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Abstract

The electric energy generated by solar panels declines due to dust particulates, bird deposits, water

spots, and other contaminants that inhibit sunlight absorption and promote light scattering. As

part of our research, we use cameras to capture images of solar panels, and analyze the images

to detect the amount of scattered light. The more scattered light there is, the less light there

is to penetrate the solar panel glass and reach the part of the panel that converts incident light

to electric energy; therefore, less energy is generated. In this paper, we discuss the classification

algorithm we developed to classify panels as clean or dirty. Dirty panels suffer from loss of electric

energy generation and they need cleaning in order to restore their performance.
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Chapter 1

Introduction

The amount of energy generated by solar panels depends on many factors, including the location,

the month of the year, day of the month, time of day, weather conditions, and the overall cleanliness

of the solar panel. It is important to know when a panel is dirty, so that it can be cleaned promptly

to minimize the loss of energy. We devised an algorithm that classifies panels as clean or dirty.

Our algorithm utilizes various multivariate statistics and signal processing methods including the

Principal Component Analysis, which is based on the eigenvalues and eigenvectors of the variance-

covariance matrix of the multivariate probability function of the RGB components. Additionally,

the frequency domain analysis, which is based on the frequency spectrum of the scattered light,

as well as phase spectrum analysis. Time-frequency domain analysis, which is based on wavelet

decomposition. Furthermore, the Mahalanobis distance, which is based on the trivariate probability

density function (PDF) obtained from sampling the clean panels, and the trivariate PDF from

sampling the dirty panels. Following this section is background information on the dynamics of

light. The next chapters describe the methodology utilized in the classification algorithm, and the

experimental results, respectively.

1.1 Background

1.1.1 The Color of the Sky

Sunlight is comprised of ultraviolet, visible, and infrared light. For now we will only focus on the

visible spectrum. White light from the sun is comprised of all colors in the visible spectrum. Each

color is distinguished by its different wavelength, where violet and blue are short, yellow and red

are long, and green is in the middle. Different molecules and particles in the atmosphere affect

different components of white light, and these phenomena are explained by Rayleigh scattering

and the Mie solution to Maxwell’s equation. Rayleigh scattering applies to particles that are much

1



smaller than the wavelength, where shorter wavelengths scatter more than longer ones. The Mie

solution to Maxwell’s equation applies to particles similar to or larger than the wavelength, where

all wavelengths of white light scatter equally. The color of the sky is indicative of how clean or

dirty the air is.

Clean air is composed of approximately 78.04% Nitrogen, 20.94% Oxygen, 0.934% Argon, and

0.0350% other gases [BF85]. Due to the abundance of gases, particularly Nitrogen and Oxygen,

light is scattered most frequently by these gases while traveling through the atmosphere. Be-

cause the gas molecules are small, the color components most affected are the ones with shorter

wavelengths, namely violet and blue. This partially explains why the sky is blue on a clear day.

Although violet has a smaller wavelength than blue and scatters more, it has lower intensity com-

pared to other colors and the human eye has low sensitivity to it; therefore, we see the sky as blue

rather than violet [HP08,Ram11,TSG91].

Dirty air is comprised of not only gas, but also any combination of water vapor, sulfur, aerosols,

soot, and pollutants. Due to the addition of larger molecules, color components of larger wave-

lengths scatter, such as green and red. This mixture of short and long wavelengths in the atmo-

sphere makes the sky look gray on a cloudy day. The same can be said for clouds. Considering

the primary component of clouds is water vapor, the condensation makes clouds appear white or

gray.

1.1.2 From Sunlight to Electric Energy

In the previous section, we discussed the dynamics of white light in the atmosphere. In this section,

we will discuss the dynamics of the light that actually makes it through the atmosphere to the

solar panels. Recall that red light has the longest wavelength in the visible spectrum. Therefore,

it penetrates the glass more readily and produces the most amount of electricity. Meanwhile, blue

and violet light suffer the most reflection, and contribute very little to the production of electric

energy.

Solar output depends on the time of day, month, or year, and climatological conditions. In

terms of climate, dust storms and sand storms are common in arid climates, and as the dust settles

on the glass of a solar panel, the energy output decreases, because part of the light is refracted

by the dust and less light penetrates the glass. The loss of light energy depends on the amount,

size, and chemical composition of the dust [RVM89, MBY+06]. In terms of time, trees are sparse

in arid climates, and as birds migrate in the fall and spring, solar farms are used by them as rest

areas; therefore, the solar panels become dirty by bird excrement. It is safe to say that the dirtier

a panel is, the less energy it produces.

2



Chapter 2

Classification Algorithm

The classification algorithm involves sampling, determining the classification vector, and develop-

ing, training, and testing a classifier. Our goal is to use videos of solar panel surfaces captured by

cameras from a solar panel site and to classify the solar panels as clean or dirty. All of the samples

we collected are images of solar panels captured by a digital camera. First, we took pictures of a

panel when it was dirty, then we took pictures of it after we cleaned it. Figures 2.1 and 2.2 show

an example of a bad and good image, respectively. Some of these images included both clean and

dirty sections, so we cropped them into smaller samples of 200×200 dimensions to ensure separa-

tion between clean and dirty data. The goal was to use crops from the same panel, and crops from

a combination of panels with similar characteristics. We settled on three groups of training data,

where a group contains one clean sample set and one dirty sample set.

1. The first group contains data from the same panel. Each set has 12 samples.

2. The second group builds upon the first group by incorporating data from another panel of

similar characteristics. Each set has 20 samples.

3. The third group does not build upon the first and second group. Instead, it incorporates

data from two panels of similar characteristics, but with a lighter shade of blue. Each set

has 19 samples.

The process of building and testing a classifier starts with defining the classification vector,

then defining, training, and testing the classifier. If the classifier is proven to work properly, then

we can use it to classify new incoming data. The power of a classifier is a function of its ability to

correctly classify objects. The higher the probability of the classifer to correctly classify objects,

the more powerful it is. Another way of expressing the power of a classifier is by computing its

misclassification error, which is the probability of a classifier to incorrectly classify objects. The

lower the misclassification error, the more powerful the classifier is. We train the classifier as

3



Figure 2.1: This is an example of an image we did not use. Notice the band angle and glare at the
top-right corner.

Figure 2.2: This is an example of an image we used. Although it has both clean and dirty areas,
it has a good angle, which makes it easy to crop.
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follows: define the classification vectors for each class, where each vector represents a sample of

data, or an image; build the classifier, which is a metric, or a distance, that will classify a vector as

belonging to the correct class; and classify vectors already used to define a class c as belonging to

class c. For the last step, we use the Jackknifing approach, where we take a vector v that already

belongs to a class c, recompute c without v, and then we use our classification algorithm to classify

v. We repeat this process for each vector from each class, and we estimate the probability of

correct classification as the ratio of the number of vectors classified correctly over the total number

of classification vectors, also known as the accuracy. The vectors and parameters obtained by the

classifier will be used to classify new vectors corretly.

An important component associated with the panel classification process is the noise. The noise

depends on the atmospheric pressure, the amount of particulates floating in the atmosphere, the

orientation of the sun, temperature fluctuations, the orientation of the camera, fluctuations of the

power source of the chip obtaining the image, the type and quality of the imager chip and other

factors. We made no separate considerations for noise in this study, thus the noise is embedded

in the signal and the idea here is to use algorithms that are robust with respect to the noise. We

explored various methods and found that the Mahalanobis distance was the strongest classifier. In

subsequent sections of this chapter, we will discuss the Mahalanobis distance and how we used it

during training and testing, as well as other notable classifiers. In the next chapter, we will discuss

the experimental results of each classifier.

2.1 Samples

These are the sample sets we used for the Discrete Fourier Transform, the Discrete Wavelet Trans-

form, and the Principal Component Analysis. We chose three pairs from each group. We avoided

samples that were either false negatives or false positives, and we made the pairs as homogeneous

as possible.

(a) Clean. (b) Dirty.

Figure 2.3: Group 1 sample set 1.
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(a) Clean. (b) Dirty.

Figure 2.4: Group 1 sample set 2.

(a) Clean. (b) Dirty.

Figure 2.5: Group 1 sample set 3.

(a) Clean. (b) Dirty.

Figure 2.6: Group 2 sample set 1.
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(a) Clean. (b) Dirty.

Figure 2.7: Group 2 sample set 2.

(a) Clean. (b) Dirty.

Figure 2.8: Group 2 sample set 3.

(a) Clean. (b) Dirty.

Figure 2.9: Group 3 sample set 1.
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(a) Clean. (b) Dirty.

Figure 2.10: Group 3 sample set 2.

(a) Clean. (b) Dirty.

Figure 2.11: Group 3 sample set 3.
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2.2 Mahalanobis Distance

The Mahalanobis Distance measures the distance between a data point to a common point. Con-

sider a sample set of K clean panels, another sample set of D dirty panels, and an unknown sample

x from an arbitrary panel. For this panel, we compute the averages of the RGB values, and the

variance-covariance matrix of x. The averages constitute a classification vector. If the panel is

clean, then its vector belongs to the clean class; otherwise, it belongs to the dirty class. All the

clean classification vectors have a grand average, which is another vector, and they have their

own variance-covariance matrix. The grand average of the clean classification vectors defines the

centroid, or center of gravity, of the clean class. The variance-covariance matrix of the vectors of

the clean class defines how close the vectors are to the centroid. Together, the variance-covariance

matrix and the centroid make up the parameters of the classifier.

Theorem 2.2.1 Let xcm be a classification vector from the clean class of images m = 1, 2, · · · ,K

with centroid xc and variance-covariance matrix Σc, then the mean of the vector xcm − xc is zero,

the variance-covariance matrix of xcm − xc is K−1
K Σc, where Σc is the variance-covariance matrix

of xcm, m = 1, 2, · · · ,K, and K is the number of classification vectors in the clean class. The

Mahalanobis distance of xcm from xc is

d2
cm =

(
xcm − xc

)T ( K

K − 1

)
Σ−1
c

(
xcm − xc

)
(2.1)

Alternatively, the Mahalanobis distance of xdm from xd, where d is the dirty class, is

d2
dm =

(
xdm − xd

)T ( D

D − 1

)
Σ−1
d

(
xdm − xd

)
(2.2)

Proof: Let µ = E (xcm), then

E
(
x
)

= E

[∑K
m=1 xcm
K

]

=
1

K

K∑
m=1

E [xcm]

=
1

K
Kµ

= µ

Thus E
(
xcm − xc

)
= E [xcm] − E

[
xc
]

= µ − µ = 0, where µ is a column vector with three

components, namely the means of the red, green, and blue components. The variance-covariance

matrix Σ of the classification vectors is a 3×3 positive definite symmetric matrix and is denoted

by

Σ = E (xcm − µ)
′
(xcm − µ)

9



The variance-covariance matrix of the centroid xc is

E
(
xc − µ

)′ (
xc − µ

)
= E

[∑K
i=1 xci
K

− µ

]′ [∑K
j=1 xcj

K
− µ

]

=
1

K2
E

( K∑
i=1

xci − µ

)′ K∑
j=1

xcj − µ



=
1

K2


K∑
i=1

E (xci − µ)
′
(xci − µ) +

K∑
i=1
i6=j

K∑
j=1
i 6=j

E (xci − µ) (xcj − µ)


=

1

K2
KΣ +

K∑
i=1
i 6=j

K∑
j=1
i 6=j

0

=
Σ

K

The variance covariance matrix of xcm − xc is

E
(
xcm − xc

)′ (
xcm − xc

)
= E [(xcm − µ) (xc − µ)]

′
[(xcm − µ) (xc − µ)]

= E (xcm − µ)
′
(xcm − µ)− E (xcm − µ)

′ (
xc − µ

)
− E

(
xc − µ

)′
(xcm − µ) + E (xc − µ)

′
(xc − µ)

= Σ− 1

K
Σ− 1

K
Σ +

1

K
Σ

=
K − 1

K
Σ

From the above, we infer that the Mahalanobis distance of xcm from the centroid xc is

d2
cm =

(
xcm − xc

)T ( K

K − 1

)
Σ−1
c

(
xcm − xc

)

Theorem 2.2.1 describes how we can compute the Mahalanobis distance of the mth vector of

a class to the centroid of that class, and it is illustrated in Figure 2.12. The clean classification

vectors form a space with the centroid xc, which is a subspace of the 3-D space defined by the

RGB values, and its shape is similar to an ellipsoid, where each axis has a different size. Every

classification vector xcm of the clean class that does not belong to the intersection of the clean

class with the dirty class, has a smaller distance from the centroid of the clean space than from the

centroid of the dirty space. Similarly, the dirty classification vectors form a space with the centroid

xd, and its subspace has the same characteristics as the clean subspace. Every classification vector

xdm of the dirty class that does not belong to the intersection of the clean class with the dirty

class, has a smaller distance from the centroid of the dirty space than from the centroid of the

clean space. Classification vectors belonging to the intersection of the clean space and the dirty
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Figure 2.12: Illustration for Theorem 2.2.1. The clean space is blue, and any points within that
space are clean classification vectors. The dirty space is red, and any points within that space are
dirty classification vectors. The centroids are purple.

space could have a smaller distance from the centroid of the dirty space’s centroid, although they

actually belong to the clean space, and vice versa. The issue of intersections is addressed in

Theorem 2.2.3, and is illustrated in Figure 2.14a and Figure 2.14b. Although Figure 2.14b shows

that not all vectors in the intersection are misclassified, the worst case for misclassification of the

entire intersection is that all of them are misclassified. The figure also shows a point sitting on the

misclassification plane. The probability of a point to be equidistant from both centroids is close

to zero, but when it happens, we arbitrarily choose a class.

Theorem 2.2.2 Let xcm, m = 1, 2, · · · ,K be a classification of the clean space with mean vector

µc, variance-covariance matrix Σc, and centroid xc. Let x be a new classification vector. If x

belongs to the clean space, then E
(
x− xc

)
= 0, the variance-variance matrix of x− xc is K+1

K Σc,

and the Mahalanobis distance is

d2
1 =

(
x− xc

)′ K

K + 1
Σ−1
c

(
x− xc

)

Proof: Let E (x) = µc, E
(
xc
)

= µc from Theorem 2.2.1, and E
(
x− xc

)
= µc − µc = 0.
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Figure 2.13: Illustration for Theorem 2.2.2. The blue space is clean class, and the red space is
dirty class. The purple points are the centroids of each class. The green point is the unknown
vector. It belongs to the clean class since it is closer to the clean space’s centroid.

The variance-covariance matrix of x− xc is

E
(
x− xc

)′ (
x− xc

)
= E [(x− µc) (xc − µc)]′ [(x− µc) (xc − µc)]

= E (x− µc)′ (x− µc)− E (x− µc)′
(
xc − µc

)
− E

(
xc − µc

)′
(x− µc) + E

(
xc − µc

)′ (
xc − µc

)
= Σc − 0− 0 +

1

K
Σc

=
K + 1

K
Σ

Therefore, the Mahalanobis distance of x from xc is

d2
1 =

(
x− xc

)′ K

K + 1
Σ−1
c

(
x− xc

)

Theorem 2.2.2 describes how we can classify a new, arbitrary vector. If x is classified correctly

to class c, then c’s space is recalculated, which means a new centroid and variance-covariance

matrix is computed. Recall that we used the Jackknife method to calculate the misclassification

error during the design of the classifier, where we start by removing a vector r from the clean

space, recompute the clean space (centroid and variance covariance matrix), and then classify r

against the new clean space and the original dirty space. If it is correctly classified as clean, then

we consider it a true positive; otherwise, we count it as being misclassified, or a false negative. We

repeat this process until we go through all the clean and dirty classification vectors. Afterwards,

we divide the number of misclassified vectors over the total number of vectors in the two classes,

which is an estimate of the misclassification probability. As the process continues and more vectors
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are classified correctly, the process comes into a steady state, and the estimated misclassification

probability converges to the true probability of misclassification. This is due to the Law of Large

Numbers, which states that as the number of trials of a random process increases, the results

should converge to the expected value.

Theorem 2.2.3 Let xcm, where m = 1, 2, · · · ,K, be a classification vector of the clean space with

mean vector µc, variance-covariance matrix Σc, and centroid xc. Let xdm, where m = 1, 2, · · · , D,

be a classification vector of the dirty space with mean vector µd, variance-covariance matrix Σd,

which is not significantly different from Σc, and centroid xd. A better estimate of the variance

for both classes is Σ = (K−1)Σc+(D−1)Σd
K+D−2 . Let x be a new classification vector. The Mahalanobis

distance of x from xc is

d2
1 =

(
x− xc

)′ K

K + 1
Σ−1

(
x− xc

)
and from xd is

d2
2 =

(
x− xd

)′ D

D + 1
Σ−1

(
x− xd

)
If d2

1 < d2
2, then x is more likely to be in the clean space, and if d2

1 > d2
2, then x is more likely to

be in the dirty space.

Proof: Consider the following functions expressing the probability of x belonging to the clean

space and to the dirty space:

1

(2π)
3
2
(
K+1
K

) 1
2 |Σ| 12

e−
1
2 (x−xc)

′ K
K+1 Σ−1(x−xc)

>

1

(2π)
3
2
(
D+1
D

) 1
2 |Σ| 12

e−
1
2 (x−xd)

′ D
D+1 Σ−1(x−xd)

The greater relation is due to d2
1 < d2

2, and since
√

K+1
K ≈

√
D+1
D ≈ 1, which implies that if

d2
1 < d2

2, x is more likely to belong to the clean class.

So far we have explored the Mahalanobis distance of the trivariate probability distribution

function derived from the RGB data of clean and dirty samples. The red, green, and blue his-

tograms of a panel can be used to estimate the marginal probability functions of the panel section,

as well as the mean vector, and the variance-covariance matrix of the panel. This means if we were

to compute the marginals of two samples, the bigger the difference, the more apparent it will be

when we plot the Mahalanobis distances. The estimated mean vector and the variance-covariance

matrix can be used to estimate the trivariate probability function of the average RGB vector,

which is a trivariate normal according to the Central Limit Theorem.
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(a) (b)

Figure 2.14: Illustrations for Theorem 2.2.3. The clean space is blue, and the dirty space is red.
The centroids of each class are the purple points. (a) A three-dimensional example. The blue
point is a sample classified as clean, and the red point is a sample classified as dirty. (b) The black
line represents a plane. Anything to the left of the plane is clean, and anything to the right of the
plane is dirty. The blue point (thickened black border) now belongs to the dirty class and is closer
to the dirty class’s centroid, even though it was part of the clean class. The same can be said for
the red point (thickened black border) that was a dirty classification vector.
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2.3 Histogram Analysis

The histogram allows us to view the data distribution through a mathematical model. The his-

togram of a digital image is a discrete function h(xi) = ni where xi is the ith intensity value in the

range [0, X − 1], and ni is the number of elements in the data with intensity xi [GW08]. We refer

to these counts as bins. It is common practice to normalize a histogram, and the method we chose

was to divide each bin by the total number of elements times its width. As a result, the area, or

integral, under the histogram is equal to one. The function obtained through normalization is the

probability density function.

The gamma distribution provides enough flexibility to model these probability density func-

tions. The gamma density function [WMMY12] is denoted by

f(x) =
xα−1e−

x
β

Γ(α)βα

where x, α, β > 0 and the gamma function Γ(α) =
∫∞

0
xα−1e−x dx. In our application, we computed

Γ(α) numerically by using the Lanczos approximation [PTVF92]

Γ(α+ 1) = (α+ γ + 0.5)α+0.5e−(α+γ+0.5)
√

2π

[
p0 +

N∑
n=1

pn
α+ n

]

where α > 0, γ = 5, N = 6, and

p =



76.18009172947146,

−86.50532032941677,

24.01409824083091,

−1.231739572450155,

1.208650973866179× 10−3,

−5.395239384953× 10−6


Another way to compute it numerically is to solve for the integral using integration by parts,

which shows that

Γ(α) = (α− 1)Γ(α− 1)

= (α− 1)(α− 2)Γ(α− 2)

= (α− 1)(α− 2) · · · (2)(1)Γ(1)

= (α− 1)!

for positive integers α. For floating points, we can still use the factorial pattern until we reach an

α that is between 0 and α, in which case the integral is small enough to be computed numerically.

The global mode of the gamma density function, or the point x that maximizes f(x) is xm =

(α−1)/β. If x̂ is the global mode based on the empirical density function computed from the data

15



and x is the average, then an estimate of the parameters α and β from the data is: α̂ = x
x−x̂ and

β̂ = x − x̂. The alpha parameter affects the shape of the curve, while the beta parameter affects

the scale of the curve. The idea here is that samples with similar parameters belong to the same

class.

2.4 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical procedure that transforms data from

the spatial domain to the frequency domain. Our input data is a two dimensional image, so we

need to compute a two dimensional transform. The 2-D DFT [GW08] is denoted by

F (u, v) =

M−1∑
x=0

N−1∑
y=0

f(x, y)e−i2π(ux/M+vy/N) : i =
√
−1 (2.3)

where the input f(x, y) may be either real or complex, and the output F (u, v) is always complex.

Due to the separability property, the 2-D DFT can be computed with the 1-D DFT along the rows

and columns [GW08]. The 1-D DFT [GW08] is denoted by

F (u) =

M−1∑
x=0

f(x)Wux
M : WM = e−i2π/M (2.4)

Although Equation 2.4 improves upon Equation 2.3, it can be optimized further. We can compute

the 1-D DFT using the Fast Fourier Transform (FFT), which is an algorithm that efficiently

computes the 1-D DFT in O(NlogN) time as opposed to O(N2) time, because it exploits the

periodicity property

W k+N
N = W k

N

and symmetry property

W
k+N

2

N = −W k
N

of the complex exponential [GW08]. The main advantage of the FFT is that it does not perform

the unnecessary duplicate computations that is prevalent in Equation 2.3. There are several well-

known FFT algorithms, such as the Cooley-Tukey algorithm, but we used our own, which we

describe next.

Given an RGB image of N ×M dimensions, pad the image with extra (R,G,B) pixels that are

zeroes (0, 0, 0) row-wise if N is not a power of two, and column-wise if M is not a power of two. It

is unnecessary for N = M . Assuming we had to pad the image with zeroes, the new dimensions

are N ′ and M ′. The FFT-butterfly consists of stages, and within each stage are blocks. There are

S stages where N ′ = 2S ; each stage si will use a certain subset of multipliers; and the number of

blocks equals the number of multipliers used for that particular stage. Each block consists of one or

more butterflies, and each butterfly corresponds to a particular multiplier. Figure 2.15 illustrates
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Figure 2.15: Butterfly.

the form of the butterfly. The total number of multipliers is N ′

2 , or 2S−1, and they are of the form

e−j2kπ/8, where 0 ≤ k < N ′

2 and the set of k’s are in reverse bit order. The complex exponential

can be rewritten using Euler’s equation

eiθ = cos θ + i sin θ

as

ei(−θ) = cos (−θ) + i sin (−θ)

e−iθ = cos θ − i sin θ (2.5)

where

θ =
2kπ

8

The algorithm to compute in reverse bit order is as follows: start with stage 0 when i = 0,

and for each subsequent stage si, where i = 1, 2, · · · , N
′

2 − 1, multiply the previous values by two,

then add one to these new values. Table 2.1 displays the results when S = 4. Each bit value is

substituted into Equation 2.5 to compute the corresponding multiplier.

stage si 0 1 2 3

k 0 0 0 0
1 2 4

1 2
3 6

1
5
3
7

Table 2.1: Reverse bit order when S = 4.

Because the FFT-butterfly must be computed row-wise and column-wise in order for it to be

two-dimensional, we must compute separate mutipliers for the rows and columns. For optimization

purposes, it is better to precompute the multipliers, and the benefit of N = M is that you will

only have to compute them once. Each row will have the same multipliers, and the same goes for
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columns. Figure 2.16 illustrates an example of transforming a sequence of N = 8 data elements.

There are N
2 = 4 multipliers and S = 3 stages, so if we refer to Table 2.1, we should use the column

of k’s under s2. The numbers above each stage signify the group of multipliers to use. Therefore,

from left to right (for stages) and top to bottom (for blocks), the first stage uses the multipler

when k = 0 on the one and only block; the second stage uses the multiplier when k = 0 on the

first block, and k = 2 on the second block; and the third stage uses the multiplier when k = 0 on

the first block, k = 2 on the second block, k = 1 on the third block, and k = 3 on the fourth block.

Each stage reuses the computations of previous stages. The results are in reverse bit order, so the

Figure 2.16: Forward FFT on a sequence of data where N = 8. Notice the subscripts after the
transform are out of order.

last step is to unscramble them in ascending order.

The Fourier Transform produces a complex number valued output image which can be displayed

with two images, either with the real and imaginary part, or with the magnitude

|F (u, v)| =
[
R2(u, v) + I2(u, v)

]1/2
and phase

φ(u, v) = arctan

[
I(u, v)

R(u, v)

]
It is common to display the magnitude only [FPWW00].
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2.5 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) converts an input signal into low-pass and high-pass

wavelet coefficients. This transformation can be applied recursively on the low-pass coefficients

until the desired number of transforms is reached. We used the Daubechies wavelet, a biorthogonal

wavelet, which consists of the following low-pass filter[
− 1

8
1
4

3
4

1
4 − 1

8

]
and high-pass filter [

− 1
2 1 − 1

2

]
Figure 2.17 illustrates how one would apply these filters to an image, which is similar to how one

would apply edge detection filters.

Figure 2.17: Applying the low-pass filter to an image. P is the current pixel.

To show that the low-pass filter passes low frequencies, and the high-pass filter passes high

frequencies, we must derive their equations and substitute a set of values that range from 0 to N .

We begin the derivation with Equation 2.6

Am =

N−1∑
m=−N

xne
−j2πmn/2N =

N−1∑
m=−N

xne
−jπmn/N (2.6)

where the summation for the low-pass filter is

Am = x−2e
−jπm(−2)/N + x−1e

−jπm(−1)/N + x0e
−jπm(0)/N + x1e

−jπm(1)/N + x2e
−jπm(2)/N

= −1

8
ej2πm/N +

1

4
ejπm/N +

3

4
+

1

4
e−jπm/N − 1

8
e−2jπm/N

= −1

8

[
ej2πm/N + e−2jπm/N

]
+

1

4

[
ejπm/N +

1

4
e−jπm/N

]
+

3

4

=
3

4
− 1

8

[
cos

(
2πm

N

)
+ j sin

(
2πm

N

)
+ cos

(
2πm

N

)
− j sin

(
2πm

N

)]
+

1

4

[
cos
(πm
N

)
+ j sin

(πm
N

)
+ cos

(πm
N

)
− j sin

(πm
N

)]
=

3

4
− 1

8

[
2 cos

(
2πm

N

)]
+

1

4

[
2 cos

(πm
N

)]
=

3

4
+

1

2
cos
(πm
N

)
− 1

4
cos

(
2πm

N

)
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and the summation for the high-pass filter is

Am = x−1e
−jπm(−1)/N + x0e

−jπm(0)/N + x1e
−jπm(1)/N

= −1

2
ejπm/N + ejπm(0)/N +

1

2
e−jπm/N

= 1− 1

2

[
ejπm/N + e−jπm/N

]
= 1− 1

2

[
cos
(πm
N

)
+ j sin

(πm
N

)
+ cos

(πm
N

)
− j sin

(πm
N

)]
= 1− 1

2

[
2 cos

(πm
N

)]
= 1− cos

(πm
N

)
Notice that we substituted the complex exponential with Euler’s equation. The next step is to

substitute a set of values from 0 to N . Table 2.2 lists the results of the low-pass and high-pass

filter; the values converge from 1 to 0 on the low-pass filter, and the values converge from 0 to 2

on the high-pass filter.

m = Low pass High pass

0 1 0
N/8 1.035 0.076
N/4 1.104 0.293
3N/8 0.765 0.617
N/2 1 1
5N/8 0.735 1.383
3N/4 0.396 1.707
7N/8 0.111 1.924
N 0 2

Table 2.2: Results of substituting m for specific values from 0 to N . Notice that the low-pass
values converge to zero, and the high-pass values diverge away from zero.

For our application, we are given a low-pass filter, a high-pass filter, and an RGB image where

each row and column of data are pixels. For each channel, apply the low-pass filter then the high-

pass filter to each row of data. Place the new low-pass coefficients (L) and high-pass coefficients

(H) side-by-side as shown in Figure 2.18a. The output size from each pass is half the original

input size. If the original input size was odd, then the half would round up one to be even.

Apply the low-pass filter then the high-pass filter to each column of data in L (low) and H (high)

separately. Place the new low-pass coefficients (LL) and high-pass coefficients (LH) of L on top of

one another. Do the same for the new sets of coefficients of H. Figure 2.18b illustrates the resulting

output, which consists of four quadrants, or bands, where the LL (low-low) is the approximation,

the LH (low-high) is the vertical detail, the HL (high-low) is the horizontal detail, and the HH

(high-high) is the diagonal detail [GW08]. It is optional to repeat these steps on the LL quadrant

of the current iteration to produce more subbands.
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(a) Intermediate. (b) Final.

Figure 2.18: One level transform. There are two passes per level: (a) one row-wise, and (b) one
column-wise.

Implementing the DWT using the filters in their current form has a disadvantage in that they

are not reversible. Fortunately, they can be rewritten. The filters reproduce the equivalent forward

formulas below. While reversing is unnecessary for our application, a feature of the rewritten

formulas is that they are faster to compute because they can be computed with integer arithmetic

and bit shifting instead of floating point arithmetic. We will not show the inverse formulas because

we did not use them in our application. Below are the forward formulas for when n = 10, but they

can be expanded for any even n:

z0 = x1 −
x0 + x2

2

z1 = x3 −
x2 + x4

2

z2 = x5 −
x4 + x6

2

z3 = x7 −
x6 + x8

2

z4 = x9 −
x8 + x8

2
= x9 − x8

y0 = x0 +
z0

2

y1 = x2 +
z0 + z1

4

y2 = x4 +
z1 + z2

4

y3 = x6 +
z2 + z3

4

y4 = x8 +
z3 + z4

4

Below are the forward formulas for when n = 9, but they can be expanded for any odd n:

z0 = x1 −
x0 + x2

2

z1 = x3 −
x2 + x4

2

z2 = x5 −
x4 + x6

2

z3 = x7 −
x6 + x8

2

z4 = −1

2
x8 + x7 −

1

2
x6 = z3

y0 = x0 +
z0

2

y1 = x2 +
z0 + z1

4

y2 = x4 +
z1 + z2

4

y3 = x6 +
z2 + z3

4

y4 = x8 +
z3 + z3

4
= x8 +

z3

2
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2.6 Principal Component Analysis

The Principal Component Analysis (PCA) is a statistical procedure that uses eigen decomposition

to compute the most meaningful basis that best re-expresses a data set to reveal hidden patterns

and dynamics [Shl03]. Eigen decomposition is a matrix decomposition of a square matrix into

eigenvectors and eigenvalues [Wei]. The square matrix we use is the variance-covariance matrix,

which is a positive definite symmetric matrix. Note that for our case it is a positive definite

symmetric matrix, but in general it is a positive semi-definite symmetric matrix. An important

property of a symmetric matrix is that it is diagonalizable by a matrix of its orthonormal vectors

[Shl03]. These vectors are the eigenvectors. Note that a diagonal matrix is one where all but

the diagonal elements are zero. The vectors that make up the new basis are the eigenvectors, or

principal components [Shl03].

The goal is to compute a set of eigenvectors and eigenvalues that satisfy the following equation

Σx = λx (2.7)

where Σ is the covariance matrix, λ is the vector [λ0λ1λ2], and x is a matrix where each row is an

eigenvector. It can be rewritten as

(Σ− λI)x = 0 (2.8)

But x cannot be zero, so (Σ− λI) must be

(Σ− λI) = 0 (2.9)

where λ is the vector [λ0λ1λ2]
T

, and I is the identity matrix. We start by computing the covariance

matrix in Equation 2.9

Σ =


σ2
R σRG σRB

σRG σ2
G σGB

σRB σGB σ2
B

 (2.10)

which is a matrix where the diagonal terms are the variances

σ2
a =

1

(R× C)− 1

R∑
j=0

C∑
i=0

(aij − a)2 (2.11)

and the off-diagonal terms are the covariances

σab =
1

(R× C)− 1

R∑
j=0

C∑
i=0

(aij − a)(bij − b) (2.12)

where R is the number of rows and C is the number of columns. To diagonalize the covariance

matrix, we solve for the determinant of the left-hand side of Equation 2.9:

|Σ− λI| = 0 (2.13)
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Expanding Equation 2.13 produces the cubic polynomial in Equation 2.15:∣∣∣∣∣∣∣∣∣∣


σ2

00 σ01 σ02

σ10 σ2
11 σ12

σ20 σ21 σ2
22

−

λ0

λ1

λ2




1 0 0

0 1 0

0 0 1


∣∣∣∣∣∣∣∣∣∣

= 0

∣∣∣∣∣∣∣∣∣∣


σ2

00 σ01 σ02

σ10 σ2
11 σ12

σ20 σ21 σ2
22

−

λ1 0 0

0 λ2 0

0 0 λ3


∣∣∣∣∣∣∣∣∣∣

= 0

∣∣∣∣∣∣∣∣∣∣


σ2

00 − λ0 σ01 σ02

σ10 σ2
11 − λ1 σ12

σ20 σ21 σ2
22 − λ2


∣∣∣∣∣∣∣∣∣∣

= 0

∣∣∣∣∣∣∣∣∣∣


σ2

00 − λ σ01 σ02

σ10 σ2
11 − λ σ12

σ20 σ21 σ2
22 − λ


∣∣∣∣∣∣∣∣∣∣

= 0 (2.14)

−λ3 +Aλ2 −Bλ+ C = 0 (2.15)

where

A = σ2
R + σ2

G + σ2
B

B = σ2
RB + σ2

RG + σ2
GB − σ2

Rσ
2
B − σ2

Rσ
2
G − σ2

Gσ
2
B

C = σ2
Rσ

2
Bσ

2
G + 2σRGσRBσGB − σ2

RBσ
2
G − σ2

RGσ
2
B − σ2

GBσ
2
R

The roots of the polynomial are the eigenvalues, and they can be solved for the roots numeri-

cally. First, estimate a range, then find a turning point at which it goes from positive to negative

or negative to positive, and lastly, interpolate between those two values until a certain threshold,

or margin of error, is reached. The threshold we chose was 0.01. Each eigenvalue represents a

dimension, or variable, in the data; therefore, there is an eigenvalue for red, green, and blue. One

way to check if the eigenvalues are correct is to add them together, because the sum of the eigen-

values should equal the sum of the variances, or the trace, of the covariance matrix. We verified

that they were equal for all samples.

Next, substitute the eigenvalues back into Equation 2.7 one at a time to get the eigenvectors.
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This turns into a problem of solving a system of equations, with three unknown variables:

Σxi = λixi
σ2

00 σ01 σ02

σ10 σ2
11 σ12

σ20 σ21 σ2
22



xi0

xi1

xi2

 = λi


xi0

xi1

xi2


so

σ2
00xi0 + σ01xi1 + σ02xi2 = λixi0

σ10xi0 + σ2
11xi1 + σ12xi2 = λixi1

σ20xi0 + σ21xi1 + σ2
22xi2 = λixi2

or

(σ2
00 − λi)xi0 + σ01xi1 + σ02xi2 = 0

σ10xi0 + (σ2
11 − λi)xi1 + σ12xi2 = 0

σ20xi0 + σ21xi1 + (σ2
22 − λi)xi2 = 0

where i = 0, 1, 2.

Assume that xi0 is r, xi1 is g, xi2 is b, (σ2
00 − λi0) is σ00, and (σ2

11 − λi1) is σ11. We set r = 1

and solved for the rest. The formulas below are what we used to solve for each variable. The last

step is to normalize the eigenvectors and sort them by decreasing eigenvalue.

r = 1 (2.16)

g =
σ02σ10 − σ12σ00

σ12σ01 − σ02σ11
(2.17)

b =
−σ00 − σ01y

σ02
(2.18)

Recall that the principal components make up a new basis to represent the data. The method

we used to transform the data from the old R,G,B basis to the new PC1, PC2, PC3 basis is

Dn = EDo (2.19)

where Do is the original 3 × N data matrix such that each column represents a channel, Dn is

the new data matrix, and E is 3× 3 eigenvector matrix such that each row represents a principal

component.
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Chapter 3

Experimental Results

In this chapter, we will go over the results of each image processing technique described in Chapter

2. Only the DFT, DWT, and PCA were applied to the samples in Section 2.1. The Gamma

Distribution was applied to a single sample set, and the Mahalanobis distance was applied to the

groups of training data.

3.1 Mahalanobis Distance

To develop a classification rule, we needed a training sample of individuals from each population

[Mai12]. For us, that meant we needed training samples of clean and dirty panels. As we mentioned

in Chapter 2, we settled on three groups of training samples. The procedure we relied on was the

Jackknife approach, whose results are described next. It allowed us to find outliers; for example,

clean samples with a lighter blue color might be considered dirty because their data behaves

similarly to a dirty panel, which means we should not include it with the other clean samples.

The more overlap there is between the set of characteristics that distinguish samples from clean

and dirty, the larger the probability of a classification error [Mai12]. This was another important

concept that was taken care of by the testing method, because it allowed us to filter out samples

that barely made the cut; for example, a clean sample could have been correctly classified, but it

could have easily been misclassified if the dirty and clean samples were slightly different, because

sometimes taking out, adding in, or substiting an image would upset the balance. However, we also

needed to pay attention to samples that were far from the threshold, known as outliers, because

they were too good to be a true negative or positive.
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3.1.1 Jackknife

We tested Theorems 2.2.2 and 2.2.3 by using the Jackknife approach on the clean sample set and

the dirty sample set of each group. We calculated the accuracy by using Equation 3.1:

Accuracy =
TN + TP

TN + TP + FN + FP
(3.1)

as well as the misclassification error, which is the number of false negatives and false positives

divided by the total number of classification vectors. Tables 3.1 and 3.2 list the results of applying

the jackknife method on all three groups of data. Figures 3.1 to 3.4 illustrate the distribution of

samples in group 1; Figures 3.5 to 3.8 illustrate the distribution of samples in group 2; and Figures

3.9 to 3.12 illustrate the distribution of samples in group 3. The data points in these figures are

the classification vectors. Both theorems resulted in zero misclassification.

Group TN FP TP FN Accuracy (%) Misclass. Error

1 12 0 12 0 100 0
2 20 0 20 0 100 0
3 19 0 19 0 100 0

Table 3.1: Jackknife results of all three groups based on theorem 2.2.2.

Group TN FP TP FN Accuracy (%) Misclass. Error

1 12 0 12 0 100 0
2 20 0 20 0 100 0
3 19 0 19 0 100 0

Table 3.2: Jackknife results of all three groups based on theorem 2.2.3.

We performed another test on the theorems, but each classification vector was based on the

mode RGB values rather than the average RGB values. Tables 3.3 and 3.4 list the results of

applying the jackknife method on all three groups of data. Figures 3.13 to 3.16 illustrate the

distribution of samples in group 1; Figures 3.17 to 3.20 illustrate the distribution of samples in

group 2; and Figures 3.21 to 3.24 illustrate the distribution of samples in group 3. Unlike the

results based on the average, group 2 has one misclassified sample for Theorem 2.2.2, and group 3

has three misclassified samples for Theorems 2.2.2 and 2.2.3.
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Figure 3.1: Two dimensional view of red and green averages for group 1. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and second
principal components.
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Figure 3.2: Two dimensional view of red and blue averages for group 1. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and third
principal components.
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Figure 3.3: Two dimensional view of green and blue averages for group 1. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the clean
and dirty samples, respectively. The vectors that cross the centroids are the second and third
principal components.
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Figure 3.4: Three dimensional view of red, green, and blue averages for group 1. The blue and
magenta circles are clean and dirty samples, respectively. The red and green circle are centroids
of the clean and dirty samples, respectively.
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Figure 3.5: Two dimensional view of red and green averages for group 2. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and second
principal components.
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Figure 3.6: Two dimensional view of red and blue averages for group 2. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and third
principal components.
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Figure 3.7: Two dimensional view of green and blue averages for group 2. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the clean
and dirty samples, respectively. The vectors that cross the centroids are the second and third
principal components.
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Figure 3.8: Three dimensional view of red, green, and blue averages for group 2. The blue and
magenta circles are clean and dirty samples, respectively. The red and green circle are centroids
of the clean and dirty samples, respectively.
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Figure 3.9: Two dimensional view of red and green averages for group 3. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and second
principal components.
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Figure 3.10: Two dimensional view of red and blue averages for group 3. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and third
principal components.
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Figure 3.11: Two dimensional view of green and blue averages for group 3. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the clean
and dirty samples, respectively. The vectors that cross the centroids are the second and third
principal components.
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Figure 3.12: Three dimensional view of red, green, and blue averages for group 3. The blue and
magenta circles are clean and dirty samples, respectively. The red and green circle are centroids
of the clean and dirty samples, respectively.
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Group TN FP TP FN Accuracy (%) Misclass. Error

1 12 0 12 0 100 0
2 20 0 20 0 100 0
3 17 2 18 1 92.1 0.0789

Table 3.3: Jackknife results of all three groups based on theorem 2.2.2. However, each classification
vector is based on the mode RGB values instead of the average RGB values.

Group TN FP TP FN Accuracy (%) Misclass. Error

1 12 0 12 0 100 0
2 20 0 19 1 97.5 0.025
3 17 2 18 1 92.1 0.0789

Table 3.4: Jackknife results of all three groups based on theorem 2.2.3. However, each classification
vector is based on the mode RGB values instead of the average RGB values.
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Figure 3.13: Two dimensional view of red and green modes for group 1. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and second
principal components.
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Figure 3.14: Two dimensional view of red and blue modes for group 1. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and third
principal components.
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Figure 3.15: Two dimensional view of green and blue modes for group 1. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the clean
and dirty samples, respectively. The vectors that cross the centroids are the second and third
principal components.
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Figure 3.16: Three dimensional view of red, green, and blue modes for group 1. The blue and
magenta circles are clean and dirty samples, respectively. The red and green circle are centroids
of the clean and dirty samples, respectively.
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Figure 3.17: Two dimensional view of red and green modes for group 2. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and second
principal components.
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Figure 3.18: Two dimensional view of red and blue modes for group 2. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and third
principal components.
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Figure 3.19: Two dimensional view of green and blue modes for group 2. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the clean
and dirty samples, respectively. The vectors that cross the centroids are the second and third
principal components.
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Figure 3.20: Three dimensional view of red, green, and blue modes for group 2. The blue and
magenta circles are clean and dirty samples, respectively. The red and green circle are centroids
of the clean and dirty samples, respectively. The intersection here accounts for the misclassified
clean sample.
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Figure 3.21: Two dimensional view of red and green modes for group 3. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and second
principal components.

37



35 40 45 50 55 60 65
70

75

80

85

90

95

Red

B
lu

e

Figure 3.22: Two dimensional view of red and blue modes for group 3. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the
clean and dirty samples, respectively. The vectors that cross the centroids are the first and third
principal components.
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Figure 3.23: Two dimensional view of green and blue modes for group 3. The blue and magenta
circles are clean and dirty samples, respectively. The red and green circle are centroids of the clean
and dirty samples, respectively. The vectors that cross the centroids are the second and third
principal components.
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Figure 3.24: Three dimensional view of red, green, and blue modes for group 3. The blue and
magenta circles are clean and dirty samples, respectively. The red and green circle are centroids of
the clean and dirty samples, respectively. The overlap is clear, and there is no question on which
two clean samples are misclassified.

Recall that we used the jackknife method to gather our training data, and we noted some of

the advantages of doing so, for instance, being aware of outliers and points that are susceptible to

misclassification. The following tables list the classification vector and the Mahalanobis distances

of each sample in group 3. We specifically chose to list the results of group 3 only, because it

is the only group with consistent misclassification, while the rest have nothing to show because

they have perfect accuracy. Tables 3.5 to 3.8 list the results of Theorems 2.2.2 and 2.2.3 where

the classification vectors are based on the average RGB values. Tables 3.9 to 3.12 list the results

of both theorems where the classification vectors are based on the mode RGB values. When

the classification vectors are based on the mode, the difference in distances are similar for both

theorems, but when the classification vectors are the mean, the difference in distances of theorem

2 is bigger, and the difference in distances of theorem 3 is smaller to the point where the samples

are at the cusp of misclassification.
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i xm = RGB average vector v1 = clean v2 = dirty Classification
20 56.21 61.97 87.54 2.35706526151629 < 10.1848483003662 CLEAN
21 63.69 70.66 94.84 2.44002257389201 < 4.8587556664668 CLEAN
22 65.2 72.34 97.01 3.54869806284974 < 4.41271760153356 CLEAN
23 55.78 63.03 89.39 2.68233330006873 < 7.96795065739642 CLEAN
24 58.42 65.72 91.26 1.34651299605151 < 6.6040652004053 CLEAN
25 57.04 64.88 90.52 2.41782880238462 < 6.15767743248276 CLEAN
26 59.28 66.5 91.34 1.10405394434877 < 6.16037253004963 CLEAN
27 57.71 63.4 88.46 1.99057702124235 < 9.60751531077478 CLEAN
28 58.99 64.52 89.26 2.4382975634377 < 9.36498647893965 CLEAN
29 56.87 63.26 88.53 0.727713407293908 < 8.65856974460388 CLEAN
30 56.17 62.65 87.66 0.80165177265945 < 8.67208783897508 CLEAN
31 55.35 61.81 86.78 1.19576607047464 < 8.98653464580726 CLEAN
32 55.39 62.12 87.55 1.01484789375189 < 8.58895779090618 CLEAN
33 55.49 61.86 86.74 1.26030256399803 < 9.06830990035708 CLEAN
34 55.39 62.16 87.65 1.05620996651935 < 8.53854769454094 CLEAN
35 56.25 63.07 87.74 1.49141971665988 < 7.97233421511727 CLEAN
36 55.06 62.09 87.38 1.45335801772928 < 8.12760549552636 CLEAN
37 59.61 66.21 90.06 2.33355269490492 < 6.99351892962558 CLEAN
38 56.96 63.46 87.51 2.49239813395392 < 8.21528438385842 CLEAN

Table 3.5: Jackknife on clean sample set of group 3. These results are based on Theorem 2.2.2,
where the classification vectors are the average RGB values.

i xm = RGB average vector v1 = dirty v2 = clean Classification
0 76.98 83.74 106.21 1.3613499811059 < 6.59730723463006 DIRTY
1 75.8 82.85 105.39 0.959187029413874 < 6.18709194493406 DIRTY
2 75.22 82.34 105.19 1.34634596101952 < 5.92237533861357 DIRTY
3 75.07 81.48 103.9 1.74031966653875 < 6.09036260008453 DIRTY
4 77.36 83.76 105.39 0.710726145075818 < 7.11090810698612 DIRTY
5 88.77 93.27 111.97 4.07444994655178 < 12.4931585417989 DIRTY
6 84.37 89.37 108.68 2.96792308128091 < 10.8191453691049 DIRTY
7 79.32 85.07 107.01 2.26394265608027 < 7.81002737288318 DIRTY
8 72.71 80.29 102.61 0.664949701968289 < 5.68156817943284 DIRTY
9 68.29 76.21 99.73 1.61723153332615 < 4.08535627935491 DIRTY
10 70.8 78.16 100.8 1.34334199707529 < 4.91443448620639 DIRTY
11 71.44 79.89 102.04 2.64522475342059 < 6.3273109985509 DIRTY
12 70.01 77.76 100.09 1.70395002891043 < 5.36379536518132 DIRTY
13 70.8 78.97 101.68 1.17885658888482 < 5.39819792644326 DIRTY
14 70.37 77.93 100.36 1.47491652806493 < 5.15970287838447 DIRTY
15 67.44 74.92 97.67 3.15516904568329 < 4.36995154262149 DIRTY
16 70.56 79.58 103.28 2.878891784708 < 5.51232695583294 DIRTY
17 73.44 81.24 103.65 0.909319855165994 < 5.85916152583036 DIRTY
18 74.92 82.29 104.82 0.689526745436323 < 5.98021503664103 DIRTY

Table 3.6: Jackknife on dirty sample set of group 3. These results are based on Theorem 2.2.2,
where the classification vectors are the average RGB values.
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i xm = RGB average vector v1 = clean v2 = dirty Classification
20 56.21 61.97 87.54 1.22614288716497 < 1.73019844591296 CLEAN
21 63.69 70.66 94.84 0.392600326408559 < 0.623190678684538 CLEAN
22 65.2 72.34 97.01 1.55359671596084 < 1.58421870815981 CLEAN
23 55.78 63.03 89.39 1.70100628961979 < 1.98673996972909 CLEAN
24 58.42 65.72 91.26 1.05092403617618 < 1.33993912884979 CLEAN
25 57.04 64.88 90.52 1.31296991110775 < 1.52295194631611 CLEAN
26 59.28 66.5 91.34 0.574438048621323 < 0.938174314717332 CLEAN
27 57.71 63.4 88.46 1.09643932366743 < 1.58372165523264 CLEAN
28 58.99 64.52 89.26 1.27277405327129 < 1.68589616205805 CLEAN
29 56.87 63.26 88.53 0.328214983301313 < 1.10589806216841 CLEAN
30 56.17 62.65 87.66 0.592205236424604 < 1.20068375947045 CLEAN
31 55.35 61.81 86.78 0.927360089696872 < 1.4182600403219 CLEAN
32 55.39 62.12 87.55 0.247716925781373 < 1.08362513059613 CLEAN
33 55.49 61.86 86.74 1.04861696656753 < 1.50297854020997 CLEAN
34 55.39 62.16 87.65 0.226065360859211 < 1.07676013175849 CLEAN
35 56.25 63.07 87.74 1.2997398503741 < 1.60736535154831 CLEAN
36 55.06 62.09 87.38 0.771044564161142 < 1.26190113908403 CLEAN
37 59.61 66.21 90.06 1.66835752897789 < 1.83418543891725 CLEAN
38 56.96 63.46 87.51 2.18597778435758 < 2.37278598448897 CLEAN

Table 3.7: Jackknife on clean sample set of group 3. These results are based on Theorem 2.2.3,
where the classification vectors are the average RGB values.

i xm = RGB average vector v1 = dirty v2 = clean Classification
0 76.98 83.74 106.21 1.44947265108666 < 1.71206777250281 DIRTY
1 75.8 82.85 105.39 1.0064304355654 < 1.36410225350444 DIRTY
2 75.22 82.34 105.19 1.37786023562976 < 1.63593857991641 DIRTY
3 75.07 81.48 103.9 1.06907010424383 < 1.30768988811768 DIRTY
4 77.36 83.76 105.39 0.834026498264436 < 1.24748658787489 DIRTY
5 88.77 93.27 111.97 3.98784229889776 < 4.1978633663645 DIRTY
6 84.37 89.37 108.68 3.27982521803679 < 3.47585459582169 DIRTY
7 79.32 85.07 107.01 2.26499223294416 < 2.41042115177014 DIRTY
8 72.71 80.29 102.61 0.786398267377804 < 1.22023851250614 DIRTY
9 68.29 76.21 99.73 1.03067153262497 < 1.24322992635778 DIRTY
10 70.8 78.16 100.8 0.642345049588495 < 1.00385980045734 DIRTY
11 71.44 79.89 102.04 2.32797402665849 < 2.57116857539001 DIRTY
12 70.01 77.76 100.09 1.72776788921921 < 1.92921670769973 DIRTY
13 70.8 78.97 101.68 1.40795322904159 < 1.69768795165935 DIRTY
14 70.37 77.93 100.36 1.26963332196892 < 1.51145227450516 DIRTY
15 67.44 74.92 97.67 1.58243697031374 < 1.69331246123673 DIRTY
16 70.56 79.58 103.28 2.38726418536442 < 2.60207117529912 DIRTY
17 73.44 81.24 103.65 0.777022032976213 < 1.26279038609913 DIRTY
18 74.92 82.29 104.82 0.626201176094157 < 1.14219144218767 DIRTY

Table 3.8: Jackknife on dirty sample set of group 3. These results are based on Theorem 2.2.3,
where the classification vectors are the average RGB values.
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i xm = RGB mode vector v1 = clean v2 = dirty Classification
20 40 47 76 2.08870112896722 < 4.60930955775586 CLEAN
21 48 57 83 2.92245422626679 > 1.76158599614127 DIRTY
22 50 59 86 4.13315054050489 > 1.2781671780659 DIRTY
23 41 50 78 1.65668474395726 < 3.71500504110027 CLEAN
24 42 51 79 1.63804752563811 < 3.43884509146719 CLEAN
25 42 51 79 1.63804752563811 < 3.43884509146719 CLEAN
26 44 52 79 1.24198560279261 < 3.13715412107146 CLEAN
27 41 48 77 2.15624230025714 < 4.33558288764729 CLEAN
28 44 51 79 1.82875646626716 < 3.46183674925202 CLEAN
29 40 49 77 1.81510006459549 < 3.99703908344801 CLEAN
30 40 48 76 0.963062908472878 < 4.26250720786527 CLEAN
31 40 48 76 0.963062908472878 < 4.26250720786527 CLEAN
32 41 50 77 1.62308927111597 < 3.74592052779846 CLEAN
33 40 49 76 2.05348373106815 < 4.05052587233422 CLEAN
34 42 49 77 1.56236115385263 < 4.03528499815245 CLEAN
35 41 48 76 1.64924538559342 < 4.32808373481987 CLEAN
36 41 49 76 1.87486582365815 < 4.05947121482065 CLEAN
37 43 52 79 1.07688438451357 < 3.1433419122968 CLEAN
38 41 49 76 1.87486582365815 < 4.05947121482065 CLEAN

Table 3.9: Jackknife on clean sample set of group 3. These results are based on Theorem 2.2.3,
where the classification vectors are the mode RGB values.

i xm = RGB mode vector v1 = dirty v2 = clean Classification
0 55 65 90 1.2402117277138 < 4.5472102535774 DIRTY
1 53 63 90 1.77312979145326 < 4.43264343100751 DIRTY
2 58 65 92 1.58460182236632 < 6.15962913992373 DIRTY
3 52 62 87 1.14332725886376 < 3.82973273081517 DIRTY
4 52 61 87 0.639676193982939 < 3.3199167286041 DIRTY
5 63 68 93 3.56271120084 < 9.50537684924153 DIRTY
6 59 70 93 3.91777170830362 < 6.69421440547089 DIRTY
7 53 62 88 0.463553267680182 < 3.64771147260397 DIRTY
8 55 63 87 1.67113843583844 < 6.10828120515683 DIRTY
9 51 59 84 1.7820329465295 < 4.39603036162401 DIRTY
10 48 56 83 2.22931843878967 > 2.02620414602682 CLEAN
11 56 61 88 2.37095895168415 < 6.85959928315677 DIRTY
12 54 61 88 1.09471232426117 < 4.67562435558731 DIRTY
13 51 61 87 1.16733073918263 < 3.24124856435369 DIRTY
14 50 58 83 2.17232578042924 < 4.30133431504125 DIRTY
15 49 59 84 1.85529032089294 < 3.42411499207017 DIRTY
16 52 61 90 3.30921892798612 < 5.85007570486638 DIRTY
17 56 64 89 0.757409877765688 < 5.34381993616665 DIRTY
18 56 63 90 1.14933637400672 < 5.40550404856429 DIRTY

Table 3.10: Jackknife on dirty sample set of group 3. These results are based on Theorem 2.2.3,
where the classification vectors are the mode RGB values.
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i xm = RGB mode vector v1 = clean v2 = dirty Classification
20 40 47 76 1.57287741868849 < 4.80839907497174 CLEAN
21 48 57 83 2.19954872439612 > 1.99341356438361 DIRTY
22 50 59 86 3.03637415490451 > 1.56251183964729 DIRTY
23 41 50 78 0.853083855195661 < 3.97302012187084 CLEAN
24 42 51 79 0.870537954503574 < 3.69314324341758 CLEAN
25 42 51 79 0.870537954503574 < 3.69314324341758 CLEAN
26 44 52 79 0.703991794680023 < 3.22623837174443 CLEAN
27 41 48 77 1.43382475332139 < 4.49984201190484 CLEAN
28 44 51 79 0.966828299567452 < 3.50345128917664 CLEAN
29 40 49 77 0.977511151215543 < 4.27208244954977 CLEAN
30 40 48 76 0.901589482262144 < 4.42473119067707 CLEAN
31 40 48 76 0.901589482262144 < 4.42473119067707 CLEAN
32 41 50 77 0.939002694361858 < 3.96569652105976 CLEAN
33 40 49 76 1.2042579695218 < 4.304631694314 CLEAN
34 42 49 77 1.04721272786961 < 4.09458661207538 CLEAN
35 41 48 76 1.25477351107931 < 4.41930490163166 CLEAN
36 41 49 76 1.17572730386569 < 4.20020992642732 CLEAN
37 43 52 79 0.730915265820127 < 3.34178991198043 CLEAN
38 41 49 76 1.17572730386569 < 4.20020992642732 CLEAN

Table 3.11: Jackknife on clean sample set of group 3. These results are based on Theorem 2.2.3,
where the classification vectors are the mode RGB values.

i xm = RGB mode vector v1 = dirty v2 = clean Classification
0 55 65 90 1.39770689873618 < 4.32348428956287 DIRTY
1 53 63 90 2.25338042484708 < 4.05558871710288 DIRTY
2 58 65 92 1.97701094956598 < 4.8027654509091 DIRTY
3 52 62 87 1.48532649512144 < 3.46809104939575 DIRTY
4 52 61 87 0.791668877622761 < 3.02602203687327 DIRTY
5 63 68 93 4.32385979414738 < 7.37185288566641 DIRTY
6 59 70 93 3.67077351839131 < 6.87130663697498 DIRTY
7 53 62 88 0.612083082810199 < 3.31877011954062 DIRTY
8 55 63 87 2.15933632488032 < 4.29833750182493 DIRTY
9 51 59 84 2.02158791622551 < 2.93712228395988 DIRTY
10 48 56 83 2.22581246519754 > 1.67728719278959 CLEAN
11 56 61 88 2.85837475746531 < 4.32437965823672 DIRTY
12 54 61 88 1.30774561006224 < 3.37139432244775 DIRTY
13 51 61 87 1.53155568945809 < 3.12978566311312 DIRTY
14 50 58 83 2.39331824188308 < 2.77128224609938 DIRTY
15 49 59 84 2.26772635734048 < 2.80485705555113 DIRTY
16 52 61 90 4.12107941977887 < 4.65210169249728 DIRTY
17 56 64 89 0.975509732890581 < 4.12025443804426 DIRTY
18 56 63 90 1.48319379041058 < 4.03899719393608 DIRTY

Table 3.12: Jackknife on dirty sample set of group 3. These results are based on Theorem 2.2.3,
where the classification vectors are the mode RGB values.
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(a) Clean (b) Dirty

Figure 3.25: The sample pair on which the results are based.

3.2 Histogram Analysis

Figure 3.25 represents the sample pair we used to produce the results in Figure 3.26, which com-

pares the probability density function of the channels of both samples. The empirical and global

modes for the clean sample are 40 and 48 for the red, 48 and 45 for the green, and 76 and 72 for

the blue. The modes for the dirty sample are 63 and 52 for the red, 68 and 75 for the green, and

93 and 95 for the blue. Notice how the modes increased in the dirty sample.

(a) Clean, Red. (b) Clean, Green. (c) Clean, Blue.

(d) Dirty, Red. (e) Dirty, Green. (f) Dirty, Blue.

Figure 3.26: Histograms of the sample pair.

For all groups of sample sets, we computed the histogram, probability density function, and

gamma distribution. We compared the average mode from unnormalized histogram values, and

the average alpha parameter, average beta parameter, and average global mode of the gamma

distribution. Tables 3.13 to 3.15 list the results. Notice how the values are higher in the dirty
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sample set of every group.

Channel Red
Group 1 2 3

Category C D C D C D
α 4 4 3 4 4 4
β 18 19 17 19 15 20
xm 44 51 39 49 44 53

Mode 43 52 37 48 42 54

Table 3.13: Probability density function and gamma distribution averages of the red channel.

Channel Green
Group 1 2 3

Category C D C D C D
α 4 4 4 4 5 4
β 16 18 15 18 15 19
xm 47 56 44 53 51 63

Mode 46 57 44 55 50 62

Table 3.14: Probability density function and gamma distribution averages of the green channel.

Channel Blue
Group 1 2 3

Category C D C D C D
α 6 7 6 7 8 7
β 13 14 13 14 11 16
xm 66 80 65 79 78 89

Mode 65 81 64 79 78 88

Table 3.15: Probability density function and gamma distribution averages of the blue channel.

In conclusion, we noticed a significant shift in red, green, and blue values to the right of the

graphs. These observations, as well as the probability density function and the gamma density

function values, are correlated to the amount of reflection. Clean panels reflect less and absorb

more; therefore, they have low values. Dirty panels reflect more and absorb less; therefore, they

have higher values.
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3.3 Discrete Fourier Transform

We applied the FFT to all the samples in Section 2.1 and compared their magnitudes. Recall from

Section 2.4 that it is common to display only the magnitude of the results rather than also including

the phase. However, the dynamic range of the Fourier coefficients, that is, the intensity values of

the Fourier image, is too large to be displayed on the screen, and as a result, the coefficients are

hard to visualize on an image. A common solution to help visualize the results better is to shift

the values to where the frequency at position (0, 0) is at the center before computing the FFT, and

to apply a log transformation on the magnitude after computing the FFT. In addition, sometimes

there is another step performed before the log transformation, and it is contrast stretching. Both

contrast stretching and log transformation bring out more details and frequencies. Data that is

closer to the origin have lower frequencies, and data that is further from the origin have higher

frequencies [GW08].

We graphed the results of all sample sets in two dimensions for both methods. Figure 3.27

displays the resulting images of group 1 sample set 1, which illustrate the issue present in the

results for all sample sets. The figures show that it is difficult to determine if there is a significant

difference between the clean and dirty sample when the results are plotted in two dimensions.

Alternatively, we graphed the log transform results in three dimensions and saw a difference for all

sample sets. For brevity, we only describe the results of one sample set. Figure 3.28 displays the

results of group 1 sample set 1. For the clean sample, the frequencies range from very high to very

low values, which are represented by red and blue, respectively. For the dirty sample, the frequency

range is not as wide, but the values are more spread out in between, which is represented, from

high to low, by orange, yellow, green, and light blue.
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(a) Clean RGB. (b) Dirty RGB.

(c) Clean RGB. (d) Dirty RGB.

Figure 3.27: DFT results of group 1 sample set 1. (a)-(b) Log transform only. (c)-(d) Contrast
stretch and log transform.
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(a) Clean, Red.
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(b) Dirty, Red.

Figure 3.28: 3-D view of the log transform results of group 1 sample set 1. The bottom axes
represent the dimensions of the sample, which is 200×200, and the vertical axis represents the
results. The value range is from low (i.e., blue), to high (i.e., red). These figures only display the
results of the red channel, but the blue and green channels are similar. Notice that the difference
is more evident here than in Figure 3.27.
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3.4 Discrete Wavelet Transform

In Chapter 2 Section 2.4, we mentioned that one could repeat the DWT on the LL quadrant of

the current transform to produce more subbands. Our desired number of transforms was three,

for a total of six passes, and an example of how the output looks is shown in Figure 3.29c.

(a) One level transform (b) Two level transform (c) Three level transform

Figure 3.29: Recursively apply the transform on the LL quadrant. (a) One level, (b) two level,
and (c) three level DWT, for a total of six passes.

We performed a three-level DWT on all the samples in Section 2.1, and the results are shown

below. The trick was to find the quadrant that was consistently different across all samples, ex-

cluding the LL quadrant of the third decomposition. However, before we exclude the LL quadrant,

we noticed that the blue, green, and red LL quadrant of the third decomposition follow the same

decrease in intensity similar to the histogram and gamma distribution results from Section 3.2.

With that being said, only the blue channel appears brighter in the dirty panel than the clean

panel.

The LH quadrant of the third decomposition was consistently different between clean and dirty

samples. The clean samples have the same orientation as the original input, but the lines alternate

between white and black; the exception is the first sample of the second group. The dirty samples

also have the same orientation as the original input, but the white and black intensities alternate

at a diagonal, usually mimicing the placement and pattern of the dirt. Moreover, the intensity of

the quadrant may even be higher than the clean sample. The exceptions are the first and second

samples of the third group, where instead of the diagonal, there is a distinct edge detection of the

contaminants. The LH quadrant of the third decomposition varied among all dirty samples, but

it was consistent among dirty samples that came from the sample panel.

The following images are the results obtained by applying the DWT to all the samples. Each

sample set contains six images. The first column represents the clean sample and the second

column represents the dirty sample. The first row represents the red channel, the second row

represents the green channel, and the third row represents the blue channel.
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Figure 3.30: Three level DWT of group 1 sample 1.
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Figure 3.31: Three level DWT of group 1 sample 2.
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Figure 3.32: Three level DWT of group 1 sample 3.
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Figure 3.33: Three level DWT of group 2 sample 1.
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Figure 3.34: Three level DWT of group 2 sample 2.
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Figure 3.35: Three level DWT of group 2 sample 3.
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Figure 3.36: Three level DWT of group 3 sample 1.
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Figure 3.37: Three level DWT of group 3 sample 2.
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Figure 3.38: Three level DWT of group 3 sample 3.
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3.5 Principal Component Analysis

We applied the PCA on the third sample set of group 1. While we can plot the results from Tables

3.16 and 3.17 in three dimensions, notice that the third variable holds little information about the

data. What we have not mentioned so far is that PCA is used for dimensional reduction, where

a data set of n dimensions is reduced to k dimensions. Often times large variances are associated

only with the first k < n principal components, the remaining n−k dimensions are ignored [Shl03].

This process of removing less important variables simplifies the dynamics of the data [Shl03], and

it is particularly useful for high dimensional data. Although our data is not high dimensional, we

can still reduce the dimensions from three to two, or even to one, as shown in Table 3.18.

Eigenvalue Eigenvector

4150.392322082414 0.6037252397288499 0.5834112358604482 0.5432744838349465
11.0857346997606 0.6813986258022624 -0.02392949583528244 -0.731521217726361
1.856166624657606 0.4137774131935325 -0.8118243092571532 0.4119824550026552

Table 3.16: Clean results.

Eigenvalue Eigenvector

3451.817331414454 0.6027102281166483 0.5947692928539576 0.5319679212147862
39.7574926605084 -0.7211738637135189 0.1206679358334026 0.6821638421656638
3.914070853661152 -0.3415386350328364 0.7947884860387129 -0.5016598680781612

Table 3.17: Dirty results.

Component 1 Component 2 Component 3

Clean 99.7% 0.26% 0.04%
Dirty 98.8% 1.1% 0.1%

Table 3.18: A comparison of how much data each principal component holds. Notice the first
component accounts for nearly all of the data.

We graphed the eigenvectors against the RGB basis and noticed that the vectors are parallel

as shown in Figures 3.39 to 3.41. Not being parallel would mean that there is a fundamental

difference between clean and dirty panels. However, notice that the sum of the clean sample’s

eigenvalues are greater than the sum of the dirty sample’s eigenvalues, and the eigenvalue of the

first principal component of clean sample is greater than that of the dirty sample. The differences

in the eigenvalues are significant, and it is due to the higher amount of variance and scattered

light in the dirty panel. Perhaps the dirtier a panel is, the more variance is distributed from the

first principal component to the other two components. If we were to graph the eigenvalues and

classification vectors as points, it would show that although the vectors are parallel, the two classes

have different shapes.
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Figure 3.39: A red and green view. The first and second principal components of the clean (red
lines) and dirty (green lines) sample plotted against red and green of the R,G,B basis.

Figure 3.40: A red and blue view. The first and second principal components of the clean (red
lines) and dirty (green lines) sample plotted against red and blue of the R,G,B basis.
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Figure 3.41: A green and blue view. The first and second principal components of the clean (red
lines) and dirty (green lines) sample plotted against green and blue of the R,G,B basis.

The following results were obtained by applying the PCA on the sample sets from Section 2.1.

We transformed the original data set by multiplying the pixels with the eigenvectors to produce

a new data set. Each graph is a plot of the new data set, two out of three principal components

at a time. The blue graphs are clean samples, and the red graphs are dirty samples. Instead of a

three dimensional display, we plotted the eigenvectors in pairs, which comes out to a total of three

graphs. When we compared the orientation of each graph for each pair, we noticed the following:

• All the dirty samples coming from the same panel image had the same results. That is not to

say that all samples from that image will have principal components of the same orientation.

We did not test that.

• Even though all the clean samples came from the same panel, the results were not like the

dirty samples. Instead, clean samples that came from the same panel had similar results in

subsets, but not as a whole. In other words, although all our clean samples came from the

same panel, a few would have the same result, while the remaining few would have the same

result that was different from the first subset. Perhaps the consistency of the dirty samples

was a coincidence.

• Samples pairs from the same group rarely had the same results. Group 2 did the best with

the first and second sample pairs.

• Sometimes sample pairs from different groups have the same results.
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Furthermore, we provide the eigenvalues and eigenvectors of each sample pair per group, which

appear before the graphs. There are three pairs of tables, each representing a sample pair. The

first table lists the results of the clean sample, and the second table lists the results of the dirty

sample. We compared the eigenvectors looking at the sign (+ or -) and order after sorting, and

the eigenvalue sums and distribution.

• As expected, the clean samples have higher total variance than the dirty samples, and more

of the variance is distributed to the lesser principal components in the dirty samples.

• Like the orientation, all dirty samples from the same panel had parallel eigenvectors.

• Like the orientation, clean samples had parallel eigenvectors in subsets.
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Eigenvalue Eigenvector

3210.041013589082 0.6043881283468774 0.595047683636071 0.529748284105484
37.55978626634278 -0.7183827877592479 0.1195667104577083 0.685295536248102
3.830843115022727 -0.3444432617494644 0.7947465356638357 -0.4997367141662911

Table 3.22: Dirty results of group 1 sample 2.

Eigenvalue Eigenvector

4150.392322082414 0.6037252397288499 0.5834112358604482 0.5432744838349465
11.0857346997606 0.6813986258022624 -0.02392949583528244 -0.731521217726361
1.856166624657606 0.4137774131935325 -0.8118243092571532 0.4119824550026552

Table 3.23: Clean results of group 1 sample 3.

Eigenvalue Eigenvector

4207.794742341159 0.6039615569219726 0.5865161770311635 0.5396565684221176
16.0858075097764 -0.7165362524072486 0.1030755949321833 0.6898921805003678
2.39211322376632 -0.3490075024215987 0.803351850567437 -0.4825138002620364

Table 3.19: Clean results of group 1 sample 1.

Eigenvalue Eigenvector

3587.576656567072 0.6013096916187074 0.5951389439923165 0.5331381548052301
43.82456305199561 -0.7365112020378037 0.1541322984347225 0.6586307644287952
3.829137827368165 -0.3098030084396283 0.7887032850970891 -0.5310077438595557

Table 3.20: Dirty results of group 1 sample 1.

Eigenvalue Eigenvector

4800.071314795519 0.60.6057039673272 0.5855004292872928 0.5379597814241225
15.74842602228708 0.647139130368572 0.02963983931845276 -0.7617955275997522
2.241637741030261 0.4619766499199957 -0.8101300680937428 0.3609249890200535

Table 3.21: Clean results of group 1 sample 2.

Eigenvalue Eigenvector

3451.817331414454 0.6027102281166483 0.5947692928539576 0.5319679212147862
39.7574926605084 -0.7211738637135189 0.1206679358334026 0.6821638421656638
3.914070853661152 -0.3415386350328364 0.7947884860387129 -0.5016598680781612

Table 3.24: Dirty results of group 1 sample 3.
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Figure 3.42: First and second principal components for group 1 sample set 1.
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Figure 3.43: First and third principal components for group 1 sample set 1.
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Figure 3.44: Second and third principal components for group 1 sample set 1.
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Figure 3.45: First and second principal components for group 1 sample set 2.
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Figure 3.46: First and third principal components for group 1 sample set 2.
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Figure 3.47: Second and third principal components for group 1 sample set 2.
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Figure 3.48: First and second principal components for group 1 sample set 3.
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Figure 3.49: First and third principal components for group 1 sample set 3.
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Figure 3.50: Second and third principal components for group 1 sample set 3.

Eigenvalue Eigenvector

2528.502935773575 0.6073500881525973 0.5926637356830375 0.5290326708505433
61.80688257472466 0.7749402910615207 -0.2953613374003466 -0.5587747539559783
3.027698298991973 -0.1749097358940263 0.7493406280025832 -0.6386667421387908

Table 3.25: Clean results of group 2 sample 1.
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Eigenvalue Eigenvector

2445.597628644024 0.6185467140802302 0.5903324232449233 0.5185630073253654
14.58025236296168 0.6613344230102307 -0.03475049774840833 -0.7492857824942122
2.636109827159747 0.4243073690643088 -0.8064118259127993 0.411901958705843

Table 3.26: Dirty results of group 2 sample 1.

Eigenvalue Eigenvector

3577.0366038379 0.604677704321451 0.5787552087234572 0.5471812152038912
11.79288654302961 -0.7416003794198222 0.1585385756777157 0.6518392418890233
2.453240779224713 -0.2905060259975952 0.7999424531786949 -0.5250698243677079

Table 3.27: Clean results of group 2 sample 2.

Eigenvalue Eigenvector

2830.174317704229 0.6056115835740309 0.5976484284274326 0.5254055251319445
52.20028627806973 -0.7297306487404928 0.1537651887502839 0.6662202691432985
4.368754649167502 -0.3173764170976379 0.7868752269113634 -0.5292443548527055

Table 3.28: Dirty results of group 2 sample 2.

Eigenvalue Eigenvector

3626.439343360916 0.6071792702574716 0.5794146815449535 0.5437020880774369
16.28933072766827 -0.7550496615428487 0.2076428439893199 0.6219199771225045
2.486786992317051 -0.24745371763955 0.7881389954507941 -0.5635632896810954

Table 3.29: Clean results of group 2 sample 3.

Eigenvalue Eigenvector

2626.733251557247 0.6019728964053597 0.5992469548331535 0.5277610435760999
48.00530683955849 -0.7357942458584334 0.1595006497410417 0.658153759006058
4.044478647244546 -0.3102184065379757 0.7845142636404882 -0.5369375293175749

Table 3.30: Dirty results of group 2 sample 3.
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Figure 3.51: First and second principal components for group 2 sample set 1.
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Figure 3.52: First and third principal components for group 2 sample set 1.
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Figure 3.53: Second and third principal components for group 2 sample set 1.
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Figure 3.54: First and second principal components for group 2 sample set 2.
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Figure 3.55: First and third principal components for group 2 sample set 2.
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Figure 3.56: Second and third principal components for group 2 sample set 2.
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Figure 3.57: First and second principal components for group 2 sample set 3.
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Figure 3.58: First and third principal components for group 2 sample set 3.
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Figure 3.59: Second and third principal components for group 2 sample set 3.

Eigenvalue Eigenvector

3290.302818933097 0.609748539718542 0.5881676799082678 0.5312866444984584
19.14943538936752 -0.7087023684186949 0.1044499363460112 0.6977328742398817
2.499416637434105 -0.3548910696380483 0.8019657044466676 -0.4805240239389931

Table 3.31: Clean results of group 3 sample 1.
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Eigenvalue Eigenvector

4072.643934293934 0.6344450841993349 0.5905163874983442 0.4987683141812483
27.25759324965203 0.6117844740267014 0.01076643656495638 -0.7909512255402134
2.88462536836114 0.4724396178086376 -0.8069538276379871 0.3544380447768418

Table 3.32: Dirty results of group 3 sample 1.

Eigenvalue Eigenvector

3121.925817692429 0.6066210266810175 0.5873238409765121 0.5357813320834021
16.4522091504832 -0.7164993127579606 0.1119148559890755 0.6885519586976092
2.523652507821268 -0.3444410904724315 0.8015770523346717 -0.488707033266988

Table 3.33: Clean results of group 3 sample 2.

Eigenvalue Eigenvector

4097.106236164673 0.6522168898208406 0.5933080326680173 0.4718036742163376
55.27947266622876 0.563476587731584 0.03686925878418695 -0.8253089075219501
3.333857702637625 0.5070574560252515 -0.8041307332320482 0.3102684324272917

Table 3.34: Dirty results of group 3 sample 2.

Eigenvalue Eigenvector

4095.566856141882 0.608436734994489 0.5849419541109724 0.5363279312417758
15.65633045017098 0.662070638547968 -0.001508758145177966 -0.7494399196877263
2.353923823831428 0.4375696619761613 -0.8110737537176852 0.3881908769514961

Table 3.35: Clean results of group 3 sample 3.

Eigenvalue Eigenvector

3371.667680659702 0.607483882937955 0.5881380259360441 0.5339072900969586
24.74639566039329 -0.7047380294586908 0.08895208343186903 0.7038691900401742
3.730120082314824 -0.3664800701338428 0.8038539601825585 -0.4685201904865047

Table 3.36: Dirty results of group 3 sample 3.
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Figure 3.60: First and second principal components for group 3 sample set 1.
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Figure 3.61: First and third principal components for group 3 sample set 1.
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Figure 3.62: Second and third principal components for group 3 sample set 1.
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Figure 3.63: First and second principal components for group 3 sample set 2.
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Figure 3.64: First and third principal components for group 3 sample set 2.
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Figure 3.65: Second and third principal components for group 3 sample set 2.
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Figure 3.66: First and second principal components for group 3 sample set 3.
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Figure 3.67: First and third principal components for group 3 sample set 3.
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Figure 3.68: Second and third principal components for group 3 sample set 3.
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3.6 Future Work

There is plenty of future work to be done. We must create a more comprehensive experimental

design and more extensive sampling strategy. Moreover, we need to handle the noise in the data.

There are various solutions to eliminate noise, and we should explore them. We can obtain the

voltage output and current from the panels using a Voltometer and Amperometer, respectively,

and knowing the voltage and current we can find the power, which is a product of the two. This

data also gives insight to noise, and we can devise filters to get rid of that noise. For starters, since

noise is a random phenomenon expressed by a probability distribution function, and it is a high

frequency, it can be eliminated by applying a low pass filter to the original data. Furthermore, we

can look at the cross-correlation between wind velocity and voltage and current output, because

the cooler the panels remain, the more voltage there is, so the more power there is. Additionally,

a common theme of our research so far has been to look at qualitative, pictoral results, but the

next step is to quantify the results against a statistical model. Lastly, we can apply this algorithm

in real time to detect when a panel is dirty and to trigger automated cleaning mechanisms.
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Appendix A

Source Code

The source code can be found on this remote git repository:

https://bitbucket.org/suziee/unlv-thesis-code/
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