

Transmission & Distribution.
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2. Problem Formulation

Even though the notional MVAC SPS model is very complicated, the power that

flows in the system can be represented with a simplified one-generator two-loads SPS as

shown in Fig.2. The SG in Fig.2 represents the aggregated model of multiple SGs. One

load represents the supercapacitor for PPL accommodation, and the other load represents

all other loads and losses in the system. During supercapacitor charging, S1 is closed and

S2 is open. During PPL deployment, S1 is open and S2 is closed. PM stands for the overall

mechanical power input to the SG. PC is the charging power for supercapacitor. PL stands

for all other active power loads and loss. PG =PL+PC is the total active power generation

of the system. Since cooperative control will calculate generation and charging control

references, it is unnecessary to consider too much model details. Even if the simplified

model can be used for control design, the designed algorithms should be tested with

detailed SPS model to evaluate the effectiveness of the developed model and algorithm.

Synchronous
Generator

Other Loads and
System Loss

S2

Pulsed Power
Load

S1

PL

PC

VC

IC

Generation Control System Charging Control System

PM PG

Figure 2. Simplified SPS topology for model development

To model the generation control system, the simple SG model shown in (1) can be

used [24][25].
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1 1( ) ( )M G M L C Cf k P P k P P I V     (1)

where f is the system frequency, k1 is a constant decided by generator’s parameters

including the inertia constant. It is important to note that supply-demand mismatch

(difference between PM and PG) causes system frequency oscillation. To achieve good

system-wide static and dynamic performance, PM must be properly adjusted based on

demand.

The i-v characteristic shown in (2) is adopted to model the charging control system by

2C CV k I (2)

where VC is the capacitor voltage, IC is the charging current, and k2 is the reciprocal of the

capacitance of the supercapacitor C.

(1) and (2) together form the simplified MVAC SPS model for cooperative controller

design. The model has several interesting properties from control point of view, such as

being nonlinear, consisting of strongly coupled subsystems, and having multiple inputs

and multiple outputs. It is true that the practical SPS model is far more complex

compared to the above simplified second order model. However, a detailed model will

make the control algorithm extremely difficult to design, or even is beyond the capability

of existing control theory. In addition, no model can fully grasp the dynamics and

nonlinearity of the complicated SPS. As demonstrated through simulation studies, the

model is simple yet can represent the basic dynamics of the generators and supercapacitor

on board.

In the model, f and VC are the states as well as outputs of the system, i.e., x=y=[f,

VC]T. To achieve fast ESS charging, VC should be charged to a desired level within a

short period of time. To achieve stable charging, the system frequency should be
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stabilized around its nominal value of 60 Hz. The control objective can be realized by

properly designing the control inputs, PM and IC, i.e., u=[PM, IC]T.

Based on Euler’s approximation, above continuous-time dynamic model can be

discretized as

1 1 2

2

[ ]
[ 1] [ ] [ ] [ ]

0

[ 1] [ 1]

k T k Tx k
x k x k u k d k

k T

y k x k

 
    

 
  

(3)

where [ ] [ ] [ [ ] [ ]]T
Cx k y k f k V k  , and [ ] [ [ ] [ ]]T

M Cu k P k I k . 1 2[ ] [ [ ] [ ]]Td k d k d k stand for

the bounded uncertainties, intentionally added to represent various model inaccuracy and

external disturbance.

In this paper, the objective of the controller is to minimize frequency oscillations and

to manipulate the output [ ]y k to track the predefined voltage charging profile, i.e.,

[ ] [ [ ] [ ]]T
d dy k f k V k . Thus, the tracking error can be readily defined as

[ ] [ ] [ ]de k y k y k  (4)
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3. Adaptive critic design based control

3.1 Preliminaries

In this section, some necessary background on approximation property of NN and

ACD are given. The proposed controller design is presented afterwards.

3.1.1: Approximation property of NN

The commonly used property of NN for control is its capability for approximation

and adaptation [26]. Let x be the input vector and y be the output vector, then a general

function associated with the input and output of a commonly used two-layer NN can be

written as:

     ( ) ( )T T Ty f x W V x Wx x x      (5)

where V and W are the hidden layer and output layer weights, respectively. Φ(x) is the

activation function, and ε(x) is the reconstruction error.

If V is fixed, the only design parameter in the NN is W matrix and this NN becomes a

simplified version of a function link network (one layer NN), which is easier to tune. It is

demonstrated in [27] that, if the hidden layer weights V are chosen initially at random

and held fixed while hidden-layer neurons are sufficiently large, the NN reconstruction

error ε(x) can be made arbitrarily small since the activation function vector forms a basis.

That is the reason why  T TW V x is replaced by  TW x in (5).

3.1.2: Adaptive critic design

ACD is an NN-based optimization and control technique that solves the classical

nonlinear optimal control problem by combining concepts of approximate dynamic
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programming (ADP) and reinforcement learning. The central idea of ACD approach is

that the optimal control law and cost function are approximated by online adapting two

NNs, namely, an action NN and a critic NN. Instead of finding the exact minimum, ACD

utilizes the two NN to approximate the Hamilton–Jacobi–Bellman equation associated

with optimal control theory [28]. The adaptation process of the two NN starts with a

nonoptimal, arbitrarily chosen control by the action NN; the critic NN then guides the

action NN toward the optimal solution adaptively. During the process, neither of the NNs

needs any “information” of an optimal trajectory, but only the desired cost needs to be

known [29]. In addition, this method does not require the difficult offline training and can

be easily implemented.

To obtain the optimal control is to solve the Bellman equation that optimizes the cost-

to-go function [ ]J k of the system, which is defined as

0

[ ] ( [ ], ) [ ] [ 1] [ ]i

i

J k J x k u r k i J k r k 




      (6)

where [ ]u k is a control policy at k instant step, ( )0 1   is the discount factor for the

infinite-horizon problem. The user- defined utility function [ ]r k can be viewed as a

system performance index for the current step based on the tracking error. According to

the Bellman optimality, if a control action optimizes the cost-to-go function [ ]J k , then it

optimizes the utility function r from k step and onward.

3.2 Adaptive Critic Design Control algorithm design

The block diagram of the proposed control solution is shown in Fig. 3, where the

action NN is providing control signal to the MVAC SPS while the critic NN
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approximates the cost-to-go function. In Fig. 3, the information flow of the NNs’ inputs

and outputs is illustrated using solid lines while the information flow for the NN updates

is illustrated using dashed lines.

Action
NN

Critic
NN

γMVAC
SPS



J[k]

J[k-1]

r[k-1]
x[k]
e[k]

Z-1

x[k]



u[k]


Figure 3 Block diagram of the ACD-based control solution

3.2.1: Design of Critic NN

In this paper, a critic NN is utilized to approximate the target cost-to-go function [ ]J k .

Normally, the actual value of the kth step of [ ]J k is unachievable in an online learning

framework. Therefore, the critic NN needs to be tuned online in order to guarantee that

the output of the critic NN approximately converges to the true [ ]J k .

Based on the approximation property of NNs, the optimal cost-to-go function *[ ]J k

can be estimated by the critic NN with arbitrarily small approximation error ( [ ])c x k as

*[ ] [ ] ( [ ]) ( [ ])T
c c cJ k W k x k x k   (7)

where cW is the target weights of the critic NN.

Considering the fact that the target weights of the critic NN are unknown, the actual

NN weights have to be updated online, and its actual output can be expressed as

ˆ ˆ[ ] [ ] ( [ ])T
c cJ k W k x k  (8)
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where ˆ
cW is the approximation of cW , and the approximation error is defined as

ˆ[ ] ( [ ] - ) ( [ ])T
c c c ck W k W x k   (9)

Then the prediction error of the critic NN or the Bellman error [21] can be formulated

as a function of two successive predicted values of the cost-to-go function ˆ[ ]J k .

ˆ ˆ[ ] [ ] [ 1] [ ]ce k J k J k r k    (10)

Accordingly, the utility function is defined in the standard quadratic form as

Error! Reference source not found..

[ ] ( [ ] [ ]) ( [ ] [ ]) [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

T T

T T

d d G G

C d C d C C

r k k k Q k k u k Ru k

f k f k f k f k P k P k
Q R

V k V k V k V k I k I k

   

        
                

d dy y y y

(11)

where Q and R are diagonal positive definite matrices. The second part of

Error! Reference source not found. is a standard term representing control effort that

could be regarded as the energy consumption.

The objective function of the critic NN to be minimized can be defined as a quadratic

function of the prediction error.

21 1
[ ] [ ] [ ] [ ]

2 2
T

c c c cE k e k e k e k  (12)

After

combiningError! Reference source not found.,Error! Reference source not found.

andError! Reference source not found., the gradient of the critic NN weight updating

rule can be obtained using the chain rule as

ˆ[ ] [ ] [ ] [ ]ˆ [ ] ˆ ˆ ˆ[ ][ ] [ ] [ ]

( [ ]) [ ]

c c c
c c c

cc c

c c c c

E k E k e k J k
W k

e kW k J k W k

x k e k

 

 

   
    

  

  

(13)
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where (0 1)c c   is a positive learning gain.

Finally, the critic NN output weights updating rule can be given as

Error! Reference source not found. by combiningError! Reference source not found..

ˆ ˆ ˆ ˆ[ 1] [ ] ( [ ])( [ ] [ 1] [ ])c c c cW k W k x k J k J k r k         (14)

3.2.2: Design of Action NN

The action NN functions as an online learning-based optimal controller for the

MVAC SPS. The purpose of the action NN design is to track the desired references and

to minimize the cost function simultaneously.

By definition, the tracking error dynamics under control can be represented as.

[ 1] [ 1] [ 1]

( [ ]) ( [ ]) [ ] [ ] [ 1]
d

d

e k x k x k

f x k g x k u k d k x k

    

    
(15)

From Error! Reference source not found., the desired feedback control law can be

given as

1[ ] ( [ ]) ( ( [ ]) [ 1] [ ])d du k g x k f x k x k le k     (16)

where 2 2l   is a design matrix selected such that the tracking error [ ]e k converges to

zero asymptotically.

Since the exact system dynamics is assumed to be unavailable, the control signal

[ ]du k cannot be obtained directly. Therefore, the approximation capability of NN is

adopted to approximate the desired control signal as

[ ] ( [ ]) ( [ ])T
d a a a a aku W k kx x   (17)

where aW is the desired weights of the action NN, [ ] [ [ ] [ ] [ 1]]T
a d dx k x k x k x k  is the

action NN input vector, and ( [ ])a ax k is the NN reconstruction error.
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Considering the fact that the target weights of the action NN are unknown, the actual

NN weights have to be tuned online. The real-time output of the action NN can be

expressed as

ˆˆ[ ] ( [ ])T
a a au k W x k  (18)

where ˆ
aW is the approximation of aW .

Substituting Error! Reference source not found. and

Error! Reference source not found. into Error! Reference source not found. yields

the closed-loop tracking error dynamics

[ 1] [ 1] - [ 1] [ ] ( [ ]) [ ] [ ]d a ae k y k y k le k g x k k d k       (19)

ˆ[ ] ( [ ] - ) ( [ ])T
a a a a ak W k W x k   (20)

[ ] ( [ ]) ( [ ]) [ ]a a ad k g x k x k d k   (21)

For the purpose of tracking the desired references and minimizing cost function, the

error for the action NN can be formulated as a function of the estimation error [ ]a k and

the critic signal ˆ[ ]J k . Thus, by defining the cost function vector as ˆ ˆ[ ] [ ] [ ]
T

J k J k J k    , the

action NN error can be given as

1
[ ] ( [ ]) [ ] ( ( [ ]) [ ]a ae k g x k k g x k J k


  (22)

Thereafter, the objective for online tuning of the action NN is to minimize the error

defined as

1
[ ] [ ] [ ]

2
T

a a aE k e k e k (23)

By combining Error! Reference source not found.,

Error! Reference source not found., Error! Reference source not found., and
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Error! Reference source not found., the updating rule for the action NN weights can be

written by utilizing the steepest descent method and the chain rule as

[ ] [ ] [ ] [ ]ˆ [ ] ˆ ˆ[ ] [ ][ ] [ ]

( [ ])( ( [ ]) [ ]) [ ])

( [ ])( [ 1] [ ] [ ])

a a a a
a a a

a aa a

T
a a a a

T
a a a

E k E k e k k
W k

e k kW k W k

x k g x k k J k

x k e k le k J k


 



 



   
    

  

   

     

(24)

where (0 1)a a   is the adaptation gain of the action NN.

Thus, the updating rule of the action NN weights can be further rephrased as

ˆ ˆ( 1) [ ] ( [ ])( [ 1] [ ] [ ])T
a a a a aW k W k x k e k le k J k       (25)

Finally, the stability of the closed-loop system with ACD-based control algorithm can

be guaranteed in following theorem.

Theorem 1: Consider the discrete-time SPS system given by (3). Let the control

signal be provided by the action NN Error! Reference source not found., with the critic

NN Error! Reference source not found.. Further, let the weights of the action NN and

the critic NN be tuned by Error! Reference source not found. and

Error! Reference source not found. respectively. Then, the closed loop tracking error

[ ]e k , and the NN weight estimate errors of the action and critic NNs, [ ]a k and [ ]c k are

uniformly ultimately bounded.

Proof: The proof is similar to that in [22] and thus omitted here for simplicity purpose.

3.3 Control design Implementation

The implementation of the ACD based optimal controller is illustrated in Fig. 4. The

control signals, PM and IC, generated by aforementioned ACD control law, are used as

control references for the inner control loops.
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Since the control law only produces the overall generation PM, generation dispatch

process is needed to assign generation tasks to the multiple generators within the SPS.

Energy efficiency is important for the distance and duration that a ship can travel. For

generators of different types, main and auxiliary, the generation cost functions are

different. Thus, the generation task should be optimally dispatched within multiple

generators. Considering that PM has brought supply-demand balance into consideration,

only local constraints such as generation bounds need to be considered. To improve

reliability and survivability, the distributed generation control algorithm proposed in [30]

can be revised and introduced. The charging current reference can be easily tracked by PI

(Proportional integral) or hysteresis based controllers.

Figure 4 Schematic diagram of the control

3.4 Simulation and Experiment studies

The developed algorithm has been tested with SPS models of different size and

complexity. The algorithm was first tested with the simplified mathematical SPS model

formulated in Error! Reference source not found. and
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Error! Reference source not found.. Then, it was tested with a detailed single-generator

SPS model through PHIL simulation. Finally, a detailed multiple-generator SPS model is

used to test the designed algorithm through real-time simulation. In this way, the

performance of the designed algorithm can be evaluated accurately.

Since directly setting the reference of VC to its final value (VC
*) might create large

disturbance during the initial stage of charging, the profile-based VC
* setting algorithm

proposed in [18] is employed. The profile-based reference setting algorithm can avoid

significant changes in reference signal and can guarantee charging completion within

designated time under ideal conditions. The controller parameters are initially set as:

diagonal positive definite matrices Q and R are set to be [1 0; 0 1] and [1 0; 0 1],

respectively; discount factor γ for this infinite-horizon problem is 0.9; the design matrix l,

which is used to force the tracking error to converge to zero asymptotically, is selected as

[0.0005 0; 0 0.0005]; the adaptation gains for the action NN and critic NN are 0.5 and

0.1, respectively; the hidden layer of the action and critic NNs has 10 neurons, i.e.,

na=nc=10.

3.4.1 Test with simplified mathematical model through offline simulation

Before testing the proposed control algorithm under unmodeled dynamics, it is first

evaluated with a second-order mathematical model formulated using

Error! Reference source not found. and Error! Reference source not found.. The

goal is to charge VC from 0 volts to 400 volts, which means 161.6 kJ will be accumulated

in a 2.02 F supercapacitor within 23 seconds. The simulation results are provided as

followed.
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In Fig. 5, one can see that the charging current increases much faster at the beginning

than at the end. Since PC=VCIC, IC does not need to be big during later stage of charging

due to the increase of VC. There is neither over-charging nor oscillation at the end of the

charging process.

As it can be seen in Fig. 6, the tracking performance of VC keeps improving and is

fully converged before the designated time. This means the charging can be completed as

expected. However, charging process cannot be completed on time under significant and

durative increases of PL, unless load shedding were deployed. In Fig. 6, one can see that

the voltage tracking performance during the initial charging stage (0 s ≤ t ≤ 5 s) is not that

good. This is because the objective of the control algorithm is to minimize the tracking

error for both f and VC. Initially, the control of VC is compromised to well regulate f, as

shown in Fig. 7.

As shown in Fig. 8, initial PM is not able to meet the charging demand. To maintain

the supply-demand balance, the rotational potential energy is released to the system. That

is why noticeable yet acceptable frequency drop is observed during that stage.
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Figure 5 IC of system response with the simplified single generator SPS model.
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Figure 8 PM and PC of system response with the simplified single generator SPS model.

3.4.2 Test with detailed single-generator SPS model through PHIL simulation

To test the designed control algorithms, it is desirable to implement the algorithms

using hardware controllers to control physical devices. However, full-hardware

experimentation is beyond the capability of most research institutions. The closest way is

to test the algorithms through PHIL simulation. During the test, the proposed control

algorithm is implemented using DSP controller to control the subsystems accurately

emulated. The concept is illustrated in Fig. 9.
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Figure 9. Concept of PHIL simulation

The PHIL simulation platform is consisted of an emulated SG and an emulated

supercapacitor. To emulate a physical system, two subsystems, one for signal calculation

and one for signal realization, are needed. During signal calculation, the system to

emulate is modeled as a voltage source, which is connected to a current source model

representing the rest system. The model is simulated in real-time to generate the voltage

signal for a voltage source converter (VSC) to realize. The interaction of the two VSCs

for SG and supercapacitor emulations will change the current and voltage at the coupling

point. The measured current and voltage are then fed to the simulated models to update

the simulation for next round of signal calculation.

During PHIL simulation, the SG is simulated with the one-axis model [31] with

turbine-governor, automatic voltage regulator, and exciter. The equations and parameters

can be found in [32][33]. As illustrated in Fig. 10, the charging circuit for the

supercapacitor is consisted of an active AC-DC converter and a buck converter. The

parameters of the circuit are provided in Table I. An average model for the charging
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circuit is simulated with a DSP controller during PHIL emulation. The

modular/decoupled way of subsystem emulation makes it easier for large-scale system

emulation. The ideal transformer model is used for PHIL simulation due to its simplicity

and effectiveness [26].

VCCVdc C1

lrIl

Vabc

s

Figure 10 Charging circuit for supercapacitor

Table 1 PARAMETERS FOR CHARGING CIRCUIT

Parameter Value Description
r 0.1 ohm Output resistance
l 5 mH Output inductance

Cl 4.7 mF Input filter capacitance

C 2 F
Supercapacitor

(emulated)
VABC 208 V Nominal Voltage
VDC 330 V DC-link voltage

The PHIL simulation of the 3 kW single-generator MVAC SPS shown in Fig. 2 is

illustrated in Fig. 11. Two inverters of a renewable microgrid testbed were used to

emulate the generator and the supercapacitor, respectively. The input to the emulated

generator is provided by a DC power supply. The output of the charging circuit for the

emulated 2 F supercapacitor is absorbed by a pack of batteries. In addition, a variable AC

load was used for initialization and then emulation of PL. The ramp rates of the single-

generator and constraints of the supercapacitor are set in Table II.
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Table 2 CONTROL CONSTRAINTS

Generator PG Supercapacitor IC VC

Ramp-up rate
0.06
kW/s

Upper bound 6 A 85 V

Ramp-down rate
-0.06
kW/s

Lower bound -6 A 50 V

Figure 11 Experiment implementation SPS system

Two DSP control boards are used for real-time simulation of the subsystems and

control of the VSCs. The sampling time for DSP implementation was 100 μs and the two

control boards communicate with each other through CAN bus and the communication

speed is 25 kbits/s. The proposed cooperative control algorithms were implemented on

both control boards. Before the algorithms were implemented in C for hardware

implementation, they were thoroughly tested through Simulink-based offline simulation.

Since we know everything about the microgrid tested, hardware implementation of the

algorithms did not give us too much trouble.

Based on the parameters of the physical system, the control objective is to charge

4.725kJ of energy to the emulated supercapacitor within 23 seconds. The charging



25

process starts at 5 seconds. During the process, VC will increase from 50 V to 85 V. The

PHIL simulation results of the proposed algorithm is summarized in Fig. 12. From VC

response, one can see that the control objective has been realized. IC converges to zero

immediately after the emulated supercapacitor gets fully charged without the undesirable

overcharge or oscillation. The mismatch between VC and VC
* is to balance the control of

f. Even though oscillation of f persists for a few seconds after charging, the magnitude is

very small. Since the detailed model of the emulated SPS is much more complicated than

the 2nd order model used for control, good PHIL simulation results demonstrate the

effectiveness of the developed model and control algorithm.
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Figure 12 Experiments responses based on power hardware in the loop

3.4.3 Test with detailed multiple-generator SPS model on real-time simulation

The proposed algorithm is also tested with a multiple-generator MVAC SPS model

through real-time digital simulation. Parameters of the SPS can be found in [2][34]. The
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simulation is performed with the OPAL-RT real-time simulator in our lab. During

simulation, 3 out of the 5 unlocked CPS cores are used. The simulator can simulate the

SPS model and implement the designed algorithm in real-time without overruns. The

control objective is to charge an 18.75F supercapacitor from 2000 V to 3400 V in 23

seconds. During control implementation, the generations of the two auxiliary generators

are held constant, and the charging demand was shared evenly between the two main

generators. As shown in Fig. 13-16, similar performance like the previous two tests are

observed. The real-time simulation results demonstrate the effectiveness of the designed

algorithm.
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4. Conclusion and Future Work

PPL accommodation in SPS is an important but not well studied problem. Through

ESS installation, the huge transient demand of PPL can be transformed into a mild one by

charging the ESS within a decent amount of time. To realize fast charging of the ESS and

minimize disturbances during charging, generation control and charging control in the

SPS should be well coordinated. In this paper, an ACD-based near optimal control design

is presented based on a simple but effective SPS model. The algorithm is tested with both

detailed single- and multiple-generator SPS models and tested through both real-time

digital and power hardware-in-the-loop simulations. Simulation results demonstrate the

effectiveness of the developed model and control algorithm.

In the future, advanced distributed control algorithms can be designed based on

detailed model of the SPS.
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