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Abstract of the Thesis 

 

Phase locked demodulators are widely used for reception of amplitude 

modulation(AM), phase modulation(PM), and frequency modulation(FM). In this 

research, we concentrated on phase locked FM demodulators. Our main two parts are 

the PLL block and the Optimum Time Varying Filter block. We started our work by 

building up three basic blocks of the PLL; the PFD, the Loop Filter and the VCO. By 

carefully studying the structure and the operation of these blocks, we were able to 

make good choices regarding the types of each block and their parameters. As a result, 

we got the desired results in our PLL simulations. After that, in order to improve the 

quality of the FM signal, we worked on the Optimum Time Varying Filter which is the 

main research part in the overall thesis. We studied the relationship of the optimum 

filter (or matched filter), the optimum time-varying filter and our band pass filter. We 

then derived the necessary equations to realize our synchronous filter. Based on the 

theory and equation discussion, we were able to design the band pass filter. After we 

put all of the blocks together to realize our FM PLL demodulator, we simulated the 

whole demodulator and recovered the FM demodulated signal which showed that we 

had achieved our research goal-namely, to improve the quality of the PLL FM 

Demodulator. 
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Chapter 1:     PLL FM Demodulator Introduction 

 

1.1: PLL Communication Applications and Basic PLL Block Diagram 

The Phase-Locked Loop (PLL) has become an essential component in wireless 

communication systems. To begin with, analog or digital data can be transmitted using a 

PLL over a data link. Historically, the PLL was developed to be used in the analog 

domain. The inventor Henri de Bellescize designed a Vacuum tube-based synchronous 

demodulator for an AM receiver. 

          Phase-Locked loops are used for demodulation of many kinds of modulated 

signals. Applications include coherent amplitude detectors (product detectors), phase 

demodulators (PM detectors), and frequency demodulators (FM discriminators). 

A PLL is a circuit that causes a system to track with another one. More precisely, 

a PLL is a circuit to synchronize an output signal (generated by VCO) with an input signal 

in frequency as well as in phase.  In the “locked” state, the phase error between the 

VCO output signal and the input signal is zero, or it remains constant.  A small phase 

error can often be tolerated. A locked PLL is also said to track the phase information at 

its input signal. A basic PLL Block Diagram is shown in figure 1.1. 
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Figure 1.1    Phase Locked Loop (PLL) Block 

A Phase locked loop (PLL) contains three basic elements (figure 1.1). (1) a phase 

detector(PD),(2) a loop filter(LF), and (3) a voltage controlled oscillator(VCO). A Phase 

detector compares the phase of an input signal with the phase of the VCO output signal; 

the output of the PD is a measure of the phase error between its two inputs. The error 

voltage (ein) is then filtered by the loop filter, whose output (a control voltage) is applied 

to the VCO. The control voltage changes the VCO frequency in a way that reduces the 

phase error between the input signal and the VCO. 

In this way, the three basic PLL blocks work together. This thesis describes 

research aimed at improving a PLL FM demodulator. 

1.2: Introduction of PLL FM Demodulator and Building Blocks 

     Suppose that a frequency-modulated input signal is applied to a PLL. For the loop 

to remain in a lock, it is necessary that the frequency of the VCO track the incoming 

frequency very closely. The frequency of the VCO is proportional to the control voltage 



- 4 - 

 

Vc, so the control voltage must be a close replica of the original modulation on the 

signal. Modulation may therefore be recovered from the VCO control voltage. This is the 

principle of the PLL FM demodulator (PLD). The PLD is a modulation-tracking loop. 

Consider the following definition where θi is the input phase and θii is the phase output 

of the PLL. 

                  PLL closed loop transfer function:     H(s) = 
( )

( )

ii

i

s

s

θ
θ

 

                 The instantaneous frequency modulation m(t) in rad/sec,   m(t) = 
( )id t

dt

θ
 

                Taking the Laplace transform:               M(s) = Sθi(s) 

                VCO transfer function:  Hvco(s) = 
( )

( )

ii

c

s

V s

θ
 = 

vcoK

S
 

                                                       

( ) ( ) ( ) ( ) ( )
( )

ii i
c

vco vco vco

S s SH s s M s H s
V s

K K K

θ θ
= = =  

This shows the transfer function between the original frequency modulation 

‘m(t)’ and the resulting VCO control voltage ‘Vc(t)’ . The message recovered is equivalent 

to the original message, filtered by the closed-loop transfer function H(s) and divided by 

the VCO gain factor Kvco. Vc(t) is a reproduction of m(t). That is why we can demodulate 

our FM signal from Vc(t). Using this basic idea, we pursued our research goal which is to 

improve the quality of this PLL FM Demodulator. 

Everyone knows that if one wants to design a system, the system structure is 

very important. So, before discussing any details, we need to construct the “Phase 
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locked FM Demodulator (PLD) Building Block”, which is the basis of the research 

discussed in this thesis. 

 

Figure 1.2 PLL FM Demodulator with BPF Building Block 

    A conceptual block diagram of a PLD in this project is shown in figure1.2. It 

consists of seven blocks which include voltage control oscillator (VCO1), VCO2, band 

pass filter (BPF), phase detector (PD), low pass filter (LPF), loop filter (LF) and second 

order Butterworth low pass filter. VCO1 and BPF (Part 1) forms high frequency FM signal 

(vfm). PD, LPF, Loop Filter and VCO2 (Part 2) is Phase Lock Loop. The VCO1 block is for 

producing the FM signal. The Band Pass Filter (BPF) block is the new block we have 

researched to get a high quality input signal for the PLL. PD, LP (or with LPF) and VCO 

blocks that make up the PLL. 
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Comparing to other RF front-end circuits, the PLD is a far more complicated 

system, and a combination of many individual small blocks, especially the Optimum 

Time Varying Filter (Band Pass Filter) block. In the following chapters more details of 

each block will be given. 

During the research part of this thesis, the Optimum Time Varying Filter (Band 

Pass Filter) block received the most attention of any of the seven blocks. In the following 

chapters, we begin by discussing the PLL which includes the PD, LPF, Loop Filter and VCO 

blocks, and then later the band pass filter block. 
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Chapter 2:    Description of the PLL Block 

 

      This chapter discusses each of the building blocks in a conventional PLL. Different 

realizations are discussed along with their basic operation. 

2.1: Phase Detector 

2.1.1: Phase Detector Types 

In mixed signal PLLs, there are two broad classes of phase detectors: multiplier 

(or combinatorial) devices and sequential devices. It is useful to see how each type of 

Phase detector works in a PLL; then we can make a choice of which type of detector is 

better in this design. 

Type 1: Combinatorial devices – Multiplier 

     Input to PD: the multiplier type phase detectors has two inputs, denoted ui(t) 

and uo(t), where the input signal ui(t) is typically a sine wave given by 

( )( )  s i ni s i iu t U tω θ= +
  

The second input signal uo(t) is feedback from the VCO 

of the PLL, and is usually a symmetrical square wave signal having the form 

( )( )   r e c to o i i ou t U tω θ= +  

Note that the Fourier series of the square wave signal is:

( )4 4
( ) c o s c o s ( 3 )

3
o o i i o i i ou t U t tω θ ω θ

π π

 
 
 
  

= + + + + ⋅⋅ ⋅
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We get ud(t), the output of the multiplier phase detector by multiplying two input 

signals ui(t) and u0(t) of this PD block. 

*( ) ( ) ( )d i ou t u t u t=  

( ) ( )4 4
s i n ( ) c o s c o s 3

3
i o i i i i o i i oU U t t tω θ ω θ ω θ

π π
 = + + + + ⋅ ⋅ ⋅  

 

Let us analysis these phase-detector products. First when the PLL is locked, the 

frequencies ωi and ωii are identical, and ud(t) becomes:  

2( ) s i nd i o eu t U U θπ
 
 
 

= ⋅⋅ ⋅ ⋅ ⋅
, 

where   e i oθ θ θ= −  is the phase error. 

The first term of this series is the desired “DC” term. The higher-frequency terms will be 

mostly eliminated by the loop filter. So we get ( ) s i n ( )d d eu t K θ≈ , where 

detector gain Kd = 2UiUo/π with Kd having dimensions of V/rad, when ϴe is small, we get    

( )d d eu t K θ≈ . Secondly, when the PLL is out of lock, the radian frequencies ωi and 

ωo are different.  The output signal of the multiplier can be written as 

( ) s i n ( )d d i i i i ou t K t tω ω θ θ= − + − + h i g h e r harmonics        

The higher harmonics are attenuated by the loop filter; however, the difference 

frequency of the AC term is the difference ωi-ωii.  Because the output ud is an AC signal, 

its average is zero. This means that the average output signal of the loop filter would 

also be zero. This would make it impossible for the loop to acquire lock, because the 

frequency of the VCO signal would remain permanently hung up at its free running 

frequency ωfr, with a superimposed frequency modulation. However, the AC signal ud(t) 

is actually an asymmetric ‘sine wave’ – that is, the durations of the positive and negative 
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half waves are different. This can be seen by looking at the harmonics. So, there will be 

a nonzero DC component that will pull the average output frequency of the VCO up or 

down, until lock is acquired, 

             
i i i pω ω ω< ∆−                     pω∆  :     pull–in range 

The pull–in process is quite slow.  

Type 2:   Sequential devices - EXOR phase detector 

 

d i ou u u= ⊕  

e i oθ θ θ= −  

         The operation of the EXOR phase detector is similar to that of the linear 

multiplier. The signals in DPLLS are always binary signals. We assume for the moment 

that both signals ui and uo are symmetrical square waves. Let’s discuss different phase 

errors θe. 

         First, at zero phase error, the signals ui and uo are out of phase by exactly 90
0
. 

Then the output signal ud is square wave whose frequency is twice the reference 

frequency; the duty cycle of ud signal is exactly 50 percent. Because the high-frequency 

component of this signal will be filtered out by loop filter, we consider only the average 
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value of ud. The average value du is the arithmetic mean of the two logical levels; it 

will be 0du = . 

        When the output signal ’uo’ lags the reference signal ui ,the phase error θe 

becomes positive. Now the duty cycle of ud becomes larger than 50 percent – in another 

words, the average of ud is considered positive . Clearly, the mean of ud reaches its  

maximum value for a phase error of θe= 90
0
 and its minimum value for θe= -90

0
. Within 

a phase error range of -90
0
<θe<90

0
, du is exactly proportional to ωe and can be written 

as du  = Kdϴe. The EXOR phase detector can maintain phase tracking when the phase 

error ϴe is -90
o
<ϴe < 90

o
.   

When the EXOR phase detector in the unlocked state of the PLL, 0i iiω ω− ≠

. The output signal of the EXOR then contains an AC term whose fundamental radian 

frequency is the difference i iiω ω− . The higher harmonics of which will be filtered 

out by the loop filter. When i i i pω ω ω< ∆− , the acquisition is realized. And the pull-

in process is slow. And it is similar to that described above. 

Type 3:   Sequential devices – JK-flipflop phase detector 

Q

Q du

 

*Q J Q K Q= ∗ + ∗  

This type of JK-flipflop is edge-trigged. A positive edge appearing at the J input 

triggers the flipflop into its “high” state Q = 1, and a positive edge at the K input triggers 
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the flipflop into its “low” state Q = 0. Let’s discuss the phase error “θe”. First, with no 

phase error (θe = 0), ui and uo have opposite phase. The output signal ud then represents 

a symmetrical square wave whose frequency is identical with the reference frequency. 

The condition is considered as du being zero. Secondly, if the phase error becomes 

positive, the duty cycle of the ud signal becomes greater than 50 percent, in another 

words, du becomes positive. Clearly, when the phase error reaches 180
0
, du becomes 

maximum and when the phase error is -180
0
, du is minimum.  

-180
o 

<ϴe < 180
o
,   du  = Kdϴe 

When -180
o 

<ϴe < 180
o
,   the JK-flipflop phase detector can maintain phase tracking. In 

the unlocked state, 0i i iω ω− ≠ . 

As   i i i pω ω ω< ∆− , the PLL can realize the locked state    

Type 4: Sequential devices-phase/frequency detector (PFD) 

       There is another type of phase detector (phase-frequency detector) that enables 

much faster acquisition, because its output signal is not only phase sensitive, but also 

frequency sensitive (in the unlocked state). For the reason we chose this type of PFD in 

our PLL. 

         PFD’s output signal does not only depend on θe(phase error), but also on a  

∆ω = ωi –ωii (frequency error).The PFD can tell whether the ωi of the input signal ui(t) is 

higher or lower than the ωii of the  output signal uo(t). As a result it allows the PLL to get 

locked in the most adverse situation – that is, for arbitrarily large frequency offsets 

between the two input signals.  
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          Have being considered all these types of phase detector. The phase frequency 

detector becomes the first choice in this PLL FM demodulator. 

2.1.2: Phase frequency detector with voltage output 

    (1):  PFD configuration and state diagram 

         A basic PFD consists of a pair of D flip-plop plus an AND gate as shown in figure 

2.1.2a. One output of D-flipflop is “UP”, another is “DN”.  

 

Figure 2.1.2a   Phase-Frequency Detector 

The PDF acts as a tristable device, and can be in three states:    -1, 0, +1. 

 DN = 1,    UP = 0  :  state = -1 

UP = 0,    DN = 0 :  state =  0 

 DN = 0,    UP = 1  :  state =  1 
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Figure 2.1.1b State Diagram for a PFD 

The figure 2.1.2a shows how the ud signal is generated. When the UP signal is 

high, the P-channel MOS transistor conducts, so ud equals the positive voltage Usupply . 

When the DN signal is high, the N-channel MOS transistor conducts, so ud is at ground 

potential. If neither signal is high, both MOS transistors are off, and the output signal 

floats – in other words, it is in the high-impedance state. So, the output signal ud 

represents a tristate signal. 

(2):  PFD Operation in PLL 

        To see how the PFD works in a real PLL system, we start by assuming that the 

phase error is zero. It is also assumed that the PFD has been in the 0 state initially. The 

signals ui and uo are “exactly” in phase here; both positive edges of ui and uo occur “at 

the same time”; hence, their effects will cancel. The PFD then will stay in the 0 state 

forever. When ui leads, the PFD now toggles between the state 0 and 1. If ui lags, the 

PFD toggles between state -1 and 0. It is very clear that ud becomes largest when the 

phase error is positive and approaches 360
0
, and smallest when the phase error is 

negative and approaches -360
0
. When the phase error θe exceeds 2π, the PFD behaves 
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as if the phase error recycled at zero; hence, the PFD period is 2π. When the phase error 

is restricted to the range -2π<θe< 2π, the average signal du becomes: du  = Kdϴe. 

In analogy to the JK-flipflop, phase detector gain is computed by   Kd= s u p

4

U

π
    So, it is a 

phase detector. 

         To recognize the bonus offered by the PFD, we assume the PLL is unlocked 

initially. Then we make the assumption that the reference frequency ωi higher than the 

output frequency ωii . The ui signal then generates more positive transitions per unit of 

time than the signal uo . The PFD can toggle only between the state 0 and 1 under this 

condition but will never go into the -1 state. If ωi is much higher than ωii, the PFD will be 

in the 1 state most of the time. When ωi is smaller than ωii , the PFD will toggle between 

the -1 and 0. When ωi is much lower than ωii, the PFD will be in the -1 state most of the 

time. We conclude that the average output signal ud of the PFD varies monotonically 

with the frequency error ∆ω = ωi – ωii when the PLL is out of lock. It is the record a 

frequency detector. Because du  of the PFD depends on the phase error in the locked 

state of the PLL and on the frequency error in the unlocked state, a PLL which uses the 

PDF will lock under any condition. 

2.2:  Low Pass Filter 

2.2.1:   First order LPF and MATLAB Code 

            A filter is a circuit that processes signals on a frequency-dependent basis. The 

frequency response is expressed in terms of the transfer function H(jω) , where ω=2πf. 

The low-pass response is really characterized by a cutoff frequency ωc, such that 
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H  = 1   for ω <ωc and    H  = 0  for  ω >ωc, indicating that the input signals with 

frequency less than ωc go through the filter with unchanged amplitude while signals 

with ω>ωc undergo complete attenuation. 

In this PLL, a first order low pass filter is used for the removal of high-frequency 

noise from the output signal (ein) of the PFD. Because the frequency of Vaudio is ωaudio= 

2πe3, the LPF’s cutoff frequency ωc needs to be higher than ωaudio. In figure 1.2, we put 

our LPF after the PD block. Following the analysis in chapter 2.1.1, the output signal ud(t) 

of the phase detector  consists of a number of terms. In the locked state of the PLL, the 

first DC component is roughly proportional to the phase error θe; the remaining terms 

are AC components having frequencies of 2ωi, 4ωi ….. .These higher frequencies are 

unwanted signals. They are filtered out by the low pass filter block and the loop filter 

block. So we choose ωc = 2π*2e4 

In here, we need to have the LPF transfer function which will be shown in the 

MATLAB simulation later.  

The transfer function is:    H(s) = 1

i n

I

e
 =  

c

cs

ω
ω+

 

Apply “Forward Euler” to transfer this function from “S” field to “Z” field:    

1Z
S

T

−
⇒ I1(z)*   (

1z

T

−
 + ωc) = ωc* ein(z) 

z I1(z) = I1(z) *(1- ωc*T) +T*ωc* ein(z) 

Reversing the “Z” transform, we get:       I1(k+1) = (1- ωc*T) I1(k) + T*ωc* ein(k) 
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Then the MATLAB code is :        I1(k) =  (1- ωc*T) I1(k-1) + T*ωc* ein(k-1) 

2.2.2: Second Order Butterworth Low Pass Filter 

            Figure1.2 shows that we already get our FM signal from the PLL Vc signal. But, 

there is still high-frequency noise left after the loop filter. A second order Butterworth 

LPF could be used to remove this noise if we want better Vcout(FM signal),and its transfer 

function becomes part of our simulation. 

    a.  For a second order Butterworth LPF, the ( )H jω   curve is maximally flat and 

becomes rounded around near ωc and rolls off at an ultimate rate of -40db/dec in the 

stop band. This makes it work well in this demodulator. 

b.   The transfer function of the second order Butterworth LPF is 

 H(s) = 
2

1

( / ) 2 ( / ) 1o os sω ξ ω+ +
 = 

2

1

1
( / ) ( / ) 1o os s

Q
ω ω+ +

Q = 
1

2 ξ
 

               Q = 
1

2
 = 0.707                        ωo= ωcout= ω3db = 2π*4khz 

   H(s) = 
22

o

o
os s

Q

ω
ω

ω+ +
             

a = 
o

Q

ω
            b = ωo 

H(s) = 
2

b

s a s b+ +
 

Applying the “Forward Euler” to mapping this transfer function from S →Z 
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1Z
S

T

−
⇒ H(z) = 

_

_

( )

( )

c o u t

c

V z

V z
 = 

2 2

2 2 2( 1 ) ( 1 )

b T

z a z b T− + − +  

2 2 2 2 2
_ _ _ _( ) ( ) ( ) ( ) ( 1) ( )cout cout cout cz V z z V z z aT V z aT b T V z b T∗ = ∗ ∗ − + ∗ − − + ∗  

Reversing the transform yields the difference equation that we implement in MATLAB 

2 2 2 2
_ _ _ _( 2) (2 ) ( 1) ( 1) ( ) ( )cout cout cout cV k aT V k aT b T V k b T V k+ = − ∗ + + − − ∗ + ∗  

2.3   : Loop Filter 

2.3.1:  Loop filter types and order of the PLL along with loop stability 

       The output signal ud(t) of the PD consists a number of terms. 

( ) ( )4 4
( ) s i n ( ) c o s c o s 3

3
d i o i i i i o i i ou t U U t t tω θ ω θ ω θ

π π
 = + + + + ⋅ ⋅ ⋅  

 

In the locked state of the PLL,   ωi = ωii 

2( ) s i n s i n ( )d i o e d eu t U U Kθ θπ
 
 
 

= ⋅⋅⋅⋅⋅ ≈  

Because these high frequencies are unwanted signals, they are filtered out by 

the loop filter. A first-order low-pass filter is used in most PLL. Three different types of 

loop filters are mostly used in PLL circuits: the passive lead-lag filter, the active lead-lag 

filter, and the active Proportional-plus-Integral filter. In this project, we chose active 

lead-lag filter as the loop filter. One typical circuit realization of an active lead-lag filter 

shown below: 
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        Transfer function:   F(s) = 
2

1

1

1
a

s
k

s

τ
τ

+
+

τ1 = R1C1τ2 = R2C2        ka = C1/C2 

    Generally, the order of the PLL is always higher by 1 than the order of the loop 

filter. Because higher-order loop filters offer better noise cancellation, a loop filter of 

order 2 and higher are used in critical application. With higher-order loop filters, 

however, loop stability becomes an issue. Getting stable operation with a second-order 

PLL was easy because the open-loop transfer function had two poles and one zero. A 

pole creates a phase shift of -90
0
 at higher frequencies, and a zero creates a phase shift 

of +90
0
. When the poles and zero are properly located, the overall phase shift never 

comes close to -180
0
; hence, the loop stays stable. If the loop filter has two or more 

poles, the phase shift can become larger than 180
0
. Hence the poles and zeros of the 

loop filter must be placed such that stability is maintained. 

2.3.2:  MATLAB code of the loop filter  

     We start from the transfer function of the loop filter:    

H(s) = F(s) = 
2

1

1

1
a

s
k

s

τ
τ

+
+

s

s

1

0

+ ω
=

+ ω  

1

2

1ω
τ

=  , 0

1

1ω
τ

= ,   
1

0

ak
ω
ω

=  
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Applying the “Forward Euler” to mapping this transfer function from S → Z 

1Z
S

T

−
⇒ 1

0

( ) 1

( ) 1

cv z z T

I z z T

ω
ω

− +
=

− +
 

0 1( ) ( 1) ( ) ( ) ( 1) ( )c cV z z V z T I z z T I zω ω∗ − + ∗ = ∗ − + ∗  

0 1( ) ( ) ( 1) ( ) ( ) ( 1)c cz V z V z T z I z I z Tω ω∗ + ∗ − = ∗ + ∗ −  

Reversing the transform yields the difference equation that we implement in MATLAB 

0 1( 1) ( ) ( 1) ( 1) ( ) ( 1)c cV k V k T I k I k Tω ω+ + ∗ − = + + ∗ −  

0 1( 1) (1 ) ( ) ( 1) ( 1) ( )c cV k T V k I k T I kω ω+ = − + + + −  

So, the MATLAB code for the loop filter is: 0 1( ) (1 ) ( 1) ( ) (1 ) ( 1)c cV k T V k I k T I kω ω= − − + − − −  

2.4   :  Voltage Controlled Oscillator (VCO) 

2.4.1:   VCO General Theory 

         In PLLs, two fundamentally types of controlled oscillators are used: voltage 

control oscillator and current control oscillator. Figure 2.4.2 shows the simplified 

schematic of a VCO. 

The operation of this circuit is as follows (figure 2.4.2): First, the input control 

signal is converted into a current signal. The NOR gates form an RS latch. Assume that 

the output signal of the left NOR gate is high (H) and the output signal of the right NOR 

gate is Low (L). Consequently, the P-channel MOS transistor P1 is on and the N-channel 

MOS transistor N1 is off; furthermore, P2 is off and N2 is on. Therefore, the right terminal 
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of capacitor C is grounded, and the output current of the voltage-current converter 

flows into the left terminal of C; thus the voltage at that terminal ramps up in a positive 

direction. The upper threshold of the Schmitt triggers is set at half of the supply voltage 

VDD/2. When the voltage at the left side of C exceeds that threshold, the RS latch 

changes state. Now the left terminal of C becomes grounded, and the output current of 

the voltage-current converter flows into the right terminal of C. The voltage at the right 

side of C ramps up now, until the right Schmitt triggers switches to the High state. This 

process repeats infinitely. If measured, the differential voltage across the capacitor, we 

would observe a triangular waveform. 

2.4.2: VCO Architecture and Equation 

         The radian frequency ω1 of the VCO output signal is proportional to the control  

signal Vc              ω1 = ω0 + K0Vc       

                                     K0 is VCO gain; units are rad s
-1

v
-1

. 

                        ω0 is the radian center frequency of the PLL. 

Most VCOs are powered from a unipolar power supply VDD. 

                           So,  ω1 = ω0 + K0(Vc– VDD/2) 

 In the MATLAB simulation of   this project: 

Set:   ω_vco= ω1  ,     ω_ fr  = ω0 ,     k_vco= K0  ,      V_cfr  = VDD/2 

So,    ω_vco= ω_ fr  +k_vco(Vc- V_cfr  ) 
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input 

 

                                                  P1                            C                                   P2    

                                   N1                                                                                                N2 

                        +   -                   -   +     

 

 

 

                                                                                                                                output 

 

Figure 2.4.2 

2.4.3  MATLAB code of VCO1 and VCO2 

    We start from the equation below,  

                         since   2_ ( ) ( )out vcophi t t dtω= ∫  

Appling the Laplace transform to transfer it from the time domain to the 

frequency domain, we get: 

U 

    I 
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2
1

_ ( ) ( )out vcophi s s
S

ω=  

Apply “Forward Euler” to transfer from “S” field to “Z” field: 

2_ ( ) ( )
1

out vco
T

phi z z
z

ω=
−

 

2_ ( ) _ ( ) ( )out out vcoz phi z phi z T zω∗ = +  

Reversing the “Z” transform, we get:     2_ ( 1) _ ( ) ( )out out vcophi k phi k z Tω+ = + ∗  

So, the MATLAB code for VCO1 and VCO2 is: 

ω_vco1= ω_ fr  +k_vco*(Vaudio- V_cfr  ) 

ω_vco2(k)= ω_ fr  + k_vco *(Vc(k)- V_cfr  ) 

2_ ( 1) _ ( ) ( )out out vcophi k phi k z Tω+ = + ∗  
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Chapter3   : System Level Description of the PLL 

 

3.1:  Operation of the three basic functional blocks 

         Every PLL is a nonlinear system. Fortunately, most PLLs can be analyzed using 

linear techniques when in a locked condition. The basic PLL block diagram is shown in 

Figure 1.1 and contains three essential functional blocks: a phase detector (PD), a loop 

filter (LF) and a voltage-controlled oscillator (VCO) that were described in chapter2.And 

normally, it is useful to add a low pass filter before loop filter to also remove high 

frequency noise in the loop. Let’s look at the operation of the three functional blocks of 

figure 1.1. 

(1)  The Phase Detector (PD) compares of the output signal with the phase of the 

input signal and develops an output signal ein(t). 

ein(t) = kdθe        where: θe is phase error:       θe= θi – θii 

                                       kd is the gain of PD in v/rad 

(2)  The Loop Filter (LF) attenuates the superimposed AC component of ein(t). 

ein(t) = DC component + superimposed AC component 

(3)    The VCO oscillates at an angular frequency: 

ωii = ωvco = ωfr  + kvco(Vc- Vcfr  ) 

where   ω_ fr is the free running frequency of the VCO 
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              k_vco is the VCO gain in s
-1

v
-1 

Let us now see how the three building blocks work together. First, we assume 

the angular frequency of the input signal ui(t) is equal to the free running frequency ωfr . 

The VCO then operates at its free running frequency ωf . As we see, the phase error θe is 

zero. If θe is zero, the output signal ud of PD must also be zero. Consequently, the output 

signal of the loop filter uc will be zero. This is the condition that permits the VCO to 

operate at its free running frequency. 

        If the phase error θe were not zero initially, the PD would develop a nonzero 

output signal ud . After some delay, the loop filter would also produce a finite signal uc . 

This would cause the VCO to change its operating frequency in such a way that the 

phase error finally vanishes.  

          Assume now that the frequency of the input signal is changed suddenly at time 

by the amount ∆ω. The phase of the input signal then starts leading the phase of the 

output signal. A phase error is built up and increases with time. The PD develops a  

signal ud(t), which also increase with time. With a delay given by the loop filter, uc(t) will 

also rise. This causes the VCO to increase its frequency. The phase error becomes 

smaller now, and after some settling time the VCO will oscillate at a frequency that is 

exactly the frequency of the input signal. Depending on the type of loop filter used, the 

final phase error will have been reduced to zero or to a finite value. The VCO now 

operates at a frequency which is greater than its free running frequency ωfr by an 

amount ∆ω. This will force the signal uc(t) to settle at a final value of uc(t) = ∆ω/Kvco 
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      If the free running frequency of the input signal is frequency-modulated by an 

arbitrary low-frequency signal, then the demodulated signal is the output signal of the 

loop filter. uc= FM output, that is why the PLL can be used as an FM detector. 

3.2:    PLL transfer function and MATLAB code 

      (1)      Phase detector output: ein ≈ kdθe              θe = θi - θii 

                 PD (with multiplier) transfer function:   
( )

( )

in

e

e s

sθ
 = kd   

                PD( multiplier)  MATLAB code:         ein(k) = V_ref(k)*V_out(k) 

                PFD(with flipflop)  MATLAB code is: 

%phase detector 

V_ref = 0.5 + 0.5*sign(V_fm); 

for k = 2:N-1; 

% ein(k)=V_fm(k)* V_out(k); 

% ein(k)=u(k)* V_out(k); 

R(k) = Q1(k-1)*Q2(k-1); 

if  (( V_ref(k-1)== 0 ) &&  ( V_ref(k)== 1)) 

Q1(k)=1; 

elseif  ((R(k-1)==0) && (R(k)==1)) 

Q1(k)= 0; 

else   Q1(k) = Q1(k-1);    

end; 

if (( V_out(k-1)== 0 ) &&  ( V_out(k)== 1)) 
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Q2(k)=1; 

elseif   ((R(k-1)==0) && (R(k)==1)) 

Q2(k)= 0; 

else   Q2(k) = Q2(k-1);    

end; 

ein(k) = Q1(k)-Q2(k); 

 (2) Loop filter 

active lead-lag filters:      F(s) = 
2

1

1

1
a

s
k

s

τ
τ

+
+  

            In this project, we have:    F(s) = H(s) = 
s

s

1

0

+ ω
+ ω  

MATLAB code of the loop filter is discussed in §2.3.2: 

0 1( ) (1 ) ( 1) ( ) (1 ) ( 1)c cV k T V k I k T I kω ω= − − + − − −  

 (3)    VCO transfer function:   Hvco(s) = 
v c ok

s
 

ωvco(t) = ωfr  + kvcouc(t) 

               As we discussed in §2.4.2 and §2.4.3, we get: 

               VCO1 MATLAB code:     ω_vco1 =ω_fr  + k_vco*(v_audio– v_cfr) 

               VCO2 MATLAB code:    ω_vco2(k) = ω_fr  +k_vco*(v_c(k)– v_cfr)  

                       2_ ( 1) _ ( ) ( )out out vcophi k phi k z Tω+ = + ∗  

(4)   Simulation Result (PLL with PD and PLL with PFD):          
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       The simulation code (PLL with PD) is on the appendix A1. 

         In Figure 3.2.1, we could see signal V-c of loop filter output tracked the input 

signal Vaudio after a limited time delay. V-c has almost the same frequency and amplitude 

as the input Vaudio. Of course, signal V-c has some high frequency noise. It is not as the 

same clean as the signal Vaudio.  

 

Figure 3.2.1 Vaudio versus V-c (PLL with PD) 
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Figure 3.2.2  Vaudio versus  V-c (PLL with PFD) 

     The simulation code (PLL with PFD) is on the appendix A2. 

          From figure 3.2.2, the loop filter output signal Vc tracked input signal Vaudio after 

a limit time delay. Even the wave of signal Vc has some deform, because of noise. 

3.3: Loop parameter 

  From figure1.1, we can get the PLL open loop transfer function:  G(s) = 

( )d v c ok k F s

s
and closed loop transfer function: HPLL(s) = 

( )

1 ( )

G s

G s+
=  

( )

( )

d vco

d v co

k k F s

s k k F s+
 From open loop transfer function G(s) and closed loop transfer 

function HPLL(s) , we can  derive loop parameters such as natural frequency ,damping 

factor and loop gain . 
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     (1). Natural frequency and damping factor 

         The denominators of the transfer function in normalized form: 

           Denominators = s
2
+ 2ξ ωns + ωn

2 
where ωn is the natural frequency 

ξ is the damping factor 

           For the active PI (Proportional- Integral) filter: 

                            ωn = 
1

d v c ok k

τ
,               ξ  = 2

2

nω
τ  

The transfer function reduces to          

                HPLL(s) = 
2

22

2

2

n n

n n

s

s s

ξ ω ω
ξ ω ω

+
+ +

 

        Natural frequency and damping are a convenient description of the properties of 

a pole pair and well suited for second second-order loops. 

ifξ < 1 , the poles are a complex-conjugate pair   

ifξ  = 1 ,  the poles are real and coincident 

ifξ > 1 ,  the poles are real and separate 

      The typical values of ξ  is:   0.2<ξ < 2 and the preferred value is: ξ  = 0.707 

                                                    10
-5 

< ωn < 10
8   

 rad/s 

       The second-order PLL is actually a low-pass filter for input phase signals ϴi(t) . 

The damping factor ξ  has an important influence on the dynamic performance of the 

PLL. 



- 30 - 

 

(2). Loop gain k,             for a second-order PLL: 

2
1

1

d v c o
d v c o

k k
k k k k

τ
τ

= =  

2
1

2
kξ τ=

2

n
k

ω
τ

=

 

The 3-db bandwidth of a second-order PLL can be calculated as: 

1

2
3

2 2 4

1 1 1 1 1
( 1 )
2 4 2 2

db Kω
ξ ξ ξ

= + + + +
 

K is a good indication of the low pass corner frequency of H(s). And k also has a 

dominant influence on the speed of response and bandwidth of the PLL.
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Chapter 4:     How This Research Adds To Basic PLL 

-  Optimum Time Varying Filter 

 

       In figure 1.2, we include a band pass filter block in front of the PLL to improve 

the quality of the FM signal. In this chapter, we will discuss how to realize the optimum 

time varying filter as the band pass filter. 

4.1:   Optimum filter and optimum time varying filter related to the band pass filter 

           An optimum filter is a filter which mimics the desired time domain or frequency 

domain response of a system. The goal of optimum filtering is as follows: If a certain 

signal is corrupted by noise in a channel, the optimum filter which may be applied to the 

composite signal is that which maximizes the S/N ratio at its output. Suppose the target 

input signal is a amplitude, phase, or frequency modulated signal whose spectrum 

occupies a symmetrical bandwidth centered about some carrier frequency. If we were 

to assume that the modulating signal was such that the spectrum were essentially flat 

over the signal bandwidth, then the matched filter would be an ideal band pass filter 

whose bandwidth matched that of the modulated signal. 

      Suppose that an input signal is an FM signal. At any instant in time we could say  

that the signal is a single frequency. Assume a band pass filter were designed that would 

move its center frequency in exact synchronization with the input. Then the output of 
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this filter would still be FM input, and since the band width of the filter, wherever it is 

centered, could be made arbitrarily small, the output noise could be essentially zero.   

As noise is closer to zero, the S/N ratio equals to infinite. 

4.2:   Synchronous filtering idea and mathematical framework 

Figure 4.2     Synchronous Filter 

Figure 4.2 shows a diagram of a synchronous filter, also called a complex filter. A 

complex filter constitutes the heart of integrated filtering circuitry in modern RF 

electronics. The input ‘u’ Is processed via multiplication with the signals, Sin(t) and Cin(t), 

resulting in a pair of inputs to the core filter. In a complex filter these signals are  

sinusoidal signals in quadrature. The output of the overall filter is derived by adding the 

post-processed core filter outputs. The post- processing is accomplished via respective 

multipliers driven by another pair of signals, Sout(t) and Cout(t) [cited in Reference 1 and 

2].We may write down the dynamical equations of the band pass filter: 

T

d x
A x b u

d t

y c x d u

= +

= +                      [1]
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2

2

o
A

o
A

Q
A

Q

ω
ω

ω
ω

 − − 
 =
 −  

            ;              
1

1
b c

 
= =  −                                     [2]

 

If   Q >> 1   ωA ≈ ωo  would be center frequency of the filter.  

Let  
' ( )J tx e xφ= ;           

'( )J tx e xφ−=  

                     Where         
0 1

1 0
J

 
=  − 

  ; 

         So,     
( )

c o s ( ( ) ) s i n ( ( ) )

s i n ( ( ) ) c o s ( ( ) )

J t
t t

e
t t

φ φ φ
φ φ

 
=  − 

 

'

d x

d t

( )( )J td
e x

d t

φ= ( ) ( )( ) )J t J td d x
e x e

d t d t

φ φ= +  

                                      

( ) ( )( ) ( )J t J td
e x e A x b u

d t

φ φ= + +  

( ) ( ) ( )( ( ) )J t J t J td
e e A x e b u

d t

φ φ φ= + +                    [3a] 

Since      
'( )J tx e xφ−=  

Replace it into equation [3a]. We get: 

             

'

d x

d t

'( ) ( ) ( ) ( )( ( ) )J t J t J t J td
e e A e x e b u

d t

φ φ φ φ−= + +  

                            
' '( ) ( ) ( )( )J t J t J te J t e x A x e b uφ φ φφ −= + +&
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So          

'
' ( )( ( ) ) J td x

A J t x e b u
d t

φφ= + +&

                          [3] 

                     
T

y c x d u= +
'( )T J tc e x d uφ−= +  

It has been assumed that A and J commute in the simplification of the state 

matrix, which is an    easy condition to ensure if one employs typical filter topologies [5]. 

The form of A in [2] satisfies this condition. Observe that if ф(t) = ωmt then the new state 

matrix is A + ωm J, which is constant. The new off-diagonal terms are±(ωm – ωA) whose 

magnitude suggests the center frequency  of the transformed core filter, which may be 

engineered to be much lower than that of the original. This formulation leads naturally 

to complex filters, which are a subset of synchronous filters [cited in reference 1 and 2]. 

Here is the mathematics to approve it. 

Using equation [3]     2

2

o
A

o
A

Q
A

Q

ω
ω

ω
ω

 − − 
 =
 −  

     ,         
0 1

1 0
J

 
=  − 

     

( ) mt tφ ω=  

We get three parameters:  (1),  ( )A J tφ+ &  (2),   ( )J te bφ (3),   ( )T J tc e φ−  

Let’s analyze each of these: 

 (1),  ( )A J tφ+ &
0 1

1 0
mA ω

 
= +  − 

0

0

m

m

A
ω

ω
 

= +  −   
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2

2

o
A m

o
A m

Q
A

Q

ω
ω ω

ω
ω ω

 − − + 
 = +
 − −  

 

    So, the center frequency of the transformed core filter is 

( )o m Aω ω ω= ± −  

      (2),   
( )J te bφ 1

2

c o s ( ( ) ) s i n ( ( ) )

s i n ( ( ) ) c o s ( ( ) )

t t b

t t b

φ φ
φ φ

   
=    −   

 

                                                 

1 2

2 1

c o s ( ( ) ) s i n ( ( ) )

c o s ( ( ) ) s i n ( ( ) )

b t b t

b t b t

φ φ
φ φ

+ 
=  − 

 

                                                 

s i n ( ( ) )

c o s ( ( ) )

t
b

t

φ α
φ α

+ 
=  + 

 

          

i ns ( )

( )i n

t

c t

 
=  

                             [4]

 

     Where         2 2
1 2b b b= + ;     11

2

t a n
b

b
α −  =  

   

These operators show clearly how the input is processed using quadrature 

multiplication to become a pair of inputs to the core filter. A similar computation on the 

transformed term in the input-output equation shows how the state variable filter 

outputs are processed using quadrature multiplication. 

      (3),   
( )T J tc e φ− [ ] ( )

1 2
J tc c e φ−=
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                                          [ ]s in ( ( ) ) c o s ( ( ) )c t tφ β φ β= + +  

                                         [ ]s ( ) ( )o u t o u tt c t=
                           [5] 

           Where              2 2
1 2c c c= +    ;            11

2

t a n
c

c
β −  =  

   

         These parameters process the input and produce the output, showing that the 

synchronous filter implements a complex filter. 

          If input signal u(t) were a pure sine wave plus some noise, we could filter this 

with an arbitrarily sharp band pass filter centered at the input signal frequency and 

remove essentially all of the noise. The mathematics guarantees that the composite 

synchronous filter would perform the desired narrow band filtering. 

4.3 :   Optimum FM signal filtering 

4.3.1:   General Theory 

           u = sin (ωt + f(t) ) , A phase modulated signal is now being applied to the core 

filter. The input will be processed by constant frequency quadrature signals. The core 

filter will be time-varying. The signal will be filtered in an effectively narrow band pass 

filter, removing essentially all noise. 

       The time varying state space transformation is in the following way: 

          Let      ( ) ( )mt t f tφ ω= +  

state matrix:  ( )A J tφ+ &
0 1

( ( ) )
1 0

mA f tω
 

= + + − 
&  
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2 0 ( )

( ( ) ) 0

2

o
A

m

o m
A

Q f t

f t

Q

ω
ω

ω
ω ωω

 − −   +
 = +  

− +   −  

&

&

 

( ( ) )
2

( ( ) )
2

o
m A

o
m A

f t
Q

f t
Q

ω
ω ω

ω
ω ω

 − + − 
 =
 − + − −  

&

&

 

       The off-diagonal term is the center frequency of the transformed core filter, 

which is a time varying term. So, the filter is now a time varying filter. An FM signal input 

with an arbitrarily sharp filter produces an output that is free of noise. 

4.3.2: Optimum time varying FM signal BPF of this project 

         From the discussion before, we may construct the BPF of this project. 

∫1x&

2x& ∫

 

Figure 4.3.2    Band Pass Filter (time-varying) 
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1 1 2 1x ax gx au= − −&  

2 2 1 2x a x g x a u= + +&  

1 2y x x= −  

1 c o s ( )mu u tω=  

2 s i n ( )mu u tω=  

1( ) [ ( ( ) 2 ) (1 ) ( ) ]v c o a u d i o o u tg t g k c V t c V t= + − + −  

1 1 2 1s x a x g x a u= − −  

2 2 1 2s x a x g x a u= + +
 

Using the Forward Euler mapping, we have:      1 1 2 1
1z
x a x g x a u

T

−
= − −  

2 2 1 2
1z
x a x g x a u

T

−
= + +  

1 1 2 1(1 )zx x aT gTx aTu−= + −  

2 1 2 2(1 )z x g T x a T x a T u= + + +  

1 1 2 1( ) (1 ) ( 1) ( 1) ( 1)x k aT x k gTx k aTu k= + − − − − −  

2 1 2 2( ) ( 1 ) ( 1 ) ( 1 ) ( 1 )x k g T x k a T x k a T u k= − + + − + −  

1 2( ) ( ) ( )y k x k x k= −  
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Now, we start to discuss the parameter “g” associated with the band pass filter. 

Since,  

1( ) [ ( ( ) 2 ) ( 1 ) ( ) ]v c o a u d i o o u tg t g k c V t c V t= + − + −  

  First, if we set kvco= 0 , then, g( t ) becomes a constant equal to g1, and the BPF is 

time invariant. Secondly, If we set kvco≠ 0, parameter “g” becomes a function of time, g = 

g(t), and we get a time-varying band pass filter. 

 (c),  BPF (with g(t)=g1) simulation result 

The simulation code is in the appendix B. 

From figure 4.3.2, we could see that after a time delay, we get the output signal 

‘Y’ of the band pass filter that is a stable sine wave whose amplitude is the same as the 

input signal ‘u ‘.

 

Figure 4.3.2 BPF output signal y 
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Chapter 5:    Simulation Result  

 

      In the MATLAB code, we have a feedback parameter, “g”, having four parts: g1, 

g2, g3 and g4, shown in figure 5.1 which is a reproduction of Figure1.2. 

 

Figure 5.1 PLL FM Demodulator with BPF Building Block 

 

By controlling “g”, we were able to make the Band Pass Filter be a time-varying 

filter or invariant filter. This gave us the chance to directly compare the simulation 

results for two kinds of demodulator (PLL with time-varying BPF and PLL with the 

invariant BPF). Here is the equation for g(t) showing the varying components. 
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g(t) = g1+ K_vco*[C* (V_audio(t)-2)+(1-C)* V_cout(t)] 

       = g1- 2CK_vco + CK_vcoV_audio(t)+ (1-C) K_vcoV_cout(t) 

       = g1+ g2+ g3V_audio(t) + g4V_cout(t) 

where g1 is constant,   g2 = - 2CK_vco,   g3 = CK_vco,   g4 = (1-C) K_vco 

The parameter ’C’ was added to allow more control of the overall loop. 

 

Figure 5.2 Input Vaudio versus Vcout(output FM signal) 

 

 

 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
-3

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

V
a
u

d
io

/V
c
o

u
t

time

Vaudio

Vcout (FM signal)

C=0.83 There is Vcout feedback to BPF
g = f ( t )   BPF is time-varying filter



- 42 - 

 

 

Figure 5.3 Input Vaudio versus Vcout(output FM signal) 

 

Figure 5.4 Input Vaudio versus Vcout(output FM signal) 
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Figure 5.5 Input Vaudio versus Vc(with high frequency noise) 

 

Figure 5.6 Input Vaudio versus Vcout(output FM signal) 
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Figures 5.2 - 5.4 show the comparison between the original audio modulation 

signal and the recovered signal as our feedback parameter ‘C’ is varied. A value of C = 1 

for loop feedback proved to be too big. The results for C = 0.83, 0.86, and 0.88 are 

shown in Figures 5.2, 5.3, and 5.4, respectively. Note the high quality achieved with C = 

0.88 in Figure 5.4. 

Figure 5.5 shows the loop filter output Vc versus Vaudio. We can see that there is 

significant high frequency noise in Vc. This kind of noise is undesireable in our FM 

demodulated signal.  This shows that the Second Order Butterworth Low Pass Filter is 

necessary in this system if we want to have a clean FM signal (or Vcout) from the 

demodulator. Its position is shown in Figure 5.1. Figures 5.2 - 5.4 showed results that 

includes this filter. 

 Figures 5.6 shows the demodulator output signal Vcout (FM signal) compared to 

the original audio signal when the time varying filter is made time-invariant. 

Clearly, the output FM signal has become deformed. The optimum time-varying filter 

plays a very important role in the PLL FM Demodulator. 

 It is worth noting that some problems occurred during our simulations. For 

example, when we first put together the whole demodulator, we didn’t consider having 

the Butterworth LPF block. But the simulation results shown in Figure 5.5 made the 

second order Butterworth LPF clearly necessary, allowing us to get a clean FM 

demodulated signal from the output of this Butterworth LPF. We also noticed that too 
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much feedback – that is, C ≈ 1 – did not provide good results. We are not fully sure why 

this happened. 
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Chapter 6:    Research Conclusion and Possible Future Work 

 

Phase locked demodulators are widely used for reception of amplitude 

modulation(AM), phase modulation(PM), and frequency modulation(FM). In this 

research, we concentrated on phase locked FM demodulators. Our main two parts are 

the PLL block and the Optimum Time Varying Filter block. We started our work by 

building up three basic blocks of the PLL; the PFD, the Loop Filter and the VCO. By 

carefully studying the structure and the operation of these blocks, we were able to 

make good choices regarding the types of each block and their parameters. As a result, 

we got the desired results in our PLL simulations. After that, in order to improve the 

quality of the FM signal, we worked on the Optimum Time Varying Filter which is the 

main research part in the overall thesis. We studied the relationship of the optimum 

filter (or matched filter), the optimum time-varying filter and our band pass filter. We 

then derived the necessary equations to realize our synchronous filter. Based on the 

theory and equation discussion, we were able to design the band pass filter. After we 

put all of the blocks together to realize our FM PLL demodulator, we simulated the 

whole demodulator and recovered the FM demodulated signal which showed that we 

had achieved our research goal-namely, to improve the quality of the PLL FM 

Demodulator.  
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These results were very satisfying when I finished the simulations. At the same 

time, I noticed the distortion problem in the Vcout signal which was affected by the 

feedback of the band pass filter. The choice of constant “C” is critical. If I had more time, 

I would work on this and find a way to get rid of the Vaudio signal in the BPF feedback and 

only keep the Vcout signal as part of the feedback. In that case, if we still could get a good 

quality FM signal (Vcout), it would be perfect.   
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Appendix 

 

A   :       PLL Simulation MATLAB Code and Simulation Result  

A1:       PLL (with multiplier Phase detector) simulation 

% VCO Block + PLL(PD) Block 

T = 1e-7;    

T_end = 0.05;  N = fix(T_end/T); time = T*[0:N-1];  

 

w_in = 2*pi*500;      

w_fr = 2*pi*50e3; 

V_cfr = 2;    K_vco = 2*pi*10e3;  

w_0 = 2*pi*10; 

w_1 = 2*pi*1e3; 

w_c = 2*pi*10e3; 

 

phi_out = zeros(1,N); 

w_vco2 = zeros(1,N); 

V_c = zeros(1,N);       

V_out = zeros(1,N);    

phi_in = zeros(1,N); 
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ein = zeros(1,N); 

I = zeros(1,N); 

V_audio = 2 + 0.2*sin(w_in*time); 

w_vco1 = w_fr + K_vco*(V_audio-V_cfr); 

%vco1 

for k = 1:N-1; 

phi_in(k+1) = phi_in(k) + T*w_vco1(k); 

end; 

V_ref= sin(phi_in); 

%PLL   

for k = 2:N-1; 

%phase detector 

ein(k)=V_ref(k)* V_out(k); 

I(k)= (1-w_c*T)*I(k-1)+w_c*T*ein(k-1); 

%loop filter 

V_c(k)=(1-w_0*T)*V_c(k-1)+ I(k)-(1-w_1*T)*I(k-1); 

%vco2 

    w_vco2(k) = w_fr + K_vco*(V_c(k)-V_cfr); 

phi_out(k+1) = phi_out(k) +w_vco2(k)*T; 

V_out(k+1) = sin(phi_out(k+1)); 

end; 

plot(time,V_c,time,V_audio); 

 



- 51 - 

 

A2:       PLL (with Phase frequency detector) simulation 

% VCO + BPF + PLL(digital PFD)  Block 

T = 1e-7;    

T_end = 0.006;  N = fix(T_end/T); time = T*[0:N-1];  

 

%VCO 

w_audio = 2*pi*1e3;      

%w_fr = 2*pi*1e5;   

w_fr = 2*pi*1e6; 

V_cfr = 2;    K_vco = 2*pi*10e3;  

%BPF 

w_m = 2*pi*900e3;    

a =-2*pi*5e3; 

g = 2*pi*100e3; 

u1 = zeros(1,N); 

u2 = zeros(1,N); 

x1 = zeros(1,N);  

x2 = zeros(1,N); 

 

V_fm = zeros(1,N);   

phi_fm = zeros(1,N); 

%PLL 

R = zeros(1,N); 
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Q1 = zeros(1,N);      

Q2 = zeros(1,N);     

w_c = 2*pi*10e2;     %LPF 

w_0 = 2*pi*1;      %Loop Filter 

w_1 = 2*pi*1e2;      %Loop Filter 

w_pll = w_fr - w_m; 

phi_out = zeros(1,N); 

w_vco2 = zeros(1,N); 

V_c = 2*ones(1,N);       

V_out = zeros(1,N);    

ein = zeros(1,N); 

I1 = zeros(1,N); 

I = zeros(1,N); 

%vco1 

V_audio = 2 + 0.2*sin(w_audio*time); 

 w_vco1 = w_fr + K_vco*(V_audio-V_cfr); 

for k = 1:N-1; 

phi_fm(k+1) = phi_fm(k) + T*w_vco1(k); 

end; 

    u= sin(phi_fm); 

%BPF 

for k = 1:N-1; 

u1(k)=(cos(w_m*k*T))*u(k); 
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u2(k)=(sin(w_m*k*T))*u(k); 

x1(k+1)=(1+a*T)*x1(k)-g*T*x2(k)-T*a*u1(k); 

x2(k+1)= g*T*x1(k)+(1+a*T)*x2(k)+T*a*u2(k); 

V_fm(k+1)= x1(k+1)-x2(k+1); 

end; 

%PLL  

%phase detector 

V_ref = 0.5 + 0.5*sign(V_fm); 

for k = 2:N-1; 

% ein(k)=V_fm(k)* V_out(k); 

% ein(k)=u(k)* V_out(k); 

R(k) = Q1(k-1)*Q2(k-1); 

if  (( V_ref(k-1)== 0 ) &&  ( V_ref(k)== 1)) 

Q1(k)=1; 

elseif  ((R(k-1)==0) && (R(k)==1)) 

Q1(k)= 0; 

else   Q1(k) = Q1(k-1);    

end; 

 

if (( V_out(k-1)== 0 ) &&  ( V_out(k)== 1)) 

Q2(k)=1; 

elseif   ((R(k-1)==0) && (R(k)==1)) 

Q2(k)= 0; 
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else   Q2(k) = Q2(k-1);    

end; 

ein(k) = Q1(k)-Q2(k); 

%LPF 

% I(k)= (1-w_c*T)*I(k-1)+w_c*T*2*ein(k-1); 

I1(k+1)= (1-w_c*T)*I1(k)+ein(k)*w_c*T; 

I(k+1) = 2*pi*I1(k+1); 

%loop filter 

V_c(k)=(1-w_0*T)*V_c(k-1)+ I(k)-(1-w_1*T)*I(k-1); 

%vco2 

   % w_vco2(k) = w_fr + K_vco*(V_c(k)-V_cfr); 

     w_vco2(k) = w_pll + K_vco*(V_c(k)-V_cfr); 

phi_out(k+1) = phi_out(k) +w_vco2(k)*T; 

V_out(k+1) = 0.5 + 0.5 * sign(sin(phi_out(k+1))); 

end; 

plot(time,V_audio,time,V_c) 

ylabel('V_audio/Vc'); xlabel('time'); 

 

 

B   :      BPF Simulation MATLAB Code and Simulation Result( with g( t ) = g1) 

% Band Pass Filter Block( No time-varying filter) 

T = 50e-9;    

T_end = 1e-3;  N = fix(1+T_end/T); time = T*[0:N-1];  
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w_in = 2*pi*1e6;      

w_m = 2*pi*900e3;    

a =-2*pi*5e3; 

g = 2*pi*100e3; 

u=sin(w_in*time); 

u1 = zeros(1,N); 

u2 = zeros(1,N); 

x1 = zeros(1,N);  

x2 = zeros(1,N); 

y = zeros(1,N);       

for k = 1:N-1; 

u1(k)=(cos(w_m*k*T))*u(k); 

u2(k)=(sin(w_m*k*T))*u(k); 

x1(k+1)=(1+a*T)*x1(k)-g*T*x2(k)-T*a*u1(k); 

x2(k+1)= g*T*x1(k)+(1+a*T)*x2(k)+T*a*u2(k); 

y (k+1)= x1(k+1)-x2(k+1); 

end; 

plot(time,y); 

ylabel('y=x1-x2'); xlabel('time'); 

 

 

C   :      Whole Research (PLL FM Demodulator) Simulation MATLAB Code  

% VCO + BPF + PLL(digital)+ Butterworth(LPF)   Block 
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T = 0.5e-7;    

T_end = 0.006;  N = fix(T_end/T); time = T*[0:N-1];  

%VCO 

w_audio = 2*pi*1e3; 

%w_fr = 2*pi*1e5;   

w_fr = 2*pi*1e6; 

V_cfr = 2;    K_vco = 2*pi*10e3;  

%vco1 

V_audio = 2 + 0.2*sin(w_audio*time); 

    w_vco1 = w_fr + K_vco*(V_audio-V_cfr); 

phi_fm = zeros(1,N); 

for k = 1:N-1; 

phi_fm(k+1) = phi_fm(k) + T*w_vco1(k); 

end; 

w_noise = 2*pi*(1e6 + 2000); 

% u= sin(phi_fm); 

u= sin(phi_fm) + 0.01*(randn(1,N).*sin(w_fr*time) + 

randn(1,N).*cos(w_fr*time)); 

 u1 = zeros(1,N); 

u2 = zeros(1,N); 

x1 = zeros(1,N);  

x2 = zeros(1,N); 

V_fm = zeros(1,N);   
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V_cout = zeros(1,N); 

 

R = zeros(1,N); 

Q1 = zeros(1,N);      

Q2 = zeros(1,N);     

w_c = 2*pi*20e3;     %LPF 

w_0 = 2*pi*1;        %Loop Filter 

w_1 = 2*pi*1e3;      %Loop Filter make 8e3 

 

phi_out = zeros(1,N); 

w_vco2 = zeros(1,N); 

V_c = 2*ones(1,N);       

V_out = zeros(1,N);    

ein = zeros(1,N); 

I1 = zeros(1,N); 

I = zeros(1,N); 

w_m = 2*pi*900e3;    

a =-2*pi*2e3; 

c = 0.88; 

g1 = 2*pi*100e3; 

for k = 2:N-2; 

%BPF  

%g = w_audio*0.2*cos(w_audio*time)+ g1 ; 
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%g = K_vco*0.2*sin(w_audio*time)+ g1 ; 

g(k) = K_vco*[c* (V_audio(k)-2)+(1-c)* V_cout(k)]+ g1 ; 

u1(k)=(cos(w_m*k*T))*u(k); 

u2(k)=(sin(w_m*k*T))*u(k); 

x1(k)=(1+a*T)*x1(k-1)-g(k)*T*x2(k-1)-T*a*u1(k-1); 

x2(k)= g(k)*T*x1(k-1)+(1+a*T)*x2(k-1)+T*a*u2(k-1); 

V_fm(k)= x1(k)-x2(k); 

%w_cout = 2*pi*3e3; 

 %PLL 

 %phase detector 

V_ref(k) = 0.5 + 0.5*sign(V_fm(k)); 

% ein(k)=V_fm(k)* V_out(k); 

% ein(k)=u(k)* V_out(k); 

R(k) = Q1(k-1)*Q2(k-1); 

if  (( V_ref(k-1)== 0 ) &&  ( V_ref(k)== 1)) 

Q1(k)=1; 

elseif  ((R(k-1)==0) && (R(k)==1)) 

Q1(k)= 0; 

else   Q1(k) = Q1(k-1);    

end; 

if (( V_out(k-1)== 0 ) &&  ( V_out(k)== 1)) 

Q2(k)=1; 

elseif   ((R(k-1)==0) && (R(k)==1)) 
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Q2(k)= 0; 

else   Q2(k) = Q2(k-1);    

end; 

%  if (( V_fm(k-1)== 0 ) &&  ( V_fm(k)== 0)) 

%   Q1(k)=Q2(k); 

% end; 

ein(k) = Q1(k)-Q2(k); 

 

%LPF 

% I(k)= (1-w_c*T)*I(k-1)+w_c*T*2*ein(k-1); 

I1(k)= (1-w_c*T)*I1(k-1)+ein(k-1)*w_c*T; 

I(k) = 4*pi*I1(k); 

%loop filter 

V_c(k)=(1-w_0*T)*V_c(k-1)+ I(k)-(1-w_1*T)*I(k-1); 

%vco2 

w_pll = w_fr - w_m; 

%w_vco2(k) = w_fr + K_vco*(V_c(k)-V_cfr); 

w_vco2(k) = w_pll + K_vco*(V_c(k)-V_cfr); 

phi_out(k+1) = phi_out(k) +w_vco2(k)*T; 

V_out(k+1) = 0.5 + 0.5 * sign(sin(phi_out(k+1))); 

% V_cout(k+1) = (1 - w_cout*T)*V_cout(k) + w_cout*T*V_c(k); 

 

%Butterworth LBF(second order) 
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Q = 0.707; 

w_cout = 2*pi*4e3; 

     a1 = w_cout/Q; 

     b1 = w_cout; 

V_cout(k+2) =  (2-a1*T)*V_cout(k+1) +  [a1*T-(b1*T)^2-

1]*V_cout(k) +  V_c(k)*[(b1*T)^2]; 

end; 

 x = [N/5:N]; time1 = time(x); V_audio1 = V_audio(x); V_c1 

= V_c(x); V_cout1 = V_cout(x); 

 

plot(time,V_audio,time,V_c) 

ylabel('V_audio/Vc'); xlabel('time'); 

figure; 

plot(time1,V_audio1, time1,V_cout1); 

ylabel('V_audio/V_cout'); xlabel('time'); 
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