
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-1-2013

The Distributed Application Debugger The Distributed Application Debugger

Michael Quinn Jones
University of Nevada, Las Vegas, mjones112000@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Jones, Michael Quinn, "The Distributed Application Debugger" (2013). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 1847.
https://digitalscholarship.unlv.edu/thesesdissertations/1847

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1847&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1847&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1847?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1847&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

THE DISTRIBUTED APPLICATION

DEBUGGER

by

Michael Q. Jones

Bachelor of Science (B.Sc.)

University of Wisconsin-Madison

2003

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science in Computer Science

School of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2013

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Michael Q. Jones

entitled

The Distributed Application Debugger

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science

Jan Pedersen, Ph.D., Committee Chair

Angelo Yfantis, Ph.D., Committee Member

Juyeon Jo, Ph.D., Committee Member

Aly Said, Ph.D., Graduate College Representative

Thomas Piechota, Ph.D., Interim Vice President for Research &
Dean of the Graduate College

May 2013

© Michael Q. Jones, 2013

All Rights Reserved

Abstract

Developing parallel programs which run on distributed computer clusters introduces additional

challenges to those present in traditional sequential programs. Debugging parallel programs requires

not only inspecting the sequential code executing on each node but also tracking the flow of messages

being passed between them in order to infer where the source of a bug actually lies.

This thesis focuses on a debugging too called The Distributed Application Debugger which targets

a popular distributed C programming library called MPI (Message Passing Interface). The tool is

composed of multiple components which run together seamlessly to provide its users an effective way

to remotely launch, replay, and analyze parallel programs both while they are running and after they

complete.

iii

Acknowledgements

I would like to thank Dr. Pedersen for pushing me to strive for my best throughout this thesis

process. I appreciate him meeting with me personally in the evenings and on the weekends when it

was most convenient for me during the school year, and for quickly responding to email over breaks

and holidays. When I first asked him to be my advisor, I asked that he push me because I wanted to

be a better programmer. I told him that I expected a lot out of myself and that I wanted him to

hold me accountable to that, because I wanted to look back and be proud of the work that I had

done. He never wavered or compromised the integrity of the work that I was putting together, and I

look back on what we have accomplished together with great pride. Thank you.

I want to thank my older siblings Ann, Bill, and Dan for always including me in their lives despite

our age differences, and for quietly giving me role models that so many people wander through life

without. I want to thank my parents for always taking such a genuine interest in the lives and

happiness of their children, for me encouraging along the way well after I left home, and for teaching

me what it means to truly earn the things that I want in life. These are lessons that I always

appreciate in my life and will pass along to my children as well. May finishing graduate school be

another ”alligator” that we tracked down.

I want to thank my daughter Erin, for being patient with me during her first year of life. I have

not been an active enough father in her life yet and I promise that I will make up for that over the

years to come. Most importantly, however, I want to thank my wife Abby, who showed me endless

patience, support, and love when I put our lives on hold in order to go back to school. Without your

unselfish support and encouragement I would have never finished, and your name deserves to be on

the front of this thesis as much as mine. I love you.

Michael Q. Jones

University of Nevada, Las Vegas

May 2013

iv

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

Chapter 1 Introduction 1

Chapter 2 Background and Related Work 3

2.1 Debugging Parallel Programs . 3

2.1.1 The Survey . 4

2.1.2 Survey Results . 4

2.1.3 Survey Conclusion . 5

2.2 MPI . 7

2.2.1 Framework . 7

2.2.2 Supported Commands . 8

2.3 Other tools . 8

2.4 Software Development and Risk Assessment . 11

Chapter 3 The Distributed Application Debugger 18

3.1 The Client . 18

3.1.1 Establishing a Remote Connection . 19

3.1.2 Running a Debugging Session . 22

3.2 The Call Center . 28

3.2.1 Incoming Commands . 29

v

3.2.2 Message Routing . 36

3.3 The Runtime . 39

3.3.1 Importing mpi.h . 39

3.3.2 Connecting to The Call Center . 40

3.3.3 MPI Session . 42

3.3.4 Runtime Commands . 43

3.4 Integrating GDB . 48

3.4.1 Attaching GDB . 48

3.4.2 Controlling GDB . 50

Chapter 4 Analyzing Data 52

Chapter 5 Conclusion and Future Work 61

Appendix A Supporting Libraries and Prototypes 68

A.1 charList . 68

A.2 queue . 71

A.3 String Helpers . 73

A.4 clusterNode . 74

A.5 XML Library . 75

A.5.1 xml.h . 75

A.5.2 xmlDoc . 76

A.5.3 xmlWriter . 80

A.5.4 xmlReader . 82

A.6 The GDB Bridge . 87

A.7 The Bridge . 91

Appendix B The Runtime 96

B.1 mpidebug.h . 96

B.2 Redirecting Stdout . 98

B.3 Compiling The MPI Runtime . 99

Appendix C MPI Serializing 102

Bibliography 108

Vita 110

List of Tables

2.1 Debugging time for the bugs reported in the survey. 5

2.2 The MPI commands supported by the Distributed Application Debugger. 9

3.1 The command line for launching The Call Center. 21

3.2 The command line for bridges. 22

3.3 The status indicators displayed on The Client. 28

3.4 The standard mpirun command line arguments. 35

3.5 The extra command line arguments appended to mpirun from a PLAY request. . . . 35

3.6 The extra command line arguments appended to mpirun from a RECORD request. . . 35

3.7 The extra command line arguments appended to mpirun from a REPLAY request. . . 36

3.8 The Actual Values sent back within PRE commands, with detected discrepancy fields

highlighted in red. 45

3.9 The Return Values sent back within POST commands, with detected discrepancy

fields highlighted in red. 46

vii

List of Figures

2.1 Error classifications of a class of graduate students taking a parallel programming class. 5

2.2 The GUI display of Allinea Software’s DDT application. 10

2.3 A buffer inspection popup within Allinea Software’s DDT application. 11

2.4 The GUI display of Rogue Wave Software’s TotalView application. 12

2.5 A message illustration popup within Rogue Wave Software’s TotalView application. 13

2.6 A wireframe of The Client component used during the design phase. 16

2.7 A wireframe of the communication architecture made during the design phase. . . . 16

3.1 The Client without any fields populated. 19

3.2 The Client configured for a direct connection to The Call Center. 20

3.3 The Client configured for an indirect connection to The Call Center using Bridges. . 20

3.4 The Client after it has successfully connected to a remote computer and launched The

Call Center. 21

3.5 An updated overview with bridges included. 21

3.6 The system connected via TCP sockets. 22

3.7 A debugging session configured for two nodes with both displayed. 23

3.8 A debugging session configured for two nodes with one collapsed. 24

3.9 The three tabs of each node panel. 25

3.10 The protocol for all messages passed within the system. 25

3.11 The protocol for a sample PLAY command. 26

3.12 The protocal for a sample RECORD command. 27

3.13 The Environment Data response integrated into a connected Client. 28

3.14 The protocol for a sample replay command. 28

3.15 The Environment request sent to The Call Center. 29

3.16 The Environment Data response. 30

3.17 The user selecting to retrieve two buffer values. 31

viii

3.18 A BUFFER REQUEST command issued to retrieve to buffer values from The Call Center. 31

3.19 Two buffer value responses returned from The Call Center. 32

3.20 The Client displaying the buffer contents returned from The Call Center. 33

3.21 The Client displaying the buffer contents returned from The Call Center with Hex

values. 34

3.22 A gdb input command issued to request a variable value from GDB. 34

3.23 The MPI Complete command. 34

3.24 The system connected fully connected from The Client to the MPI nodes via The Call

Center. 37

3.25 Two threads per MPI node populating one outgoing message queue. 38

3.26 Including the standard MPI framework. 39

3.27 Including the debugging MPI framework. 39

3.28 The contents of the mpi.h file included with The Runtime. 40

3.29 The contents of the debug.h file included with The Runtime. 40

3.30 Compile time changes made from including The Runtime’s mpi.h file. 41

3.31 The four step pattern applied to The Runtime versions of MPI commands. 44

3.32 A Node Id command reporting a node’s process id and computer name. 44

3.33 The details of a node displayed in the header of its node panel. 45

3.34 The structure of the PRE command. 45

3.35 The structure of the POST command. 46

3.36 An example CONSOLE message that does not have any encoded characters. 47

3.37 An example CONSOLE message that contains encoded characters. 47

3.38 Unencoded message printed to console. 47

3.39 Encoded message printed to console. 47

3.40 A GDB command issued to tell some partial text of what has been written to screen. 48

3.41 The content of the GDB routed to the GDB console display. 48

3.42 The Distributed Application Debugger with two nodes selected for GDB. 49

3.43 Forked processes make attaching GDB to the MPI node possible. 50

3.44 The control panel for a node with GDB attached. 51

4.1 The extra information displayed in the Command Details panel of each node. 53

4.2 Two nodes displaying automated message matching. 54

4.3 An MPI receive message without a matching send command. 55

4.4 The MPI panel before and after a command filter was applied. 56

4.5 An MPI command displayed with a status of Incomplete. 57

4.6 An MPI command displayed with a status of Validation Warning. 58

4.7 An MPI command which returned an error code from The Runtime. 59

5.1 A sample program matching mixed datatypes. 63

5.2 Send buffer type as MPI INT. 64

5.3 Receive buffer type as MPI UNSIGNED. 65

5.4 A sample program with mixed datatypes that will crash MPI. 66

5.5 The output sent to the command line. 67

Chapter 1

Introduction

Anyone who has developed software before will likely agree that bugs will be encountered along

the way. No matter how careful you are, logic errors, memory mismanagement, race conditions,

inaccurate execution path assumptions and a whole host of other issues will be encountered from

time to time. These issues are acceptable, understandable and expected when designing software. As

a result of the popularity of sequential programs, and the common understanding that debugging

will always be part of their development, many exceptional debugging resources have been created to

help the developer analyze and step through sequential code. These tools are flexible in order to let

the user pause, rewind, inspect, and compare the execution of the lines of their programs.

Developing parallel programs which run on distributed computer clusters introduces additional

challenges to those present in traditional sequential programs. When debugging parallel programs,

one needs to be able to inspect both the sequential code executing on each node and track the flow of

messages being passed back and forth between them in order to infer where the problem actually lies.

One such distributed programming language is called MPI [Don94]. It stands for Message Passing

Interface and is a C library which utilizes the power of distributing work across processors while

staying in sync and reporting progress by passing messages.

Because MPI code is just sequential code being run on a cluster of computers, it inherits all of

the same common debugging errors present in sequential programs. In addition to these familiar

’sequential’ bugs, is another set of completely different ’parallel’ bugs which impede the engineers even

more. The Cause and Effect Chasm [Eis97], for instance, is the notion that where a bug becomes

noticeable may not be near where the problem actually was introduced. It could be introduced due

to any number of mistakes including initializing the value of a counter incorrectly earlier in a method,

not allocating enough memory in a constructor, or overwriting a variable incorrectly a thousand lines

earlier. Regardless of what the root of the problem turns out to be, when you stumble across its

1

symptoms, you will inevitably begin retracing to find out where it originated. This is difficult enough

in sequential programs running on the same processor, but what if the bug actually initialized much

earlier due to the behavior of code running on a completely different machine? What if an error was

introduced during the messaging phase because of a wrong address, or data type, or count? Trying to

track down the root of a problem across computers can make bug finding even harder. Another major

difficulty comes in just organizing tracing information printed to the screen. Because print statements

are often the first form of tracing information, the user either has to inspect the screen of all of the

computers running on the cluster, or sift through all of the data printed to a common monitor should

the processes all be running on the same machine. Regardless, although printing trace data to the

screen is a very popular and useful technique in the world of sequential programming, it becomes an

unorganized, overwhelming Information Overload [PJ12] problem quite quickly in the distributed

world. Perhaps the most prominent difference between debugging sequential code and distributed

code is the inability to just halt execution of the program when attaching a debugger. Attaching a

debugger, such as GDB [GDB13], for example, halts the execution of a process immediately which

gives the developer the chance to inspect all the variables of the system as it steps through the

execution of the program one line at a time. This is very helpful because one line may have a side

effect on another one that the developer may never had thought of initially. In a distributed system,

however, attaching a debugger to a process does not halt the execution of the program because even

though one process stops, the rest of the processes continue on.

These are just some of the problems that I wanted to address with the Distributed Application

Debugger. Among other things, I wanted to give the user a centralized and organized space to

examine the output of each node while being able to also inspect and match the messages being

passed between them. I wanted to provide them with a way to not only replay a session but also to

halt a session in order to step through each node’s execution while inspecting all the variables of

a system. Finally, I recognized that clusters of computers are often housed a universities or super

computer centers around the world. This led us to insisting that the application be able to run

remotely and behind any number of impeding computer servers that needed to be logged into first

before being able to access the actual computer cluster.

2

Chapter 2

Background and Related Work

The Distributed Application Debugger is a system of applications created because the need for

a debugging tool for MPI [Don94] is needed. This chapter focuses on the reasons why tools for

debugging parallel programs are necessary, as well as the the motivating factors behind the features

that were included in this one. It introduces the MPI programming language and describes the

portions of it which became the focus of the Distributed Application Debugger. I also talk about two

other commercially available debugging tools used within the community, and what they have in

common with mine and also what is different. Finally I discuss the software development procedure

that was used in order to ensure that the Distributed Application Debugger would successfully deliver

its key features

2.1 Debugging Parallel Programs

Research by Cherri Pancake discussed in a keynote address on parallel computing systems [Pan93]

suggests that tools for parallel programming and debugging are often found to be unhelpful for users

because their developers do not spend enough time trying to understand what the root problems that

their users really need addressed are. In an effort to better understand what problems users debugging

parallel programs encountered most often, and what problems took the most time debugging, a

survey was given by Dr. Jan Pedersen to two different sets of graduate students at the University of

Nevada, Las Vegas over the course of two years. The results of the first survey, presented in [Ped06],

and the second survey, presented in [PJ12], agreed with each other and collectively served as the

motivation for the development of the Distributed Application Debugger.

3

2.1.1 The Survey

The survey based much of its foundation around the model for constructing parallel programs

known as PCAM [Fos95]. This four part model breaks parallel programs into two areas dealing

with correctness, Partitioning and Communication, as well as two areas dealing with performance,

Agglomeration, and Mapping. Although the performance categories are important when measuring

the quality of a parallel system, the survey focused only on the two categories characterized by

correctness because it was decided that a program should first be modeled correctly before being

optimized.

The first of the correctness categories, Partitioning, deals with the task of partitioning both

the data and functionality of the algorithm being implemented. It can be further sub-categorized

as Data Decomposition, which covers developing code structured to deal with managing memory,

modeling data structures etc., and Functional Decomposition which deals with the organizational side

of defining the responsibilities of each node and establishing roles for architectures such as pipelining

and master/slave relationships. The second of the correctness categories, Communication is the task

of implementing interprocess communication. It can also be broken down into two sub-categories:

Message Errors which deals with correctly addressing send and receive calls between the appropriate

destination and source nodes, and Protocol Specifications which deals with asynchronous message

calling and buffering which lead to unexpected results and side effects. These 4 subcategories

from [Fos95], along with a fifth classification, Sequential, which deals with bugs that you would

find in any sequentially running program such as mistakes with conditionals, method calls, race

conditions, pre and post conditions, and algorithm modeling to name a few, make up the 5 categories

that students were asked to classify their bugs into.

2.1.2 Survey Results

The students were asked to keep records of each time they spent time debugging their parallel code

and log which category their bug best fell into. The graph shown in Figure 2.1 and data recorded in

Table 2.1 show the results of the survey as they completed each of seven projects throughout the

semester and categorized their bug types in the process.

Complimenting the bug categorization was a questionnaire based on Eisenstadt’s research [Eis97]

which stated that sequential errors are categorized by 3-dimensions. The 3 dimensions are:

• Dimension 1: Why is the error difficult to find?

• Dimension 2: How is the error found?

4

Figure 2.1: Error classifications of a class of graduate students taking a parallel programming class.

Data
Decomp.

Functional
Decomp.

Sequential
Error

Message
Error

Protocol
Error

Other

Average Time 19.9 68.1 24.3 61.4 50.0 30.6
Total Time Spent 278 545 1,846 1,536 451 545
Errors 14 8 76 25 9 8
Total time Spent in % 5.67% 11.12% 37.67% 31.34% 9.20% 5.0%

Table 2.1: Debugging time for the bugs reported in the survey.

• Dimension 3: What is the root cause of the error?

Based on Eisenstadt’s 3 dimensional model of sequential errors, the class indicated how their bug

was classified within each of the 3 dimensions. In Dimension 1, the Why, the popular answers were

the Cause and Effect Chasm, mentioned in the introduction, and Inapplicable Tools. In Dimension

2, the How, the overwhelmingly most popular answer was by using Print Statements. Finally for

Dimension 3, the What, the popular answers were pointers, index references outside of an array, and

faulty design logic.

2.1.3 Survey Conclusion

The survey, inspired by Pancake’s observation that parallel debugging tools were being developed

without real understanding of user problems, indicated several results which became the foundation

for the development of the Distributed Application Debugger. First, based on the results indicated

in Figure 2.1, the overwhelming majority of the bugs where categorized as ’Sequential Type’ bugs.

5

Secondly, based on the amount of time spent on each type of bug, it is clear that ’Message Errors’

are very costly errors, accounting for nearly as much time spent as sequential bugs despite having

just a fraction of the number of bugs reported. Thirdly, based on the 3 dimensional questionnaire

based on Eisenstadt’s research, it is clear that print statements are still a very popular debugging

technique, which agrees with Pancake’s results [cMP94] which found that up to 90% of all sequential

debugging is done using print statements.

After analyzing these results, several conclusions were made about features that would be needed

for the parallel debugging tool. First, based on the number of sequential bugs reported by the

students, it would be helpful if I could present a view of the system broken down as a series of

sequential programs running rather than as one large distributed program. Any data reported, such

as the order of commands being executed, would have to carefully be recorded in the exact order

that it was executed on each node and data such as line numbers would need to be included. Also,

care would have to be given to give a view of the code executed sequentially per node, but without

overwhelming the user with data extracted from nodes that are known to not be the root of their bug.

Secondly, based on the amount of time spent on Message Error types of errors, it was determined

that the tool would have to help match up send and receive commands. In addition to matching up

send and receive commands, it would be valuable if the tool could indicate ’unmatched’ messages

immediately. This would alert the user that there might be a message addressing error early and

allow them to fix the problem proactively which would lessen the Cause and Effect Chasm distance

between when the bug was introduced and when it was noticed. Thirdly, it is was clear that students

leaned on ’print’ statements when debugging their code. Although this is generally considered a

poor technique, its popularity made it clear that a separate console for each node would have to be

displayed on the front end to help the users analyze the print statements of each node. At the same

time, however, I felt an obligation to encourage them to use more advanced techniques to replace

the use of print statements. It was decided to pursue integrating GDB into the application and

allowing the users to conveniently attach it to whatever nodes they wanted. This would allow us to

leverage the power of an already mature debugging tool, and show the students that there were more

sophisticated alternatives to dividing and inspecting their code with print statements.

In addition to the features derived from the research, it was decided that there were others that

would make the application a truly helpful tool. Importing The Runtime of the debugging framework,

for instance, should be transparent to the user and work without the user having to annotate special

sections of their code as ’debuggable’ etc.. Also, the application should include options to record

and replay sessions that produced especially peculiar results. Finally, the user should be able to

use the application from home. This last feature introduced a tremendous amount of extra work to

6

manage the logistics of logging into a university cluster, but I felt that it was worth it. If students

had to be present at the computer lab in order to gather the debugging data, they likely would not

bother using the tool since traveling to the university would take as much time as debugging with

rudimentary techniques while logged in from home.

2.2 MPI

The Distributed Application Debugger is a tool meant to investigate Message Passing Interface code

written in C. Before moving onto the implementation of the debugging tool, I would like to touch on

the framework itself and indicate what parts of it are supported by the tool.

2.2.1 Framework

The MPI framework was developed in order to give a standard implementation of a library that

supports message passing between computer processors running designated sections of code of a

program in parallel. Its goals include high performance, scalability, and portability.

General Structure

The general structure of an MPI program is to first issue an MPI Init() command and to finish

with an MPI Finalize() command. The MPI program, itself, run between these two calls. After

initializing, the node will generally determine what rank it has been assigned within the system

by calling MPI Comm rank(). Also, it is common to request the total number of nodes within the

system by issuing an MPI Comm size() command. This allows the system to know the range of

nodes available for messaging and begin to split up the work between the available nodes.

Messages, Buffering and Blocking

At the core of MPI is the actual passing of messages between nodes using send and receive commands.

All send commands have a destination parameter which indicates the recepient node that the message

should be sent to along with a tag (integer value) that can act as an identifier when the receiver

decodes the message. The send message can either be in the form of a blocking message, MPI Send(),

or in the form of a nonblocking message, MPI Isend(). The blocking and nonblocking aspects

of the send commands is with regard to whether the user can be ensured that it is safe to edit

their application buffer. The blocking MPI Send() is guaranteed to block until the data is either

delivered to a receiver or safely copied into a system buffer. The nonblocking MPI Isend() command,

however, returns immediately to the caller without ensuring that the data has been copied out of the

7

application buffer, making reusing it unsafe. Like the send commands, the receive commands also

come in both a blocking and a nonblocking form. The blocking version, MPI Recv(), halts progress

of the process entirely until a message has been received. The nonblocking version, MPI Irecv(),

returns immediately as expected and gives the user the option to poll a memory address known as

the ’request’ to find out if the corresponding receive buffer has safely completed receiving a message.

Like the send command, the receive commands have an address parameter, known as source, and a

tag used to filter multiple messages coming from the same source, but unlike the send commands,

these values are optional. When the receiver wishes to forgo filtering on a specific source and/or

specific tag value, it can be specified as a wild card value: MPI ANY SOURCE and MPI ANY TAG

for source and tag respectively. Because these values are optional, receive commands include an extra

parameter of type MPI Status which can be referenced to find the actual source and tag values once

the receive has been completed.

2.2.2 Supported Commands

The Distributed Application Debugger does not support all of the commands found within the MPI

library [ANLD13], but does support 12 core commands making analyzing the initializing, message

passing, synchronizing and finalizing of a typical MPI program possible. Table 2.2 displays the scope

of the commands available for debugging within the Distributed Application Debugger along with

their signatures.

2.3 Other tools

The Open MPI Project’s frequently asked questions website [Pro13] characterizes how to debug

applications running in parallel as a difficult question to answer. In their words

”Debugging in serial can be tricky: errors, uninitialized variables, stack smashing, ...

etc. Debugging in parallel adds multiple different dimensions to this problem: a greater

propensity for race conditions, asynchronous events, and the general difficulty of trying to

understand N processes simultaneously executing – the problem becomes quite formidable.”

The project recommends two enterprise level debuggers, DDT (short for the Distributed Debugging

Tool) by Allinea Software [Sof13a] and TotalView by Rogue Wave Software [Sof13b], to aid in the

complicated task of debugging MPI programs. Because of this endorsement, I felt that it was

important to touch on some of their features and how they may be a better tool of choice at times

from the Distributed Application Debugger.

8

Command Description
MPI Init(int *argc, char ***argv) Initializes the MPI environment
MPI Comm rank(MPI Comm comm, int *rank) Determines the rank of the pro-

cess in the cluster
MPI Comm size(MPI Comm comm, int *size) Determines the size of the cluster
MPI Send(void *buf, int count, MPI Datatype datatype, int
dest, int tag, MPI Comm comm)

Performs a blocking send

MPI Recv(void *buf, int count, MPI Datatype datatype, int
source, int tag, MPI Comm comm, MPI Status *status)

Blocking receive for a message

MPI Isend(void *buf, int count, MPI Datatype datatype, int
dest, int tag, MPI Comm comm, MPI Request *request)

Begins a nonblocking send

MPI Irecv(void *buf, int count, MPI Datatype datatype, int
source, int tag, MPI Comm comm, MPI Request *request)

Begins a nonblocking receive

MPI Probe(int source, int tag, MPI Comm comm, MPI Status
*status)

Blocking test for a message

MPI Iprobe(int source, int tag, MPI Comm comm, int *flag,
MPI Status *status)

Nonblocking test for a message

MPI Wait(MPI Request *request, MPI Status *status) Waits for an MPI request to com-
plete

MPI Barrier(MPI Comm comm) Blocks until all processes in the
communicator have reached this
routine.

int MPI Finalize(void) Terminates MPI execution envi-
ronment.

Table 2.2: The MPI commands supported by the Distributed Application Debugger.

It is remarkable how many features that DDT and TotalView have in common. Both GUIs are

very debugger-centric in the way that the viewer is always focused on source code and the node

specific view is just which line of it the node is located on. Because of this, other features, such

as a graphical views of the messages being sent, are done with popup windows. The Distributed

Application Debugger took great lengths to not have views presented in popups so that the user is

not tasked with juggling them. The Distributed Application Debugger by contrast, is more of an

analysis tool which integrates a debugging feature when needed. Because DDT and TotalView are so

debugger centric, the MPI program being debugged must be compiled with debugging symbols. This

is not the case with the Distributed Application Debugger because this is only a requirement when

actually attaching GDB.

Both DDT and TotalView offer great features that allow inspection of the code at both the

process level and the thread level. They display their message stacks in graphical form, whereas the

Distributed Application Debugger displays its messages in tabular form. Also, both not only are

able to record and replay MPI sessions, but also allow the user to ’rewind’ a session, whereas the

Distributed Application Debugger always goes forward. Most impressively, they both can scale to

9

over 100,000 processes which the Distributed Application Debugger would not be able to keep up

with. This scalability comes with a large price, however, with DDT costing $696.00 for an academic

or government workstation license, and TotalView costing over $1,000.00.

The Distributed Application Debugger’s strengths lie in its simplicity. It can be configured to

run remotely, but does not require any applications to be running on the remote machines prior to

the session beginning. It copies, compiles, launches, and cleans up any applications needed in the

communication line without requiring them to be already running on the remote computers as both

DDT and TotalView do. It also leverages the extremely popular and powerful GDB application which

most students are already familiar with. This cuts down on its learning curve and further assists the

students in focusing on their parallel programs as just a set of sequential programs running. The

Distributed Application Debugger’s layout presents a useful layout for viewing 2 or 3 nodes at a time

because their values are displayed side by side without have to switch between them, while the other

two most popular debuggers display one main code display and request that the user keeps switching

between which node to report on.

Figure 2.2 and 2.3 displays DDT’s main front end GUI display and Figure 2.4 and 2.5 displays

the same for TotalView.

Figure 2.2: The GUI display of Allinea Software’s DDT application.

10

Figure 2.3: A buffer inspection popup within Allinea Software’s DDT application.

2.4 Software Development and Risk Assessment

Among much evidence presented in [Gib94] identifying the alarming number of software projects

which never produce a successful end product, is a particularly disturbing study performed by the

Software Engineering Institute [SEI13], a U.S. Department of Defense research institution at Carnegie

Mellon University. The study evaluated the abilities of 261 software organization to manage and

create software that met its customer’s needs on a 5 point scale, where 1 indicates chaos and 5

indicates the paragon of good management. The study found that about 75 percent were stuck at

level 1 with no formal process, no measurements of what they do, and no way of knowing when they

are on the wrong track or off the track together. The next 24 percent of projects were only at a

level 2 or 3. Knowing that so many software projects tend to fail to deliver on their initial intention,

and not wanting the Distributed Application Debugger to become one of them, we employed risk

management [Boe91] to help us deliver a successful product plan.

The initial phase was spent making a list of core features that we were going to include in

the application and, from those, extracting a risk list [Boe91] of features which had degrees of

uncertainty, technical constraints, or unrealistic development scopes which could eventually make

them undeliverable. The goal was to develop, or at least prototype, these features first in order to

be sure that they were attainable. I took an iterative development approach, as outlined by Craig

11

Figure 2.4: The GUI display of Rogue Wave Software’s TotalView application.

Larman [Lar07], of writing small, but complete, aspects of the items on the risk list and then met

regularly with Dr. Pedersen to test them and discuss their risk level. As Larman put it, ”It is better

to resolve and prove the risky and critical design decisions early rather than late — and iterative

development proves the mechanism for this.”. Below is the list of high risk features that I came up

with.

The Risk List

1. Integrating GDB

2. Recording and Replaying

3. Running Remotely

Integrating GDB

I decided that integrating GDB into the application was absolutely essential for the product to be

successful. I felt that students needed to have an alternative to using print statements that was still

easy to invoke when needed. I also felt that if I was going to call the product a debugger, it needed to

offer features like stepping into and over lines of code, variable inspection, and call stack retrieval at

12

Figure 2.5: A message illustration popup within Rogue Wave Software’s TotalView application.

the very least. Without these basic features, the tool would really just be a profiler used to analyze,

rather than inspect. Leveraging GDB specifically was an attractive choice for several reasons. As

indicated in [MS08], GDB is the most commonly used debugging tool among Unix programmers

and the foundation for other front end GUI wrappers such as DDD [DDD13] and Eclipse [Ecl13].

GDB works by first attaching itself to a process and then interacting with the user by taking in

instructions from stdin, and printing the results to stdout.

I felt this particular feature lent itself well to prototyping which, as detailed in [War09], offers

several advantages, among which is a very low-investment-to-benefit ratio. The initial prototype

for this feature was a program which could take in a command from the console to start, and then

launch a child GDB process that would attach itself to a test program. The parent process then

needed to take in commands from the console and pass them along to the GDB process’s stdin and,

likewise, read from GDB’s stdout and pass those values back to the parent. After another couple

of weeks of coding, we met again to talk about the risk of the feature. I had shown that I could

duplicate the file descriptors of a child process forked from the prototype and setup up a threading

model that could handle piping commands from the prototype’s console window into GDB, and also

piping the output of GDB back to the prototype. The initial prototype was promising but it lacked

13

one important feature. Since I was planning a remote debugger, was a prototype that only printed

to the console really applicable yet? I went back and did another iteration of development, which

extended the prototype to write and read from a TCP port passed in at its command line, rather

than its console. I called the prototype the ’GDB Bridge’, included in Appendix A.6, and assessed

that integrating GDB into the application was possible.

Recording and Replaying

Research by Thomas J. Leblanc and John M. Mellor-Crummey [LMC87] illustrate that since parallel

programs often include nodes passing messages asynchronously, the execution behavior of a parallel

program in response to a fixed input is clearly indeterminate. Given this information we felt that it

was crucial that the Distributed Application Debugger be able to record the execution of an MPI

session and allow the user to both inspect it by hand and replay it through the code. This would

give the user the ability to inspect unexpected occurrences that were not always recreatable without

having to run the application over and over again hoping to go down the same execution path. I

also felt that this feature was a high risk one that needed some development early to determine how

it would be done. Dr. Pedersen had conceived the idea to redirect the calls to MPI to an external

library [Ped03], which became the foundation for The Runtime component described in section 3.3.

Given that The Runtime component would be notified each time a user made and MPI call, it was

conceivable that we could record the parameters and return values of each call to an MPI method

to file. I decided to represent the MPI sessions using the XML standard [XML13] because of its

inherent ability to represent levels of scope, its great readability, and its wide adoption due to the

endorsement by the World Wide Web Consortium.

I started writing an XML library, the first of several that I would write for this project, and we

met regularly to evaluate its progress. I started out first by defining a structure which had XML

fields such as Name, Value, Attributes, and Children, and then wrote functions to convert those values

into XML compliant strings. After that, I wrote more functions to store the XML structures to file

and to read them back into memory. Once my XML library was complete, we met to design an MPI

XML schema which I could use to serialize each of the 12 MPI commands I was supporting. Once

the schema structure was decided on, as illustrated in Appendix A, another iteration was started in

which I wrote another library, called MPI XML, which used the XML library created in the previous

iteration to serialize each MPI command according to the agreed upon schema. After that, another

iteration was made to read the commands back into memory so that a recorded MPI session could

be replayed precisely how it was before. We met again and agreed that I now had a solution for

recording and replaying an MPI session.

14

Running Remotely

The final feature from the risk list was the ability for the Distributed Application Debugger to run

remotely from anywhere. I felt that if students had to commute to the university computer lab to

use the debugging tool, that it would ultimately discourage them from using it. Given this need it

became obvious that the application would actually need to be split into several applications, and

that I needed to identify what they were before we could proceed. This began a two phase design

phase in which we ultimately settled on the four component architecture described in Chapter 3.

In the first phase, I focused on sketching out a high level design of the system. I identified that

there would obviously be a front end GUI running at the student’s home for them to get their

debugging information from. Also there would obviously be a runtime component running at the

university which I had already developed record and replay features for. I also devised that there

would need to be some Call Center component running between the two which would ultimately be

in charge of communicating the front end’s commands to The Runtime, along with a series of Bridges

in case the cluster was not accessible directly. I then turned my attention to designing the user

experience that the user would have when interfacing with the client. Unger and Chandler [UC09]

suggest the practice of using ’wireframing’, which is the idea of laying out the behavior of a front

end GUI before you actually code it, as a way of bringing visual ideas to your project team quickly.

I installed one implementation of it called Balsamiq Mockups [Bal13] and sketched out the front end

user experience and a high level communications overview. We discussed several iterations of the

wireframes, examples are shown in Figures 2.6 and 2.7, and ultimately agreed on an architecture

allowing remote debugging before writing any code at all.

In the second phase, I worked on confirming that a front end written in C# running on Windows,

could SSH into a series of computers running UNIX, securely copy folders of debugging files from

node to node, and launch a prototyped Bridge and Call Center. I used the Tracer Bullet design

methodology [HT99], which gets its name from the way that a sniper can confirm that the path

of his bullet will hit his target by firing tracer bullets, which leave a phosphorus trail behind, first.

The goal of this technique is not to write any actual code, but rather to first connect prototypes

together to prove that a communication path will actually work. I found an open source library

called SharpSSH [Sha13] which allowed me to initiate an SSH connection from a front end written in

C# to a computer running an SSH Server. Once I was able to do that, I wrote C# applications that

would temporarily stub in for The Bridge and The Call Center and practiced copying them between

Linux computers at my own home. I installed Mono [Mon13], the .NET framework for UNIX, on

several Linux machines so that I could actually launch the C# stub applications after SSHing in.

After a few iterations I had worked out the logistics of SSHing, copying, launching and connecting,

15

Figure 2.6: A wireframe of The Client component used during the design phase.

Figure 2.7: A wireframe of the communication architecture made during the design phase.

16

that gets described in Section 3.1.1, which ultimately gave the user a connection to The Runtime

while connected remotely. After this I was confident that my high risk features could be met, and

that I would ultimately deliver a working product.

17

Chapter 3

The Distributed Application

Debugger

The need for a tool for debugging MPI programs became apparent when the results of a survey of

graduate students showed that most of their debugging was done using print statements. Although

commercial debuggers are available that can monitor distributed processes at the petascale level,

research by [BH04] found that 80 percent of developers used less then 4 processes when debugging

their code. With this in mind I felt that a debugging tool focused on the common debugging needs

of its target audience, rather than on extreme scalability, could still be very effective. This chapter

focuses on the implementation details of the Distributed Application Debugger and its three major

components: The Client, The Call Center, and The Runtime. It describes the messages passed

between them during an MPI debugging session, and concludes with what happens when GDB is

introduced.

3.1 The Client

The Client is the user facing portion of the application. It is meant to help the user connect, control,

and analyze MPI code running on a remote cluster of computers. The layout is meant to be simple

and is broken into 3 areas, the tool bar, the node panels, and the configurations as displayed in

Figure 3.1. Initially the user must enter credentials to establish a remote connection to the MPI

cluster and then can begin debugging sessions.

18

Figure 3.1: The Client without any fields populated.

3.1.1 Establishing a Remote Connection

In order to begin a debugging session, the user must first establish a connection into the MPI

cluster. The user supplies his or her credentials in the Configurations area of The Client as displayed

in Figure 3.2. It is not uncommon for a computer within an MPI cluster, however, to only be

accessible from within its private network. In the case of some universities, for instance, students

who wish to remotely access a computer within an MPI cluster, are asked to SSH into the campus

student computer lab first. Once they establish a connection to a computer within the university

network, they can then establish a second session to a computer within the cluster. The Distributed

Application Debugger allows the users to input as many connections as they must make in order

to finally reach the MPI cluster. When multiple addresses are entered, connections are made in

sequential order, starting from the top of the list. Figure 3.3 shows the scenario where a user needed

two connections in order to reach the computer cluster.

Once the user has provided the credentials needed to log into the MPI cluster, the Connection

button will become enabled in the tool bar, and the user can establish the remote connection by

19

Figure 3.2: The Client configured for a direct connection to The Call Center.

Figure 3.3: The Client configured for an indirect connection to The Call Center using Bridges.

pressing it. Once The Client has established a connection, it copies some debugging files to the folder

indicated by the Transfer Directory from Figure 3.2. After the debugging information is copied,

The Client compiles the debugging files and launches the second main component, The Call Center.

In the case that the user provided multiple addresses for The Client to log into, the files will be

copied up to each computer in sequence and a helper application called The Bridge, included in

Appendix A.7, will be launched until the last connection is reached and The Call Center is launched.

Figure 3.4 shows the system when The Client connects directly to the MPI cluster, and Figure 3.5

shows when extra connections are involved.

The configuration area in Figure 3.2 includes one more field which has not been talked about

yet- namely the Connection Port. Once it has been established that The Bridges and Call Center

are running, The Client will then establish an outgoing TCP connection to the first computer that

it logged into on the connection port that was supplied. This computer then subsequently makes

a connection to the next computer on that computer’s connection port and so on until The Call

Center has been reached. This connection port is provided to The Bridges and Call Center on their

20

Figure 3.4: The Client after it has successfully connected to a remote computer and launched The
Call Center.

Figure 3.5: An updated overview with bridges included.

command lines as shown in Tables 3.1 and 3.2, and once the TCP connections are established, the

remote connection sequence is complete. An updated illustration of the system is shown in Figure 3.6.

Command Line
./callCenter PORT-NUMBER

Arguments
PORT-NUMBER The TCP port to listen for incoming connections on.

Table 3.1: The command line for launching The Call Center.

21

Command Line
./tcpBridge -b SRC-PORT-NUMBER DEST-IP-ADDRESS DEST-PORT-NUMBER

Arguments
-b An indicator that the application is running in ’Bridge’ mode.
SRC-PORT-NUMBER The TCP port to listen for incoming connections on.
DEST-ADDRESS The address to make an outgoing TCP connection to.
DEST-PORT-NUMBER The port to make an outgoing TCP connection to.

Table 3.2: The command line for bridges.

Figure 3.6: The system connected via TCP sockets.

3.1.2 Running a Debugging Session

Once the remote connection has been established, the user can start debugging. In the tool bar area

of The Client, shown in Figure 3.1, are the fields for supplying the location of the executable to

debug as well as the host file and the parameters. A node counter box is also present and is used to

choose how many processes they would like to run. All information extracted from an MPI node

during a debugging session is returned and displayed in the Node Panels section of The Client, also

shown in Figure 3.1. A panel for every node present in the counter box is displayed in the node

panels section. All node panels are initially shown within this area, but they can be collapsed by

pressing the collapse button present in each one of them. Figure 3.7 shows a session configured

to debug a program called TestAdd with 2 node panels displayed, and Figure 3.8 shows the same

session with one of the nodes collapsed to the tray.

Each node panel has three tabs, consisting of the Console tab, the Messages tab, and the MPI

tab, in which it will display data about the debugging session. Figure 3.9 shows an illustration of

each of the tabs before they have received debugging data. Although analyzing the data is saved for

22

Figure 3.7: A debugging session configured for two nodes with both displayed.

chapter 4, I would like to touch on each of them here to give a general idea of what they are used for.

The Console Tab displays anything written to stdout from the node. This area primarily helps

keep track of print statements used for debugging or for status within each of the nodes. Routing

them to their own panel helps the user focus on the status output of one node at a time rather

than viewing a jumble of nodes printing to the same monitor or physically moving in the case they

get printed to separate monitors. The Messages Tab displays all of the interprocess messages sent

between nodes within the MPI framework. Analysis can be done on this screen to match send and

receive messages, highlight unmatched messages, and request the buffer values of recorded messages

as shown in chapter 4. Finally, the MPI Tab displays all commands issued by the application. They

are displayed in the order that they were executed along with their line numbers, so that the user

can quickly see the path that their execution took. Both the Messages and MPI tabs offer a details

section which shows parameter values passed into the command’s method, as well as a filter, useful

in selecting only specific types of commands for viewing.

23

Figure 3.8: A debugging session configured for two nodes with one collapsed.

Once the debugging session information has been entered into the tool bar, the user can now

begin to debug. A debugging session is run under one of three modes: PLAY, RECORD, or REPLAY and

is issued within a general network messaging envelope used by all commands within the system and

illustrated in Figure 3.10.

As detailed in [Hel00], all messages within the envelope start with a Start of Header control

character, with the value 0x01, indicating that a new message packet is being read. Each message

also ends with a control character called End of Transmission which is represented by the value 0x04.

Sections of the envelope are partitioned by the third and final control character, the pipe character

’|’. Going forward these three characters, the Start of Header, End of Transfer, and Pipe characters

will be referred to as SOH, EOT, and partition respectively.

24

Figure 3.9: The three tabs of each node panel.

Figure 3.10: The protocol for all messages passed within the system.

Encoding Reserved Characters

Inherently when dealing with reserved characters, one must be assured that they will never be used

outside of the score of within message envelopes. This is not possible, unfortunately, in the case of

the data the we are dealing with because there is no stipulation on what data the MPI program may

print to the screen or send in a buffer. In order to deal with this scenario, some commands, such

as PLAY, RECORD, and REPLAY, include replacement strings for the three reserved characters. These

replacement values will be used to encode literal uses of these reserved characters while they are

being transferred back to The Client who can then decode them. These replacement strings are

configurable by the user and can be of any length greater than 1. The default replacement strings for

SOH, EOT, and partition characters are *SOH*, *EOT*, and *BAR* respectively.

25

Play

The PLAY command is the basic command to start a debugging session and is initiated by pressing

the Play button found within the tool bar. It indicates to The Call Center that The Runtime

should not do any recording, redirecting or analyzing of the MPI code. The parameters passed along

with the PLAY command are the number of nodes to include, the location of the executable to run,

the host file to use, the parameters for the mpirun command, the SOH, EOT, and partition encoding

strings, and a comma delimited list of nodes to run under GDB. Figure 3.11 details the contents of

a sample PLAY command sent from The Client to The Call Center indicating that 4 nodes should

run the file called addPrimes, with a host file called host.txt and pass the parameters 1 and 99999.

SOH, *BAR*, and *EOT* are the strings to use to encode the reserved characters and nodes 1 & 2

will be run under GDB.

Figure 3.11: The protocol for a sample PLAY command.

Record

A RECORD command is initiated by pressing the Record button in the tool bar. When sent to

The Call Center, it indicates that The Runtime should record each command in the MPI session.

When a RECORD session is run, every node will record the input parameters, buffer contents, and

return values of each MPI command along each step of the program. As with the PLAY command,

the parameters passed within the RECORD command are the number of nodes to include, the location

of the executable to run, the host file to use, the parameters for the mpirun command, the SOH, EOT,

and partition encoding strings, and a comma delimited list of nodes to run under GDB. The RECORD

command also adds two extra parameters which are the location of the Sessions directory to save in

and a name for the session being run.

When The Call Center receives a RECORD command, it creates a time stamp string and passes it,

along with the user defined session name, to The Runtime. Each node then creates a folder within their

Sessions directory named after the session name and timestamp, and stores the results of the session

inside it in a file called Node#.xml where # is the node’s id in the cluster. The complete directory

path to the recorded session for each node is thus Sessions/SessionName/TimeStamp/Node#.xml.

Figure 3.12 details the contents of a sample RECORD command sent from The Client to The Call

Center with the same parameters as the PLAY command example above, along with parameters to

save the details of the session to the MPI/Sessions folder under the session name Homework1.

26

Figure 3.12: The protocal for a sample RECORD command.

Replay

A REPLAY command is sent by choosing a replay session from the drop down below the Play button

in the tool bar as shown in Figure 3.13. When sent to The Call Center it indicates that the user

wants some, or all, nodes to play back values recorded from an early session. All nodes indicated

as replay nodes will return values read from an XML file, rather than executing them to the MPI

runtime. As with the PLAY and RECORD commands, the parameters passed along with the REPLAY

command are the number of nodes to include, the location of the executable to run, the host file to

use, the parameters for the mpirun command, the SOH, EOT, and partition encoding strings, and a

comma delimited list of nodes to run under GDB. The REPLAY command also sends the location of

the Sessions folder, the name of the session to replay, the time stamp of the instance of the session to

replay, and a comma delimited string of nodes to run in REPLAY mode.

The Call Center passes these extra values to each of the nodes in the REPLAY session so that each

node knows if it is to run in REPLAY and if the node that it may be exchanging messages with is

in REPLAY too. For most commands, if the node is running in REPLAY mode, it will just return the

values read from the XML recording of the session to the user. The only case in which a node which

is running in REPLAY mode will actually make an MPI call is if the command is sending messages to,

or receiving messages from, a node which is running in play mode. This is because that node may

be blocked, waiting for a real message to be received by the MPI runtime system. Most messages

however can just be read and returned to the user. REPLAY mode is helpful because it allows the users

to focus on one particular node that he/she may feel is the source of a problem and to follow along

with its XML file while execution is happening to determine what went wrong. Figure 3.14 details

the contents of a sample REPLAY command sent from The Client to The Call Center requesting that

it replay the Homework1 session recorded in Figure 3.12 with nodes 2, 3, and 4 running in REPLAY

mode.

Status Indicators

The tool bar offers a visual status indicator as to what state it is in while it is establishing a connection

and running a debugging session. Table 3.3 provides a quick reference to what the different status

colors indicate.

27

Figure 3.13: The Environment Data response integrated into a connected Client.

Figure 3.14: The protocol for a sample replay command.

Indicator Status

Idle

Connecting

Connected

Session Running

Session Complete

Error

Table 3.3: The status indicators displayed on The Client.

Attaching GDB

The subject of attaching GDB to each of the nodes from the front end is discussed later in this

chapter, in section 3.4, after describing how the rest of the system is implemented.

3.2 The Call Center

The Call Center is the central information processing application to the entire system. It is responsible

for accepting connections from The Client, responding to requests to begin MPI sessions, retrieving

buffer values, and managing all messages passed back from the MPI runtime in an orderly fashion.

After establishing connections to The Runtime, the job of The Call Center is to reliably relay full

messages from each node, in the order they were executed, back to The Client for the user to inspect.

28

3.2.1 Incoming Commands

While The Call Center is running, it can take in seven different requests. Four of these commands

ENVIRONMENT, BUFFER REQUEST, GDB INPUT, and MPI COMPLETE do not initiate an MPI session, but

rather support data in and around the sessions. The other three, PLAY, RECORD, and REPLAY do

initiate an MPI run session and prompt The Call Center to spawn extra threads in order to listen to

TCP connections and messages sent back from The Runtime.

ENVIRONMENT

Upon connecting to The Call Center The Client will issue an ENVIRONMENT request which is meant to

retrieve a special folder location configured at startup where the users will be storing their MPI files.

Accompanying the MPI folder is an XML section representing the header information of all of the

previously recorded sessions. The request consists of the header ENVIRONMENT, along with the path

of the session folder to pull session data from, and the response starts with the header ENVIRONMENT

DATA followed by the requested data. Figures 3.15 and 3.16 show examples of the request and the

corresponding response values from the Environment and Environment Data messages.

Figure 3.15: The Environment request sent to The Call Center.

Upon receiving the Environment Data response, The Client prefixes the location of the MPI

folder to the user’s execution location, so that the user does not have to type the full path to their

executable. It also parses the various session information header packets in order to allow the user to

choose to replay any session which was previously recorded. Figure 3.13 shows The Client displaying

the prefixed folder, and replay drop down list, which were populated from the result of issuing an

ENVIRONMENT request to The Call Center.

BUFFER REQUEST

The Distributed Application Debugger sends back everything known about each command requested

except for buffer values. This was a conscious decision in order to cut down on the size of the

messages sent back. In the case of messages being exchanged that contain buffers that are hundreds

or even thousands of bytes long, it was decided that it was in the best interest of the user to, firstly,

get the session completed as soon as possible and then, secondly, let the user request individual

buffers that they were interested in. The only stipulation, however, is that the session must have

been in RECORD mode since buffer values are not kept in memory by The Runtime, but are saved to

29

Figure 3.16: The Environment Data response.

disk in the case of RECORD. In order to retrieve buffer values, they must first request them by right

clicking on one or more message commands and selecting Get Buffer as displayed in Figure 3.17

When the user selects one or more commands to retrieve buffers for, The Client will issue a

buffer request in the form of BUFFER REQUEST|NodeId|DestinationCommand.SourceCommand,...|

FileLocation|SOH string|Partition string|EOT string. The third parameter is a comma de-

limited string of pairs in the form DestinationCommand1.SourceCommand1, DestinationCom-

mand2.SourceCommand2 etc. The Destination Command is the command id that the buffer

has been requested for, but the Source Command is the one which actually contains the buffer

value. In most cases the Destination and Source will be the same, but, in the case of asynchronous

communication, they could be different. For instance in the case that the buffer is requested for an

MPI IRecv() command, the buffer will not be found in the XML stored for that command since

it was not known at the time that the command was issued. The buffer was not actually known

until an MPI Wait() was issued which will mean inspecting the XML for a different command than

the message command that it belongs to. Figure 3.18 shows the contents of a sample buffer request

30

Figure 3.17: The user selecting to retrieve two buffer values.

message issued for two buffers, the second of which has a different destination command id than

source command id.

Figure 3.18: A BUFFER REQUEST command issued to retrieve to buffer values from The Call Center.

Upon receiving the BUFFER REQUEST command,The Call Center parses the message, opens the

file indicated and returns a Buffer Value response for the buffers requested in separate mes-

sages. The Buffer Value command is returned in the form BUFFER VALUE|NodeId|CommandId

|EncodingIndicatorByte|Buffer Value1|Buffer Value 2|Buffer Value 3..... Because it is pos-

sible that the values in a buffer could be one of the three control characters, the buffer values command

31

will encode any reserved characters based on the encodings passed in from the buffer request command.

In order to let The Call Center know if any of the buffer values where encoded, an EncodingIndica-

torBuffer character is included. If any bytes were encoded an ’E’ is returned to encoded data, and if

not, a ’U’ is returned to indicate unencoded data. The contents of the two responses to the request

in Figure 3.18 are illustrated in Figure 3.19.

Figure 3.19: Two buffer value responses returned from The Call Center.

The Call Center supplies a buffer inspection panel whose icon becomes enabled within the

tool bar whenever The Client is in RECORD or REPLAY mode. The buffer inspection panel displays the

decoded values of each index of the buffer and, in the case of non-numeric buffers such as MPI BYTE

or MPI CHAR, includes a hexadecimal translation column as well. Figure 3.20 and 3.21 show the

two buffer results returned from the buffer request issued in Figure 3.18.

GDB INPUT

When The Client has attached GDB to one or more nodes, the user can issue individual commands

to preform any command supported by GDB. These commands can be issued from The Client by

using the GDB INPUT command. The GDB INPUT request is issued in the form GDB INPUT|NodeId|GDB

Command. Upon receiving the request, The Call Center parses the command and routes it to the

appropriate node. GDB then interprets the command and the result is printed to the console as

in any GDB command. Figure 3.22 shows a sample GDB INPUT command requesting The Call

Center to route the GDB command display to node 1 in order to print the value of a variable called

loopCounter to the screen.

MPI COMPLETE

The last non-session command accepted by The Call Center is the MPI COMPLETE command. This

command is issued by The Client to indicate that it has received and processed an MPI Finalize()

command for every node in the cluster and that it does not intend to listen for any more commands

from this session. Upon receiving the MPI COMPLETE command, The Call Center releases any memory

allocated to that session, cleans up any MPI nodes still controlled by GDB, and any other cleanup

processes required. It is important to note, however, that The Call Center does not close itself down,

32

Figure 3.20: The Client displaying the buffer contents returned from The Call Center.

nor does it close the SSH session it was launched from or the TCP connection it has back to The

Client. This allows for further sessions to be deployed quickly from The Client, without the user

having to incur all of the overhead associated with starting up The Call Center. The envelope for

the MPI COMPLETE command is illustrated in Figure 3.23.

Session Commands

The Call Center accepts the three session requests detailed earlier: PLAY, RECORD and REPLAY. Upon

receiving one of these commands, The Call Center initiates a request to the command line and appends

extra parameters for The Runtime to interpret. As with starting MPI from any other command

33

Figure 3.21: The Client displaying the buffer contents returned from The Call Center with Hex
values.

Figure 3.22: A gdb input command issued to request a variable value from GDB.

Figure 3.23: The MPI Complete command.

line, it is initiated with an mpirun command with the corresponding parameters dictated from the

contents of the PLAY, RECORD and REPLAY requests. The MPI mpirun command line arguments are

displayed in Table 3.4.

34

Command Line
mpirun -np <number of processes> -machinefile <hostFile > <program> <arg1 arg2>

Arguments
-np <number of processes> Specification of the number of processors to run.
-machinefile <hostFile> A file of names of possible machines to run.
<program> <arg1 arg2...> The MPI program and arguments to run.

Table 3.4: The standard mpirun command line arguments.

PLAY

As described in Figure 3.11, the PLAY request contains the number of nodes, host file name, file

name, file arguments, encoding replacements for the SOH,EOT, and partition characters, and the list

of nodes to be controlled by GDB. The PLAY command then appends the flags and values displayed

in Table 3.5 to the end of the standard mpirun parameters list.

Arguments
-s <SOH, Partition, EOT replace> The values to substitute for the control characters.
-g <GDB Node 1, GDB Node 2 ...> A command delimited list of nodes to run under GDB.
-f <Full file path> The file path of the executable to be supplied to GDB.
-c <Address:Port> The Call Center address and port to connect back to.

Table 3.5: The extra command line arguments appended to mpirun from a PLAY request.

RECORD

As described in Figure 3.12, the RECORD request contains all of the parameters supplied in the PLAY

request along with the location of the session folder to store the results of an MPI session in and the

name of the session to record them in. Like the PLAY command, the RECORD command appends its

values to the end of the standard mpirun parameters list as dictated in the Table 3.6.

Arguments
-s <SOH, Partition, EOT replace> The values to substitute for the control characters.
-g <GDB Node 1, GDB Node 2 ...> A command delimited list of nodes to run under GDB.
-f <Full file path> The file path of the executable to be supplied to GDB.
-c <Address:Port> The Call Center address and port to connect back to.
-r Indicator for RECORD mode.
-d <Folder Path> The directory to store XML recordings to.

Table 3.6: The extra command line arguments appended to mpirun from a RECORD request.

35

REPLAY

As described in Figure 3.14, the REPLAY request contains all of the parameters supplied in the RECORD

request along with the time stamp of the specific session to replay and the comma delimited list of

nodes to replay. Like the PLAY and RECORD commands, the REPLAY command appends its values to

the end of the standard mpirun parameter list as detailed in Table 3.7.

Arguments
-s <SOH, Partition, EOT replace> The values to substitute for the control characters.
-g <GDB Node 1, GDB Node 2 ...> A command delimited list of nodes to run under GDB.
-f <Full file path> The file path of the executable to be supplied to GDB.
-c <Address:Port> The Call Center address and port to connect back to.
-p <Replay Nodes> The comma delimited list of nodes to replay.
-d <Folder Path> The directory to read XML recordings from.

Table 3.7: The extra command line arguments appended to mpirun from a REPLAY request.

3.2.2 Message Routing

Once The Call Center has started an MPI session, it will begin to receive one call back connection per

MPI node as described in Section 3.3.2. Once all of these connections are made the system becomes

fully connected, as illustrated in Figure 3.24, with The Call Center managing multiple incoming

connections from the MPI runtime and only one outgoing connection back to The Client. In order

to efficiently route messages from multiple sources back to The Client, The Call Center employs a

multi-threaded model to multiplex between reading from the incoming nodes, queuing the messages

read, transferring them to the output queue, and then writing them back to The Client. This system

of message routing is illustrated in Figure 3.25 and described further in this section.

Upon receiving the initial incoming connection from The Client, The Call Center creates one

outgoing message thread which blocks while waiting on a semaphore known as the outgoingQueueNo-

tification. When this semaphore is released, due to a thread posting to it, the outgoing message

thread attempts to acquire the outgoingQueueLock which ensures that it can pop messages off of

the outgoing queue, (see Appendix A.2), and write back to The Client in a thread safe manner.

The outgoing message queue is populated from the messages passed in from the MPI nodes. After

launching the MPI runtime due to receiving a PLAY, RECORD, or REPLAY request, The Call Center

receives connections back from the MPI nodes. When The Call Center detects a call back connection

from an MPI node, it creates a clusterNode structure (see Appendix A.4) which stores the connected

socket to read from and a local message queue to write to. It then launches two threads, one Reading

and one Processing, which work in tandem to read from an MPI node and move the messages read to

36

Figure 3.24: The system connected fully connected from The Client to the MPI nodes via The Call
Center.

the outgoing message queue. It is important to note that while each MPI node has a local message

queue and a set of Reading and Processing threads, that The Call Center has only one outgoing

queue and one thread writing messages from it back to The Client.

The Reading thread’s purpose is to read in messages from an MPI node and populate a local

message queue without worrying about pushing these messages to The Client. It creates a charList

structure (see Appendix A.1) dedicated to the MPI node it is reading from. Whenever something is

read from the node, the data is appended to the charList. The reading thread then examines the

list to see if there were any full messages written by detecting SOH and EOT characters and, upon

detecting a full message, acquires the clusterNodeLock semaphore, transfers that portion of the

charList to the node’s messages queue, and alerts the process thread to handle transferring those

messages to the output queue by posting to the messageNotification semaphore.

The Processing thread’s purpose is to move these messages to the outgoing queue when no other

thread is adding or removing from it. It blocks by waiting on the messageNotification semaphore

and, upon acquiring it by being notified by the Reading thread, acquires the outgoing thread’s

outgoingQueueLock semaphore. Upon acquiring the outgoingQueueLock semaphore, the processing

thread then acquires the clusterNodeLock semaphore to stop any new messages read from the MPI

node from being placed on the queue. It then transfers all messages from the node’s queue to

the outgoing queue, notifies the outgoing thread that messages are waiting for it by posting to

the outgoingQueueNotification semaphore, releases the clusterNodeLock and outgoingQueueLock

queue semaphores, and waits on the messageNotification semaphore again. The outgoing thread, as

stated earlier, will detect the outgoingQueueNotification semaphore, acquire the outgoingQueueLock

37

Figure 3.25: Two threads per MPI node populating one outgoing message queue.

38

sempahore, and safely write all queued messages back to The Client.

3.3 The Runtime

The Runtime is the final part of the system which links the user’s MPI code to the remote debugging

Client. The Runtime runs below the user’s MPI code which is being debugged, and provides a level

of indirection which handles recording, replaying, and sending data back to The Call Center which

will relay them back to The Client. The key to the user passing control of their MPI code that they

want to be debugged is in the header file that they import.

3.3.1 Importing mpi.h

Appendix B.3 details the 4 step set of instructions on how to integrate The Runtime into a user’s

code. Step 3 indicates that, in order to allow The Runtime to reflect on the user’s code, the user

needs to replace the inclusion of the MPI framework’s mpi.h header file, show in Figures 3.26, with

The Runtime’s mpi.h header file shown in Figure 3.27. This one step completely transforms the

user’s code at compile time, without them having to know, and redirects their MPI library calls to

The Runtime which can then provide debugging support.

Figure 3.26: Including the standard
MPI framework.

Figure 3.27: Including the debug-
ging MPI framework.

The contents of The Runtime’s mpi.h file, which is displayed in Figure 3.28, becomes included in

the user’s code. On line 1 of the mpi.h header file is an include statement for the MPI framework’s

real mpi.h file, which ensures that calls to the MPI library can made. After this is a conditional

statement depending upon if the MPIDEBUG flag has been compiled as described in the last step in

Appendix B.3. When the MPIDEBUG flag has been set because The Runtime libraries have been

compiled and included, the file now imports two other header files: debug.h, shown on line 4 of

Figure 3.28, and mpidebug.h as shown on line 5. After that the user is set to begin debugging with

The Runtime because the contents of debug.h, shown in Figure 3.29, and mpidebug.h, included in

Appendix B.1, contain the necessary source code to redirect the user’s source code to The Runtime’s

assemblies.

The debug.h file only contains macros as shown in Figure 3.29. What these effectively do is

replace any calls to the MPI library methods, with new ones which are prefixed with an underscore.

An example program which gets its MPI calls replaced at compile time is displayed in Figure 3.30. In

39

1 #include <mpi . h>
2
3 #ifde f MPIDEBUG
4 #include ”debug . h”
5 #include ”mpidebug . h”
6 #endif

Figure 3.28: The contents of the mpi.h file included with The Runtime.

#ifndef DEBUG
#define DEBUG
#define MPI Init (A,B) MPI Init (FILE , LINE ,A,B)
#define MPI Final ize () MPI Fina l i ze (FILE , LINE)
#define MPI Comm rank(A,B) MPI Comm rank (FILE , LINE ,A,B)
#define MPI Comm size (A,B) MPI Comm size (FILE , LINE ,A,B)
#define MPI Send (A,B,C,D,E,F) MPI Send (FILE , LINE ,A,B,C,D,E,

F)
#define MPI Recv (A,B,C,D,E, F ,G) MPI Recv (FILE , LINE ,A,B,C,D,E,

F ,G)
#define MPI Isend (A,B,C,D,E, F ,G) MPI ISend (FILE , LINE ,A,B,C,D,E

, F ,G)
#define MPI Irecv (A,B,C,D,E, F ,G) MPI IRecv (FILE , LINE ,A,B,C,D,E

, F ,G)
#define MPI Wait (A,B) MPI Wait (FILE , LINE ,A,B)
#define MPI Barrier (A) MPI Barr ier (FILE , LINE ,A)
#define MPI Probe (A,B,C,D) MPI Probe (FILE , LINE ,A,B,C,D)
#define MPI Iprobe (A,B,C,D,E) MPI IProbe (FILE , LINE ,A,B,C,D,

E)
#endif

Figure 3.29: The contents of the debug.h file included with The Runtime.

this figure MPI Init() has been replaced with MPI Init() at compile time, MPI Barrier() has been

replaced with MPI Barrier(), MPI Send() has been replaced with MPI Send(), and so on because

of the macros in debug.h. In this scenario all calls to the underscore versions of these methods,

which are contained in mpidebug.h from line 6 of Figure 3.28 and implemented by The Runtime,

provide The Runtime a chance to connect back to The Call Center up MPI Init() being called, as

detailed in Section 3.3.2, and then send back debugging information for The Client, as detailed in

Section 3.3.3.

3.3.2 Connecting to The Call Center

When each node joins the MPI system by initiating an MPI Init() command, a series of runtime

initialization steps happen. First, The Runtime version of MPI Init() issues a real MPI Init()

40

Figure 3.30: Compile time changes made from including The Runtime’s mpi.h file.

command to join the MPI group that will run. It also issues an MPI Comm size() and an MPI -

Comm rank() command so that when it parses the input commands it can determine which nodes,

including itself, are -p nodes, in the case of a REPLAY session, and store each node’s role in a lookup

table.

Once The Runtime knows what the size of the cluster is and what its rank is, it then parses the

extra command line parameters passed in from The Call Center. It assumes that the entire system

will run in regular play mode, but if a -r is detected it notes that it is running in RECORD mode,

and if a -p is detected it notes that it is running in REPLAY mode and determines which nodes in

the cluster are replay nodes and which are normal. It also stores the data passed from -d for the

directory path, -f for the executable file location, -s for the SOH, EOT, and partition control character

41

replacement strings, -g to determine if it is supposed to let GDB attach, and -c for the address of

The Call Center and the port that it is listening for connections on.

After parsing the input strings, the system redirects stdout to a different file descriptor and

spawns off a thread dedicated to listening to this file descriptor as detailed in Appendix B.2. Finally

the system makes a TCP connection back to The Call Center, passes its first message back which

contains its node id, its process id, and computer name, and then waits for The Call Center to

acknowledge that all of the nodes have connected back to The Call Center by reading a Continue

command. Once all of the nodes have connected back to The Call Center and The Call Center

acknowledges it is ready to start the session by writing Continue on each of there ports, the system

is fully connected as shown in Figure 3.24.

3.3.3 MPI Session

Once The Runtime has connected to The Call Center during the MPI Init() command, the system

follows a four step pattern of executing the users code, providing status information back to the user,

and recording and validating when appropriate. Figure 3.31 illustrates the 4 steps within a sample

command, MPI Send(), and the other 11 commands follow the exact same pattern.

Step 1

The first thing that each command does is to create an ’expectedValues’ XML node which will be read

from an XML file, in the case that the node is running in REPLAY mode, or remain null otherwise.

Step 2

The second step is to write a PRE message, detailed in section 3.3.4 and illustrated in Figure 3.34,

back to The Client to let it know what parameters are about to be executed on the next MPI

command. In the case that the expectedValues XML was actually populated because the node is

running in REPLAY mode, the method creating the PRE message will also validate that the parameter

values passed in where the same as those read in from the XML file. In the case that parameters

read in where different than the expected ones read from the XML file, the system will append those

expected values to the end of the PRE message to, as detailed in red within Table 3.8, to let The

Client warn the user that the session being played back is producing different values than the original

instance.

Step 3

After the PRE message has been sent back to The Client, the system handles executing the actual

MPI command based on the role that the node is running in. In normal PLAY mode, the system

42

always executes the real MPI command. In the case of RECORD, the system executes the real MPI

command and then logs the XML representation of the command to file using the XML library

I wrote and included in Appendix A.5. In the case that the node is running under REPLAY mode

the results will vary based on the message. If the message is a send or a receive message and the

source or destination is running in normal PLAY mode, the REPLAY node will actually execute the

MPI command. When the code snippet below for the MPI Send() command is running in REPLAY

mode, for instance, it must see if the node that it is sending to is running in normal PLAY mode first.

If it is, then it must send the message because the destination node would be blocked waiting for the

message to arrive. If the destination is, instead, running in REPLAY mode too, than there is no reason

to send the message. Regardless whether if the node’s mode requires that it actually executes the

statement or not, the MPI command’s return value is saved from the result of sending it or reading

it from the replay XML in this step.

Step 4

Finally, the command sends a POST message, detailed in section 3.3.4 and illustrated in Figure 3.35,

back to The Client to let it know that the command actually completed and to obtain the parameter

values that may have changed because of it along with the command’s return value. Table 3.9 shows

the values returned, along with which parameters are validated and flagged when incorrect in red .

3.3.4 Runtime Commands

F The Runtime posts five different commands to provide debugging status to The Client. Each is sent

back to The Call Center without consideration of the other nodes who are also sending back data

and do not invoke responses. It is the responsibility of The Call Center to keep the message packets

received from being corrupted as detailed in Section 3.2.2. This section details the five messages sent

back to The Call Center from The Runtime.

NODE ID

The first command, NODE ID has already been touched on briefly. It is sent back to The Call Center

immediately after The Runtime establishes a connection to give the the details of the MPI node’s

process id and the name of the computer it is running on. In the example illustrated in Figure 3.32,

an MPI node reports that its rank is 1, its process id is 21809, and it is running on the machine

cortex.cs.unlv.edu.

Unlike other commands sent back from the MPI nodes, The Call Center inspects this message

first and makes a record of each node’s details before passing this command back to The Client.

43

Figure 3.31: The four step pattern applied to The Runtime versions of MPI commands.

Figure 3.32: A Node Id command reporting a node’s process id and computer name.

When The Client receives a Node Id, it displays the details of each node’s data at the top of their

node panel as illustrated in in Figure 3.33.

44

Figure 3.33: The details of a node displayed in the header of its node panel.

PRE

The PRE command is meant to let The Client know that an MPI command is going to be executed,

which is the second step of the MPI Session pattern identified in Figure 3.31 and discussed in

section 3.3.3, and serves two purposes. First, it lets the person debugging their application know

the line number, command name and command input parameters of the MPI command about to be

executed. This information can help quickly identify what command a program may be blocking on

in the case of a program that never completes or crashes. The second purpose it serves is to send

back invalid data in the case of a REPLAY node. In this case the actual values parameter will be sent

first and the expected values parameter, which is read from the XML file, is sent at the end when

discrepancies from the actual values are found. The common structure of this command is displayed

in Figure 3.34, as well as a break down of the command specific details displayed in Table 3.8.

Figure 3.34: The structure of the PRE command.

Details returned per command
Command Variable length details, delimited by ’|’ character.
Init
Rank Comm
Size Comm
Send Count Type Dest Tag Comm Count Type Dest Tag

Recv Count Type Src Tag Comm Count type Src Tag

Isend Count Type Dest Tag Comm Req Count Type Dest Tag

Irecv Count Type Src Tag Comm Req Count Type Src Tag

Probe Src Tag Comm Src Tag

IProbe Src Tag Comm Src Tag

Wait Request
Barrier Comm
Finalize

Table 3.8: The Actual Values sent back within PRE commands, with detected discrepancy fields
highlighted in red.

45

POST

The POST command confirms to the user that an MPI Command has finished which is the last step

of the MPI Session pattern identified in Figure 3.31 and discussed in section 3.3.3. Like the PRE

command, it serves two purposes of giving details of the results of executing the command such as the

return value, and, in the case of a REPLAY node, includes expected values in case they did not match

the actual values. The command id included in the POST command will always match up with a

PRE command sent earlier. The two commands paint the complete picture of the values passed into

the command and the results after they have completed. The common structure of this command is

displayed in Figure 3.35, as well as a break down of the command specific details displayed in Table 3.9.

Figure 3.35: The structure of the POST command.

Details returned post command
Command Variable length details, delimited by ’|’ character.
MPI Init() Return Value Rank
MPI Rank() Return Value Size
MPI Size() Return Value

MPI Send() Return Value

MPI Recv() Return Value Status Status Buf

MPI Isend() Return Value

MPI Irecv() Return Value

MPI Probe() Return Value Status Status

MPI IProbe() Return Value Flag Status
MPI Wait() Return Value Status Status Buf

MPI Barrier() Return Value

MPI Finalize() Return Value

Table 3.9: The Return Values sent back within POST commands, with detected discrepancy fields
highlighted in red.

CONSOLE

Whenever The Runtime detects that something has been printed to stdout, it will send a Console

message back to The Call Center. Like all messages, The Call Center will relay this back to The

Client who will append it to the console window of the corresponding node’s panel. The message

format starts out with the message header Console, followed by the node id, and then, just like in

The Call Center’s Buffer Value command, it has an EncodingIndictor character that indicates if any

46

part of the final section, the actual printed message, was encoded because of the detection of reserved

characters. Figures 3.36 and 3.37 display two Console message examples. Figure 3.38 represents the

phrase ’Hello World’ being printed to the screen and Figure 3.39 indicates ’Hello|World’.

Figure 3.36: An example CONSOLE message that does not have any encoded characters.

Figure 3.37: An example CONSOLE message that contains encoded characters.

Figure 3.38: Unencoded message
printed to console.

Figure 3.39: Encoded message
printed to console.

GDB

The last command sent back from The Runtime is the GDB command. Like the CONSOLE command,

the GDB command is meant to relay data, that is printed to stdout, back to The Client to display

while having GDB attached. The Runtime listens to the stdout of the process running GDB and

reports back every character GDB has written to the console. By way of the GDB command, the

Distributed Application Debugger is able to route just the data written to stdout from GDB to

a dedicated window for the user to focus on. The format of the GDB command is displayed in

Figure 3.40 and the data printed to The Call Center in Figure 3.41.

47

Figure 3.40: A GDB command issued to tell some partial text of what has been written to screen.

Figure 3.41: The content of the GDB routed to the GDB console display.

3.4 Integrating GDB

Perhaps the most useful and powerful feature of the Distributed Application Debugger is the

integration of the GNU Debugger known widely as GDB. GDB is able to read the debugging symbols

produced by the gcc [GCC13] compiler which is the same one used to compile MPI code. GDB can

be used to launch applications or attach to already running applications. Once attached, the user

has commands available at their disposal to break, step over, step into, and continue through lines of

their program as they see their code’s execution path. They can view variable values, recall stack

traces, examine memory and perform a whole host of operations to help them figure out what is

causing a problem in their software.

3.4.1 Attaching GDB

To use the GDB feature of the system, all the user has to do is click the gray debugger icon, , on

the bottom of any node that they wish to attach the GDB debugger to. Once pushed, the icon turns

yellow, , the debugging panel slides up and the panel’s console panel defaults to the GDB view as

displayed in Figure 3.42.

As described earlier, when the user initializes an MPI session through a PLAY, RECORD, or REPLAY

command, the list of nodes to run under GDB mode are included within the request. When The Call

Center receives the message, the list of nodes running under GDB get passed along to The Runtime,

48

Figure 3.42: The Distributed Application Debugger with two nodes selected for GDB.

and the nodes start making connections back. After each node has connected back and The Call

Center has issued a Continue statement over the TCP connection, it now becomes the responsibility

of each of the nodes to determine if they are supposed to be running under GDB or not.

The nodes that will run under GDB go through a five step process in order to let GDB take over

control of their process as shown in Figure 3.43. First, the node forks a second process. The parent

process starts listening to the socket that was established at startup from The Call Center for a

GO command that indicates that the GDB process has been completed. Secondly, the child creates

two unidirectional pipes, named fromParent and fromChild and forks again. Next, the child process

from this latest fork routes stdin to read from the reading side of the fromParent pipe and routes

stdout and stderr to the writing side of the fromChild pipe. After that, the process launches GDB

by issuing an execvp commnd which leaves the process as just GDB waiting for the name of the

process to attach to.

The last step of the process is done by the parent process from the first fork. This process

effectively becomes a bridge between the MPI process which is blocked from listening to The Call

Center and the GDB process listening to stdin by way of the output side of the fromParent pipe.

This bridging process makes a TCP connection of its own back to The Call Center who knows that

this must be a GDB node since all of the initial callback connections have been made. After a

connection has been established back to The Call Center, the bridging process creates two threads,

one writing whatever it reads from the new Call Center connection to the GDB process, and one

49

Figure 3.43: Forked processes make attaching GDB to the MPI node possible.

that writes whatever it from the GDB process to back to The Call Center. After this, the bridging

process sends a message to The Call Center stating that it has completed setup and blocks for the

rest of the session.

In the final step of the process, The Call Center writes attach [pid], where [pid] is the process of

the MPI node, to the bridging node. When the bridging node writes this to the pipe which it shares

with GDB, GDB sees this command on its stdin line, and attaches to the MPI node completing the

circle. The Call Center also writes the command GO to the TCP connection that it shares with the

MPI Node which allows it to proceed from blocking on a receive. After this the setup is complete;

The Call Center has two TCP connections to the node, one being to the real process and one being

to GDB which has attached to the process.

3.4.2 Controlling GDB

Once all of the GDB nodes have called back and attached, the user now has full control over their

process. The GDB control panel allows the user to issue commands both through a command line

and through hotkeys as displayed in Figure 3.44.

50

Figure 3.44: The control panel for a node with GDB attached.

All commands issued from the control panel will be formatted into a GDB INPUT command as

documented in section 3.2.1. When The Call Center receives one of these commands, it parses out

the destination node and writes whatever is written in the message section to the TCP connection

that it has with the bridging process. This process writes the message to the stdin of GDB and

thus it gets applied to the MPI Node. GDB will then write its result to stdout which will get picked

up by the bridging process, who will then write it back along the TCP port back to The Call Center

who will send a GDB command back to The Client as described in 3.4.1.

51

Chapter 4

Analyzing Data

The Client is designed to not only process the tremendous number of messages that come into it from

The Runtime, but to also organize them in a way that helps the user quickly debug their program.

On top of launching bridges and a Call Center capable of connecting the user to a cluster hosted

remotely, coordinating PLAY, RECORD and REPLAY sessions, recalling MPI buffers and attaching GDB

to MPI programs, the user has many options to organize the data within The Client workspace to

help them focus on finding what the problem in their program really is.

Command Details

The MPI tab, displayed in Figure 3.9, displays the names and line number of all of the commands

executed by a node during the MPI session. Because there is a lot more information about a message

than just its name and line number that might be useful to a user, each MPI tab displays a Command

Detail section in it. The Command Details section displays the command specific details of the

command highlighted in the tray of the tab. This is a useful area to see the parameters and return

value of a command in question and, by just keying down, the user can step through every command

executed in progression with the knowledge of what got passed into all of them. The Messages tab,

which shows the subset of commands which are just incoming or outgoing messages, also provides

the Command Details section as well. Figure 4.1 shows The Client displaying the parameters and

return value of an MPI Send() command using the Command Details panel.

52

Figure 4.1: The extra information displayed in the Command Details panel of each node.

Matching Messages

Under the MPI tab, the user can see that every command is given a unique command id within each

node. This identifier is issued by The Runtime and sent back within PRE and POST commands to

give The Client a key to use when requesting The Call Center to retrieve buffer values from recorded

sessions. Although The Client does not issue ids per command, it does issue ids per matched message

pair. These matched ids are the ones displayed on the Messages tab. They are global ids across all

nodes and are meant to uniquely link two messages together as a send/receive pair. Although a user

can start with a given message command and search through each node for a corresponding message

53

match, the Distributed Application Debugger has a message matching feature which makes this much

easer. When the user enables message matching mode by clicking the Handshake icon, the user

can step through each node’s messages and see their complimenting receive or send get highlighted

as displayed in Figure 4.2. This becomes helpful as the users see the parameters and buffers passed

between all the nodes in the cluster which can help them determine if they made a bad assumption,

had an unexpected result, or just made a mistake when passing messages between nodes.

Figure 4.2: Two nodes displaying automated message matching.

54

Although it is helpful to be able to quickly recall and display which messages are matched as pairs, it

is perhaps even more important to quickly be able to display messages which were NOT matched.

An application which has unmatched messages could produce the expected outcome at times, but it

is very possible that it points to a poorly engineered application which contains race conditions which

may not be visible today, but may become visible sometime in the future. Regardless of whether the

user suspects that their application has a bug or not, the Distributed Application Debugger will always

point out mismatched messages to the user by changing the font color to red as displayed in Figure 4.3.

Figure 4.3: An MPI receive message without a matching send command.

55

Filters

The Distributed Application Debugger offers two differnt types of filters to cut down on the over-

whelming amount of data that is present within each tab. The first type has to do with identifying

any of the mismatched messages described above. The messages tab offers a filter button, which

removes all matched messages from the node’s messages tab. This leaves the user with just the

suspect mismatched messages for the user to investigate. The second type is aimed at helping the

user cut down on the number of commands displayed within the Messages and MPI tabs. It is a

drop down which allows the users to simple check or uncheck the commands that they want displayed

within the tab as illustrated in Figure 4.4.

Figure 4.4: The MPI panel before and after a command filter was applied.

56

Command Statuses

The MPI panel displays all commands relayed back to The Client categorized with one of four statuses:

Incomplete, Validation Warning, Error, and Success. Since every MPI command is represented

by one PRE and one POST command, The Client may have messages which have received their

PRE command without its corresponding POST command yet. These in between commands are

categorized with a status of Incomplete. Although all commands start out as Incomplete because

the PRE command is, of course, a separate command from the POST command, it should not

stay Incomplete long. To the user it is unlikely that they will ever see the time between the PRE

and POST command because the POST command, when sent, is always sent closely behind the

corresponding PRE command.

Figure 4.5: An MPI command displayed with a status of Incomplete.

57

A command that is noticeably stuck in the Incomplete status gives the user the information that

the line associated in the MPI code was executed but never finished. This implies in most cases

that a command is blocked and execution of the application has effectively halted. Incomplete

messages are indicated in the MPI tab with the icon as displayed in Figure 4.5. While a user who

is not using the Distributed Application Debugger may be left wondering why the application is

hanging, the users who are will quickly see that the application is blocking on an MPI Recv() which,

given the list of other successful MPI Recv() commands preceding it with the same line number,

appears to be in a loop. Upon investigating this loop, the user may quickly realize that they are

doing an extra MPI Recv(), or forgetting a send, and can efficiently fix the bug and move on their way.

Figure 4.6: An MPI command displayed with a status of Validation Warning.

58

Figure 4.7: An MPI command which returned an error code from The Runtime.

In the case that the user is Replaying a session, The Runtime will be reading values from an

XML file created earlier during a RECORD session. Because parameters are both passed into the

MPI command and recorded in the XML file, The Runtime provides automatic validation of actual

values vs expected values. In the case that a command fails validation and executes a command

with different parameters from before, The Runtime will send back the discrepancies to The Client

and a warning status indicator of will be displayed. In order to see the specific discrepancy, or

59

discrepancies, the user just needs to look at the Command Details section of the command with the

warning and look for data placed between square brackets. This will give an indication of what the

expected values were. In Figure 4.6, The Runtime issued a validation warning that it had recorded a

buffer with a 55 in it, but during REPLAY the buffer had a value of 65.

The final two statuses are error and success. They are based on the return values of each MPI

command which are either zero for success or a non-zero indicating an error. In the case of an error,

the icon is displayed. In the case of success, the icon is displayed. Figure 4.7 shows the MPI

tab values with an error reported amongst other successes.

60

Chapter 5

Conclusion and Future Work

The Distributed Application Debugger has a lot of great features derived from a two year survey of

graduates students reporting their difficulties in debugging their parallel programs. It works remotely

from home, even when the parallel cluster is not accessible directly. It graphically displays the

nodes of a cluster in a way that represents both the sequential nature of the code being executing

within each process, as well as the parallel nature of the messages being passed between them. It

handles thousands of messages being passed back within any given session to give valuable debugging

data to the user about the MPI commands that are starting and completing and all of the data

being printed to stdout. It offers features for recording and playing back sessions which can help

programmers focus on a problem that may be hard to recreate. It offers buffer value inspection to

aid in debugging common sequential bugs along with message matching to cut down on the timely

message error debugging. Finally it seamlessly integrates GDB to encourage alternatives to inefficient

print statements.

The most complicated part of the Distributed Application Debugger was establishing a Client

that was connected to a Call Center that was connected to a Runtime. Once that was established,

the number of features that could be built into the system were endless because the system has a

reliable TCP communication path and a pattern for request and response pairs contained within the

established message envelope pattern. Although I feel that the Distributed Application Debugger

will save programmers countless hours of debugging their applications, this section is dedicated to

enhancements of the system that I feel could increase its value even more.

61

Session History Cleanup

The Distributed Application Debugger’s RECORD feature is very helpful and will likely be used

quite a bit to help students examine MPI sessions and recall buffer values. Because the system stores

a physical folder worth of data for each MPI session, there is a maintenance burden of removing

these directories when they are no longer needed that is not implemented in the application at this

time. The users need to manually remove subdirectories from the Sessions directory in order to clean

up the data from sessions they no longer want to recall. I think that The Call Center could expose a

Cleanup request command which would delete folders of recorded sessions that the user no longer

wants to persist.

Mismatched datatypes

Matching send and receive message pairs between nodes is an invaluable feature that the system

provides for the user. When the system is producing unexpected results and there are sends or

receives that do not complete, the user is instantly clued in to an area that likely is leading to

their results. The problem, of course, is what if all of your messages did match up but you still got

unexpected results. Is there any more data analysis that the system could do to help the user inspect

their code for the error? One such error happens with mismatched datatypes. MPI does not throw

an error if the the datatypes between a send and a receive command are not of the same type. It is

only concerned if they fit in the alloted memory space or not. An example of this situation would be

if a node sent a message with the data type MPI Int and the receive received it into an unsigned

integer of datatype MPI Unsigned as displayed in Figure 5.1.

In this example the user has coded for Node 1 to send 3 integers of values -100, 0, and 100 to

Node 0 who will receive them in their input buffer. Since MPI allows this, the application will finish

with the user being none the wiser that he or she accidentally received those values using an unsigned

integer datatype instead of a signed integer. Although if the user looks closely using the buffer recall

feature they will see that the number -100 was sent and the value positive 4,294,967,196 was received,

it is not called out to them immediately. Also, even if they see that the values are different, the

root problem, that the datatypes on the send and receive command were different, is quite subtle. I

think that in the future, a feature which highlighted mixed datatypes between matched by, perhaps,

highlighting the matched messages in a different color or by producing a warnings report would add

value to the product. As the product is now, the user will have to use the values at their disposal

now to track down the root of their problem as displayed in Figures 5.2 and 5.3.

62

Figure 5.1: A sample program matching mixed datatypes.

63

Figure 5.2: Send buffer type as MPI INT.

MPI Crashes

An area that the Distributed Application Debugger does not do a very good job dealing with is the

when the MPI framework crashes. This is because The Runtime is included within the application

rather than actually running on top of it. When the user divides by zero, writes to unallocated

memory, runs off the end of a buffer, writes to a file pointer that is closed, or does any other common

mistake that causes crashes, the system is really garnered to be helpless. The Call Center will still

be running, but it will not detect that The Runtime has crashed and report any of this status to the

user. An example of this behavior is displayed in Figure 5.4 in an application similar to Figure 5.1

described in the emphMismatched datatypes subsection. Node 1 once again writes a buffer to Node

0 who does not receive with the same buffer type as the send again, but this time Node 1 sends a

buffer of type MPI FLOAT and the receive message expects a buffer of type MPI CHAR.

In the case of the MPI framework crashing, The Client will keep running and waiting for feedback

from The Runtime and, since it will not hear anything, The Client will also remain running. The

MPI framework does report an error to stderror, however, which would be displayed had the user

run from the command line as displayed in Figure 5.5.

64

Figure 5.3: Receive buffer type as MPI UNSIGNED.

This error clearly indicates that the receiving buffer is too small for the buffer being received,

but, as it works today, the Distributed Application Debugger does not have the ability to convey this

back to the user. I would like to see The Call Center attempt to read from stderror and/or issue a

heartbeat command to The Runtime to test for connection status periodically and, upon detecting

that MPI has crashed, be able to report this back to The Client, cleanup any processes still running,

and reset itself to be able to start a new session.

65

Figure 5.4: A sample program with mixed datatypes that will crash MPI.

Integrated Development Environment

I think that the biggest improvement, or next progression would be to evolve the Distributed

Application Debugger into a ’complete solution for both development and debugging’. Integrated

Development Environments (IDE), like Eclipse [Ecl13] or Microsoft Visual Studio [MSN13] have

become very popular with developers as a place that they feel comfortable both developing and

debugging their programs in. In the current system, the user is expected to develop their code as they

would normally do so, and to attach the debugger when they encounter bugs and need more data to

resolve them. Because the system has setup a persistent SSH session all the way to the cluster, I

66

Figure 5.5: The output sent to the command line.

would like to see a command line built into the application where users could add, update and delete

file and directory names. I think it would good if it could keep track of project files, even interface

with popular source control software such as Subversion [Sub13] in order to extend its contributions

to the user’s experience even farther.

67

Appendix A

Supporting Libraries and

Prototypes

In order to mange the data stored and manipulated within the Distributed Application Debugger,

several data structures had to be created. In order to promote maintainability and reuse, these

structures were encapsulated within there own files and tested individually before incorporating

them into the Distributed Application Debugger. This appendix deals with a number of supporting

libraries and prototypes which contributed to the overall structure of the application and could be

reused and referenced in non-MPI specific code in the future.

A.1 charList

The charList is a data structure which contains a list of characters along with the a count of the size

of the allocated memory and the actual number of characters contained within it. It provides methods

for initializing and disposing the list, manipulating its contents by adding, removing, and replacing

chars, clearing the list completely, as well as populating from a file. Each of the supporting methods

encapsulates dynamically sizing the list so that the user can just concentrate on the characters

within it. The charList souce code is contained within the collections.c file contained in the MpiFiles

directory mentioned in the step by step process to compiling the MPI Runtime in Appendix B.3.

68

Listing 1: charList data structure and supporting methods.

typedef struct cha rL i s t i t em {
char∗ Items ;
int ItemCount ;
int L i s t S i z e ;

} cha rL i s t ;

void I n i t i a l i z eCh a r L i s t (cha rL i s t ∗ newCharList)
{

newCharList−>ItemCount = 0 ;
newCharList−>L i s t S i z e = STARTING CHAR LIST SIZE ;
newCharList−>Items = (char ∗) mal loc (newCharList−>L i s t S i z e ∗ s izeof (char)) ;
memset (newCharList−>Items , ' \0 ' , newCharList−>L i s t S i z e) ;

}

void CleanUpCharList (cha rL i s t ∗ l i s t)
{

f r e e (l i s t −>Items) ;
f r e e (l i s t −>Items = ' \0 ') ;
f r e e (l i s t) ;
l i s t = ' \0 ' ;

}

void SizeCharL i s t (cha rL i s t ∗ l i s t , int desiredMinimumSize)
{

int i n i t i a l L i s t S i z e = l i s t −>L i s t S i z e ;

//Handle the case where i t i s too b ig
while (l i s t −>L i s t S i z e < desiredMinimumSize)
{

l i s t −>L i s t S i z e = 2 ∗ l i s t −>L i s t S i z e ;
}

//Handle the case where i t i s too smal l
while (l i s t −>L i s t S i z e / 2 > desiredMinimumSize)
{

l i s t −>L i s t S i z e = l i s t −>L i s t S i z e / 2 ;
}

//Check i f we changed the l i s t s i z e and , i f so , r e a l l o c a t e the memory
i f (l i s t −>L i s t S i z e != i n i t i a l L i s t S i z e)
{

l i s t −>Items = (char ∗) r e a l l o c (l i s t −>Items , l i s t −>L i s t S i z e ∗ s izeof (char)) ;
}

}

void AddChars (cha rL i s t ∗ dest , char∗ newChars , int count)
{

// f i r s t make sure we are b ig enough to a l l o c a t e t h i s many bytes
SizeCharL i s t (dest , dest−>ItemCount + count) ;

//Append the new chars to the end of the l i s t
memcpy(dest−>Items + dest−>ItemCount , newChars , count) ;

//update the s i z e of our l i s t
dest−>ItemCount += count ;

}

void RemoveChars (char∗ dest , cha rL i s t ∗ source , int count)
{

//Copy the f i r s t ' x ' characters from the beginning of the l i s t
i f (dest != NULL)

memcpy(dest , source−>Items , count) ;

//Move the r e s t of the bu f f e r to the beginning
memmove(source−>Items , source−>Items + count , source−>L i s t S i z e − count) ;

//Free up the bu f f e r i f i t i s l e s s than ha l f f u l l
SizeCharL i s t (source , source−>ItemCount − count) ;

//Record the new s i z e of the bu f f e r
source−>ItemCount −= count ;

}

void ClearChars (cha rL i s t ∗ source)

69

{
i f (source−>L i s t S i z e != STARTING CHAR LIST SIZE)
{

source−>L i s t S i z e = STARTING CHAR LIST SIZE ;
source−>Items = (char ∗) r e a l l o c (source−>Items , source−>L i s t S i z e ∗ s izeof (char)) ;

}

memset (source−>Items , ' \0 ' , source−>L i s t S i z e) ;
source−>ItemCount = 0 ;

}

int ReplaceChars (cha rL i s t ∗ source , char∗ value , char∗ replacement)
{

cha rL i s t ∗ dest = (cha rL i s t ∗) mal loc (s izeof (cha rL i s t)) ;
I n i t i a l i z eCh a r L i s t (dest) ;

int startChar = 0 ;
int sect ionLength = 0 ;
char∗ s t a r tP t r = s t r s t r (source−>Items , va lue) ;
int r e s u l t = FALSE;

while (s t a r tP t r != NULL)
{

r e s u l t = TRUE;
sect ionLength = s ta r tP t r − (source−>Items + startChar) ;
AddChars (dest , source−>Items + startChar , sect ionLength) ;
AddChars (dest , replacement , s t r l e n (replacement)) ;
s tartChar = startChar + sect ionLength + s t r l e n (value) ;
s t a r tP t r = s t r s t r (source−>Items + startChar , va lue) ;

}

int remain ingLef t = source−>Items + source−>ItemCount −
(source−>Items + startChar) ;

i f (remain ingLef t > 0)
AddChars (dest , source−>Items + startChar , remain ingLef t) ;

ClearChars (source) ;
AddChars (source , dest−>Items , dest−>ItemCount) ;
CleanUpCharList (dest) ;

return r e s u l t ;
}

void ReadChars (char∗ f i leName , cha rL i s t ∗ r e s u l t L i s t)
{

FILE∗ fp = fopen (fi leName , ” r ”) ;
int buf fe rLength = 255 ;
char i nBuf f [buf f e rLength] ;

int l ength = 0 ;

while (! f e o f (fp))
{

memset (inBuff , ' \0 ' , bu f f e rLength) ;
l ength = f r ead (inBuff , s izeof (char) , buf f e rLength − 1 , fp) ;
AddChars (r e s u l t L i s t , inBuff , l ength) ;

}

f c l o s e (fp) ;
}

70

A.2 queue

At several points in the application I required a classic queue to manage first-in, first-out behavior

(FIFO). One example of where this was used was during the queuing of messages read in from the

MPI nodes detailed in Section 3.2.2. Listing 2 details my source code for the queue used in within

the application along with the methods which encapsulate initializing and disposing the structure,

enqueing and dequeing nodes and iterating over the contents of the structure. The queue source code

can be found within the same collections.c file mentioned in Appendix A.1 along with the charList

code.

Listing 2: queue data structure and supporting methods.

typedef struct node item{
void∗ Value ;
struct node item ∗ NextNode ;

} node ;

typedef struct queue item{
node∗ FirstNode ;
node∗ LastNode ;
node∗ I terateNode ;
int Length ;

} queue ;

void I n i t i a l i z eQueu e (queue∗ newQueue)
{

newQueue−>FirstNode = NULL;
newQueue−>LastNode = NULL;
newQueue−>I terateNode = NULL;
newQueue−>Length = 0 ;

}

void CleanUpQueue (queue∗ queueToCleanUp)
{

while (queueToCleanUp−>FirstNode != NULL)
{

node∗ nodeToCleanUp = queueToCleanUp−>FirstNode ;
queueToCleanUp−>FirstNode = nodeToCleanUp−>NextNode ;

CleanUpNode (nodeToCleanUp) ;
}

queueToCleanUp−>FirstNode = NULL;
queueToCleanUp−>LastNode = NULL;
queueToCleanUp−>I terateNode = NULL;
f r e e (queueToCleanUp) ;

}

int IsQueueEmpty (queue∗ i n i t i a l i z e dQueu e)
{

i f (i n i t i a l i z edQueue−>FirstNode == NULL)
return TRUE;

else
return FALSE;

}

void Enqueue (queue∗ source , void∗ value)
{

//Make a new node
node∗ newNode = (node ∗) mal loc (s izeof (node)) ;
newNode−>Value = value ;
newNode−>NextNode = NULL;

//Point the queue ' s l a s t node to the new one

71

i f (source−>LastNode != NULL)
source−>LastNode−>NextNode = newNode ;

//Update the l a s t node to the new one
source−>LastNode = newNode ;
//Check i f t h i s was the f i r s t node added
i f (source−>FirstNode == NULL)

source−>FirstNode = newNode ;

source−>Length++;
//No i t e r a t i n g whi le adding or removing from the queue
source−>I terateNode = NULL;

}

void Dequeue (void∗∗ dest , queue∗ source)
{

//Get the f i r s t node
node∗ nodeToDequeue = source−>FirstNode ;

//Get the value from the node
i f (dest == NULL)
{

// de l l o c a t e the space of the dequed item , i t s not g e t t i n g returned .
f r e e (nodeToDequeue−>Value) ;

}
else
{

∗ dest = nodeToDequeue−>Value ;
}

//Point the queue at the next node
source−>FirstNode = nodeToDequeue−>NextNode ;

i f (source−>FirstNode == NULL)
source−>LastNode = NULL;

//Clean up the dequeued node
CleanUpNode (nodeToDequeue) ;

source−>Length−−;

//No i t e r a t i n g whi le adding or removing from the queue
source−>I terateNode = NULL;

}

void Star t I t e rateQueue (queue∗ source)
{

source−>I terateNode = source−>FirstNode ;
}

void I terateQueue (void∗∗ dest , queue∗ source)
{

i f (source−>I terateNode != NULL)
{

∗ dest = source−>IterateNode−>Value ;
source−>I terateNode = source−>IterateNode−>NextNode ;

}
else
{

∗ dest = NULL;
}

}

void CleanUpNode (node∗ nodeToCleanUp)
{

nodeToCleanUp−>NextNode = NULL;
f r e e (nodeToCleanUp) ;

}

72

A.3 String Helpers

Along with the charList and queue described in Appendices A.1 and A.2 respectively are other useful

methods contained within the file collections.c. Listing 3 contains the Split and CleanupStringArray

methods used by the Distributed Application Debugger when inspecting and cleaning up the strings

partitioned within the MPI message envelope illustrated in Figure 3.10.

Listing 3: Split and cleanup methods for characters arrays.

// Sp l i t s the source on the de l imi t e r passed in and p laces i t in the des t ina t ion
int Sp l i t (char∗ source , char∗ de l im i t e r , char∗∗∗ dest , int startChar , int endChar)
{

//determine l eng th of the s t r i ng to s p l i t
int strLen = endChar − startChar ;
//Trim the source down f i r s t
char∗ s p l i t S t r = (char ∗) mal loc (strLen ∗ s izeof (char)) ;
s p l i t S t r = memcpy(s p l i t S t r , source + startChar , strLen) ;

// I n i t i a l i z e a l i s t for the r e s u l t
int itemCount = 0 ;
∗ dest = (char ∗∗) mal loc (s izeof (char ∗)) ;
int s ec t i onStar tChar = 0 ;
int sect ionLength = 0 ;

//Get l oca t ion of the f i r s t de l imi t e r
char∗ s t a r tP t r = s t r s t r (s p l i t S t r , d e l im i t e r) ;

//Loop through un t i l we don ' t f ind the de l imi t e r anymore
while (s t a r tP t r != NULL)
{

//We found one add one to the l eng th of the l i s t
itemCount++;
∗ dest = (char ∗∗) r e a l l o c (∗ dest , itemCount ∗ s izeof (char ∗)) ;

//Get the l eng th of t h i s s t r i n g and a l l o c a t e a s t r i ng to hold the value
sect ionLength = s ta r tP t r − (s p l i t S t r + sec t i onStar tChar) ;

char∗ value = NULL;
i f (sect ionLength > 0)
{

value = (char ∗) mal loc ((sect ionLength + 1) ∗ s izeof (char)) ;
//Copy the sec t ion to the r e s u l t s t r i n g and add i t to the l i s t
value = memcpy(value , s p l i t S t r + sect ionStartChar , sect ionLength) ;

}
else
{

//This must be running de l imi ters , make a nu l l item
value = (char ∗) mal loc (s izeof (char)) ;
va lue [0] = ' \0 ' ;

}

value [sect ionLength] = ' \0 ' ;

(∗ dest) [itemCount − 1] = value ;

//Move the sec t ion s t a r t forward past the de l imi t e r and look for the next instance
s ec t i onStar tChar = sec t i onStar tChar + sect ionLength + s t r l e n (d e l im i t e r) ;
s t a r tP t r = s t r s t r (s p l i t S t r + sect ionStartChar , d e l im i t e r) ;

}

//Get any remaining characters in the s t r i ng a f t e r the l a s t de l imi t e r
int remain ingLef t = s p l i t S t r + strLen − (s p l i t S t r + sec t i onStar tChar) ;

//Check i f there were an remaining characters
i f (remain ingLef t > 0)
{

//Add another space to the l i s t
itemCount++;

73

∗ dest = (char ∗∗) r e a l l o c (∗ dest , itemCount ∗ s izeof (char ∗)) ;

//Al locate a new s t r ing for the remaining characters
char∗ value = (char ∗) mal loc ((remain ingLef t + 1) ∗ s izeof (char)) ;

i f (remain ingLef t == 1)
value [0] = ' \0 ' ;

else
//Add the l a s t part to the l i s t
value = memcpy(value , s p l i t S t r + sect ionStartChar , remain ingLef t) ;

va lue [remain ingLef t] = ' \0 ' ;
(∗ dest) [itemCount − 1] = value ;

}

// clean up
f r e e (s p l i t S t r) ;

return itemCount ;
}

void CleanupStringArray (char∗∗∗ source , int itemCount)
{

int i = 0 ;
for (i = 0 ; i < itemCount ; i++)
{

(∗ source) [i] = NULL;
f r e e ((∗ source) [i]) ;

}

∗ source = NULL;
f r e e (∗ source) ;

}

A.4 clusterNode

The clusterNode data structure contains data for managing the nodes of The Runtime in a thread

safe way, as described in The Call Center’s Message Routing Section 3.2.2. Listing 4 details the

source code of the structure, found in callCenter.c, which is used to manage communication and

concurrency between The Call Center and a node from the cluster. Also included are the methods

used to initialize and dispose of the structure.

Listing 4: clusterNode data structure and supporting methods.

typedef struct c lus te rNode i t em {
sem t clusterNodeLock ;
sem t mes sageNot i f i c a t i on ;
int nodeId ;
int proce s s Id ;
int c l i e n t So ck e t ;
int gdbSocket ;
queue∗ messages ;

} c lusterNode ;

void I n i t i a l i z eC l u s t e rNod e (c lusterNode ∗ newClusterNode , int c l i en tSocke t , int nodeId , int
proce s s Id)

{
s em in i t (&(newClusterNode−>c lusterNodeLock) , 0 , 1) ;
s em in i t (&(newClusterNode−>messageNot i f i c a t i on) , 0 , 0) ;

newClusterNode−>c l i e n t So ck e t = c l i e n t So ck e t ;
newClusterNode−>nodeId = nodeId ;
newClusterNode−>proce s s Id = proce s s Id ;
newClusterNode−>gdbSocket = FALSE;

74

newClusterNode−>messages = (queue ∗) mal loc (s izeof (queue)) ;

I n i t i a l i z eQueu e (newClusterNode−>messages) ;
}

void CleanupClusterNode (c lusterNode ∗ dispos ingClusterNode)
{

// clean up the connection created .
c l o s e (d ispos ingClusterNode−>c l i e n t So ck e t) ;
c l o s e (d ispos ingClusterNode−>gdbSocket) ;
f r e e (d ispos ingClusterNode−>messages) ;
d i spos ingClusterNode−>messages = NULL;
f r e e (d i spos ingClusterNode) ;
d i spos ingClusterNode = NULL;

}

A.5 XML Library

Section 2.4 details the high priority features which were considered risky. Within the features

identified as the riskiest was ability to record MPI sessions to file and then be able to replay them

back to the user. In order to save off each of the commands along with their parameters and return

values in a readable and easily parsable format, XML was decided to be used as the protocol for

serializing each of the commands. Listings 5-11 contain the XML library I wrote for formatting,

parsing, and storing the XML needed within the Distributed Application Debugger.

A.5.1 xml.h

In order to use the full XML library included in the XML directory contained within the MpiFiles

directory mentioned in Appendix B.3, a C file needs to include the xmlDoc, xmlReader, and xmlWriter

header files included in Listings 6, 8, and 10. The file xml.h included in Listing 5 was used as a

convenient header file to reference when intending to include the entire XML library.

Listing 5: The common xml.h header file.

#ifndef XML H INCLUDED
#define XML H INCLUDED

#include ”xmlDoc . h”
#include ”xmlReader . h”
#include ”xmlWriter . h”

#endif

75

A.5.2 xmlDoc

The core XML structure code is contained within xmlDoc.h and xmlDoc.c. Listing 6 displays the

source code used for the XML and the Attributes structures used to parse the values stored within

XML elements. Listing 7 presents the library of methods created in order to create, parse, and

dispose of the XML structures.

Listing 6: The XML structures stored in the xmlDoc.h file.

#ifndef XML DOC H INCLUDED
#define XML DOC H INCLUDED

typedef struct Attr ibute i t em {
char∗ Name ;
char∗ Value ;

} Attr ibute ;

typedef struct XMLNode item{
char∗ Name ;
char∗ NodeType ;
char∗ Value ;
int ChildrenCount ;
int Chi ldrenArraySize ;
int Attr ibutesCount ;
int Attr ibute sArrayS i ze ;
struct XMLNode item ∗∗ChildNodes ;
struct Attr ibute i t em ∗∗ Att r ibute s ;

} XMLNode;

#define TRUE 1
#define FALSE 0

#define DOCUMENTNODE ”Document”
#define DECLERATION NODE ”XmlDecleration ”
#define ELEMENTNODE ”Element”
#define TEXTNODE ”Text”
#define TEXTNAME ”#text ”
#define DOCUMENTNAME ”Main Document”

XMLNode∗ xmlCreateNode (char∗ nodeType , char∗ name , char∗ value) ;
XMLNode∗ createStr ingElementNode (char∗ elementName , char∗ nodeValue) ;
XMLNode∗ createIntElementNode (char ∗ elementName , int nodeValue) ;
XMLNode∗ xmlAddChildNode (XMLNode ∗parentNode , XMLNode ∗ chi ldNode) ;
XMLNode∗ xmlGetChildNode (XMLNode ∗parentNode , char∗ childName) ;
Att r ibute ∗ xmlGetAttribute (XMLNode ∗node , char∗ attributeName) ;

char∗ xmlGetText (XMLNode∗ node) ;
void xmlAddAttribute (XMLNode ∗xmlNode , char ∗ a t r r i bu t e , char ∗ value) ;
void xmlFree (XMLNode ∗node) ;

#endif

76

Listing 7: The methods to construct, inspect, and dispose of XML structures.

#define GNU SOURCE
#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include ”xmlDoc . h”

//Copies the s t r i ng from the value into the value for the f i e l d
void a s s i gnS t r i n g (char∗∗ f i e l d , char∗ value)
{

i f (va lue == NULL)
{

∗ f i e l d = NULL;
}
else
{

∗ f i e l d= (char ∗) mal loc ((s t r l e n (value) + 1) ∗ s izeof (char)) ;
memmove(∗ f i e l d , value , s t r l e n (value)) ;
(∗ f i e l d) [s t r l e n (value)] = ' \0 ' ;

}
}

//Gets the f i r s t c h i l d of the node passed in as t e x t
char∗ xmlGetText (XMLNode ∗node)
{

return node−>ChildNodes [0]−>Value ;
}

// ge t s the a t t r i b u t e of a node with the name passed in
Attr ibute ∗ xmlGetAttribute (XMLNode ∗node , char∗ attributeName)
{

int i = 0 ;
Att r ibute ∗ a t t r i bu t e = NULL;
for (i = 0 ; i < node−>Attr ibutesCount ; i++)
{

i f (strcmp (node−>Att r ibute s [i]−>Name, attributeName) == 0)
{

a t t r i bu t e = node−>Att r ibute s [i] ;
break ;

}
}

return a t t r i bu t e ;
}

//Creates an empty new XML Node and returns i t
XMLNode∗ createEmptyXMLNode ()
{

XMLNode∗ newNode = (XMLNode ∗) mal loc (s izeof (XMLNode)) ;
newNode−>ChildrenCount = 0 ;
newNode−>Chi ldrenArraySize = 1 ;
newNode−>ChildNodes = (XMLNode ∗∗) mal loc (s izeof (XMLNode∗)) ;
newNode−>Attr ibutesCount = 0 ;
newNode−>Attr ibute sArrayS i ze = 1 ;
newNode−>Att r ibute s = (Attr ibute ∗∗) mal loc (s izeof (Att r ibute ∗)) ;

//Set po in ters to nu l l by d e f au l t ?
newNode−>NodeType = ' \0 ' ;
newNode−>Name = ' \0 ' ;
newNode−>Value = ' \0 ' ;

return newNode ;
}

XMLNode∗ createStr ingElementNode (char∗ elementName , char∗ nodeValue)
{

XMLNode ∗elementNode = xmlCreateNode (ELEMENTNODE, elementName , NULL) ;
xmlAddChildNode (elementNode , xmlCreateNode (TEXT NODE, TEXTNAME, nodeValue)) ;

return elementNode ;
}

XMLNode∗ createIntElementNode (char ∗ elementName , int nodeValue)
{

77

XMLNode ∗elementNode = xmlCreateNode (ELEMENTNODE, elementName , NULL) ;

char ∗ value ;
int l ength = 0 ;
l ength = a s p r i n t f (&value , ”%d” , nodeValue) ;

xmlAddChildNode (elementNode , xmlCreateNode (TEXT NODE, TEXTNAME, value)) ;
f r e e (value) ;

return elementNode ;
}

//Create an XML Node with the type , name, and value assigned
XMLNode∗ xmlCreateNode (char∗ nodeType , char∗ name , char∗ value)
{

XMLNode∗ newNode = createEmptyXMLNode () ;
a s s i gnS t r i n g (&(newNode−>NodeType) , nodeType) ;
a s s i gnS t r i n g (&(newNode−>Name) , name) ;
a s s i gnS t r i n g (&(newNode−>Value) , va lue) ;

return newNode ;
}

char∗ GetText (XMLNode∗ node)
{

return node−>ChildNodes [0]−>Value ;
}

//Adds an a t t r i b u t e to the node passed in with the corresponding a t t r i b u t e / value pair
void xmlAddAttribute (XMLNode ∗xmlNode , char ∗ a t r r i bu t e , char ∗ value)
{

i f (xmlNode−>Attr ibutesCount == xmlNode−>Attr ibute sArrayS i ze)
{

xmlNode−>Attr ibute sArrayS i ze = 2 ∗ xmlNode−>Attr ibute sArrayS i ze ;
xmlNode−>Att r ibute s = r e a l l o c (
xmlNode−>Attr ibutes , xmlNode−>Attr ibute sArrayS i ze ∗ s izeof (Att r ibute ∗)) ;

}

xmlNode−>Attr ibutesCount++;
xmlNode−>Att r ibute s [xmlNode−>Attr ibutesCount − 1] = (Attr ibute ∗) mal loc (s izeof (Att r ibute

)) ;

a s s i gnS t r i n g (&(xmlNode−>Att r ibute s [xmlNode−>Attr ibutesCount − 1]−>Name) , a t r r i bu t e) ;

int valueLength = (int) s t r l e n (value) ;
i f (va lue [valueLength − 1] == '\n ')

va lue [valueLength − 1] = ' ' ;

a s s i gnS t r i n g (&(xmlNode−>Att r ibute s [xmlNode−>Attr ibutesCount − 1]−>Value) , va lue) ;
}

//Adds a ch i l d node to the parent node passed in
XMLNode ∗xmlAddChildNode (XMLNode ∗parentNode , XMLNode ∗ chi ldNode)
{

i f (parentNode−>ChildrenCount == parentNode−>Chi ldrenArraySize)
{

parentNode−>Chi ldrenArraySize = parentNode−>Chi ldrenArraySize ∗ 2 ;
parentNode−>ChildNodes =
r e a l l o c (parentNode−>ChildNodes , parentNode−>Chi ldrenArraySize ∗ s izeof (XMLNode∗)) ;

}

parentNode−>ChildrenCount++;
int currentChi ldIndex = parentNode−>ChildrenCount − 1 ;

parentNode−>ChildNodes [currentChi ldIndex] = childNode ;

return chi ldNode ;
}

XMLNode∗ xmlGetChildNode (XMLNode ∗parentNode , char∗ childName)
{

XMLNode ∗ returnNode = NULL;
int i = 0 ;
for (i = 0 ; i < parentNode−>ChildrenCount ; i++)
{

78

i f (strcmp (parentNode−>ChildNodes [i]−>Name, childName) == 0)
{

returnNode = parentNode−>ChildNodes [i] ;
break ;

}
}
return returnNode ;

}

void f r e eA t t r i bu t e (Att r ibute ∗ a t t r i bu t e)
{

f r e e (a t t r i bu t e−>Name) ;
f r e e (a t t r i bu t e−>Value) ;

}

void xmlFree (XMLNode ∗node)
{

f r e e (node−>Name) ;
f r e e (node−>NodeType) ;
f r e e (node−>Value) ;

int i = 0 ;
for (i =0; i < node−>Attr ibutesCount ; i++)
{

f r e eA t t r i bu t e (node−>Att r ibute s [i]) ;
}

i = 0 ;
for (i =0; i < node−>ChildrenCount ; i++)
{

xmlFree (node−>ChildNodes [i]) ;
}

f r e e (node−>ChildNodes) ;
f r e e (node−>Att r ibute s) ;

f r e e (node) ;
}

79

A.5.3 xmlWriter

The methods used to record XML are contained within xmlWriter.h and xmlWriter.c. Listing 8

displays the source code of xmlWriter.h which can be included in order to reference the writing

portion of the XML library. Listing 9 presents the actual implementation of the methods used to

write XML to file.

Listing 8: The methods exposed by the xmlWriter.h file.

#ifndef XML WRITER H INCLUDED
#define XML WRITER H INCLUDED
#include ”xmlDoc . h”
void xmlPrint (XMLNode ∗node) ;
void xmlWrite (XMLNode ∗node , FILE ∗ outputF i l e) ;
#endif

Listing 9: The methods available to write XML to a FILE pointer.

#include <s t d i o . h>
#include <s t d l i b . h>
#include <sys / time . h>
#include <s t r i n g . h>
#include <time . h>
#include ”xmlWriter . h”

//Recurs ive ly xmlPrints the va lues of the node passed in with
//a margin based on the l e v e l passed in
void xmlPrintXMLHelper (XMLNode ∗node , int l e v e l , FILE ∗ outputF i l e)
{

int i = 0 ;
char margin [1 0 0] = ”\0” ;
while (i < l e v e l ∗ 2)
{

margin [i] = ' ' ;
i++;

}

margin [l e v e l ∗ 2] = ' \0 ' ;

i f (strcmp (node−>NodeType , DOCUMENTNODE) == 0)
{

int j =0;
while (j < node−>ChildrenCount)
{

xmlPrintXMLHelper (node−>ChildNodes [j] , 0 , outputF i l e) ;
j++;

}
}
else i f (strcmp (node−>NodeType ,DECLERATION NODE) == 0)
{

f p r i n t f (outputFi le , ”%s<?%s %s ?>\n” ,margin , node−>Name, node−>Value) ;
}
else i f (strcmp (node−>NodeType ,TEXTNODE) == 0)
{

f p r i n t f (outputFi le , ”%s” , node−>Value) ;
}
else i f (strcmp (node−>NodeType ,ELEMENTNODE) == 0)
{

f p r i n t f (outputFi le , ”%s<%s” , margin , node−>Name) ;
i = 0 ;
while (i < node−>Attr ibutesCount)
{

f p r i n t f (outputFi le , ” %s=\”%s \”” , node−>Att r ibute s [i]−>Name, node−>Att r ibute s [i]−>
Value) ;

i++;
}
f p r i n t f (outputFi le , ”>”) ;

80

i f (node−>ChildrenCount > 0 && strcmp (node−>ChildNodes [0]−>NodeType ,ELEMENTNODE) == 0)
{

f p r i n t f (outputFi le , ”\n”) ;
}
else
{

margin [0] = ' \0 ' ;
}

i =0;
while (i < node−>ChildrenCount)
{

xmlPrintXMLHelper (node−>ChildNodes [i] , l e v e l +1, outputF i l e) ;
i++;

}

f p r i n t f (outputFi le , ”%s</%s>\n” ,margin , node−>Name) ;
}

}

//Recurs iv ley xmlPrints ths XML node ' s va lues to the screen
void xmlPrint (XMLNode ∗node)
{

xmlPrintXMLHelper (node , 0 , s tdout) ;
}

//Recurs iv ley xmlPrints ths XML node ' s va lues to f i l e
void xmlWrite (XMLNode ∗node , FILE ∗ outputF i l e)
{

xmlPrintXMLHelper (node , 0 , outputF i l e) ;
f p r i n t f (outputFi le , ”\n”) ;

}

81

A.5.4 xmlReader

The methods used to replay XML are contained within xmlReader.h and xmlReader.c. Listing 10

displays the source code of xmlReader.h which can be included in order to reference the reading

portion of the XML library. Listing 10 presents the actual implementation of the methods used to

read XML from file and build XML structures in memory to traverse the elements and attributes.

Listing 10: The methods exposed by the xmlReader.h file.

#ifndef XML READER H INCLUDED
#define XML READER H INCLUDED
#include ”xmlDoc . h”
XMLNode ∗xmlRead (char∗ f i l e) ;
#endif

Listing 11: The methods to read XML files and recreate XML structures.

#include <s t d i o . h>
#include <s t d l i b . h>
#include <sys / time . h>
#include <s t r i n g . h>
#include <time . h>
#include ”xmlReader . h”
#include ”xmlWriter . h”

//The xml array from f i l e he ld in memory
char ∗xmlArray ;
//The current index we are reading from the xml array
int chrPtr = 0 ;

char∗ myFileName ;

//Load the xml from the f i l e passed in into the xml array in memory
void loadXMLFile (char∗ f i leName)
{

//Open the f i l e and determine i t s l eng th
FILE ∗ xmlFi le = fopen (fi leName , ” r ”) ;
f s e e k (xmlFile , 0 , SEEK END) ;
long f i l e S i z e = f t e l l (xmlFi le) ;
rewind (xmlFi le) ;

// in s t an t i a t e and populate the xml array
xmlArray = (char ∗) mal loc (f i l e S i z e ∗ s izeof (char)) ;
int l ength = 0 ;
l ength = f r ead (xmlArray , 1 , f i l e S i z e , xmlFi le) ;

// c lo se the f i l e
f c l o s e (xmlFi le) ;

}

// reads back from the l eng th of the t e x t to the current index
//and returns i t as a s t r i ng
char ∗readFromXML(int l ength)
{

//Create a new s t r ing to hold the value in t
char ∗ f i e l d = (char ∗) mal loc ((l ength + 1) ∗ s izeof (char)) ;
//Copy the xml array s t a r t i n g from ' x ' characters back un t i l the current char
strncpy (f i e l d , (xmlArray + chrPtr) − length , l ength) ;
//Delimiate the l a s t character so i t terminates
f i e l d [l ength] = ' \0 ' ;

//Return the read f i e l d
return f i e l d ;

}

//moves the current character pointer un t i l i t f inds a non space , tab or newline character
void clearWhiteSpace ()
{

82

while ((xmlArray [chrPtr] == ' ' | | xmlArray [chrPtr] == '\ t ' | | xmlArray [chrPtr] == '\n ')
&& xmlArray [chrPtr] != ' \0 ')

{
chrPtr++;

}
}

//moves the current character pointer un t i l i t f inds the character passed in or ge t s to
the end of the array

void moveToChar (char t a r g e t)
{

while (xmlArray [chrPtr] != ta rg e t && xmlArray [chrPtr] != ' \0 ')
{

chrPtr++;
}

}

//Returns a s t r ing of a l l o f the characters un t i l the next space or '> ' character
char∗ getName ()
{

//Fir s t move through a l l the white space
clearWhiteSpace () ;

//Loop un t i l the next space or a c l o s ing tag
int nameLength = 0 ;
while (xmlArray [chrPtr] != '> ' && xmlArray [chrPtr] != ' ')
{

nameLength++;
chrPtr++;

}

//Read the characters from the array
char∗ returnValue = readFromXML(nameLength) ;

//Return the new s t r ing
return returnValue ;

}

//Gets the key/ value pairs of the a t r i b u t e s un t i l i t
// ge t s to the end of the encapsu lat ing tag .
void ge tAt t r i bu t e s (XMLNode ∗xmlNode)
{

//Clear the white space
clearWhiteSpace () ;

//Loop un t i l we get to the end of the current tag we are in
while (xmlArray [chrPtr] != '> ')
{

//The a t t r i b u t e s end with an equa ls s ign and can not contain spaces
int textLength = 0 ;
while (xmlArray [chrPtr] != ' ' && xmlArray [chrPtr] != '= ')
{

chrPtr++;
textLength++;

}

//read the a t t r i b u t e
char∗ a t t r i bu t e = readFromXML(textLength) ;

//The value s t a r t s a f t e r a quotat ion mark a f t e r the equa l s s ign
moveToChar ('= ') ;
moveToChar (' ” ') ;
chrPtr++;

//Loop un t i l we get to the end of the quotat ion mark
textLength =0;
while (xmlArray [chrPtr] != ' ” ')
{

chrPtr++;
textLength++;

}

//read the value
char ∗ value = readFromXML(textLength) ;

83

//Add the a t t r i b u t e / value pair to the a t t r i b u t e s of the node
xmlAddAttribute (xmlNode , a t t r i bu t e , va lue) ;

// clean up the bu f f e r s
f r e e (a t t r i bu t e) ;
f r e e (value) ;

//Continue moving on
chrPtr++;
clearWhiteSpace () ;

}
}

//Gets the value of an XML dec lara t ion node
char∗ getDec l e ra t ionVa lue ()
{

//XML dec l ear t i on i s the s t r i ng between the quest ion makr s igns of an dec l e ra t ion node
clearWhiteSpace () ;
int l ength = 0 ;
int i n s ideQuotat ion = FALSE;

//Loop un t i l we f i n i s h reading outs ide of the quotes or we reach the quest ion mark
while ((xmlArray [chrPtr] != ' ' && xmlArray [chrPtr] != ' ? ') | | i n s ideQuotat ion == TRUE)
{

l ength++;
chrPtr++;

//Everything ins ide of quotat ion marks i s part of the dec l e ra t ion
i f (xmlArray [chrPtr] == ' ” ')
{

i f (in s ideQuotat ion == TRUE)
{

i n s ideQuotat ion = FALSE;
}
else
{

i n s ideQuotat ion = TRUE;
}

}
}

//read the dec l e ra t ion
char ∗ de c l e r a t i onva l u e = readFromXML(length) ;

// return the dec l e ra t ion tha t was read
return de c l e r a t i onva l u e ;

}

//Get everyth ing un t i l the next node begins
char∗ getTextValue ()
{

//clearWhiteSpace () ;
int textLength = 0 ;

//Loop un t i l the next tag s t a r t s
while (xmlArray [chrPtr] != '< ')
{

textLength++;
chrPtr++;

}

//Read the t e x t
char ∗ textValue = readFromXML(textLength) ;

//Return the t e x t tha t was read in
return textValue ;

}

//Creates a new dec l e ra t ion node based on the dec l e ra t ion i t reads
XMLNode ∗ readXMLDeclerationNode ()
{

char∗ name = getName () ;
char∗ value = getDec l e rat ionVa lue () ;
XMLNode∗ newNode = xmlCreateNode (DECLERATION NODE, name , value) ;

f r e e (name) ;

84

f r e e (value) ;
return newNode ;

}

//Creates a new element node based on the name i t reads
XMLNode ∗readXMLElementNode ()
{

char∗ name = getName () ;
XMLNode∗ newNode = xmlCreateNode (ELEMENTNODE, name , NULL) ;
f r e e (name) ;

return newNode ;
}

//Creates a new t e x t node based on the t e x t tha t i t reads
XMLNode ∗readXMLTextNode ()
{

char∗ textValue = getTextValue () ;
XMLNode∗ newNode = xmlCreateNode (TEXT NODE, TEXTNAME, textValue) ;
f r e e (textValue) ;

return newNode ;
}

//Passes through the xml array and adds ch i ldren to current l y passed in node
void parseNode (XMLNode ∗node)
{

//Save o f f the previous chr ptr in case white spaces should be part of the t e x t va lue
int prevChrPtr = chrPtr ;

c learWhiteSpace () ;

//Loop un t i l the end of the f i l e
while (xmlArray [chrPtr] != ' \0 '){

//Check i f war are at the beginning of a tag
i f (xmlArray [chrPtr] == '< ' && xmlArray [chrPtr + 1] != ' / '){

//Check i f we are reading an xml dec l e ra t ion node
chrPtr++;
i f (xmlArray [chrPtr] == ' ? '){

//This muse be an xml dec l e ra t ion monde . Move passed the
// quest ion mark j u s t read in and get the dec l e ra t ion part .
chrPtr++;
xmlAddChildNode (node , readXMLDeclerationNode ()) ;

//Move to the end tab
moveToChar ('> ') ;

//Move past the end tab and f a l l o f f
chrPtr++;
clearWhiteSpace () ;

}
else {

//This must be a regu lar element node . Read the element node
XMLNode∗ chi ldNode = xmlAddChildNode (node , readXMLElementNode ()) ;

//Get the a t t r i b u t e s for the element
ge tAt t r i bu t e s (chi ldNode) ;
//Move to the c l o s ing tab
moveToChar ('> ') ;
chrPtr++;

//Recurs iv ley c a l l up and see i f the current node has any ch i ldren
parseNode (chi ldNode) ;

//Now that we have a l l o f i t s chi ldren , move past our c l o s ing tag .
clearWhiteSpace () ;

i f (xmlArray [chrPtr] == '< '){
moveToChar ('> ') ;

i f (xmlArray [chrPtr] == '> '){
chrPtr++;

}
}

//Now are are passed our c l o s ing tag . See i f we were are not at our

85

//parents c l o s ing tag and , i f so , f a l l o f f .
clearWhiteSpace () ;

i f (xmlArray [chrPtr] == '< ' && xmlArray [chrPtr + 1] == ' / ')
break ;

//We were not the l a s t sub element of our parent . Loop again and add the next one
as a ch i l d .

}
}
else {

//move back to the beginning of t h i s sec t ion
chrPtr = prevChrPtr ;
// p r i n t f (”About to make t e x t node , next 3 char are '%c%c%c '” , xmlArray [chrPtr] ,

xmlArray [chrPtr + 1] , xmlArray [chrPtr + 2]) ;
//We are not at the beginning of a tag , so we must be in the t e x t
// the node . Read i t s t e x t and f a l l o f f .
xmlAddChildNode (node , readXMLTextNode ()) ;
break ;

}
}

}

//Reads in the f i l e passed in and returns i t as an XML node
XMLNode ∗xmlRead (char∗ f i l e)
{

chrPtr = 0 ;
loadXMLFile (f i l e) ;
XMLNode ∗docNode = xmlCreateNode (DOCUMENTNODE, DOCUMENTNAME, NULL) ;

parseNode (docNode) ;

f r e e (xmlArray) ;

return docNode ;
}
#endif

86

A.6 The GDB Bridge

During the earliest stages of the development of the Distributed Application Debugger, I did

prototyping of some of the high priority features in order to prove that the features were feasible.

The most important of these was the GDB Bridge included in Listing12. It was created in order

to experiment with launching GDB from within a running program and then controlling GDB by

duplicating its stdin, stdout, and stderr file descriptors.

After successfully creating a bridge to launch and control GDB from the command line, the code

was enhanced to be controlled by commands read in from a TCP port. Once this code was worked

out as a proof of concept, the Distributed Application Debugger specific development began, knowing

that remote GDB features could confidently be integrated into later.

Listing 12: The contents of the GDB Bridge prototype.

#include <mpi . h>
#include <s t d l i b . h>
#include <s t d i o . h>
#include <pthread . h>
#include <semaphore . h>
#include <s t r i n g . h>
#include <sys / socket . h>
#include <sys / types . h>
#include <arpa/ i n e t . h>
#include <uni s td . h>
#include <errno . h>

//Define some constants for read a b i l i t y
#define TRUE 1
#define FALSE 0
#define QUITCOMMAND ” qu i t ”
#define GDBCOMMAND ”gdb”
#define STRING EQUALS INDICATOR 0
#define NEWLINE ”\n”
#define SPACE ” ”

//Max s i z e of read bu f f e r
#define BUFFER SIZE 1024

//Listen and Write socket
int l i s t s ;
int conn s ;

//Defaul t Port
int port = 4001 ;

//Streams represent ing the parent and
// ch i l d ' s per spec t i ve out incoming and outgoing
FILE∗ streamOutgoing ;
FILE∗ streamIncoming ;

//Methods to read from and to a socket
s s i z e t Readl ine (int sockd , void ∗vptr , s i z e t maxlen) ;
s s i z e t Wr i t e l ine (int sockd , const void ∗vptr , s i z e t n) ;

//Methods which w i l l l i s t e n to the user and the ch i l d on a seperate thread
void c h i l dL i s t e n e r () ;
void t cpL i s t en () ;

//A sempahore which ge t s s i gna led to a l low the main thread to e x i t
sem t quitingSemaphore ;

int main (int argc , const char∗ argv [])

87

{
i f (argc == 2)
{

//Read the command l i n e
port = a to i (argv [1]) ;

}

//A bu f f e r for genear l reading and wr i t ing a stream
char bu f f e r [BUFFER SIZE] ;

//The id being checked a f t e r the fork command
p id t pid ;

//The ends of the pipes for communication from the ch i l d to parent
//and parent to ch i l d
int fromChildPipe [2] ;
int fromParentPipe [2] ;

/∗ Create a pipe . F i l e de sc r ip to r s for the two ends of the pipe are placed in fds . ∗/
pipe (fromChildPipe) ;
p ipe (fromParentPipe) ;

/∗ Fork a ch i l d process . ∗/
pid = fo rk () ;
i f (pid == (p id t) 0)
{
//Overwrite stdin , stdout , and s tderror
c l o s e (0) ;
dup (fromParentPipe [0]) ;

c l o s e (1) ;
dup (fromChildPipe [1]) ;

c l o s e (2) ;
dup (fromChildPipe [1]) ;

//wait for an ind ica t ion of a connection
f g e t s (bu f f e r , s izeof (bu f f e r) , s td in) ;

//The s t r ing sent w i l l be the argument for the gdb command
char ∗ inputArg = s t r t ok (bu f f e r , NEWLINE) ;

// create the gdb command for the t e s t f i l e
char∗ gdbCommand [4] ;
gdbCommand [0] = ”gdb” ;
gdbCommand [1] = inputArg ;
gdbCommand [2] = NULL;

// She l l out the gdb command
execvp (gdbCommand [0] , gdbCommand) ;

else
{

//Set streams for reading from and wri t ing to the ch i l d
streamIncoming = fdopen (fromChildPipe [0] , ” r ”) ;
streamOutgoing = fdopen (fromParentPipe [1] , ”w”) ;

// I n i t i a l i z e the semaphore to b lock un t i l s i gna l ed
s em in i t (&quitingSemaphore , 0 , 0) ;

//Launch threads for the ch i l d l i s t e n and the tcp l i s t e n
pthread t chi ldThreadId , tcpListenThreadId ;
p th r ead c r ea t e (&chi ldThreadId , NULL, (void ∗) ch i l dL i s t en e r , NULL) ;
p th r ead c r ea t e (&tcpListenThreadId , NULL, (void ∗) tcpListen , NULL) ;

//Wait t i l l the tcp l i s t e n thread t e l l s us i t s time to e x i t
sem wait(&quitingSemaphore) ;

//Exit the app l i ca t i on
e x i t (0) ;

}

return 0 ;
}

88

//Thread for l i s t e n to the tcp port
void t cpL i s t en ()
{

struct sockaddr in servaddr ;
char ∗ endptr ;

char bu f f e r [BUFFER SIZE] ;
char ∗ token ;

/∗ Create the l i s t e n i n g socket ∗/
i f ((l i s t s = socket (AF INET , SOCK STREAM, 0)) < 0) {

f p r i n t f (s tde r r , ”Error c r e a t i ng l i s t e n i n g socket .\n”) ;
e x i t (EXIT FAILURE) ;

}

/∗ Set a l l by tes in socket address s t ruc ture to
zero , and f i l l in the re l evan t data members ∗/

memset(&servaddr , 0 , s izeof (servaddr)) ;
servaddr . s i n f am i l y = AF INET ;
servaddr . s i n addr . s addr = htonl (INADDR ANY) ;
servaddr . s i n p o r t = htons (port) ;

/∗ Bind our socket addresss to the
l i s t e n i n g socket , and c a l l l i s t e n () ∗/

i f (bind (l i s t s , (struct sockaddr ∗) &servaddr , s izeof (servaddr)) < 0) {
f p r i n t f (s tde r r , ”Error c a l l i n g bind () \n”) ;
e x i t (EXIT FAILURE) ;

}

p r i n t f (” L i s t en ing on port %d\n” , port) ;

//Listen for a connection
i f (l i s t e n (l i s t s , 1024) < 0) {

f p r i n t f (s tde r r , ”Error c a l l i n g l i s t e n () \n”) ;
e x i t (EXIT FAILURE) ;

}

/∗ Enter an i n f i n i t e l i s t e n loop ∗/
i f ((conn s = accept (l i s t s , NULL, NULL)) < 0) {

f p r i n t f (s tde r r , ”Error c a l l i n g accept () \n”) ;
e x i t (EXIT FAILURE) ;

}

//Flag which ind i ca t e s tha t we have got ten the gdb command
int s t a r t ed = FALSE;

//Create some pointers to the commands comming in
char∗ inputCommand0 ;
char∗ inputArg ;

//Loop forever
while (1)
{

/∗ Retrieve an input l i n e from the connected socket
then simply wri te i t back to the same socket . ∗/

Readl ine (conn s , bu f f e r , BUFFER SIZE − 1) ;

// Str ip o f f the newline at the end
token = s t r t ok (bu f f e r , NEWLINE) ;

//Make sure we got something
i f (token == NULL)
{

continue ;
}

//See i f we have ac tua l l y s t a r t ed the GDB debugger yet
i f (s t a r t ed == FALSE)
{

//We have not s ta r t ed the gdb debugger , check i f the user typed
// the gdb command and the f i l e to debug

89

inputCommand0 = s t r t ok (token , SPACE) ;
inputArg = s t r t ok (NULL, SPACE) ;

i f (strcmp (inputCommand0 , GDBCOMMAND) == STRING EQUALS INDICATOR &&
inputArg != NULL)

{
// the user sent the gdb command to s tar t , send the f i l e to debug to the ch i l d
s t a r t ed = TRUE;
f p r i n t f (streamOutgoing , ”%s\n” , inputArg) ;
f f l u s h (streamOutgoing) ;

// Indicate tha t connection has been made
p r i n t f (”GDB s e s s i o n begun f o r %s\n” , inputArg) ;
continue ;

}
else
{

//We e i t h e r didn ' t ge t the gdb command, or we didn ' t ge t a f i l e , continue
looping

continue ;
}

}

//Pass the command read in to the ch i l d process
f p r i n t f (streamOutgoing , ”%s\n” , token) ;
f f l u s h (streamOutgoing) ;

//Check i f the user said to qu i t
i f (strcmp (token , QUITCOMMAND) == STRING EQUALS INDICATOR)
{

p r i n t f (”Quit detected . Clos ing now .\n”) ;

//Time to qui t , r e l ea se the semaphore which w i l l s i gna l the main thread to e x i t
sem post(&quitingSemaphore) ;

break ;
}
else
{

us l e ep (100) ;
}

}

/∗ Close the connected socket ∗/
i f (c l o s e (conn s) < 0) {

f p r i n t f (s tde r r , ”Error c a l l i n g c l o s e () \n”) ;
e x i t (EXIT FAILURE) ;

}
}

void c h i l dL i s t e n e r ()
{

//Read one char at a time from ch i l d i n f i n i t l y .
char∗ echoBuff = (char ∗) mal loc (s izeof (char)) ;

while (1)
{

char c ;
c = getc (streamIncoming) ;
f f l u s h (streamIncoming) ;

//white each character out to the tcp port
echoBuff [0] = c ;
Wr i t e l ine (conn s , echoBuff , 1) ;
u s l e ep (100) ;

}
}

s s i z e t Readl ine (int sockd , void ∗vptr , s i z e t maxlen) {
s s i z e t n , rc ;
char c , ∗ bu f f e r ;

bu f f e r = vptr ;

for (n = 1 ; n < maxlen ; n++) {
i f ((rc = read (sockd , &c , 1)) == 1) {

90

∗ bu f f e r++ = c ;
i f (c == '\n ')

break ;
}
else i f (rc == 0) {

i f (n == 1)
return 0 ;

else
break ;

}
else {

i f (errno == EINTR)
continue ;

return −1;
}

}

∗ bu f f e r = 0 ;
return n ;

}

/∗ Write a l i n e to a socket ∗/
s s i z e t Wr i t e l ine (int sockd , const void ∗vptr , s i z e t n)
{

s i z e t n l e f t ;
s s i z e t nwr i t ten ;
const char ∗ bu f f e r ;

bu f f e r = vptr ;
n l e f t = n ;

while (n l e f t > 0) {
i f ((nwr i t ten = wr i t e (sockd , bu f f e r , n l e f t)) <= 0){

i f (errno == EINTR)
nwri t ten = 0 ;

else
return −1;

}
n l e f t −= nwritten ;
bu f f e r += nwritten ;

}

return n ;
}

A.7 The Bridge

In order to accommodate network configuration in which The Call Center is running on a computer

which is contained within a closed private network, a supporting application called The Bridge

was developed. It supports three modes, client, server, and bridge, which were used in simulating

connecting strings of computers together in some of the early days of development. In all modes,

The Bridge opens two ports and reads from one and writes to the other.

In client mode, the user passes a -c in at the command line along with the address and port

of a computer it intends to communicate with. Upon starting up in this mode, The Bridge makes

an outgoing connection to the address and port passed in, and then begins to read in from stdin.

Anything input from the console is read and immediately written to the outgoing socket.

In server mode, the user passes a -s in at the command line along with a port to listen to incoming

connections on. Upon starting up in this mode, The Bridge listens on the port passed in and, upon

91

receiving an incoming connection, writes anything read in from it to stdout.

Client mode and server mode were used as mostly testing modes for the third, and most important,

mode: bridge mode. When run in bridge mode, The Bridge takes in -b at the command line along

with an address and port, as in client mode, and an incoming port, as in server mode. Upon starting

up in bridge mode, The Bridge writes whatever it reads from the incoming connection’s socket to the

outgoing connection’s socket and, likewise, writes whatever it reads from the outgoing connection’s

socket to the socket acquired from the incoming connection.

It can not be understated how important The Bridge code is to the Distributed Application

Debugger. It was one of the first features written because, without it, The Client and Call Center

would not be able to connect in order to make remote debugging possible. All three modes were used

together during the prototyping stage to work out the technical details of launching a programming

after making a series of SSH connections and then passing command lines from one computer’s stdin

to another computer’s stdout via TCP connections. The source code for The Bridge is included in

Listing 13.

Listing 13: The Bridge source code used to connect The Client to The Call Center.

#include <s t d i o . h>
#include <s t d l i b . h>
#include <uni s td . h>
#include <s t r i n g . h>
#include <netdb . h>
#include <semaphore . h>
#include <pthread . h>
#include ”Headers /communication . h”
#include ”Headers / booleanLogic . h”

#define STRING EQUALS INDICATOR 0
#define CLIENT MODE ”−c”
#define BRIDGEMODE ”−b”
#define SERVERMODE ”−s ”

//Structure to pair an fd to read from and an fd to wri te to
struct p ipePa i r i t em
{

int In ;
int Out ;

} ;
typedef struct p ipePa i r i t em pipePa i r ;

//Helper Methods
void PipeMessages (void ∗ value) ;
void RunClientMode (char∗ outgoingPath , int outgoingPort) ;
void RunServerMode (int incomingPort) ;
void RunBridgeMode (int incomingPort , char∗ outgoingPath , int outgoingPort) ;
void SetSocketOptions (int ∗ socketPtr) ;
void I n i t i a l i z eSo ckAddr (struct sockaddr in ∗ address , i n add r t path , int port) ;
p ipePa i r ∗ CreatePipePair (int in , int out) ;

//Semaphore to wait on to c l o se out the app l i ca t i on
sem t quitingSemaphore ;

int main (int argc , char∗∗ argv)
{

//Fir s t argument i s the mode −c for c l i en t , −b for bridge , −s for server
i f (strcmp (argv [1] , CLIENT MODE) == STRING EQUALS INDICATOR)
{

92

//Cl ient mode − arg 2 i s the port to connect to , arg 3 i s the ip address
//RunClientMode(argv [3] , a to i (argv [2])) ;
i f (argc == 3)
{

// they did not inc lude the server ipaddress , assume we want to use our own
char∗ ipAddress = (char ∗) mal loc (50∗ s izeof (char)) ;
GetPrimaryIp (ipAddress , 50) ;
p r i n t f (” running a l t e r n a t e vers ion , ipaddre s s i s %s\n” , ipAddress) ;
RunClientMode (ipAddress , a t o i (argv [2])) ;
f r e e (ipAddress) ;

}
else
{

RunClientMode (argv [3] , a t o i (argv [2])) ;
}

}
else i f (strcmp (argv [1] , SERVERMODE) == STRING EQUALS INDICATOR)
{

//Server mode , arg 2 i s the port to l i s t e n to
RunServerMode (a t o i (argv [2])) ;

}
else i f (strcmp (argv [1] , BRIDGEMODE) == STRING EQUALS INDICATOR)
{

//Bridge mode , arg 2 i s the incoming port , arg 3 & 4 are the outgoing ip address
and port

RunBridgeMode (a t o i (argv [2]) , argv [3] , a t o i (argv [4])) ;
}

return 0 ;
}

/∗Es tab l i s he s an outgoing connection on the s p e c i f i e d
port and address and pipes a l l data from stdout to i t ∗/

void RunClientMode (char∗ outgoingPath , int outgoingPort)
{

//Create outgoing connection
int socketOut = CreateOutgoingConnection (outgoingPath , outgoingPort) ;

i f (socketOut == FALSE)
return ;

// Star t a background thread to pipe messages from std in to the outgoing port
pthread t threadId ;
p th r ead c r ea t e (&threadId , NULL, (void ∗) PipeMessages , CreatePipePair (f i l e n o (s td in) ,

socketOut)) ;

//Post for j u s t 1 thread to re l ea se be fore we f i n i s h
s em in i t (&quitingSemaphore , 0 , 0) ;

//Wait un t i l the piping thread re l ea s e s to return
sem wait(&quitingSemaphore) ;

// clean up the connection created .
c l o s e (socketOut) ;

}

/∗Es tab l i s he s an incoming connection on the s p e c i f i e d port
and pipes a l l data from i t to s tdout ∗/

void RunServerMode (int incomingPort)
{

//Create an incoming connection
int socke t In = CreateIncomingConnection (incomingPort) ;
i f (socke t In == FALSE)

return ;

// Star t a background thread to pipe messages from the incoming port to s tdout
pthread t threadId ;
p th r ead c r ea t e (&threadId , NULL, (void ∗) PipeMessages , CreatePipePair (socketIn , f i l e n o (

stdout))) ;

//Post for j u s t 1 thread to re l ea se be fore we f i n i s h
s em in i t (&quitingSemaphore , 0 , 0) ;

//Wait un t i l the piping thread re l ea s e s to return
sem wait(&quitingSemaphore) ;

// clean up the connection created .

93

c l o s e (socke t In) ;
}

/∗Es tab l i s he s an incoming connection on the s p e c i f i e d port and an outgoing
connection on port and ipaddress s p e c i f i e d and ports messages between them . ∗/

void RunBridgeMode (int incomingPort , char∗ outgoingPath , int outgoingPort)
{

//Create an incoming connection
int socke t In = CreateIncomingConnection (incomingPort) ;
i f (socke t In == FALSE)

return ;

//Create an outgoing connection
int socketOut = CreateOutgoingConnection (outgoingPath , outgoingPort) ;
i f (socketOut == FALSE)
{

c l o s e (socke t In) ;
return ;

}

pthread t c l i entThreadId , serverThreadId ;

// Star t 2 threads to pipe incoming data from e i t h e r d i r ec t i on to the other connection
pthr ead c r ea t e (&cl i entThreadId , NULL, (void ∗) PipeMessages , CreatePipePair (socke t In ,

socketOut)) ;
p th r ead c r ea t e (&serverThreadId , NULL, (void ∗) PipeMessages , CreatePipePair (socketOut ,

socke t In)) ;

s em in i t (&quitingSemaphore , 0 , 0) ;

//Wait un t i l both pip ing threads r e l ea s e s to return
sem wait(&quitingSemaphore) ;

//Clean up the connections created .
c l o s e (socketOut) ;
c l o s e (socke t In) ;

}

//Creates a s t ruc ture pair ing an input fd with an output fd
pipePa i r ∗ CreatePipePair (int in , int out)
{

//Create the pair
pipePa i r ∗ pa i r = (p ipePa i r ∗) mal loc (s izeof (p ipePa i r)) ;

//Assign t h e i r va lues
pair−>In = in ;
pair−>Out = out ;

//Return i t
return pa i r ;

}

//Takes in a pipePair and cyc l e s through reading from the input
// s ide and wr i t ing tha t data to i t s output s ide .
void PipeMessages (void ∗ value)
{

//The input value i s expedted to be a pipe pair
pipePa i r ∗ pa i r = (p ipePa i r ∗) value ;

//Create a bu f f e r to read data into
int bu f f e r S i z e = 8192 ;
char i nputBuf f e r [b u f f e r S i z e] ;

int bytesRead = 0 ;
while (1)
{

//Read in from the input s ide
bytesRead = read (pair−>In , inputBuf fer , b u f f e r S i z e) ;

i f (bytesRead < 0)
break ;

//Write to the output s ide
i f (wr i t e (pair−>Out , inputBuf fer , bytesRead) < 0)

break ;
}

94

//Noti fy the sempahore tha t we are no longer piping
sem post(&quitingSemaphore) ;

//Clean up the value passed in .
f r e e (pa i r) ;

}

95

Appendix B

The Runtime

The contributions that The Runtime makes in order to provide the user with useful debugging

information is detailed in Section 3.3. This appendix is provided to give the user some insight into

select sections of The Runtime’s code as well as to provide a reference to the instructions on how to

integrate The Runtime into a user’s code.

B.1 mpidebug.h

The mpiddebug.h header file contains the signatures of the methods that The Runtime uses when

redirecting the user’s MPI code. It is included in the mpi.h file that the user includes in step 2 of the

steps to compiling The Runtime detailed in Appendix B.3. The contents of mpidebug.c are omitted

from this Appendix, but Listing 14 shows the names of the methods that the user’s MPI methods

will be replaced with.

96

Listing 14: mpidebug.h source code.

#ifndef MPIDEBUG
#define MPIDEBUG
int MPI Init (char pname [1 0 0] , int l i n e , int ∗argc , char ∗∗∗ argv) ;
int MPI Fina l i ze (char pname [1 0 0] , int l i n e) ;
int MPI Comm rank (char pname [1 0 0] , int l i n e , MPI Comm comm, int ∗ rank) ;
int MPI Comm size (char pname [1 0 0] , int l i n e , MPI Comm comm, int ∗ s i z e) ;
int MPI Send (char pname [1 0 0] , int l i n e , void ∗buf , int count ,

MPI Datatype datatype , int dest , int tag , MPI Comm comm) ;
int MPI Recv (char pname [1 0 0] , int l i n e , void ∗buf , int count ,

MPI Datatype datatype , int src , int tag , MPI Comm comm,
MPI Status ∗ s t a tu s) ;

int MPI ISend (char pname [1 0 0] , int l i n e , void ∗buf , int count ,
MPI Datatype datatype , int dest , int tag , MPI Comm comm, MPI Request ∗

r eques t) ;

int MPI IRecv (char pname [1 0 0] , int l i n e , void ∗buf , int count ,
MPI Datatype datatype , int src , int tag , MPI Comm comm, MPI Request ∗ r eques t

) ;

int MPI Wait (char pname [1 0 0] , int l i n e , MPI Request ∗ request , MPI Status ∗ s t a tu s) ;

int MPI Barr ier (char pname [1 0 0] , int l i n e , MPI Comm comm) ;

int MPI Probe (char pname [1 0 0] , int l i n e , int src , int tag , MPI Comm comm, MPI Status ∗
s t a tu s) ;

int MPI Probe (char pname [1 0 0] , int l i n e , int src , int tag , MPI Comm comm, MPI Status ∗
s t a tu s) ;

int MPI IProbe (char pname [1 0 0] , int l i n e , int src , int tag , MPI Comm comm, int ∗ f l ag ,
MPI Status ∗ s t a tu s) ;

void∗ StdOutRedirectThread (void∗ value) ;

#endif

97

B.2 Redirecting Stdout

The Runtime redirect’s its stdout file descriptor in order to be able to send what the user meant

to print to the screen back to The Client. First, it calls the method RedirectStdOut which pipes

whatever is written to stdout to a different file descriptor. The system then spawns off a dedicated

thread to listen to the new file descriptor and send back messages to The Client which let it know

what has been written to stdout. Listing 15 contains the two methods used to first redirect stdout

on the main thread, and the worker thread tasked with sending back messages to The Client.

Listing 15: The code used to redirect The Runtime’s stdout back to The Client.

void RedirectStdOut ()
{

int stdOutDupResult = dup(STDOUT FILENO) ;

//Exit out of the o r i g i na l one
i f (pipe (ou t p ip e) != 0) {

e x i t (1) ;
}

//Redirect the wri te s ide
dup2 (ou t p ip e [1] , STDOUT FILENO) ;

c l o s e (ou t p ip e [1]) ;
//Set the s tdout bu f f e r to au to f lu sh
s e tvbu f (stdout , NULL, IONBF , 0) ;

}

//Lis tens to s td out and sends i t s contents out as a s e r i a l i z e d message
void∗ StdOutRedirectThread (void ∗ value)
{

// setup s t ruc ture s to peek at the read queue from
f d s e t r f d s ;
struct t imeval tv ;

int r e t v a l ;
int bytesRead ;
int bu f f e r S i z e = 8192 ;
char r eadBuf f e r [b u f f e r S i z e] ;

while (1)
{

FD ZERO(& r f d s) ;
FD SET(ou t p ip e [0] , &r f d s) ;

tv . t v s e c = 2 ;
tv . tv us e c = 0 ;
//wait up to 2 seconds to read
r e t v a l = s e l e c t (ou t p ip e [0] + 1 , &r fds , NULL, NULL, &tv) ;

//Check i f there was anything in the output bu f f e r
i f (r e t v a l > 0)
{

bytesRead = read (ou t p ip e [0] , readBuf fer , b u f f e r S i z e) ;
i f (bytesRead > 0)// I t b e t t e r be greater than 1!
{

//Write out a console message to the users .
writeToCl ient (s e r i a l i z eC on s o l e (readBuf fer , bytesRead , rank ,

sohReplace , pa r t i t i onRep lac e , eotRep lace)) ;
}

}
//Nothing read , check i f we f i n a l i z e d yet
else i f (f i n a l i z e d == TRUE)
{

FD ZERO(& r f d s) ;

98

FD SET(ou t p ip e [0] , &r f d s) ;
tv . t v s e c = 2 ;
tv . tv us e c = 0 ;

r e t v a l = s e l e c t (ou t p ip e [0] + 1 , &r fds , NULL, NULL, &tv) ;
i f (r e t v a l > 0)

continue ;
else

//Nothing in the s tdout bu f f and we f i na l i z e d , time to f i n i s h t h i s thread
break ;

}
}

sem post(& f i n a l i z e dN o t i f i c a t i o n) ;
return 0 ;

}

B.3 Compiling The MPI Runtime

This section deals with the four step process needed to compile an MPI project with the correct

libraries in order to allow for The Distributed Application Debugger’s Client and Call Center to be

able to interact with it.

1. Copy the MpiFiles directory to your root directory.

The MpiFiles directory contains all of the files needed in order to compile your project. This

directory just needs to be copied to your root directory one time and then, in order to inject

The Distributed Application Debugger Runtime component, you just need to put your project

files in this folder. Inside of this folder is a bin directory which will be the destination of all the

binaries complied using the Makefile in step 4.

2. Create .distributedApplicationDebugger.conf.

There is a hidden file called .distributedApplicationDebugger.conf which The Call Center

looks for in order to know where to find the MpiFiles/bin directory created in Step 1. This file

needs to just be created once and is expected to be placed in the user’s root directory. For

example, for user mjones the file would be placed in /home/mjones and contain the following

line:

/home/mjones/MpiFiles/bin/

3. Include mpi.h.

As detailed in section 3.3.1 the user needs to include the local mpi.h in their mpi files instead

of the installed real framework mpi.h. This file will inject The Runtime into the code and

then do all of the pre and post processing used to utilize the tool. In order to organize the

header files, the MpiFiles includes the needed mpi.h in a Headers subdirectory, so if the files

are included in the root MpiFiles directory, the included file would be "Headers/mpi.h". The

99

file text.c included in the MpiFiles directory can be used as a sample for reference.

4. Run the Makefile from the command line.

After including the mpi.h file included in the MpiFiles directory, the user needs to compile their

application with the Distributed Application Debugger’s assemblies. A Makefile to compile

with is included within this directory too and its contents are shown in Listing 16. In order

indicate the file to compile with the MPI runtime, the user must place the file in the MpiFiles

directory and then run the make command with the name of the file to include. Assuming that

the user is compiling from their root directory, the MpiFiles directory is located there and the

file to debug is called testParDev.c the command line to make the file would be:

make -C MpiFiles/ File=testParDev

Note that the .c extension is NOT included in the command line, just the file name. The

Makefile compiles all of the needed assemblies, including the XML, collection, parsing, and

validation libraries and then compiles the user’s code. The important line of the Makefile is

line 21 which reads:

mpicc -g -s -Wall -O0 -c -o $(FILE).o -DMPIDEBUG $(FILE).c

The -DMPIDEBUG token means that when the header information from the mpi.h file illustrated

in Figure 3.28 is compiled, that the debug.h and mpidebug.h files will be included as well.

These files redirect the calls to the MPI library to intermediary libraries prefaced with under-

scores as illustrated in Figure 3.30. These methods wrap the standard four step debugging

process around each call that is described in Section 3.3.4 which allows the entire system to work.

100

Listing 16: The Makefile included with the MPI runtime files.

1 # usage : make c l ean
2 # make FILE=tes t−f i l e −name
3 # make run FILE=tes t−f i l e −name DATA=data−f i l e −name
4
5 a l l :
6 gcc −Wall −O3 −Wno−unused −c −o XML/obj /xmlDoc . o XML/xmlDoc . c
7 gcc −Wall −O3 −Wno−unused −c −o XML/obj /xmlReader . o XML/xmlReader . c
8 gcc −Wall −O3 −Wno−unused −c −o XML/obj /xmlWriter . o XML/xmlWriter . c
9 gcc −Wall −O3 −Wno−unused −c −o obj / d i c t i ona ry . o d i c t i ona ry . c

10 gcc −Wall −O3 −Wno−unused −c −o obj /DADParser . o DADParser . c
11 gcc −Wall −O3 −Wno−unused −c −o obj /communication . o communication . c
12 gcc −Wall −O3 −Wno−unused −c −o obj / c o l l e c t i o n s . o c o l l e c t i o n s . c
13 mpicc −Wall −O3 −Wno−unused −c −o obj /mpiUti l s . o mpiUti l s . c
14 mpicc −Wall −O3 −Wno−unused −c −o obj /mpiXML. o mpiXML. c
15 mpicc −Wall −O0 −Wno−unused −c −o obj /mpiValidate . o mpiValidate . c
16 mpicc −Wall −O0 −Wno−unused −c −o obj / mp iS e r i a l i z e . o mp iS e r i a l i z e . c
17 mpicc −Wall −O0 −Wno−unused −c −o obj /gdbAttach . o gdbAttach . c
18 mpicc −Wall −O0 −Wno−unused −c −o obj /mpidebug . o mpidebug . c
19 s t r i p XML/obj/∗ . o −S
20 s t r i p obj /∗ . o −S
21 mpicc −g −s −Wall −O0 −c −o $(FILE) . o −DMPIDEBUG $(FILE) . c
22 mpicc −o bin/$(FILE) $(FILE) . o XML/obj /∗ . o obj /∗ . o −l p thread
23 run :
24 ./$(FILE) $(DATA)
25
26 clean :
27 rm −f ∗ . o
28 rm −f ∗˜
29 rm −f ob j /∗ . o
30 rm −f ob j /∗ .˜
31 rm −f XML/obj /∗ . o
32 rm −f XML/obj /∗ .˜
33 rm −f Headers /∗.∗˜

101

Appendix C

MPI Serializing

This appendix contains the examples illustrating the schemas of each of the twelve MPI commands

supported by the Distributed Application Debugger. Listings 17-28 show what the XML serialized

versions of each of the commands looks likes when saved during a Record session.

Listing 17: A serialized MPI Init() command.

<MPI INIT rank=”0” commandId=”1” dateTime=”Mon Mar 04 08 : 5 5 : 1 5 2013 ”>
<returnva lue >0</returnva lue>

</MPI INIT>

Listing 18: A serialized MPI Comm rank() command.

<MPI RANK rank=”0” commandId=”2” dateTime=”Mon Mar 04 0 8 : 55 : 15 2013 ”>
<parameters>

<comm>1140850688</comm>
</parameters>
<returnva lue >0</returnva lue>

</MPI RANK>

Listing 19: A serialized MPI Comm size() command.

<MPI SIZE rank=”0” commandId=”3” dateTime=”Mon Mar 04 0 8 : 5 5 : 15 2013 ”>
<parameters>

<comm>1140850688</comm>
</parameters>
<returnva lue >0</returnva lue>

</MPI SIZE>

102

Listing 20: A serialized MPI Send() command.

<MPI SEND rank=”0” commandId=”4” dateTime=”Mon Mar 04 08 : 5 5 : 1 5 2013 ”>
<parameters>

<buf>
<value>0</value>
<value >−2147483648</value>
<value >2147483647</ value>
<value >356456</value>
<value >765</value>
<value >68378376</ value>
<value >67787</value>
<value >17636</value>
<value >585356</value>
<value >253636</value>

</buf>
<count>10</count>
<datatype>MPI INT</datatype>
<dest>1</dest>
<tag>10</tag>
<comm>1140850688</comm>

</parameters>
<returnva lue >0</returnva lue>

</MPI SEND>

103

Listing 21: A serialized MPI Recv() command.

<MPI RECV rank=”0” commandId=”6” dateTime=”Sun Aug 26 2 1 : 33 : 10 2012 ”>
<parameters>

<buf>
<value>H</value>
<value>e</value>
<value>l</value>
<value>l</value>
<value>o</value>
<value> </value>
<value>W</value>
<value>o</value>
<value>r</value>
<value>l</value>
<value>d</value>
<value></value>

</buf>
<count>12</count>
<datatype>MPI CHAR</datatype>
<src >1</src>
<tag>10</tag>
<comm>1140850688</comm>
<s tatus>

<MPI SOURCE>1</MPI SOURCE>
<MPI TAG>10</MPI TAG>
<MPI ERROR>0</MPI ERROR>

</status>
</parameters>
<returnva lue >0</returnva lue>

</MPI RECV>

104

Listing 22: A serialized MPI Isend() command.

<MPI ISEND rank=”0” commandId=”42” dateTime=”Sun Aug 26 2 1 : 3 3 : 10 2012 ”>
<parameters>

<buf>
<value>H</value>
<value>e</value>
<value>l</value>
<value>l</value>
<value>o</value>
<value> </value>
<value>W</value>
<value>o</value>
<value>r</value>
<value>l</value>
<value>d</value>
<value></value>

</buf>
<count>12</count>
<datatype>MPI CHAR</datatype>
<dest>1</dest>
<tag>10</tag>
<comm>1140850688</comm>
<request >0</request>

</parameters>
<returnva lue >0</returnva lue>

</MPI ISEND>

Listing 23: A serialized MPI Irecv() command.

<MPI IRECV rank=”0” commandId=”43” dateTime=”Sun Aug 26 21 : 33 : 10 2012 ”>
<parameters>

<count>12</count>
<datatype>MPI CHAR</datatype>
<src >1</src>
<tag>10</tag>
<comm>1140850688</comm>
<request >1</request>

</parameters>
<returnva lue >0</returnva lue>

</MPI IRECV>

105

Listing 24: A serialized MPI Probe() command.

<MPI Probe rank=”0” commandId=”5” dateTime=”Sun Aug 26 21 : 33 : 10 2012 ”>
<parameters>

<src >1</src>
<tag>10</tag>
<comm>1140850688</comm>
<s tatus>

<MPI SOURCE>1</MPI SOURCE>
<MPI TAG>10</MPI TAG>
<MPI ERROR>0</MPI ERROR>

</status>
</parameters>
<returnva lue >0</returnva lue>

</MPI Probe>

Listing 25: A serialized MPI Iprobe() command.

<MPI IProbe rank=”0” commandId=”41” dateTime=”Sun Aug 26 2 1 : 3 3 : 10 2012 ”
>

<parameters>
<src >1</src>
<tag>10</tag>
<comm>1140850688</comm>
<f l a g >0</f l ag>
<s tatus>

<MPI SOURCE>2</MPI SOURCE>
<MPI TAG>0</MPI TAG>
<MPI ERROR>0</MPI ERROR>

</status>
</parameters>
<returnva lue >0</returnva lue>

</MPI IProbe>

Listing 26: A serialized MPI Wait() command.

<MPI WAIT rank=”0” commandId=”44” dateTime=”Sun Aug 26 21 : 3 3 : 1 0 2012 ”>
<parameters>

<request >0</request>
<s tatus>

<MPI SOURCE>2</MPI SOURCE>
<MPI TAG>0</MPI TAG>
<MPI ERROR>0</MPI ERROR>

</status>
</parameters>
<returnva lue >0</returnva lue>

</MPI WAIT>

106

Listing 27: A serialized MPI Barrier() command.

<MPI Barrier rank=”0” commandId=”7” dateTime=”Sun Aug 26 2 1 : 33 : 10 2012 ”
>

<parameters>
<comm>1140850688</comm>

</parameters>
<returnva lue >0</returnva lue>

</MPI Barrier>

Listing 28: A serialized MPI Finalize() command.

<MPI FINALIZE rank=”0” commandId=”102” dateTime=”Sun Aug 26 21 : 33 : 1 0
2012 ”>

<returnva lue >0</returnva lue>
</MPI FINALIZE>

107

Bibliography

[ANLD13] Mathematics Argonne National Laboratory and Computer Science Division. Web pages

for MPI Routines. http: // www. mcs. anl. gov/ research/ projects/ mpi/ www/ www3 ,

2013.

[Bal13] Balsamiq Mockups Rapid Wireframing Tool. http: // www. balsamiq. com/ , 2013.

[BH04] Susanne M. Balle and Robert T. Hood. Global Grid Forum User Program Development

Tools Survey. Global Grid Forum, 2004.

[Boe91] Barry W. Boehm. Software Risk Management: Principles and Practices. IEEE Software,

January 1991.

[cMP94] cherri M. Pancake. What Users Need in Parallel tool Supoort: Survey Results and

Analysis. Technical report CSTR 94-80-3, Oregon State University, June 1994.

[DDD13] DDD - Data Display Debugger. http: // www. gnu. org/ software/ ddd/ , 2013.

[Don94] Jack Dongarra. MPI: A Message Passing Interface Standard. The International Journal

of Supercomputers and High Performance Computing, 1994.

[Ecl13] The Eclipse Foundation. http: // www. eclipse. org/ , 2013.

[Eis97] Marc Eisenstadt. My hairiest bug war stories. In Debugging Scandal and What to Do

About it — Communication of the ACM . ACM Press, April 1997.

[Fos95] Ian Foster. Designing and Building Parallel Programs: Concepts and tools for parallel

software engineering. Addison Wesley, 1995.

[GCC13] GCC, the GNU Compiler Collection. http: // gcc. gnu. org/ , 2013.

[GDB13] GDB - The GNU Debugger. http: // www. gnu. org/ directory/ gdb. html , 2013.

[Gib94] W. Wayt Gibbs. Software’s Chronic Crisis. Scientific American, September 1994.

[Hel00] Gilbert Held. Understanding Data Communications: From Fundamentals to Networking.

Wiley, third edition, December 2000.

[HT99] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman to

Master. Addison-Wesley, first edition, October 1999.

[Lar07] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and Iterative Development. Prentice Hall, third edition, October 2007.

108

[LMC87] Thomas J. Leblanc and John M. Mellor-Crummey. Debugging Parallel Programs with

Instant Replay. IEEE Transactions on Computers, April 1987.

[Mon13] Mono - Cross platform, open source .NET development framework. http: // www.

mono-project. com , 2013.

[MS08] Norman Matloff and Peter Jay Salzman. The Art of Debugging with GDB, DDD, and

Eclipse. No Starch Press, first edition, September 2008.

[MSN13] Microsoft Visual Studio. http: // msdn. microsoft. com/ vstudio/ , 2013.

[Pan93] Cherri M. Pancake. Why Is There Such a Mis-Match between User Need and Parallel

Tool Production? Keynote address, 1993 Parallel Computing System: A Dialog between

Users and Developers., April 1993.

[Ped03] Jan B. Pedersen. Multilevel Debugging of Parallel Message Passing Systems. PhD Thesis,

University of British Columbia, Vancouver, British Columbia, Canada, June 2003.

[Ped06] Jan B. Pedersen. Classification of Programming Errors in Parallel Message Passing

Systems. In Proceedings of Communicating Process Architectures 2006 (CPA’06) IOS

Press, September 2006.

[PJ12] Jan B. Pedersen and Michael Q. Jones. Error Classifications for Parallel message Passing

Programs: A Case Study. Proceedings of Parallel and Distributed Processing techniques

and Applications (PDPTA’12), July 2012.

[Pro13] The Open MPI Project. FAQ: Debugging applications in parallel. http: // www.

open-mpi. org/ faq/ ?category= debugging , 2013.

[SEI13] Software Engineering Institute. http: // www. sei. cmu. edu/ , 2013.

[Sha13] SharpSSH - A Secure Shell library for .NET. http: // www. tamirgal. com/ blog/ page/

SharpSSH. aspx , 2013.

[Sof13a] Allinea Software. DDT product page. http: // www. allinea. com/ products/ ddt , 2013.

[Sof13b] Rogue Wave Software. TotalView product page. http: // www. roguewave. com/

products/ totalview. aspx , 2013.

[Sub13] Apache Subversion. http: // subversion. apache. org , 2013.

[UC09] Russ Unger and Carolyn Chandler. A Project Guide to UX Design: For User Experience

Designers in the Field or in the Making. New Riders, first edition, March 2009.

[War09] Todd Zaki Warfel. Prototyping: A Practitioner’s Guide. Rosenfeld Media, first edition,

November 2009.

[XML13] XML Technology. http: // www. w3. org/ standards/ xml/ , 2013.

109

Vita

Graduate College

University of Nevada, Las Vegas

Michael Q. Jones

Degrees:

Bachelor of Science in Computer Engineering 2003

University of Wisconsin-Madison

Thesis Title: The Distributed Application Debugger

Thesis Examination Committee:

Chairperson, Dr. Jan B. Pedersen, Ph.D.

Committee Member, Dr. Ju-Yeon Jo, Ph.D.

Committee Member, Dr. Evangelos Yfantis, Ph.D.

Graduate Faculty Representative, Dr. Aly Said, Ph.D.

110

