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ABSTRACT 

Cloud Storage and Online Bin Packing 

by 
Swathi Venigella 

 
Dr. Wolfgang Bein, Examination Committee Chair 

Professor, Department of Computer Science 
University of Nevada, Las Vegas 

  
 Cloud storage is the service provided by some corporations (such 

as Mozy and Carbonite) to store and backup computer files. We study the 

problem of allocating memory of servers in a data center based on online 

requests for storage. Over-the-net data backup has become increasingly 

easy and cheap due to cloud storage. Given an online sequence of 

storage requests and a cost associated with serving the request by 

allocating space on a certain server one seeks to select the minimum 

number of servers as to minimize total cost. We use two different 

algorithms and propose a third algorithm; we show that all algorithms 

perform well when the requests are random. The work here is related to 

"bin packing", a well studied problem in theoretical computer science. As 

an aside the thesis will survey some of the literature related to bin 

packing. 
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CHAPTER 1 

INTRODUCTION 

In this chapter we present the problem of bin packing and 

applications of it. The packing problems which we study are theoretical, 

but serve as benchmarks to many algorithmic techniques. The ideas 

which originated in the study of the bin packing problem have helped 

shape computer science as we know it today.  A well known packing 

problem which is one of the oldest and most thoroughly studied 

problems in computer science and combinatorial optimization is the bin 

packing problem which is a combinatorial NP-hard problem. 

The importance of this problem is that it has spawned off whole 

areas of research, including the field of approximation algorithms. The 

bin packing optimization problem requires packing a set of objects into a 

finite number of bins of capacity V in a way that minimizes the number 

of bins used. We intend to concentrate on a number of problems which 

have many important applications in areas such as multi-processor 

scheduling, resource allocation, packet routing, paged computer memory 

systems, storage, multiprocessor scheduling, stock cutting, loading 

trucks with weight capacity, creating file backup in removable media and 

technology mapping in FPGA implementation of custom hardware and 

many others.   

 In this thesis we discuss theoretical problems which include the 

classical bin packing problem for general and restricted inputs. We 
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present this problem as well as its application in data server storage. The 

classical bin packing problem models a situation when a set of items 

(having scalar sizes, which can be seen as sizes of files) need to be stored 

on hard disks in the data centers. Without loss of generality we assume 

that all the hard drives have the same size, since buying them in bulk is 

much cheaper than buying them individually. We also assume that the 

total size of a hard drive is 1 (assuming that all sizes were scaled), and 

the hard drive represents a bin that needs to receive items to be stored. 

The goal is to minimize the number of bins (or disks) used for storing the 

files. Restricted inputs of this problem include the parametric case, 

where sizes of items are much smaller than the size of recipients. Other 

generalizations are variable-sized bin packing - where bins of several 

sizes are available - and cardinality constrained bin packing – where a 

limited number of items can be placed in each bin, irrespective of the fact 

that maybe more items can still fit in.   

 Thesis Overview: In chapter 2 we present basic notions related to 

bin packing and approximation algorithms. The K-Binary algorithm is 

presented in detail in Chapter 3, with suggestive examples. The 

implementation and comparative studies and a brief description of the 

code are presented in Chapter 4. Simulations of results are presented in 

Chapter 5. We finish with concluding remarks in Chapter 6.          
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CHAPTER 2 

 BIN PACKING 

The classical one dimensional bin packing has long served as a proving 

ground for new approaches to the analysis of approximation algorithms. 

The classical bin packing problem was one of the first combinatorial 

optimization problems which were introduced in the early 1970’s and can 

be formulated as follows: 

Given a sequence of items  ={1,2,…,n} with sizes s1,s2,…,sn ∈ (0,1], 

find a partition of the items into sets of size 1 (called bins) so that the 

number of sets in the partition is minimized [6]. Furthermore, the sum of 

the sizes of the pieces assigned to any bin may not exceed its capacity.  

A bin is empty if no piece is assigned to it, otherwise it is used. We 

say that an item that belongs to a given bin (set) is “packed” into this bin. 

Since the goal of this problem is to minimize the number of bins used, we 

would like to find an algorithm which incurs cost which is within a 

constant factor of the minimum possible cost, no matter what the input 

is. Let us take a concrete example. Let us consider a number of seven 

items of sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3 and 0.8 that need to be packed. 

The minimum (optimal) way of packing the items into bins is shown in 

Figure 1. 
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Figure 1: Example of Bin packing 

 

For the classic bin packing problem one can have a cost within a 

constant factor r of the minimum number of required bins for r < 3/2 

unless P=NP. This constant factor r is known as the asymptotic 

performance ratio or asymptotic performance guarantee, which leads to 

the usage of a standard quality measure for the performance of bin 

packing algorithms. We define the asymptotic performance ratio more 

precisely. For a given input sequence I, let  be the sum of the 

capacities of the bins used by algorithm A on I also OPT(I) is the cost of 

an optimal solution for  input I, and A(I) is the cost algorithm A for this 

input [16]. The asymptotic performance ratio for an algorithm A is defined 

to be 
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5

 Approximation algorithms for the classical bin packing problem: 

The first studies of the bin packing problem suggested. The natural and 

easy to implement algorithms, First Fit (FF), Next Fit (NF) and Best Fit 

(BF). These algorithms assume an arbitrary ordering of the input [5]. 

 For the general bin packing algorithm we assume that the entire 

list and its item sizes are known before the packing begins. A common 

situation is where the items arrive in some order and must be assigned 

to some bin as soon as they arrive, without knowledge of the remaining 

items. A bin packing algorithm that can construct its packing under this 

on-line regime is called an on-line bin packing algorithm, for which items 

in the list must be processed in exactly the same order as they are given, 

one at a time. The on-line processing is difficult owing to the fact that 

unpredictable item sizes may appear. In general, the performance of an 

on-line bin-packing algorithm is substantially affected by the 

permutation of items in a given list. The Next-Fit and First Fit are two 

well-known and simplest on-line bin-packing algorithms where r (Next-

Fit) = 2, while the r (First -Fit) = 1.7 [16]. 

2.1 Next Fit: 

The simplest algorithm for classical one dimensional bin packing 

problem is Next Fit. Next Fit is a bounded space online algorithm in 

which the only partially filled bin that is open is the most recent one to 

be started. It uses one active bin into which it packs the input. Once the 

free space in this bin becomes too small to accommodate the
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next item, a new active bin is opened and the previous active bin is never 

used again. This process continues until there are no more elements. 

This is the least efficient of the algorithms but it does have a practical 

benefit since at any time at most one bin is kept open. For instance, 

consider the conveyor belt placing items in boxes to be shipped to a 

single customer. One would not want to have to reverse the conveyor belt 

to go back to a partially empty box to fit in an item that the customer 

ordered. Next Fit has an approximation ratio of 2 and runs in linear time. 

Next Fit does the following steps: 

Description: This heuristic places the next item in the currently open 

bin. If it does not fit the bin is closed and a new bin is opened [22]. 

Initialization: 

Given a list of item weights L= {  . 

Place item 1 in bin 1and remove L. let i=1. j=2. 

Iterations: 

1. If item j fits in bin I, place j in i. If not, then open a new bin i+1 and 

place j in bin i+1. Let i=i+1. 

2. Remove item j from L. Let j = j+1. 

3. While items remain in L, repeat from Step 1. 

Let us take an example of bins of size 80, and the elements to be packed 

have the sizes of 26, 57, 18, 8, 45, 16, 22, 29, 5, 11, 8, 27, 54, 13, 17, 

21, 63, 14, 16, 45, 6, 32, 57, 24, 18, 27, 54, 35, 12, 43, 36, 72, 14, 28, 

3, 11, 46, 27, 42, 59, 26, 41, 15, 41, 68. We show in Figure 2 how these 
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items are packed into bins using the Next Fit algorithm. We write the bin 

number at the bottom, the bin size the left side, and we show how much 

each bin is actually filled. We color with blue the first item in each bin, 

with red the second item, with green the third item, with light blue the 

fourth item, and with cyan the fifth item. 

 

  
Figure 2: Chart showing items for Next Fit algorithm 

 

Theorem 1: 

Given an instance x of Minimum Bin Packing, Next Fit returns a solution 

with value (x) such that (x) / (x) < 2 [19]. 

Proof: The functions of sum of the item sizes denoted by A (i.e., A= ) 

is the value of the optimal solution. The number of bins used by Next Fit 
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is less than 2*A, since for each pair of consecutive bins, the sum of the 

sizes of items included in these two bins is greater than 1.  The number 

of bins used in each feasible solution is at least the total size of items; we 

have that (x)  [A]. It follows that (x) < 2 (x). 

Theorem 2: If M is the number of bins in the optimal solution, then Next 

Fit never uses more than 2M bins. There exist sequences that force Next 

Fit to use 2M-2 bins, thus 2M-2 is a lower bound for Next Fit. [20] 

Proof: Let us consider any two adjacent bins. Sum of the items in the two 

bins must be greater than 1; otherwise Next Fit puts all items from the 

second bin into the first bin. Let A1 be the total occupied space in the 

first bin, A2 be the total occupied space in the second bin, so on. Thus, 

the total occupied space in (A1 + A2) is greater than 1. The same holds for 

A3+A4 etc.. Thus, at most half the space is wasted, and so Next Fit uses 

at most 2M bins. 

 For the lower bound, let us assume that the total number of 

items N is divisible by 4. Let us consider the sequence in which the item 

size si = 0.5 for i odd, and si = 2/N if i is even. Then, the optimal solution 

puts all the items of size 0.5 in pairs using a total of N/4 bins. The rest of 

the items fit in a single bin, so the optimum number of bins is N/4 + 1. 

Next Fit would place the first and the second item together in one bin, 

the third and the fourth item together in the second bin, and so on, thus 

using a total of N/2 bins.  
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The weakness of the Next Fit algorithm is that assigns an item only to 

the last used bin. The algorithm First Fit tries to assign an item 

to any non-filled (open) bins. 

2.2 First Fit 

First Fit achieves a worse running time as it keeps all non-empty bins 

active and tries to pack every item in these bins before opening a new 

one. If no bin is found, it opens a new bin and puts the item in the new 

bin. So, the restriction of using a single bin is removed entirely and all 

partially filled bins are considered as possible destinations for the item to 

be packed. In this algorithm the rule followed is: First we place an item 

in the first, called lowest indexed, bin into which it will fit , i.e.., if there 

is any partially filled bin  with level( )+s( )  1, then we place  in the 

lowest indexed bin. Otherwise, we start a new bin with  as its first item.  

The general class of such algorithms is called Any Fit algorithms. 

This class consists of all algorithms that open a new bin if there is no 

other option. First Fit always picks the first bin in the list of open bins 

where the item can fit. The algorithm works as follows: 

Description: This keeps all infill bins open. It places the next item in the 

lowest numbered bin in which the item fits. If it does not fit in any bin, a 

new bin is opened. 

Initialization: 

G Given a list of item weights L= {  . 

Place item 1 in bin 1and remove L. let i=1. j=2. 
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Iterations: 

1. Find the lowest numbered bin I in which item j fits, and place j in i. 

If I does not fit in any bin, open a new bin and number it m+1, let 

m=m+1, and place j in bin m+1. 

2. Remove item j from L. Let j=j + 1. 

3. While items remain in L, repeat from Step 1. 

Let us consider the following elements to be packed into bins of size 80: 

the size of the elements are 26, 57, 18, 8, 45, 16, 22, 29, 5, 11, 8, 27, 54, 

13, 17, 21, 63, 14, 16, 45, 6, 32, 57, 24, 18, 27, 54, 35, 12, 43, 36, 72, 

14, 28, 3, 11, 46, 27, 42, 59, 26, 41, 15, 41, and 68. We show in Figure 3 

how these items are packed into bins using the First Fit algorithm. We 

write the bin number at the bottom, the bin size the left side, and we 

show how much each bin is actually filled. We color with blue the first 

item in each bin, with red the second item, with green the third item, 

with light blue the fourth item, with cyan the fifth item, and with orange 

the sixth item. 

Theorem 3:  First Fit never uses more than 2M bins, if M is the optimal. 

Proof:  Here At most one bin can be more than half empty: otherwise the 

contents of the second half-full bin would be placed in the first. 

Theorem 4:  If M is the optimal number of bins, then First Fit never uses 

more than 1.7M bins. On the other hand, there are sequences that force 

it to use at least 17/10 (M-1) bins.  
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Figure 3: Chart showing items for First Fit algorithm 

 

 We show an example that forces First Fit to use 10/6 times 

optimal. For instance, consider the sequence of 6M items of size 1/7 + e; 

followed by 6M items of size 1/3 + e; followed by 6M items of size 1/2 + 

e, where e is a very small number. The optimal strategy is to pack each 

bin with one from each group, requiring a total of 6M bins. When First 

Fit is run, it packs all the small items (of size 1/7 + e) first into bins, a 

total of 6M/6=M bins. It then packs all the medium items (of size 1/3 + 

e) into bins, but requires 6M/2 = 3M bins, since only two such items fit 

into one bin. It then packs the large items (of size 1/2 +e ) into bins, 

using a total of 6M bins since only one item can fit into a bin. Thus, in 

total First Fit uses M+3M+6M=10M bins [13]. 
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First Fit achieves an approximation factor of 2 [15]. This is due to the 

observation that at any given time, it is impossible for 2 bins to be   half 

full. The reason is that if at some point a bin was at most half full, 

meaning it has at least a space of V/2, the algorithm will not open a new 

bin for any item whose size is at most V/2. Only after the bin fills with 

more than V/2 or if an item with a size larger than V/2 arrives, the 

algorithm may open a new bin. Thus if we have B bins, at least B−1 bins 

are more than half full. Therefore >  V. Because  is a lower 

bound of the optimum value OPT, we obtain that B−1<2OPT and 

therefore B ≤2*OPT [13].  

It is possible to construct the First Fit packing in time O (n*log n) 

using an appropriate data structure. This is the best possible for a 

comparison based implementation, since one can use the First Fit 

packing rule to sort. First Fit is an O (n)-space algorithm, since there are 

sequences in which all non-empty bins remain active until the end of the 

processing.  

In addition to the performance ratio, we also consider the time and 

the space complexity of on-line bin-packing algorithms. Thus, Next Fit is 

an O (n)-time algorithm, whereas First Fit is an O (n log n)-time 

algorithm. For convenience, a non-empty bin during the processing is 

called “filled” if it is not intended to pack any more items and “active” if it 

is. Using the uniform cost criterion for space, we need one storage 

location for each active bin. As soon as a bin becomes filled, it is part of 
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the output of the algorithm used, and we do not count its storage 

location in defining the space complexity of the algorithm. Specifically, 

we use SA(n) to denote the maximum number of storage locations (for 

active bins) needed by algorithm A during the processing of the list L 

whose size is n, and refer to algorithm A as an SA(n)-space algorithm. 

Next Fit is an O (1)-space algorithm, since it involves only one active bin 

at all times, and First Fit is an O (n)-space algorithm, since in this case 

all non-empty bins remain active until the end of the processing [22]. 

2.3 Best Fit: 

Best Fit is the best known algorithm for on-line bin packing which 

emerges as the winner among the various online algorithms: It is simple 

and behaves well in practice, and no other algorithm has a better both 

worst case and average uniform case. Best Fit (BF) picks (among the 

possible bins for the item) the one where the amount of free space is 

minimal. It picks the bin with the least amount of free space in which it 

can still hold the current element. The description of Best Fit algorithm 

follows: 

Description: 

This algorithm tries to choose the fullest bin possible with enough space 

each time an item is assigned. All unfilled bins are kept open until the 

end. It places the next item j in the bin whose current contents is the 

largest, but should not exceed Q- . If it does not fit in any bin, new bin 

is opened [22]. 
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Initialization: 

 Given a list of item weights L= {  . 

Place item 1 in bin 1 and remove from L. let j=2, m=1. 

Iterations: 

1. Find the bin i whose remaining capacity is minimum but greater 

than (if  are the items in bin i,  is the remaining 

capacity of bin i) and place j in i. If j does not fit in any bin, open a 

new bin and number it m+1, place j in bin m+1 and let m=m+1 

2. Remove item j from L. Let j=j + 1. 

3. While items remain in L, repeat from Step 1. 

Let us take an example of elements to be packed into bins of size 80: the 

size of the elements 26, 57, 18, 8, 45, 16, 22, 29, 5, 11, 8, 27, 54, 13, 17, 

21, 6, 3, 14, 16, 45, 6, 32, 57, 24, 18, 27, 54, 3, 5, 12, 43, 36, 72, 14, 

28, 3, 11, 46, 27, 42, 59, 26, 41, 15, 41, and 68. We show in Figure 4 

how these items are packed into bins using the Best Fit algorithm. We 

write the bin number at the bottom, the bin size on the left side, and we 

show how much each bin is actually filled. We color with blue the first 

item in each bin, with red the second item, with green the third item, 

with light blue the fourth item, and with cyan the fifth item. 

 Best Fit can be easily implemented in O (N log N) time. Best Fit 

and First Fit never uses more than 1.7 times optimal. 

 We study the expected performance ratio, taking as the worst-

case, the multi set of items L, and assuming that the elements of L are 
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inserted in random order. The lower bound acquires an approximation 

ratio of 1.08 and an upper bound of 1.5 [12]. 

 

 
Figure 4: Chart showing items for Best Fit algorithm 

 

 Any on-line bin-packing algorithm has a performance ratio of at 

least 1.54 in which case Best Fit has an approximation ratio of 1.7 which 

is the same as First Fit and in the average uniform case the items 

generally draw in the interval[0,1] (then Best Fit has expected wasted 

space of O(n/2(log n)). But the worst-case performance ratio and the 

uniform-distribution performance ratio are not quite satisfactory 

measures for evaluating online bin packing algorithms. 
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2.4 Offline Algorithms: 

If no limit on re-packing is imposed then we perform offline algorithms. 

An offline algorithm simply repacks everything each time an item arrives. 

Packing large items is difficult with an online algorithm, especially when 

such items occur later in the sequence. We can circumvent this by 

sorting the input sequence and placing the large items first. There are 

three important offline algorithms for bin packing in which the inputs are 

not ordered arbitrarily but stored in a non decreasing order of item sizes 

which results in a new list. The algorithms Next Fit Decreasing, First Fit 

Decreasing and Best Fit Decreasing are defined in the same way as Next 

Fit, First Fit and Best Fit, only now the input is not ordered arbitrarily 

but is stored in non- increasing order of item sizes.  

 The approximation ratio of First Fit Decreasing is . The 

approximation ratio for Next Fit Decreasing is 1.691 and was shown by 

Baker and Coffman. Gary and Johnson designed an algorithm called 

modified First Fit Decreasing that has an approximation ratio of   . This 

is the best currently known algorithm which has a relatively small 

running time in practice [21]. 

2.4.1 First Fit Decreasing 

This algorithm first sorts items in non-increasing order with respect to 

their size and then processes items as the First Fit algorithm. For 

example, let us consider the following eight items of sizes 4, 1, 2, 5, 3, 2, 

3, 6, 3, that need to be packed into bins of size 8. With the First Fit  
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Decreasing algorithm we sort the items into descending order first (see 

Figure 5). Then we use the First Fit algorithm to pack them into five bins 

(see Figure 6). 

 

 

 

 

 

  

 Figure 5: Non-increasing order of First Fit Decreasing 

 

 

 

                            1               2            

                                                                      3                2 

                     6             5               

                                                     4                3              3 

 

  Figure 6: Example of First Fit Decreasing 

 

Given an instance x of the minimum bin packing problem, the First Fit 

Decreasing algorithm finds a solution with measure (x) such that 

                                   (x)  1.5 (x) +1 
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We partition the ordered list of items {  …, } according to their sizes 

into the following four sets: 

A = { | >  }, 

B = { |   > }, 

C = { |   > }, 

D = { |   }, 

If there is at least one bin that contains only items belonging to D, then 

there is at most one bin i.e. the last opened one with total occupancy less 

than  . Thus, First Fit Decreasing finds an optimal solution if there is no 

bin that contains only items belonging to D. Let  be the items that are 

eliminated belonging to D. Since the value found by First Fit Decreasing 

for x and  is the same, it is sufficient to prove optimality of First Fit 

Decreasing for . Since the First Fit Decreasing algorithm processes 

items in non-increasing order according to their weight, it packs the 

highest items in their respective bins that fit with it and do not share a 

bin with other items. This implies that the number of bins in optimal 

solution and the solution found by First Fit Decreasing are same. An 

apparently better algorithm is the Best Fit Decreasing algorithm. 
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2.4.2 Best Fit Decreasing 

Like First Fit Decreasing, Best Fit Decreasing initially sorts items in non-

increasing order with respect to their order and then processes them 

sequentially. The difference between the two algorithms is the rule used 

for choosing the bin in which new item  is inserted while trying to 

pack . Best Fit Decreasing chooses a bin with the minimum empty 

space to be left after the item is packed into a bin. In this way, it tries to 

fit the items into bin by reducing the fragmentation of the bins. In some 

cases, the quality of solution found by Best Fit Decreasing may be worse 

than the quality of solution found by First Fit Decreasing. In other cases 

Best Fit Decreasing finds an optimal solution while First Fit Decreasing 

returns a non- optimal solution. 

Next we present three algorithms in which the number of sets in 

the partition is minimized according to a set of given intervals.  

2.5 Online algorithm based on partitioning: 

Some types of algorithm are based on a non-uniform partitioning of 

interval space (0,1] into M sub-intervals and will run is O(n) time. It is 

known that no on-line algorithm can have an asymptotic worst case ratio 

<1.53. The best on-line algorithm given by Lee and Lee and called 

Harmonic has a worst-case ratio of 1.69. The performance ratio is better 

than the Best-Fit when the item sizes are uniformly distributed.  
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2.5.1 Harmonic Algorithm: 

We are given a list of items L= { , , … }, each with item sizes  (0< 

 ≤ 1). The interval (0, 1] is partitioned into harmonic sub intervals 

=  where M is a positive integer. Type 1 is a bin 

that contains items whose sizes are in the range , type 2 is a bin 

that contains items whose sizes are in the range , type M is a bin 

that contains items whose sizes are in the range  Each item is 

classified according to the size, i.e., if the item size is in the interval  

the item is called item or -bin. For 1 ≤ j < k, at most j -pieces can 

be packed in –bin and is referred to as being filled if it has exactly   –

pieces, and unfilled otherwise. Let  denote the number of -bins used 

by the algorithm, 1 ≤ j ≤ M. In Harmonic algorithm, we keep all unfilled 

bins active -bin for each 1 ≤ j < M. The Harmonic algorithm is 

completely independent of the arriving order of items [6].  

All elements will be packed by Harmonic Fit into -bins as follows;  

Items of type i are packed i per bin for i = 1, . . . ,k-1, and corresponding 

weight is we classify the bins into M j- 1 categories. Each category is 

designated to pack the same type of elements. It essentially performs 

item classification for each incoming item and then packs it by Next Fit 

into a corresponding bin. Now, items of type k are packed using Next Fit  



 

 
 

21

When an item does not fit in a bin, the bin is at least  full (size of each 

item ≤  ) and the weight of item of size x is x. For the Next Fit, if the 

next small element does not fit into the opened bin, we close this bin and 

open a new bin. Elements of type k-1 pack k-1 per bin. The maximum 

wasted space is maximal for type 1 bin, as they pack 1 per bin. 

The Algorithm Harmonic has the following steps: 

_______________________________________________________________________ 

Algorithm Harmonic 
________________________________________________________________________ 
For a given value of N, M, and the set of items L= { , , … } 

Step 1: Partition the interval (0, 1] for the given M into subintervals as 

given below: 

 

Step 2: Assign each item ai to the open bin of that type (the size of ai fits 

into the corresponding subinterval). 

Step 3: If an item does not fit into the corresponding bin, then close it 

and open a new one. 

Step 4: Calculate the total number of bins used of each type. 

________________________________________________________________________ 

Let us consider an example where M=5 and the sequence of items is 

0.21, 0.41, 0.13, 0.59, 0.75, 0.64, 0.75, 0.83, 0.71, 0.81, 0.2, 0.95, 0.37, 

0.67, 0.44, 0.82, 0.21, 0.84, 0.87, 0.81, 0.79, 0.59, 0.87, 0.41, 0.25, 

0.36, 0.25, 0.17, 0.29, 0.19, 0.8, 0.05, 0.63, 0.33, 0.56, 0.18, 0.79, 0.16, 
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0.13, and 0.19. Thus the interval (0, 1] is partitioned into five 

subintervals are (0, ], ( , ], ( , ], ( , ], ( ,1]. Bins are assigned to each 

interval as presented in the Table 1 for each partition. The total number 

of bins used is 27. 

Partition 1- (0, ]  

Bin 1 0.13 0.2 0.17 0.19 0.15 0.18 

Bin 2 0.16 0.13 0.19    

 
Partition 2- ( , ] 

Bin 1 0.21 0.21 0.25 0.25 

 
Partition 3 - ( , ] 

Bin1 0.29 0.23 

 
Partition 4 - ( , ] 

Bin 1 0.41 0.37 

Bin 2 0.44 0.41 

Bin 3 0.36  

 
Partition 5 - ( , ] 

Bins 1 2 3 4 5 6 7 8 9 10 

Items 0.59 0.75 0.64 0.75 0.83 0.71 0.81 0.95 0.67 0.82 

 

11 12 13 14 15 16 17 18 19 20 
0.84 0.87 0.81 0.79 0.59 0.87 0.8 0.63 0.56 0.79 

 

      Table 1: Distribution of items using Harmonic algorithm 
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We implemented the Harmonic algorithm as follows: 

For k: = 1 to M do  

For i: = 1 to N do 

If  is an -piece, 1 ≤ j < M 

then begin place  into the -bin 

if the -bin is filled 

then   and get a new -bin 

end 

else (Comment:  is an piece) 

begin 

if there is room for  in the -bin 

then pack it 

else   and get a new –bin 

end 

It can be performed in O (log M) time, for each item classification 

and there are only M active bins at any time, the algorithm runs in O (n 

1ogM) time and uses M storage spaces for active bins. It is shown that, 

the worst-case performance ratio of the algorithm is not related to the 

partition number M. Therefore, M can be regarded as a constant, and 

hence we have an 0(I)-space and O (n)-time algorithm [6]. 

A crucial advantage of this algorithm is that each filled -bin, 1 ≤ k 

< M, packs exactly k items, irrespective of the actual sizes of these items 
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in the interval . A disadvantage of Harmonic is that items of type 1, that 

is, the items larger than 1/2, are packed one per bin, possibly wasting a 

lot of space in each single bin.  

2.5.2 Epstein’s Algorithm: 

We define bounded space algorithm of each value of m > 1. For every 

m>1, changes on the lower bin are made. Epstein’s algorithm works the 

same as the Harmonic algorithm except that in type M bins (the small 

type bins), at most M items are stored at any time. Whenever M items are 

stored in the small type bin, we close the bin and open a new one. For 

item classification, we partition the interval (0, 1] into sub-intervals. We 

use k–1 sub-intervals = . Each bin will contain 

only items from one sub-interval (type). The items in interval  are 

packed to a single bin. A bin which received the full amount of items 

(according to its type) is closed, therefore at most k − 1 bins are open 

simultaneously (one per interval, except for (  ,1]. We pack each item 

according to its type and we note again that the exact size does not affect 

the packing process. Each bin will contain only items of one type. A bin 

that has received the full amount of items (according to its type) is closed 

[1]. The main difference between Harmonic algorithm and Epstein’s 

algorithm is the way that small items are packed, no more than M items 

are allowed in any bin, irrespective of whether more items can still fit 

into that bin. The algorithm works as follows: 
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_______________________________________________________________________ 

Algorithm Epstein 
________________________________________________________________________ 
For a given value of N, M, and the set of items L= { , , … } 

Step 1: Partition the interval (0, 1] for the given M into subintervals: 

 

Step 2: Assign each item ai to the open bin of that type (the size of ai fits 

into the corresponding subinterval). 

Step 3: If there are M items of type M into the small bin, then close it and 

open a new one. 

Step 4: If an item does not fit into the corresponding bin, then close it 

and open a new one. 

Step 5: Calculate the total number of bins used of each type. 

________________________________________________________________________ 

Let us consider the following example, where M=5 and the sequence of 

items is 0.21, 0.41, 0.13, 0.59, 0.75, 0.64, 0.75, 0.83, 0.71, 0.81, 0.2, 

0.95, 0.37, 0.67, 0.44, 0.82, 0.21, 0.84, 0.87, 0.81, 0.79, 0.59, 0.87, 

0.41, 0.25, 0.36, 0.25, 0.17, 0.29, 0.19, 0.8, 0.05, 0.63, 0.33, 0.56, 0.18, 

0.79, 0.16, 0.13, and 0.19. The interval (0, 1] is partitioned into the 

subintervals (0, ], ( , ], ( , ], ( , ], ( ,1]. Bins are assigned to each 

interval as presented in Table 2 for each partition. The total number of 

bins formed is 27. 
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Partition 1- (0, ] 

Bin1 0.13 0.2 0.17 0.19 0.05 

Bin2 0.18 0.16 0.13 0.19  

 
Partition 2- ( , ] 

Bin1 0.21 0.21 0.25 0.25 

 
Partition 3 - ( , ] 

Bin1 0.29 0.23 

 
Partition 4 - ( , ] 

Bin1 0.41 0.37 

Bin2 0.44 0.41 

Bin3 0.36  

 

Partition 5 - ( , ] 

Bins 1 2 3 4 5 6 7 8 9 10 

Items 0.59 0.75 0.64 0.75 0.83 0.71 0.81 0.95 0.67 0.82 

 

11 12 13 14 15 16 17 18 19 20 

0.84 0.87 0.81 0.79 0.59 0.87 0.8 0.63 0.56 0.79 
 

Table 2: Distribution of items using Epstein algorithm 

 

The Variable Harmonic algorithm proposed by Epstein considers 

the bins sizes to be  < . . .  = 1. The items are classified into intervals 

whose right endpoint is a critical size. 
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CHAPTER 3 

K-BINARY ALGORITHM 

K-Binary is one of the simplest unsupervised learning algorithms to 

group the bins according to the interval. To achieve this, the interval (0,1] 

is partitioned into sub intervals as follows (0, 1]=  (  ) where = 

(  , (  ( for k= 1, 2… n-1 where k is the 

number of partitions.  

For example, if k=3 then the interval (0,1] is partitioned into three 

intervals (  , (  and ( . Each item is classified 

according to its interval i.e., if the item size is in the interval  then the 

item is called an -item. Items in sub-interval k are packed to a bin. A 

bin which received the full amount of items (according to its type) is 

closed and therefore new bin is opened. Each bin will contain only items 

from one sub-interval (type).  

________________________________________________________________________ 

Algorithm k-Binary 
________________________________________________________________________ 
For a given value of N, M, and the set of items L= { , , … } 

Step 1: Partition the intervals for the given M value such that they are 

partitioned into given intervals as given below. 

 (  ) 

= (  , (  ( for k= 1,2… n-1  

Step 2: Assign the items to bins according to each interval. 



 

 
 

28

Step 3:  Pack the items into each bin, if the next small element does not 

fit into the opened bin, then we close this bin and open a new one. 

Step 4: Calculate the total number of bins formed for each interval. 

________________________________________________________________________ 

K- Binary algorithm mainly depends on three factors: 

1) The number of items. 

2) The number of partitions. 

3) Bins that are assigned according to the given interval. 

Let us consider the following example where M=5 and the items to 

be packed are 0.2, 0.49, 0.85, 0.79, 0.53, 0.45, 0.31, 0.85, 0.56, 0.53, 

0.85, 0.21, 0.1, 0.7, 0.76, 0.29, 0.54, 0.99, 0.31, 0.84, 0.8, 0.51, 0.15, 

0.21, 0.47, 0.55, 0.69, 0.15, 0.44, 0.47, 0.15, 0.79, 0.9, 0.3, 0.24, 0.71, 

0.46, 0.01, 0.69 and 0.16. The interval (0,1] is partitioned into five 

subintervals (0, ], ( , ], ( , ], ( , ], ( ,1]. Bins are assigned to each 

interval as presented in Table 3. The total number of bins formed is 29. 
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Partition 1- (0, ] 

Bin 1 0.1 

 
Partition 2- ( , ] 

Bin 1 0.1 

 
Partition 3 - ( , ] 

Bin 1 0.2 0.21  0.15 0.21 0.15 

Bin 2 0.15 0.24 0.16 

 
Partition 4 - ( , ] 

Bin 1 0.49 0.45 

Bin 2 0.31 0.29 0.31 

Bin 3 0.47 0.44 

Bin 4 0.47 0.3 

Bin 5 0.46 

 
Partition 5 - ( , ] 

Bins 1 2 3 4 5 6 7 8 9 10 

Items 0.85 0.79 0.53 0.85 0.56 0.53 0.85 0.7 0.76 0.54 

 

11 12 13 14 15 16 17 18 19 20 

0.99 0.84 0.8 0.51 0.55 0.69 0.79 0.9 0.71 0.69 

 

Table 3: Distribution of items using K- Binary algorithm 

 

We implement the K- Binary algorithm as follows: 

for i: = l to n do 

begin 
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Case  in 

                      If  is in  –piece 

                         Pack in empty bin of type  

                      begin place  into  – bin 

                  Pack  in bins of type  using the Best Fit algorithm 

if there exists a nonempty bin of type  that does not contain an -item 

           then pack in such a bin 

          else pack in an empty bin of type  

If  is the  item to arrive, for some integer r≥ 1 

     then if there exists a bin of type containing at least one and at most       

an -item 

              then pack in such a bin 

             else if there exists a bin of type  containing only an -item 

            then pack  in such a bin 

            else pack  in an empty bin of type  

     else harmonic pack ( , ) 

end 

It is obvious that each item takes O (1) time to pack. Therefore the 

K- algorithm is an O (n) - time algorithm and it needs O (n) space [10].  

The main goal using K-means algorithm is to minimize the number of 

bins. 
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CHAPTER 4 

IMPLEMENTATION AND COMPARISONS 

In the thesis we implemented few methods in order to obtain the best 

possible solution for any given sequence of requests and any value of M. 

Different sequences of requests with different partitions produce different 

results depending on size and data used. As the requests get large, the 

number of bins generated by K-Binary algorithm compared to Harmonic 

(Lee & Lee) does not give good results because of the size we have 

chosen. 

For generating random requests, instead of generating a random 

integer i in the interval 1 to 10 and considering the size of the request to 

be 1/random number, we generate requests of the type  . Thus, if the 

integers generated randomly are 5, 4, 7, 2, 5, 1 the data set becomes 

. We compare the performance of the K-binary algorithm 

with the performance of Harmonic (proposed by Lee and Lee) and we 

obtained that in most of the cases, the K-Binary algorithm uses more 

bins that Harmonic. Hence we measure the efficiency of the implemented 

algorithms in a different way. 

The algorithm begins with measuring the average number of bins 

of any type used.  For a given input, let N be the total number of items 

and M be the total number of partitions. Consider TB1 to be the total 

number of bins used by Harmonic (Lee & Lee), TB2 to be the total 
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number of bins used by Epstein and TB3 be the total number of bins 

used by the K-Binary algorithm. For each algorithm we will compute how 

well the algorithm balances the bins of any type. For an algorithm, let TB 

be the total number of bins. The next step is to compute how many bins 

of each type are used. Let NB1, NB2 ...NBM be the number of bins of type 

1, type 2… type M used by the algorithm on that input. Now, if the 

algorithm has a balanced distribution over the number of bins, then all 

NBi should be roughly TB/M. For each input, after we compute the total 

number of bins the next step is to compute the sum based on the below 

formula: 

(NB1 - TB/M)2 + (NB2 - TB/M)2 + (NB3 - TB/M)2 + ... (NBM - TB/M)2. 

We will then average these numbers the same way we do with the 

total number of bins. 

4.1 Concrete Examples 

We present some concrete examples that will include a sequence of 

requests and the bins used by the k-Binary algorithm. We give an 

example in which it shows that the k- Binary algorithm works better 

than Epstein’s algorithm and equally well as Lee and Lee’s algorithm, 

and another example showing that Lee and Lee performs better 

compared to k- Binary algorithm. We also show how the proposed k-

Binary algorithm works. Let us consider examples where N random 

requests will be fitted into M different types of bins. For N=100 and M=5, 
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in Table 4 we show how many bins of type 1 through 5 are used by each 

algorithm. 

 

Bins Lee & Lee   Epstein          K- Binary 

NB_1 3 3 1 

NB_2 2 2 1 

NB_3 4 6 4 

NB_4 10 11 14 

NB_5 49 49 49 

Total 68 71 69 

 
Table 4: Example 1- comparison between Lee& Lee, Epstein & K-Binary  

 

We compute the average sum for each algorithm as described before. 

Average number of bins of Lee & Lee: 

(3 - 68/5)2 + (3 - 68/5)2 + (4 - 68/5)2 + (10 – 68/5)2 + (49 - 68/5)2=23.61 

Average number of bins of Epstein: 

(3 - 71/5)2 + (2 - 68/5)2 + (6 - 68/5)2 + (11 – 68/5)2 + (49 - 68/5)2=22.10 

Average number of bins of k-Binary: 

(1 - 69/5)2 + (1 - 68/5)2 + (4 - 68/5)2 + (14 – 68/5)2 + (69 - 68/5)2=22.99 

Therefore our proposed k-Binary algorithm performs better than 

Lee and Lee’s and Epstein’s algorithms. 

We take another example for same number of items and partitions. 

We get different data set as items are generated randomly. For N=100 
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and M=3, in Table 5 we show what number of bins of each of the types 1 

through 5 are used by each algorithm. 

 

Bins Lee & Lee   Epstein          K- Binary 

NB_1 2 4 1 

NB_2 2 2 1 

NB_3 3 3 2 

NB_4 8 8 12 

NB_5 49 49 49 

Total 64 65 66 

  
Table 5: Example 2- comparison between Lee& Lee, Epstein & K-Binary  

 

Average sum obtained for Lee and Lee algorithm is 26.10, Epstein 

algorithm is 24.97 and K- Binary algorithm is 25.40. Therefore as seen 

from the two examples K- Binary algorithm performs better compared to 

other two. Now we take another example and find the average for the 

three algorithms for N=100 and M=5. Average obtained for Lee and Lee 

algorithm is 26.55, Epstein algorithm is 25.21 and K- Binary algorithm is 

27.71. Hence from the above example lee and lee performs better 

compared to K- Binary algorithm. 
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Bins Lee & Lee   Epstein          K-Binary 

NB_1 3 5 1 

NB_2 2 2 1 

NB_3 3 3 3 

NB_4 7 7 10 

NB_5 50 50 50 

Total 65 67 65 

 
Table 6: Example 3- Comparison between Lee& Lee, Epstein & K-Binary  

 

4.2 Pre Processing: 

Input File: 

We generate random value for the requests and we store them in the file 

input.dat. In the preprocessing step a set of N of items are obtained 

randomly (called random sequence) , ,…,  with  in the range 

0.01…0.99, to which we append another set of N values that are 

computed as (1- random sequence) (called computed sequence).At the 

beginning of the file we store the values of N and M, followed by the two 

sequences.  

Description: 

Input the value N and M. 

Start the random number generator. 

Generate N rational values in the range 0.01 to 0.99 that will represent 
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the sequence of requests generated in the file "input.dat" first the value of 

N, then M, then the sequence randomly generated 

An example of such an input file is shown in Figure 7. where the 

first number represents N i.e. total number of items generated randomly 

and the second number M represents the number of partitions. Then we 

have the random sequence followed by the computed sequence. 

 

 
 
             Figure 7: A Screenshot showing random number generation 
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4.3 Lee and Lee Algorithm: 

Bins are packed according to the intervals described in Chapter 3.  

Output: Display the number of bins needed and the content of the bins. 

Description: Read from the file the value N, M and the sequence of 

requests . Then compute the number of bins needed using the 

algorithm of Lee and Lee. Finally display the results.  Each time for 

different input file and for different partitions the above steps are 

performed and the number of bins are generated differently as shown in 

Figure 8. 

 

 

Figure 8: A Screenshot of output for Lee and Lee algorithm 
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For harmonic algorithm implemented by Lee and Lee and Epstein, 

intervals and corresponding bin types are defined in the Table 7 

 

 

 

 

 

 

 

Table 7: Intervals formed for Lee and Lee, Epstein 

 

4.4 Epstein Algorithm: 

In this algorithm, changes to the lowest indexed bin are made. For the 

lowest indexed bin only at most k-items are assigned (as described in 

Chapter 2). 

Input: the file "input.dat" 

Output: display the number of bins needed and the content of the bins 

Description: 

Read from the file the value N, M and the sequence of requests . 

Then compute the number of bins needed using the algorithm of Epstein 

and display the results.  Therefore total number of bins obtained by the 

algorithm is shown in the screenshot of Figure 9. 

Interval                      Bin Type 
= (0, ]                              

= ( , ]                                 

= ( , ]                              

= ( , ]                            
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Figure 9: A Screenshot of output for Epstein algorithm 

 

4.5 K- Binary Algorithm: In k-Binary algorithm bins are formed 

according to the interval and the number of bins obtained by the 

algorithm is shown in the screenshot of figure 10. 
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Figure 10: A Screenshot of output for K-binary 

 

Intervals and corresponding bin type are defined in the interval below for 

k-Binary algorithm. 
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Table 8: Intervals formed for K-binary algorithm 

 

4.6 Algorithm Implementation: 

It is implemented in java and randomly generated items generated are 

stored in the file input.dat.  

 Below is a part of code for random generation of items 

    for (int i = 0;i<N;i++) 
  { 
  z = (int)Math.round(((double)Math.random()*1) * 100)/100.0; 
      p.println(z); 
      arr.add(z); 
  } 
  for(int i = 0;i<N;i++) 
   p.println(Math.round((1 - arr.get(i))*100)/100.0); 
    
      
  System.out.println("File Created"); 
 } 
} 

Then we create the partition of items as shown with a part of code below 

and we name it as Abstract bin 

  public void createPartitions () 
    { 
     partition = new ArrayList [NumberOfPartitions]; 

Interval                                  Bin Type 
= (0, ]                              

= ( , ]                                 

= ( , ]                              

= ( , ]                              
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     for(int i = 0;i<NumberOfPartitions++) 
     { 
      partition[i] = new ArrayList<Bin>(1); 
      partition[i].add(new Bin()); 
     } 
    } 
 
Once the partitions are created then we display the partition of items 
which is described in the code below 
 
if(!partition[PartitionNumber].get(0).toString().equals("")) 
     for(int i = 0;i<partition[PartitionNumber].size();i++) 
     { 
     result += "Bin " + (i+1) +" - " + 
partition[PartitionNumber].get(i).toString() + "\n"; 
       NumberOfBins++; 
     } 
     return result;} 
 
 Once number of partitions is obtained then number of bins obtained by 
Lee and Lee is explained in the part of code below 
 
if(flag) 
      { 
   if(!partition[NumberOfPartitions - end].get(partition[NumberOfPartitions - 
end].size()-1).check(number)) 
    partition[NumberOfPartitions - end].add(new Bin()); 
    partition[NumberOfPartitions - end].get(partition[NumberOfPartitions - 
end].size()-1).addElement(number); 
 partition[NumberOfPartitions - end].set(partition[NumberOfPartitions –v    
end].size()-1,partition[NumberOfPartitions -
nd].get(partition[NumberOfPartitions - end].size()-1)); 
       break; 
      } 
      start = end; 
      end -= 1; 
     } 
} 

Then the items are assigned according to each interval is described in the 

code below 

  for(int i = 0;i<number_of_items;i++) 
        { 
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         b.insert(items.get(i)); 
        } 
       for(int i = 0;i<number_of_partitions;i++) 
        { 
       System.out.println ("Partition” + (i+1) + " : "); 
         String output = b.display (i); 

} 

} } 

Now the same method is used for algorithm implemented by Epstein the 

number of bins formed is explained in the code below 

while (end != 0) 
     { 
      if(start == 0 && number <= 1.0/end) 
      { 
       flag = true; 
    if(partition[NumberOfPartitions - end].get(partition[NumberOfPartitions - 
end].size()-1).length() == NumberOfPartitions) 
    partition[NumberOfPartitions - end].add(new Bin()); 
      } 
      else if(number > (1.0/start) && number <= (1.0/end)) 
      { 
       flag = true; 
     if(!partition[NumberOfPartitions - 
end].get(partition[NumberOfPartitions - end].size()-1).check(number)) 
     partition[NumberOfPartitions - end].add(new Bin()); 
      } 
      if(flag) 
      { 
     partition[NumberOfPartitions - end].get(partition[NumberOfPartitions 
- end].size()-1).addElement(number); 
   partition[NumberOfPartitions - end].set(partition[NumberOfPartitions - 
end].size()-1,partition[NumberOfPartitions -
end].get(partition[NumberOfPartitions - end].size()-1)); 
       break; 
      } 
      start = end; 
      end -= 1; 
     } 
    } 
} 
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Now for the K-Binary algorithm the number of bins obtained is described 

in the code below 

while(end != 0) 
     { 
      if(start == 0 && number <= 1.0/Math.pow(2,(end-1))) 
      { 
       flag = true; 
      } 
   else if(number > (1.0/Math.pow(2,(start-1))) && number <= 
1.0/Math.pow(2,(end-1)))) 
      { 
      flag = true; 
      } 
      if(flag) 
      { 
     if(!partition[NumberOfPartitions - 
end].get(partition[NumberOfPartitions - end].size()-1).check(number)) 
     partition [NumberOfPartitions - end].add(new Bin()); 
     Partition [NumberOfPartitions - end].get(partition[NumberOfPartitions 
- end].size()-1).addElement(number); 
     partition[NumberOfPartitions - end].set(partition[NumberOfPartitions - 
end].size()-1,partition[NumberOfPartitions - 
end].get(partition[NumberOfPartitions - end].size()-1)); 
       break; 
      } 
      start = end; 
      end -= 1; 
     } 
 } 
} 
  

Thus, all these steps are implemented. The results obtained after 

partitioning the intervals and analysis over the results for different 

requests and graphs will be discussed in chapter 5 in the thesis. 
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CHAPTER 5 

                                    SIMULATION AND RESULTS  

As discussed in Chapter 4, the K-Binary algorithm produces different 

results for different set of items. This chapter is divided in two sections. 

We first discuss the performance of the algorithm in terms of total 

number of bins for different runs. In the second part we discuss the 

performance of the algorithms based on the average values for the 

number of bins of each type. 

5.1 Comparison based on Bins: 

We discuss the performance of the K- binary algorithm based on the total 

number of bins. The bins formed vary for different algorithms. Table 9 

provides the number of bins obtained for each algorithm according to the 

items specified. From Table 9 we notice that if the items generated are 20 

then the necessary number of bins is more than half the items. i.e. bins 

formed are 13 for Lee and Lee, 14 for Epstein and K-binary results in 15, 

and so on. There are some cases when our proposed K-Binary algorithm 

requires less bins than Lee and Lee, and there are some cases where k-

Binary algorithm requires more bins than Lee and Lee. No trend has 

been observed as for which number of items some algorithm is better. 
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Items LL E O 

20 13 14 15 

40 27 28 28 

60 41 41 40 

80 53 55 53 

100 66 68 67 

150 99 100 98 

200 132 130 131 

250 162 168 163 

300 194 200 193 

350 225 233 230 

400 260 267 260 

450 288 299 293 

500 322 330 323 

 
Table 9: Total bins formed for three algorithms for different items 

 

5.2 Comparisons based on Average: 

We compute the average based on bins formed for each algorithm when 

the bins are separated into 5 partitions. We execute 50 different and we 

compute the total number of bins by summing the number of bins of 

each type as briefly described in Chapter 4. We also compute the average 

of the bins among all types and we show the values in Table 10. 
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N Lee & Lee Epstein K-binary 

20 5.017 
 

4.0902 4.5152 

40 9.5304 8.5226 8.8152 

60 15.701 14.047 14.9744 

80 20.756 19.0932 20.02 

100 26.381 23.951 25.4988 

150 40.0268 36.9672 38.9824 

200 52.8476 49.39516 51.8582 

250 66.8148 63.0702 65.9412 

300 79.7872 75.40708 77.2372 

350 93.5156 88.1338 92.3134 

400 106.6986 102.793 107.5884 

450 118.1946 112.2266 117.0962 

500 132.7986 125.8654 131.5816 

 
Table 10: Average values  

 

Based on the average values from Table 10 of each algorithm we 

draw two graphs. For the first graph we consider relatively smaller 

number of items, for example 20, 40, 60, 80 and 100. The second graph 

is drawn for large number of items. The x axis shows the number of bins 

and the y axis show the average number of bins require by each 
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algorithm. We calculated the average with small or large sequences of 

requests and random values for the requests. 

 

 

        Figure 11. Trend of AVG_OFFSET smaller number of items 

 

From Figures 11 and 12 we draw the following observations: 

In figure 11, we note that for smaller items there is not much variation 

between the algorithms. The proposed K- Binary algorithm is as efficient 

as Lee and Lee’s and Epstein’s algorithms. From Figure 12, we note that 

for larger items the proposed K- Binary algorithm produces a lower 

average than Lee and Lee but higher average than Epstein. We can then 

conclude that the proposed K- binary algorithms behaves in average 

better than both previously proposed algorithms  in terms of the variance 
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on the type of bins used. Lee and Lee have a high variation on the type of 

bins used, whereas Epstein uses more bins for packing the items than 

Lee and Lee. 

 

 

            Figure 12. Trend of AVG_OFFSET large number of items 
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                                              CHAPTER 6 

CONCLUSION AND FUTURE WORK 

Allocating memory in a data center for storage requests can be modeled 

as a classical bin packing problem where online requests for storage are 

served in minimum time and with the minimum cost. The cost for 

hardware components if cheaper is the components are bought in bulk; 

the maintenance is also easier. So we can assume that in a data center 

all the hard disks have the same capacity. The goal of bin packing 

problem is to minimize the number of bins used for serving a fixed 

number of requests. The algorithm proposed by Lee and Lee has a 

competitive ratio that is very close to the optimum, but has a high 

variation on the types of bins used, in the sense that for random 

requests it either uses a lot of small type bins or a lot of large type bins. 

The algorithm proposed by Epstein has a worse competitive ratio, i.e. 

uses more bins for packing the items than Lee and Lee, but it has a 

much smaller variation than Lee and Lee. We propose an algorithm, K-

binary, that uses fewer bins than the algorithm proposed by Epstein, and 

a slightly more bins than the algorithm proposed by Lee and Lee. At the 

same time, the K-Binary algorithm works better than both previously 

proposed algorithms. We drew these conclusions after executing 

extensive simulations with small or large sequences of requests and 

random values for the requests.  
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This thesis focuses on serving the requests using one dispatcher. 

But modern computers have multiple processors, thus it is of future 

interest to provide algorithms with better competitive ratio than Lee and 

Lee that allow serving two or more requests at a time. For example, if two 

requests can be served at the same time, we can have bins that can be 

filled simultaneously by two dispatchers and allow only one dispatcher to 

fill a bin in the moment the bin is close to be filled, for example, it needs 

one more item to be filled.  
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