
UNLV Theses, Dissertations, Professional Papers, and Capstones 

5-1-2013 

Simulation and Analysis of Insider Attacks Simulation and Analysis of Insider Attacks 

Christopher Blake Clark 
University of Nevada, Las Vegas, cla05019@gmail.com 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Information Security Commons 

Repository Citation Repository Citation 
Clark, Christopher Blake, "Simulation and Analysis of Insider Attacks" (2013). UNLV Theses, Dissertations, 
Professional Papers, and Capstones. 1813. 
https://digitalscholarship.unlv.edu/thesesdissertations/1813 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1813&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1813&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1813?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1813&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


 

 

 

SIMULATION AND ANALYSIS 

OF INSIDER ATTACKS 

 

 

by 

 

 

Christopher Blake Clark 

 

 

 

Bachelor of Science in Computer Science 

Brigham Young University, Idaho 

2011 

 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the 

 

Master of Science in Computer Science 

 

Department of Computer Science 

Howard R. Hughes College of Engineering 

The Graduate College 

 

 

University of Nevada, Las Vegas 

May 2013 

 

 

 



 

 

 

 

 

 

 

 

Copyright by Christopher Clark, 2013 

All Rights Reserved 

  



ii 

 

 
 

 

 

THE GRADUATE COLLEGE 

 

 

We recommend the thesis prepared under our supervision by 

 

Christopher Blake Clark  
 

 

entitled 

 

Simulation and Analysis of Insider Attacks 

 

 
be accepted in partial fulfillment of the requirements for the degree of 

 

Master of Science in Computer Science 
Department of Computer Science 

 

Yoohwan Kim, Ph.D., Committee Chair 

 

Laxmi Gewali, Ph.D., Committee Member 

 

Evangelos A. Yfantis, Ph.D., Committee Member 

 

Emma Regentova, Ph.D., Graduate College Representative 

 

Tom Piechota, Ph.D., Interim Vice President for Research &  

Dean of the Graduate College 

 

May 2013 

 

  



iii 

 

Abstract 

An insider is an individual (usually an employee, contractor, or business partner) 

that has been trusted with access to an organization’s systems and sensitive data for 

legitimate purposes.  A malicious insider abuses this access in a way that negatively 

impacts the company, such as exposing, modifying, or defacing software and data. 

Many algorithms, strategies, and analyses have been developed with the intent of 

detecting and/or preventing insider attacks.  In an academic setting, these tools and 

approaches show great promise.  To be sure of their effectiveness, however, these 

analyses need to be tested.  While real data is available on insider attacks (including logs 

of actions taken by the insider), the real data is limited in its usefulness.  If the analysis 

being tested passes or fails in detecting the insider attack, how much can be attributed to 

the analysis’s precision, the circumstances of the attack, or just luck?  The ability to test 

an analysis against a wide range of data with circumstances that vary in complexity and 

circumstance would allow insight into strengths and weaknesses of the analysis.  Data for 

multiples tests would also help in ruling out luck in the results. 

To address this, I’ve built an insider attack simulator that generates test scenarios 

for analyses.  Specifically, it generates logs of employee actions with both insider attacks 

and false positives hidden within the logs.  This simulator allows for customization of the 

actions that are logged, the average behavior of individuals, the departments within the 

simulated company, and the abnormal events (including insider attacks) that take place.  

This thesis will discuss the nature of insider threats, the benefits of a simulator, how to 

customize the simulation, and how one can gain insight into analyses using logs 

generated by the simulator.  



iv 

 

Table of Contents 

ABSTRACT ....................................................................................................................... iii 

LIST OF TABLES ............................................................................................................. ix 

LIST OF FIGURES .............................................................................................................x 

CHAPTER 

1. INTRODUCTION .........................................................................................................1 

1.1. Motivations behind Insider Attacks ......................................................................... 1 

1.2. Damage of Insider Attacks ....................................................................................... 4 

1.3. Can insider threats be thwarted? .............................................................................. 4 

1.4. Logs and Analysis Programs ................................................................................... 5 

1.5. Simulator Overview ................................................................................................. 7 

2. PREVIOUS WORKS...................................................................................................10 

3. DEFINING INSIDER ACTIONS AND BEHAVIORS ..............................................14 

3.1. Actions and Behavior ............................................................................................. 14 

3.1.1. Definitions....................................................................................................... 14 

3.1.2. Required Data ................................................................................................. 14 

3.1.3. Company and Department-Level Behavior .................................................... 16 

3.1.4. Employee-Level Behavior .............................................................................. 18 

3.2. Optional Input ........................................................................................................ 20 

3.2.1. Minimum and Maximum Occurrences ........................................................... 21 



v 

 

3.2.2. Action Subgroups............................................................................................ 22 

3.2.3. Scope of Interaction Subgroup........................................................................ 23 

4. CUSTOMIZING INSIDER ATTACKS AND OTHER EVENTS .............................25 

5. USING THE SIMULATOR INTERFACE .................................................................28 

5.1. The Interface Overview ......................................................................................... 28 

5.2. Data Dependencies................................................................................................. 29 

5.3. File Interface .......................................................................................................... 31 

5.4. Company Behavior Interface ................................................................................. 33 

5.5. Department Interface ............................................................................................. 36 

5.6. Event Series Interface ............................................................................................ 39 

5.7. The Run Simulator/Analysis Interface ................................................................... 42 

5.8. Tips for Entering Data ........................................................................................... 44 

6. SIMULATED EVENT GENERATION ......................................................................45 

6.1. Computing Department Behavior .......................................................................... 46 

6.2. Generate Employees for Each Department ............................................................ 47 

6.3. Assign the Event Series to the Employees ............................................................. 47 

6.4. Determine the Start Time of Each Event Series for Each Employee .................... 48 

6.5. Create an Event Instance Queue ............................................................................ 49 

6.6. Simulate Behavior between Event Instances ......................................................... 50 

6.7. Resolve Each Event ............................................................................................... 52 



vi 

 

6.8. Writing the Action Instances to a CSV File........................................................... 53 

7. THE ANALYSES ........................................................................................................55 

7.1. Computing Activity Scores .................................................................................... 55 

7.2. Computing Anomaly Scores .................................................................................. 56 

7.2.1. The Max/Min Analysis ................................................................................... 56 

7.2.2. The Standard Deviation Analysis ................................................................... 58 

7.3. Were the Abnormal Actions Noticed? ................................................................... 60 

8. EXAMPLE RUNS .......................................................................................................61 

8.1. Twelve Example Runs ........................................................................................... 61 

8.1.1. Run Set #1: No Events, Weighted Subtypes, or Standard Deviation ............. 62 

8.1.2. Run Set #2: Small Standard Deviation ........................................................... 64 

8.1.3. Run Set #3: Large Standard Deviation ........................................................... 65 

8.1.4. Run Set #4: Weighted Subtypes Added and No Standard Deviation ............. 67 

8.1.5. Run Set #5: Weighted Subtypes and a Small Standard Deviation.................. 68 

8.1.6. Run Set #6: Single Malicious Email with Weighted Subtypes but no Standard 

Deviation ................................................................................................................... 69 

8.1.7. Run Set #7: Single Malicious Email with a Small Standard Deviation .......... 70 

8.1.8. Run Set #8: Disaffected Employee with No Weighted Subtypes or Standard 

Deviation ................................................................................................................... 71 



vii 

 

8.1.9. Run Set #9: Disaffected Employee with Weighted Subtypes and No Standard 

Deviation ................................................................................................................... 72 

8.1.10. Run Set #10: Disaffected Employee with a Small Standard Deviation and No 

Weighted Subtypes ................................................................................................... 73 

8.1.11. Run Set #11: Disaffected Employee with Weighted Subtypes and a Small 

Standard Deviation.................................................................................................... 74 

8.1.12 Run Set #12: Sick Employee with Weighted Subtypes and a Small Standard 

Deviation ................................................................................................................... 75 

8.2. Insights from Example Run Sets............................................................................ 76 

9. FUTURE WORKS.......................................................................................................78 

9.1. Future Works for the Simulator ............................................................................. 78 

9.2. Future Works for Analyses .................................................................................... 80 

9.3. Future work for User Interface .............................................................................. 83 

10. CONCLUSION ............................................................................................................85 

APPENDIX 

A. THE COMMA-SEPARATED-VALUE FILES ..........................................................87 

A.1. General CSV Format ............................................................................................. 87 

A.2. How Text is Interpreted ........................................................................................ 88 

A.3. Company Behavior CSV File ............................................................................... 89 

A.4. Department CSV File ............................................................................................ 92 

A.5. Event Series CSV File........................................................................................... 92 



viii 

 

B. CSV OUTPUT FILES .................................................................................................94 

B.1. Event Series Log CSV Output File ....................................................................... 94 

B.2 Simulator Log CSV Output File............................................................................. 94 

C. TABLES OF INPUT BEHAVIOR ..............................................................................96 

BIBLIOGRAPHY ..............................................................................................................99 

VITA ................................................................................................................................101 

 

  



ix 

 

 

List of Tables 

Table 1  Details of “Email” action and behavior. ..........................................................96 

Table 2  Details of “Phone Call” action and behavior. ..................................................96 

Table 3  Details of “Instant Messages” action and behavior. ........................................96 

Table 4  Details of “File Access” action and behavior. .................................................97 

Table 5  Details of “Web Site Access” action and behavior. .........................................97 

Table 6  Details of “Web Site Access” action and behavior. .........................................97 

  



x 

 

List of Figures 

Figure 1: Three categories of attacks and motives...............................................................2 

Figure 2: Steps for simulating and detecting insider attacks. ..............................................8 

Figure 3: Sketch of a Gaussian function (bell curve). .......................................................15 

Figure 4: Example of department-level behavior being set based on the company 

behavior........................................................................................................................17 

Figure 5: Illustration of how employee-level averages are generated. ..............................18 

Figure 6: Example of how employee standard deviation is generated. .............................20 

Figure 7: Example of the enforcement of minimum and maximum values. .....................21 

Figure 8: A pie chart showing how subtype selection is influenced by the subtypes’ 

ratios. ............................................................................................................................23 

Figure 9: The total weight of the action is the sum of the weights of its subtypes. ...........23 

Figure 10: Person-to-person interactions where lines represent actions. ...........................24 

Figure 11: An example of how an event series are spaced in the employee’s timeline. ...26 

Figure 12: The windowed interface. ..................................................................................29 

Figure 13: The program’s data dependencies. ...................................................................30 

Figure 14: The file input/output interface. .........................................................................32 

Figure 15: Company-level behavior interface. ..................................................................34 

Figure 16: Table of subtypes for the subgroup “Sensitivity”. ...........................................35 

Figure 17: The department interface. .................................................................................36 



xi 

 

Figure 18: The event series interface. ................................................................................40 

Figure 19: Interfaces for the “Modify Behavior”, “Save Behavior”, and “Load Behavior” 

event types. ..................................................................................................................41 

Figure 20: The “Run Simulator/Analysis” interface. .........................................................43 

Figure 21: How department behavior is generated based on company behavior. .............46 

Figure 22: The distribution of multiple event series. .........................................................48 

Figure 23: Illustration of how the event instance list is built. ............................................49 

Figure 24: Three examples of how the time spent working in a day is calculated. ...........51 

Figure 25: Anomaly scores of an employee who performs the same number of each 

action every day. ..........................................................................................................63 

Figure 26: Occurrences and anomaly scores when there is a small deviation, no weights, 

and no events................................................................................................................64 

Figure 27: Occurrences and anomaly scores when there is a large deviation, no weights, 

and no events................................................................................................................65 

Figure 28: Graph of the anomaly score generated by the max/min analysis. ....................66 

Figure 29: Graphs of the occurrences and anomaly scores when there is no deviation or 

events, but each instance of an action has its subgroups selected and the weight of the 

subgroup added. ...........................................................................................................67 

Figure 30: Occurrences and anomaly scores when there is a small standard deviation, no 

events, and each instance of an action has its subgroups selected and the weight of the 

subgroup added. ...........................................................................................................69 



xii 

 

Figure 31: Daily and anomaly scores with no standard deviations and a single malicious 

email (highly sensitive email with a large attachment sent outside of the company) 

occurring on day 36. ....................................................................................................70 

Figure 32: Daily and anomaly scores with small standard deviations and a single 

malicious email (highly sensitive email with a large attachment sent outside of the 

company) occurring on day 34. ...................................................................................71 

Figure 33: Employee daily and anomaly scores of a disaffected employee when no 

weights or standard deviation is present. .....................................................................72 

Figure 34: Employee daily and anomaly scores of a disaffected employee when weighted 

subtypes are selected but no standard deviation is present. .........................................73 

Figure 35: Daily and anomaly scores of a disaffected employee when no weights are 

present but each action has a small standard deviation................................................74 

Figure 36: Daily and anomaly scores of a disaffected employee when each action has a 

small standard deviation and weighted subtypes. ........................................................75 

Figure 37: Daily and anomaly scores of a normal employee when each action has a small 

standard deviation and no weighted subtypes.  The employee has one sick day on day 

61..................................................................................................................................76 

Figure 38: Anomaly scores generated by max/min analysis when all profile scores are 

equal 5 and an offset is added to both the larger and smaller number. ........................82 

Figure 39: Anomaly score’s generated by the profile’s standard deviation. .....................83 

Figure 40: Order of data expected in the company behavior CSV file. .............................89 

Figure 41: Example of comma-separated-value data for adding the behavior “Email”. ...90 



xiii 

 

Figure 42: Illustration of how the example in figure x traversed the expected data. .........91 

Figure 43: Order of data expected in the department CSV file. ........................................92 

Figure 44: Order of data expected for an event series. ......................................................93 

Figure 45: Order of event series log data when written to an output file. .........................94 

Figure 46: Order of data written to the simulator log CSV output file. .............................95 

 

  



1 

 

Chapter 1 

Introduction 

An insider is an individual (usually an employee, contractor, or business partner) 

that has been trusted with access to an organization’s systems and sensitive data for 

legitimate purposes.  A malicious insider abuses this access in a way that negatively 

impacts the company, such as exposing, modifying, or defacing software and data.  This 

malicious insider is referred to as an insider threat, while the insider’s actions are called 

insider attacks.   In contrast to external attacks, where individuals try to gain access to the 

organization by illegal means, insider threats already have access to the organization and 

authority to use that access.  In addition, many insiders have familiarity with the 

organization’s security weaknesses.  As a result, insiders are often able to evade and 

disable security, destroy backups, and do great damage without raising alarms. 

1.1. Motivations behind Insider Attacks 

Why would an individual attack their own company?  Cappelli, Moore, Trzeciak 

and Shimeall (2009) suggest that insider attacks fall into three motivation-based 

categories: sabotage, fraud, and theft of intellectual property.  Figure 1 depicts these three 

categories: 



2 

 

 

 

Figure 1: Three categories of attacks and motives. 

  Sabotage is often caused by employees who become disaffected with their 

company, boss, or coworkers.  Many occurrences in the work place can set an employee 

against their company and individuals within it, including dissatisfaction with 

compensation, arguments with coworkers, reprimands, or job termination.  Further 

estrangement can occur when employees feel stressed, overworked, underappreciated, or 

isolated.  Under such circumstances, an employee will often feel unfairly treated and may 

perform an insider attack out of anger or revenge.  The main objective of these 

disaffected employees is to cause as much destruction as possible to those that they feel 

have wronged them.  Cappelli et al. (2009) suggest that sabotage is often performed by 

employees with high technical skills and access to sensitive assets, including engineers 

and network administrators.  These employees are often intimately aware of the systems 

they intend to sabotage, and their advanced technical ability gives them the means and 

know-how to cause incredible damage. 

However, dissatisfaction is only one of the motivations behind insider attacks.  

Other insiders see an insider attack as an opportunity for financial gain (Cappelli et al., 



3 

 

2009).  In many instances, these insiders are approached by individuals outside the 

company and offered large sums of money to steal personal information from the 

company for identity crimes.  In other cases, they’re asked to add, modify or delete 

company information.  These initial offers may seem comparatively harmless to an 

employee, and the cash is enough incentive to cause the employee to rationalize their 

actions.  These attacks usually don’t happen once, but occur multiple times with each 

new attack growing greater in risk and reward.  Sometimes this is against the employee’s 

desires; in some circumstances, employees that perform these attacks for outsiders are 

later coerced into performing additional, more damaging attacks because the outsider 

threatens to turn them in or cause other serious problems if they don’t comply.  Other 

times, the successful attacks embolden the employee, and the employee’s thefts become 

more brazen and damaging as they seek greater financial gain. 

Money isn’t the only prize sought by insiders; many insiders steal proprietary 

information from the company to gain business advantage for themselves, their family, a 

foreign country, or a company they intend to work for (Cappelli, Moore, Trzeciak & 

Shimeall, 2009).  Individuals within the company may be offered large sums of money 

and future employment by those outside the company if they will pass along the 

company’s proprietary information, including research and development, client lists, 

quotes, passwords, and software.  Others steal these company assets and start their own 

business with them, often under the rationalization that they helped to develop the assets 

the stole, and therefore they have a right to take it with them. 

As one may have already surmised, attacks can be part of one, many, or none of 

the categories above.  Other motivations behind insider attacks include curiosity and 



4 

 

bragging rights.  Whatever the reason, motivations exist for insider attacks in any type of 

company. 

1.2. Damage of Insider Attacks 

Insider attacks have proven to be devastating to organizations, and many have 

caused damage so irreparable that affected companies are forced out of business.  Insiders 

have two particular advantages when attacking their company that external attackers do 

not.  First, insiders have a greater knowledge of the sensitive systems and data that 

they’re attacking, including weaknesses in the security protecting those sensitive assets.  

With such knowledge, not only can insiders attack the company’s system and data, but 

they can also target back-up systems and cripple the company’s means of recovering 

from attacks. 

Second, since insiders already have the authority and privileges to access targeted 

systems and data, their attacks are far more likely to go undetected.  If performed 

discretely, the malicious actions of the insider may not be easily distinguishable from 

day-to-day activities.  And again, since the insider has a greater awareness of the security 

measures in place to monitor and protect the data, the insider can disable the alerts, logs, 

and other means of recording or identifying attacks. 

1.3. Can insider threats be thwarted? 

Insider attacks can and have been thwarted, but it often takes greater planning, 

persistence, and effort to combat than fighting external attacks.  Upcoming attacks can be 

detected by noting that a malicious insider’s behavior before and during the attack differs 

from their prior behavior.  Sometimes the changes in behavior are directly related to the 

attack itself; an insider that is emailing sensitive information to an outsider or to their 



5 

 

personal email, for example, will have an increase in the number of emails sent outside 

the company with attachments.  Another employee may have a sharp decrease in the 

number of emails they handle as their focus move away from legitimate work to the 

attack. 

The attacks themselves may not involve a notable change in behavior; an 

employee may open a file they edit on a daily basis, but make malicious modifications 

instead.  However, in cases where the attack itself involves little change in behavior, 

insiders on the path to committing an attack still display changes in behavior that indicate 

something is amiss.  These changes may be subtle or even subconscious, and can include 

changes in: 

 Productivity 

 The amount of communication with those outside the company 

 The attitude of the employee 

 The time of day of the behavior. 

By noting changes in behavior, the company may be able to recognize and 

prevent upcoming insider attacks.  However, to recognize abnormal behavior, one must 

first know what the insider’s normal behavior is.  The normal actions of the insider need 

to be recorded over an extended period of time; it’s for this purpose that companies keep 

logs of employee actions.  Once sufficient data has been collected, the insider’s current 

behavior can be compared to their earlier behavior, and the abnormality of current actions 

can be measured. 

1.4. Logs and Analysis Programs  



6 

 

Many means of monitoring and recording the actions of insiders into logs have 

already been developed and put in use.  By logging the actions of employees, a company 

has a record of the employee’s earlier normal behavior, their newer abnormal behavior, 

and the actions taken to perform the insider attack itself.   However, such data is hidden 

among the huge quantities of data generated by employee actions each day.  Unless 

specific clues are given as to where to search, manually browsing a log of actions in 

search of abnormal behavior is far from effective.  The solution is to create a program 

that automates the search for insider attacks within logs. 

A few problems make this automation difficult. The data quantity problem is one 

of these.  Specifically, the sheer quantity of data logged during an employee’s stay with 

the company is far too big to be kept in active memory by the analysis program.  As such, 

the analysis program needs to be able to read through the log in small portions, 

consolidating by keeping what’s important for the analysis (whether that’s the actual 

data, a summary of the data, or values it computes as it reads), and discarding the rest.  If 

done correctly, the analysis will be able to perform its function and identify the insider 

attacks without having to perform multiple passes over the log. 

 Many algorithms, strategies, and analyses have been developed with the intent of 

detecting and/or preventing insider attacks.  In an academic setting, these tools and 

approaches show great promise.  To be sure of their effectiveness, however, these 

analyses need to be tested.  While real data is available on insider attacks (including logs 

of actions taken by the insider), the real data is limited in its usefulness.  If the analysis 

being tested passes or fails in detecting the insider attack, how much can be attributed to 

the analysis’s precision, the circumstances of the attack, or just luck?  The ability to test 



7 

 

an analysis against a wide range of data with varying degrees of complexity is needed to 

gain this insight. 

1.5. Simulator Overview 

 For this thesis, I build a program that simulates the behavior of employees, both 

good and malicious, generating a log of actions that stretches over several days.  This log 

can then be used as input to the many algorithms and programs designed to detect insider 

threats.  Many insights into the strengths and weaknesses of these tools can be gained as a 

result, including: 

 What types of insider attacks did the analysis detect? 

 What percent of attacks were discovered? 

 What kinds of insider attacks did it fail to detect? 

 Did the analysis trigger any false positives? 

 Would a change in circumstance result in remarkably different results?  In other 

words, how situation-dependent is the success of the analysis? 

With my program’s simulator, a large variety of logs can be generated to explore 

these questions.  First, it simulates the behavior of a company’s employees (both 

malicious and innocent) to generate a log of employee activity.  It also keeps a separate 

log of when the insider attacks and false positives take place.  Upon completion of the 

log, analyses can be run with the generated log as input.  The results of each analysis can 

then be compared to the log of insider attacks to see how successful the analysis 

performed. 

This process can be broken down into two phases: a simulation phase and an 

analysis phase.  The steps to these two phases are shown in figure 2: 



8 

 

 

Figure 2: Steps for simulating and detecting insider attacks. 

 The first step to running the simulator is to determine the actions, behavior, and 

abnormal events (potentially representing malicious attacks) that the program will be 

simulating.  Once this is complete, normal and abnormal behavior are simulated 

simultaneously.  More specifically, normal behavior is generated until an abnormal event 

occurs.  The encountered event is resolved which, depending on the settings of the event, 

could involve specific actions taking place or the behavior of an employee being 

modified.  Once this has occurred, normal behavior continues until the next event, which 

is then resolved.  This is repeated until all of the events have taken place and normal 

behavior has been generated up to the end of the simulation. 

 Upon completion of the simulation, a large log of actions performed by the 

employees will have been compiled.  All actions, both normal and malicious, are 

recorded within this log, and it is now the job of the selected analysis to process that log 

and find malicious behavior.  In the case of both example analyses included with the 

simulator (each based off of Kim, Sheldon, and Hively’s profile analysis (2012)), the 

analysis performs a single sweep over the log, consolidating employee behavior into day, 

week, and month profiles.  Simultaneously, the analysis compares each new day profile 



9 

 

against the employee’s previous day, week, and month profiles.  It generates an anomaly 

score indicating how much the behavior in that day’s profile differs from the behavior in 

the previous profiles.  It records these anomaly scores in an output file, which can then be 

assessed by looking for the large anomaly scores or other patterns that indicate an insider 

attack.  This assessment can be done automatically by an external program or it can be 

done visually by graphing the anomaly scores (using a program such as excel) to give a 

visual indication of where the abnormal behavior and insider attacks occurred. 

 The steps for simulation will be covered in detail over chapters 3-6 and the two 

examples analyses will be explained in chapter 7.  A demonstration of how the anomaly 

scores can be assessed visually with graphs will be given in chapter 8. 

 

  



10 

 

Chapter 2 

Previous Works 

Kim, Sheldon, and Hively (2012) proposed a way to quantify insider threats by 

compiling daily actions of an employee into day, week, and month profiles.  Each new 

day profile for an employee is compared to the previous day, week, and month profiles to 

detect abnormal behavior. Their analysis worked on the theory that the behavior of a 

malicious insider changes leading up to, during, and after an attack.  Dissatisfaction, 

lower productivity, and other signs of discontentment often precede the attack, which can 

be detected early to prevent the insider attack.  In addition, insiders often do preliminary 

abnormal behavior before the attack, such as investigating security or the target of the 

attack. 

A few insiders may take steps to maintain normal behavior in an effort to cover 

up the attack, but abnormal behavior can still be detected by close inspection of a variety 

of daily actions; for instance, the insider may consciously make sure their email and work 

output remains steady, but neglect to correct their changes in behavior in regards to 

phone calls, idle time, or websites visited.  Further, the attacks themselves often involve 

behavior that differs from daily, weekly, and monthly behavior; having the insider’s prior 

behavior on hand allows for detection of this abnormal behavior by comparing new 

behavior to the employee’s earlier behavior. 

Kim, Sheldon, and Hively’s insider threat analysis (2012) served as my 

introduction to insider threats, and as a result much of the theory and terminology of this 

thesis is heavily influenced by their paper. With permission from Yoohwan Kim, I have 



11 

 

programmed and included two variations of their insider threat analysis.  Chapter 7 

discusses the implementation of these analyses. 

Like Kim et al., Zhang and Zhao (2010) also elected to detect insider threats 

through behavior monitoring.  In both Kim et al. and Zhang and Zhao’s papers, they 

monitored behavior and created behavior models for the employees.  However, Zhang 

and Zhao came up with a different approach to consolidating data.  They explained that 

the sheer quantity of data involved in behavior monitoring requires some means of 

reducing the data’s size, and they proposed using rough set theory along with machine 

learning to overcome this obstacle.  The data size difficulties mentioned by Zhang et al. 

were encountered during my thesis as well, since the logs produced by even a small 

number of employees grew rapidly as the days progressed. 

Hongbin Zhang (2009) divides insider attacks into low, medium, and high-level 

threats. Potential risks fall in the low-level category, abnormal (but not necessarily 

malicious) activities constitute medium-level threats, and malicious activities are labeled 

as high-level threats.  Zhang then designs a defense model where each threat-level is 

addressed by different modules.  Lower-level modules handle lower level threats, and 

pass higher-level threats up the higher modules.  This allowed the modules to filter the 

threats so that the appropriate level of investigation, processing and action could be 

applied to each threat. 

Killourhy and Maxion (2009) noted the difficulty in obtaining useful, real-world 

data of insider attacks, pointing out that privacy and security can prevent companies from 

handing over data showing how the insider successfully attacked them.  The companies 

that do allow access to their logs and data usually sanitize the data first so that sensitive 



12 

 

information is covered up or replaced with tokens.  Killourhy and Maxion’s paper 

addressed how different methods of sanitizing data can cause the sanitized data to be 

misleading.  While the data simulated by my program won’t provide greater accuracy 

than sanitized data, it does address the difficulty of obtaining data by allowing for the 

creation of a variety of insider attacks.  Killourhy and Maxion’s cautions about the 

accuracy of sanitized data also applies to my program’s simulated data.  While the 

simulated data is designed to provide insights, the artificial nature of simulated data, like 

sanitized data, can cause misleading interpretations if the differences between it and real-

world data aren’t considered. 

Liu, Martin, Hetherington, and Matzner (2005) also pointed out the difficulty in 

getting real world data, and suggested creating datasets.  They also proposed that when 

simulating insider threats, choose certain files to be “sensitive”.  Extra accesses to these 

sensitive files should be viewed with suspicion.  They also notes the difficulties in 

avoiding false positives, particularly when an employee is sick, goes on vacation, or 

experiences a change in his or her job role.  

Montelibano and Moore (2012) provide great detail on different forms of insider 

attacks.  They claimed that if adequate controls are implemented for authorized access, 

acceptable use, and continuous monitoring, most insider attacks could be detected and 

prevented.  No aspect of the company should be left out; the controls should be applied at 

the business, information, data, and application layers of company security. 

Ali, Shaikh, and Shaikh (2008) used profiles to keep track of the suspicious 

behaviors of insiders.  When an insider acts suspiciously, their profile is marked and 

watched more closely.  Ali et al. (2008) provided great detail about different activities 



13 

 

that are suspicious, including unusual login times and locations, unauthorized access 

attempts, installation of external drives or software, and abnormal idle time. 

Cappelli, Moore, Trzeciak and Shimeall (2009) studied 250 insider threat cases 

and detailed the trends behind each insider attack, including motivation and planning.  

Their breakdown of insider attacks into the three categories of sabotage, financial gain, 

and business advantage was shown in figure 1 and described in chapter 1.  They provided 

several examples of each type of insider attack, and concluded that all employees, not just 

technically advanced employees or employees with administrator privileges, have the 

capability and motivation to perform attacks. 

Pramanik, Sankaranarayanan, and Upadhyaya (2004) discussed the Principle of 

Least Privilege, where documents are encrypted and the individuals that are allowed to 

decrypt them are set beforehand.  However, they pointed out that least privilege isn’t 

sufficient security against the insider threat, nor is simply observing the insider’s actions.  

Instead, both actions and the context of those actions need to be monitored.  Managers 

and coworkers that report the insider’s abnormal behavior can greatly assist any technical 

monitoring and help in identifying insider attacks. 

  



14 

 

Chapter 3 

Defining Insider Actions and Behaviors 

Before performing any simulation, information on what to simulate must first be 

gathered.  The goals of this step are twofold: provide flexibility so that a wide variety of 

behaviors, companies, and insider attacks can be simulated, but also keep the program 

simple by making all but the most essential input optional.  Only the most essential of 

details are required to get the simulator running, but the optional input allows for more 

realistic, useful scenarios to be logged.  Each of the following sections will detail what 

bare minimum data is needed, as well as what optional data can be included to refine the 

simulator’s results. 

3.1. Actions and Behavior 

3.1.1. Definitions 

The user can specify the actions that are to be tracked in the simulator, as well as 

how often those actions should take place in a typical day.  An action, as understood by 

the simulator, is an activity performed by one person that occurred at a specific time.  

Actions performed by multiple people are broken down into separate actions for each 

individual. 

Behavior describes the trends in how often the action is performed in an eight-

hour day, including the mean occurrences and the day-to-day deviation from the mean.   

Group behavior, such as department and company behavior, describes the typical 

behavior of an employee within the group, not the sum of behavior of all members within 

the group. 

3.1.2. Required Data 



15 

 

Each behavior is defined using the following: 

 Action Name 

o The name of the action type, i.e. “Email” or “Phone Call” 

 Average 

o The mean number of times an employee performs the action in an eight-

hour day 

 The standard deviation (STD) 

o The daily variance or dispersion of the number of occurrences 

The latter two values are used during the simulation to determine the number of 

times an employee performs the action.  Each simulated day, the simulator calculates the 

number of actions performed by selecting a random, Gaussian-distributed number based 

on the average and standard deviation, as shown in figure 3. 

 

Figure 3: Sketch of a Gaussian function (bell curve). 

The percentages below each section in figure 3 show the percentage chance that 

the Gaussian-distributed random number will be chosen from each section.  This means a 

random, Gaussian-distributed number will fall within one standard deviation of the 

average 68% of the time, within two standard deviations 95% of the time, and within 



16 

 

three standard deviations 99% of the time.  As a result, the daily behavior in the simulator 

is fairly consistent (staying around the mean) while also having some fluctuation 

(measured by the standard deviation), much like many forms of real behavior. 

The reason Gaussian-distributed random numbers are chosen over the more 

common linear-distributed random numbers is because the former better resembles real-

world behavior.  The number of occurrences of an action in a day is rarely a random, 

linear-distributed number between some minimum and maximum.  Further, a behavior 

whose daily occurrence is best described by completely random numbers is too 

unpredictable for use in determining normal and abnormal patterns of behavior.  Instead, 

using the Gaussian function generates a pattern of behavior where only occasionally there 

will be an abnormally large or small number of actions. 

3.1.3. Company and Department-Level Behavior 

 To minimize the amount of repetitious data entered to summarize behavior, 

general behavior for the company is gathered first, and then greater detail can be 

provided at the department-level.  In other words, the company behavior serves as the 

default behavior for departments.  The program has the user first input each company 

behavior as describe above, where each behavior is given a name, a default average, and 

a default standard deviation.  Once finished, the department behavior can then be 

specified with one of three options: 

 Set the department behavior equal to the company behavior (this is done by 

default unless otherwise specified). 

 Set the department behavior equal to a modified version of the company behavior. 



17 

 

o To be specific, the department behavior is set equal to the company 

behavior, and then modifications specified by the user are applied to the 

department behavior.  

o For example, the sales department can be set to have twice the average 

number of email actions as the rest of the company. 

 Use completely new values for the department behavior. 

Figure 4 shows an example of how two departments use the company behavior to 

determine their own behavior: 

 

Figure 4: Example of department-level behavior being set based on the company behavior.   

When setting the department-level behavior, the default value will be used unless 

(a) modifications are specified (as can be seen for the engineering department’s STD and 

marketing department’s average) or (b) a new, overriding value is given (as shown for the 

marketing department’s STD). 

There are two major benefits to defining departments based on company defaults.  

The first is convenience – the user doesn’t have to enter department-level data except 



18 

 

where it actually matters to them.  The second benefit is that company-level changes in 

behavior won’t require changing all of the departments; by making a change to the 

company behavior, the department behavior will be likewise changed (with any 

modifications applied to the new company behavior).   However, if these benefits do not 

appeal, then a user can still override all behavior at the department-level. 

3.1.4. Employee-Level Behavior 

 Employee behavior is handled differently than company or department behavior.  

Particularly, the user doesn’t input each employee’s behavior.  Doing so would be 

exhaustive and time-consuming for companies with many employees, and it would result 

in employees having the exact same behavior for every single test.  Instead, each 

employee behavior is randomly generated at the beginning of each simulation based on 

the department behavior and two variables: a standard deviation for randomly setting the 

average, and a standard deviation for randomly setting the standard deviation.  To clarify, 

Figure 5 shows how a standard deviation is used to generate the employee’s behavior’s 

average: 

 

Figure 5: Illustration of how employee-level averages are generated. 



19 

 

When defining each department behavior, the user can specify the standard 

deviation of employee averages from the department average.  If it not specified, the 

default standard deviation of 0 is used.  For each behavior, the employee’s average is set 

equal to the department average plus a random Gaussian-distributed number with an 

average of 0 and the previously mentioned standard deviation. 

 Setting this standard deviation for employee averages allows for the user to 

specify how similar or diverse employee behavior is.  Should no such diversity be 

desired, the default standard deviation of 0 can be used, which would result in no 

variation in behavior between employees within the same department.  In other words, all 

department employees will have averages matching the department’s average.  It should 

be noted that the average is prevented from going below 0, since an employee cannot 

perform an action a negative number of times. 

 Like the average for each employee behavior, the standard deviation of each 

employee behavior is set by adding a random Gaussian-distributed number to the 

department standard deviation.  Figure 6 demonstrates how each employee behavior’s 

standard deviation is set. 

The standard deviation of each employee-level behavior starts the same as their 

departments.  A random Gaussian-distributed number is then added to give each 

employee a unique standard deviation.  The user can set the standard deviation of this 

random Gaussian-distributed number by setting the “Employee Standard Deviation from 

Department STD”; otherwise, the default value of 0 will be used. 

To summarize, each department behavior has three standard deviations: 

 



20 

 

 

Figure 6: Example of how employee standard deviation is generated. 

1. The default standard deviation of the number of actions performed each day by 

employees in the department. 

2. A standard deviation used in determining each employee’s average. 

3. A standard deviation used in determining each employee’s standard deviation. 

3.2. Optional Input 

 In addition to the three required inputs of name, average and standard deviation, 

optional input can be provided by the user to improve the validity of the data, to set the 

deviation in employee behavior, and to provide greater detail about the actions.  Some of 

these inputs have been mentioned already, and include: 

 Employee Deviation from Department Average 

 Employee Deviation from Department Standard Deviation 

 Minimum and maximum occurrences 

 Subgroups and Subtypes 



21 

 

The first two, the employee deviations, were just explained in the “3.1.4. 

Employee-Level Behavior”.  The remaining options will now be discussed. 

3.2.1. Minimum and Maximum Occurrences 

Sometimes, it doesn’t make sense for an action to occur more or less than a 

certain number of occurrences in a day.  For example, it doesn’t make sense if the 

number of occurrences is less than 0, since an action cannot occur a negative number of 

times.  Nor does it make sense for an action that takes an hour to perform to occur more 

than 8 times in an eight-hour period.  As such, the option is available for the user to set 

the minimum and maximum number of times an action can occur in an eight-hour day 

(inclusively).  The program enforces the bounds set by the minimum and maximum by 

replacing any out-of-bounds number of occurrences with the closest in-bounds value (the 

minimum or the maximum).   If the random Gaussian-distributed value falls below the 

minimum, the minimum is used instead.  Likewise, if the random Gaussian-distributed 

value rises above the maximum, the maximum is used instead.  Figure 7 illustrates this: 

 

Figure 7: Example of the enforcement of minimum and maximum values. 

 Based on the example in figure 7, if the Gaussian-distributed random number 5 

occurred, the closest in-bounds number, the minimum 8, would be used instead. 



22 

 

If no minimum is specified, the default minimum of 0 is used.  If no maximum is 

specified, then the maximum is disabled. 

3.2.2. Action Subgroups 

Sometimes greater detail about an action is needed besides knowledge that it 

occurred at a specific time by a specific employee.  For instance, knowing whether a sent 

email had an attachment, what level of sensitivity it had, or whether it was sent inside the 

department, within the company, or outside the company can help in defining the threat-

level of that email.  The optional input of subgroups allow for this level of detail.  Each 

action can have zero or more subgroups, and each subgroup is defined by one or more 

subtypes.  Whenever an action occurs, one subtype is chosen for each of the action’s 

subgroups and is written to the action log along with the action. 

To illustrate, let’s go back to our email example. Some possible subgroups for the 

“E-Mail” action could be: 

1. The subgroup “Sensitivity” 

a. Subtypes “None, “Low”, “Medium”, and “High” 

2. The Subgroup “Attachments” 

a. Subtypes “No attachment”, “Small attachment”, and “Large attachment”. 

During simulation, a subtype of each subgroup will be chosen and included in the 

log; in the case of the email action, “High” may be selected for the “Sensitivity” 

subgroup and “Large Attachment” for the “Attachments” subgroup.  Another instance 

might have the subtypes “Low” and “Small Attachment”.  Through such subtype 

selections, two action instances can have entirely different threat levels based on the 

selected subtypes. 



23 

 

Each subtype has two fields set by the user: a ratio representing the likeliness of 

that subtype taking place (relative to the ratios of the other subtypes), and the weight or 

threat-level of that subtype.  Figure 8 shows how the ratios affect the chance of a subtype 

being chosen: 

 

Figure 8: A pie chart showing how subtype selection is influenced by the subtypes’ ratios. 

The likeliness of a subtype being randomly selected is equal to its ratio divided by 

the total of the ratios. A subtype is chosen for each subgroup, and then the weights of the 

selected subtypes are added together to create the overall weight or threat-level of the 

action.  If no subtypes are present, the default weight of the action is 1.  Figure 9 

demonstrates this:  

 

Figure 9: The total weight of the action is the sum of the weights of its subtypes. 

 In addition to custom subgroups, a particular kind of subgroup can be added that 

is handled uniquely: the “Scope of Interaction” subgroup. 

3.2.3. Scope of Interaction Subgroup 



24 

 

 The scope of interaction subgroup is a special subgroup in that it always has the 

same subgroup name and three subtypes: “Local”, “Company”, and “Outsider”.  Like a 

normal subgroup, each of these is assigned ratios and weights.  However, in addition to 

these inputs, this subgroup takes an extra parameter that states whether the action is a 

subject-to-subject interaction (this is an action performed between two people) or a 

subject-to-object interaction. 

 

Figure 10: Person-to-person interactions where lines represent actions. 

What’s unique about this subgroup is that when the simulator logs an action with 

this subgroup, it also logs an entity representing the person or object interacted with.  In 

the case of subject-to-subject interactions, it will select a person based on which subtype 

was selected.  As an example, if the subtype “local” was selected, then the simulator 

would log the name of a random employee within the local (employee’s) department.  If 

“company” was selected, then a random employee within the company would be 

selected.  While the two example analyses do not take the scope of interaction into 

account, the “Future Works” chapter explains how this feature can be built upon for 

analyses that take interactions into account.   



25 

 

Chapter 4 

Customizing Insider Attacks and other Events 

 Given the behavior data of the company and departments, the simulator would be 

able to simulate a full log of normal activity with each employee performing according to 

their set behavior.  However, the goal of this simulator is to simulate abnormal data 

alongside the normal so that analysis tools can try to detect the abnormal behavior.  To 

achieve this goal, the simulator allows for the creation of event series that can represent 

abnormal behavior ranging from insider attacks to employee sick days. 

Four forms of input are needed to create an event series: 

1. The name of the event series 

2. The number of employees to perform the event series 

3. Whether the event series represents an insider attack 

4. The events that should take place 

For each event series, the user creates multiple events and sets when each event 

will take place relative to the start of the series.  Each event does one of the following: 

 Modifies the affected employee’s current behavior 

 Saves the employee’s current behavior 

 Loads a previously saved version of the employee’s behavior 

 Creates an action instance representing an action performed by the employee 

During the simulation, each event series is assigned to a specified number of 

employees based on the Employees Affected input (the user may want x employees to get 

the “Sick at Home” event series during the simulation).  At a random point during the 

simulation (different for each employee and event series), each event series will be 



26 

 

triggered, and each event will be set in motion at their appointed time from the start of the 

series.  Figure 13 illustrates this: 

 

Figure 11: An example of how an event series are spaced in the employee’s timeline. 

Each log begins with a preset time for normal behavior, during which no event 

series can take place.  This gives the analyses time to determine each employee’s normal 

behavior.  In addition, a random buffer of time is placed between the end of the preset 

time and the start of the first event series so that the series’ start time is unpredictable.  

Once an event series begins, each event in the series occurs after the time interval 

specified by the user. 

All of the events occur sequentially with buffers of random length in between – 

this prevents each event series from overlapping with others.  This is enforce because, 

while parallel events may work in a few situations, in many other situations parallel 

events would conflict or not make sense (an event series representing an insider doubling 

their work effort would conflict with an event series representing the employee staying 

home sick wouldn’t make sense occurring at the same time).  If two events need to occur 

in parallel, it’s recommended to create one event series with the events of the two 

combined. 

 A separate log is created during the simulation detailing when each event series 

took place, the name of the employee that performed the series, and whether the series 



27 

 

was an insider attack.  This additional log can then be used as an answer sheet to compare 

the analyses results to and thus verify whether a given analysis was able to successfully 

notice malicious insider attacks after processing the simulator’s log. 

  



28 

 

Chapter 5 

Using the Simulator Interface 

 The previous chapters discussed the various input a user can provide to customize 

the behavior and events that will be simulated by the program.  This chapter explains how 

a user can operate the program’s interface to enter and save input.  The general flow of 

input for the simulator is the following: 

1. The simulator either starts with new data files or loads existing data from comma-

separated-value (CSV) files. 

2. The user can use the program’s interface to add, modify, or delete behavior, 

departments, or event series.  All changes will be saved to the CSV files. 

3. The simulator is run to generate a log of action instances.  An additional, separate 

log is generated detailing who performed each event series and at what times 

(which can be used later to verify if the analyses detected the insider attacks). 

4. An analysis is chosen and ran on the generated log, generating a file with the daily 

and anomaly scores. 

The interface provides the means to do all four steps.  However, the majority of 

the interface focuses on step 2, since setting the behavior and events is the most 

complicated step for the user. 

5.1. The Interface Overview 

 Upon starting the program, the program’s interface appears in a window as seen 

in figure 12.  At the top of the window is a message box (figure 12, #1), which is where 

feedback to the user from the program appears.  This feedback will include error 

messages, success messages, and messages detailing where generated logs can be found.  



29 

 

A tabbed panel takes up the majority of the interface, and clicking a tab will bring up one 

of five interfaces in the area labeled tab-specific interface (figure 12, #3).  When the 

program starts, all but the first tab will initially have grayed-out text indicating that the 

interfaces are disabled.  These tabs will become available as the data the interfaces 

depend on becomes available. 

 

Figure 12: The windowed interface. 

5.2. Data Dependencies 

 The user interface is broken into five sub-interfaces or sections based on the data 

they generate or the role they perform: 

1. File Data 

2. Behavior Data 

3. Department Data 

Tab-specific interface 

1 

2 

3 



30 

 

4. Event Series Data 

5. Run Simulator/Analysis 

As mentioned in the last section, only the first section’s tab is available when the 

program starts and the other tabs are disabled (represented by the grayed-out text).  This 

is because the first tab, the File Data section, is depended upon by all other sections.  The 

reason for this is that the remaining sections need to know which files to save changes, 

new logs, and scores to.  It also makes sense to load existing data first so that the 

remaining tabs can display the existing data for modification or deletion. In general, each 

section’s tab won’t become enabled until the data that section depends upon is received 

and valid. 

Figure 13 shows the data dependencies in the program (excluding the 

dependencies on File Data since it has already been established that all other sections 

depend on it): 

 

Figure 13: The program’s data dependencies. 

 The following list explains the above dependences: 

 Department Data 

o The department behavior can’t be defined until Behavior Data is complete. 



31 

 

 Event Series Data 

o All events either cause or change behavior, and thus can’t be defined until 

Behavior Data is complete. 

 Simulator 

o The simulator requires Behavior Data and Department Data to create the 

simulated log. 

o While event series data can be included (for the generation of abnormal 

behavior), no event series are required for the simulator to run. 

 Analysis 

o Each analysis reads the log generated by the simulator and generates 

anomaly scores based on the weights of the behavior subtypes (thus using 

Behavior Data to generate scores). 

5.3. File Interface 

The file interface allows for the user to specify the files to read for input as well 

as the files to write or append data, logs, and scores to.  This is the only interface initially 

available to the user, because the files for loading and saving behavior need to be 

specified before any data can be added, modified, deleted, or simulated.  Each field is 

initialized with a default file name.  Use of this file name will result in the program 

loading and saving from a file with the given file name from the same directory that the 

simulator program is running from.  The user can access other files by adding the file 

path before the name.  For instance, if the desired file was called “example.csv” in the 

folder “example_files”, then the user would put “./example_files/example.csv” into the 

field.  The file interface is shown in figure 14: 



32 

 

 

Figure 14: The file input/output interface. 

 As already mentioned, the simulator uses three forms of data as input: company-

level behavior, department data (including department-level behavior), and event series 

data.  This data is saved to three separate CSV files (figure 14, #1).  Whenever data is 

added, modified, or deleted by the user through the interface, the old data in these files 

will be overwritten with the updated data.  The user can elect to either load each files or 

to start new files (this will overwrite any files at the given locations) (figure 14, #2). 

The simulator generates two logs; one is the main log where the actions of the 

simulated employees are written to, and the other is a log detailing when each event 

series took place and who performed it.  The user can specify where to write these logs to 

(figure 14, #3). 

The program’s analyses read the main log generated by the simulator as input.  By 

default, the analyses read from the same file that the simulator writes to, although the 

user can specify a different file to use as input (figure 14, #4).  Upon reading and 

1 2 

3 

4 

5 

6 7 



33 

 

analyzing the log, the profile analysis will write the daily scores and anomaly scores to 

the output file specified by the user (figure 14, #5). 

Default file name are provided by the program, and pushing the “Reset to 

Default” button will restore all default names (figure 14, #6).  Once the desired file 

names are entered, pressing the “Save and Continue” button will cause the following to 

happen: 

1. The file names are saved. 

2. The data in the simulator input files is either loaded or cleared (depending on if 

“Load” or “New” is selected in figure 14, #2). 

3. Each interface checks to see if the data it depends on is now in memory (see 

dependencies section).  If so, the interface’s tab is enabled.  Otherwise, its tab is 

disabled. 

If an error occurs while reading the files (such as if the file had incorrect format or 

wasn’t accessible), then an error will appear in the message box (figure 12, #1).  

Otherwise, the message box will state that the files were processed successfully. 

5.4. Company Behavior Interface 

 The company behavior interface allows for the creation, modification, and 

deletion of company-level behavior.  As mentioned before, department data, event series 

data, and the simulator all are dependent on the existence of company behavior, and so all 

three tabs will remain disabled until at least one company behavior is defined. 



34 

 

Figure 15 shows the company-level behavior interface: 

 

Figure 15: Company-level behavior interface. 

 The user can choose to create, load, or delete behavior (figure 15, #1).  Loading a 

behavior will update fields 2-7 with the loaded behavior’s data.  If modifications are 

made to the loaded data and the “Save as Company-Level Behavior” button (figure 15, 

#9) is clicked, the behavior will be overwritten with the new data.  Field #2 is where the 

name of the action described by the behavior is specified, and the fields at #3 set the 

average number of occurrences and standard deviation of the company-level behavior. 

The table in figure 15 labeled #4 sets the scope of interaction subgroup, which is 

treated different from regular subgroups because (1) the subtype names never changes 

1 

2 

3 

4 

5 

6 

7 

8 

9 



35 

 

and (2) the subgroup also keeps track of whether it is a subject-to-subject or subject-to-

object behavior.  If the user doesn’t wish for this subgroup, they can disable it by selected 

the “None” radio button. 

The fields labeled #5 in figure 15 are optional fields that, if desired, can be 

enabled and filled out.  The minimum and maximum prevent the number of occurrences 

of the action to take place outside the range they specify.  The employee standard 

deviation (STD) fields determine how much the employee’s behavior deviates from the 

department and company behavior (see “Customizing Simulated Behavior – Optional 

Behavior Data” for more details).  Only checked fields will be saved for the behavior. 

Subgroups can be created by entering the subgroup name and pressing the “Create 

Subgroup” button at figure 15, #6.  Once this is done, the named subgroup will be 

available in the dropdown box at #7.  Selecting that subgroup will make the subtype table 

appear with default values in cells.  A subtype can be added to the table by writing its 

name, ratio and weight into a row.  At least two subgroups need to be defined, and the 

combined ratio of all of the subtypes must be a positive integer. 

Figure 16 shows what this table looks like if four subtypes are added: 

  

 

Figure 16: Table of subtypes for the subgroup “Sensitivity”. 



36 

 

If at any point the user wants to reset the values to their default settings, the user 

can click the “Reset to Default” button (figure 15, #7).  On the other hand, the “Save as 

Company-Level Behavior” button (figure 15, #8) saves all changes to the file specified 

earlier in the “File Input/Output” panel.  If the “new” radio button is selected, it will save 

the data as a new behavior, overwriting any behavior with the same name.  If a behavior 

had been loaded and the “behavior” radio button is still selected, then the loaded behavior 

will be overwritten with the new data (and renaming the behavior if a new name was 

entered). 

5.5. Department Interface 

 The department interface is used to create, modify, and delete departments.  The 

interface is shown in figure 17: 

 

Figure 17: The department interface. 

1 

2 

9 

4 

5 

6 

7 

8 

10 11 

3 



37 

 

 The creation, modification, and deletion of departments is performed in the same 

way company-level behavior is created, modified, and deleted (figure 17, #1).  If saved 

departments exist, the user can select one and load that department to the interface, which 

will update all of the fields in the panel with the department’s data.  Saving after the load 

(without clicking “Create New” or resetting) will cause that department’s former 

behavior to be overwritten with the new data. 

 Besides the name, the only other required data for the department is the number of 

employees the department has (figure 17, #2).  Some caution should be taken when 

selecting this number: when the simulator runs, it will create the number of employees 

specified and generate behavior for every single one of them.  In addition to increasing 

the time for the simulation to finish, a large number of employees could result in a very, 

very large log of actions. 

 By default, department-level behavior matches the company-level behavior.  The 

panel on the right side of the department interface (figure 17, #3) allows the user to 

change the department-level behavior (figure 17, #4) by either adding modifications to 

the company’s default or setting a new value for it (see “3.1.4. Employee-Level 

Behavior” for more details).  To do either, the user selects the aspect of the behavior that 

they want to set or modify (figure 17, #5).  There are six aspects of each behavior that can 

be modified at the department level: 

1. Average 

2. Standard Deviation 

3. Employee Deviation from the Department Average 

4. Employee Deviation from the Department Standard Deviation 



38 

 

5. Subgroup Standard Deviation (how much the subgroup’s subtype ratios vary from 

employee to employee) 

6. Subtype Ratio (the ratio of a specific subtype) 

Once one of the six aspects is chosen, the user can then decide how to change this 

value at the department level.  They do this by choosing an operator and a value (figure 

17, #5).  The five operators include: 

1. Set 

a. Sets the aspect to the value, i.e. NewAspect = Value. 

2. Add 

a. Adds the value to the aspect, i.e. NewAspect = OldAspect + Value. 

3. Subtract 

a. Subtracts the value from the aspect, i.e. NewAspect = OldAspect - Value. 

4. Multiply 

a. Multiplies the value by the aspect, i.e. NewAspect = OldAspect * Value. 

5. Divide 

a. Divides the value by the aspect, i.e. NewAspect = OldAspect / Value. 

b. The value is not allowed to be 0 (to avoid any divide-by-zero errors). 

Once the aspect, operator and value have been chosen, the user can add the 

modification by clicking on the “Add Modification” button (figure 17, #7).  

Modifications can be selected in the “Existing Behavior Modifications” drop box (figure 

17, #8) and reordered or deleted through the buttons below the drop box. 

The department CSV message box displays the department as it will appear in the 

CSV file.  This box shows the department behavior modifications, including the order 



39 

 

they take place.  The reset button (figure 17, #9) allows the user to set the department 

data back to the default values and delete all behavior modifications.  Finally, the “Save 

Department” button (figure 17, #10) provides the means to save the department to the 

CSV file.  The save button performs the following when pressed: 

1. Verifies that the department data is complete and valid. 

2. Makes sure every behavior modified by the department is defined. 

3. Saves the data to the CSV file. 

5.6. Event Series Interface 

 Similar to the last two interfaces, the event series interface is designed to allow 

the user to create, modify, and delete event series to be used in the simulator.  Figure 18 

shows the event series interface. 

The interface for creating a new event series or loading an existing one is the 

same as the ones used for creating and loading behavior and departments (figure 18, #1).  

To reiterate, the user can either create a new event series, or load an existing event series.  

Doing the latter will update all of the fields in the interface with the loaded event series’ 

values.  The name of new event series is also set here. 

 The user can specify the number of employees that will perform this event series 

(figure 18, #2) as well as whether the series represents an insider attack (figure 18, #3).  

After these are set, the only step remaining is to add events.  For each event to be added, 

the user specifies how long after the start of the event series that the event should take 

place (figure 18, #4).  It should be noted that if an event isn’t set to take place on day zero 

when the event series is saved, then all of the events will be moved back enough days so 

that the earliest event takes place on day zero.  



40 

 

 

Figure 18: The event series interface. 

 The user can then choose to create one of four events to take place at the specified 

time: 

1. Cause an action to be performed by the affected employee (figure 18, #5). 

2. Cause the behavior of the affected employee to change (figure 19, #1). 

3. Save a behavior (figure 19, #2). 

4. Load a behavior (figure 19, #3). 

Figure 18 shows the interface for the “Cause Action” event type, while figure 19 

shows the interfaces for the other three event types: 

1 

2 

4 

5 

6 

7 

8 

9 

10 

3 



41 

 

 

Figure 19: Interfaces for the “Modify Behavior”, “Save Behavior”, and “Load Behavior” event types. 

To create a “Cause Action” event, the user selects the “Cause Action” tab (figure 

18, #5).  The user first selects what action the employee should perform; doing so will 

cause a table to appear below it with a row for every one of the action’s subgroups (figure 

18, #6).  The user can then specify which subtypes they want the caused action to have by 

selecting the cells to the right of each subgroup to make a dropdown menu appear.  The 

user can then select the desired subtype for the subgroup, or select “use random” if they 

want the subtype to be randomly selected based on the subtype ratios.  During the 

simulation, when the event is triggered, the action specified will be logged with the event 

time and with the selected subtypes. 

The “Modify Behavior” event (figure 19, #1) has the same interface as the 

behavior modification in the department interface.  The only two differences between 

them is (1) when the modification takes place and (2) the target of the modification.  The 

department behavior modifications take place at the beginning of the simulation and are 

1 
3 

2 

4 

5 

6 
7 



42 

 

used to set the department behavior.  In contrast, “Modify Behavior” events change the 

behavior of the employee at the time specified in the event series.  Since setting the 

behavior modifications for events is the same as department behavior modifications, the 

department interface section can be referenced on how to create behavior modifications. 

The “Save Behavior” and “Load Behavior” events share an interface accessed 

through the “Save/Load Behavior” tab (figure 19, #2).  The user selects whether they 

want to save current behavior or load a previously saved behavior (figure 19, #3).  The 

behavior to save or load is selected next (figure 19, #4).  If “Load Behavior” is selected 

and the selected behavior has been previously saved, then previously saved behavior will 

be selectable in a drop-down menu (figure 19, #5).  If “Save Behavior” is selected, then 

the user can enter a name to save the behavior under (figure 19, #6).  This name will 

appear in the drop-down menu for future “Load Behavior” events.  The user can then 

save the event by pressing the “Create Event” button. 

The user can create as many events as desired.  All data about the event is 

displayed in the CSV message box as it is added (figure 18, #9).  When the event series 

meets the user’s satisfaction, they can save the event series with the “Save Event Series” 

button. 

5.7. The Run Simulator/Analysis Interface 

The final interface allows the user to set some final parameters before running the 

simulator or an analysis.  First, the user can choose how long they want the simulation to 

run for (figure 20, #1) and how many days should pass before any events take place 

(figure 20, #2).  The minimum number of days that the simulator needs to run in order for 



43 

 

 

Figure 20: The “Run Simulator/Analysis” interface. 

all event to be able to sequentially complete is shown in the field labeled #3; the number 

of days to simulate cannot be less than this number.  The “Run Simulator” button (figure 

20, #4) runs the simulator for the set number of days,  and will display a message stating 

where the completed log can be found in the message box if successful (figure 12, #1).  If 

an error occurs, an error message will be shown in the message box instead. 

 Once the simulator has been successfully run, an analysis can be run on the 

generated log. The user can determine the analysis to use (figure 20, #5) as well as the 

weights to be used for the day, week, and month profiles (figure 20, #6).  Each profile’s 

anomaly score will be multiplied by the given weight, and then divided by the total of the 

weights.  For example, if the anomaly scores of the day, week, and month profiles were 

5, 9.5, and 8 respectively and the respective weights were 1, 2, and 4, then the resulting 

anomaly score would be: 

((5 * 1) + (9.5 * 2) + (8 * 4)) / 7 = 8 

3 

1 

2 

4 

5 

6 

7 



44 

 

All weights are required to be non-negative.  Since the weighted scores are 

summed and divided by the total, at least one weight must be positive.  Once these details 

are set, the user can run the analysis by pressing the “Run Analysis” button (figure 20, 

#7).  Like the simulator, it will display a message stating where the completed anomaly 

scores file can be found in the main message box (figure 12, #1).  If an error occurred 

during the analysis, an error message will be displayed instead. 

5.8. Tips for Entering Data 

 Mind the data dependencies when modifying data.  If a behavior is modified or 

deleted, it should be ensured that doing so won’t break any department or event series 

data.  In addition, if the analysis tries to analyze a previously generated simulator log and 

encounters a behavior, subgroup, or subtype that is no longer found in the behavior data 

(whether because the behavior was modified or deleted, or because a different behavior 

file is being used), then an error will be thrown and the analysis won’t complete. 

 It’s also worth reiterating that each time data is saved in the interface, the program 

will attempt to update the corresponding CSV file.  If that file is currently being accessed 

by another program or it is otherwise inaccessible, the file will not be updated and an 

error message will be displayed in the message box. 

Finally, while the interface is useful, there will be times where editing the CSV 

files directly could prove easier or more efficient than using the interface.  For more 

information on the CSV files and their formats, please refer to Appendix A.  



45 

 

Chapter 6 

Simulated Action Generation 

 Now that the ways of providing input to the simulator has been covered, the steps 

taken by the simulator to generate the employee action log will be considered.  By the 

time the simulator runs, the following data must be available to it: 

 Company-level behavior descriptions 

 Department descriptions 

 Event series descriptions (if any) 

 Total number of days to simulate 

 Number of days to simulate before any event series can start taking place 

Using this input, the simulator will generate employees and simulate their 

behavior, logging their actions over the log’s duration.  The general outline of what the 

simulator does is as follows: 

1. Compute the behavior of each department. 

2. Generate employees for each department. 

3. Assign each event series to the desired number of employees. 

4. Do the following for each employee: 

a. For each event series assigned to the employee… 

i. Determine when the series will begin. 

ii. Write the event series, its start time, and the employee performing 

the series to the event series log. 

b. Create a queue of event instances sorted by time of occurrence. 

c. For each event instance… 



46 

 

i. Generate the employee’s actions up to that event instance. 

ii. Resolve the event. 

d. Generate the employee’s actions for the remainder of the simulated time. 

5. Output the generated log. 

6.1. Computing Department Behavior 

 The process for generating the department behavior has been described earlier in 

chapter 3.  In brief, the department’s behavior begins as a copy of the company’s 

behavior, and then the department behavior modifications are applied to the department’s 

behavior.  Figure 4 illustrated this and is shown again as figure 21: 

 

Figure 21: How department behavior is generated based on company behavior. 

 Each department can have 0 or more behavior modifications assigned to it.  Each 

behavior modification will specify: 

 The name of the behavior to modify 

 The aspect of the behavior to modify (i.e. average, standard deviation, etc) 

 The operator to perform on the aspect (i.e. set, add, multiply, etc) 



47 

 

 The value to use in the operation (i.e. the value to add or multiply by) 

The behavior of the department is initially set to match the company-level 

behavior.  Then each behavior modification is performed sequentially from the beginning 

of the list of modifications to the end.  For more information on behavior modifications, 

including what aspects can be modified, how the operators and values are applied, and 

how to set the order of behavior modifications, refer to “5.5. Department Interface”. 

6.2. Generate Employees for Each Department 

 Once each department’s behavior is set, the company’s employees are generated.  

The employee average is determined using the following equation: 

Employee_Average = Department_Average 

+ Department_Employee_STD_From_Department_Average 

* random.nextGaussian() 

 The command “random.nextGaussian()” returns a Gaussian-distributed number 

with an average of 0 and a standard deviation of 1.  By multiplying this by the standard 

deviation of employees from the department average and adding the department average, 

the employee’s average becomes a Gaussian-distributed number with an average 

determined by the department’s average and a standard deviation equal to the 

department’s standard deviation of employees averages from the department average.  

The employee’s standard deviation is calculated with a similar formula: 

Employee_STD = Department_STD 

+ Department_Employee_STD_From_Department_STD 

* random.nextGaussian() 

 These formulas are used to set the behavior of each behavior for each employee. 

6.3. Assign the Event Series to the Employees 



48 

 

 Once all of the employees and their behavior have been generated, the assignment 

of event series to employees needs to take place. Each event series specifies how many 

employees should be assigned to perform its events.  An error is thrown and the 

simulation aborted if the number of employees to be affected is less than the number of 

employees in the company.  Otherwise, if n employees are to be affected, then n 

employees are selected at random and assigned the event series.  No employee will be 

assigned the same event series twice, although it is possible that one employee could be 

assigned every event series.  It is for this reason that the length of time for the log to run 

is required to be large enough for an employee to perform every single event series in 

sequence. 

6.4. Determine the Start Time of Each Event Series for Each Employee 

 When all event series have been assigned to the appropriate number of 

employees, the start time of each event series for each employee is determined.  This is 

calculated independently for each employee, so employees with the same event series 

will still have the series starting at different times.  Figure 22 demonstrates how the event 

series are distributed throughout the simulation timeline: 

 

Figure 22: The distribution of multiple event series. 

 All of the events will occur sequentially and in a random order with time buffers 

of random length in between.  The total amount of time available for time buffers is 



49 

 

calculated by taking the total time span of the log and subtracting the time span of each 

event series as well as the preset time before events can take place.  For n event series, 

the buffer is randomly split into n+1 time spans: one before each event, and one between 

the last event and the end of the log.  Once the sequence of events and buffers is set, the 

start time of each event is calculated. 

 Each event series is written to a CSV file so that the user can verify when every 

event series took place and who performed it.  Appendix B shows the format of these 

files. 

6.5. Create an Event Instance Queue 

 For each employee, the simulator will start at day 0 and simulate normal behavior 

until the first event occurs.  It will then resolve the event and continue simulating the 

employee’s behavior until the next event.  To make this easier, all of the events in the 

event series are placed into event instances (an event instance is an object that holds an 

event, a time of occurrence and the name of an employee).  These event instances are 

then sorted by when they occur and placed into a queue.  Figure 23 demonstrates how 

this combining and sorting takes place (below the event name is four numbers that 

represent the day, hour, minute and second at which the event takes place): 

 

Figure 23: Illustration of how the event instance list is built. 



50 

 

6.6. Simulate Behavior between Event Instances 

 If a simulator has n events, then there are n+1 periods of time that the program 

needs to generate simulated behavior for: the time periods before each event, and the time 

between the last event and the end of the program.  The logs for each of these periods 

will be called sub-logs.  Starting with the first day, the simulator calculates how many 

working hours the employee puts in for that day (the default work hours of the employee 

are 8 AM to 4 PM).  To do so, it calculates the following: 

 The actual start time, calculated as the later time of the following: 

o The start of that day’s work day 

o The start of the sub-log day 

 The actual end time, calculated as the earlier of the following: 

o The end of that day’s work day 

o The end of the sub-log day 

The default beginning of the sub-log day for a day x is day x, hour 0, minute 0, 

and second 0 and the default end of the sub-log day is day x, hour 23, minute 59, second 

59.  The first sub-log day is an exception and instead shares the same start time as the 

sub-log, which means that the first sub-log day of a sub-log that starts on day v, hour x, 

minute y, second z also starts on day v, hour x, minute y, second z.  Similarly, the last 

sub-log day is also an exception and shares the same end time as the sub-log, which 

means that the last sub-log day of a sub-log that ends on day v, hour x, minute y, second z 

also ends on day v, hour x, minute y, second z. 

Figure 24 shows a few possible examples: 



51 

 

 

Figure 24: Three examples of how the time spent working in a day is calculated. 

Using the above example in figure 24, suppose the sub-log’s time period started 

on day 2, hour 10 and ended on day 4, hour 14.  The start of the actual work for day two 

(left example in figure 24) would be the later time between 8 AM (the start of the 

workday) and 10 AM (the start of the sub-log day), which is 10 AM.  The end of actual 

work would be the earlier of 4 PM (the end of the work day) and 11:59 AM (the end of 

the sub-log day), which would be 4 PM.  This means that the employee spent 6 hours 

working on day 2.  Day 3’s work starts at hour 8 and ends at hour 16, since neither the 

start nor the end of the sub-log day occur on day 3 (see middle example of figure 24).  

Finally, day 4’s work day would start at hour 8 but end at hour 14, when the sub-log also 

ends. 

Once the number of hours worked is calculated, the number of occurrences of 

each action for that time period is computed.  The formula for this is: 

 = Time within sublog where no work occurs

Time Hour Time Hour Start of Sub-Log Day Time Hour Start of Sub-Log Day

12 AM 0 12 AM 0 12 AM 0

1 AM 1 1 AM 1 1 AM 1

2 AM 2 2 AM 2 2 AM 2

3 AM 3 3 AM 3 3 AM 3

4 AM 4 4 AM 4 4 AM 4

5 AM 5 5 AM 5 5 AM 5

6 AM 6 6 AM 6 6 AM 6

7 AM 7 7 AM 7 7 AM 7

8 AM 8 Start of Workday 8 AM 8 Start of Workday 8 AM 8 Start of Workday

9 AM 9 9 AM 9 9 AM 9

10 AM 10 Start of Sub-Log Day 10 AM 10 10 AM 10

11 AM 11 11 AM 11 11 AM 11

12 PM 12 12 PM 12 12 PM 12

1 PM 13 1 PM 13 1 PM 13

2 PM 14 2 PM 14 2 PM 14 End of Sub-Log Day

3 PM 15 3 PM 15 3 PM 15

4 PM 16 End of Workday 4 PM 16 End of Workday 4 PM 16 End of Workday

5 PM 17 5 PM 17 5 PM 17

6 PM 18 6 PM 18 6 PM 18

7 PM 19 7 PM 19 7 PM 19

8 PM 20 8 PM 20 8 PM 20

9 PM 21 9 PM 21 9 PM 21

10 PM 22 10 PM 22 10 PM 22

11 PM 23 End of Sub-Log Day 11 PM 23 End of Sub-Log Day 11 PM 23

 = Time spent working



52 

 

Occurrences = (Hours_Worked / 8) *  

(Average + Standard_Deviation * random.nextGaussian())  

The hours worked is divided by 8 because the average and standard deviation are 

based on the number of occurrences in an eight-hour day.  If the resulting number of 

occurrences falls outside the bounds set by the behavior’s minimum and maximum, the 

closest in-bounds value is returned instead (so if -2 is generated and the minimum is 0, 

then 0 is used instead).  To simulate each occurrence, four steps occur: 

1. A random time between the actual work hours is selected. 

2. For each of the behavior’s subgroups, a subtype is selected randomly based on the 

subtypes’ ratios (see figure 8 in Chapter 3 for more details). 

3.  An action instance is created.  Each action instance logs the action performed, 

who performed it, the time selected in step 1, and the subgroup-subtype pairs 

from step 2. 

4. The action instance is added to a list of action instances that are sorted by the time 

of occurrence.  This list of action instances will later be written to the simulator 

log. 

6.7. Resolve Each Event 

 After each sub-log (excluding the final sub-log) completes, the event that follows 

the sub-log is resolved.  What this event does is based on the type of event. 

 If the event is a “Cause Action” event, then an action instance is generated based 

on the event’s parameters.  The cause action event specifies the action that occurs, the 

time the action takes place, and some of the subgroup-subtype pairs.  Any subtypes that 

aren’t specified will be selected randomly based on the subtype ratios.  This created 

action instance is then saved in the same list as the other action instances. 



53 

 

 If the event is a “Modify Behavior” event, then each behavior modification 

specified in the event is applied to the employee’s behavior.  Each behavior modification 

will state what’s being modified (the behavior average, standard deviation, or subtype 

ratio), how it’s being modified (one of the following operators: Set, Add, Subtract, 

Multiply, or Divide), and by what value.  For instance, if the average is going to be 

modified with the operator Subtract and the value 2, then the following is performed: 

New_Average = Old_Average - 2 

Once each modification is performed, the event is resolved. 

The “Save Behavior” event saves an event under a given name so that it can be 

loaded later using the given name.  Specifically, it takes the behavior and saves it to a 

hash map using a key that combines the behavior name and the given name.  Load events 

also have a specified behavior and a name.  When a load event occurs, the same hash 

map is queried with a key also based on the behavior’s name and the given name.  If 

found, the employee’s saved behavior is restored, overwriting the employee’s behavior. 

The load/save events allow the user to save an employee’s behavior, make 

behavior modifications, run the simulator with the altered behavior, and then restore the 

old behavior.  For instance, to simulate a sick day, an employee’s behavior can be saved 

using a “Save Behavior” event.  All of the employee’s behavior could then be set to not 

occur with “Modify Behavior” events.  After a day of running the simulator with no 

action taken by the employee, the former behavior is restored with a “Load Behavior” 

event.  

6.8. Writing the Action Instances to a CSV File 



54 

 

 Once all actions instances are complete, they are written to the simulator log file 

in CSV format (see Appendix B).  If no errors occur, then a message is displayed to the 

user stating that the simulator ran successfully as well as where the resulting log can be 

found. 

  



55 

 

Chapter 7 

The Analyses 

 Once the simulator has completed and a log of actions has been generated, 

analyses can be run on the log to find the hidden insider attacks.  To demonstrate how 

this can be done, two examples analyses have been programmed and added to the 

simulator. Both of them are based on the profile analysis suggested by Kim, Sheldon, and 

Hively (2012) as described in Chapter 2.  To summarize, they believe that an insider’s 

day-to-day behavior changes before, during, and after performing an insider attack.  If 

their new behavior can be effectively compared to their old behavior, the abnormal 

behavior surrounding an insider attack can be found and the insider attack discovered. 

The question then arises on how to store and use old behavior.  According to Kim 

et al. (2012), the raw data generated by all of the insiders of a company in a single day 

would be quite large.  Within a matter of weeks, the data would become far too large for 

efficient storage retrieval or comparisons.  Their solution was to consolidate the old 

behavior into action summaries, or profiles.  These profiles would be significantly 

smaller than the data they summarize, making them far easier to store and use. 

Three profile types were proposed: day profiles, week profiles, and month 

profiles.  Each day’s activities would be consolidated into a day profile.  Seven day 

profiles would be used to create a week profile, and four week profiles would be used to 

create a month profile.  This would mean that a total of twelve profiles would be kept for 

comparison to new behavior as opposed to a month’s worth of actions. 

7.1. Computing Activity Scores 



56 

 

Profiles generate activity scores (not to be confused with the anomaly score) 

based on the weights assigned to each action’s subtypes.  Each action instance read from 

the simulator log is read into a day profile and the weights of the action instance’s 

subtypes are added to the profile’s overall activity score (or 1 is added if no subtypes are 

given).  In short, the activity score of a profile is the sum of the weights of the action 

subtypes read into the profile.  At this point, the anomaly score is generated (the 

following section will cover how this is done).  Once the anomaly score is generated and 

saved, the day profile’s activity score is passed to the week profile.  The week profile 

collects seven scores (one from each day within the week), and then generates its own 

activity score (the average of the seven day activity scores).  The week profile then passes 

its generated activity score to the month profile, which, like the week profile, collects 

four week activity scores before generating its own (the average of the four week activity 

scores). 

7.2. Computing Anomaly Scores 

Up to this point, the two example analyses have the same steps.  Both of them 

generate activity scores in the exact same way.  How they use and interpret these scores 

differs.  The first examples analysis, the one that’s most closely based on Kim, Sheldon, 

and Hively’s proposed profile analysis, will be described first.  This analysis has been 

nicknamed the “Max/Min Analysis" based on its formula for generating anomaly scores.  

A discussion of the second analysis, nicknamed the “Standard Deviation Analysis”, will 

follow. 

7.2.1. The Max/Min Analysis 



57 

 

The Max/Min Analysis computes a new day profile’s anomaly score by 

comparing the day profile’s activity score to the activity scores of the previous day 

profile, week profile, and month profile.  A ratio is generated by each comparison, in 

which the larger of the activity scores is divided by the lower activity score.  For instance, 

if the new day profile’s activity score is 20 and the previous day profile’s score was 23, 

then the ratio generated is 23/20.  If the week profile’s score was 37 and the month 

profile’s score was 15, then the two generated ratios would be 37/20 and 20/15, 

respectively, since the lower activity score is always the divisor. 

The previous day profile, week profile, and month profile each have a weight 

associated with them that’s set by the user before the analysis runs (their default weights 

are 1, 2, and 4 respectively).  Each previous profile’s generated ratio is multiplied by this 

weight, added together, and then divided by the sum of the weights.  This is done so that 

profiles with higher weights have a higher influence on the resulting anomaly score.  

Finally, 1 is subtracted from the result so that perfectly normal behavior results in an 

anomaly score of 0 while abnormal behavior produces positive integers. 

Suppose we had the following variables: 

    is the new day profile’s activity score 

    is the activity score of the previous day profile 

    is the activity score of the previous week profile 

    is the activity score of the previous month profile 

    is the day profile weight 

    is the week profile weight 

    is the month profile weight 



58 

 

The formula for calculating the anomaly score is the following: 

              

          
          

    
          
          

    
          
          

   

        
   

For instance, if the activity scores for the previous day profile, week profile, and 

month profile are 25, 35, and 40, then a new score of 26 would produce the following 

ratios: 

 Day-Profile Ratio:   26/25 

 Week-Profile Ratio:  35/26 

 Month-Profile Ratio:  40/26 

If we were to use the default weights of 1, 2, and 4 for the scores of day profile, 

week profile, and month profile respectively, then the resulting anomaly score would be: 

              

          
          

   
          
          

   
          
          

  

     
   

 

  
  

   
  
     

  
    

 
   

  
  

 
  
   

 
 

 
        

There are a few difficulties that arise with this analysis, especially when the 

minimum value approaches or equals zero.  If the minimum equals zero, then a divide-

by-zero exception occurs.  Further, as the minimum approaches zero, the anomaly score 

jumps dramatically.  8.1.3 will explore the reason behind this in greater detail.  The 

program’s work-around is to add 1 to both the maximum and minimum if the minimum is 

less than 1. 

7.2.2. The Standard Deviation Analysis 

 The standard deviation analysis is a derivative analysis of the max/min analysis.  

In addition to keeping track of the average of activity scores, the profiles also keep track 



59 

 

of the standard deviation of activities during their time.  The anomaly score generated by 

a new score is calculated as the number of standard deviations the new score is away 

from the profile’s average.  To make this work, the day profile is replaced with a 3-day 

profile.  Each day, the average and standard deviation of activity scores over the past 

three days is calculated and becomes the activity score and standard deviation of the 3-

day profile.  These values are then passed to the week profile, which uses the average of 

these values for its own average and standard deviation.  It then passes the week’s 

average and standard deviation to the month profile.  After collecting four such values, 

the month profile generates its own average and standard deviation. 

 Each previous profile (the 3-day profile, the week profile, and month profile) will 

all have an activity score (the average of the activity scores within their duration) and a 

standard deviation.  Similar to the max/min analysis, each profile also has an associated 

weight set by the user.  The default weights of the 3-day profile, week profile, and month 

profile are 1, 2, and 4 respectively.   

Suppose we had the following variables: 

    is the new day profile’s activity score 

    is the activity score of the previous 3-day profile 

    is the activity score of the previous week profile 

    is the activity score of the previous month profile 

      is the standard deviation of the previous 3-day profile 

      is the average standard deviation of the previous week profile 

      is the average standard deviation of the previous month profile 

    is the day profile weight 



60 

 

    is the week profile weight 

    is the month profile weight 

The formula for calculating the anomaly score        is the following: 

              

          
    

    
          

    
    

          
    

   

        
 

 Basically, the number of standard deviations the new score is away from each 

profile’s averages is multiplied by their appropriate weights, summed together, and 

divided by the total of the weights. 

7.3. Were the Abnormal Actions Noticed? 

The anomaly scores can be evaluated to see if they detected the change in 

behavior of the malicious insiders.  This can be done by graphing the anomaly scores and 

looking for patterns indicating an insider attack.  These patterns could be consistently 

high anomaly scores or large anomaly score spikes.  The patterns to look for will depend 

on the analysis.   The results can then be checked against the log of insider attacks to see 

if the attacks were noticed.   If the insider attacks were not discovered, then the weights 

can be adjusted to improve detection, or the formulas reconsidered.  Running the analyses 

on several logs would be wise to get reliable results.   Chapter 8 will show how the 

anomaly scores can be graphed to gain insights into the analysis. 

  



61 

 

Chapter 8 

Example Runs 

 To demonstrate how the simulator provides insights into insider attack analyses 

and tools, the two analysis programs mentioned in the last chapter were run on logs 

generated by the simulator that represented increasingly complex circumstances.  Twelve 

sets of runs were performed based twelve sets of circumstances.  The first logs were run 

with the most basic of circumstance, and subsequent runs were modified to better match 

real-life scenarios.  

8.1. Twelve Example Runs 

 For all runs, the company consisted of one department with one employee (this 

was done for simplicity, and so that only one graph would be needed).  There was no 

deviation between the company, department, and employee behavior (the employee 

deviation for the average and standard deviation was set to 0); in other words, the 

employee’s average and standard deviation will match the company behavior exactly. 

 Each log was generated over a 90 day period.  Each analysis needed about 30 

days worth of data to establish “normal” behavior.   Because of this, all events were set to 

occur at a random time after 30 days had passed.  The anomaly scores of the first 30 days 

will be generated and shown, but only scores from day 30 and on will be considered 

valid. 

 Seven actions were chosen to be monitored for the runs: 

1. Email 

2. Phone Calls 

3. Instant Messages 



62 

 

4. File Access 

5. Web Site Visits 

6. Upload File 

7. Log-in/out 

These actions are detailed in appendix C, including subgroups and weights.  To 

demonstrate the difference in results between monitoring one action and monitoring 

many, many of the runs were performed twice: once with only the email behavior being 

monitored, and once with all seven being monitored.  Similarly, the subgroups and 

weights will be applied to some of the runs.  These weights were chosen arbitrarily as 

rough estimates on how often each subtype took place and the relative danger of each 

subtype. 

The default profile weights are used for both analyses, where the day, week, and 

month-level profiles are 1, 2, and 4 respectively.  Please refer to chapter 7 for more 

details on how these weights are applied. 

8.1.1. Run Set #1: No Events, Weighted Subtypes, or Standard Deviation  

This first set of runs was performed to demonstrate the anomaly scores created if 

an employee has 100% consistent behavior for the duration of the entire log.  During 

these runs, the employee performed the exact same number of actions every day.  In the 

case of the email-only runs, the employee sent five emails every day without fail or 

deviation.  With the others, the employee performed the same number of each action 

every day, with a total of 61 actions per day.  As one may expect, an employee that is 

100% consistent generates an anomaly score of 0 at all times, as seen in the following 



63 

 

graphs.  Figure 25 shows the results of the runs.  The red charts show the actual number 

of occurrences while the blue charts show anomaly scores: 

 

Figure 25: Anomaly scores of an employee who performs the same number of each action every day. 

 This run set was a control run to make sure that the analyses were not generating 

anomaly scores when they shouldn’t exist, as well as a base case to compare the next sets 

of runs to.  It establishes that consistent normal behavior should result in anomaly scores 

close to 0. 



64 

 

8.1.2. Run Set #2: Small Standard Deviation 

 The second set was very similar to set #1, but with a conservative standard 

deviation added to each action (Appendix C describes these standard deviations).  

Overall, the behavior of the employee is still reasonably consistent, and the average 

number of occurrences remains the same.  The following charts show the results: 

 

 

 

Figure 26: Occurrences and anomaly scores when there is a small deviation, no weights, and no 

events. 



65 

 

The conservative standard deviation does cause some jitter for both the max/min 

analysis and the standard deviation analysis.  This jitter is normal and can be expected 

since the behavior of an employee does vary from day-to-day.  The insider attacks will 

need to stand out from this day-to-day jitter in order for either analysis to be effective.  

8.1.3. Run Set #3: Large Standard Deviation 

 

 

 
Figure 27: Occurrences and anomaly scores when there is a large deviation, no weights, and no 

events. 



66 

 

Set #3 had all of the same settings as set #2, but with the standard deviations 

doubled.  This run is of particular interest because it exposed a weakness in the max/min 

analysis. 

 The weakness of the max/min analysis can be seen in the email-only graph on 

days 18 and 84.  On these two particular days, the day’s score is 0.  When calculating the 

overall score, the larger score is divided by the smaller score, which in this case is 0.  To 

avoid dividing by zero, the program adds 1 to both scores.  However, this doesn’t take 

care of the real problem: lower scores create larger jumps in the anomaly score than 

higher scores.  The following graph illustrates the anomaly score generated by a new 

activity score when the activity score of all of the profiles is 5: 

 

Figure 28: Graph of the anomaly score generated by the max/min analysis. 

 The graph shows that as the new score near zero, the anomaly score dramatically 

increases.  As a result, performing less of an action in a day generates a greater anomaly 

score than an increase of equal magnitude.  While this may seem appropriate for good 

actions (doing less of a good thing should sound more of an alarm than doing more), this 



67 

 

doesn’t work for actions where high occurrences suggest an attack (such as uploading 

sensitive files). 

 When multiple activities are influenced, there’s a far smaller chance of the new 

anomaly score approaching zero.  While lower scores still generate slightly higher 

anomaly scores, the difference isn’t nearly as influential as it was for just email alone.   

8.1.4. Run Set #4: Weighted Subtypes Added and No Standard Deviation 

 

 

 
Figure 29: Graphs of the occurrences and anomaly scores when there is no deviation or events, but 

each instance of an action has its subgroups selected and the weight of the subgroup added. 



68 

 

 The same number of occurrences of each action takes place in this set as occurred 

in run set #1 (the completely stable graph).  However, for each instance of an action, a 

subtype is selected for each subgroup and the weight of each subtype is added to the 

activity score.  This takes into account the fact that not all occurrences of the same action 

are equal – more threatening actions cause a greater increase in score than others.  In the 

workforce, sensitive actions (ones that create high scores) do take place for valid reasons.  

Unfortunately for the two analyses, these valid but weighty actions generate jitter and 

large spikes (as seen on day 53 for the email run and days 34-36 for the all-actions run).  

8.1.5. Run Set #5: Weighted Subtypes and a Small Standard Deviation 

 Set five combines the small standard deviation of run set #2 with the weighted 

subtypes of set #4.  This produces variance in both the number of actions and the type of 

actions performed each day, similar to what occurs in an actual work environment.  The 

graphs on the following page show the results. 

 It’s interesting to note that the max/min analysis had significantly less jitter in it, 

but it did have a spike around day 55 when the daily score dropped particularly low.  At 

this point, these graphs do not indicate how good or bad either analysis is on its own, but 

simply establishes what “normal” jitter appears like.  The anomaly scores of insider 

attacks will need to be distinguishable from this jitter in order for the analyses to notice it. 

 



69 

 

 

 

 
Figure 30: Occurrences and anomaly scores when there is a small standard deviation, no events, and 

each instance of an action has its subgroups selected and the weight of the subgroup added. 

8.1.6. Run Set #6: Single Malicious Email with Weighted Subtypes but no 

Standard Deviation 

 Set #6 has the same settings as set #4, but it differs because a single event has 

been added.  On day 36, the employee sends a highly sensitive email with a large 

attachment outside of the company (which may represent espionage or theft of company 

data).  The following figure shows the results: 



70 

 

 

 

Figure 31: Daily and anomaly scores with no standard deviations and a single malicious email (highly 

sensitive email with a large attachment sent outside of the company) occurring on day 36. 

 The good news is that, with the weights associated with the high-risk subtypes, 

the malicious email caused a spike in the graph of the daily score.  This spike was picked 

up by both analyses, both of which created large anomaly scores on day 36 as well.  

However, we’ve seen large spikes take place in previous sets, which means that a single 

malicious action may or may not be recognized from false positives. 

8.1.7. Run Set #7: Single Malicious Email with a Small Standard Deviation 

 Set #7 has the same settings as set #6 but now the actions have a small standard 

deviation (the same standard deviations from set #2). 



71 

 

 

  

Figure 32: Daily and anomaly scores with small standard deviations and a single malicious email 

(highly sensitive email with a large attachment sent outside of the company) occurring on day 34. 

 The malicious email was sent on day 34.  However, that day turned out to also be 

a day when little other activity took place.  The low score from the low activity largely 

cancelled out the score increase from the malicious email.  This suggests a potential flaw 

exists in the scoring system: opposite activity (low good activity and high bad activity) 

can cancel each other out and appear to be normal behavior.  

8.1.8. Run Set #8: Disaffected Employee with No Weighted Subtypes or 

Standard Deviation 

 Run sets 8-11 involve an insider attack where an employee becomes disaffected, 

performing less over the weeks.  The actual attack itself doesn’t take place in this event 

series; the purpose of these runs is to see if the analyses can detect the insider attack 

based on the changes in behavior leading up to the attack alone.  On day the first day of 



72 

 

the event series, the average occurrences of all actions drop by 20% except for web sites 

visited, which increases by 20%.  This occurs again 10 days later as well as 20 days later 

for a total of three drops.  This represents three different events that caused the employee 

to work less and surf the web more.  In the real world, such changes can come as a result 

of negative events in the workplace (a fight with a coworker or news of layoffs).  

Alternatively, the insider may be planning an insider attack and subconsciously starts 

working less over the twenty day 

 If there is no standard deviation or weight, each change in behavior is very clearly 

visible and quickly picked up by both analyses: 

 

 
Figure 33: Employee daily and anomaly scores of a disaffected employee when no weights or 

standard deviation is present. 

8.1.9. Run Set #9: Disaffected Employee with Weighted Subtypes and No 

Standard Deviation 



73 

 

 When weights are added to the equation, a bit of jitter is generated, but the 

behavior changes are still very apparent in the graphs of the daily activity scores and the 

anomaly scores: 

 

 
Figure 34: Employee daily and anomaly scores of a disaffected employee when weighted subtypes are 

selected but no standard deviation is present. 

8.1.10. Run Set #10: Disaffected Employee with a Small Standard Deviation 

and No Weighted Subtypes 

 While the jitter in run set #7 didn’t hamper the analyses in picking up the change 

in behavior, the jitter from each action having a small distribution did largely hide the 

abnormal changes in behavior.  As can be seen in figure 35, the drop in the average 

behavior is visible on the daily score graphs, but isn’t as apparent on the anomaly score 

graphs: 



74 

 

 

 
Figure 35: Daily and anomaly scores of a disaffected employee when no weights are present but each 

action has a small standard deviation. 

 The drops in behavior occurred on day 39, day 49, and day 59.  Both graphs 

include spikes on day 39 and 59, but day 49 seems to go by without noticing.  

Unfortunately, these results suggest that a change in behavior could go unnoticed among 

the static caused by the standard deviation. 

8.1.11. Run Set #11: Disaffected Employee with Weighted Subtypes and a 

Small Standard Deviation 

 The biggest hope for each analysis is that they can detect abnormal behavior in 

spite of the normal, reasonable variances in behavior that occur in the workplace.  Set 

#11 has the reasonable changes in the number and type of action occurrences.  The three 

drops in behavior occur on days 48, 58, and 68 for this run.  These drops in behavior are 

quite visible on the actual daily scores.  The anomaly scores do something interesting 



75 

 

during this period of time – instead of simply creating spikes, the scores rise away from 

zero and remain away for some time after each event, creating a jittery arc.  This is 

different from the usual jitter created by normal behavior, suggesting that the abnormal 

behavior could still be caught by the analyses. 

 

 
Figure 36: Daily and anomaly scores of a disaffected employee when each action has a small standard 

deviation and weighted subtypes. 

8.1.12 Run Set #12: Sick Employee with Weighted Subtypes and a Small 

Standard Deviation 

 For completion sake, a final set of runs was performed with a false positive 

present.  In this case, the false positive is a sick day, in which the employee doesn’t 

perform any work at all.  The following graphs show what happens: 



76 

 

 

 
Figure 37: Daily and anomaly scores of a normal employee when each action has a small standard 

deviation and no weighted subtypes.  The employee has one sick day on day 61. 

 The sick day does cause a huge anomaly score for both analyses, especially for 

the max/min analysis (reiterating the problem where the max/min anomaly score grows 

dramatically for abnormally low scores).  However, the behavior goes back to normal and 

doesn’t create the long-term increase in anomaly scores (as seen in run set #11) that 

suggest an insider attack.  While such spikes would probably warrant investigation, the 

return to normal behavior would suggest this was an abnormal day and not a long-term 

change in behavior (which an insider attack would likely cause). 

8.2. Insights from Example Run Sets 

 The examples just provided were designed to be a demonstration of how the 

simulator can be used for gaining insights into an analysis.  While I made some 

suggestions and observations with the above graphs, they in no wise prove or disprove 



77 

 

the effectiveness of the analyses.  Some steps to take to increase the confidence in 

critiques of the analysis include: 

1. Quantitatively set out beforehand what constitutes an insider threat.  This could be 

a spike of a specific height, a length of time with the anomaly score above a given 

value, or some other metric. 

2. Perform each run several times.  The above examples only had a single run for 

each set of circumstance, and false conclusions can be arrived at without a larger 

pool of tests. 

The ideas presented in the “Future Works” chapter could also be implemented to 

increase confidence in the results. 

  



78 

 

Chapter 9 

Future Works 

 While working on the simulator and analysis programs, many ideas surfaced that 

could greatly improve the flexibility, accuracy, and user-friendliness of the program.  The 

usefulness of each idea may differ depending on the analysis being used or the needs of 

the user.  I will be breaking the future works into three categories: the simulator, the 

analyses, and the user interface. 

9.1. Future Works for the Simulator 

The simulator’s current design makes it easy to implement actions where the 

threat level is predominantly based on the number of instances of the action.  However, 

there are certain actions where the number of occurrences isn’t the only important 

variable; there are actions where attributes, such as duration, intensity, or size of the 

action, play a large factor in determining the threat level of the action.  For instance, the 

“time idle” action could benefit from having a “duration” attribute, where the duration of 

the idle time can be specified for each action instance (such as 15.3 minutes for one, and 

52.1 minutes for another).  The program only partially permits for actions to have 

attributes because the subgroup-subtype ratios and weights allow for these attributes to be 

recognized in categories (for instance, having a “duration” subgroup with subtypes 

“small”, “medium”, or “large”).  However, these aren’t as good or precise as actual 

numbers.  Adding the ability for actions to have attributes would allow for greater 

accuracy in measuring each action instance’s threat-level. 

The simulator demonstrates how a subject or object can be selected based on the 

scope-of-interaction subgroup.  The simulator has a very basic implementation for more 



79 

 

of a proof of concept than for actual usefulness.  Whenever an employee performs an 

action that has a scope-of-interaction subgroup, another person is chosen randomly based 

on the subtype (local, company, or outside) for subject-to-subject actions.  Subject-to-

object actions are even more basic since they only return the word “object”.  This is 

because the current implementation has no list of available objects to interact with.  This 

could be refined so that specific actions by an employee are performed with specific 

people or objects in the company based on the role of the person/object.  To be specific, a 

list of people/objects can be available for each action, with each entity having a specified 

likeliness of being selected.  Further, events could then be set so that the insider interacts 

with a specific person or object.  Objects can be given greater detail than simply a name, 

including sensitivity and access rights.  This idea could really be fleshed out to make the 

entity interacted with a strong variable in the threat-level of each action. 

Behavior of an employee is currently based on company and department behavior.  

A possible future work would be to base the behavior of employees on their role instead 

of their department.  This way, the team leaders of the engineering department will 

behave according to their roles, while senior engineers and intern engineers can have 

their own role-based behavior.  The number of each role can be specified for each 

department instead of just the number of employees.  Giving employees roles would also 

help with choosing which employees can be interacted with for specific interactions, as 

mentioned in the previous paragraph. 

Insider attacks are represented by event series in the simulator.  While the start of 

the event series is selected randomly by the simulator, the events within the series itself 



80 

 

occur in the order and at the time specified by the user.  Allowing for some variability to 

the time between each event may allow for less predictable insider attacks. 

One of the events currently creatable by the simulator is the “Change Behavior” 

event, in which one of the employee’s behaviors immediately change as specified.  For 

some insider attacks, a gradual change would make more sense than an immediate 

change.  This could be provided by adding a “Change Behavior over Time” event that 

would allow the user to specify a change that slowly occurs over a given time.  Having 

both gradual and immediate behavior changes would allow for greater flexibility, but 

some significant changes within the simulator would need to be made to make it possible. 

9.2. Future Works for Analyses 

 While the focus of my thesis has been on the simulator and not as much as the 

analyses, some ideas came to mind on how the two analyses included in the program 

could be improved.  Some of these were mentioned in the final section of the previous 

chapter.  One of the first ideas that came to mind addressed a problem with the scoring 

system.  As the current implementation goes, the scores of each action are added up, and 

then a single anomaly score in generated based on the sum.  However, this meant that the 

abnormally low score of one behavior cancels out the abnormally high score of another 

behavior.  One change that could address this would be to keep track of the new, daily, 

weekly, and monthly scores of the behaviors individually, generate an anomaly score for 

each behavior, and then add the anomaly scores together (as opposed to one anomaly 

score for the sum of activity scores). 

 One change worth investigating is the difference between adding and multiplying 

an action instance’s subtype’s weights.  Currently, the activity score generated by an 



81 

 

individual activity is 1 if it has no subtypes or the sum of the subtypes’ weights.  For 

instance, if an email action has high sensitivity (weight = 10), a large attachment (weight 

= 5), and is sent to someone outside the company (weight = 3), the score generated by the 

simulator would be 10 + 5 + 3 = 18.  This means that if a similar email was sent but was 

sent to someone within the insider’s department (weight = 1), the score would be 10 + 5 

+ 1 = 16 – a two point difference for a rather significant change in the danger of the 

email.  However, if instead of adding weights together, the program multiplied them, the 

results of the two emails would be 10 * 5 * 3 = 150 and 10 * 5 * 1 = 50, a very large 

difference.  The downside to multiplication is that there will be an even greater jump 

whenever a non-malicious but high-weight activity occurs, causing a lot more spikes.  As 

a result, the subtle changes in behavior could be drowned out by the large spikes.  The 

weights would definitely need to be adjusted to prevent this.  However, this is speculation 

– implementing such a change could better measure the threat-level differences between 

action subtypes. 

The max/min analysis can be improved by addressing the flaw where lower daily 

scores create abnormally large anomaly scores would need to be addressed (see figure 28 

in chapter 8.1.3).  The current workaround implemented in the program added 1 to both 

the maximum score and minimum score if the minimum score was less than 1.  This 

could be taken further by adding a specific value to both scores irrespective of how low it 

is.  For instance, the following figure shows the anomaly scores generated by new 

numbers when the profile scores are all 5.0 and a value is added to both the smaller and 

larger number: 



82 

 

 

 

Figure 38: Anomaly scores generated by max/min analysis when all profile scores are equal 5 and an 

offset is added to both the larger and smaller number. 

 The offsets reduce the extra anomaly score for lower numbers but they don’t 

remove it completely.  The max/min formula would likely need to be modified to cause 

both increases and decreases in the behavior score of the same magnitude to generate the 

same anomaly scores. 

The standard deviation analysis was developed to find a new analysis without this 

flaw, but it too had a similar flaw when a previous profile’s standard deviations 

approached zero.  Figure 39 shows how the size of the profile’s standard deviation 

influences the anomaly score: 



83 

 

 

Figure 39: Anomaly score’s generated by the profile’s standard deviation. 

Suppose someone is fairly consistent in their behavior, causing the profile 

standard deviations to be less than 1.  If they did one extra behavior on one day, the spike 

such behavior would cause would overwhelm all other behavior (covering up both 

normal and abnormal behavior).  The workaround in the program was to set the minimum 

each profile’s standard deviation can be to 1.  However, future work may produce a better 

means of addressing the spikes. 

9.3. Future work for User Interface 

The user interface was added to the simulator to make the creation of behavior, 

department, and event series data easier.  The look of the interface definitely could be 

improved; the objective of getting all functionality to fit onto the interface took 

precedence over concerns about appearance.  While I did group together similar data, the 

interface itself could be cleaned up to be easier on the eyes.  Such a cleanup would also 

make it easier to find specific buttons and fields. 



84 

 

Three particular features stand out to me that, if added, would improve the 

graphic user interface: 

1. A means of modifying and deleting existing, individual events within an event 

series 

2. A better way to display department and event series data 

3. A panel displaying results after an analysis has been run 

The first feature is rather self-explanatory; while event series as a whole can 

currently be added to or deleted, the individual events currently can only be added; they 

cannot be modified or deleted. 

The second feature would involve replacing the display boxes that show the 

comma-separated-value data of the department or event series with a panel that clearly 

shows the currently set values (included saved behavior for departments and saved events 

for the event series).  This would greatly improve the readability of departments and 

event series with a lot of data.  For the event series, the first and second feature could be 

combined so that the displayed events can be selected for modification and deletion. 

The third feature would be a panel that displays the results from a run analyses.  

What is displayed would differ depending on the analysis performed.  For the two 

analyses that I implemented, this panel could include graphs of the activity and anomaly 

scores.  These and other analyses could take advantage of the event series logs that detail 

all event series that occurred and calculate how many of the malicious event series were 

detected. 

  



85 

 

Chapter 10: Conclusion 

 Analyses have been developed for detecting insider attacks over the past years 

and have been tested on existing insider attack logs and other data.  However, without the 

ability to see if the insider attacks work under a variety of circumstances, the strengths 

and weaknesses of these analyses have remained untested.  My simulator has allowed for 

the creation of logs of actions taken by a simulated group of employees.  One of the 

simulator’s greatest strengths is that is allows for the customization of a wide variety of 

scenarios to test analyses under.  Users can customize the actions that are monitored, the 

behavior of the company, the size and behavior of the company’s departments, the 

randomization of employee behavior, and the series of abnormal events (both malicious 

and innocent) that should take place over the time period of the log. 

The benefit of such customization is that running the analyses on logs of simple 

actions can reveal strengths and weaknesses in analyses that may otherwise go unseen 

when tested under complex, real data.  Testing an analysis on actual data provides limited 

insight – did it work or didn’t it.  By starting with simple logs and building up to more 

complicated logs that better reflect normal behavior, the user can determine the 

circumstances under which the analysis works effectively as well as learn the point of 

complexity or the specific circumstances in which the analysis struggles.  A 

demonstration was provided of two example analyses being run on a variety of logs with 

the circumstances of the logs increasing in complexity.  It was shown that insights can be 

gained fairly quickly upon running the analyses on the logs, even when the simulated 

data was unrealistically simple. 



86 

 

Overall, the simulator has made great strides in generating simulated behavior and 

has demonstrated its usefulness in studying analyses.  Future works have been mentioned 

that can improve the simulator’s flexibility, accuracy, detail, and ease of use.  With the 

simulator, designers of analyses will no longer have to wait for more real data to become 

available, but will be able to create all of the data they need. 

  



87 

 

Appendix A 

The Comma-Separated-Value Files 

The data used by the simulator for defining behavior, departments, and event 

series is saved in comma-separated-value (CSV) files, where the data is stored with 

commas separating each field.  To add or modify data, the user can either open and 

modify the CSV files directly (which can be done with a text program like Notepad or a 

spreadsheet program like Microsoft Excel) or take advantage of the user interface 

provided with the simulator.  This appendix will explain how the CSV files are formatted, 

as well as how they’re used by the program. 

A.1. General CSV Format 

For all of the CSV files, data is separated from one another by either commas or a 

new line.  For instance, if I wanted the three values “Hello”, 2, and “World” to be stored, 

both of the following would work: 

Hello,2,World 

or 

Hello,2 

World 

Spaces should not be put on either side of commas; otherwise extra spaces will be 

added to the strings.  For instance, entering the three values as “Hello, 2, World” 

would result in the three values being “Hello”, “_2”, and “_World” (where _ represents a 

blank space).  The “_2” would not be interpreted as an integer of value 2, but as a line of 

text. 



88 

 

Also, the program is designed to toss out empty fields.  Thus “Hello,,World,,,” 

would be parsed into two lines of text: “Hello” and “World”. 

A.2. How Text is Interpreted 

All values stored in a CSV file, including numbers, and text, are stored as text 

separated by commas and newlines.  The program reads each value in and, depending on 

what it is expecting, tries to interpret the value as one of the following: 

 String 

o A sequence of characters 

 Command String  

o A string representing a command.  Every command has a string associated 

with it.  When a command is expected, the new value is matched against 

the strings of all commands that would be valid at the time.  If a match 

isn’t found, an error is thrown.  These commands and their associated 

strings are set in the program’s enumeration files. 

o For example, suppose the ADD and SUBTRACT commands’ strings are 

“#Add” and “#Subtract”.  If one of these two commands is expected by 

the program, then it will read in the next value as a string and compare it 

to “#Add” or “#Subtract”.  If neither one matches the string, then an error 

is thrown.  Otherwise, the string is interpreted as its matching command 

(so the “#Subtract” string would be interpreted as the command 

SUBTRACT). 

 Integer 

o A whole number; a number without a decimal point (5, -13, 0) 



89 

 

 Double 

o A floating-point number; a number with a decimal point (5.1, -13.8, 0.0) 

 Boolean 

o Either the value TRUE or FALSE 

A.3. Company Behavior CSV File 

When reading a CSV file, the program reads data from the file and compares it to 

what is expected.  If the program is at a point where optional data can be entered, it sees 

if the next data matches an optional command or the next required line.  If the optional 

command is encountered, then the program keeps reading in data until all expected data 

for that option is gathered, and then it again checks if the next line is an optional 

command or the next required line. 

 

Figure 40: Order of data expected in the company behavior CSV file. 



90 

 

 To write a behavior CSV file, start by providing the required data (steps 1-4 in 

figure 40’s box labeled “REQUIRED”).  At the location of “(…) Optional Commands”, 

you can insert 0 or more of the optional blocks of data.  For instance, the following is an 

example of how a behavior with two optional blocks of data would be formatted in a 

CSV file (all strings starting with ‘#’ are string commands): 

#AddBehavior,Email,5.0,1 

#AddSubgroup,Sensitivity 

None,100,1 

Low,1,3 

Medium,0.1,6 

High,0.001,20 

#EndSubgroup 

#SetMax,12 

#EndBehavior 

Figure 41: Example of comma-separated-value data for adding the behavior “Email”. 

 In this example, each optional data block is surrounded by a blue box to show 

where it starts and end.  The program would read each data value, compare it to what’s 

expected, and continue to the next. 

A demonstration of how this would be done for the example in figure 41 follows. 

The first expected value is “(1) ADD_BEHAVIOR : String”, or the “ADD_BEHAVIOR” 

command.  The program would read the string “#AddBehavior” and compare it to 

“ADD_BEHAVIOR” command’s string (in this case, they match).  The program will 

then move to the next expected value, “(2) Behavior Name : String”.  It reads the string 

“Email” and saves it as the department name.  The next expected value is “(3) Average : 



91 

 

double”, so it would read “5.0” and parse it as a double value (throwing an exception if 

the text couldn’t be interpreted as a floating-point number).  It would similarly read in 

“1” for “(4) Standard Deviation : double >= 0.0”, throwing an exception if it can’t be 

parsed as a floating-point number or if the parsed value isn’t greater-than-or-equal-to 0.0. 

At this point, the program is going to see if an a string matching an optional 

command is encountered or if a string matching “(5) END_BEHAVIOR : String” is 

encountered.  An optional command is encountered, and so it goes and interprets the 

expected values of the optional block in the same manner the required values were.  It 

repeats until “(5) END_BEHAVIOR : String” is encountered, then ends. 

 

Figure 42: Illustration of how the example in figure x traversed the expected data. 



92 

 

A.4. Department CSV File 

The following figure presents the expected data for a CSV file: 

 

Figure 43: Order of data expected in the department CSV file. 

The order of data for department CSV data is similar to the order of data for the 

company behavior CSV data. The department starts off with four required pieces of data, 

and then any number of behavior modifications can be entered.  4b and 4c are only 

included under the following conditions: 

1. The behavior variable (or the aspect of the behavior being modified) is an aspect 

of one of the behavior’s subgroups (such as subgroup standard deviation).  If so, 

include the subgroup (4b) to modify but leave out the subtype (4c). 

2. The behavior variable is an aspect of one of the behavior’s subtypes (such as 

subtype ratio).  If so, include the subgroup (4b) and subtype (4c). 

A.5. Event Series CSV File 

The event series begins with the even name, number of affected employees, and 

either a Boolean value representing whether the event series represents an insider attack 

(with the value “true” being an insider attack).  From there, one or more events are given.  

Each event, regardless of its type, starts the same way.  The command specifying the type  



93 

 

 

Figure 44: Order of data expected for an event series. 

of event is given, followed by when the event takes place and what behavior is involved.  

After that, the data unique to each type of event is given.  The cause action event allows 

for the subtypes of the caused action to be specified (one subtype for each subgroup), 

although no subtypes have to be given.  The modify behavior event is parsed in a manner 

very similar to the department-level behavior modification.  Finally, for both the load and 

save events, the only extra information needed is the name the behavior should be loaded 

or saved under. 

  



94 

 

Appendix B 

CSV Output Files 

B.1. Event Series Log CSV Output File 

 

Figure 45: Order of event series log data when written to an output file. 

 Once all of the event series have been applied to employees and their times are 

set, the program outputs each event series to the event series log CSV output file.  This 

file is used to check when each event series took place and who did it.  It also allows the 

user to verify if the analyses were able to detect all of the insider attacks as well as if the 

analyses had any false positives. 

B.2 Simulator Log CSV Output File 

 The simulator log is unique in that it starts with a header line, and all of the data 

for each action instance is written on one line each (see figure 46).  For each action 

instance, the time data occurs first, followed by the employee who performed the action, 

the action name, and the entity the employee interacted with (either a person or the string 

“Object”).  For each subgroup-subtype pair, the subgroup name is written followed by the 

subtype.  This is repeated for all pairs, and then a new line is added to signal the end of 

the action instance. 



95 

 

 

Figure 46: Order of data written to the simulator log CSV output file.  



96 

 

 

Appendix C 

Tables of Input Behavior 

  

Table 1: Details of “Email” action and behavior. 

 

Table 2: Details of “Phone Call” action and behavior. 

 

Table 3: Details of “Instant Messages” action and behavior. 

Behavior Average Small Std Large Std

Email 5 1 2

Subgroup Subtype Ratio Weight

Local 10 1

Company 3 3

Outside 1 10

None 20 1

Low 1 5

Medium 0.1 10

High 0.01 30

No Attachment 20 1

Small Attachment 1 5

Large Attachment 0.1 10

Sensitivity

Scope

Attachments

Behavior Average Small Std Large Std

Phone Calls 8 2 4

Subgroup Subtype Ratio Weight

Local 3 1

Company 2 2

Outside 1 3

Scope

Behavior Average Small Std Large Std

Instant Messages 13 3 6

Subgroup Subtype Ratio Weight

Local 3 1

Company 2 2

Outside 1 5

Scope



97 

 

 

Table 4: Details of “File Access” action and behavior. 

 

Table 5: Details of “Web Site Access” action and behavior. 

 

Table 6: Details of “Web Site Access” action and behavior. 

 

Behavior Average Small Std Large Std

File Access 20 8 16

Subgroup Subtype Ratio Weight

Local 3 1

Company 2 2

Outside 1 5

None 20 1

Low 1 5

Medium 0.1 10

High 0.01 30

Scope

Sensitivity

Behavior Average Small Std Large Std

Web Site Access 10 4 12

Subgroup Subtype Ratio Weight

Local 0 1

Company 2 1

Outside 1 3

Scope

Behavior Average Small Std Large Std

File Uploads 2 2 4

Subgroup Subtype Ratio Weight

Local 3 1

Company 2 2

Outside 1 5

None 20 1

Low 1 5

Medium 0.1 10

High 0.01 30

Scope

Sensitivity



98 

 

 

Table 7: Details of “Log In/Out” action and behavior. 

 

  

Behavior Average Small Std Large Std

Log In/Out 3 1 2

Subgroup Subtype Ratio Weight

Local 50 1

Company 10 3

Outside 1 10

On Time 50 1

Abnormal Time 1 10

Scope

Abnormal Time



99 

 

 

Bibliography 

Ali, G., Shaikh, N. A., & Shaikh, Z. A. (2008). Towards an automated multiagent 

system to monitor user activities against insider threat. Biometrics and 

Security Technologies, 2008. ISBAST 2008. International Symposium on, 1-

5. 

Cappelli, D., Moore, A., Trzeciak, R., & Shimeall, T. J. (2009). Common sense 

guide to prevention and detection of insider threats 3rd edition – version 

3.1. CMU SEI, 

Killourhy, K. S., & Maxion, R. A. (2007). Toward realistic and artifact-free insider-

threat data. Computer Security Applications Conference, 2007. ACSAC 

2007. Twenty-Third Annual,87-96. 

Kim, Y., Sheldon, F., & Hively, L. M. (2011). Anomaly detection in multiple scale 

for insider threat analysis. Proceedings of the Seventh Annual Workshop on 

Cyber Security and Information Intelligence Research, Oak Ridge, 

Tennessee. 77:1-77:1. doi: 10.1145/2179298.2179386 

Liu, A., Martin, C., Hetherington, T., & Matzner, S. (2005). A comparison of 

system call feature representations for insider threat detection. Information 

Assurance Workshop, 2005. IAW '05. Proceedings from the Sixth Annual 

IEEE SMC, 340-347. 

Montelibano, J., & Moore, A. (2012). Insider threat security reference 

architecture. System Science (HICSS), 2012 45th Hawaii International 

Conference on, 2412-2421. 



100 

 

Pramanik, S., Sankaranarayanan, V., & Upadhyaya, S. (2004). Security policies 

to mitigate insider threat in the document control domain. Computer Security 

Applications Conference, 2004. 20th Annual, 304-313. 

Zhang, H., Ma, J., Wang, Y., & Pei, Q. (2009). An active defense model and 

framework of insider threats detection and sense. Information Assurance and 

Security, 2009. IAS '09. Fifth International Conference on, , 1 258-261. 

Zhang, T., & Zhao, P. (2010). Insider threat identification system model based on 

rough set dimensionality reduction. Software Engineering (WCSE), 2010 

Second World Congress on, , 2 111-114. 

  



101 

 

Vita 

Graduate College 

University of Nevada, Las Vegas 

 

Chris Clark 

 

Degrees: 

Master of Science in Computer Science, Pending 

University of Nevada, Las Vegas 

 

Bachelor of Science in Computer Science, 2011 

Brigham Young University, Idaho 

Projects: 

 Class Scheduler using Genetic Algorithms, 2011 

 Analyzer of Oil Trades, 2011 

 Simulation of Particles in Chaos Theory, 2005 

Teaching Experience: 

 Lab Instructor for Freshman Computer Science Students, 2012 


