
UNLV Theses, Dissertations, Professional Papers, and Capstones 

5-1-2013 

A Digital Image Processing Method for Detecting Pollution in the A Digital Image Processing Method for Detecting Pollution in the 

Atmosphere from Camera Video Atmosphere from Camera Video 

Amrita Nikhil Amritphale 
University of Nevada, Las Vegas, amritph2@unlv.nevada.edu 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Computer Sciences Commons 

Repository Citation Repository Citation 
Amritphale, Amrita Nikhil, "A Digital Image Processing Method for Detecting Pollution in the Atmosphere 
from Camera Video" (2013). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1793. 
https://digitalscholarship.unlv.edu/thesesdissertations/1793 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1793?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1793&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


A DIGITAL IMAGE PROCESSING METHOD FOR DETECTING

POLLUTION IN THE ATMOSPHERE FROM CAMERA VIDEO

by

Amrita Amritphale

Bachelor of Engineering (I.T.)

University of Pune,India

2008

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2013



c© Amrita Amritphale, 2013

All Rights Reserved



ii 

 
 

 

 

THE GRADUATE COLLEGE 

 

 

We recommend the thesis prepared under our supervision by 

 

Amrita Amritphale  
 

 

entitled 

 

A Digital Image Processing Method for Detecting Pollution in the Atmosphere from 

Camera Video 

 

 
be accepted in partial fulfillment of the requirements for the degree of 

 

Master of Science in Computer Science 
Department of Computer Science 

 

Evangelos Yfantis, Ph.D., Committee Chair 

 

John Minor, Ph.D., Committee Member 

 

Hal Berghel, Ph.D., Committee Member 

 

Jacimaria Batista, Ph.D., Graduate College Representative 

 

Tom Piechota, Ph.D., Interim Vice President for Research &  

Dean of the Graduate College 

 

May 2013 



Abstract

In this thesis we examine the use of digital cameras to detect the magnitude of atmospheric pol-

lution present in the atmosphere. Digital cameras are inexpensive and are being used in countless

areas, many of which are outdoors and very public. For example, we see digital cameras located

at street intersections, city and state parks, and recreation areas. The theory presented in this

paper could help agencies to monitor air quality at any of these sites. Our theory is based on how

certain molecules and particles that are present in clean air absorb, luminesce, refract, reflect, or

scatter the red, green, and blue (RGB) visible light spectrum in a measurable manner. The longer

wavelength components (red side) of visible light through the atmosphere are scattered less than the

shorter wavelength components (blue side). The blue component is scattered more than the other

color components (and, thus, is responsible for our blue sky). The longer wavelength components

of visible light are also refracted less than the shorter wavelength components. The presence of cer-

tain pollutants and suspended particles in air will cause different levels of absorption, re-emission,

refraction, or scattering in the RGB spectrum than that for cleaner air.

iii



Acknowledgements

”I am thankful to my thesis supervisor, Dr. Evangelos Yfantis, Professor, Department of Computer

Science UNLV, for his guidance, support, motivation and encouragement throughout the period

this work was carried out. His readiness for consultation at all times, his educative comments, his

concern and assistance with practical things have been invaluable.

I am grateful to have Dr. John Minor, Dr. Hal Berghel and Dr. Jacimaria Batista in this thesis

committee and for their help and guidance. I also thank the other staff members of my department

for providing me the necessary opportunities for completion of this thesis.”

Amrita Amritphale

University of Nevada, Las Vegas

May 2013

iv



Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Figures vii

1 Introduction 1

1.1 Digital Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Wavelet Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Light Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Light in the Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.2 Scattering of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 8

2.1 Interaction of Light and Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Transport and Transformation of Atmospheric particulates and gases affecting visibility 12

2.3 Atmospheric Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Measurement of Scattering and Extinction . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Particle concentration and visibility trends . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Identification of sources Contributing to Visibility Impairment . . . . . . . . . . . . 14

2.6.1 Human Perception of Visual Air Quality . . . . . . . . . . . . . . . . . . . . . 15

3 Exploratory Analysis and Classification Vector Formulation 17

3.1 Digital Image Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Haar Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



3.2.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Variance-Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Variance/ Probability Distribution . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Variance-Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.4 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Histogram Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Conclusion 29

Appendix A Variance Co-Variance Calculation 30

A.1 MainForm.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.2 RGBPixel.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.3 VCVMatrix.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Appendix B Histogram and Haar Wavelet Implementation 39

B.1 MainForm.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

B.2 RGBPixel.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B.3 BinaryTree.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.4 BinaryTreeNode.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.5 FilterRGB.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.6 ImageProcess.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.7 Variance-covariance.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.8 Histogram.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

References 97

Vita 99



List of Figures

1.1 Vector representation of colors [20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Light wave. This picture is made by Amrita N. Amritphale. . . . . . . . . . . . . . . 4

1.3 Low frequency - High frequency portions in Visible Light Spectrum. This picture is

made by Amrita N. Amritphale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Scattering of Sunlight [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Blue sky [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 White cloud [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Haze in Grand Canyon south rim. This picture is taken by Amrita N. Amritphale. . 7

2.1 Seward bay area. Notice the brightly colored river.This picture is taken by Amrita

N. Amritphale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Captured at Denali national park. Observe the sunlight effects added to the back-

ground mountains and sky. This picture is taken by Amrita N. Amritphale. . . . . . 9

2.3 Electromagnetic Spectrum [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Apple appear red.This picture is made by Amrita N. Amritphale . . . . . . . . . . . 11

2.5 Unpolluted sky.This picture is taken by Amrita N. Amritphale . . . . . . . . . . . . 12

2.6 Polluted sky.This picture is taken by Amrita N. Amritphale. . . . . . . . . . . . . . . 12

2.7 Uniform Haze [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Stagnant air mass over a period of days . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Histogram of Seward Bay(figure 2.1) image . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Haar wavelet decomposition of an image . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Working of Horizontal and Vertical pass to get high and low component of an image 21

3.4 Result of Haar wavelet applied to an image. In this example, the red component of

an image is shown after horizontal and vertical passes . . . . . . . . . . . . . . . . . 22

3.5 Haar wavelet applied to Image1 as unpolluted and Image2 as polluted . . . . . . . . 22

vii



3.6 Implementing Haar Wavelet with the help of binary tree . . . . . . . . . . . . . . . . 23

3.7 Variance-covariance matrix and correlation values for polluted image . . . . . . . . . 26

3.8 Result presenting the standard deviation and average of red, green and blue of an

Image1(unpolluted) and Image2(polluted) . . . . . . . . . . . . . . . . . . . . . . . . 27

3.9 Histogram of unpolluted(Image1) and polluted(Image1) sky . . . . . . . . . . . . . . 28



1 Introduction

The only reason Earth can sustain life is because of its atmosphere, which keeps air readily available

for chemical reactions. A number of different gases, including oxygen, make up the Earth’s atmo-

sphere in a mixture that keeps plants, animals and people alive. In addition to sustaining life, air

plays a role in many other important functions that are best performed when air quality is high.

Air is important to humankind and so is its quality. Air pollutants can cause a variety of health

problems - including breathing problems, asthma, reduced lung function and lung damage. Air

pollution can also irritate the eyes, nose and throat, and reduce resistance to colds and other illnesses.

Air pollution can be especially harmful to the very young, the very old, and those with certain

preexisting medical conditions. Air pollution also causes reduce in visibility, damages to buildings

and other landmarks, harms trees, lakes and animals. In many countries pollution is the biggest

issue.

There are many researches done in environmental analysis and how pollutants affect the atmosphere

around us (like [7] [11] [5]). However very few give an easy and inexpensive way by which one can

analyse the air quality we breath. In this chapter we will briefly look into the basic concepts used

to prove the theory which is highly based on digital image and environmental science.

1.1 Digital Image

The basic way of representing a digital colored image in a computer’s memory is a bitmap. A bitmap

is constituted of rows of pixels. Each pixel has a particular value which determines its appearing

color. This value is qualified by three numbers giving the decomposition of the color in the three

primary colors Red, Green and Blue. Any color visible to human eye can be represented this way.

The decomposition of a color in the three primary colors is quantified by a number between 0 and

255. For example, white will be coded as R = 255, G = 255, B = 255; black will be known as (R,G,B)

= (0,0,0); and say, bright pink will be : (255,0,255). In other words, an image is an enormous two

1



dimensional array of color values of pixels, each of which is coded on 3 bytes, representing the three

primary colors. This allows the image to contain a total of 256x256x256 = 16.8 million different

colors. This technique is also known as RGB encoding, and is specifically adapted to human vision.

With cameras or other measuring instruments we are capable of seeing thousands of other colors,

in which cases the RGB encoding is inappropriate. The range of 0-255 was agreed for two good

reasons: The first is that the human eye is not sensible enough to make the difference between more

than 256 levels of intensity (1/256 = 0.39%) for a color. That is to say, an image presented to a

human observer will not be improved by using more than 256 levels of gray (256 shades of gray

between black and white). Therefore 256 seems enough quality. The second reason for the value of

255 is obviously that it is convenient for computer storage. Indeed on a byte, which is the computers

memory unit, can be coded up to 256 values.

In a bitmap, colors are coded on three bytes representing their decomposition on the three primary

colors. We can interpret colors as vectors in a three dimension space where each axis stands for one

of the primary colors as shown in figure 1.1.

1.2 Wavelet Transformation

The wavelet transformation has emerged as a cutting edge technology, within the field of signal and

image analysis. As mentioned in [16] and [17], Wavelets are a mathematical tool for hierarchically

decomposing functions. Though rooted in approximation theory, signal processing, and physics,

wavelets have also recently been applied to many problems in computer graphics. Mathematical

transformations are applied to an image to obtain further information from that image that is not

readily available in the original image. The most distinguished information is hidden in the frequency

content of an image. The frequency SPECTRUM of a image is basically the frequency components

(spectral components) of that image. The frequency spectrum of an image shows what frequencies

exist in an image.

Intuitively, we all know that the frequency is something to do with the change in rate of something.

If something ( a mathematical or physical variable, would be the technically correct term) changes

rapidly, we say that it is of high frequency, where as if this variable does not change rapidly, i.e., it

changes smoothly, we say that it is of low frequency. If this variable does not change at all, then

we say it has zero frequency, or no frequency. For example the publication frequency of a daily

newspaper is higher than that of a monthly magazine (it is published more frequently). How do

we find the frequency content of an image? One of the ways is Haar wavelet transform , which is

2



Figure 1.1: Vector representation of colors [20]

explained in Chapter 3 in more detail.

1.3 The Atmosphere

The atmosphere is the mixture of gas molecules and other materials surrounding the earth. It is

made mostly of the gases nitrogen (78%), and oxygen (21%). Argon gas and water (in the form of

vapor, droplets and ice crystals) are the next most common things. There are also small amounts of

other gases, plus many small solid particles, like dust, soot and ashes, pollen, and salt from ocean.

The composition of the atmosphere varies, depending on the location, weather, and many other

things. There may be more water in the air after a rainstorm, or near the ocean. Volcanoes can put

large amounts of dust particles into the atmosphere. Pollution can add different gases or dust and

soot. The atmosphere is densest (thickest) at the bottom, near the Earth. It gradually thins out as

you go higher and higher up. There is no sharp break between the atmosphere and space.

3



1.4 Light Waves

Light is a kind of energy that radiates, or travels, in waves. Many different forms of energy travel

in waves. For example, sound is a wave of vibrating air. Light is a wave of vibrating electric and

magnetic fields. It is one small part of a larger range of vibrating electromagnetic fields. This range is

called the electromagnetic spectrum. Electromagnetic waves travel through space at 299,792 km/sec

(186,282 miles/sec). This is called the speed of light.

Figure 1.2: Light wave. This picture is made by Amrita N. Amritphale.

The energy of the radiation depends on its wavelength and frequency. Wavelength is the distance

between the tops (crests) of the waves. Frequency is the number of waves per second. Longer the

wavelength of the light, lower the frequency, and the less energy it contains.

Reflection is one of the methods to control light. Another one is called refraction. When light that is

traveling through one substance, such as air, hits another substance, such as the glass of a window,

this juncture is called an interface. Refraction occurs when light bends at such an interface.

1.4.1 Light in the Air

Light travels through space in a straight line as long as nothing disturbs it. As light moves through

the atmosphere, it continues to go straight until it bumps into a bit of dust or a gas molecule.

Then what happens to the light depends on its wave length and the size of the thing it hits. The

interaction of light with matter can result in one of three wave behaviors: absorption, transmission,

and reflection. Dust particles and water droplets are much larger than the wavelength of visible

light. When light hits these large particles, it gets reflected, or bounced off, in different directions.

The different colors of light are all reflected by the particle in the same way. The reflected light

appears white because it still contains all of the same colors.

4



If light hits the molecules present in the atmosphere which have smaller wavelength than the visible

light it acts differently. Some of the light gets absorbed by such molecules. These molecules then

radiate the light in a different direction. The different colors of light are affected differently. Higher

frequency colors in light are absorbed more often than the lower frequencies.

1.4.2 Scattering of light

The atmosphere is a gaseous sea that contains a variety of types of particles; the two most common

types of matter present in the atmosphere are gaseous nitrogen and oxygen. These particles are

most effective in scattering the higher frequency and shorter wavelength portions of the visible light

spectrum. This scattering process involves the absorption of a light wave by an atom followed by re

emission of a light wave in a variety of directions. The amount of multi- directional scattering that

occurs is dependent upon the frequency of the light. So as the white light (ROYGBIV) from the

sun passes through the atmosphere, the high frequencies (Blue) become scattered by atmospheric

particles while the lower frequencies (Red, Green) are most likely to pass through the atmosphere

without a significant alteration in their direction.

Figure 1.3: Low frequency - High frequency portions in Visible Light Spectrum. This picture is
made by Amrita N. Amritphale.

In the figure 1.4, sunlight comes into the atmosphere and can be scattered in any direction as it

5



Figure 1.4: Scattering of Sunlight [21]

passes through a medium. This diffuses the light spreading it out in all directions so it is not just

a single, straight beam. There are three different types of scattering: Rayleigh scattering, Mie

scattering, and non-selective scattering.

Rayleigh scattering mainly consists of scattering from atmospheric gases. Gas molecules are smaller

than the wavelength of visible light. If light bumps into them, it acts differently. When light hits

a gas molecule, some of it may get absorbed. After awhile, the molecule radiates (releases, or gives

off) the light in a different direction. The color that is radiated is the same color that was absorbed.

The different colors of light are affected differently. All of the colors can be absorbed. But the higher

frequencies (blues) are absorbed more often than the lower frequencies (reds). Because of Rayleigh

scattering, the sky appears blue ( as in the figure 1.5 ). This is because blue light is scattered around

four times as much as red light, and UV light is scattered about 16 times as much as red light.

Figure 1.5: Blue sky [21]

Mie scattering is caused by pollen, dust, smoke, water droplets, and other particles in the lower

portion of the atmosphere. It occurs when the particles causing the scattering are larger than the

6



wavelengths of radiation in contact with them. Mie scattering is responsible for the white appearance

of the clouds (as seen in figure 1.6). The effects are also wavelength dependent.

Figure 1.6: White cloud [21]

The last type of scattering is non-selective scattering. It occurs in the lower portion of the atmosphere

when the particles are much larger than the incident radiation. This type of scattering is not

wavelength dependent and is the primary cause of haze. Figure 1.7 shows Grand Canyon haze.

Figure 1.7: Haze in Grand Canyon south rim. This picture is taken by Amrita N. Amritphale.

7



2 Background

Historically, Visibility has been defined as the greatest distance at which an observer can just see a

black object viewed against the horizon sky. An object is usually referred to as at threshold contrast

when the difference between the brightness of the sky and brightness of the object is reduced to such

a degree that an observer can just barely see the object. Nevertheless, visibility is more than being

able to see a black object at a distance for which the contrast reaches a threshold value. Visibility is

more closely associated with conditions that allow appreciation of the inherent beauty of landscape

features. It is important to recognize and appreciate the form, contrast detail, and color of near and

distant features. Because visibility includes a psychophysical process and concurrent value judgment

of visual impacts, as well as the physical interaction of the light with particles in the atmosphere, it

is of interest to:

• understand the psychological process involved in viewing a scenic resource,

• specify and understand the value that an observer places on visibility and

• be able to establish a link between the physical and psychological process.

Figure 2.1: Seward bay area. Notice the brightly colored river.This picture is taken by Amrita N.
Amritphale.

8



Figure 2.2: Captured at Denali national park. Observe the sunlight effects added to the background
mountains and sky. This picture is taken by Amrita N. Amritphale.

Introduction of particulate matter and certain gases into the atmosphere interfaces with the ability

of an observer to see landscape features. Monitoring, modeling and controlling sources of visibility-

reducing particulate matter and gases depend on scientific and technical understanding of how these

pollutants:

• interact with light

• transform from a gas into particles that impair visibility and,

• are dispersed across land masses and into canyons and valleys.

One of our principal contacts with the world around us is through light. Not only are we personally

dependent on the light to carry visual information, but also much of what we know about stars

and the solar system is derived from light waves registering on our eyes and on optical instruments.

Light can be thought of as waves and to a certain extent they are analogous to water and sound

waves. Waves of all kinds, including light waves, carry energy. Electromagnetic energy is unique in

that energy is carried in small, discrete parcels called photons. Schematic representations of a blue,

red and green photons are shown in figure (2.3). Blue, green and red photons have wavelengths

of around 0.45, 0.55 and 0.65 microns, respectively. The color properties of light depend on its

behaviour both as waves and as particles.

Colors created from white light by passing it through a prism, are a result of the wave like nature

9



Figure 2.3: Electromagnetic Spectrum [19]

of light. A prism separates the colors of light by bending ( refracting) each color to a different

degree. Colors in a rainbow are the result of water droplets acting like small prisms, dispersed

through the atmosphere. Each water droplet refracts light into the component colors of the visible

spectrum. More commonly, the colors of light are separated in other ways. When light strikes an

object, certain color of photons are captured by molecules in that object. Different types of molecules

capture photons of different colors. The only colors we see are those photons that the surface reflects.

For instance chlorophyll in leaves captures red and blue light and allows green photons to bounce

back , thus providing green appearance of leaves. Nitrogen dioxide, gas emitted into the atmosphere

by combustion sources, captures blue photons. Consequently, nitrogen dioxide gas tends to look

reddish brown. Figure 2.4 shows an apple reflects mostly red light while absorbing all others, so the

apple, to an eye-brain system, appears to be red. It is important to understand the significance of

the light that is scattered in the sight path toward the observer. The amount of light scattered by

atmosphere and particles between the object and observer can be so bright and dominant that the

light reflected by landscape features becomes insignificant. This is somewhat analogous to viewing

a candle in a brightly lit room and in a room that would otherwise be in total darkness. In the first

case, the candle can hardly be seen, while in other it becomes the dominant feature in the room.

10



Figure 2.4: Apple appear red.This picture is made by Amrita N. Amritphale

2.1 Interaction of Light and Particles

A photon ( light particle) is said to be scattered when it is received by a particle and re-radiated

at the same wavelength in any direction. Visibility degradation results from light scattering and

absorption by atmospheric particles and gases that are nearly the same size as the wavelength of

the light. Particles somewhat larger than the wavelength of light can scatter light as a result of

Diffraction, Refraction and Phase shift.

The efficiency with which a particle can scatter light and the direction in which the incident light

is redistributed are dependent on all three of these effects and absorption effect. If the particles are

small, the amount of light scattered in the forward and backward directions are nearly the same.

As the particle size increases in size, more light tends to scatter in the forward direction. Very

small particles and molecules are very insufficient at scattering light. As particle increases in size, it

becomes a more efficient light scatter until, at a size that is close to the wavelength of the incident

light, it can scatter more light than a particle five times its size. It is this scattering phenomenon

that is responsible for the colors of hazes in the sky. The sky is blue because blue photons, with

their shorter wavelengths, are nearer the size of molecules that make up the atmosphere than are

their green and red counterparts. Thus blue photons are scattered more efficiently by air molecules

than red photons and as a consequence, the sky looks blue.

When the red, blue and green photons of white light strike small particles, only blue photons are

11



scattered because scattering efficiency is greatest when the size relationship of photon wavelength

to particle is close to 1:1. The red and green photons pass on through the particles. To an observer

standing to the side of particle concentration, the haze would appear to be blue. When the particles

are about the same size as incoming radiation, all photons are scattered equally and the haze would

appear to be gray or white.

The camera can be an effective tool in capturing the visual impact that pollutants have on a visual

resource. The following pictures show polluted blue sky Figure 2.6 and unpolluted sky Figure 2.5.

Figure 2.5: Unpolluted sky.This
picture is taken by Amrita N. Am-
ritphale

Figure 2.6: Polluted sky.This pic-
ture is taken by Amrita N. Amrit-
phale.

Carbon absorbs all wavelengths of light and scatters very little. Thus the scene will always tend to

be darkened. NO2 on other hand absorbs blue photons and thus the result will be dark brown.

2.2 Transport and Transformation of Atmospheric particulates and gases

affecting visibility

Understanding how air moves across the oceans and land masses is key to understanding how pol-

lutants are transported and transformed as they move from their source to locations where they

impair visibility.

Meteorological factors, such as wind, cloud cover, rain and temperature are interesting in that they

are affected by pollution and they in turn affect pollution. The rate at which pollutants are converted

to other pollutants- sulfur dioxide gas to sulfate particles or nitrogen oxides and hydrocarbons to

ozone- is determined by the availability of sunlight and presence or absence of clouds.

Heating of the earths surface and the resultant vertical temperature profile determine whether pol-

lutants are dispersed or mixed vertically. A second and important process for mixing of the earths

12



atmosphere is wind and the resultant mechanical mixing when wind passes over surface structures

such as tall buildings or mountainous terrain. Some of the cleanest air is found on the windiest

day. Pollutants emitted that are well mixed will appear as a uniform haze. This is shown in figure

2.7. When pollutants are emitted into stable atmosphere, usually one of the two things will happen,

depending on whether there is surface wind or not. If a wind is present, the emitted pollutants

usually form a plume. If there is no surface wind or if pollutants are emitted into a stagnant air

mass over a period of days, a condition as shown in figure 2.8 can occur. A layer of haze forms

near the ground and continues to build as long as the stagnation condition persists. Layered hazes

are usually associated with emissions that are local in nature as opposed to pollutants that are

transported over hundreds of kilometers.

Figure 2.7: Uniform Haze [18]
Figure 2.8: Stagnant air mass over
a period of days

2.3 Atmospheric Chemistry

Particulates and gases in the atmosphere can originate from natural or man-made sources. The

ability to see and appreciate a visual resource is limited, in the unpolluted atmosphere, by light

scattering molecules that make up the atmosphere. These molecules are primarily nitrogen and

oxygen along with some trace gases such as argon and hydrogen. Other forms of natural aerosol

that limit our ability to see are condensed water vapor, wind-blown dust and organic aerosols such

as pollen and smoke from wildfires.

Aerosols, whether they are manmade or natural, are said to be primary or secondary in nature.

Primary refers to gases or particles emitted from a source directly, while secondary refers to airborne

dispersions of gases and particles formed by atmospheric reactions of precursor or primary emissions.

Near a source (within 0-100 km), such as an urban center, power plant or other industrial facilities,

haze is usually a mixture of gases and secondary and primary aerosols. After these pollutants have

13



been transported hundreds of kilometers, gaseous emissions have either deposited to aquatic or

terrestrial surfaces or converted to secondary aerosols. Thus in remote areas of the United States,

man-made components of haze are usually composed of secondary particles. However in some parts

of the forested United States, fire emissions can contribute significantly to primary carbon particles.

2.4 Measurement of Scattering and Extinction

The scattering coefficient is a measure of the ability of particles to scatter photons out of the beam

of light, while the absorption coefficient is a measure of how many photons are absorbed. Each

parameter is expressed as a number proportional to the amount of photons scattered or absorbed

per distance. The sum of scattering and absorption is referred to as extinction or attenuation.

2.5 Particle concentration and visibility trends

There are and have been a number of particle and visibility monitoring programs implemented

in the United States, most notably the Interagency Monitoring of Protected Visual Environments

(IMPROVE) and the National Weather Service (NWS) program. The IMPROVE program, by

design, has its focus on non-urban environments, while the NWS program was carried out at airports

across the United States.

The outstanding feature of all four geographic areas is a similar seasonal trend in the total fine mass

concentration represented as the sum of the aerosol species, in the concentration represented as the

sum of aerosol species and in the concentration of each individual species. The highest fine mass

concentration occurs in summer while winter has the lowest. Concentrations of sulfates and organics

have similar trends in all four areas.

Nitrates tend to be higher in winter and spring than in summer and fall. Trends in soil are variable,

while element carbon shows little variation from season to season. Sulfates are by far the largest

contributor to fine mass in the eastern United States, while in the Northwest organics contribute

most to fine mass. Nitrates edge out organics and sulfates in southern California, while in the

southwest sulfates, organics and soil all contribute equally to fine mass.

2.6 Identification of sources Contributing to Visibility Impairment

Goal of identifying the particles affecting visibility is to reduce their concentration and thereby

improve the seeing of land-scape features. It becomes necessary to identify the sources emitting

14



the precursor pollutants that form visibility reducing particles. There are generally two ways to go

about this.

The model must predict transport of gases such as sulfur dioxide, nitrogen dioxide and reactive

hydrocarbons, convert them into secondary particles, deposit them as wet and dry deposition and

form estimates of size and composition of concentration that affect visibility. Since the model will

only be as accurate as the emission estimates that are input into the model, it is crucial to develop an

accurate emission inventory. These types of models are referred to as deterministic or first principle

source-oriented models. They tend to capture only broad-scale temporal and spatial characteristic

of haze formation and are computer intensive.

Diagnostic receptor-oriented models have evolved as a clear alternative to source-oriented disper-

sion models. Receptor models start with the measurement of specific features in order to develop

estimates of aerosol contributions of specific source types and/or source locations. In a most gen-

eral sense, geographic regions with high emissions will have high particle loadings. For instance,

high sulfur dioxide emissions will be associated with high ambient sulfate concentrations and sulfate

deposition, and conversely low emissions will correlate with low ambient concentrations. In North

America, about 27% of emitter sulfur dioxide is dry deposited, 34% wet deposited and 39% re-

mains in the atmosphere and is eventually exported from continent primarily to the Atlantic ocean.

The single largest source of sulfur dioxide is the electric utility industry ( coal-fired power ), while

sources of nitrogen oxides are nearly evenly split between utility industry and transportation. Most

hydrocarbons gases are emitted by transportation sources.

2.6.1 Human Perception of Visual Air Quality

A major challenge in establishing visibility values is to develop ways of quantitatively measuring

visibility impairment as perceived by the human eye. Quantification of visual impairment of scenic

resource requires two crucial components:

• The establishment of the level of air pollution that is just noticeable.

• A determination of the functional relationship between air pollution and perceived visual air

quality.

The first goal is important when it is necessary to quantitatively specify visible pollution under a

given atmospheric condition. The second object is important when trying to access the societal value

of clean air, whether it be social, psychological or economical. The first step in assessing values is

15



to understand the relationship between perceived changes in visual air quality and an appropriate

physical parameter, such as vista contrast or atmospheric extinction. For example, if a visitor is

willing to pay $5 for a given decrease in atmospheric extinction ( air pollution) at the Grand Canyon,

but is unwilling to pay that same amount for a similar decrease at some other park, is it because

a) the person values scenic resource differently at two parks or b) the perceived change in visual air

quality is different at the two parks? That is , at one national park a given decrease in extinction

can readily be seen, while at the other park same decrease might go unnoticed.

16



3 Exploratory Analysis and

Classification Vector Formulation

The sky is blue because blue photons, with their shorter wavelengths, are closer to the size of

molecules that make up the atmosphere than their green and red counterparts. Thus blue photons

are scattered more efficiently by air molecules than red and green photons and as a consequence, the

sky looks blue. Alternatively, the atmosphere is the mixture of gas molecules and other materials

surrounding the earth. It is made mostly of the gases nitrogen (78%), and oxygen (21%). Thus

when light passes through atmosphere red and green components gets filtered out. However the

blue component does not get filtered out. Due to its shorter wavelength it is then absorbed by the

gas molecules. The absorbed blue light is then radiated in different directions. It gets scattered all

around the sky. Hence sky appears blue.

3.1 Digital Image Histogram

Digital image pixel tonality (darkness, lightness) for 24 bit RGB color is expressed as a number

between 0 and 255. 0 equals pure black and 255 equals pure white. The mid point at about 127

would be the equivalent of middle gray in density. An image histogram is a type of histogram that

acts as a graphical representation of the tonal distribution in a digital image. It plots the number of

pixels for each tonal value. The horizontal axis of the graph represents the tonal variations, while

the vertical axis represents the number of pixels in that particular tone. By looking at the histogram

for a specific image, entire tonal distribution can be analyzed at a glance.

To analyze patterns among different blue sky images, red, green , blue or mixed histogram can be

drawn as polygons. To draw the polygon, first get all red, green and blue pixels in an image. As

any image lies in the visibility spectrum, every pixel has a value between 0 to 255. Determine how

many times each pixel value appears in its respective red, green and blue channels. Store these

17



values in an array (PixelCount[ ]). Get the value which appears the maximum number of times for

each color. This value represents the height of a polygon (iMax). To display the polygons of each

color, create initial and final points in the left-bottom and right-bottom of the rectangle in which

it has to be displayed. Compute the scaling factor so that it will fit in the given rectangle. Scaling

factors can be computed for height and width. For scaling height (fheight), the formula should

be rectangle’s height divided by height of polygon (iMax).For scaling width (fwidth), the formula

should be rectangle’s width divided by 256. These scaling factors can be used to find the X and Y

coordinates of a polygon. As pixels lie in between 0 and 255, there will be a total of 256 points.

The x-coordinate of a point can be computed as-

(i * fwidth) + Rectangle’s x-coordinate of the left edge , where i = 0 to 255

And Y-coordinate of a point can be computed as-

Rectangle’s bottom y-coordinate (Height) - ( fheight * PixelCount[i] ) , where i = 0 to 255

After generating scaled points based on histogram data, polygons can be drawn for each red, green

and blue channel or for all channels at the same time. Figure 3.1 shows the histogram of figure

2.1 in chapter 2. Notice how the intensity distribution for each color channel varies drastically in

regions of nearly pure color. Histogram in figure 3.1 is generated by the program given in appendix B.

3.2 Haar Wavelet

An image is represented as a two-dimensional array of coefficients, each coefficient representing the

brightness level in that point. When looking from a higher perspective, we can’t differentiate between

coefficients as more important ones, and lesser important ones. But thinking more intuitively, we

can. Most natural images have smooth color variations, with the fine details being represented as

sharp edges in between the smooth variations. Technically, the smooth variations in color can be

termed as low frequency variations and the sharp variations as high frequency variations.

The low frequency components (smooth variations) constitute the base of an image, and the high

frequency components (the edges which give the detail) add upon them to refine the image, thereby

giving a detailed image. Hence, in this case we will focus more on the detailed image than the

smooth variations. Separating the smooth variations and details of the image can be done in many

ways. One such way is the decomposition of the image using a Haar wavelet transform.

18



Figure 3.1: Histogram of Seward Bay(figure 2.1) image

A Haar wavelet transform can be used to get the high frequency and low frequency components of

red, green or blue pixels of an image. The procedure goes like this. A low pass filter and a high

pass filter are chosen, such that they exactly halve the frequency range between themselves. This

filter pair is called the Analysis Filter pair. First, the low pass filter is applied to each row of data,

thereby getting the low frequency components of the row. But since the lpf (low pass filter) is a

half band filter, the output data contains frequencies only in the first half of the original frequency

range. So, by Shannon’s Sampling Theorem, they can be subsampled by two, so that the output

data now contains only half the original number of samples. Now, the high pass filter is applied to

the same row of data, and similarly the high pass components are separated, and placed by the side

of the low pass components. This procedure is done for all rows.

Next, the filtering is done for each column of the intermediate data. The resulting two-dimensional

array of coefficients contains four bands of data, each labelled as LL (low-low), HL (high-low), LH

(low-high) and HH (high-high) with most of the energy concentrating in LL subband. The LL band

can be decomposed once again in the same manner, thereby producing even more subbands. This

can be done upto any level, thereby resulting in a pyramidal decomposition as shown in figure 3.2.

Row transformation is called horizontal pass and column transformation is called vertical pass. Low

19



Figure 3.2: Haar wavelet decomposition of an image

components can be computed by adding values of adjacent pixels. High components can be computed

by subtracting values of adjacent pixels. Figure 3.3 below shows working of Horizontal and vertical

pass and how image pixels (either red, green and blue) are processed to get high components and

low component repetitively.

Comparison between two sky images can also be done. The result of it looks like figure 3.5 . Observe

that the high-low component of red pixels of an polluted sky image (Image2) has more energy than

high-low component of red pixels of a unpolluted sky image. This is because pollutants provide

discontinuity. Color channels amplitude are higher for polluted image. Thus high-low frequency is

not as similar as low-high and high-high in the case of a polluted image.

3.2.1 Implementation Details

A Haar wavelet can be implemented with the help of a tree structure. The root node will be

represented as the original image. In first pass it will get divided into two parts. The right node

will represent the high frequency component and the left node will represent the low frequency

component of the parent node. The same structure can be added for every new parent node.

After consecutive horizontal and vertical passes, these passes again can be applied to only low-low

frequency components of an image to see the energy distribution among processed image pixels. For

example, similar energy in High-Low and Low-Low-High-Low can be seen. See the figures 3.5 and

3.6.

For displaying low and high frequency components, a pixel value has to be converted to a visible

pixel value. To convert it to a visible pixel, first find min pixel and max pixel values. If min pixel

value is less than 0 then add the absolute value of min pixel value to every pixel value of a processed

20



Figure 3.3: Working of Horizontal and Vertical pass to get high and low component of an image

component.

The equation should be-

visiblepixel[i][j] = pixels[i][j] + absmin (3.1)

Where,

visiblepixel[i][j] is a two dimensional pixel array which has the converted value to display the

processed component , where i and j are the width and height of the processed component.

pixels[i][j] is a two dimensional array which has to be converted, where i and j are the width and

height of the processed component.

absmin is absolute value of minimum pixel value.

If max pixel value is greater than 255 then apply the below equation (3.2) to convert it into a visible

21



Figure 3.4: Result of Haar wavelet applied to an image. In this example, the red component of an
image is shown after horizontal and vertical passes

Figure 3.5: Haar wavelet applied to Image1 as unpolluted and Image2 as polluted

pixel value-

visiblepixel[i][j] =
pixels[i][j]×MAXRGB

nmax
(3.2)

22



Where,

visiblepixel[i][j] is a two dimensional pixel array which has the converted value to display the

processed component , where i and j are the width and height of the processed component.

pixels[i][j] is a two dimensional array which has to be converted, where i and j are the width and

height of the processed component.

MAXRGB is 255 value.

nmax is maximum value in a pixels array, which has processed component pixel values.

Figure 3.6: Implementing Haar Wavelet with the help of binary tree

23



3.3 Variance-Covariance

3.3.1 Variance/ Probability Distribution

Variance is a measure of the variability or diversity in a set of data. Mathematically, it is the average

squared deviation from the mean score. We use the following formula to compute variance. Thus

the larger the diversity the larger will be the variance in RGB color channel in an image.

σ̂2
R′ =

∑C−1
c=0

∑R−1
r=0 (R′cr −R′)2

RC − 1
(3.3)

σ̂2
G =

∑C−1
c=0

∑R−1
r=0 (Gcr −G)2

RC − 1
(3.4)

σ̂2
B =

∑C−1
c=0

∑R−1
r=0 (Bcr −B)2

RC − 1
(3.5)

Where,

R is the total number of rows

C is the total number of columns

R′, G and B are means of the total of red , green and blue color pixels values in an image.

R′cr , Gcr and Bcr are the crth values of red, green and blue color pixels.

σ̂2
R′ , σ̂2

R′ and σ̂2
R′ are the variance or probability distribution of red, green and blue color components

in an image.

3.3.2 Covariance

Covariance is a measure of the extent to which corresponding elements from two sets of ordered data

move in the same direction. We use the following formula to compute covariance.

σ̂R′G =

∑C−1
c=0

∑R−1
r=0 (R′cr −R′)(Gcr −G)

RC − 1
(3.6)

σ̂R′B =

∑C−1
c=0

∑R−1
r=0 (R′cr −R′)(Bcr −B)

RC − 1
(3.7)

σ̂GB =

∑C−1
c=0

∑R−1
r=0 (Gcr −G)(Bcr −B)

RC − 1
(3.8)

24



Where,

R is the total number of rows

C is the total number of columns

R′, G and B are means of the total of red , green and blue color pixels values in an image.

R′cr , Gcr and Bcr are the crth values of red, green and blue color pixels.

σ̂R′G , σ̂R′B and σ̂GB are the covariance of corresponding pixel values in the two sets of color (Red,

green or blue).

3.3.3 Variance-Covariance Matrix

Variance and covariance are often displayed together in a variance-covariance matrix, (aka, a covari-

ance matrix). The variances appear along the diagonal and covariances appear in the off-diagonal

elements, as shown below.

Σ =


σ̂2
R′ σ̂R′G σ̂R′B

σ̂GR′ σ̂2
G σ̂GB

σ̂BR′ σ̂BG σ̂2
B

 (3.9)

Where ,

Σ is a 3 x 3 variance-covariance matrix

σ̂R′G , σ̂R′B and σ̂GB are the covariance of corresponding pixel values in the two sets of color (Red,

green or blue).

σ̂2
R′ , σ̂2

R′ and σ̂2
R′ are the variance or probability distribution of red, green and blue color component

in an Image.

3.3.4 Correlation

Correlation between two colors can be defined as the covariance of two colors divided by the square

root of the variance of color one and color two. Mathematically it can represented as-

ρR′G =
σ̂R′G√

(σ̂2
R′ ∗ σ̂2

G)
(3.10)

ρR′B =
σ̂R′B√

(σ̂2
R′ ∗ σ̂2

R′)
(3.11)

ρGB =
σ̂GB√

(σ̂2
G ∗ σ̂2

B)
(3.12)

25



Where ,

ρR′G is correlation between red and green.

ρR′B is correlation between red and blue.

ρGB is correlation between blue and green.

Below program output shows (figure 3.7 ) variance-covariance matrix and correlation between dif-

ferent colors in a polluted image-

Figure 3.7: Variance-covariance matrix and correlation values for polluted image

3.4 Standard Deviation

Standard deviation (represented by the symbol sigma) shows how much variation or dispersion exists

from the average (mean, or expected value). A low standard deviation indicates that the data points

tend to be very close to the mean; high standard deviation indicates that the data points are spread

out over a large range of values. It can be computed as the square root of variance. The total

energy of red, green and blue channels are represented by its variance. By computing the standard

deviation, we can reconfirm that the energy observed in high-low frequency bands is greater for a

polluted sky in comparison with unpolluted sky (figure 3.5). The more pollutants are present in the

atmosphere, the more diversity it will form in the atmosphere, thus increasing the total energy of

red, green and blue channels. This can be proved by calculating the standard deviation ( square

root of variance). The result (Figure 3.8) shows that the standard deviation of red, green and blue

in Image2 is almost three times more than what is observed in Image1, thus proving that image2

26



has more energy in the RGB channels and has pollutants present.

Figure 3.8: Result presenting the standard deviation and average of red, green and blue of an
Image1(unpolluted) and Image2(polluted)

3.5 Histogram Analysis

From figure 3.5 and standard deviation results, we analysed the RGB energy in Image1 and Image2,

proving image 2 is more polluted. The same can be confirmed by analysing the shift between

red, green and blue histograms of polluted sky and unpolluted sky. The peak in every histogram

represents the average of red, green and blue components in an image. Compare by how many

times the peak has been shifted for a polluted sky in comparison with the unpolluted sky. Figure

3.9 shows the histogram of Image1 unpolluted sky (from Alaska denali national park) and Image2

polluted sky ( in Las Vegas). It can be clearly observed that the histograms of red, green and blue

are overlapping with each other in the case of a polluted sky. On the other hand, histograms of red,

green and blue of the unpolluted sky from alaska shows non-overlapping histograms. This shows that

pollutants which are mixed in the air are causing the red, green and blue components values to be

changed. This is because pollutants present in the atmosphere cause the red and green components

to scatter and attenuate the blue component, thus absorbing the blue component and promoting

the red component. Thus blue component histogram shifts to the left and red histogram shifts to

the right in the case of polluted sky. (See figure 3.9). The more shift, the more polluted the sky.

27



Shift value of these images are also given in figure 3.8.

Figure 3.9: Histogram of unpolluted(Image1) and polluted(Image1) sky

There are many different kinds of pollutants. For example particulates and gases in the atmosphere

can originate from natural or man-made sources , which includes different types of atmospheric

aerosols. Some of them include oil smoke, metallurgical dust, cement dust, smoke, mist, fly ash

etc. These types are mentioned in the reference [13]. If a wind is present, the emitted pollutants

usually form a plume. Pollutants emitted that are well mixed will appear as a uniform haze. Every

pollutant has a different impact when it gets mixed with the air. It disturbs the natural composition

and chemistry of the air. Thus when light passes through such polluted air, it tends to deviate from

its standard behavior, which can be observed in the figures 3.5 and 3.8. However, more research

is needed to analyze which type of pollutants has how much effect on the standard deviation and

high-low frequency component. This can be achieved in the laboratory by passing the pollutants in

a clean air chamber and analysing the behaviour of air when light is passed through it. This analysis

can be done using the program given in the appendix B.

28



4 Conclusion

In this paper we successfully invented methods to detect pollution in the atmosphere. We achieved

this with the help of image processing techniques, which are useful to analyse hidden information in

an image. These methods include-

• Analyzing the RGB color channel histogram of an image

• Analyzing the shift in channels in comparison with an unpolluted sky image

• Analyzing the frequency bands in an image using a Haar wavelet

• Analyzing the standard deviation of energies in comparison with an unpolluted sky image

The result of each of the above mentioned methods supports the findings of all the other methods.

This paper not only explained the theory regarding the aforementioned methods of pollution de-

tection, but also implemented them effectively. Implemented methods are tested on the sky images

from both CMOS and CCD cameras, which showed expected results. This gave the stated theory a

stronger proof of its feasibility, which can be implemented in countless areas.

The second chapter briefly explained about transport and transformation of atmospheric pollutants

and how it changes atmospheric chemistry. From the histogram and haar wavelet results, we can

say that pollutants do affect the color channels (RGB) and their frequency in the atmosphere.

However more research is required to check which type of pollutants cause more standard deviation

and frequency bands to display more energy. This can be achieved in the laboratory, by carefully

observing the air in a chamber and by releasing the pollutants in it.

29



Appendix A Variance Co-Variance

Calculation

A.1 MainForm.cs

u s i n g System ;

using System . C o l l e c t i o n s . Gener ic ;

using System . ComponentModel ;

using System . Data ;

using System . Drawing ;

using System . Linq ;

using System . Text ;

// us ing System . Threading . Tasks ;

using System . Windows . Forms ;

using System . IO ;

using System . C o l l e c t i o n s ;

using System . Drawing . Drawing2D ;

namespace VariantCoVariant

{

public p a r t i a l class MainForm : Form

{

public Image myImage ;

// pu b l i c PDM ImagePDM;

public MainForm ( )

{

In i t i a l i z eComponent ( ) ;

}

30



private void Fi leOpenbtn Cl ick ( object sender , EventArgs e )

{

i f ( openMyFileDialog . ShowDialog ( this ) ==

System . Windows . Forms . Dia logResu l t .OK)

{

foreach ( string fName in openMyFileDialog . FileNames )

{

F i l e I n f o f I n f o = new F i l e I n f o ( fName ) ;

i f ( f I n f o . Ex i s t s )

{

myImage = Image . FromFile ( fName ) ;

}

}

}

PDM ImagePDM = new PDM(myImage ) ;

string t ex t = ”The average o f Red Green and Blue P i x e l s : ” +

ImagePDM.RGB. Avrg Red + ” , ” +

ImagePDM.RGB. Avrg Green + ” , ” + ImagePDM .RGB. Avrg Blue ;

t ex t = text + ”\n The variantCoVariantMatrix i s − \n” ;

double [ ] [ ] PDMMatrix = ImagePDM.GetPDM( ) ;

for ( int i = 0 ; i < 3 ; i++)

{

for ( int j = 0 ; j < 3 ; j++)

{

t ex t = text + PDMMatrix [ i ] [ j ] + ” ” ;

}

t ex t = text + ”\n” ;

}

t ex t = text + ”\n Core l a t i on between Green and Blue : ” +

ImagePDM. CorelationGB ;

text = text + ”\n Core l a t i on between Red and Blue : ” +

ImagePDM. CorelationRB ;

text = text + ”\n Core l a t i on between Red and Green : ” +

31



ImagePDM. CorelationRG ;

richTextBox . Text = text ;

}

}

}

A.2 RGBPixel.cs

u s i n g System ;

using System . C o l l e c t i o n s . Gener ic ;

using System . Linq ;

using System . Text ;

// us ing System . Threading . Tasks ;

using System . IO ;

using System . Drawing ;

using System . Windows . Forms ;

namespace VariantCoVariant

{

class RGBPixel

{

private int [ ] [ ] m RedPix ;

private int [ ] [ ] m GreenPix ;

private int [ ] [ ] m BluePix ;

private S i z e s s i z e ;

public double Avrg Red , Avrg Green , Avrg Blue , t o t a l P i x e l ;

public RGBPixel ( Bitmap CurrentImage )

{

// f i l terRGB = new FilterRGB ;

s s i z e = CurrentImage . S i z e ;

Color [ ] [ ] c l r = null ;

// d e l e t e data in m RedPixel

m BluePix = null ;

32



m GreenPix = null ;

m RedPix = null ;

int [ ] [ ] RedPix = new int [ s s i z e . Width ] [ ] ;

int [ ] [ ] GreenPix = new int [ s s i z e . Width ] [ ] ;

int [ ] [ ] BluePix = new int [ s s i z e . Width ] [ ] ;

c l r = new Color [ s s i z e . Width ] [ ] ;

for ( int i = 0 ; i < s s i z e . Width ; i++)

{

c l r [ i ] = new Color [ s s i z e . Height ] ;

RedPix [ i ] = new int [ s s i z e . Height ] ;

GreenPix [ i ] = new int [ s s i z e . Height ] ;

BluePix [ i ] = new int [ s s i z e . Height ] ;

}//end o f f o r

i f ( CurrentImage != null )

{

for ( int x = 0 ; x < s s i z e . Width ; x++)

{

for ( int y = 0 ; y < s s i z e . Height ; y++)

{

c l r [ x ] [ y ] = CurrentImage . GetPixel (x , y ) ;

RedPix [ x ] [ y ] = c l r [ x ] [ y ] . R;

GreenPix [ x ] [ y ] = c l r [ x ] [ y ] .G;

BluePix [ x ] [ y ] = c l r [ x ] [ y ] . B;

} // end f o r

} // end f o r

}// end o f i f ( CurrentImage != nu l l )

m RedPix = RedPix ;

m BluePix = BluePix ;

m GreenPix = GreenPix ;

}

public int [ ] [ ] GetBluePixel ( )

{

return m BluePix ;

}

33



public int [ ] [ ] GetRedPixel ( )

{

return m RedPix ;

}

public int [ ] [ ] GetGreenPixel ( )

{

return m GreenPix ;

}

public void ComputeAvrgRGB ( )

{

t o t a l P i x e l = s s i z e . Width ∗ s s i z e . Height ;

Avrg Blue = Avrg Green = Avrg Red = 0 ;

for ( int i = 0 ; i < s s i z e . Width ; i++)

{

for ( int j = 0 ; j < s s i z e . Height ; j++)

{

Avrg Red = Avrg Red + m RedPix [ i ] [ j ] ;

Avrg Green = Avrg Green + m GreenPix [ i ] [ j ] ;

Avrg Blue = Avrg Blue + m BluePix [ i ] [ j ] ;

}

}

Avrg Red = Avrg Red / t o t a l P i x e l ;

Avrg Green = Avrg Green / t o t a l P i x e l ;

Avrg Blue = Avrg Blue / t o t a l P i x e l ;

}

}

}

A.3 VCVMatrix.cs

using System ;

using System . C o l l e c t i o n s . Gener ic ;

using System . Linq ;

using System . Text ;

using System . IO ;

34



using System . Drawing ;

namespace VarianceCoVariance

{

// p o s i t i v e d e f i n i t e Matrix

class VCVMatrix

{

/∗ pu b l i c s t r u c t MatrixElements

{

pu b l i c f l o a t Value ;

p u b l i c Char Color ;

} ∗/

private double [ ] [ ] PDMatrix ;

private int Matr ix s i z e ;

private Image MyImage ;

private const int nPixelR = 0 ;

private const int nPixelG = 1 ;

private const int nPixelB = 2 ;

public RGBPixel RGB;

public double CorelationRB , CorelationRG , CorelationGB ;

public VCVMatrix( Image Image )

{

MyImage = Image ;

Bitmap Orig ina l Image = new Bitmap (MyImage ) ;

RGB = new RGBPixel ( Or ig ina l Image ) ;

RGB. ComputeAvrgRGB ( ) ;

Mat r ix s i z e = 3 ;

PDMatrix = new double [ Mat r ix s i z e ] [ ] ;

for ( int i = 0 ; i < Matr ix s i z e ; i++)

{

PDMatrix [ i ] = new double [ Mat r ix s i z e ] ;

}

/∗ f o r ( i n t i = 0 ; i < Matr i x s i z e ; i++)

{

35



f o r ( i n t j = 0 ; j < Matr i x s i z e ; j++)

{

PDMatrix [ i ] [ j ] . Color = ’R’ ;

PDMatrix [ i ] [ j +1]. Color = ’G’ ;

PDMatrix [ i ] [ j + 2 ] . Color = ’B’ ;

}

}∗/

}

public double [ ] [ ] GetMatrix ( )

{

//TreeNode = MyImage ;

for ( int i = 0 ; i < Matr ix s i z e ; i++)

{

for ( int j = 0 ; j < Matr ix s i z e ; j++)

{

double Average i = 0 ;

double Avergae j = 0 ;

int [ ] [ ] Co lo rVa lue s i = GetColor ( i , ref Average i ) ;

int [ ] [ ] Co lo rVa lue s j = GetColor ( j , ref Avergae j ) ;

PDMatrix [ i ] [ j ] = ComputeSigma ( ColorValues i ,

Co lorValues j ,

Average i , Avergae j ) ;

}

}

CorelationRB = ComputeCorelation ( nPixelR , nPixelB ) ;

CorelationRG = ComputeCorelation ( nPixelR , nPixelG ) ;

CorelationGB = ComputeCorelation ( nPixelG , nPixelB ) ;

return PDMatrix ;

}

private int [ ] [ ] GetColor ( int Color , ref double average )

{

switch ( Color )

{

36



case nPixelR :

average = RGB. Avrg Red ;

return RGB. GetRedPixel ( ) ;

// break ;

case nPixelG :

average = RGB. Avrg Green ;

return RGB. GetGreenPixel ( ) ;

case nPixelB :

average = RGB. Avrg Blue ;

return RGB. GetBluePixel ( ) ;

default :

average = RGB. Avrg Red ;

return RGB. GetRedPixel ( ) ;

}

}

private double ComputeSigma ( int [ ] [ ] Co lo r i ,

int [ ] [ ] Co lo r j ,

double Average i ,

double Average j )

{

double Sigma =0;

double check1 = 0 , check2 = 0 ;

double temp1 = 0 , temp2 = 0 ;

int cnt =0;

for ( int i = 0 ; i < MyImage . S i z e . Width ; i++)

{

for ( int j = 0 ; j < MyImage . S i z e . Height ; j++)

{

temp1 = C o l o r i [ i ] [ j ] − Average i ;

temp2 = C o l o r j [ i ] [ j ] − Average j ;

// [ f o r debugg ing

i f ( C o l o r j [ i ] [ j ] < Average j )

cnt++;

check1 = check1 + temp1 ;

37



check2 = check2 + temp2 ;

// ]

// summation

Sigma = Sigma + ( temp1 ∗ temp2 ) ;

}

}

int check3 = ( int ) check2 ;

return ( Sigma / RGB. t o t a l P i x e l − 1 ) ;

}

// Computer average o f Red , b l u e and green

public double ComputeCorelation ( int Color1 , int Color2 )

{

double Core la t i on = 0 ;

// Variance o f co l o r1 and co lo r2

double Color1Covariant = Math . Sqrt ( PDMatrix [ Color1 ] [ Color1 ] ) ;

double Color2Covariant = Math . Sqrt ( PDMatrix [ Color2 ] [ Color2 ] ) ;

Core l a t i on = PDMatrix [ Color1 ] [ Color2 ] /

( Color1Covariant ∗ Color2Covariant ) ;

return Core la t i on ;

}

}

}

38



Appendix B Histogram and Haar

Wavelet Implementation

B.1 MainForm.cs

u s i n g System ;

using System . C o l l e c t i o n s . Gener ic ;

using System . ComponentModel ;

using System . Data ;

using System . Drawing ;

using System . Linq ;

using System . Text ;

// us ing System . Threading . Tasks ;

using System . Windows . Forms ;

using System . IO ;

using System . C o l l e c t i o n s ;

using System . Drawing . Drawing2D ;

namespace ImageFi l te r ingTry

{

public p a r t i a l class MainForm : Form

{

private FilterRGB m S e l e c t F i l t e r , m Se l e c tF i l t e r C l ean ,

m S e l e c t F i l t e r P o l l u t e d ;

// p r i v a t e Bitmap redComponent , greenComponent , blueComponent ;

private Bitmap m OriginalImage , m CleanImage , m PolluteImage ;

private Histogram m DataImage1 , m DataImage2 ;

// [ f o r 1 s t tab

39



private Bitmap m LowCompImage , m HighCompImage ;

int ProcessCountLow , ProcessCountHigh ;

private List<BinaryTreeNode> m LeafNodes =

new List<BinaryTreeNode >() ;

private List<Bitmap> m LeafNodesDisplayImage =

new List<Bitmap>() ;

// ]

// [ f o r Clean image

private Bitmap m LowCompImage Clean , m HighCompImage Clean ;

int m ProcessCountLow Clean , m ProcessCountHigh Clean ;

private List<BinaryTreeNode> m LeafNodes Clean =

new List<BinaryTreeNode >() ;

private List<Bitmap> m LeafNodesDisplayImage Clean =

new List<Bitmap>() ;

// ]

// [ f o r Po l l u t e d image

private Bitmap m LowCompImage Polluted , m HighCompImage Polluted ;

int m ProcessCountLow Polluted , m ProcessCountHigh Pol luted ;

private List<BinaryTreeNode> m LeafNodes Pol luted =

new List<BinaryTreeNode >() ;

private List<Bitmap> m LeafNodesDisplayImage Pol luted =

new List<Bitmap>() ;

// ]

public BinaryTree m BT, m BT Clean , m BT Polluted ;

ImageProcess IP ;

public MainForm ( )

{

m OriginalImage = null ;

IP = new ImageProcess ( ) ;

ProcessCountLow = ProcessCountHigh = 0 ;

m ProcessCountLow Clean = m ProcessCountHigh Clean =

m ProcessCountLow Polluted = m ProcessCountHigh Pol luted = 0 ;

ImageProcess . CurrentProcessCntHigh =

ImageProcess . CurrentProcessCntLow = 0 ;

40



In i t i a l i z eComponent ( ) ;

}

private void openToolStripMenuItem Click ( object sender ,

EventArgs e )

{

i f ( ImageFilterTab . SelectedTab ==

ImageFilterTab . TabPages [ ”ImageTab” ] )

{

i f ( openMyFileDialog . ShowDialog ( this ) ==

System . Windows . Forms . Dia logResu l t .OK)

{

foreach ( string fName in openMyFileDialog . FileNames )

{

F i l e I n f o f I n f o = new F i l e I n f o ( fName ) ;

i f ( f I n f o . Ex i s t s )

{

Image image = Image . FromFile ( fName ) ;

/∗ i f ( ( image . S i z e .Width ∗ image . S i z e . Height ) >

∗( ClearImage . S i z e .Width ∗ ClearImage . S i z e . Height ) )

{

Point po in t = new Point (0 , 0 ) ;

Rectang le rec =

∗ new Rectang le ( point , ClearImage . S i z e ) ;

image = ImageProcess . cropImage ( image , rec ) ;

// image = res i ze Image ( image , ClearImage . S i z e ) ;

}∗/

MyImage . Image = image ;

m OriginalImage = new Bitmap ( image ) ;

ImageProcess . bitmap =

new Bitmap ( m OriginalImage . Width ,

m OriginalImage . Height ) ;

using ( Bitmap bmp = new Bitmap ( image ) )

{

m BT = new BinaryTree (bmp ) ;

41



// . Root . image = bmp ;

// . Root . imageName = ”Or i g ina l ” ;

m S e l e c t F i l t e r = new FilterRGB (bmp ) ;

ImageProcess . Cur r en tF i l t e r = m S e l e c t F i l t e r ;

m HighCompImage = ( Bitmap )bmp. Clone ( ) ;

m LowCompImage = ( Bitmap )bmp. Clone ( ) ;

// f lowLayoutPanel1 . AutoScro l l = t rue ;

// f lowLayoutPanel1 . Contro l s . Clear ( ) ;

ProcessCountLow = ProcessCountHigh = 0 ;

}

} // end i f ( f I n f o . Ex i s t s )

} // end f o r

} // end i f

}

else i f ( ImageFilterTab . SelectedTab ==

ImageFilterTab . TabPages [ ”CompareTab” ] )

{

}

}

// End o f vo id openToolStripMenuItem Click ( o b j e c t sender , EventArgs e )

//Blue

private void checkBox3 CheckedChanged ( object sender , EventArgs e )

{

ImageProcess . Co lo rSe l e c t ed = ’B ’ ;

i f ( BluecheckBox . Checked )

{

GreencheckBox . Checked = fa l se ;

RedcheckBox . Checked = fa l se ;

ProcessCountHigh = 0 ;

ProcessCountLow = 0 ;

i f ( m OriginalImage != null )

{

m LowCompImage = ( Bitmap ) m OriginalImage . Clone ( ) ;

m HighCompImage = ( Bitmap ) m OriginalImage . Clone ( ) ;

42



}

}

}

//Green

private void checkBox2 CheckedChanged ( object sender , EventArgs e )

{

ImageProcess . Co lo rSe l e c t ed = ’G’ ;

i f ( GreencheckBox . Checked )

//&& ( BluecheckBox . Checked | | RedcheckBox . Checked ))

{

BluecheckBox . Checked = fa l se ;

RedcheckBox . Checked = fa l se ;

ProcessCountHigh = 0 ;

ProcessCountLow = 0 ;

i f ( m OriginalImage != null )

{

m LowCompImage = ( Bitmap ) m OriginalImage . Clone ( ) ;

m HighCompImage = ( Bitmap ) m OriginalImage . Clone ( ) ;

}

}

}

//Red

private void RedcheckBox CheckedChanged ( object sender , EventArgs e )

{

ImageProcess . Co lo rSe l e c t ed = ’R’ ;

i f ( ImageFilterTab . SelectedTab ==

ImageFilterTab . TabPages [ ”ImageTab” ] )

{

i f ( RedcheckBox . Checked )

// && ( BluecheckBox . Checked | | GreencheckBox . Checked ))

{

//MessageBox . Show(”You must check on ly one check box .” ,

// ”” , MessageBoxButtons .OK, MessageBoxIcon . Exclamation ) ;

BluecheckBox . Checked = fa l se ;

43



GreencheckBox . Checked = fa l se ;

ProcessCountHigh = 0 ;

ProcessCountLow = 0 ;

i f ( m OriginalImage != null )

{

m LowCompImage = ( Bitmap ) m OriginalImage . Clone ( ) ;

m HighCompImage = ( Bitmap ) m OriginalImage . Clone ( ) ;

}

}

}// end o f i f

else i f ( ImageFilterTab . SelectedTab ==

ImageFilterTab . TabPages [ ”CompareTab” ] )

{

i f ( RedcheckBox . Checked )

// && ( BluecheckBox . Checked | | GreencheckBox . Checked ))

{

//MessageBox . Show(”You must check on ly one check box .” ,

// ”” , MessageBoxButtons .OK, MessageBoxIcon . Exclamation ) ;

BluecheckBox . Checked = fa l se ;

GreencheckBox . Checked = fa l se ;

ProcessCountHigh = 0 ;

ProcessCountLow = 0 ;

i f ( m CleanImage != null && m PolluteImage != null )

{

m LowCompImage Clean =

( Bitmap ) m CleanImage . Clone ( ) ;

m HighCompImage Clean =

( Bitmap ) m CleanImage . Clone ( ) ;

m LowCompImage Polluted =

( Bitmap ) m PolluteImage . Clone ( ) ;

m HighCompImage Polluted =

( Bitmap ) m PolluteImage . Clone ( ) ;

}

}

44



}

}

/∗ // High compoenet

p r i v a t e vo id checkBox1 CheckedChanged ( o b j e c t sender , EventArgs e )

{

i f (HighCompCheckBox . Checked )

{

LowCompCheckBox . Checked = f a l s e ;

}

}

p r i v a t e vo id LowComponent CheckedChanged ( o b j e c t sender , EventArgs e )

{

i f (LowCompCheckBox . Checked )

{

HighCompCheckBox . Checked = f a l s e ;

}

} ∗/

private void Process Image Cl i ck ( object sender , EventArgs e )

{

m LeafNodes . Clear ( ) ;

m LeafNodesDisplayImage . Clear ( ) ;

i f ( m OriginalImage != null )

{

ImageProcess . CurrentImage = m OriginalImage ;

// i f (LowCompCheckBox . Checked )

{

ProcessCountLow++;

// LowComponentProcess (m LowCompImage ) ;

}

// e l s e i f (HighCompCheckBox . Checked )

{

ProcessCountHigh++;

ImageProcess . Cur r en tF i l t e r = m S e l e c t F i l t e r ;

ImageProcess . CurrentProcessCntLow = ProcessCountLow ;

45



ImageProcess . CurrentProcessCntHigh = ProcessCountHigh ;

//HighComponentProcess (m HighCompImage ) ;

ImageProcess . LeafNodes Current = m LeafNodes ;

ImageProcess . LeafNodesDisplayImage Current =

m LeafNodesDisplayImage ;

m BT. Pre add ( ) ;

IP . GetLeafNode (m BT. Root ) ;

MyImageProcessed . Image = IP . DisplayAl lLeafNodes ( ) ;

}

}

else

{

MessageBox . Show( ” Please S e l e c t Image . ” , ”Hey” ,

MessageBoxButtons .OK, MessageBoxIcon . Exclamation ) ;

}

} // end o f p r i v a t e vo id ProcessImage Cl ick

private void f lowLayoutPanel1 Paint ( object sender , PaintEventArgs e )

{

}

private void l a b e l 2 C l i c k ( object sender , EventArgs e )

{

}

private void Image Cl ick ( object sender , EventArgs e )

{

}

private void pane l1 Pa int ( object sender , PaintEventArgs e )

{

i f ( m BT Clean != null )

{

//Boolean bCombine = chkCombine . Checked ;

Panel pan = sender as Panel ;

Rectangle rc = new Rectangle ( ) ;

int [ ] lpData = new int [ 2 5 6 ] ;

46



Color c l r ;

// draw the his tograms

// r e t r i e v e the dimensions o f the drawing area

i f ( pan != null )

rc = pan . C l i entRectang l e ;

e . Graphics . Clear ( Color . White ) ;

m DataImage1 . GetHistogram ( Histogram . ColorType .RED COLOR,

lpData ) ;

c l r = Color . FromArgb (150 ,

Histogram . HistogramColor ( Histogram . ColorType .RED COLOR) ) ;

drawHistogram ( e . Graphics , lpData , rc , c l r ,

m DataImage1 . GetMaxIndex ( Histogram . ColorType .RED COLOR) ) ;

m DataImage1 . GetHistogram ( Histogram . ColorType .GREEN COLOR,

lpData ) ;

c l r = Color . FromArgb (150 ,

Histogram . HistogramColor ( Histogram . ColorType .GREEN COLOR) ) ;

drawHistogram ( e . Graphics , lpData , rc , c l r ,

m DataImage1 . GetMaxIndex ( Histogram . ColorType .GREEN COLOR) ) ;

m DataImage1 . GetHistogram ( Histogram . ColorType .BLUE COLOR,

lpData ) ;

c l r = Color . FromArgb (150 ,

Histogram . HistogramColor ( Histogram . ColorType .BLUE COLOR) ) ;

drawHistogram ( e . Graphics , lpData , rc , c l r ,

m DataImage1 . GetMaxIndex ( Histogram . ColorType .BLUE COLOR) ) ;

}

else

{

e . Graphics . Clear ( Color . White ) ;

MessageBox . Show( ” Please load the image 1” , ”Hey” ,

MessageBoxButtons .OK, MessageBoxIcon . Exclamation ) ;

}

}

private void drawHistogram ( Graphics grp , int [ ] lpData , Rectangle rc ,

47



Color co lo r , int iMaxIndex )

{

// i n t m i In t en s i t y = −1;

drawHistogram ( grp , lpData , rc , co lo r , iMaxIndex , −1);

}

private void drawHistogram ( Graphics grp , int [ ] lpData , Rectangle rc ,

Color co lo r , int iMaxIndex , int i I n t e n s i t y )

{

// draw the data graph his togram fo r the sen t

// data (256 i n t e g e r s ) in t o the sen t Graphics canvas

f loat fPixWidth , fPixHeight ;

int iArrMax , i ;

int ptArrS ize = lpData . GetLength ( 0 ) ;

Point [ ] pt = new Point [ ptArrS ize + 2 ] ;

// crea t e i n i t i a l and f i n a l po in t s f o r the his togram polygon

pt [ 0 ] .X = rc . Le f t ;

pt [ 0 ] .Y = rc . Bottom ;

pt [ pt . GetLength (0 ) − 1 ] .X = rc . Right ;

pt [ pt . GetLength (0 ) − 1 ] .Y = rc . Bottom ;

// f i nd max o f data

iArrMax = lpData [ iMaxIndex ] ;

// s c a l e the po in t s

fPixWidth = rc . Width / ( f loat ) ptArrS ize ;

fP ixHeight = rc . Height / ( f loat ) iArrMax ;

// genera te the s ca l e d po in t s based on his togram data

for ( i = 0 ; i < ptArrS ize ; i++)

{

// he lp g i v i n g v i s u a l a id when the r e are p i x e l s

// in the value , but the

// max p i x e l s i s so l a r g e t ha t the sma l l e r va l u e s

// are not shown at s c a l e

int preY = ( int ) ( lpData [ i ] ∗ fP ixHeight ) ;

i f ( preY <= 1 && lpData [ i ] > 0)

preY = 2 ;

48



pt [ i + 1 ] .Y = rc . Bottom − preY ;

pt [ i + 1 ] .X = ( int ) ( i ∗ fPixWidth ) + rc . Le f t ;

} // end f o r

// draw histogram

grp . F i l lPo lygon (new Sol idBrush ( c o l o r ) , pt ) ;

i f ( i I n t e n s i t y >= 0 && i I n t e n s i t y <= 255)

{

// draw the de s i r ed l i n e

grp . DrawLine (new Pen( Color . Black , fPixWidth ) ,

i I n t e n s i t y ∗ fPixWidth ,

0 ,

i I n t e n s i t y ∗ fPixWidth ,

rc . Bottom ) ;

} // end i f

grp . DrawRectangle ( Pens . Black , rc .X, rc .Y, rc . Width − 1 ,

rc . Height − 1 ) ; // b l a c k border

}

private void tabPage1 Cl ick ( object sender , EventArgs e )

{

}

private void Compare Click ( object sender , EventArgs e )

{

while ( m ProcessCountHigh Clean < 2)

{

m LeafNodes Clean . Clear ( ) ;

m LeafNodesDisplayImage Clean . Clear ( ) ;

m LeafNodes Pol luted . Clear ( ) ;

m LeafNodesDisplayImage Pol luted . Clear ( ) ;

i f ( m CleanImage != null && m PolluteImage != null )

{

// i f (LowCompCheckBox . Checked )

{

m ProcessCountLow Clean++;

m ProcessCountLow Polluted++;

49



// LowComponentProcess (m LowCompImage ) ;

}

// e l s e i f (HighCompCheckBox . Checked )

{

m ProcessCountHigh Pol luted++;

m ProcessCountHigh Clean++;

//HighComponentProcess (m HighCompImage ) ;

ImageProcess . CurrentImage = m CleanImage ;

ImageProcess . Cur r en tF i l t e r = m S e l e c t F i l t e r C l e a n ;

ImageProcess . CurrentProcessCntLow =

m ProcessCountLow Clean ;

ImageProcess . CurrentProcessCntHigh =

m ProcessCountHigh Clean ;

ImageProcess . LeafNodes Current = m LeafNodes Clean ;

ImageProcess . LeafNodesDisplayImage Current =

m LeafNodesDisplayImage Clean ;

m BT Clean . Pre add ( ) ;

IP . GetLeafNode ( m BT Clean . Root ) ;

ImageProcess . bitmap = null ;

ImageProcess . bitmap = new Bitmap ( ClearImage . Image ) ;

// bitmap = new Bitmap (m CleanImage .Width , m CleanImage . Height ) ;

ClearImage . Image = IP . DisplayAl lLeafNodes ( ) ;

// For p o l l u t e d

ImageProcess . CurrentImage = null ;

ImageProcess . CurrentImage =

m PolluteImage ;

ImageProcess . Cur r en tF i l t e r =

m S e l e c t F i l t e r P o l l u t e d ;

ImageProcess . CurrentProcessCntLow =

m ProcessCountLow Polluted ;

ImageProcess . CurrentProcessCntHigh =

m ProcessCountHigh Pol luted ;

ImageProcess . LeafNodes Current =

m LeafNodes Pol luted ;

50



ImageProcess . LeafNodesDisplayImage Current =

m LeafNodesDisplayImage Pol luted ;

m BT Polluted . Pre add ( ) ;

IP . GetLeafNode ( m BT Polluted . Root ) ;

ImageProcess . bitmap = null ;

ImageProcess . bitmap =

new Bitmap ( Pol lutedImage . Image ) ;

// bitmap = new Bitmap ( m Pol luteImage .Width ,

//m Pol luteImage . Height ) ;

PollutedImage . Image = IP . DisplayAl lLeafNodes ( ) ;

}

}

else

{

MessageBox . Show( ” Please S e l e c t Image . ” , ”Hey” ,

MessageBoxButtons .OK, MessageBoxIcon . Exclamation ) ;

}

}// end o f wh i l e ( < 3)

// Logic f o r computing P r o b a b i l i t y d i s t r i b u t i o n

i f ( m BT Clean . Root . High != null &&

m BT Polluted . Root . High != null )

{

i f ( m BT Clean . Root . High . Low != null &&

m BT Polluted . Root . High . Low != null )

{

BinaryTreeNode HighLow Clean = m BT Clean . Root . High . Low ;

BinaryTreeNode HighLow Polluted =

m BT Polluted . Root . High . Low ;

P r o b a b i l t y D i s t r i b u t i o n PD =

new P r o b a b i l t y D i s t r i b u t i o n ( HighLow Clean ,

HighLow Polluted ,

ImageProcess . Co lo rSe l e c t ed ) ;

double PDClean = 0 , PDPolluted = 0 ;

PD. GetAverage ( ) ;

51



PD. GetProba l i tyDist ( ref PDClean , ref PDPolluted ) ;

textBox1 . Text =

” Result : Image 1 P r o b ab i l i t y d i s t r i b u t i o n i s − ” +

PDClean +

” . Image 2 P r o b ab i l i t y d i s t r i b u t i o n i s − ”

+ PDPolluted + ” . Ratio i s− ” + PDClean / PDPolluted ;

}

}

} // end o f p r i v a t e vo id COmapre Click

private void ClearImage Cl ick ( object sender , EventArgs e )

{

i f ( openMyFileDialog . ShowDialog ( this ) ==

System . Windows . Forms . Dia logResu l t .OK)

{

foreach ( string fName in openMyFileDialog . FileNames )

{

F i l e I n f o f I n f o = new F i l e I n f o ( fName ) ;

i f ( f I n f o . Ex i s t s )

{

Image image = Image . FromFile ( fName ) ;

/∗ i f ( ( image . S i z e .Width ∗ image . S i z e . Height ) >

∗ ( ClearImage . S i z e .Width ∗ ClearImage . S i z e . Height ) )

{

Point po in t = new Point (0 , 0 ) ;

Rectang le rec =

∗ new Rectang le ( point , ClearImage . S i z e ) ;

image = ImageProcess . cropImage ( image , rec ) ;

// image = res i ze Image ( image , ClearImage . S i z e ) ;

} ∗/

ClearImage . Image = image ;

m CleanImage = new Bitmap ( image ) ;

using ( Bitmap bmp = new Bitmap ( image ) )

{

m DataImage1 = new Histogram (bmp ) ;

52



m BT Clean = new BinaryTree (bmp ) ;

// . Root . image = bmp ;

// . Root . imageName = ”Or i g ina l ” ;

m S e l e c t F i l t e r C l e a n = new FilterRGB (bmp ) ;

ImageProcess . Cur r en tF i l t e r =

m S e l e c t F i l t e r C l e a n ;

m HighCompImage Clean = ( Bitmap )bmp. Clone ( ) ;

m LowCompImage Clean = ( Bitmap )bmp. Clone ( ) ;

// f lowLayoutPanel1 . AutoScro l l = t rue ;

// f lowLayoutPanel1 . Contro l s . Clear ( ) ;

m ProcessCountLow Clean =

m ProcessCountHigh Clean = 0 ;

}

} // end i f ( f I n f o . Ex i s t s )

} // end f o r

} // end i f

}

private void Pol lutedImage Cl i ck ( object sender , EventArgs e )

{

i f ( openMyFileDialog . ShowDialog ( this ) ==

System . Windows . Forms . Dia logResu l t .OK)

{

foreach ( string fName in openMyFileDialog . FileNames )

{

F i l e I n f o f I n f o = new F i l e I n f o ( fName ) ;

i f ( f I n f o . Ex i s t s )

{

Image image = Image . FromFile ( fName ) ;

/∗ i f ( ( image . S i z e .Width ∗ image . S i z e . Height ) >

∗ ( ClearImage . S i z e .Width ∗ ClearImage . S i z e . Height ) )

{

Point po in t = new Point (0 , 0 ) ;

Rectang le rec =

∗ new Rectang le ( point , ClearImage . S i z e ) ;

53



image = ImageProcess . cropImage ( image , rec ) ;

// image = res i ze Image ( image , ClearImage . S i z e ) ;

}∗/

PollutedImage . Image = image ;

m PolluteImage = new Bitmap ( image ) ;

using ( Bitmap bmp = new Bitmap ( image ) )

{

m BT Polluted = new BinaryTree (bmp ) ;

m DataImage2 = new Histogram (bmp ) ;

// . Root . image = bmp ;

// . Root . imageName = ”Or i g ina l ” ;

m S e l e c t F i l t e r P o l l u t e d = new FilterRGB (bmp ) ;

ImageProcess . Cur r en tF i l t e r = m S e l e c t F i l t e r P o l l u t e d ;

m HighCompImage Polluted = ( Bitmap )bmp. Clone ( ) ;

m LowCompImage Polluted = ( Bitmap )bmp. Clone ( ) ;

// f lowLayoutPanel1 . AutoScro l l = t rue ;

// f lowLayoutPanel1 . Contro l s . Clear ( ) ;

m ProcessCountLow Polluted =

m ProcessCountHigh Pol luted = 0 ;

}

} // end i f ( f I n f o . Ex i s t s )

} // end f o r

} // end i f

Fi l lDataGr idResu l t ( ) ;

}

private void textBox1 TextChanged ( object sender , EventArgs e )

{

}

private void CompareGreenBox CheckedChanged ( object sender ,

EventArgs e )

{

}

private void l a b e l 2 C l i c k 1 ( object sender , EventArgs e )

{

54



}

private void MyImage Click ( object sender , EventArgs e )

{

}

// For g e t t i n g p o s i t i v e d e f i n i t e Matrix

private void PDMButton Click ( object sender , EventArgs e )

{

VariantCoVariant ImagePDM = new VariantCoVariant ( ) ;

double [ ] [ ] PDMMatrix = ImagePDM.GetPDM(m BT. Root ) ;

double t = PDMMatrix [ 0 ] [ 0 ] ;

}

private void HistogramTab Click ( object sender , EventArgs e )

{

HistImage1 . I n v a l i d a t e ( ) ;

HistImage2 . I n v a l i d a t e ( ) ;

MessageBox . Show( ” Please load image . ” , ”Hey” ,

MessageBoxButtons .OK, MessageBoxIcon . Exclamation ) ;

}

private void HistImage2 Paint ( object sender , PaintEventArgs e )

{

Hashtable PointCount = new Hashtable ( ) ;

i f ( m BT Polluted != null )

{

//Boolean bCombine = chkCombine . Checked ;

Panel pan = sender as Panel ;

Rectangle rc = new Rectangle ( ) ;

int [ ] lpData = new int [ 2 5 6 ] ;

Color c l r ;

// draw the his tograms

// r e t r i e v e the dimensions o f the drawing area

i f ( pan != null )

rc = pan . C l i entRectang l e ;

e . Graphics . Clear ( Color . White ) ;

55



// draw red co l o r his togram

m DataImage2 . GetHistogram ( Histogram . ColorType .RED COLOR,

lpData ) ;

c l r = Color . FromArgb (150 ,

Histogram . HistogramColor ( Histogram . ColorType .RED COLOR) ) ;

drawHistogram ( e . Graphics , lpData , rc , c l r ,

m DataImage2 . GetMaxIndex ( Histogram . ColorType .RED COLOR) ) ;

// draw green co l o r his togram

m DataImage2 . GetHistogram ( Histogram . ColorType .GREEN COLOR, lpData ) ;

c l r = Color . FromArgb (150 ,

Histogram . HistogramColor ( Histogram . ColorType .GREEN COLOR) ) ;

drawHistogram ( e . Graphics , lpData , rc , c l r ,

m DataImage2 . GetMaxIndex ( Histogram . ColorType .GREEN COLOR) ) ;

// draw b lue co l o r his togram

m DataImage2 . GetHistogram ( Histogram . ColorType .BLUE COLOR, lpData ) ;

c l r = Color . FromArgb (150 ,

Histogram . HistogramColor ( Histogram . ColorType .BLUE COLOR) ) ;

drawHistogram ( e . Graphics , lpData , rc , c l r ,

m DataImage2 . GetMaxIndex ( Histogram . ColorType .BLUE COLOR) ) ;

}

else

{

e . Graphics . Clear ( Color . White ) ;

MessageBox . Show( ” Please load image 2” , ”Hey” ,

MessageBoxButtons .OK, MessageBoxIcon . Exclamation ) ;

}

}

private void Fi l lDataGr idResu l t ( )

{

string [ ] lpsRow = new string [ 7 ] ;

VariantCoVariant VcoVImage1 = new VariantCoVariant ( ) ;

VcoVImage1 .GetPDM( m BT Clean . Root ) ;

VariantCoVariant VcoVImage2 = new VariantCoVariant ( ) ;

VcoVImage2 .GetPDM( m BT Polluted . Root ) ;

56



// f o r ( i n t i = 0 ; i < 2 ; i++)

{

lpsRow [ 0 ] = ”Image1” ;

lpsRow [ 1 ] = VcoVImage1 . Avrg Red . ToString ( ) ;

lpsRow [ 2 ] = VcoVImage1 . Avrg Green . ToString ( ) ;

lpsRow [ 3 ] = VcoVImage1 . Avrg Blue . ToString ( ) ;

lpsRow [ 4 ] = VcoVImage1 . GetStandardDeviation ( 0 ) . ToString ( ) ;

lpsRow [ 5 ] = VcoVImage1 . GetStandardDeviation ( 1 ) . ToString ( ) ;

lpsRow [ 6 ] = VcoVImage1 . GetStandardDeviation ( 2 ) . ToString ( ) ;

this . dataGridResult . Rows . Add( lpsRow ) ;

lpsRow [ 0 ] = ”Image2” ;

lpsRow [ 1 ] = VcoVImage2 . Avrg Red . ToString ( ) ;

lpsRow [ 2 ] = VcoVImage2 . Avrg Green . ToString ( ) ;

lpsRow [ 3 ] = VcoVImage2 . Avrg Blue . ToString ( ) ;

lpsRow [ 4 ] = VcoVImage2 . GetStandardDeviation ( 0 ) . ToString ( ) ;

lpsRow [ 5 ] = VcoVImage2 . GetStandardDeviation ( 1 ) . ToString ( ) ;

lpsRow [ 6 ] = VcoVImage2 . GetStandardDeviation ( 2 ) . ToString ( ) ;

this . dataGridResult . Rows . Add( lpsRow ) ;

S t r ing text ;

t ex t = ” S h i f t o f red in po l l u t ed sky i s : ” +

Math . Abs ( VcoVImage2 . Avrg Red − VcoVImage1 . Avrg Red ) ;

t ex t = text + ”\ nSh i f t o f green in po l l u t ed sky i s : ” +

Math . Abs ( VcoVImage2 . Avrg Green − VcoVImage1 . Avrg Green ) ;

t ex t = text + ”\ nSh i f t o f b lue in po l l u t e d sky i s : ” +

Math . Abs ( VcoVImage1 . Avrg Blue − VcoVImage2 . Avrg Blue ) ;

r i chTextBox Sh i f t . Text = text ;

}

}

private void l a b e l 5 C l i c k ( object sender , EventArgs e ){

}

private void Resu l t C l i ck ( object sender , EventArgs e ){

}

private void tab leLayoutPane l1 Paint ( object sender ,

PaintEventArgs e ){

57



}

private void dataGridView1 Cel lContentCl ick ( object sender ,

DataGridViewCellEventArgs e ){

}

}

}

B.2 RGBPixel.cs

u s i n g System ;

using System . C o l l e c t i o n s . Gener ic ;

using System . Linq ;

using System . Text ;

// us ing System . Threading . Tasks ;

using System . IO ;

using System . Drawing ;

using System . Windows . Forms ;

namespace ImageFi l te r ingTry

{

class RGBPixel

{

private int [ ] [ ] m RedPix ;

private int [ ] [ ] m GreenPix ;

private int [ ] [ ] m BluePix ;

private f loat Avrg Blue , Avrg Green , Avrg Red ;

public RGBPixel ( Bitmap CurrentImage )

{

// f i l terRGB = new FilterRGB ;

S i z e s s i z e = CurrentImage . S i z e ;

Color [ ] [ ] c l r = null ;

// d e l e t e data in m RedPixel

m BluePix = null ;

m GreenPix = null ;

m RedPix = null ;

58



int [ ] [ ] RedPix = new int [ s s i z e . Width ] [ ] ;

int [ ] [ ] GreenPix = new int [ s s i z e . Width ] [ ] ;

int [ ] [ ] BluePix = new int [ s s i z e . Width ] [ ] ;

c l r = new Color [ s s i z e . Width ] [ ] ;

for ( int i = 0 ; i < s s i z e . Width ; i++)

{

c l r [ i ] = new Color [ s s i z e . Height ] ;

RedPix [ i ] = new int [ s s i z e . Height ] ;

GreenPix [ i ] = new int [ s s i z e . Height ] ;

BluePix [ i ] = new int [ s s i z e . Height ] ;

}//end o f f o r

i f ( CurrentImage != null )

{

for ( int x = 0 ; x < s s i z e . Width ; x++)

{

for ( int y = 0 ; y < s s i z e . Height ; y++)

{

c l r [ x ] [ y ] = CurrentImage . GetPixel (x , y ) ;

RedPix [ x ] [ y ] = c l r [ x ] [ y ] . R;

GreenPix [ x ] [ y ] = c l r [ x ] [ y ] .G;

BluePix [ x ] [ y ] = c l r [ x ] [ y ] . B;

// add a l l p i x e l va lue to compute average

Avrg Red = Avrg Red + RedPix [ x ] [ y ] ;

Avrg Green = Avrg Green + GreenPix [ x ] [ y ] ;

Avrg Blue = Avrg Blue + BluePix [ x ] [ y ] ;

} // end f o r

} // end f o r

}// end o f i f ( CurrentImage != nu l l )

m RedPix = RedPix ;

m BluePix = BluePix ;

m GreenPix = GreenPix ;

int t o t a l P i x e l = s s i z e . Width ∗ s s i z e . Height ;

Avrg Red = Avrg Red / t o t a l P i x e l ;

Avrg Green = Avrg Green / t o t a l P i x e l ;

59



Avrg Blue = Avrg Blue / t o t a l P i x e l ;

}

public int [ ] [ ] GetBluePixel ( )

{

return m BluePix ;

}

public int [ ] [ ] GetRedPixel ( )

{

return m RedPix ;

}

public int [ ] [ ] GetGreenPixel ( )

{

return m GreenPix ;

}

public f loat GetRed Avrg ( )

{

return Avrg Red ;

}

public f loat GetGreen Avrg ( )

{

return Avrg Green ;

}

public f loat GetBlue Avrg ( )

{

return Avrg Blue ;

}

}

}

B.3 BinaryTree.cs

u s i n g System ;

using System . C o l l e c t i o n s . Gener ic ;

using System . Linq ;

using System . Text ;

60



// us ing System . Threading . Tasks ;

using System . IO ;

using System . Drawing ;

using System . Windows . Forms ;

namespace ImageFi l te r ingTry

{

public class BinaryTree

{

public BinaryTreeNode Root ;

public MainForm MF;

private BinaryTreeNode Cur r en t I t e r a to r ;

private List<BinaryTreeNode> Nodes = new List<BinaryTreeNode >() ;

public BinaryTree ( Bitmap Orig ina l Image )

{

Root = new BinaryTreeNode ( ) ;

//Root . image = (Bitmap ) Orig ina lImage . Clone ( ) ;

MF = (MainForm) Appl i ca t ion . OpenForms [ 0 ] ;

Root . imageName = ” Or i g ina l ” ;

Root . ImageSize = Orig ina l Image . S i z e ;

RGBPixel RGB = new RGBPixel ( Or ig ina l Image ) ;

Root . RedPix = RGB. GetRedPixel ( ) ;

Root . GreenPix = RGB. GetGreenPixel ( ) ;

Root . BluePix = RGB. GetBluePixel ( ) ;

Nodes . Clear ( ) ;

}

public int he ight ( BinaryTreeNode t )

{

// i n t h = 1;

i f ( t == null )

return 0 ;

int he i gh tLe f t = he ight ( t . Low ) ;

int he ightRight = he ight ( t . High ) ;

i f ( h e i gh tLe f t > he ightRight )

61



return he i gh tLe f t +1;

else

return he ightRight +1;

/∗ i f ( t . Parent == nu l l )

h = 1;

e l s e

{

whi l e ( t . Parent != nu l l )

{

t = t . Parent ;

h++;

}

}

re turn h ; ∗/

}

private void FindLeafNodes ( BinaryTreeNode CurrentNode )

{

BinaryTreeNode leafNode = null ;

int h = he ight ( Root ) ;

i f ( CurrentNode . Low != null )

{

i f ( CurrentNode . Low . Process != fa l se )

FindLeafNodes ( CurrentNode . Low ) ;

}

i f ( CurrentNode . High != null )

{

i f ( ( he ight ( Root ) % 2 != 1) &&

CurrentNode . High . Process != fa l se )

{

FindLeafNodes ( CurrentNode . High ) ;

}

else i f ( CurrentNode . High . Process == true )

{

62



CurrentNode . High . Process = fa l se ;

i f ( CurrentNode . High . Low != null )

CurrentNode . High . Low . Process = fa l se ;

i f ( CurrentNode . High . High != null )

CurrentNode . High . High . Process = fa l se ;

}

}

i f ( CurrentNode . Low == null && CurrentNode . High == null )

{

//CurrentNode . Process = true ;

l ea fNode = CurrentNode ;

Nodes . Add( leafNode ) ;

}

}

public void Pre add ( )

{

Nodes . Clear ( ) ;

BinaryTreeNode ImageNodeTobeProcessed ;

FindLeafNodes ( Root ) ;

for ( int i = 0 ; i < Nodes . Count ; i++)

{

ImageNodeTobeProcessed = Nodes [ i ] ;

Cur r en t I t e r a to r = Nodes [ i ] ;

i f ( ImageNodeTobeProcessed != null )

{

BinaryTreeNode imageProcessedLow =

ImageProcess . LowComponentProcess ( ImageNodeTobeProcessed ) ;

BinaryTreeNode imageProcessedHigh =

ImageProcess . HighComponentProcess ( ImageNodeTobeProcessed ) ;

Add( imageProcessedLow ,

imageProcessedHigh ,

Cur r en t I t e r a to r ) ;

}

63



}

}

public void Add( BinaryTreeNode imageProcessedLow ,

BinaryTreeNode imageProcessedHigh , BinaryTreeNode I t e r a t o r )

{

BinaryTreeNode Lch i ld = new BinaryTreeNode ( ) ;

BinaryTreeNode Rchi ld = new BinaryTreeNode ( ) ;

Lch i ld = imageProcessedLow ;

// Lch i l d . imageName = bit name ;

Rchi ld = imageProcessedHigh ;

i f ( Lch i ld . imageName == null )

Lch i ld . imageName = I t e r a t o r . imageName + ”Low” ;

i f ( Rchi ld . imageName == null )

Rchi ld . imageName = I t e r a t o r . imageName + ”High” ;

// S ta r t from the roo t o f the t r e e

//BinaryTreeNode I t e r a t o r = Root ;

// wh i l e ( t rue )

{

i f ( I t e r a t o r . Low == null && I t e r a t o r . High == null )

{

I t e r a t o r . Low = Lchi ld ;

I t e r a t o r . High = Rchi ld ;

I t e r a t o r . Low . Parent = I t e r a t o r ;

I t e r a t o r . High . Parent = I t e r a t o r ;

// break ;

}

}// end o f wh i l e

}

}

}

B.4 BinaryTreeNode.cs

u s i n g System ;

64



using System . C o l l e c t i o n s . Gener ic ;

using System . Linq ;

using System . Text ;

// us ing System . Threading . Tasks ;

using System . IO ;

using System . Drawing ;

using System . Windows . Forms ;

namespace ImageFi l te r ingTry

{

public class BinaryTreeNode

{

public int [ ] [ ] RedPix ;

public int [ ] [ ] GreenPix ;

public int [ ] [ ] BluePix ;

public S i z e ImageSize ;

// Le f t i s low componenet o f image

public BinaryTreeNode Low ;

// Right i s h igh componenet o f image

public BinaryTreeNode High ;

public BinaryTreeNode Parent ;

public string imageName ;

// pu b l i c Bitmap image ;

public bool Process ;

public BinaryTreeNode ( )

{

// ImageSize = nu l l ;

RedPix = null ;

GreenPix = null ;

BluePix = null ;

Low = null ;

High = null ;

Parent = null ;

// image = nu l l ;

65



Process = true ;

}

}

}

B.5 FilterRGB.cs

u s i n g System ;

using System . C o l l e c t i o n s . Gener ic ;

using System . Linq ;

using System . Text ;

// us ing System . Threading . Tasks ;

using System . IO ;

using System . Drawing ;

using System . Windows . Forms ;

namespace ImageFi l te r ingTry

{

class FilterRGB

{

public int [ ] nPixelRGB ;

private RGBPixel RGB;

private const int nPixelR = 0 ;

private const int nPixelG = 1 ;

private const int nPixelB = 2 ;

private const int MAXRGB = 255 ;

public S i z e s i z e ;

public FilterRGB ( )

{

// s i z e = new S i z e ( ) ;

}

public FilterRGB ( Bitmap bmp)

{

// i n t x , y , i ;

//Color [ ] [ ] c l r = nu l l ;

nPixelRGB = new int [ 3 ] { 0 , 0 , 0 } ;

66



s i z e = new S i z e ( ) ;

RGB = new RGBPixel (bmp ) ;

s i z e = bmp. S i z e ;

}//end o f p u b l i c FilterRGB (Bitmap bmp)

public int GetMaxPixelValue ( int [ ] [ ] a r r )

{

int n max = 0 ;

for ( int i = 0 ; i < ar r . Length ; i++)

{

int Max = arr [ i ] . Max ( ) ;

i f (Max > n max )

n max = Max;

}

return n max ;

}// end o f i n t GetMaxPixelValue ( i n t [ ] [ ] arr )

public int GetMinPixelValue ( int [ ] [ ] a r r )

{

int n min = 255 ;

for ( int i = 0 ; i < ar r . Length ; i++)

{

int Min = arr [ i ] . Min ( ) ;

i f (Min < n min )

n min = Min ;

}

return n min ;

}

public BinaryTreeNode GetHighComponent ( BinaryTreeNode CurrentImage ,

char C ColorSe lected , int ProcessCount )

{

BinaryTreeNode HighBmp = new BinaryTreeNode ( ) ;

s i z e . Height = CurrentImage . ImageSize . Height ;

s i z e . Width = CurrentImage . ImageSize . Width ;

67



//SetRGBArrayPixel ( CurrentImage ) ;

switch ( C ColorSe l ec ted )

{

case ’R ’ :

HighBmp = ProcessHighComp (RGB. GetRedPixel ( ) ,

nPixelR ,

ProcessCount ) ;

break ;

case ’G’ :

HighBmp = ProcessHighComp (RGB. GetGreenPixel ( ) ,

nPixelG ,

ProcessCount ) ;

break ;

case ’B ’ :

HighBmp = ProcessHighComp (RGB. GetBluePixel ( ) ,

nPixelB ,

ProcessCount ) ;

break ;

}

return HighBmp ;

}// end o f p u b l i c Bitmap GetHighComponent

// Get Red high component o f Image

private BinaryTreeNode ProcessHighComp ( int [ ] [ ] p ixe l ,

int nPos i t ion , int ProcessCount )

{

BinaryTreeNode f ina l Image = new BinaryTreeNode ( ) ;

i f ( ProcessCount % 2 == 0)

{

f i na l Image = PerformHighVert ica lPass ( p ixe l , nPos i t i on ) ;

}

else

{

f i na l Image = PerformHighHorizontalPass ( p ixe l , nPos i t i on ) ;

68



}

return f i na l Image ;

}

BinaryTreeNode PerformHighHorizontalPass ( int [ ] [ ] p ixe l ,

int nPos i t i on )

{

BinaryTreeNode f ina l Image = new BinaryTreeNode ( ) ;

int [ ] [ ] H ighPixe l s = new int [ s i z e . Width / 2 ] [ ] ;

// f ina l Image = new Bitmap (( s i z e .Width /2) ,

// s i z e . Height ,

//System . Drawing . Imaging . PixelFormat . Format24bppRgb ) ;

for ( int i = 0 ; i < s i z e . Width /2 ; i++)

{

HighPixe l s [ i ] = new int [ s i z e . Height ] ;

}

for ( int i = 0 ; i < s i z e . Height ; i++)

{

int k = 0 ;

for ( int j = 0 ; ( j + 1) < s i z e . Width ; j = j + 2)

{

HighPixe l s [ k ] [ i ] = ( p i x e l [ j ] [ i ] − p i x e l [ j + 1 ] [ i ] ) ;

// f ina l Image . S e tP i x e l ( k , i ,

//Color . FromArgb (( by t e )nPixelRGB [ nPixelR ] ,

// ( by t e )nPixelRGB [ nPixelG ] ,

// ( by t e )nPixelRGB [ nPixelB ] ) ) ;

k++;

}

}

S i z e ArraySize = new S i z e ( ) ;

ArraySize . Height = s i z e . Height ;

ArraySize . Width = s i z e . Width / 2 ;

f i na l Image = SetBitmapImage ( f ina l Image ,

nPos i t ion ,

69



HighPixels ,

ArraySize ) ;

return f i na l Image ;

}// end o f p r i v a t e Bitmap ProcessHighComp

BinaryTreeNode PerformHighVert ica lPass ( int [ ] [ ] p ixe l , int nPos i t i on )

{

BinaryTreeNode f ina l Image = new BinaryTreeNode ( ) ;

int [ ] [ ] H ighPixe l s = new int [ s i z e . Width ] [ ] ;

// f ina l Image = new Bitmap (( s i z e .Width ) , ( s i z e . Height /2) ,

//System . Drawing . Imaging . PixelFormat . Format24bppRgb ) ;

for ( int i = 0 ; i < s i z e . Width ; i++)

{

HighPixe l s [ i ] = new int [ s i z e . Height / 2 ] ;

}

for ( int i = 0 ; i < s i z e . Width ; i++)

{

int k = 0 ;

for ( int j = 0 ; ( j + 1) < s i z e . Height ; j = j + 2)

{

HighPixe l s [ i ] [ k ] = ( p i x e l [ i ] [ j ] − p i x e l [ i ] [ j +1 ] ) ;

// f ina l Image . S e tP i x e l ( k , i ,

//Color . FromArgb (( by t e )nPixelRGB [ nPixelR ] ,

// ( by t e )nPixelRGB [ nPixelG ] , ( by t e )nPixelRGB [ nPixelB ] ) ) ;

k++;

}

}

S i z e ArraySize = new S i z e ( ) ;

ArraySize . Height = s i z e . Height / 2 ;

ArraySize . Width = s i z e . Width ;

// i t s a raw image

f i na l Image = SetBitmapImage ( f ina l Image ,

nPos i t ion ,

HighPixels ,

70



ArraySize ) ;

return f i na l Image ;

}// end o f p r i v a t e Bitmap PerformHighVert ica lPass

BinaryTreeNode SetBitmapImage ( BinaryTreeNode f ina l Image ,

int nPos i t ion , int [ ] [ ] Proces sedPixe l s , S i z e ArraySize )

{

int width = ArraySize . Width ;

int he ight = ArraySize . Height ;

// s e t o ther va l u e s

f i na l Image . RedPix = new int [ width ] [ ] ;

f i na l Image . BluePix = new int [ width ] [ ] ;

f i na l Image . GreenPix = new int [ width ] [ ] ;

for ( int i = 0 ; i < width ; i++)

{

f i na l Image . GreenPix [ i ] = new int [ he ight ] ;

f i na l Image . BluePix [ i ] = new int [ he ight ] ;

f i na l Image . RedPix [ i ] = new int [ he ight ] ;

}//end o f f o r

switch ( nPos i t i on )

{

case 0 :

f i na l Image . RedPix = Proce s s edP ixe l s ;

break ;

case 1 :

f i na l Image . GreenPix = Proce s s edP ixe l s ;

break ;

case 2 :

f i na l Image . BluePix = Proce s s edP ixe l s ;

break ;

}

f i na l Image . ImageSize . Width = width ;

f i na l Image . ImageSize . Height = he ight ;

return f i na l Image ;

}//end o f SetBitmapVert ica lImage

71



public BinaryTreeNode GetLowComponent ( BinaryTreeNode CurrentImage ,

char C ColorSe lected , int ProcessCount )

{

BinaryTreeNode LowBmp = new BinaryTreeNode ( ) ;

s i z e . Height = CurrentImage . ImageSize . Height ;

s i z e . Width = CurrentImage . ImageSize . Width ;

switch ( C ColorSe l ec ted )

{

case ’R ’ :

LowBmp = ProcessLowComp ( CurrentImage . RedPix ,

nPixelR ,

ProcessCount ) ;

break ;

case ’G’ :

LowBmp = ProcessLowComp ( CurrentImage . GreenPix ,

nPixelG ,

ProcessCount ) ;

break ;

case ’B ’ :

LowBmp = ProcessLowComp ( CurrentImage . BluePix ,

nPixelB ,

ProcessCount ) ;

break ;

}

return LowBmp;

}// end o f p u b l i c Bitmap GetHighComponent

// Get Red high component o f Image

private BinaryTreeNode ProcessLowComp ( int [ ] [ ] p ixe l ,

int nPos i t ion , int ProcessCount )

{

BinaryTreeNode f ina l Image = new BinaryTreeNode ( ) ;

i f ( ProcessCount % 2 == 0)

{

// d i v i d e image v e r t i c a l l y

72



f i na l Image = PerformLowVerticalPass ( p ixe l , nPos i t i on ) ;

}

else

{

// d i v i d e image h o r i z o n t a l l y

f i na l Image = PerformLowHorizontalPass ( p ixe l , nPos i t i on ) ;

}

return f i na l Image ;

}

// Process ing v e r t i c a l Low compoenent

private BinaryTreeNode PerformLowHorizontalPass ( int [ ] [ ] p ixe l ,

int nPos i t i on )

{

BinaryTreeNode f ina l Image = new BinaryTreeNode ( ) ;

// f ina l Image = new Bitmap (( s i z e .Width / 2) ,

// s i z e . Height ,

//System . Drawing . Imaging . PixelFormat . Format24bppRgb ) ;

int [ ] [ ] LowPixels = new int [ s i z e . Width / 2 ] [ ] ;

for ( int i = 0 ; i < ( s i z e . Width / 2 ) ; i++)

{

LowPixels [ i ] = new int [ s i z e . Height ] ;

}

for ( int i = 0 ; i < s i z e . Height ; i++)

{

int k = 0 ;

for ( int j = 0 ; ( j + 1) < s i z e . Width ; j = j + 2)

{

LowPixels [ k ] [ i ] = p i x e l [ j ] [ i ] + p i x e l [ j + 1 ] [ i ] ;

// f ina l Image . S e tP i x e l ( k , i ,

//Color . FromArgb (( by t e )nPixelRGB [ nPixelR ] ,

// ( by t e )nPixelRGB [ nPixelG ] , ( by t e )nPixelRGB [ nPixelB ] ) ) ;

k++;

}

}

73



S i z e ArraySize = new S i z e ( ) ;

ArraySize . Height = s i z e . Height ;

ArraySize . Width = s i z e . Width / 2 ;

// i t s a raw image

f i na l Image = SetBitmapImage ( f ina l Image , nPos i t ion ,

LowPixels , ArraySize ) ;

return f i na l Image ;

}// end o f p r i v a t e Bitmap ProcessHighComp

// Process ing v e r t i c a l Low compoenent

private BinaryTreeNode PerformLowVerticalPass ( int [ ] [ ] p ixe l ,

int nPos i t i on )

{

BinaryTreeNode f ina l Image = new BinaryTreeNode ( ) ;

// f ina l Image = new Bitmap (( s i z e .Width ) , ( s i z e . Height /2) ,

//System . Drawing . Imaging . PixelFormat . Format24bppRgb ) ;

int [ ] [ ] LowPixels = new int [ s i z e . Width ] [ ] ;

for ( int i = 0 ; i < ( s i z e . Width ) ; i++)

{

LowPixels [ i ] = new int [ s i z e . Height / 2 ] ;

}

for ( int i = 0 ; i < s i z e . Width ; i++)

{

int k = 0 ;

for ( int j = 0 ; ( j + 1) < s i z e . Height ; j = j + 2)

{

LowPixels [ i ] [ k ] = p i x e l [ i ] [ j ] + p i x e l [ i ] [ j +1] ;

// f ina l Image . S e tP i x e l ( k , i ,

//Color . FromArgb (( by t e )nPixelRGB [ nPixelR ] ,

// ( by t e )nPixelRGB [ nPixelG ] , ( by t e )nPixelRGB [ nPixelB ] ) ) ;

k++;

}

}

S i z e ArraySize = new S i z e ( ) ;

74



ArraySize . Height = s i z e . Height / 2 ;

ArraySize . Width = s i z e . Width ;

// i t s a raw image

f i na l Image = SetBitmapImage ( f ina l Image , nPos i t ion ,

LowPixels , ArraySize ) ;

return f i na l Image ;

}// end o f p r i v a t e Bitmap ProcessHighComp

}

}

B.6 ImageProcess.cs

u s i n g System ;

using System . C o l l e c t i o n s . Gener ic ;

using System . Linq ;

using System . Text ;

using System . Drawing ;

using System . IO ;

using System . C o l l e c t i o n s ;

using System . Windows . Forms ;

namespace ImageFi l te r ingTry

{

class ImageProcess

{

private const int nPixelR = 0 ;

private const int nPixelG = 1 ;

private const int nPixelB = 2 ;

private const int MAXRGB = 255 ;

public stat ic FilterRGB Cur r en tF i l t e r ;

public stat ic char Colo rSe l e c t ed ;

public stat ic List<BinaryTreeNode> LeafNodes Current =

new List<BinaryTreeNode >() ;

public stat ic List<Bitmap> LeafNodesDisplayImage Current =

new List<Bitmap>() ;

public stat ic int CurrentProcessCntLow , CurrentProcessCntHigh ;

75



public stat ic Bitmap bitmap ;

public stat ic Bitmap CurrentImage ;

public void GetLeafNode ( BinaryTreeNode CurrentNode )

{

Bitmap leafNodeImage = null ;

i f ( CurrentNode . Low != null )

{

GetLeafNode ( CurrentNode . Low ) ;

}

i f ( CurrentNode . High != null )

{

GetLeafNode ( CurrentNode . High ) ;

}

i f ( CurrentNode . Low == null && CurrentNode . High == null )

{

i f ( CurrentNode == CurrentNode . Parent . Low)

leafNodeImage = ConvertToDisplayImage Low ( CurrentNode ) ;

i f ( CurrentNode == CurrentNode . Parent . High )

leafNodeImage = ConvertToDisplayImage High ( CurrentNode ) ;

LeafNodes Current . Add( CurrentNode ) ;

// Disp lay

LeafNodesDisplayImage Current . Add( leafNodeImage ) ;

}

}

Bitmap SetBitmapImage ( Bitmap f ina l Image , int nPos i t ion ,

int [ ] [ ] Proces sedPixe l s , S i z e s i z e )

{

for ( int i = 0 ; i < s i z e . Width ; i++)

{

int k = 0 ;

for ( int j = 0 ; j < s i z e . Height ; j++)

{

for ( int m = 0 ; m < nPixelB + 1 ; m++)

{

76



i f (m == nPos i t i on )

Cur r en tF i l t e r . nPixelRGB [m] =

Proce s s edP ixe l s [ i ] [ k ] ;

else

Cur r en tF i l t e r . nPixelRGB [m] = 0 ;

}

f i na l Image . Se tP ixe l ( i ,

k ,

Color . FromArgb ( ( byte ) Cur r en tF i l t e r . nPixelRGB [ nPixelR ] ,

(byte ) Cur r en tF i l t e r . nPixelRGB [ nPixelG ] ,

(byte ) Cur r en tF i l t e r . nPixelRGB [ nPixelB ] ) ) ;

k++;

}

}

return f i na l Image ;

}//end o f SetBitmapVert ica lImage

private Bitmap ConvertToDisplayImage Low ( BinaryTreeNode RawImage)

{

Bitmap DisplayImage = null ;

S i z e s i z e = new S i z e ( ) ;

s i z e . Width = RawImage . ImageSize . Width ;

s i z e . Height = RawImage . ImageSize . Height ;

int [ ] [ ] p i x e l s = new int [ s i z e . Width ] [ ] ;

for ( int i = 0 ; i < s i z e . Width ; i++)

{

p i x e l s [ i ] = new int [ s i z e . Height ] ;

}

DisplayImage = new Bitmap ( ( s i z e . Width ) ,

s i z e . Height ,

System . Drawing . Imaging . PixelFormat . Format24bppRgb ) ;

int nPos i t i on = 0 ;

switch ( Co lo rSe l e c t ed )

{

case ’R ’ :

77



CopyValueOfArray (RawImage . RedPix , ref p i x e l s , s i z e ) ;

nPos i t i on = 0 ;

break ;

case ’G’ :

CopyValueOfArray (RawImage . GreenPix , ref p i x e l s , s i z e ) ;

nPos i t i on = 1 ;

break ;

case ’B ’ :

CopyValueOfArray (RawImage . BluePix , ref p i x e l s , s i z e ) ;

nPos i t i on = 2 ;

break ;

default :

CopyValueOfArray (RawImage . RedPix , ref p i x e l s , s i z e ) ;

nPos i t i on = 0 ;

break ;

}

// ge t max va lue o f p i x e l

int n max = Cur r en tF i l t e r . GetMaxPixelValue ( p i x e l s ) ;

// check i f max p i x e l va lue i s g r ea t e r than 255

i f ( n max > MAXRGB)

{

for ( int i = 0 ; i < s i z e . Height ; i++)

{

for ( int j = 0 ; j < s i z e . Width ; j++)

{

p i x e l s [ j ] [ i ] = ( p i x e l s [ j ] [ i ] ∗ MAXRGB) / n max ;

}

}

}

else

{

// [ check to see

// ge t min va lue o f p i x e l

int n min = Cur r en tF i l t e r . GetMinPixelValue ( p i x e l s ) ;

78



int abs min = Math . Abs( n min ) ;

// check i f min p i x e l va lue i s l e s s than 0

i f ( n min < 0)

{

for ( int i = 0 ; i < s i z e . Height ; i++)

{

for ( int j = 0 ; j < s i z e . Width ; j++)

{

p i x e l s [ j ] [ i ] = p i x e l s [ j ] [ i ] + abs min ;

}

}

}

// ]

}//end o f e l s e

DisplayImage = SetBitmapImage ( DisplayImage ,

nPos i t ion ,

p i x e l s ,

s i z e ) ;

return DisplayImage ;

}

private stat ic void CopyValueOfArray ( int [ ] [ ] Source ,

ref int [ ] [ ] d e s t i na t i on ,

S i z e s i z e )

{

for ( int i = 0 ; i < s i z e . Width ; i++)

{

for ( int j = 0 ; j < s i z e . Height ; j++)

{

d e s t i n a t i o n [ i ] [ j ] = Source [ i ] [ j ] ;

}

}

}

private Bitmap ConvertToDisplayImage High ( BinaryTreeNode RawImage)

{

79



Bitmap DisplayImage = null ;

S i z e s i z e = new S i z e ( ) ;

s i z e . Width = RawImage . ImageSize . Width ;

s i z e . Height = RawImage . ImageSize . Height ;

int [ ] [ ] p i x e l s = new int [ s i z e . Width ] [ ] ;

for ( int i = 0 ; i < s i z e . Width ; i++)

{

p i x e l s [ i ] = new int [ s i z e . Height ] ;

}

DisplayImage = new Bitmap ( ( s i z e . Width ) ,

s i z e . Height ,

System . Drawing . Imaging . PixelFormat . Format24bppRgb ) ;

int nPos i t i on = 0 ;

switch ( Co lo rSe l e c t ed )

{

case ’R ’ :

CopyValueOfArray (RawImage . RedPix , ref p i x e l s , s i z e ) ;

nPos i t i on = 0 ;

break ;

case ’G’ :

CopyValueOfArray (RawImage . GreenPix , ref p i x e l s , s i z e ) ;

nPos i t i on = 1 ;

break ;

case ’B ’ :

CopyValueOfArray (RawImage . BluePix , ref p i x e l s , s i z e ) ;

nPos i t i on = 2 ;

break ;

default :

CopyValueOfArray (RawImage . RedPix , ref p i x e l s , s i z e ) ;

nPos i t i on = 0 ;

break ;

}

// ge t min va lue o f p i x e l

int n min = Cur r en tF i l t e r . GetMinPixelValue ( p i x e l s ) ;

80



int abs min = Math . Abs ( n min ) ;

// check i f min p i x e l va lue i s l e s s than 0

i f ( n min < 0)

{

for ( int i = 0 ; i < s i z e . Height ; i++)

{

for ( int j = 0 ; j < s i z e . Width ; j++)

{

p i x e l s [ j ] [ i ] = p i x e l s [ j ] [ i ] + abs min ;

}

}

}

DisplayImage = SetBitmapImage ( DisplayImage ,

nPos i t ion ,

p i x e l s ,

s i z e ) ;

return DisplayImage ;

}

public Bitmap DisplayAl lLeafNodes ( )

{

// Bitmap bitmap =

//new Bitmap ( Orig ina lImage .Width , Orig ina lImage . Height ) ;

int x = 0 , y = 0 ;

for ( int i = 0 ; i + 1 < LeafNodes Current . Count ; i = i + 2)

{

i f ( LeafNodes Current [ i ] . Process == fa l se )

break ;

using ( Graphics g = Graphics . FromImage ( bitmap ) )

{

//draw f i r s t image

g . DrawImage ( LeafNodesDisplayImage Current [ i ] , x , y ) ;

// f o r sencond image

i f ( LeafNodesDisplayImage Current [ i ] . Height ==

LeafNodes Current [ i ] . Parent . ImageSize . Height )

81



g . DrawImage ( LeafNodesDisplayImage Current [ i + 1 ] ,

LeafNodesDisplayImage Current [ i ] . Width ,

y ) ;

else

{

g . DrawImage ( LeafNodesDisplayImage Current [ i + 1 ] ,

x ,

LeafNodesDisplayImage Current [ i ] . Height ) ;

x = x + LeafNodesDisplayImage Current [ i ] . Width ;

}

}

}

return bitmap ;

}

public stat ic BinaryTreeNode LowComponentProcess (

BinaryTreeNode LowImage )

{

//BinaryTreeNode LowImage = nu l l ;

i f ( CurrentImage == null )

{

MessageBox . Show( ” Please S e l e c t Image . ” , ”Hey” ,

MessageBoxButtons .OK, MessageBoxIcon . Exclamation ) ;

}

else

{

LowImage = Cur r en tF i l t e r . GetLowComponent (LowImage ,

Co lorSe l ec ted ,

CurrentProcessCntLow ) ;

}

//LowCompImage = LowImage ;

return LowImage ;

}

public stat ic BinaryTreeNode HighComponentProcess (

BinaryTreeNode HighImage )

82



{

//Bitmap HighImage = nu l l ;

i f ( CurrentImage == null )

{

MessageBox . Show( ” Please S e l e c t Image . ” , ”Hey” ,

MessageBoxButtons .OK, MessageBoxIcon . Exclamation ) ;

}

else

{

HighImage = Cur r en tF i l t e r . GetHighComponent ( HighImage ,

Co lorSe l ec ted ,

CurrentProcessCntHigh ) ;

}

// HighCompImage = HighImage ;

return HighImage ;

}

// Image r e s i z e

public stat ic Image re s i z e Image ( Image imgToResize , S i z e s i z e )

{

int sourceWidth = imgToResize . Width ;

int sourceHe ight = imgToResize . Height ;

f loat nPercent = 0 ;

f loat nPercentW = 0 ;

f loat nPercentH = 0 ;

nPercentW = ( ( f loat ) s i z e . Width / ( f loat ) sourceWidth ) ;

nPercentH = ( ( f loat ) s i z e . Height / ( f loat ) sourceHe ight ) ;

i f ( nPercentH < nPercentW )

nPercent = nPercentH ;

else

nPercent = nPercentW ;

int destWidth = ( int ) ( sourceWidth ∗ nPercent ) ;

int destHeight = ( int ) ( sourceHe ight ∗ nPercent ) ;

Bitmap b = new Bitmap ( destWidth , destHeight ) ;

Graphics g = Graphics . FromImage ( ( Image )b ) ;

83



//g . Interpo la t ionMode = Interpo la t ionMode . HighQua l i tyBicub ic ;

g . DrawImage ( imgToResize , 0 , 0 , destWidth , destHeight ) ;

g . Dispose ( ) ;

return ( Image )b ;

}

// cropping image

public stat ic Image cropImage ( Image img , Rectangle cropArea )

{

Bitmap bmpImage = new Bitmap ( img ) ;

Bitmap bmpCrop = bmpImage . Clone ( cropArea ,

bmpImage . PixelFormat ) ;

return ( Image ) ( bmpCrop ) ;

}

}

}

B.7 Variance-covariance.cs

u s i n g System ;

using System . C o l l e c t i o n s . Gener ic ;

using System . Linq ;

using System . Text ;

using System . IO ;

using System . Drawing ;

namespace ImageFi l te r ingTry

{

// p o s i t i v e d e f i n i t e Matrix

class VariantCoVariant

{

/∗ pu b l i c s t r u c t MatrixElements

{

pu b l i c f l o a t Value ;

p u b l i c Char Color ;

} ∗/

private double [ ] [ ] VVMatrix ;

84



private int Matr ix s i z e ;

public double Avrg Red , Avrg Green , Avrg Blue , t o t a l P i x e l ;

private BinaryTreeNode TreeNode ;

private const int nPixelR = 0 ;

private const int nPixelG = 1 ;

private const int nPixelB = 2 ;

public VariantCoVariant ( )

{

Matr ix s i z e = 3 ;

VVMatrix = new double [ Mat r ix s i z e ] [ ] ;

for ( int i = 0 ; i < Matr ix s i z e ; i++)

{

VVMatrix [ i ] = new double [ Mat r ix s i z e ] ;

}

/∗ f o r ( i n t i = 0 ; i < Matr i x s i z e ; i++)

{

f o r ( i n t j = 0 ; j < Matr i x s i z e ; j++)

{

PDMatrix [ i ] [ j ] . Color = ’R’ ;

PDMatrix [ i ] [ j +1]. Color = ’G’ ;

PDMatrix [ i ] [ j + 2 ] . Color = ’B’ ;

}

}∗/

}

public double [ ] [ ] GetPDM( BinaryTreeNode MyImage)

{

TreeNode = MyImage ;

t o t a l P i x e l = TreeNode . ImageSize . Width ∗ TreeNode . ImageSize . Height ;

ComputeAvrgRGB ( ) ;

for ( int i = 0 ; i < Matr ix s i z e ; i++)

{

for ( int j = 0 ; j < Matr ix s i z e ; j++)

{

85



double Average i = 0 ;

double Avergae j = 0 ;

int [ ] [ ] Co lo rVa lue s i = GetColor ( i , ref Average i ) ;

int [ ] [ ] Co lo rVa lue s j = GetColor ( j , ref Avergae j ) ;

VVMatrix [ i ] [ j ] = ComputeSigma ( ColorValues i ,

Co lorValues j , Average i , Avergae j ) ;

}

}

double CorelationRB = ComputeCorelation ( nPixelR , nPixelB ) ;

double CorelationRG = ComputeCorelation ( nPixelR , nPixelG ) ;

return VVMatrix ;

}

private int [ ] [ ] GetColor ( int Color , ref double average )

{

switch ( Color )

{

case nPixelR :

average = Avrg Red ;

return TreeNode . RedPix ;

// break ;

case nPixelG :

average = Avrg Green ;

return TreeNode . GreenPix ;

case nPixelB :

average = Avrg Blue ;

return TreeNode . BluePix ;

default :

average = Avrg Red ;

return TreeNode . RedPix ;

}

}

private double ComputeSigma ( int [ ] [ ] Co lo r i , int [ ] [ ] Co lo r j , double//

Average i , double Average j )

86



{

double Sigma =0;

double check1 = 0 , check2 = 0 ;

double temp1 = 0 , temp2 = 0 ;

int cnt =0;

for ( int i = 0 ; i < TreeNode . ImageSize . Height ; i++)

{

for ( int j = 0 ; j < TreeNode . ImageSize . Width ; j++)

{

temp1 = C o l o r i [ j ] [ i ] − Average i ;

temp2 = C o l o r j [ j ] [ i ] − Average j ;

i f ( C o l o r j [ j ] [ i ] < Average j )

cnt++;

check1 = check1 + temp1 ;

check2 = check2 + temp2 ;

Sigma = Sigma + ( temp1 ∗ temp2 ) ;

}

}

int check3 = ( int ) check2 ;

return ( Sigma / t o t a l P i x e l −1);

}

// Computer average o f Red , b l u e and green

private void ComputeAvrgRGB ( )

{

Avrg Blue = Avrg Green = Avrg Red = 0 ;

for ( int i = 0 ; i < TreeNode . ImageSize . Height ; i++)

{

for ( int j = 0 ; j < TreeNode . ImageSize . Width ; j++)

{

Avrg Red = Avrg Red + TreeNode . RedPix [ j ] [ i ] ;

Avrg Green = Avrg Green + TreeNode . GreenPix [ j ] [ i ] ;

Avrg Blue = Avrg Blue + TreeNode . BluePix [ j ] [ i ] ;

}

}

87



Avrg Red = Avrg Red / t o t a l P i x e l ;

Avrg Green = Avrg Green / t o t a l P i x e l ;

Avrg Blue = Avrg Blue / t o t a l P i x e l ;

}

public double ComputeCorelation ( int Color1 , int Color2 )

{

double Core la t i on = 0 ;

double Color1Covariant = Math . Sqrt ( VVMatrix [ Color1 ] [ Color1 ] ) ;

double Color2Covariant = Math . Sqrt ( VVMatrix [ Color2 ] [ Color2 ] ) ;

Core l a t i on = VVMatrix [ Color1 ] [ Color2 ] /

( Color1Covariant ∗ Color2Covariant ) ;

return Core la t i on ;

}

public double GetStandardDeviation ( int Color1 )

{

return (Math . Sqrt ( VVMatrix [ Color1 ] [ Color1 ] ) ) ;

}

}

}

B.8 Histogram.cs

u s i n g System ;

using System . C o l l e c t i o n s . Gener ic ;

using System . Linq ;

using System . Text ;

// us ing System . Threading . Tasks ;

using System . IO ;

using System . Drawing ;

using System . Windows . Forms ;

using System . C o l l e c t i o n s ;

namespace ImageFi l te r ingTry

{

class Histogram

88



{

private int [ ] m All ; // his togram of the g r ay s ca l e

private int [ ] m Red ;

private int [ ] m Green ;

private int [ ] m Blue ;

public enum ColorType { MIX COLORS = −1, ALL COLOR = 0 , RED COLOR, GREEN COLOR, BLUE COLOR } ;

private stat ic Color [ ] h istogramColor = { Color . Gray , Color . Red , Color . Lime , Color . Blue } ;

/// <summary>

/// Tota l number o f gray p i x e l s .

/// </summary>

public int Tota lAl l { get ; private s e t ; }

/// <summary>

/// Tota l number o f p i x e l s con ta in ing red .

/// </summary>

public int TotalRed { get ; private s e t ; }

/// <summary>

/// Tota l number o f p i x e l s con ta in ing green .

/// </summary>

public int TotalGreen { get ; private s e t ; }

/// <summary>

/// Tota l number o f p i x e l s con ta in ing b l u e .

/// </summary>

public int TotalBlue { get ; private s e t ; }

/// <summary>

/// Tota l number o f p i x e l s ana lyzed .

/// </summary>

public int Tota lP ixe l s { get ; private s e t ; }

/// <summary>

/// Index o f the maximum element o f the g r ay s ca l e his togram data array .

/// </summary>

public int MaxAllIndex { get ; private s e t ; }

/// <summary>

89



/// Index o f the maximum element o f the red his togram data array .

/// </summary>

public int MaxRedIndex { get ; private s e t ; }

/// <summary>

/// Index o f the maximum element o f the green his togram data array .

/// </summary>

public int MaxGreenIndex { get ; private s e t ; }

/// <summary>

/// Index o f the maximum element o f the b l u e his togram data array .

/// </summary>

public int MaxBlueIndex { get ; private s e t ; }

/// <summary>

/// Returns the co l o r f o r a his togram based on i t s type .

/// </summary>

/// <param name=”type”>

/// Type o f his togram . This i s one o f the cons tan t s :

/// ALL HISTOGRAM, RED HISTOGRAM, GREENHISTOGRAM, BLUE HISTOGRAM.

/// </param>

/// <re turns>

/// The co l o r f o r the s p e c i f i e d his togram .

/// </returns>

public stat ic Color HistogramColor ( ColorType type )

{

return histogramColor [ ( int ) type ] ;

}

/// <summary>

/// Creates the h is tograms f o r the s p e c i f i e d bitmap .

/// </summary>

/// <param name=”bmp”>

/// Bitmap to ana lyze .

/// </param>

public Histogram ( Bitmap bmp)

{

int x , y , i ;

90



Color [ ] [ ] c l r = null ;

S i z e s i z e = new S i z e ( ) ;

m All = new int [ 2 5 6 ] ;

m Red = new int [ 2 5 6 ] ;

m Green = new int [ 2 5 6 ] ;

m Blue = new int [ 2 5 6 ] ;

// genera te the Histogram data

i f (bmp != null )

{

s i z e = bmp. S i z e ;

Tota lP ixe l s = s i z e . Width ∗ s i z e . Height ;

c l r = new Color [ s i z e . Width ] [ ] ;

for ( i = 0 ; i < s i z e . Width ; i++)

c l r [ i ] = new Color [ s i z e . Height ] ;

for ( x = 0 ; x < s i z e . Width ; x++)

for ( y = 0 ; y < s i z e . Height ; y++)

{

c l r [ x ] [ y ] = bmp. GetPixel (x , y ) ;

m Red [ c l r [ x ] [ y ] . R]++;

m Green [ c l r [ x ] [ y ] .G]++;

m Blue [ c l r [ x ] [ y ] . B]++;

m All [ ( c l r [ x ] [ y ] . R + c l r [ x ] [ y ] .G + c l r [ x ] [ y ] . B) / 3]++;

} // end f o r

} // end i f

initMaxAndTotal ( ) ;

}

private void initMaxAndTotal ( )

{

// REQUIRES con t ruc to r

// determine the max l e v e l s o f each co l o r

MaxAllIndex = 0 ;

MaxRedIndex = 0 ;

MaxGreenIndex = 0 ;

MaxBlueIndex = 0 ;

91



Tota lAl l = m All [ 0 ] ;

TotalRed = m Red [ 0 ] ;

TotalGreen = m Green [ 0 ] ;

TotalBlue = m Blue [ 0 ] ;

for ( int i = 1 ; i < m All . GetLength ( 0 ) ; i++)

{

Tota lAl l += m All [ i ] ;

TotalRed += m Red [ i ] ;

TotalGreen += m Green [ i ] ;

TotalBlue += m Blue [ i ] ;

i f ( m All [ MaxAllIndex ] < m All [ i ] )

MaxAllIndex = i ;

i f (m Red [ MaxRedIndex ] < m Red [ i ] )

MaxRedIndex = i ;

i f ( m Green [ MaxGreenIndex ] < m Green [ i ] )

MaxGreenIndex = i ;

i f ( m Blue [ MaxBlueIndex ] < m Blue [ i ] )

MaxBlueIndex = i ;

} // end f o r

}

/// <summary>

/// Re t r i e v e s the g ray s ca l e his togram data .

/// </summary>

/// <param name=”l pRe su l t”>

/// Array where to put the data .

/// </param>

public void GetAllHistogram ( int [ ] l pResu l t )

{

copyArray ( m All , l pResu l t ) ;

}

/// <summary>

/// Re t r i e v e s the red his togram data .

/// </summary>

/// <param name=”l pRe su l t”>

92



/// Array where to put the data .

/// </param>

public void GetRedHistogram ( int [ ] l pResu l t )

{

copyArray (m Red , lpResu l t ) ;

}

/// <summary>

/// Re t r i e v e s the green his togram data .

/// </summary>

/// <param name=”l pRe su l t”>

/// Array where to put the data .

/// </param>

public void GetGreenHistogram ( int [ ] l pResu l t )

{

copyArray ( m Green , lpResu l t ) ;

}

/// <summary>

/// Re t r i e v e s the b l u e his togram data .

/// </summary>

/// <param name=”l pRe su l t”>

/// Array where to put the data .

/// </param>

public void GetBlueHistogram ( int [ ] l pResu l t )

{

copyArray ( m Blue , lpResu l t ) ;

}

/// <summary>

/// Re t r i e v e s the s p e c i f i e d his togram data . Return t rue i f succe s s .

/// </summary>

/// <param name=”type”>

/// The his togram to r e t r i e v e . This i s one o f the cons tan t s :

/// ALL COLOR, RED COLOR, GREEN COLOR, BLUE COLOR.

/// </param>

/// <param name=”l pRe su l t”>

93



/// Array where to put the data .

/// </param>

/// <re turns>

/// t rue − succe s s : l pRe su l t con ta ins the data .

/// f a l s e − error : con ten t s o f l pRe su l t are unknown .

/// </returns>

public bool GetHistogram ( ColorType type , int [ ] l pResu l t )

{

bool r e t v a l = true ;

switch ( type )

{

case ColorType .ALL COLOR:

GetAllHistogram ( lpResu l t ) ;

break ;

case ColorType .RED COLOR:

GetRedHistogram ( lpResu l t ) ;

break ;

case ColorType .GREEN COLOR:

GetGreenHistogram ( lpResu l t ) ;

break ;

case ColorType .BLUE COLOR:

GetBlueHistogram ( lpResu l t ) ;

break ;

default :

r e t v a l = fa l se ;

break ;

} // end sw i t ch

return r e t v a l ;

}

/// <summary>

/// Returns the index o f the maximum element o f the s p e c i f i e d his togram data array .

/// </summary>

/// <param name=”type”>

/// The his togram to r e t r i e v e . This i s one o f the cons tan t s :

94



/// ALL HISTOGRAM, RED HISTOGRAM, GREENHISTOGRAM, BLUE HISTOGRAM.

/// </param>

/// <re turns>

/// The index o f the maximum element o f the s p e c i f i e d his togram data array , or −1 i f i n v a l i d type .

/// </returns>

public int GetMaxIndex ( ColorType type )

{

int r e t v a l = −1;

switch ( type )

{

case ColorType .ALL COLOR:

r e t v a l = MaxAllIndex ;

break ;

case ColorType .RED COLOR:

r e t v a l = MaxRedIndex ;

break ;

case ColorType .GREEN COLOR:

r e t v a l = MaxGreenIndex ;

break ;

case ColorType .BLUE COLOR:

r e t v a l = MaxBlueIndex ;

break ;

} // end sw i t ch

return r e t v a l ;

}

private void copyArray ( int [ ] lpFrom , int [ ] lpTo )

{

// copy the array ”from” in to ” to ”

int i S i z e ;

i f ( lpFrom != null && lpTo != null )

{

i S i z e = Math . Min( lpFrom . GetLength ( 0 ) , lpTo . GetLength ( 0 ) ) ;

for ( int i = 0 ; i < i S i z e ; i++)

lpTo [ i ] = lpFrom [ i ] ;

95



} // end i f

}

private void copyArray ( f loat [ ] lpFrom , f loat [ ] lpTo )

{

// copy the array ”from” in to ” to ”

int i S i z e ;

i f ( lpFrom != null && lpTo != null )

{

i S i z e = Math . Min( lpFrom . GetLength ( 0 ) , lpTo . GetLength ( 0 ) ) ;

for ( int i = 0 ; i < i S i z e ; i++)

lpTo [ i ] = lpFrom [ i ] ;

} // end i f

}

}

}

96



References

[1] R. M. GOODY and Y. L. YUNG Atmospheric Radiation. Oxford University Press, 2:558–565,

1989.

[2] K.Dogras, P.Ioannidou, P.Chrissoulidis Analytical study of the changes in the color of daylight

due to sulfate droplets and soot grains in the atmosphere. Journal of Quantitative Spectroscopy

and Radiative Transfer, 84:223–238, 2004.

[3] C. Bohren and A. Fraser Colors of the Sky. 1985.

[4] Nicolas Hautire, Raouf Babari, ric Dumont, Roland Brmond, and Nicolas Paparoditis Estimating

Meteorological Visibility using Cameras: a Probabilistic Model-Driven Approach.

[5] Nicole Pauly Hyslop Impaired visibility: the air pollution people see. Atmospheric Environment

journal homepage: www.elsevier.com/locate/atmosenv, 43:182–195, 2009.

[6] Tsay, G. Stephens and T. Greenwald An Investigation of Aerosol Microstructure on visual air

quality. Atmospheric Environment, 25a(5/6):1039-1053,1991.

[7] P. E. Haralabidis and Christodoulos Pilinis Skylight Color Shifts due to Variations of Urban-

Industrial Aerosol Properties: Observer Color Difference Sensitivity Compared to a Digital Cam-

era. Aerosol Science and Technology, 2008.

[8] Baumer, D., Versick S. and Vogel, B. Determination of the Visibility Using a Digital Panorama

Camera. Atmos. Environ. Doi:10.1016/J.Atmosenv.2007.06.24., 2007.

[9] Lo‘pez-A lvarez, M. A., Hernandez-Andre‘s, J., Romero J., and Lee, R. L., Jr. Designing a

Practical System for Spectral Imaging of Skylight. Appl. Opt., 44(27):5688-5695, 2005.

[10] Bre on, F.-M. CLIMATE: how do aerosols affect cloudiness and climate?.

doi:10.1126/science.1131668, 313:623-624, 2006.

[11] Kokkola, H., Romakkaniemi, S., Laaksonen, A. On the formation of radiation fogs under heavily

polluted conditions. Atmospheric Chemistry and Physics Discussions, 3:389-411, 2003.

97



[12] Malm, W.C. Introduction to Visibility. Cooperative Institute for Research in the Atmosphere,

Fort Collins, CO., 1: 27-40, 1999.

[13] Malm,W., MacFarland, K.K., Molenar, J., Daniel, T. Introduction to Visibility. Managing Air

Quality and Scenic Resources at National Parks and Wilderness Areas. Westview Press, Boulder,

CO, 1:27-40, 1983.

[14] Frdric Patin An Introduction to Digital Image Processing. Atmospheric Environment, , 2003.

[15] Robi Polikar, The Wavelet Tutorial, http://engineering.rowan.edu/ polikar/WAVELETS/WT-

tutorial.html.

[16] Eric J. Stollnitz ,Tony D. DeRose, David H. Salesin Wavelets for Computer Graphics: A Primer

Part 1 University of Washingtonl.

[17] Eric J. Stollnitz ,Tony D. DeRose, David H. Salesin Wavelets for Computer Graphics: A Primer

Part 2 University of Washingtonl.

[18] http://iwritearticle.com/environmental-problems-in-ahmadabad/

[19] http://www.stagespot.com/colorchoice.html

[20] http://www.gamedev.net/page/resources/technical/graphics-programming-and-theory/an-

introduction-to-digital-image-processing-r2007

[21] http://www.severewx.com/Radiation/scattering.html

98



Vita

Graduate College

University of Nevada, Las Vegas

Amrita N. Amritphale

Degrees:

Bachelor of Engineering in Information Technology Science 2008

University of Pune, India

Thesis Title: A Digital Image Processing Method for Detecting Pollution in the Atmosphere from

Camera Video

Thesis Examination Committee:

Chairperson, Dr. Evangelos Yfantis, Ph.D.

Committee Member,Dr. John Minor, Ph.D.

Committee Member, Dr. Hal Berghel, Ph.D.

Graduate Faculty Representative, Dr. Jacimaria R. Batista, Ph.D.

99


	A Digital Image Processing Method for Detecting Pollution in the Atmosphere from Camera Video
	Repository Citation

	tmp.1377122764.pdf.wCPdX

