
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-2010

A Visualization approach for message passing in parallel A Visualization approach for message passing in parallel

computing systems computing systems

Arunkumar Sadasivan
University of Nevada Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Graphics and Human Computer Interfaces Commons

Repository Citation Repository Citation
Sadasivan, Arunkumar, "A Visualization approach for message passing in parallel computing systems"
(2010). UNLV Theses, Dissertations, Professional Papers, and Capstones. 328.
https://digitalscholarship.unlv.edu/thesesdissertations/328

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/328?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

A VISUALIZATION APPROACH FOR MESSAGE PASSING IN PARALLEL

COMPUTING SYSTEMS

by

Arunkumar Sadasivan

Bachelor of Engineering
Anna University, Chennai India

2005

A thesis submitted in partial fulfillment of
the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

May 2010

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Arunkumar Sadasivan

entitled

A Visualization Approach for Message Passing in Parallel Computing
Systems

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Jan B. Pedersen, Committee Chair

Kazeem Taghva, Committee Member

Yoohwan Kim, Committee Member

Henry Selvaraj, Graduate Faculty Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies
and Dean of the Graduate College

May 2010

 iii

ABSTRACT

A Visualization Approach for Message Passing in Parallel Computing System

by

Arunkumar Sadasivan

Dr. Jan B. Pedersen, Examination Committee Chair
 Assistant Professor, Department of Computer Science

University of Nevada, Las Vegas

Information Visualization has been used as an effective method in transforming

textual information into a visual form that enables users to effectively communicate and

understand the information. MPI (Message Passing Interface) usually involves a large

amount of data, which necessitates exploring innovative ideas to visualize such data

effectively.

In this thesis, we implement a graph visualization tool called MPROV to effectively

visualize communication patterns of message passing using log files from MPI

applications. The tool provides several interaction techniques to effectively reduce the

amount of data displayed on the screen. We have also developed protocol conformance

checking, which verifies the correctness of the communication by using a protocol

specification file containing a list of constraints. Finally, we test our application with

different log files containing a list of communication patterns and also at different

strictness level that the messages should conform to based on the protocol constraints.

 iv

TABLE OF CONTENTS

 ABSTRACT .. iii

ACKNOWLEDGEMENTS ... iv

CHAPTER 1 INTRODUCTION .. 1
 Graph Visualization – Message Passing .. 2

CHAPTER 2 BACKGROUND AND PREVIOUS WORK 4
 Graph Visualization ... 4
 Visualization and Analysis of MPI applications .. 5
 Buffer Allocation in Message Passing Systems... 8
 Communication Graph .. 8
 Protocol Conformance Checking .. 10

CHAPTER 3 MESSAGE PASSING AND PROTOCOL CONFORMANCE

CHECKER VISUALIZATION TOOL (MPROV) 14
 MPI–Message Capture .. 17
 Graph Visualization ... 17
 The DrawCanvas_UI class .. 18
 Graph Drawing... 20
 Functionality of GUI Components... 21
 Zoom ... 25
 Protocol Constraint Specification ... 25
 Protocol Constraints Transformation .. 26
 Strictness Level Color Coding .. 28
 Message Graph Checker .. 34
 Node Level Tool Tip .. 34

CHAPTER 4 RESULTS AND SNAPSHOTS ... 36
 Range Filter .. 38
 Pickup Filter .. 41
 Showall Filter .. 42
 Hide orphan Events ... 44
 Hide Empty Epoch .. 46
 Hide both Orphan Events and Empty Epoch .. 47
 Protocol Conformance Checking and Strictness Level Violations 49
 Node Level Tool Tip .. 59

CHAPTER 5 CONCLUSION AND FUTURE WORK 61
 Future Work .. 61

 REFERENCES ... 63

 VITA ... 68

 v

LIST OF FIGURES

Figure 2-1 Program Structure and PCG... 7
Figure 2-2 A communication graph for two processes .. 9
Figure 2-3 The graph G partitioned into epochs .. 10
Figure 3-1 Illustration of Graph Drawing .. 16
Figure 3-2 Graphical Representation of Communication Pattern 18
Figure 3-3 The Layout of the Interface.. 19
Figure 3-4 File-Open Menu ... 19
Figure 3-5 Graph with 4 process components ... 23
Figure 3-6 Filtering Process Components P0 and P3 ... 24
Figure 3-7 Protocol-File Load Menu item ... 26
Figure 3-8 Before applying protocol specification file .. 32
Figure 3-9 After applying strictness level 0 .. 33
Figure 3-10 After applying strictness level 1 or 2 ... 34
Figure 3-11 After applying strictness level 3 .. 35
Figure 3-12 Node level tool tip .. 37
Figure 4-1a A communication graph containing 145 processes (dataset3.txt) 38
Figure 4-1b A communication graph containing 145 processes (dataset3.txt) 38
Figure 4-1c A communication graph containing 145 processes (dataset3.txt) 38
Figure 4-1d A communication graph containing 145 processes (dataset3.txt) 40
Figure 4-2 Range filter... 41
Figure 4-3a Filtered graph after applying the range filter ... 41
Figure 4-3b Filtered graph after applying the range filter ... 42
Figure 4-4 A list containing all processes for the pickup filter 43
Figure 4-5 Graph after applying the pickup filter .. 44
Figure 4-6a Result of applying the showall filter .. 45
Figure 4-6b Result of applying the showall filter .. 46
Figure 4-7a Before hiding the orphan events .. 47
Figure 4-7b After hiding the orphan events ... 47
Figure 4-8a Before hiding empty epoch .. 48
Figure 4-8b After hiding empty epoch .. 49
Figure 4-9a Graph after hiding orphan events and empty epochs 50
Figure 4-9b Graph after hiding orphan events and empty epochs 50
Figure 4-10a Graph containing 10 processes (DES-10-collect.txt) 51
Figure 4-10b Graph containing 10 processes (DES-10-collect.txt) 52
Figure 4-11 A protocol specification ... 53
Figure 4-12a After applying strictness level 0 .. 54
Figure 4-12b After applying strictness level 0 .. 54
Figure 4-13 Protocol results for strictness level 0 ... 55
Figure 4-14a After applying strictness level 1 .. 56
Figure 4-14b After applying strictness level 1 .. 56
Figure 4-15 Protocol results for strictness level 1 ... 57
Figure 4-16a After applying strictness level 2 .. 58
Figure 4-16b After applying strictness level 2 .. 58
Figure 4-17 Protocol results for strictness level 2 ... 59

 vi

Figure 4-18a After applying strictness level 3 .. 60
Figure 4-18b After applying strictness level 3 .. 60
Figure 4-19 Protocol results for strictness level 3 ... 61
Figure 4-20 Node info ... 62

 1

CHAPTER 1

INTRODUCTION

Advancement in computer technology led to the growth of human computer

interaction (HCI), a research that focuses on interaction between human and

computational machines to enable the viewer to observe and understand information.

Information visualization is a sub-discipline that emerged due to research in human

computer interaction and computer graphics; it has been used as an efficient approach to

solve many real world problems involving huge amount of data. Information

visualization opened a way to present large amounts of data in a manner that assist the

user better in finding patterns and trends as well as analyzing the data and discovering

unknown relationships. As any other visualization systems, it also uses visual cues to

explore, analyze and communicate ideas in an effective manner.

In this thesis, we present a graph visualization tool that displays space-time diagrams

representing the communication taking place in a message passing system. The messages

are denoted by a directed acyclic graph with nodes representing the events (sending or

receiving a message) and the edges representing the relations (program flow or message

flow). The application execution is partitioned into sub graphs called epochs, containing a

sequence of consecutive events in the program trace. The tool enables the user to filter

the processes to be displayed on the screen thus providing a detailed view of the point

(process) of interest; also it contains a zoom feature to adapt the graph to any level of

detail as needed by the user. Furthermore, we have implemented a tool for checking

messages against a communication protocol specification. This lead to a technique called

‘Protocol Conformance Checking’. The idea behind this technique is to have the user

 2

write a specification file containing a number of constraints and using this information to

check the correctness of the message passing. A protocol specification can be checked

using different levels of strictness from level 0 being the basic, or default level to level 3

being the most restrictive requiring each message to satisfy exactly one constraint.

Graph Visualization – Message Passing

The graph visualization tool MPROV described above is mainly used to visualize

message passing log data from MPI [2] applications. The log files are obtained during a

data collection phase (while the program is running) that logs all communication events

in the application. It can be used to construct the communication graph. The graphs in

question contain epochs, which we can obtain by running the buffer allocation

approximation algorithm from [3]. An MPI application contains message buffers to hold

the contents of the messages to be delivered. If there are many messages being sent, then

all available buffers may be exhausted leading to a deadlock. Hence, determining the

minimum amount of buffers needed is necessary; this is formally defined by Brodsky et

al. as the Buffer Allocation Problem (BAP) [3]. Solving BAP is NP-Complete, but a

novel approach using epochs for an approximation has been described in [4].

 The tool uses graph visualization techniques to represent the structural information as

diagrams of graphs. These graphs are similar to Lamport space-time diagrams [5], which

represent a casual ordering of messages in a message passing system. As an MPI

application can involve a large number of processes, the graph layout may be dense.

Though it is technically possible to display all the processes, non-availability of large

screen size makes it cluttered if displayed on a standard display device. One potential

 3

solution to the above problem is to use some powerful interaction techniques to navigate

through the graphs. MPROV contains interaction techniques like range filter, pickup

filter and showall filter to restrict the number of process components displayed on the

screen.

Organization of this Thesis

An overview of graph visualization, protocol conformance checking technique, the

Buffer Allocation Problem and different visualization tools are given in Chapter 2. In

Chapter 3, we discuss in detail the implementation of the graph visualization tool and its

usage. Chapter 4 describes the results with different log data and protocol specification

files. It also includes several snapshots of the tool which illustrates the look and feel of

the software. Finally Chapter 5 presents conclusions and recommendations for future

work.

 4

CHAPTER 2

BACKGROUND AND PREVIOUS WORK

In this chapter, we present a brief review of how visualization techniques could be

used for problem solving related to huge datasets. Firstly, we will be discussing about

graph visualization techniques related to MPI applications. Secondly, we discuss an

epoch based approach that runs the approximation algorithm to display the

communication patterns containing epochs. The BAP (Buffer Allocation Problem) is the

problem of determining the minimum number of buffers to ensure deadlock free

execution. Finally we present a protocol conformance checking technique that assists the

user in checking that a message satisfies constraints specified in a protocol specification.

Graph Visualization

One of the key issues in graph visualization that needs to be addressed is the size of

the graph that needs to be visualized. Large graphs not only lead to performance issues

but also usability or viewability issues even if we could layout and display all the

elements. It is a well known fact as defined in [6] that it is easy to perform a detailed

analysis of data in graph structures when the size of the graph is relatively small. As the

size increases, overall structure becomes complex making it difficult to comprehend.

Most techniques available are applicable only for relatively small graphs and are less

relevant for larger graphs. The size of the graph can make a normal good layout

algorithm unusable as it does not guarantee proper scaling when a large number of nodes

are to be displayed. The layout may become very dense thus making interaction with the

graph difficult. The first step in visualization is to find an effective method to reduce the

 5

size of the graph to be displayed. Another important issue is time complexity. The

visualization system needs to update information in real-time, within a very short period

to time to ensure that the user does not notice the delay.

In order to reduce the visual complexity of a graph, it is necessary to reduce the

number of visible elements displayed on the screen. Limiting the number of visual

elements not only improves the clarity but also increases performance layout and

rendering [8]. Various “abstraction” and “reduction” techniques [8] have been applied by

researchers in order to reduce the visual complexity of a graph. They are usually done by

discarding trivial or uninteresting information while preserving important features and

structures in the graph. Approaches such as clustering and filtering may be used to reduce

graph complexities. Clustering is the process of grouping a set of physical or abstract

objects into classes of similar objects based on some chosen semantics. Filtering refers to

removal of elements from the view, while hiding is a process of simply not displaying the

un–selected nodes, also referred to as folding [8].

Visualization and Analysis of MPI applications

Graph based visualization tools or systems have been proposed to assist parallel

computing since visual structures and relationships are easy to comprehend. Most of

these systems are graph based, as multidimensional directed graph closely resembles the

execution of parallel programs. We provide a brief review of three graph based

visualization tools namely VAMPIR [12], VISPER [10] and PVMbuilder [21]. VAMPIR

was mainly developed for performance analysis of parallel programs while VISPER is

used for developing the communication graph in real time and PVMbuilder is used for

 6

developing message passing programs. Though these tools are not closely related to our

tool, they provide a few features such as filtering, interactive zoom for detail view, color

coding to differentiate the different activities which are also provided in our tool.

The visualization environment VAMPIR is based on the research tool PARvis [17].

VAMPIR translates a given trace file into a variety of graphical views such as state

diagrams, activity charts, time-line displays, and statistics to provide a reasonable basis or

system understanding and program optimization. It contains an animation mode to locate

bottlenecks and flexible filter operations to reduce the amount of information displayed

along with a powerful zooming feature to identify problems at any level of detail.

VISPER is a software visualization tool for developing parallel programs which relies

on the Message Passing Interface (MPI) [2] and Parallel Virtual Machine (PVM) [18].

The tool is graph-based and correlates both the control and data flow graphs into a

Process Communication Graph (PCG), without a need for complex textual annotation. In

Figure 2-1, an arc in a PCG denotes the data flow between the nodes. In this example,

Process P0 sends data to process P1 which in turn sends data to process P2 and finally

process P0 receives data from P2.

 7

Figure 2-1: Program Structure and PCG.

The advantage of this approach is that no special language or compiler has to be used

when programming. The tool simplifies writing and helps the understanding of parallel

programs by allowing the programmer to explicitly specify communication,

synchronization, and parallelism by drawing a Process Communication Graph. The

fundamental idea behind VISPER is that programmers can create message-passing

programs by drawing and annotating graphs.

PVMbuilder was created to construct message passing programs, as errors in the

program might lead to unpredictable results such as deadlock, process failures and

incorrect results. One of the main advantages of PVMbuilder is that it is not only used for

program creation but also for debugging and program evolution. PVMbuilder can also be

used for performance monitoring and tracing. It provides a high level graph structure

which is the abstract representation of the program. The nodes in the graph are used to

represent processes and the arcs denote the communication or control flow. The graph

described in our tool is similar to the graph structure mentioned above.

 8

Buffer Allocation in Message Passing Systems

As discussed, MPI applications that perform asynchronous message passing rely on

sufficient amount of message buffers to prevent deadlock. Thus, the behavior of the

communication depends upon the availability of message buffers. All asynchronous calls

will turn out to be synchronous if the buffer resources are exhausted. Unfortunately both

determining the minimum amount of buffers (The Buffer Allocation Problem) and

determining whether an application may deadlock for a given number of buffers are

intractable optimization problems [3]. An epoch based approach is developed by [4] to

approximate the buffer allocation problem. In this approach, the execution of the

application is partitioned into epochs, and after each epoch barrier synchronization is

performed. It ensures that a process upon reaching the end of epoch will wait for every

other process to reach the end of the epoch before it can proceed. As every process

synchronizes at the end of the epoch, the buffer requirements needed to perform safe

asynchronous message passing are considerably reduced. While constructing the graph in

next chapter we will be using a part of BAP algorithm in [4] to compute the epochs for

display.

Communication Graph

In order to define a communication graph we use the following definitions from [3].

A program trace S is a log of all events that occurred during an execution. Events are

either a start of a process or completion of a send or receive operation. A communication

graph G of a program trace S is a directed acyclic graph G=G(S)=(V,A) where the set

of vertices V = {vi,c|1 ≤ i ≤ n, 0 ≤ c ≤ ei} corresponds to events in the

 9

trace, where ei is the number of events performed by process i. Vertex vi,0 represents

the start event of process i and vertex vi,c represents either a send or a receive event.

The former is called a start vertex and the latter are called send and receive events

respectively. For each vertex vi,c, i is called the process number and c is called the

event number.

A communication arc (vi,c,vj,d)∈C represents a communication between

different processes, i and j, where vi,c is a send vertex and vj,d is a receive vertex (see

Figure 2-2). The vertex vi,c-1 is called the parent vertex of the vertex vi,c, and the

vertex vi,c+1 is called the child vertex of vi,c. The vertex vj,d connected to vi,c by a

communication arc is called the sibling vertex of vi,c. The communication graph

contains an ordering of all events in the trace. That is, a path from vertex va to vertex vb

in the graph indicates that event a must occur before event b.

Figure 2-2: A communication graph for two processes.

 10

An epoch E, which is a sub graph of G, is a self-contained sequence of consecutive

events in the trace. The epoch E contains atleast one send or receive event. Since there

can be no vertex outside the subgraph that has a path to and from a vertex in the

subgraph, all epochs in G must be disjoint. Every epoch E has at least one send and

receive vertex. An epoch is called simple if it contains exactly one send and receive

vertex. An epoch is called complex if it contains more than two vertices. As stated in [4],

a graph can be decomposed into a set of disjoint Epochs G = E0 Ο E1……Ο En as shown

in Figure 2-3.

Figure 2-3: The graph G partitioned into epochs.

 11

Protocol Conformance Checking

A protocol constraint specification contains a list of constraints that specifies a

protocol for a given message passing system. The idea is to allow the user to specify the

relationships between processes through constraints on the message passing and have the

system check the messages against these constraints. It can be used in debugging and

development cycles of parallel programming and also serves as a specification that can be

used for testing purposes. One of the advantages of using protocol constraints is that,

even if a protocol is not formally verified, it can be used in testing the implementation of

the protocol. This could help in correcting the errors in the implementation which might

otherwise be difficult to find at later stages. Protocol constraint specification is different

concept when compared to constraint programming. The main goal of constraint system

is to help in connection with the program development strategy. A program written in a

constraint programming consists of a set of equations that are given to a constraint-

satisfaction system which in turn, returns the values satisfying the constraints whereas

protocol constraint specification does not generate any messages that satisfy the

constraint system instead it uses message information to validate the constraints. Most

tools that are used for protocol checking and verification require the protocol / model to

be specified or implemented separately in the language of the tool, forcing them to re-

implement the protocol in the same language that the application is written in.

A well known approach to perform protocol verification and checking, includes the

process algebra CSP (Hoare’s Communicating Sequential Processes) [19] developed at

Oxford University. CSP is a formal language for describing patterns of interactions where

processes proceed from one state to another by engaging in events. FDR (Failures-

 12

Divergence-Refinement) [20] is a model checking tool used to test specifications written

in CSP.

The inspiration for the tool described in next Chapter was obtained from [7]. A brief

overview of [7] is given below. A protocol specification consists of a number of lines that

specify which sends can send to which receives. A constraint would take the following

form:

pgname1[e1]{e2}(e3) pgname2 [e4]{e5}(e6)

The constraint line can be followed by a number of quantifiers which takes the following

form:

∀id:RelExpression;

The first part states that a process from program pgname1 with instance number e2 and

send line no e3 in group e1 can send to a process pgname2 in group e4 with instance

number e5 and receive line no e6. e1, e2 and e3 can be omitted or be a number or an

identifier and e4, e5 and e6 can either be expressions, identifiers, or be omitted. If

omitted, a wildcard match is performed. A quantifier introduces constraints on an

identifier used in the e1,….,e6. These can be qualified by both lower and upper bound or

bound by other expressions. A message sent from a sender to receiver is a tuple as

follows:

M = (Ps,Pr,(Gs,Is,Ls),(Gr,Ir,Lr),Ns,Nr)

Where Ps, Gs, Is, Ls denotes the program name, group, instance and line of the sender,

and Pr, Gr, Ir, Lr denotes those of receiver. Ns, Nr are the total number of processes in

group Gs and Gr. We make direct use of this idea to implement the protocol conformance

checking which is explained in chapter 3.

 13

The above mentioned protocol specification can also be checked using different levels of

strictness as shown in Table 2.1.

Level Description

1 0 or more protocol specification lines may match with respect to program
name and sender quantifiers.

2 At least one protocol specification line must match with respect to program

name and sender quantifiers.

3 Exactly one protocol specification line must match with respect to program
name and sender quantifiers.

Table 2.1: Strictness levels.

We also make use of strictness levels, but in a slightly changed way which we will see in

the next chapter.

14

CHAPTER 3

MESSAGE PASSING AND PROTOCOL CONFORMANCE CHECKER

VISUALIZATION TOOL (MPROV)

MPROV encompasses two parts: A standalone Java program which visualizes the

communication patterns occurring in an MPI application and a protocol evaluator which

validates the messages based on user defined constraints. MPROV needs two inputs: a

log file describing the communication pattern of the message passing; such as source,

destination, send or receive event numbers along with corresponding line numbers of the

actual explicit message passing calls in the source code, and a protocol specifications file

containing a list of constraints that the messages should satisfy. An MPI run creates a log

file of the message passing for each process components; these individual log files are

concatenated to form a log file for the entire execution. This log file is given as input to

the Java program (see section MPI-Message Capture on how these are captured). It then

uses this information to create the communication graph (based on Lamport’s space time

diagram [5]), which is then displayed on the screen. The graph also contains epochs (see

section communication graph in chapter 2) that partitions the application’s execution. The

log file contains a number of entries as follows:

Sid:E=Sno:S:Did:Ls ;

Did:E=Rno:R:Sid:Lr ;

Sid denotes the id of the source of the message, Did denotes the destination, Sno, Rno

denote the corresponding send or receive event numbers along with line numbers Ls and

Lr. Each send event must have a corresponding receive event in order to correctly

construct the graph. S or R identifies a given message as a send or receive.

15

 The tool was coded using Java Swing which provides a rich graphics functionality

using object oriented programming. The Graphical User Interface (GUI) was designed

using Netbeans 6.5. MPROV contains 3 main packages: A GUI package that contains

classes which are used for drawing the graph, a UI_Interaction package that

defines classes used to perform UI interactions and finally a

Protocol_Conformance package that is responsible for protocol evaluation and

constraint checking.

The log file is interactively given to the String_Tokens class that splits the

entries in the log file into tokens which are sent to the Vertex Class. The Vertex

class defines the entire data structure that includes source, destination, event numbers,

line numbers and event type (a Boolean value specifying whether it is a send or receive).

The BAP class uses this list of vertices to effectively partition the graph into epochs. It

provides the communication pattern (source, destination, event numbers, epoch no etc) to

the Draw_CommunicationArc class which calculates the send and receive

coordinates to draw vertices (nodes) and edges for all process components. The entire

procedure for converting the log file into a graphical representation is shown in Figure 3-

1.

16

Figure 3-1: Illustration of Graph Drawing.

17

MPI–Message Capture

To create a log file, the user must execute the MPI application with a C-library that

performs the data collection. The C-library will record every send and receive event in

separate files for every processes. These individual log files are concatenated to form a

single log file with a shell script. The c-code needed for collection is contained in a file

called bap.c which acts as an interface between MPI program and the standard MPI

library. The following MPI changes are done to capture the messages. The functions:

MPI_Init(), MPI_Send(), MPI_Recv() and MPI_Finalize defined in the MPI

library are redefined in bap.c that acts as wrappers around the original functions. Then we

could use C-preprocessor #define macros to replace MPI calls with calls to the wrapper

functions.

Graph Visualization

MPROV is used to visualize the message passing of an MPI program, and to analyze

the correctness of the communication pattern. Consider a log file with the following

entries that corresponds to the graph shown in Figure 3-2:

 0:E=0:S:1:1;

 1:E=0:R:0:1;

 1:E=1:R:2:2;

 2:E=0:S:1:2;

A vertical line in the graph signifies the processes (e.g. P0, P1, and P2) and the edge

connecting the process components correspond to the message passing taking place

18

between the processes. As shown in Figure 3-2 the numerical representation (0, 1)

signifies that process P2 at event number 0 is sending a message to process P1 at event

number 1. E1, E2 are the corresponding epoch numbers.

Figure 3-2: Graphical Representation of Communication Pattern.

The DrawCanvas_UI class

The DrawCanvas_UI is the largest class that implements the UI objects. The

DrawCanvas_UI creates a JFrame which is the main container of the GUI. The

JFrame is divided into two sections, namely the drawing area located at the center and

an interaction panel placed on the right hand side as shown in Figure 3-3. The interaction

panel contains interaction techniques that can be applied to the graph. It also contains a

strictness level panel containing option buttons to apply the desired strictness level once

the protocol specification file is loaded. The DrawCanvas_UI also contains a sub-class

DrawCanvas which creates a custom JPanel to perform custom painting. Then, the

custom JPanel is placed over the JScrollPane to implement a scrollable interface.

19

Figure 3-3: The Layout of the Interface.

The log file is loaded into the Java program using the file menu item as shown in Figure

3-4.

Figure 3-4: File-Open Menu.

20

The different Menu Bar options and their uses are depicted in Table 3-1.

 Menu

 Menu Item

 Description

File Open To load the log file and draw the communication
graph.

File Clear Display Text To clear the notification area.

Protocol Load File To load the protocol specification file.

Protocol Reload File To apply the updated specification to the
existing protocol file.

Protocol View File To view protocol constraints.

Protocol Apply To apply the protocol conformance checking.

Protocol View Results To view the results after checking the
constraints.

Graph Reset To reload the original graph.

Zoom Reset Zoom To reset the zoom to original setting.

Table 3-1: Menu bar functionality.

Graph Drawing

The co-ordinates to draw the edges that denote the message flow are calculated using

g2d.drawline(x1,y1,x2,y2) where g2d is the Graphics2D object (a subclass of

Graphics) that contains a richer set of drawing and display operations to perform

advanced 2D graphics. Coordinates (x1,y1) and (x2,y2) are the start and end points of

21

the line (edge) that connects the nodes, where x1 and x2 corresponds to the x coordinates

of the send and receive process components respectively. This calculation (x1 and x2) is

done in the Draw_ProcessComponents class using getVertline_Xcoord

(int processno)method. The Draw_CommunicationArc class contains methods

to calculate y1 and y2. The algorithm to calculate y1 and y2 is shown below:

Algorithm: Calculate Send and Receive coordinates.

Input: source, destination, send event, receive event, epoch no.

Output: An arraylist containing sends and receives coordinates (y1 and y2).

Step1:previous_epoch = 0;

Step2:For each src, dest, sendevt, recvevt, epoch_no

Step3:if (epoch_no > previous_epoch)

/* epoch coord is calculated when epochno is different
 * maxcoord is max (send or receive coord)
 */
 previous_epoch += 1;
 epoch_coord = maxcoord + DELTA_Y;

Step4:newsendEvent = max_y_value + sendevent - sendEvtmax;

Step5:send_coord = INITIAL_COORD + (newsendEvent*DELTA_Y) + (Epoch_no*DELTA_Y);

/* Where INITIAL_COORD & DELTA_Y are constants */

Step6:newrecvEvent = max_y_value + recvevent - recvEvtmax;

Step7:recv_coord = INITIAL_COORD + (newrecvEvent*DELTA_Y) + (Epoch_no*DELTA_Y);

Step8:Add send_coord and recv_coord to corresponding arraylist.

Step9:Next;

Functionality of GUI Components

The ability to visualize and to test slightly different graphical views may help

understand and verify the correctness of the communication patterns. On visualizing a

large graph a good layout algorithm alone will not solve the problem as the visual

22

representation of the graph could be very complex. Limiting the number of visual elements

to be displayed could be one possible solution to improve clarity. Clustering functions like

filters which display only the processes of interest in the graph prove to be useful while

displaying large graphs. MPROV provides two filters: A range filter, which restricts the

number of processes displayed on the screen. The user is prompted to enter the range (start

process and end process) of the processes of interest, and the graph is filtered to display

only processes which fall within the specified range.

The pickup filter is used to randomly pick a set of processes. The user has to select

more than one process from a list box and click the “Pickup Filter” button. Multiple

Processes can be selected using the CTRL key. The pickup filter has also been

implemented using a similar algorithm as the range filter. The need for the pickup filter

arises when the total number of processes is large. For example, if there are 300 processes,

and the user is interested in 4 processes that are widely spaced (example, P4, P120, P250,

P300); then a pickup filter may be used. On the other hand, a range filter is used when the

user is interested in viewing the communication between a range of consecutive processes.

Theoretically, a pickup filter may be used instead of a range filter by individually selecting

the processes of interest over a given range. Though, a pickup filter may mimic a range

filter, both of them individually add value to the tool.

Most often range and pickup filter fills the graph with empty epochs and orphan

events. An empty epoch occurs when no communication takes place between the selected

processes in that epoch. Orphan events may be a send or receive orphan event. A send

orphan event occurs when a matching receive event is missing and receive orphan event

occurs when there is no matching send event. This scenario may occur when the processes

23

are filtered and the corresponding send or receive events are not a part of the filtered

components.

To illustrate the workings of a filter, Figure 3-5 contains 4 process components

P0,…,P3 and 4 epochs E1,…,E4. When the pickup filter is applied to the graph with P0 and

P1 as the processes of interest, the resulting filtered graph is as depicted in Figure 3-6.

Figure 3-5: Graph with 4 process components.

24

Figure 3-6: Filtering Process Components P0 and P3.

Hiding the orphan events and empty epochs provides us with multiple abstraction

levels. The hide empty epochs and hide orphan events checkboxes hide the empty epochs

and orphan events correspondingly. A brief description of the UI components is given in

Table 3-2.

25

 Name Description

Range Filter This button enables the user to specify a range of processes
to be displayed.

Pickup Filter This button enables the user to randomly select the

processes to be displayed.

Showall Filter This button is used in combination with the Pickup filter to
display the entire graph. All the processes except those
selected by pickup filter are displayed in shaded gray color.

Hide Empty Epochs This checkbox enables the user to hide empty epochs.

Hide Orphan Events This checkbox enables the user to hide orphan events.

Table 3-2: GUI Functionality.

Zoom

MPROV provides a zooming feature to analyze the program behavior on any level of

detail. The zooming feature can also be used to get deeper and deeper into the analysis

process, to not only understand program behavior, but also to verify the correctness of the

communication patterns. The tool incorporates the slider zoom and the mouse wheel

zoom. The slider zoom is integrated with a numerical value bounded by a minimum and

maximum value. On moving the slider’s knob, zoom in or zoom out operation are

performed depending upon the numeric value selected. A minimum zoom level of 50 and

a maximum of 150 have been provided. The mouse wheel zoom, zooms in and out

relative to mouse position. The zoom value increases on moving the wheel downwards

and decreases on moving upwards.

26

Protocol Constraint Specification

The protocol specification file is loaded into the application by using the protocol

 loadfile menu item as shown in Figure 3-7.

Figure: 3-7: Protocol-File Load Menu item.

A protocol consists of a number of constraint lines of the following form:

P(e1,e2) P(e3,e4) [::Q];

The first part states that process with instance number e1 and send line number e2 can

send to a process with instance number e3 and receive line number e4. e1, e2, e3, e4

can be empty or a wildcard *, a number or an identifier. Both empty and a * signifies a

wildcard match. Q is a set of quantifier that introduces constraints which are applied on

the identifier. It can be qualified by both upper and lower bounds. The quantifier Q can be

represented by the following form:

∀id: Relational Expression;

Example: P(r,*) P(r,*)::∀r:r == 1;

27

Protocol Constraints Transformation

Once the protocol specification file is loaded, protocol apply menu item

may be selected to apply the protocol conformance check. Since e1 and e2 can be either

empty (*) or a number (constant) or an identifier, a conversion, which we refer to as an

α-conversion is done in order to bring all sender parts of a protocol line into a canonical

form as given below:

P(α1,α2) P(e3,e4) :: ∀ α1:xxx; ∀ α2:xxx; Q’

The following algorithm defines how α-Conversion is done.

Algorithm: α-Conversion

• If ei is a number (ci), ei is replaced by αi, and the quantifier ∀αi:αi=ci is
added to Q.

• If ei is an identifier, replace its entire occurrence by αi.

• If ei is * or empty replace it with αi, and add quantifier ∀αi: true to Q.

The above transformation is done so that the sender part of the protocol line can be

checked separately from the rest of the quantifiers and if they don’t satisfy we don’t have

to check the receiver part. The γ-Conversion is done on the receiver side to bring the

protocol lines into one of the forms:

P(α1, α2) P(e3, e4) :: Q;
P(α1, α2) P(e3, γ4) :: Q;
P(α1, α2) P(γ3, e4) :: Q;
P(α1, α2) P(γ3, γ4) :: Q;

The following algorithm defines how γ-Conversion is done.

Algorithm: γ-Conversion

• For e3 and e4 the following transformation is done. If ei is *, replace ei with
γi and add the quantifier ∀γi: true to Q.

28

• The above transformation is done in order to avoid comparing numbers with

empty expressions.

The conversions are done only once at load time. Once the α and γ conversions are done,

then we can perform checking to make sure that the values are within the boundaries of

the definitions. Before any checking can be performed, we have to add information from

Message M to symbol table. A Symbol table is used to associate variables with values.

Each message M satisfies a protocol specification line L:

P(e1,e2) P(e3,e4) :: Q;

if and only if, algorithm Protocol Constraints Validation returns true.

Where M = [Sid,Sline,Rid,Rline] is a message from the execution (that is, an arc

from the graph), Q is the list of quantifiers.

Before we start evaluation, we create two arraylists L_list and A_list. All the

messages that violate the protocol lines are added to the L_list and those which match

are added to the A_list. For each message M, add to the symbol table with bindings α1

= Sid and α2 = Sline. We continue evaluation, only if the sender part of the message

satisfies the protocol line. If the check fails, then the message along with protocol line is

added to L_list and the message is checked against the next protocol line. Once the

evaluation returns true, then we need to check if the receiver part of M matches the

receiver part of the protocol line. If the receiver parts are identifiers then they are placed

into the symbol table with corresponding Rid and Rline respectively. The receiver part

is now evaluated. If it satisfies, then they enter into the A_list and if false then some

violations have occurred and it enters into L_list.

29

Strictness Level Color Coding

Colors are used to represent different kind of activities in the graph and to group

related items to direct or command attention. Blue color denotes communication between

process components. To color the graph after applying the protocol constraints we use the

same arraylists A_list and L_list which contains the matched and the violations list

as described earlier. Check_Violmsg(String msg) method determines whether a

message is in the violation list or not. msg contains the string representation of the

message of the following form for example:

Sid, Rid, Sevt

where Sevt is the send event. The messages that violate the protocol specification are

represented in red and those which satisfy the specification are colored green. A protocol

specification can be checked using different levels of strictness.

 Even if a message satisfies a protocol specification line, it might violate the strictness

levels. Strictness level 0 is the default level. When the strictness level of 0 is applied, if a

message violates a protocol line i, it must match at least one to avoid violating the

protocol. Strictness Level of 1 can have 0 or matches with 0 violations. In case of

strictness level of 2, at least one protocol specification line must match with respect to the

sender along with 0 violations. Finally, when strictness level of 3 is applied, exactly one

protocol specification line must match with respect to sender along with 0 violations. All

Strictness level violations are depicted using orange color. Table 3-3 shows the color

coding format for different strictness levels.

30

 | L | > 0 | L | = 0

Level 0 | A | = 0

Level 0 | A | > 0

Level 1 | A | = 0

Level 1 | A | > 0

Level 2 | A | = 0

Level 2 | A | > 0

Level 3 | A | = 0

Level 3 | A | > 1

Level 3 | A | = 1

Table 3-3: Strictness level color format.

Example: Consider a graph with 5 process components P0,…,P4 containing 6 epochs

E1,…,E6 as shown in Figure 3-8. On applying the following specification lines

 P(i,*) P(m,*):: ∀i:i!=4, ∀m:m==4 ;
 P(3,*) P(4,*) ;
 P(0,*) P(1,*) ;

communication arcs in the graph will have some color change. As strictness level of 0 is

the default strictness level, the communication arc that matches the protocol lines are

colored green, while those that violate the protocol lines are colored red as shown in

Figure 3-9. When applying strictness level of 1, the communications arcs from P0 to P1

31

at event numbers (0, 2 and 2, 5) changes from green to orange since it violates the

strictness level. This is illustrated in Figure 3-10. On applying strictness level of 2, the

resulting graph is same as before as it does not violate the strictness level. On the other

hand, when strictness level of 3 is applied, the communication arc from P3 to P4 is a

strictness level violation as it matches more than one specification lines; hence its color is

changed from green to orange as illustrated in Figure 3-11.

32

Figure 3-8: Before applying protocol specification file.

33

Figure 3-9: After applying strictness level 0.

34

Figure 3-10: After applying strictness level 1 or 2.

35

Figure 3-11: After applying strictness level 3.

36

Message Graph Checker

To check a protocol line L against a message M represented by send vertex, the following

algorithm is performed:

Algorithm: Protocol Constraints validation

Input: M, L

Output: ‘true ‘if message satisfies the specification and ‘false’ otherwise.

For each Message M do the following

Step1: For each protocol line L do:

Step2: Insert into symbol table α1 = Sid and α2 = Sline.

Step3: For e3,e4 if they are identifiers insert into symbol table with values Ir,

LR.

Step4: Evaluate α Quantifiers. If α evaluated to true then protocol line

matches the sender move on, else terminate and return false;

Step5: The expression e3 is evaluated over the symbol table with the value Ir.

Step6: If (true) then e4 is evaluated with LR;

Step7: If (true) then M goes into matched list and return true;

Step8: else M goes into violation list and return false;

Step7: Next L;

Step8: if (M violates strictness levels) add M to report with corresponding

strictness level;

Step9: Next M;

Node Level Tool Tip

Node level tool tip feature resembles a tool tip. This is a very useful feature to display

information at the node level. When the user hovers the cursor over any send or orphan

node, the cursor changes to the hand cursor, prompting the user for a click event. On

clicking the node, a window pop’s up displaying details about the node such as source,

destination, send or receive event no and epoch no. If a protocol specification has been

37

applied, the results displayed in the pop up window include the protocol lines. Figure 3-

12 depicts the look and feel of the node level tool tip.

Figure 3-12: Node level tool tip.

 38

CHAPTER 4

RESULTS AND SNAPSHOTS

In this chapter we discuss the results in detail and show several examples of using the

tool. To enunciate the correctness of the visualization tool discussed in chapter 3, we use

the following log (dataset) files: dataset3.txt containing 145 processes with 3,744

epochs and 7,488 vertices and DES-10-collect.txt containing 10 processes with

14 epochs and 178 vertices. A graphical representation of the communication between

the 145 processes in dataset3.txt is shown in Figure 4-1a-d. Due to space

constraints only a few snapshots of the application are shown. Also, in this chapter we

have illustrated a few examples to demonstrate each feature of the tool.

Figure 4-1a: A communication graph containing 145 processes (dataset3.txt).

 39

Figure 4-1b: A communication graph containing 145 processes (dataset3.txt).

Figure 4-1c: A communication graph containing 145 processes (dataset3.txt).

 40

Figure 4-1d: A communication graph containing 145 processes (dataset3.txt).

Since we have not applied any protocol specification, all messages are colored blue.

As any other visualization tool, interaction techniques are important; especially when

dealing with large graphs. Filters are very useful in exploring large graphs and to satisfy

the user’s interest pertaining to a certain portion of the graph. We now discuss the results

on applying the different filters to the graph.

Range Filter

On applying the range filter, the graph is filtered to display only those processes that

fall within the requested range. We consider an example, where the start process is set to

100 and end process is set to 110. The dialogue box for entering the range is shown in

Figure 4-2. Figure 4-3a and 4-3b shows the resulting graph after applying the range filter.

 41

Examples of a few orphan events are as follows: event numbers 0 and 1 for P100 to P110,

event number 12 and 13 for P100 to P110. Furthermore, E1,....,E393, E408, E413, E414, E419,

E420, E422,...,E424, E426, E430,...,E441 are examples of empty epochs obtained after

applying the range filter.

Figure 4-2: Range filter.

Figure 4-3a: Filtered graph after applying the range filter.

 42

Figure 4-3b: Filtered graph after applying the range filter.

Pickup Filter

The pickup filter enables the user to select the process of interest from a given list of

available processes. To select process of interest for the pickup filter, the UI presents a

list box containing a list of processes as shown in Figure 4-4. Figure 4-5 shows the

resulting graph after applying the pickup filter. In this example processes P0, P3, P10,

P83, P87, P102, P134 and P144 are selected; hence, the filtered graph only displays the

communication pattern between those processes. As depicted in Fig 4-5, the graph

encompasses the following orphan events: 2, 3, 4, 5, 8, 9,....,19 for process P144; 2, 3, 4

for process P102 and P83; 2, 3, 4, 5 for process P87, P3 and P10; 2, 3, 4 for process P102.

 43

Furthermore, E31, E34, E37, E40, E441, E443, E445, E865, E866, E867, E872, E863,....,E868,

E870,....,E875, E1628,....,E1635 and E2579,....,E2615 are examples of empty epochs.

Figure 4-4: A list containing all processes for the pickup filter.

 44

Figure 4-5: Graph after applying the pickup filter.

Showall Filter

The showall filter is designed to work in combination with the pickup filter. On

applying the showall filter, the non-filtered processes of the graph and their

corresponding communication arcs are displayed in a gray color. In other words, the user

can view the entire graph with the filtered processes being highlighted and the non

filtered process being grayed out. A snapshot of this feature is show in Figure: 4-6a and

4-6b. In this graph, process P144 at event number 0 is sending a message to process P0 at

event number 0; process P144 at event number 1 is sending a message to P1 at event

number 1; process P144 at event number 6 is sending a message to P3 at event number 0;

process P144 at event number 166 is sending a message to P83 at event number 0 and

process P144 at event number 422 is receiving from P134 at event number 48. This

 45

communication is displayed in blue as these processes were selected by the pickup filter

while the unfiltered processes and their communication are grayed out.

Figure 4-6a: Result of applying the showall filter.

 46

Figure 4-6b: Result of applying the showall filter.

Hide orphan Events

On checking the hide orphan events checkbox, the orphan events in the graph are

hidden. Hence, the graph would contain only complete events and empty epochs. An

event send (receive) is complete if its corresponding receive (send) node is also in the

graph. In Fig 4-7a events 2, 3, 4 and 5 for P144 are the orphan events. On checking the

hide orphan events checkbox, the orphan events disappear as displayed in Fig 4-7b.

 47

Figure 4-7a: Before hiding the orphan events.

Figure 4-7b: After hiding the orphan events.

 48

Hide Empty Epoch

On checking the hide empty epoch checkbox, all empty epochs in the graph are

removed, thus leaving the graph with complete events and orphan events. Consider the

graph in Figure 4-8a with empty epochs E31, E34 and E37. Figure 4-8b, shows the

resulting graph on hiding the empty epochs.

Figure 4-8a: Before hiding empty epoch.

 49

Figure 4-8b: After hiding empty epoch.

Hide both Orphan Events and Empty Epoch

 On checking both (hide orphan events and hide empty epochs) checkboxes, empty

epochs and orphan events are removed leaving the graph with only complete events as

shown in Figure 4-9a and 4-9b. The hide orphan events or hide empty epochs checkboxes

can be checked if and only if the graph was filtered by applying either range filter or

pickup filter.

 50

Figure 4-9a: Graph after hiding orphan events and empty epochs.

Figure 4-9b: Graph after hiding orphan events and empty epochs.

 51

Protocol Conformance Checking and Strictness Level Violations

 To illustrate the working of protocol conformance checking, we use the following

dataset DES-10-collect.txt containing 10 process components. The corresponding

graph is shown in Figure 4-10a and 4-10b.

Figure 4-10a: Graph containing 10 processes (DES-10-collect.txt).

 52

Figure 4-10b: Graph containing 10 processes (DES-10-collect.txt).

 The protocol constraints are displayed in Figure 4-11. The first specification line in

the Figure 4-11 specifies that any process at any line number can send a message to the

process to its immediate right (less than or equal to P8). To make the constraint a little

more complex we introduce line numbers to the rest of the constraints. The second

constraint specifies that any process except the master P0 at line number 165 can send a

message to any other process at line number 169. The third protocol constraint introduces

an identifier n which denotes the total number of processes (n=10); it specifies that any

process can send a message to its immediate right (less than or equal to P8) except P9

which can send only to the master P0 (190 and 90 being the corresponding line numbers

for the send and receive processes). Finally the last protocol constraint specifies that

process P9 at line number 190 can send a message only to master P0 at line number 90.

 53

Figure 4-11: A protocol specification.

 Upon applying the protocol specification to the graph in 4-10a and 4-10b, it is redrawn

as shown in Figure 4-12a and 4-12b. Strictness level 0 is defined as follows: if a message

violates a protocol line i, it must match atleast one protocol line to avoid violating the

protocol. Since strictness level 0 is the default strictness level, it is applied to the graph

when the protocol specification file is initially loaded and applied. All the messages that

match the specification are colored green with violations colored in red. A protocol result

for strictness level 0 is shown in Figure 4-13.

 54

Figure 4-12a: After applying strictness level 0.

Figure 4-12b: After applying strictness level 0.

 55

Figure 4-13: Protocol results for strictness level 0.

 Strictness level 1 is defined as follows: a message can match 0 or more protocol lines

i with 0 violations to avoid violating the protocol. On applying strictness level of 1,

some messages which are colored green in Figure 4-12a are changed to orange and

messages that are colored red in Figure 4-12b are changed to orange. All messages that

are changed to orange color indicate that they have violated strictness level of 1. The

resulting graph after applying strictness level 1 is shown in Figure 4-14a and 4-14b. A

protocol result for strictness level 1 is shown in Figure 4-15.

 56

Figure 4-14a: After applying strictness level 1.

Figure 4-14b: After applying strictness level 1.

 57

Figure 4-15: Protocol results for strictness level 1.

 Similarly, when strictness level 2 is applied, all messages that violates the strictness

level in Figure 4-12a and Figure 4-12b are changed to orange. The resulting graph, after

applying strictness level 2 is shown in Figure 4-16a and Figure 4-16b. Strictness level 2 is

defined as follows: a message must match atleast one protocol lines i with 0 violations to

avoid violating the protocol. A protocol result for strictness level 2 is shown in Figure 4-

17.

 58

Figure 4-16a: After applying strictness level 2.

Figure 4-16b: After applying strictness level 2.

 59

Figure 4-17: Protocol results for strictness level 2.

 Strictness level 3 is defined as follows: a message must match exactly only one

protocol line i with 0 violations to avoid violating the protocol. Strictness level 3 really

requires a “fully specified” protocol constraint specification. Figure 4-18a and 4-18b are

the graphs obtained on applying strictness level of 3. The graph is similar to the previous

resulting graph obtained after applying strictness level 1 or strictness level 2.

Furthermore, the message from P9 at event number 10 to P0 at event number 8 with

epoch number E14 is colored orange as it violates strictness level of 3. A protocol result

for strictness level 3 is shown in Figure 4-19.

 60

Figure 4-18a: After applying strictness level 3.

Figure 4-18b: After applying strictness level 3.

 61

Figure 4-19: Protocol results for strictness level 3.

Node Level Tool Tip

This feature is used to display information about the send nodes and send or receive

nodes of orphan events. Upon clicking the node of process P5 at event number 0, the

node level information such as its destination, source, epoch number, event numbers

along with protocol results are displayed. Since the message matches a protocol line, the

corresponding protocol constraint is also displayed. This is illustrated in Figure 4-20.

 62

Figure 4-20: Node info.

 63

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we developed a graph visualization tool that visualizes log data from

message passing systems. The graph structure is similar to Lamport space-time diagram

[5] containing a set of process components and communication taking place between the

process components. We also implemented a protocol conformance checking algorithm

which enables the user to write a protocol specification file containing a list of constraints

that the messages should satisfy. The tool includes interaction techniques such as spot

zoom, node level tip and filter options to reduce the amount of information displayed on

the screen and also to navigate through the graph in an effective manner especially when

the graph is large. The tool was effectively tested against huge log files containing as

much as 145 processes with 3,744 epochs and 7,488 vertices. The messages in the graph

were checked against simple protocol constraints and finally with a complex one that

contains line numbers. These messages were also tested at different strictness levels to

ensure the correctness of the protocol conformance checking.

Future Work

The following list contains possible feature enhancements that could be made in

future.

• The tool presently is designed to visualize only one dataset at a time. This may

be extended to support visualization of multiple datasets concurrently.

 64

• Advanced filtering may be supported enabling the user to filter not only by

processes but also by epoch numbers, event numbers or even protocol

conformance results.

• The zoom feature cannot be used to zoom into specific areas of the graph. A

zoom and pan feature may be more effective.

• The graph structure currently supports epochs that separate the execution

interval; the tool may be enhanced to include super epochs. A super epoch is a

consecutive sequence of one more epochs. The use of super epochs in the

approximation of the buffer allocation problem is to reduce the overhead

associated with the barrier synchronization needed after each epoch.

• Currently the graph is drawn based on fixed log file or dataset file, thus

performing an offline analysis. A real time log file evaluation drawing dynamic

graphs would be an interesting enhancement.

 65

REFERENCES

[1] http://www.infovis.org/. (Last visited Feb/ 2010).

[2] http://people.cs.vt.edu/~tripathi/AlgoViz/. (Last visited Feb/ 2010).

[3] A. Brodsky, J.B. Pedersen, and A. Wagner. On the complexity of buffer allocation

in message passing systems. Journal of Parallel and Distributed Computing, vol 65,

No 5 (June) 2005, pages 692-713.

[4] J.B. Pedersen, A. Brodsky, J. Sampson. Approximating the Buffer Allocation

Problem using Epochs. Under the review for the Journal of Parallel and Distributed

Computing, vol 68, No 9 (September) 2008, pages 1263-1282.

[5] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the ACM July 1978 Volume 21 Number 7.

[6] I. Herman, G. Melançon, and M.S. Marshall. Graph Visualization and

Navigation in Information Visualization: a Survey. Visualization and Computer

 Graphics, IEEE Transactions on Volume 6, Issue 1, Jan-Mar 2000 pages: 24-43.

[7] J.B. Pedersen. Multilevel Debugging of Parallel Message passing programs:

Ph.D. Thesis, University of British Columbia, 2003.

[8] D. Kimelman, B. Leban, T. Roth, and D. Zernik. Reduction of Visual

Complexity in Dynamic Graphs, Proceedings of the Symposium on Graph Drawing

GD ’93, Springer–Verlag, 1994.

[9] D.A. Reed, R.A. Aydt, T.M. Madhyastha, R.J. Noe, K.A. Shields, and B.W.

 Schwartz, An overview of the Pablo performance analysis environment,

technical Report, Dept. of Computer Science, University of Illinois, Urbana-

Champaign, 1992.

http://www.infovis.org/�
http://people.cs.vt.edu/~tripathi/AlgoViz/�

 66

[10] N. Stankovic, K. Zhang. Graphical Composition and Visualization of Message

 Passing Programs. Proceedings of Software Visualization Workshop, 1997.

[11] B.B. Bederson and B. Shneiderman (2003). The Craft of Information Visualization:

Readings and Reflections, Morgan Kaufmann ISBN 1-55860-915-6.

[12] W.E. Nagel, A. Arnold, M. Weber, H.-Ch. Hoppe, K. Solchenbach. VAMPIR:

 Visualization and Analysis of MPI Resources. Proceedings of the 21st International

 Supercomputer Conference, June 2006.

[13] http://www.caida.org/tools/visualization/walrus/. (Last visited Feb/ 2010).

[14] K. Fürlinger and D. Skinner. Capturing and Visualizing Event Flow Graphs of MPI

 Applications. In Workshop on Productivity and Performance (PROPER 2009) in

 conjunction with Euro-Par 2009, August 2009.

[15] B. Schaeli, Ali Al-Shabibi and R.D.Hersch. Visual Debugging of MPI

Applications. Proceedings of 15th European PVM/MPI User'Group Meeting

(EuroPVM/MPI), September 2008.

[16] J. Bruck, D. Dolev, C. Ho, M. Rosu, and R. Strong. Efficient Message Passing

Interface (MPI) for Parallel Computing on Clusters of Workstations. Proceedings

of the 7th Annual ACM Symposium on Parallel Algorithms and Architectures,

pages 64-73, July 1995.

[17] K. Kaugars, R. Zanny and E.de Doncker. PARVIS: Visualizing Distributed

Dynamic Partitioning Algorithms. Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications.

http://en.wikipedia.org/wiki/Ben_Shneiderman�
http://en.wikipedia.org/wiki/Special:BookSources/1558609156�
http://www.caida.org/tools/visualization/walrus/�

 67

[18] G.A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V.S. Sunderam.

PVM 3 User’s Guide and Reference Manual, Technical Report ORNL/TM-12187,

Oak Ridge National Laboratory, 1993.

[19] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[20] Formal Systems (Europe) Ltd., Failure-Divergence Refinement. FDR2 User

Manual, 14 June 2005.

[21] J. Pedersen, A. Wagner. PVM-Builder - A Tool for Parallel programming.

 Proceedings of the 5th International Euro-Par Conference, Toulouse, France,

 pages 107-112, August/September 1999.

 68

VITA

Graduate College
University of Nevada, Las Vegas

Arunkumar Sadasivan

Degrees:

 Bachelor of Engineering, Computer Science, 2005
 Anna University, India.

Thesis Title:

 A Visualization Approach for Message Passing in Parallel Computing System

Dissertation Examination Committee:

 Chairperson, Dr. Jan B. Pedersen, Ph. D.
 Committee Member, Dr. Kazeem Taghva, Ph. D.
 Committee Member, Dr. Yoohwan Kim, Ph. D.
 Graduate College Representative, Dr. Henry Selvaraj, Ph. D.

