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ABSTRACT

Stability Aware Delaunay Refinement

by

Bishal Acharya

Dr. Laxmi Gewali, Examination Committee Chair

Professor of Computer Science

University of Nevada, Las Vegas

Good quality meshes are extensively used for finding approximate solutions for par-

tial differential equations for fluid flow in two dimensional surfaces. We present an

overview of existing algorithms for refinement and generation of triangular meshes.

We introduce the concept of node stability in the refinement of Delaunay triangulation.

We present two algorithms for generating stable refinement of Delaunay triangula-

tion. We also present an experimental investigation of a triangulation refinement

algorithm based on the location of the center of gravity and the location of the center

of circumcircle. The results show that the center of gravity based refinement is more

effective in refining interior nodes for a given distribution of nodes in two dimensions.
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Chapter 1

INTRODUCTION

Partitioning a two dimensional domain into a collection of simpler shapes is called

meshing. Each of the simple shapes in the mesh are called mesh elements. Widely

used examples of mesh elements are triangles, rectangles, and hexagons. The two

dimensional domain which is to be converted into a mesh is usually modelled by a

polygon with holes. Meshing is also done in three dimensional domain where mesh

elements are tetrahedrons, cubes, or a parallelepiped. Mesh generation has important

applications in finite element analysis [14,17], where it is used to obtain an approx-

imate solution to a partial differential equation for fluid flow in 2D surfaces. The

quality of the generated solution increases if the aspect ratio of the mesh elements is

close to 1. It is noted here that the aspect ratio of a mesh element is the ratio of the

length of the sides of the smallest rectangle enclosing the element. In calculating the

aspect ratio (w/b), width w is the shorter side of the rectangle.

Algorithmic tools from computational geometry have been used extensively for gener-

ating quality meshes [8,13]. The most widely used geometric algorithm for generating

a triangular mesh is the Delaunay triangulation algorithm obtained by using Fortune’s

algorithm [3].

In many applications, it is desirable to refine the Delaunay mesh by introducing new

vertices. One major algorithmic work for refining Delaunay triangulation is Ruppert’s

algorithm [10].

In this thesis, we consider the problem of mesh refinement by introducing the concept

of node stability. A node in a Delaunay triangulation is termed stable if a slight change

1



in its position does not result in a change in the connectivity of the nodes. We use the

concept of free region introduced in [9,6] to develop a Delaunay refinement algorithm

that tends to increase the stability of nodes.

The thesis is organized as follows : In Chapter 2, we present a brief overview of tri-

angulation refinement algorithms reported in the algorithmic literature. In Chapter

3, we present the main contributions of the thesis. In particular, we consider two ap-

proaches for refining Delaunay triangulation. One is based on using the largest empty

circle [4] and the other is based on using the center of gravity of polygonal shapes.

Both algorithms produce Delaunay meshes in which the stability of the candidate

node increases. In Chapter 4, we present an implementation of some of the Delau-

nay refinement algorithms. The implementation is done in the Java programming

language with a user-friendly graphical user interface. The implemented algorithm

is used to produce meshes in two dimensions. The quality of the generated mesh in

the experimental investigation is measured in terms of the number of triangles with

large aspect ratio. Finally, in Chapter 5, we present the conclusion observed from

the analysis of the presented algorithms and propose interesting problems for further

investigation.

2



Chapter 2

REVIEW OF TRIANGULATION REFINEMENT ALGORITHMS

In this chapter, we present a critical review of the algorithms for refining triangulated

mesh. In this review, the initial triangulation for refinement is assumed to be a

Delaunay triangulation. Both polygon triangulation and point set triangulation are

considered in the review.

2.1 Point Set Triangulation

A triangulation of a set of point sites P = {p0,p1,p2,p3,...pn} is a partitioning in the

plane of the convex hull of P into triangles, where points in P constitute the vertices

of the triangles. Figure 2.1 illustrates the triangulation of nine point sites in the

plane. Figure 2.1c is a triangulation of point sites of Figure 2.1a. The triangulation

in Figure 2.1b is only partial as it does not contain the entire set of edges of the

convex hull.

(a) Point Sites (b) Partial Triangulation (c) Maximal Triangula-
tion

Figure 2.1: Triangulation types

When we use the term ’triangulation’ of point sites, it is understood to mean a

maximal triangulation. A given set of n point sites can be triangulated in many

ways. Figure 2.2 shows three different triangulations of the point sites in Figure 2.1.

3



In fact, it is known that a given point site may admit an exponential number of

triangulations.

(a) (b) (c)

Figure 2.2: Three different Triangulation of same set of points

2.2 Delaunay Triangulation

Delaunay triangulation [8] for a set of points P in the plane is a triangulation DT(P)

such that no point in P is inside the circumcircle of any triangle in DT(P). One of

the nice features of Delaunay triangulation is that it tends to maximize the mini-

mum angle of all triangulations and thereby avoids skinny triangles which can reduce

the overall quality of the triangulation. There is an interesting relationship between

Delaunay triangulation and the convex hull [8]. It is known that Delaunay trian-

gulation in 2D is related to the faces in the convex hull of 2-d points projected on

a paraboloid in 3D. This can be generalized to d dimensions. Figure 2.3 shows the

Delaunay triangulation of a set of points.

Figure 2.3: Delaunay Triangulation

4



2.2.1 Empty Circle Test

The empty circle test [8] for the Delaunay triangulation can be formulated as :

If we can draw an empty circle through two point sites a and b circumscribing the

edges as shown in Figure 2.4 then we can connect them by a Delaunay edge, oth-

erwise we cannot. Since there is an empty circle passing through an edge (a,b) it

is a Delaunay edge. However, edge (p1,p2) is not a Delaunay edge since we cannot

construct any empty circle passing through the edge (p1,p2).

Figure 2.4: Empty Circle Test

2.2.2 Dual of Delaunay Triangulation

The Delaunay triangulation of a set of two dimensional points corresponds to a dual

graph known as the Voronoi tesselation.

Defnition 2.2.2 (Voronoi Tessellation) [8] : Let P = {p0,p1,p2,p3,...pn} be a set of

points in the two dimensional Euclidean plane. These are called the sites. Partition

the plane by assigning every point in the plane to its nearest site. All those points

assigned to pi form the Voronoi region V(pi). V(pi) consists of all the points at least

as close to pi as to any other site :

5



V(pi) = {x : | pi − x| ≤ |Pj − x|∀j 6= i }

Note that we have defined this set to be closed. Some points do not have a unique

nearest site, or nearest neighbor. The set of all points that have more than one nearest

neighbor form the Voronoi diagram V(P) for the set of sites.

(a) Delaunay Triangulation (b) Voronoi diagram

Figure 2.5: Dual Of Delaunay

Many algorithms for producing Delaunay triangulation exists, and the same can be

used to produce Voronoi diagrams as well [12]. Incremental and Divide and Conquer

algorithms produce Delaunay triangulations both of time complexity O(nlogn). Fig-

ure 2.5b shows the Voronoi Tesselation of Figure 2.5a. Every edge of the Delaunay

triangulation is bisected and projected to meet other bisectors producing the dual

known as the Voronoi Diagram shown with dark edges in Figure 2.5b.

2.2.3 Constrained Delaunay Triangulation

Defnition 2.3 (Constrained Delaunay Triangulation [CDT]) : A triangulation T of

any straight line planar graph G is called a Constrained Delaunay Triangulation [11]

of G if each edge of G is an edge of T and for each remaining edge e of T, there

6



exists a circle in which the endpoints of e are on the boundary of c and if any vertex

v of G is in the interior of c then it cannot be "seen" from at least one of the

endpoints of e. From the diagram below, we can figure out that the Constrained

Delaunay triangulation and Delaunay triangulation are more or less the same. The

only difference is that for CDT, some portions of the circle may be ignored, but not

for the Delaunay triangulation.

Figure 2.6: Constrained Delaunay Triangulation

2.3 Data Structure for representing 2D meshes

A widely used data structure for representing planar graphs is a doubly connected

edge list. A doubly connected edge list [DCEL] [8] is a pointer based data struc-

ture which is very useful for finding neighboring vertices and faces in a polygonal

mesh. A DCEL does not require us to search through all polygons while searching

for nearby nodes and edges. A DCEL consists of vertices, half edges and face ob-

jects with pointers between the vertices. The advantage that DCEL has is that it

allows direct access to the pointed objects in the mesh without the need of searching.

Each edge in DCEL bounds two faces and hence is also known as a half edge. Each

half edge has a pointer to the next half edge and previous half edge of the same face.

Each half edge only bounds a single face. In order to reach the other face we need

to visit the twin of the half edge and traverse the other face. Table 2.1 shows the

7



Figure 2.7: Doubly Connected Edge List

half-edge origin twin incidentFace next previous
e1,a v1 e1,b F1 e4,b e3,a
e1,b v2 e1,a F2 e3,b e4,a
e2,a v3 e2,b F1 e2,b e4,b
e2,b v4 e2,a F1 e3,a e2,a
e3,a v3 e3,b F1 e1,a e2,b
e3,b v1 e3,a F2 e4,a e1,b
e4,a v3 e4,b F2 e1,b e3,b
e4,b v2 e4,a F1 e2,a e1,a

Table 2.1: Doubly Connected Edge List

records for DCEL representation for the planar graph of Figure 2.7.

2.4 Triangulation refinement by quadrangulation

A very straightforward way of refining triangulation is to first convert triangulation

to quadrangulation and convert quadrangulation to triangulation by introducing new

vertices. Efficient algorithm for quadrangulating point sets in 2D is reported in [16].

It is interesting to note that while any point set convex hull can be partitioned into

triangles, it is not always possible to partition into quadrilaterals. For many point

sites, an attempt to quadrangulate leads to some trapped triangles.

8



In order to produce a quadrangulation, we need to add Steiner points to the triangula-

tion. The problem of mesh refinement by quadrangulation starts with a triangulation

of the points set.

(a) triangulation (b) quadrangulation

(c) Refinement by diagonal

Figure 2.8: Quadrangulation from the triangulated polygon
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A very simple way of refining a triangulated mesh is to first convert each triangle

element into a quadrilateral and then partition each quadrilateral into triangles by

adding diagonals [16]. A popular technique to convert a triangle into a quadrilateral

is to introduce a new vertex inside each triangle. The location of the new vertex

can be taken at the centroid of the triangle. The centroid can be connected to the

mid-points of the edges of the corresponding triangle.

Figure 2.8b shows a quadrangular mesh obtained in this manner. Now, each quadrilat-

eral can be refined by adding a new diagonal. The refined triangulated mesh obtained

in this manner is shown in Figure 2.8c. One of the drawbacks of this approach is that

the resulting triangles can be very skinny [10]. This is due to the fact that each angle

of the original triangle may be partitioned into two angles. The algorithm can be im-

plemented to run in linear time in a straightforward way if the original triangulation

is available in a doubly connected edge list data structure [8]. It is apparent that if

the original mesh has k triangles then the refined mesh has 6k triangles.

2.5 Delaunay Refinement

Delaunay refinement algorithms [18,19] typically serve to fulfil certain common goals,

like bounding the small angles and offering control over the size of the triangles in

the mesh. The measure of quality in any triangle is typically dictated by the small

or large angle constituting the triangle. Delaunay Refinement algorithms typically

improve the circumradius-to-shortest edge ratio. The implication of a smaller ratio

is that the smallest angle becomes larger. In order to refine any triangular mesh we

need to insert new vertices. The core problem of mesh refinement is solved only if

the new vertex is inserted optimally. The angle so formed by inserting new vertices

should be chosen optimal so as to avoid the formation of skinny triangles.

10



Some of the Delaunay refinement algorithms [18,19] were first introduced by L Paul

Chew and Jim Ruppert. Both Chew’s and Ruppert’s algorithms [10] work by inserting

a new vertex at the circumcenter of a triangle of poor quality. A triangle is said to be

of poor quality if its circumradius to shortest side ratio is smaller than a predefined

bound B. The value of B for Ruppert’s algorithm is
√
2 and for Chew’s algorithm

[11] it is 1 [18]. Figure 2.9 shows the refinement process in which a poor triangle with

circumradius to shortest side ratio smaller than B is split by inserting a new vertex

at the circumcircle. The split process maintains the Delaunay property and thereby

eliminates the poor quality triangle from the mesh.

Figure 2.9: Mesh refinement

2.5.1 Skinny Triangle

Skinny triangles degrade the overall quality of the Delaunay triangulation. These

triangles are eventually removed by the mesh refinement process. The circumcircle

of a skinny triangle is larger compared to its shortest edge. As shown in Figure 2.10

skinny triangles can be classified as being either a Needle [10] or a Cap [10]. In a

Needle, the longest edge is much larger as compared to its shorter edge, whereas a

Cap has one of its angle which is close to 1800.

11



(a) Needle (b) Cap

Figure 2.10: Skinny Triangles

2.5.2 Ruppert’s Delaunay Refinement Algorithm

Ruppert’s algorithm [10] for Delaunay refinement is used for producing a mesh with

quality triangles. The input to the algorithm is a planar straight line graph [PSLG]

and follows an iterative approach to produce quality triangles. Upon the termination

of this program, all the triangles will have aspect ratios at most |2/sinα| since all

angles smaller than the threshold angle α are removed [10]. The two basic operations

in Ruppert’s algorithm are to split an encroached segment by adding a new vertex

at its midpoint and similarly splitting a skinny triangle by putting a vertex at its

circumcircle. The formal sketch of Ruppert’s algorithm is given below :

The first stage of Ruppert’s algorithm involves finding the Delaunay triangulation for

the set of given points. After computing the Delaunay triangulation, the algorithm

follows two iterative steps to refine the mesh. First, it divides the encroached segments

shown with the dark solid lines in half by inserting a new vertex at the midpoint of

the encroached segment as shown in Figure 2.11a. The encroached segments are split

recursively until no segments are encroached as shown in Figure 2.11b and 2.11c.

After splitting the encroached segment into half, the algorithm checks for any skinny

triangles formed due to split and re-triangulation operations. The algorithm inserts a
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Algorithm 1 Ruppert’s Algorithm
public T Ruppert(points,segments,threshold){

T = Delaunay(points);
Q = encroached-segments-poor-triangles();
while (! Q.isEmpty())

if (Q.contains(segment))
insertMidpoint(s, T) ;

else Q contains poor quality triangle t:
if the circumcenter of t encroaches a segments s:

add(s ,Q);
else:

insertCircumcenter(t, T);
end if;

end if;
update(Q);

end while;
return T;

}

(a) (b) (c)

Figure 2.11: Ruppert’s Encroached segment splitting
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circumcenter in any skinny triangle in the mesh as shown in Figure 2.12a and initiates

an iterative split process until no other skinny triangles exist. The overall procedure

maintains the Delaunay property and finally the mesh is refined. A formal sketch of

Ruppert’s algorithm is listed as Algorithm 1.

(a) (b)

Figure 2.12: Ruppert’s bad Triangle splitting

2.5.3 Nontermination Caused by Skinny Triangles

Ruppert’s segment split operation can lead to a non-terminating state if two segments

intersect at a very skinny angle or two segments have a large angle, as shown in Figure

2.13. As shown in Figure 2.13, segment ab encroaches upon point c so we split the

segment ab by inserting a new vertex at mid point d. Now, this midpoint d is again

encroached upon by segment ac and we split segment ac into half as well. Therefore,

this process of split and encroachment can go on indefinitely and can cause possible

non-termination of Ruppert’s algorithm.

2.5.4 Small angle Nontermination solution

A possible solution to this problem as suggested by Ruppert is to perform splitting

using concentric shells [10] as shown in Figure 2.14. In this approach we first split the

segment at the midpoint. However, the subsequent split is done at the intersection

of the concentric shells with the nearest midpoint.
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(a) (b)

Figure 2.13: NonTermination caused by small angle

Figure 2.14: Concentric Shell splitting
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2.5.5 Chew’s Delaunay Refinement Algorithm

Chew’s Delaunay Refinement algorithm [11] is an algorithm that produces a qual-

ity Constrained Delaunay Triangulation. The mesh it produces guarantees that all

angles are between 300 and 1200. It starts with a Constrained Delaunay triangula-

tion of a PSLG. The algorithm removes skinny triangles by Delaunay Refinement.

Chew’s triangulation, unlike Ruppert’s, is not Delaunay but rather a Constrained

Delaunay. After getting the Constrained Delaunay triangulation for the set of input

vertices, Chew’s algorithm inserts the circumcenter of a poor quality triangle into

the triangulation as shown in Figure 2.15 with the exception that if the circumcenter

lies on the opposite side of the input segment as the poor quality triangle then the

midpoint is inserted instead. Further, any previously inserted circumcenters inside

the diametrical ball of the original segment are removed from the triangulation. This

is repeated until no poor quality triangles remain in the mesh. It has been shown that

Chew’s algorithm terminates for an angle bound of up to 300 but may not guarantee

size optimality and good grading [11]. Under cases when the segments present in the

mesh are shorter, only a few of them are ever encroached. This makes Chew’s and

Ruppert’s algorithms produce similar meshes.

Figure 2.15: Chew’s bad Triangle splitting
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Chapter 3

STABILITY AWARE DELAUNAY REFINEMENT

In this chapter, we present the main contribution to the thesis. We introduce the

concept of stable refinement of Delaunay triangulation. We propose two criteria for

placing a new node in the context of Delaunay triangulation refinement. Furthermore,

we present two algorithms that use the proposed criteria.

3.1 Characterizing stable node position

Consider the Delaunay triangulation of randomly generated nodes as shown in Fig-

ure 3.1a. Suppose we move an interior node P15 slightly in its neighbourhood. If the

movement is very small, the resulting triangulation does not change in the sense of

connectivity i.e., the connectivity between the nodes before and after the movement

remains the same. However, if we move the node further sufficiently, the connec-

tivity relation could change. Existing edges in the triangulation can disappear and

new edges may appear. This effect of the change in the triangulation due to node

movement is illustrated in Figure 3.1b.

Delaunay edges of the candidate node P15 are drawn dashed. When the candidate

node P15 is moved to a new position in its neighbourhood, the edges incident on node

P15 are drawn dotted. By comparing dashed and dotted edges we find that a new edge

connecting P5 and P15 appears and the edge that was connecting P13 and P14 before

disappears. The region in the neighbourhood of a node where the connectivity does

not change has been investigated [9]. This can be stated in the following definition.
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(a) Point Sites (b) Node Movement

Figure 3.1: Moving Nodes in Delaunay Triangulation

Defnition 3.1 (Roaming region)[9,7] : The Roaming region for a Delaunay node Pi

is defined as the maximal region R enclosing node Pi where the relocation of the node

Pi does not change connectivity.

In Figure 3.2, a small region R′ around P15 is shown which is a subset of its roaming

region. The reader can verify that as long as P15 remains within R′ the connectivity

does not change.

To define roaming region formally we start with a few definitions. Consider a node

Pi in the interior of a Delaunay triangulation as shown in Figure 3.3. A Delaunay

node is called internal if (i) it is not on the convex hull and (ii) it is not incident to

a node on the convex hull.

Two types of triangles with respect to a candidate internal node Pi are used to for-

malize the notion of roaming region. The first type of triangles are the radial triangles

and the others are the lateral triangles.
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Figure 3.2: Illustration of Roaming Region

3.2 Radial Triangles

Defnition 3.2 [9] : The edges of the triangles incident on candidate node Pi that

do not have endpoints at Pi are the limit edges. The triangles incident on a limit

edge away from Pi are called the radial triangles. In Figure 3.3, there are six radial

triangles for internal node Pi. The radial triangles are drawn with thick edges.

Figure 3.3: Illustration of Limit-Edge and Radial Triangle
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3.3 Lateral Triangles

Defnition 3.3 [9] : Lateral triangles are not the triangles of Delaunay triangulation.

Consider two adjacent triangles incident on a candidate node Pi. These two triangles

form a quadrilateral. If we flip the diagonal of the quadrilateral, two new triangles are

formed called flipped triangles. The flipped triangle away from Pi is a lateral triangle.

The six lateral triangles for Pi are drawn with thick edges in Figure 3.4.

Figure 3.4: Illustration of Lateral Triangle of Pi

3.4 Formation of Radial Roaming Region RR(i)

Consider circumcircles of radial triangles of candidate node Pi as shown in Figure

3.5. The region bounded by the circumcircles of all radial triangles is the radial

roaming region RR(i) for Pi. It is observed that as long as node Pi remains inside

RR(i), no new nodes are connected to Pi due to the in-circle property of Delaunay

triangulation. As soon as Pi goes outside RR(i), a new connection will be established.

It is noted that when Pi moves inside RR(i), existing edges from Pi to other nodes

may disappear.
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(a) Radial discs (b) Radial Roaming Region

Figure 3.5: Illustration of Radial discs and Radial roaming region of Pi

3.5 Formation of Lateral Roaming Region LR(i)

Consider the circumcircles of lateral triangles of candidate node Pi as shown in Figure

3.6. Let LR(i) denote the intersection of disks corresponding to the circumcircles of

lateral triangles. The region LR(i) is called the lateral roaming region. It can be

observed that as long as node Pi remains within LR(i), all existing edges incident on

Pi will be preserved.

Lateral Roaming Region LR(i) = ∩(L1, L2, L3, .....Ln) where L1, L2, L3.....Ln are the

lateral discs.
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(a) Lateral discs

Figure 3.6: Illustrating the formation of Lateral Roaming Region

3.6 Formation of Free Roaming Region R(i)

If we overlay the lateral roaming region and the radial roaming region then their

intersection R(i) = LR(i) ∩ RR(i) is such that as long as node Pi remains within

R(i) the connectivity between the nodes does not change. This overlay region R(i) is

called the free region of node Pi as shown in Figure 3.7.

Figure 3.7: Illustrating formation of Free Roaming Region
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3.7 Reliable Delaunay Refinement

As reviewed in Chapter 2, the refinement of a Delaunay triangulation is done by

inserting a new node at the center of the circumcircle of an existing triangle. If the

position of the new node Pi happens to be near the boundary of the corresponding

free region Ri, then a slight change in the position of Pi would result in a change

of the connectivity of the nodes. Such a position of Pi is an unstable position. One

question that normally arises here is how to relocate the position of a candidate node

Pi such that the resulting refined Delaunay triangulation is stable i.e., a slight change

in the position of Pi would not affect the connectivity of the Delaunay triangulation.

The idea here is to first compute the free-region Ri for Pi and relocate the position Pi

near the center of Ri. We propose two approaches for relocating Pi to a more reliable

position. The first approach is to place Pi in the center of gravity of Ri as shown

in Figure 3.8a and the second is to place it at the center of the largest empty circle

inside Ri as shown in Figure 3.8b.

(a) shifting to CG of R(i) (b) largest empty circle of
R(i)

Figure 3.8: Reliable shifting of Pi
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3.8 Center of Gravity of a Simple Polygon

The center of gravity CG of a polygon can be conceptualized by viewing the interior

of the polygon to be made up of a material of uniform thickness. With such a notion,

the center of gravity of the material is the CG of the polygon. To compute the center

of gravity of a polygon, we can use the coordinates of the vertices and the area of the

polygon as follows [8].

A = 1/2
n∑

i=0

(xiyi+1 − xi+1yi) ................... (1)

where xi, yi are the coordinates of the vertex vi. Let cx, cy denote the x and y coor-

dinates of the center of gravity of the polygon. Then, cx and cy can be expressed as

[8].

Cx = 1/6A
n∑

i=0

(xi + xi+1)(xiyi+1 − xi+1yi) ................... (2)

Cy = 1/6A
n∑

i=0

(yi + yi+1)(xiyi+1 − xi+1yi) ................... (3)

Using the above formulas, the center of gravity of a polygon can be calculated in a

straightforward manner. For convex shapes, the center of gravity always lies inside

the polygon. However, there are some class of non-convex polygons in which the

center of gravity may lie outside the polygon, as illustrated in the following diagrams.
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(a) (b) (c) (d)

(e)

Figure 3.9: Illustration of CG of 2D shapes

Now, we have the ingredients to describe a CG-based relocation algorithm. The set

of input point sites is triangulated by using Fortune’s algorithm [3]. The free region

of candidate nodes inside the convex hull is computed by using free region algorithm

given in [9]. The center of gravity of the polygonal shape representing the free region

is computed. The candidate node is relocated at the center of gravity of the free

region. A formal sketch of the algorithm is listed as Algorithm 2.

3.8.1 CG based Relocation algorithm

Time complexity of CG based relocation algorithm is as follows :

Delaunay triangulation of n input point sites can be done in O(nlogn) time by using

Fortune’s algorithm [3]. Hence, Step 1 takes O(nlogn). Free region of a node can

be done in O(n2) time by using algorithm given in [9]. Hence, Step 2 takes O(n2)

time. Step 3 can be done in O(n) time by scanning the boundary of Ri and replacing

arcs with polygonal chain. Center of gravity of polygonal shapes can be computed in
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Algorithm 2 CG based Relocation Algorithm
Input : (i) Set of point sites S = {p0,p1,p2,p3,...pn} in 2D

(ii) An internal point pi ∈ S

Output : Relocation position qi for pi

Step 1 : Compute the Delaunay triangulation DT for S

Step 2 : Compute Free Region Ri for Pi.

Step 3 : Approximate Ri with a simple polygon Qi by introducing points on arcs.

Step 4 : Compute CG of Qi by using formula (2) and (3). Let the CG be qi
Step 5 : Output qi as the relocated position for pi

O(n) time by using standard method reported in literature [8]. Intersection of two

polygonal shapes can be achieved in O(n) time [13]. Hence the overall time complexity

of the algorithm is O(n2).

3.9 Largest Empty Circle

Let Q = {q1,q2,...,qn} be a set of n points on the plane and let CH(Q) denote the

convex hull of Q. The largest empty circle (LEC) problem asks to find an empty circle

whose center is inside the convex hull of Q [4]. It is known that the largest empty

circle [4] is either centered on the vertex of the Voronoi diagram or on the intersection

of a Voronoi edge with the convex hull boundary. Figure 3.10 shows different cases

of empty circle formation. In Figure 3.10a, a convex hull of a set of points with its

largest empty circle is shown. Similarly, Figure 3.10b and Figure 3.10c show two of

the cases when the largest empty circle is centered on a vertex of the voronoi diagram

and when the largest empty circle is not centered on the voronoi vertex. Toussaint [4]

has shown that the computation of the largest empty circle with location constraints

can be done in O(n logn) time.
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(a) Largest Empty Circle of points

(b) Circle centered on voronoi vertex (c) Circle not centered on voronoi vertex

Figure 3.10: Largest empty circle

27



3.9.1 Largest Empty Circle based Relocation algorithm

Algorithm 3 Largest Empty Circle based Relocation Algorithm
Input : (i) Set of point sites S = {p0,p1,p2,p3,...pn} in 2D

(ii) An internal point pi ∈ S

Output : Relocation position qi for pi

Step 1 : Compute the Delaunay triangulation DT for S

Step 2 : Compute Free Region Ri for Pi.

Step 3 : Approximate Ri with a simple polygon Qi by introducing points on arcs.

Step 4 : Compute Largest Empty Circle of Qi by using Toussiant algorithm. Let the
center of largest empty circle be qi
Step 5 : Output qi as the relocated position for pi

Now, the relocation algorithm based on empty circles can be described as follows :

Free region Ri is approximated by a polygon shape. The largest empty circle inside

the polygon representing Ri is computed by using Toussiant’s algorithm [4]. The

node is relocated to the center of the largest empty circle. A formal sketch of the

algorithm is listed as Algorithm 3.

The time complexity of Algorithm 3 can be done in the same way as for Algorithm

2, which leads to the fact that the execution time of Algorithm 3 is O(n2).
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Chapter 4

IMPLEMENTATION

In this chapter, we present an implementation of the algorithms that were reviewed in

Chapter 2 for refining triangular meshes. The program was implemented in JavaSE-

1.7. The implemented algorithms include (i) Ruppert’s Delaunay refinement algo-

rithm, and (ii) Refinement by quadrangulation. We also present a variation of Rup-

pert’s algorithm by incorporating the idea of center of gravity of Delaunay triangles.

4.1 GUI Description

The main graphical interface of the implementation is developed by using Java Swing

class. As shown in Figure 4.1, there are four panels present in the main frame. The

top panel is used to contain the menu bar. The middle portion of the jFrame consists

of two panels: center panel and the right panel. The center panel is the main area to

display graphics whereas the right panel contains check boxes and buttons to allow

user to select appropriate choices. The checkboxes on the right panel are used to

select operations such as draw nodes, edit nodes, split segment, split triangle, Delau-

nay triangulation, circum-circles, encroached segment, quadrangulation and roaming

region.

The right panel also contains three buttons Ruppert, CG refinement and CC refine-

ment which are used for selecting various mesh refinement methods. Besides these,

two more buttons clear canvas and test points buttons, are present. The bottom panel

displays coordinates of the position of the mouse. All of the panels are implemented

by extending the jPanel class.
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Figure 4.1: Layout of main user interface

4.2 Interface Description

Figure 4.2 shows a snap-shot of the actual interface of the program. The file menu

on the top panel allows user to (i) read an existing dcel file, (ii) save the dcel file

to filesystem and (iii) exit the application. A brief description of the functionalities

of the file menu items is provided in Table 4.1. Users can plot nodes by enabling

the draw node checkbox. The nodes can be edited and a mesh can be drawn with

it. Table 4.2 gives an overview of the functionality of all checkboxes in the GUI.

Similarly, Table 4.3 gives an overview of the functionality of all the buttons in the

GUI.
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Figure 4.2: Graphical User Interface

S.N. Menu Item Functionalities
1 Read Dcel File Brings up a pop up to allow the user to select a pre-saved

file
2 Save Dcel File Brings up a pop up to allow the user to save the diagram
3 Exit Exits the application

Table 4.1: File Menu Items Description

4.3 Illustrating Refinement

Delaunay mesh refinement starts with a given Delaunay triangulation. Figure 4.3

shows the Delaunay triangulation of a set of points. The mesh is unrefined due to

the presence of low quality skinny triangles as shown in Figure 4.6. Generally, mesh

refinement is done by splitting segments and by splitting skinny triangles present

in the mesh. Figure 4.5 and Figure 4.7 show the segment split and triangle split

operations.
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S.N. Menu Item Functionalities
1 Draw Vertex Allows users to draw vertices on the mainPanel
2 Edit Vertex Allows users to edit drawn vertices
3 Delaunay Triangulate Triangulates vertices by using Delaunay triangula-

tion algorithm
4 Encroached Segment Displays the segments which are encroached upon

by any other points
5 Refine Triangle Refines existing triangles in the mesh
6 Circum Circles Draws circumcircles around the triangles in the

mesh
7 Cartesian Grid Draws cartesian grid in the main Panel
8 Split Segment Splits the segment into half
9 Skinny Triangle Displays skinny triangles in the triangular mesh
10 Split Triangle Splits skinny triangles in the mesh
11 Split Triangle at CG Splits the triangle at center of gravity of the trian-

gle
12 Quadrangulate Points Changes the existing triangular mesh into a quad-

rangular mesh
13 Refine Quadrangulation Refines the quadrangular mesh by adding diago-

nals
14 Roaming Region Displays the radial and lateral roaming regions
15 Radial Triangles Displays the Radial discs and Radial Roaming Re-

gion
16 Lateral Triangles Displays the Lateral discs and the lateral roaming

region

Table 4.2: Checkbox Items Description

One of the simplest approaches to refine a mesh is through the quadrangulation of the

triangles as shown in Figure 4.8, and then joining the diagonals of the thus formed

quadrilaterals. Figure 4.10 shows a second approach to mesh refinement. In this

approach, we refine the mesh iteratively by inserting a new point at the center of

gravity of each triangle in the mesh.

Figure 4.10 also shows the formation of skinny triangles in a local region near the

boundary of the triangular mesh. Similarly, Figure 4.11 shows another approach for

refining the mesh. In this approach, we insert new points at the circumcircle of the
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triangle instead of at its center of gravity. Figure 4.14 shows the radial discs and

the radial roaming region for a point. Similarly, Figure 4.15 shows the lateral discs

and the corresponding lateral roaming region formed with the intersection of lateral

triangles. The intersection of radial roaming region and lateral roaming region forms

the free roaming region as shown in Figure 4.16.

S.N. Menu Item Functionalities
1 Clear Canvas Clears whatever graph is drawn on the main

panel
2 Predefined Points :5 Draws a point set consisting of five nodes
3 Predefined Points :10 Draws a point set consisting of ten nodes
4 Ruppert Opens up a new popup and refines the mesh

using Ruppert’s algorithm
5 Random Draws random set of points on the main panel
6 CG Refinement Refines the existing mesh by inserting new node

at the center of gravity of the triangles
7 Circumcenter Refinement Refines the existing mesh by inserting a new

node at the circumcenter of the triangles

Table 4.3: Buttons Description

Snapshots of meshes and their refinements produced by the implemented algorithms

are displayed in Figure 4.3 to Figure 4.13.
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Figure 4.3: Snapshot of Delaunay Triangulation

Figure 4.4: Illustrating Encroached Segments
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Figure 4.5: Illustrating Splitted Segment

Figure 4.6: Illustrating Skinny Triangles
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Figure 4.7: Splitting Skinny Triangles

Figure 4.8: Refinement by Quadrangulation (3 iterations)
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Figure 4.9: Further Refinement by Quadrangulation

Figure 4.10: Result of CG based Refinement
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Figure 4.11: Circumcircle Refinement for Internal Elements

Figure 4.12: Input to Ruppert’s algorithm
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Figure 4.13: Refined mesh obtained by Ruppert’s Algorithm

Figure 4.14: Illustrating Radial Roaming Region and Radial discs
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Figure 4.15: Illustrating Lateral Roaming Region and Lateral discs

Figure 4.16: Roaming Region showing Radial and Lateral regions
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4.4 Results and Statistics

It is clear from Figure 4.9 that the refinement done by quadrangulation increased the

number of skinny triangles extensively. This is due to the fact that at each iteration

of quadrangulation, generated skinny triangles were further partitioned into more

skinny triangles. Center of gravity refinement was able to refine the interior of the

mesh in a few iterations and the skinny triangles were only present mostly at the

boundary of the mesh, no matter how we altered the minimum angle. Circumcircle

refinement, unlike Center of gravity refinement, did not show localized behavior and

the skinny circles could be found at any place in the mesh irrespective of the number

of iterations. Ruppert’s algorithm refined the Delaunay mesh more or less uniformly.

However, how stable the nodes are after performing refinement by using Ruppert’s

algorithm is not known.

Figure 4.17, Figure 4.18, Figure 4.19, and Figure 4.20 shows the behavior of the

center of gravity refinement and the circumcircle refinement in terms of the number

of nodes, number of triangles, number of skinny triangles and number of iterations.

Results on various values of minimum selected angles is shown in tables Table 4.4

to Table 4.12. Figure 4.17 and Figure 4.18 show the plot of refinement results for

circumcenter refinement for various values of minimum angle. Similarly, Figure 4.19

and Figure 4.20 show the plot of refinement results for center of gravity refinement.

In these plots, x-axis represents the number of iterations and y-axis represents the

number of generated triangles.
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Iteration No Total points Total triangles skinny triangles
0 10 13 3
1 12 17 3
2 15 23 3
3 19 31 3
4 25 43 3
5 35 63 3
6 54 101 3
7 97 187 3
8 190 371 3

Table 4.4: CC Refinement Minimum angle 5

Iteration No Total points Total triangles skinny triangles
0 10 13 5
1 12 17 4
2 15 23 4
3 19 31 4
4 25 43 4
5 35 63 4
6 54 101 4
7 97 187 7
8 190 371 10

Table 4.5: CC Refinement Minimum angle 10
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Iteration No Total points Total triangles skinny triangles
0 10 13 5
1 12 17 6
2 15 23 6
3 19 31 6
4 25 43 6
5 35 63 6
6 54 101 8
7 97 187 19
8 190 371 31

Table 4.6: CC Refinement Minimum angle 15

Iteration No Total points Total triangles skinny triangles
0 10 13 9
1 12 17 12
2 15 23 15
3 19 31 19
4 25 43 26
5 35 63 32
6 54 101 44
7 97 187 75
8 190 371 121

Table 4.7: CC Refinement Minimum angle 30

Iteration No Total points Total triangles skinny triangles
0 10 13 3
1 23 39 4
2 62 116 9
3 178 348 16
4 526 1041 31

Table 4.8: CG Refinement Minimum angle 5
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Iteration No Total points Total triangles skinny triangles
0 10 13 5
1 23 39 6
2 62 116 14
3 178 348 27
4 526 1041 50

Table 4.9: CG Refinement Minimum angle 10

Iteration No Total points Total triangles skinny triangles
0 10 13 9
1 23 40 15
2 62 116 24
3 178 348 52
4 526 1024 91

Table 4.10: CG Refinement Minimum angle 20

Iteration No Total points Total triangles skinny triangles
0 10 13 11
1 23 39 26
2 62 116 47
3 178 348 82
4 526 1041 158

Table 4.11: CG Refinement Minimum angle 30

Initial triangles Area Minimum Angle Final no of triangles Skinny triangles
6 8 30 12 0
6 3.73 30 14 0
6 2.7 30 18 0
6 1.99 30 34 0
6 1.05 30 46 0
6 0.48 30 110 0

Table 4.12: Ruppert’s Refinement
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Figure 4.17: CircumCenter Refinement
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Figure 4.18: CircumCenter Refinement
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Figure 4.19: Center of Gravity Refinement
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Figure 4.20: Center of Gravity Refinement
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Chapter 5

CONCLUSION

In this thesis, we presented a comprehensive review of some of the mesh refinement

algorithms which focus on generating quality meshes. Different mesh refinement

techniques reviewed include (i) Ruppert’s mesh refinement and (ii) quadrangulation

guided refinement.

We introduced a new approach for stable mesh refinement by introducing the concept

of roaming regions for Delaunay nodes. Based on this idea, we developed two algo-

rithms for refining Delaunay triangulation to make internal nodes more stable. The

first algorithm is based on the concept of center of gravity, and the second algorithm

uses the notion of largest empty circle. Both algorithms run in O(n2) time, where n

is the initial number of nodes.

We implemented some of the mesh refinement algorithms reviewed in Chapter 2 and

3, including Ruppert’s algorithm, quadrangulation refinement, CG based refinement

and circumcircle based refinement. The implementation also includes calculating the

radial roaming region, lateral roaming region, and the intersection of the two types of

roaming regions. The implemented algorithms are used for experimental investigation

of quality of mesh elements produced. The experimental results show that the center

of gravity approach is very effective in producing quality refinement near the interior

region with respect to the convex hull of input nodes. We also found that Ruppert’s

algorithm produces refinement throughout the region of the convex hull.

Our presented algorithms work only on the interior nodes in the mesh. Due to time

limitation, we could not generalize our presented algorithms for non-interior nodes.
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It would be very interesting to extend our approach for external nodes as well. The

presented algorithms run in O(n2) time and it may possible to reduce this time

complexity by getting more insight into the structure of free regions.
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