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Abstract

Optimum quantization of data can transform the original continuous data into a finite

number of discrete levels for transmission by digital communication methods. The design of

the optimum nonuniform quantizer for a single data stream has been beautifully described

in the seminal work of Max [1]. For other work on quantization see the references in [2] [3].

On the other hand, the electrical grid system in the United States is undergoing signifi-

cant upgrades that will allow rapid monitoring, reconfiguration and control. Digital commu-

nication systems are expected to play a key role and so quantization methods are required.

Here we consider optimum quantization and reconstruction under what appears to be the

most commonly employed models [4] in the industry, the so called the DC power flow model.

We have not seen previous studies on this problem. Further, we introduce a method for

decomposing the problem into smaller problems which are easier to solve. this appears to be

the first paper to propose this specific approach. In the DC power flow model, the assump-

tions of small phase angles, small resistances, and nearly unity amplitudes are employed to

simplify the original nonlinear equations into a set of linear equations. These approximations

are generally very reasonable in typical power systems as these restrictions are often enforced

to promote stability and efficiency.
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Chapter 1

Introduction

Optimum quantization of data can transform the original continuous data into a finite

number of discrete levels for transmission by digital communication methods. The design of

the optimum nonuniform quantizer for a single data stream has been beautifully described

in the seminal work of Max [1]. For other work on quantization see the references in [2] [3].

On the other hand, the electrical grid system in the United States is undergoing signifi-

cant upgrades that will allow rapid monitoring, reconfiguration and control. Digital commu-

nication systems are expected to play a key role and so quantization methods are required.

Here we consider optimum quantization and reconstruction under what appears to be the

most commonly employed models [4] in the industry, the so called the DC power flow model.

We have not seen previous studies on this problem. Further, we introduce a method for

decomposing the problem into smaller problems which are easier to solve. this appears to be

the first paper to propose this specific approach. In the DC power flow model, the assump-

tions of small phase angles, small resistances, and nearly unity amplitudes are employed to

simplify the original nonlinear equations into a set of linear equations. These approximations

are generally very reasonable in typical power systems as these restrictions are often enforced

to promote stability and efficiency. Extending the analysis here for the nonlinear equations

is straightforward, although solution complexity can greatly increase. We will not consider

this further due to space limitations.
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Chapter 2

System Model and Problem

Formulation

2.0.1 DC power flow model

Consider a power system with N buses. Assume that all buses are connected to the

ground through some susceptances. The ground can be viewed as the (N + 1)-th bus in

the system and is used as the voltage reference. Let δi denote the voltage angle at bus i

(1 6 i 6 N + 1) and we have δN+1 = 0. Let bi,j (i 6= j) denote the susceptance between bus i

and bus j. Collect the voltage angles at the first N buses in the vector δ = [δ1, δ2, . . . , δN ]T ,

and collect the active power injected to the first N buses in the vector p = [p1, p2, . . . , pN ]T .

Assuming the DC power flow model, a matrix formulation of equation between power flow

and voltage angles can be expressed as

 p

pN+1

 =


G

−b1,N+1

. . .

−bN+1,1 . . .
∑N

i=1 bi,N+1


 δ

0

 (2.1)
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where G is the N ×N bus susceptance matrix defined by

(i, j)-th element gi,j =


∑N+1

k=1,k 6=i bi,k if i = j

−bi,j if i 6= j

. (2.2)

Under mild conditions G is nonsingular and from equation (2.1) we have

p = Gδ. (2.3)

2.0.2 Optimum Quantization Problem Formulation

We define the mean square error in the power flow computation due to quantization as

e =
N∑
i=1

wiei =
N∑
i=1

wiE{(pi − p̂i)2} (2.4)

where wi ≥ 0 is a weight to allow different emphasis to different desired (unquantized)

power flows pi, i = 1, . . . , N and p̂i, i = 1, . . . , N are the reconstructed power flows which are

calculated based on quantized measurements. Each of the voltage angles δ1, δ2, . . . , δN are

generally measured at locations which are fairly far apart, while we generally want the power

flows at different locations, the control centers. Thus we want to immediately quantize the

voltage angles, where they are measured, using scalar quantizers and then digitally transmit

the quantized values, each represented by an integer value, to the control centers. Thus, we

define a set of N scalar quantizers to quantize the scalars δi, i = 1, . . . , N . The ith scalar

quantizer, which quantizes δi employs the Mi + 1 thresholds ti,0, . . . , ti,Mi where ti,0 = −∞
and ti,Mi = ∞. So if ti,j−1 ≤ δi < ti,j then the quantization symbol, j is transmitted to the

control center to represent δi where j is an integer between 1 and Mi. In order to focus on the

quantization, we assume noise free communication so δi is received correctly. We can denote

the actual quantization symbol transmitted for the measurement δi as ji. At the control

center the quantization symbols from all measurements j1, . . . , jN are used to determine the

representation (reconstruction) of the power flows based on the quantized measurements to

yield p̂i = `i,j1,...,jN , i = 1, . . . , N . Thus the quantization and reconstruction parameters

4



needed to completely define this approach are {ti,j1 , . . . ti,jN , `i,j1,...,jN , ∀i, j1, . . . , jN}. Next

we describe necessary conditions for an optimum set of parameters.

Using the just described definitions and letting f(δ1, . . . , δN ) denote the joint probability

density function of δ1, . . . , δN , the minimum square error (MSE) is calculated as

e =
N∑
i=1

wi

∫
δ1

· · ·
∫
δN

(pi − p̂i)2f(δ1, . . . , δN )dδ1 · · · dδ1

=
N∑
i=1

wi

M1∑
j1=1

∫ t1,j1

t1,j1−1

· · ·
MN∑
jN=1

∫ tN,jN

tN,jN−1

(2.5)

(`i,j1,...,jN −
N∑
n=1

gi,nδn)2f(δ1, . . . , δN )dδ1 · · · dδN

5



Chapter 3

Optimum Quantization and

Reconstruction

From the MSE function in (2.5), except fixed thresholds ti,0 = −∞ and ti,Mi = ∞ we

can find necessary conditions on the optimum quantization and reconstruction parameters

{ti,j1 , . . . ti,jN , `i,j1,...,jN , ∀i, j1, . . . , jN} by computing

d

d`i′,j′1,...,j′N
e = 0 for i′ = 1, . . . , N and j′k = 1, . . . ,Mk − 1 (3.1)

and
d

dtk,j′k
e = 0 for k = 1, . . . , N and j′k = 1, . . . ,Mk − 1 (3.2)

For the general case where all the angles are statistically dependent random variables,

calculating (3.1) yields

`i′,j′1,...,j′N = (3.3)∫ t1,j′1
t1,j′1−1

· · ·
∫ tN,j′

N
tN,j′

N
−1

(∑N
n=1 gi′,nδn

)
f(δ1, . . . , δN )dδ1 · · · dδN∫ t1,j′1

t1,j′1−1
· · ·
∫ tN,j′

N
tN,j′

N
−1
f(δ1, . . . , δN )dδ1 · · · dδN

for i′ = 1, . . . , N

6



Similarly, for the general case where all the angles are statistically dependent random

variables, calculating (3.2) yields

2
N∑
i=1

wi

M1∑
j1=1

except jk

MN∑
jN=1

(`i,j1,...,jN |jk=j′k − `i,j1,...,jN |jk=j′k+1)∫ t1,j1

t1,j1−1

except jk

∫ tN,jN

tN,jN−1

(

N∑
n=1

gi,nδn)f(δ1, . . . , δN )|δk=tk,j′
k

]dδ1 · · · except jk · · · dδN

=

N∑
i=1

wi

M1∑
j1=1

except jk

MN∑
jN=1

(3.4)

(`2i,j1,...,jN |jk=j′k − `
2
i,j1,...,jN

|jk=j′k+1)∫ t1,j1

t1,j1−1

except jk

∫ tN,jN

tN,jN−1

f(δ1, . . . , δN )|δk=tk,j′
k

]dδ1 · · · except jk · · · dδN

for k = 1, . . . , N and jk = 1, . . . ,Mk − 1.

By simultaneously solving (3.3) and (3.4), we can find the optimum parameters ti,j1 , . . . ti,jN , `i,j1,...,jN

∀i, j1, . . . , jN . One algorithmic description for this process is summarized as

• Initialize the values of ti,j1 , . . . , ti,jN .

• Update t1,1 while keeping all other parameters unchanged to satisfy d
dt1,1

e = 0 in equa-

tion (3.4).

• Sequentially update the other parameters t1,2, . . . ti,jN (one at a time) until all param-

eters ti,j1 , . . . ti,jN approximately satisfy d
dt1,1

e = 0, d
dt1,2

e = 0,. . ., d
dti,jN

e = 0. In the

process of updating, we always update one parameter at a time and keep all other

parameter unchanged.

We note that many other solution approaches are possible.

7



3.0.3 Independent Phase Measurements

For the special case where all the angles are statistically independent random variables,

calculating (3.1) yields

`i′,j′1,...j′N =
∑N

n=1

∫ tn,j′n
tn,j′n−1

gi′,nδnf(δn)dδn∫ tn,j′n
tn,j′n−1

f(δn)dδn
(3.5)

Thus, as implied by (3.5), we can decompose the entire quantization and reconstruction

system into N subsystems. Each of these subsystems focuses only on quantization and

reconstruction for one of the measured angles and so these systems are uncoupled from each

other. Then we can compute each reconstructed power flow by summing the reconstructions

from each of the subsystems as described in (3.5). We can make these ideas even more

apparent with some manipulations. By defining the part of the level due to a given subsystem

as

`i′,j′n =

∫ tn,j′n
tn,j′n−1

gi′,nδnf(δn)dδn∫ tn,j′n
tn,j′n−1

f(δn)dδn
, (3.6)

(3.5) can thus be expressed as

`i′,j′1,...j′N =
∑N

n=1
`i′,j′n for i′ = 1, . . . , N. (3.7)

where we can now see clearly how each subsystem contributes to the reconstructed power

flows.

Considering (3.7), solving (3.2) will ultimately lead to setting derivatives of (3.6) to zero

with the ultimate solution of

tk,jk′ =
`i′,jk′ + `i′,jk′+1

2
(3.8)

8



In fact, we end up needing to solve exactly the Lloyd-Max equations

`i′,jk′ =

∫ tk,jk′
tk,jk′−1

gi′,kδkf(δk)dδk∫ tk,jk′
tk,jk′−1

f(δk)dδk
(3.9)

tk,jk′ =
`i′,jk′ + `i′,jk′+1

2
(3.10)

Then we just need to plug the subsystem levels (3.10) into (3.7).

3.0.4 Statistically Dependent Groups of Voltage Angles

We can also simplify the problem of finding the optimum parameters for cases where

some measurements are statistically dependent and some are not. Suppose the sets of mea-

surements at different buses can be broken into several groups. If all the measurements in

a given group must be modeled as being statistically dependent but if measurements from

different groups can be approximated as independent of one another, then we can find some

necessary conditions that are are uncoupled from group to group. The resulting approach

significantly reduces the complexity of finding the optimum quantization and reconstruction

parameters. Further, this approximation appears reasonable in modeling power networks,

where measurements at neighboring nodes may require a statistically dependent model but

nodes which are far apart may not.

While we can perform the above mentioned decomposition for any number of groups

and any size groups, we explain the idea for the specific case where there are two groups

of undermined size. From this example, it is straightforward to understand how to perform

the decomposition for any other desired case. Consider the specific case where the voltage

angles δ1 to δl are statistically dependent and where the voltage angles δl+1 to δN are also

statistically dependent but δ1 to δl are statistically independent from δl+1 to δN . According

to equation (3.1), the equation (3.3) can be rewritten as

9



`i′,j1′...jN ′ = (3.11)∫ t1,j′1
t1,j′1−1

...
∫ tl,j′

l
tl,j′

l
−1

∑k
n=1 gi′,nδnf(δ1, ..., δl)dδ1, ..., dδl∫ t1,j′1

t1,j′1−1
...
∫ tl,j′

l
tl,j′

l
−1
f(δ1, ..., δl)dδ1, ..., δl

+

∫ tl+1,j′
l+1

tl+1,j′
l+1
−1
...
∫ tN,j′

N
tN,j′

N
−1

∑N
n=l+1 gi′,nδnf(δl+1...δN )dδl+1...dδN∫ tl+1,j′

l+1

tl+1,j′
l+1
−1
...
∫ tN,j′

N
tN,j′

N
−1
f(δl+1...δN )dδ1...δN

Thus, we have decomposed the entire optimum quantization and reconstruction system

into the sum of two smaller quantization and reconstruction systems and the two smaller

systems are uncoupled from each other. This can be seen more explicitly with some manip-

ulation. In particular, (3.11) can thus be further expressed as

`i′,j′1,...j′N = `i′,j′1,...j′l + `i′,j′l+1,...j
′
N

(3.12)

for i′ = 1, . . . , N and j′l = 1, . . . ,Ml − 1 for l = 1, . . . , N.

and we can see the similarity to the completely independent case in (3.7).

From (3.11) and (3.12), we find

`i′,j′1,...,j′l = (3.13)∫ t1,j′1
t1,j′1−1

· · ·
∫ tl,j′

l
tl,j′

l
−1

(∑N
n=1 gi′,nδn

)
f(δ1, . . . , δl)dδ1 · · · dδl∫ t1,j′1

t1,j′1−1
· · ·
∫ tl,j′

l
tl,j′

l
−1
f(δ1, . . . , δl)dδ1 · · · dδl

for i′ = 1, . . . , N

Further, calculating (3.2) yields

10



2
N∑
i=1

wi

M1∑
j1=1

except jk

Ml∑
jl=1

(`i,j1,...,jl |jk=j′k − `i,j1,...,jl |jk=j′k+1)∫ t1,j1

t1,j1−1

except jk

∫ tl,jl

tl,jl−1

(
l∑

n=1

gi,nδn)f(δ1, . . . , δl)|δk=tk,j′
k

]dδ1 · · · except jk · · · dδl

=
N∑
i=1

wi

M1∑
j1=1

except jk

Ml∑
jl=1

(`2i,j1,...,jl |jk=j′k − `
2
i,j1,...,jl

|jk=j′k+1)∫ t1,j1

t1,j1−1

except jk

∫ tl,jl

tl,jl−1

(3.14)

f(δ1, . . . , δl)|δk=tk,j′
k

]dδ1 · · · except jk · · · dδl

for k = 1, . . . , l and jk = 1, . . . ,Mk − 1.

By simultaneously solving (3.13) and (3.14), we can find the optimum parameters ti,j1 . . . ti,jl ,

`i,j1...jl ,∀i, j1, . . . , jN .

Similarity, we can also find the optimum parameters ti,jl+1
. . . ti,jN , `i,jl+1...jN∀i, jl+1, . . . , jN

in a similar manner and find the overall solution using equation (3.12) The approach is similar

to that in section

11



Chapter 4

Numerical Results

Next we present some numerical results to illustrate the theory previously described. We

assume there are four angle measurements δi i = 4 which each follow a marginal Gaussian

distribution with zero mean and variance 0.05. Consider the case where δ1 and δ2 and are

partially correlated and δ3 and δ4 are also partially correlated. On the other hand the vector

(δ1, δ2) is uncorrelated with (δ3, δ4). The correlation between δ1 and δ2 is described by the

correlation coefficient ρ = 0.5. The correlation between δ3 and δ4 is also described by the

correlation coefficient ρ = 0.5. Each angle measurement is quantized with a scalar quantizer

which employs 4 thresholds. The 4× 4 bus susceptance matrix G is

G =



−18.46 15.26 0 0

15.26 −29.35 4.78 5.12

0 4.78 −8.85 3.21

0 5.12 3.21 −37.34


which was chosen by selecting 4 buses from the IEEE fourteen bus model susceptance matrix.

The final mean square error has been normalized by the square magnitude of the largest

element in the susceptance matrix G is replaced by the biggest value within G.

Therefore, in this example, the measurements can be decomposed into two groups. Group

one is composed of δ1 and δ2. Group two is composed of δ3 and δ4. In order to verify the

12



Simplified strategy

Normalized minimum square error t1,0 t1,1 t1,2 t1,3
0.0731 -1 -0.1320 0.1324 1

t2,0 t2,1 t2,2 t2,3
-1 -0.1325 0.1322 1
t3,0 t3,1 t3,2 t3,3
-1 -0.1322 0.1326 1
t4,0 t4,1 t4,2 t4,3
-1 -0.1328 0.1324 1

Unsimplified strategy

Normalized minimum square error t1,0 t1,1 t1,2 t1,3
0.0734 -1 -0.1318 0.1320 1

t2,0 t2,1 t2,2 t2,3
-1 -0.1323 0.1327 1
t3,0 t3,1 t3,2 t3,3
-1 -0.1326 0.1320 1
t4,0 t4,1 t4,2 t4,3
-1 -0.1322 0.1333 1

Table 4.1: comparison of simplified strategy and unsimplified strategy when each phase
measurement employs 4 threshold

optimality of our simplified quantization and reconstruction approach, we compare the results

with those obtained from directly solving the original unsimplified necessary conditions.

From table 1 we can see that the two solutions yield approximately the same performance

and that the thresholds employed in the two strategies finally converge to approximately the

same values. The time required to find the two solutions on a computer run was: 34 min

for the simplified strategy and 9 hours 20 min for the unsimplified strategy This shows that

our simplified strategy can greatly simply the entire problem while ensuring the same per-

formance as the unsimplified strategy. Table 2 shows solutions for the identical problem but

where each angle measurement is quantized with a scalar quantizer that employs 5 thresh-

olds. As expected, we can see decreased minimum square error compared with the results in

13



Simplified strategy

Normalized minimum square error t1,0 t1,1 t1,2 t1,3 t1,4
0.0708 -1 -0.2117 0.0344 0.2110 1

t2,0 t2,1 t2,2 t2,3 t2,4
-1 -0.2084 0.0142 0.2086 1
t3,0 t3,1 t3,2 t3,3 t3,4
-1 -0.2126 0.0416 0.2114 1
t4,0 t4,1 t4,2 t4,3 t4,4
-1 -0.2149 -0.0217 0.2133 1

Unsimplified strategy

Normalized minimum square error t1,0 t1,1 t1,2 t1,3 t1,4
0.0708 -1 -0.2075 0.0421 0.2126 1

t2,0 t2,1 t2,2 t2,3 t2,4
-1 -0.2098 0.0100 0.2078 1
t3,0 t3,1 t3,2 t3,3 t3,4
-1 -0.2113 -0.0374 0.2143 1
t4,0 t4,1 t4,2 t4,3 t4,4
-1 -0.2117 -0.0210 0.2076 1

Table 4.2: comparison of simplified strategy and unsimplified strategy when each phase
measurement employs 5 threshold

Table 1. Generally, more thresholds per angle measurement implies the reconstructed power

measurements will be more accurate.

14
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