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ABSTRACT 
 

 
 
 

by 
 

Sara S Pallekonda 
 

Dr. Woflgang Bein, Examination Committee Chair 
 

Professor of Computer Science 
 

University of Nevada, Las Vegas 
 

 
 
 

The term ‘complex systems’ may sound terrifying whenever you come across it as it 

depicts an overall collective structure which indeed can live upto its name; but when you 

comprehend the system at  its  fundamental level by stripping to its simpler multiple- 

interacting  individual  parts,  the  insights  it  provides  may  be  used  to  describe  and 

understand different problems ranging from atomic particles to the economics of societies 

and  evolution.  The  simple  laws can  be used  to  simulate the  behaviors of  disparate 

complex systems. 

 

In  this  thesis,  a  brief  study  is  done  emulating  few  such  complex  systems  through 

programming  techniques like cellular automata and  neural networks. The patterns of 

complex  behavior  obtained  are  also  classified  respectively  along  with  the  help  of 

Conway’s game of life; the working of an autonomous and self organizing organism is 

simulated in a program written to show the complex  patterns formed by a virtual ant. 

Then an important aspect of competition and cooperation among these agents is shown 

through game theory and dilemmas which throws light on the essence of survival of 

complex systems. A formal study is also done on the uses of artificial neural networks as 

associative memories and pattern recognizers. 
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CHAPTER 1 

INTRODUCTION AND OVERVIEW 
 
 
 
 

Introduction 
 

 
 

Simple things can produce complex behavior. This can be observed from the molecular 

level to the  global level. Complex systems are things that consist of many similar and 

simple parts that interact. We  can understand the behavior of the individual parts that 

make up the system easily but slightly difficult when it is seen as a whole. Thus Complex 

systems can be seen as collection of elements at various levels which can keep changing 

states. The changes are discernible not through a single rule nor reducible to a single level 

of explanation. The levels  include rules which cannot  predict  the outcome from the 

current  specifications. Systems with little interaction among the parts fall  into  static 

patterns; while on the other hand; overactive systems are embroiled in chaos. Between 

these two extremes is a region of criticality in which some very interesting things happen. 

 

The complex systems can be a collection of chemical sets; cellular regulation through 

gene excitation and inhibition; multi-cellular animals; collective super organisms such as 

ant colonies, beehives, flocks of birds, school of fish, oceanic reefs; large collection of 

organisms such as eco-system, economies and societies. 

 

Though all of these may look simple their complex system results in a rich and complex 

behavior (extremely simple rules build a very complex pattern). The science of complex 

systems is a rapidly evolving area, in terms of both domains and methods. The interest in 

this area, as well as its rather subsequent diffusion, has been rather remarkable. At the 
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most basic level, the field of complex systems challenges the notion that by perfectly 

understanding the behavior of each component part of a system we will then understand 

the system as a whole. Our work focuses on simple examples that are accessible, yet also 

contains much deeper foundational insights. [1] 

 

Complexity characteristics 
 

 
The complexities arising from the huge data are characterized by the given below factors 

 

 
 Self organization 

 
 Non-linearity 

 
 Order/chaos 

 
 Emergent properties 

 
 
 
 
 

Self Organization 
 

 
Order can also be regarded as information, so we can classify the complexity of a system 

by how much information we need to describe it. The essence of self-organization is that 

system structure often appears without explicit pressure or involvement from outside the 

system. In other words, the constraints on form of interest to us are internal to the system, 

resulting from the interactions among the components and  usually independent of the 

physical nature of those components. The organization can evolve in either time or space, 

maintain a stable form or show transient phenomena. The formation of patterns over time 

or space for previously independent variables operate under local rules. 
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The field of self-organization seeks general rules about the growth and evolution of 

systemic  structure, the forms it might take, and finally methods that predict the future 

organization that  will  result  from changes  made to the underlying  components.  The 

results are expected to  be applicable  to  all other systems exhibiting similar network 

characteristics.   The features   of   such   systems   are   autonomous,   time   evolution, 

fluctuations, global order, symmetry breaking, criticality, redundancy, self-maintenance, 

and adaptation. 

 

 
 
 
 

Examples 
 

 
Natural Selection is best known from the theory of evolution which described the success 

and extinction of species in their fight for survival. Such processes can be seen in non 

organic systems too. Researchers have developed computer programming techniques that 

solve problems  based  on  the complex processes  of  biological evolution and  natural 

selection. These techniques of "Evolutionary Computation" are called “artificial life” and 

“genetic algorithms”. 

 

Another pattern for Self-Organization is found for example in the complex system of the 

central nervous system of animals. In this example, the brain cell networks that are the 

ones that most successfully help the animal survive are the ones that are the most used, 

and thus are the ones that grow the most in size and complexity. In contrast, those brain 

cell networks that do not help the animal survive are less used, and thus grow less, and 

may even stop growing, atrophy, and disappear. The computer programming technique 

based on this approach to solving problems is called “neural networks”. 
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A  further  example  of  a  pattern  of  Self-Organization  is  where  an  overall  task  is 

accomplished by breaking it down into mini-tasks which are then spread among separate 

little parts for execution, which then also coordinate together where necessary to support 

the overall functioning. 

 

 
 
 
 

Non-Linearity 
 

 
The changes which occur in complex system are non linear in fashion. In non-linear 

change, one can see elements being changed by previous elements, but then in turn these 

changed elements can affect the  elements that are before it in the sequence. Thus we 

study the possibilities on the effects that can affect anything before and after it, the results 

being disproportional to the original inputs. These dynamic  changes are seen in nature 

and are quite unpredictable sometimes. 

 

To  control these  non  linear  systems,  they have  already tried  to  make  use of linear 

approximations effectively. The operations of predictions are done in regions where the 

system behaves almost linearly.  This means restricting the parameters of the system to 

areas that do not possess the sensitivity to initial conditions or studying only simplified 

aspects of systems. 

 

 
 
 
 

Order/Chaos 
 

The uncertainty of predictability is called chaos.  It becomes more and more difficult to 

predict what will develop based only on previous knowledge, even when that knowledge 
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is extensive. Thus even though there is logical development from stage to stage, there is 

an increasing inability to predict what will actually be the next development. 

 

A tiny change becomes increasingly difficult to predict exactly which result will actually 

occur.  But  since  some  probability  of occurrence  for  many  of them  can  be  known, 

statistical analysis is still  very important for helping describe the overall situation. A 

famous example is about how the flapping of butterfly wings in one part of the world can 

contribute to the evolution of a hurricane in another part of the world. 

 

 
 
 
 

Emergent Properties 
 

 
As the complex systems are unpredictable in nature, they can evolve giving results that 

are totally unpredictable even based on the initial original conditions. Such unpredictable 

results are called  emergent  properties.  Emergent  properties thus show how complex 

systems are inherently creative ones. These are logical results not just a predictable ones. 

 

In other  words we cannot  predict  the outcome  from studying  only the  fine details. 

Examples   include   cellular  metabolism,  ant  colonies,  organism  development,  and 

snowflakes. [2] 

 

 
 
 
 

Programming Techniques: 
 

We have seen above that all these complex systems can be emulated through computer 

programmer techniques which can be used for analyzing, simulating, and modeling these 

characteristics. They are 
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 Cellular automata 
 

 
 Artificial life 

 

 
 Neural networks 

 
 
 
 
 

CELLULAR AUTOMATA: Cellular Automata is a computing approach centered on 

simple  programming sub-routines (called agents) which are given certain operational 

limitations. It is a computing machine which is a dynamical system which is discrete in 

both space and time, patterned  after  the way cells operate as parts of an organ in the 

body. 

 

ARTIFICIAL LIFE:  The Simulations run on  a computer  with computer  generated 

entities of that type with known formulae and incorporating them into a program, running 

it to see what happens over time. 

 

NEURAL NETWORKS: The programming approach is patterned after the 

developmental processes of the nervous systems. The result is merely more probable than 

the alternatives, the system just chooses that result with the highest likelihood. [2] 
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CHAPTER 2 

 
CELLULAR AUTOMATA (CA) 

 

 
 
 
 
 
 
 

The chess-board is the world; the pieces are the phenomena of the universe; the rules of 

the game are what we call the laws of Nature. 

---T. H 

Huxley 

 

 
 
 
 

Cellular Automata 
 

 
Take a board, and divide it up into squares, like a chess-board or checker-board. These 

are the ‘cells’. Each cell has one of a finite number of distinct colors. (We don't allow 

continuous shading, and every cell has just one color.) Now we come to the ‘automaton’ 

part. Sitting somewhere to one side of the board is a clock, and every time the clock ticks 

the colors of the cells change. Each cell looks at the colors of the nearby cells, and its 

own color, and then applies a definite rule, the ‘transition rule’, specified in advance, to 

decide its color in the next clock-tick; and all the cells change at the same time. (The rule 

can  say "Stay the same.") Each cell is a sort of very simple computer - in the jargon, a 

finite-state automaton - and so the whole board is called a ‘cellular automaton’, or CA. 

To run it, you color the cells in your favorite pattern, start the clock, and stand back. [3] 

 

To put the whole concept  in a technical way, a  ‘Cellular Automata’ is a computing 

 
machine which is a dynamical system, discrete in both space and time. Or it can also be 

 
7 



defined as a collection of cells arranged in a grid such that each cell changes states(which 

can be colors, or bits, or something abstract) as a function of time according to a defined 

set of rules that includes the states of neighboring cells, known as the ‘transition rule’. 

These nearby cells make up what is known as the ‘neighborhood’ of the cell. [1] 

 

The idea of cellular automata was first introduced by Stanislaw Ulam in the 1940s where 

he suggested Von Neumann to use cellular spaces to build his cell reproductive machine. 

Thus Neumann concentrated  on the simplest  mathematical  framework,  which would 

allow information to reproduce rather than on  how animals reproduce. Von Neumann 

was able to prove that a certain CA can have a ‘general  constructive automaton’, a 

configuration of states which can construct almost any configuration of states.[4] 

 

In the subsequent sections, we will discuss about 
 

 
 One dimensional Cellular Automata, which may look simple but it can exhibit 

different types of complex behavior 

 Wolfram’s Cellular Automata classification: It consists of 4 classes and we will 

discuss about their patterns. 

 Conway’s game of life, a two-dimensional automaton that is capable of emulating 

any Turing machine and is therefore capable of any universal computation. 

Finally we conclude with a summary of natural phenomena that can be modeled by 

cellular automata. 
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2.1 One dimensional CA 
 
 
 
 
 

One-dimensional cellular automata are the simplest realization of any automata. We can 

assume a linear grid of a fixed length, consisting of various cells each of which can be in 

any one of the k finite states at a time instant. For a cell at index i, the state is described 

by a variable ci(t) at the time instant t. At the next instant t+1, the state of the cell at index 

i, depends upon the neighborhood of the cell. The radius r, which determines the state of 

cell at index i is used to define the transition rule. It means that the state  ci(t+1) is 

determined by the cell states ci-r(t) to ci+r(t), a total of (2r+1) states. [5] 

 

The simple forms of the one-dimensional cellular automata are where there are a low 

number of possible states in which the cells can be, normally two states i.e. k=2, usually 

represented by bits – 0 and  1. Sometimes colors are also used to represent the states, 

white for 0 and black for 1. The simplest  one-dimensional cellular automata have the 

minimum possible neighborhood of 3, i.e. r=1, which means only the state variables ci- 

1(t), ci(t) and ci+1(t) determine the next time instant state ci(t+1). These automata are 
 

known as ‘elementary cellular automata’, a term coined by S. Wolfram, which have been 

extensively studied for their amazing properties. 

 

For one-dimensional cellular automata, its history can be defined on a two dimensional 

grid. Moving left or right of the grid corresponds to moving in space where as time flows 

in the downward direction. The cells below the first state represent the next states. 
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There are 256 such automata, each of which can be indexed by a unique binary number 

whose decimal  representation is known as the "rule" for the particular automaton. An 

illustration of rule 30 is shown  above together with the evolution it produces after 15 

steps starting from a single black cell. [6] 

 

 
 
 
 
 
 
 
 

 
 

 
Figure 2.1.1 Rule 30, one-dimensional CA 

 
 
 
 
 
 
 
 
 
 
 

 

The transition rule for the rule 30 cellular automata can be described in the following 

table, normally known as the look-up table. 
 

 

10 



 

ci-1(t) ci(t) ci+1(t) ci(t+1) 

1 1 1 0 

1 1 0 0 

1 0 1 0 

1 0 0 1 

0 1 1 1 

0 1 0 1 

0 0 1 1 

0 0 0 0 

Table 2.1.1 Look-up table for rule 30 CA 
 

 
For a general case of one-dimensional cellular automata, a look-up table should have 

 

k
2r+1 

entries for k finite number of states and radius r for the neighboring cells. 
 

 
ci-1(t) ci(t) ci+1(t) ci(t+1) 

1 1 1 0 

1 1 0 1 

1 0 1 1 

1 0 0 1 

0 1 1 1 

0 1 0 1 

0 0 1 1 

0 0 0 0 

Table 2.1.2 Look up table for another elementary CA 
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Another example of elementary cellular automata is discussed below. The look up table 

for these automata can be shown as – 

 

 
 
 
 

 
 
 
 
 
 
 

Figure 2.1.2 Graphical Representation of rules in Elementary CA 
 

 

 
 
 
 
 
 
 

Figure 2.1.3 Resulting CA from look-up table in Elementary CA 
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The above table can be also stated as follows: if all of the cells in a neighborhood are on 

or all of the cells in a neighborhood are off then the next state is off else the next state 

will be on. If the sum of the states is equal to 1 or 2 then the CA yields a 1 else 0. 

 

We can minimize the size of a rule table if we consider only the sum of the states in a 

neighborhood.   There should be k(2r+1) entries in a rule table to analyze  each possible 

total sum. 

 

If we examine a CA with more than two states where the rule’s table length is k(2r+1) it 

can be  represented by k(2r+1) digits. Using the above rule table we will simulate the 

steps of a CA evolving over a period of time as shown below: 

 

Let the initial state be “11” which doubles its size to “1111” after one-time step. Let us 

consider each digit as a cell; we see that the center two cells have neighboring states of 

on,  so  the  next  state  must   be  off  according  to  the  table.  Likewise  we  continue 

subsequently for each step. 

 

 
 
 
 

The numbering system for elementary CA 
 
 
 
 
 

There are possible configurations for a cell when we consider its two immediate 

neighbors to  be involved in the transition rule. This leads to a possibility of 

elementary cellular automata.  A scheme called Wolfram Code was proposed by Stephen 

Wolfram, to assign a number from 0 to 255 to define these schemes.  Each possible 

current configuration is written on order, 111, 110, ... , 001, 000, and the resulting st ate 
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for each of these configurations is written in the same order and interpreted as the binary 

representation of an integer. This number is taken to be the rule number of the automaton. 

For an example the 30 in binary is 000111102. So the rule 30 is defined by the transition 

rule shown in table below. 
 
 
 
 
 

 

Current pattern 111 110 101 100 011 010 001 000 

New state of center 

 
cell 

 
0 

 
0 

 
0 

 
1 

 
1 

 
1 

 
1 

 
0 

 

 
 
 

Table 2.1.3 Look up table for rule 30 CA 
 
 
 
 
 
 
 
 
 
 

2.2 Wolfram’s CA classification 
 
 
 
 
 

The types of patterns that are generated from one-dimensional CAs for a ring of n cells 

with k states  will be of the order of n
k   

which will be  large but  finite. So  wolfram 

researched on one-dimensional CA’s and he classified CA’s into four different types. [7] 

 Class I - CAs in this class always evolve homogeneously with every cell being in 

the same state. 
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 Class II - CAs in this class form periodic structures that cycle endlessly through a 

fixed number of states. 

 Class III – CAs in this class form “aperiodic” random like patterns. 

 
 Class IV – CAs in this class form complex patterns with localized structures that 

move through space in time. These patterns must eventually become 

homogeneous like Class I or periodic like Class II. 

 

Class I: They can be simple programs which die after a few execution steps and their 

behavior is not very interesting. There is no initial configuration of sites which produces 

patterns of any length using  these rules; it will always evolve to a homogeneous state. 

They are similar to dynamical systems, which have a fixed point solution; i.e. no matter 

what input you start with, they always end up in a fixed state in a few steps. 

 

A few examples of elementary cellular automata, which are Class I are rule 250 and rule 

 
254. 
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Figure 2.2.1 Evolution of rule 250 CA (Class I) 
 
 
 
 
 

 

 
 

 
Figure 2.2.2 Graphical representation of rules in rule 250 CA 

 

 
Class II: They are repetitive automata that can be infinite loop programs. In terms of 

dynamical systems, they are the ones that fall into the category, which have limit cycles. 

There are two types of  patterns in this class, “simple periodicity” whose behavior is 

captured in a finite space and “unbounded periodicity” whose behavior wraps around 
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continuously in an infinite state never returning to any previous state but can be limited to 

a periodic behavior in a finite sized space. 

 

A few examples of elementary cellular automata, which are Class II are rule 4 and rule 

 
108. 

 

 

 
 

 
Figure 2.2.3 Evolution of rule 108 CA (Class II) 

 
 
 
 
 

 

 
 

 
Figure 2.2.4 Graphical representation of rules 

in rule 108 CA 
 

 
 
 

17 



 
 

 
Class III:  They can be chaotic dynamical systems, where in a finite space they never 

repeat and repeat  only in long cycles. These classes of CAs also vary according to the 

initial conditions where an altered initial state can result in a totally different pattern from 

the previous unaltered one. We can get a similar behavior of Class II when we embed 

limit cycles of shorter duration but these can be highly unstable and resort back to chaotic 

behavior with slight disturbances. 

 

As with all well-defined  chaotic systems,  a given state is completely reversible; the 

previous state (and all the ones before) can be predicted by examining the current state. 

This class of automata is non-deterministic in that to find the value of a site after an 

infinite amount of time, an infinite number of initial conditions must be considered. The 

Class III CA is very similar to the programs that are used  as pseudo-random number 

generators. With just a slight change in the initial configuration of cells, a very dramatic 

change can be observed in the grid pattern as time progresses. This causes such automata 

to be highly unstable, as they are very sensitive to slight variations. 

 

A few examples of elementary cellular automata, which are Class III are rule 30 and rule 

 
90. 
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Figure 2.2.5 Evolution of rule 90 CA (Class III) 
 
 
 
 
 

 

 
 

 
Figure 2.2.6 Graphical representation of rules in rule 90 CA 

 
 
 
 
 
 

Class IV: These are difficult to describe as its behavior is a bit of regular, periodic or 

random.  Its  behavior  moves  in  between  producing  some  chaotic  and  some  regular 

patterns, and are thus localized, stable, but non-periodic configurations. Given the right 
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initial conditions and a finite number of time steps, any computable problem can be 

solved by it. 

 

These configurations can be seen as encoding packets of information, preserving them 

through time,  and moving them from one spatial location to another: information can 

propagate  in  time  and  space  without  undergoing  important  decay.  The  amount  of 

unpredictability in the behavior of Class4  rules also hints at computationally interesting 

features: by the Halting Problem, it is a key feature of universal computation that one 

cannot in principle predict whether a given computation will halt given a certain input. 

These insights led Wolfram to conjecture that Class IV CA were (the only ones) capable 

of universal computation. Intuitively, if we interpret the initial configuration of a Class 

IV CA as its input data, a universal Class IV CA can evaluate any effectively computable 

function and emulate a universal Turing machine. [8] 

 

A few examples of elementary cellular automata, which are Class IV are rule 54 and rule 

 
110. 
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Figure 2.2.7 Evolution of rule 110 CA (Class IV) 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 2.2.8 Graphical representation of rules in rule 

110 CA 
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2.3 Conway’s Game of Life 
 

 
Let us take an infinite check board. As we all know that it works on very simple rules 

where we replace the current checker to form a new interesting pattern. We can create a 

Turing-  equivalent   computing  machine  by  placing  the  checkers  cleverly  and  by 

interpreting the patterns appropriately. These interesting patterns helped Conway and his 

students to believe that Life could support universal computation. Conway’s work has 

become popular by Martin Gardener in his Scientific American column. [9] 

 

John Conway had redefined the description of a cellular automaton using only two states, 

on and off, which could determine the next state using simple rules. It is an infinite two 

dimensional cellular  automaton. He named it as “The Game of Life” because the two 

states were analogous to “live” and “dead” and the rules used were “realist ic”. 

 

Let us assume that each square of the board is a cell and each cell has eight neighbors. 

The next state of a cell is a function of the states of nearest neighboring cells and the 

immediate neighbors of a cell  which  form the boundary are the eight  cells  in each 

direction which we name them as N, S, E, W, NE, NW, SE, and SW. The rules for time 

evolution are: 

 

 Loneliness- if a live cell has less than two neighbors, then it dies 

 
 Overcrowding- if a live cell has more than three neighbors, then it dies 

 
 Reproduction- if an empty cell has three live neighbors, then it comes to life 

 
 Stasis- if it has exactly two live neighbors, then the cell stays as it is. 

 

Given an initial random configuration, we can see the evolution of the system performing 

universal computations as it is in Langton’s critical area. 
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Examples of patterns: 
 

 
1.  Static objects - these do not change over time. As they are fixed persistently, they 

form a basic type of memory. Let us take a simple 2x2 filled square grid. Here it 

is clear that each live cell has exactly three live neighbors and hence it cannot go 

to the next generation. And each cell  outside this cluster has one or two live 

neighbors and hence cannot reproduce to form a new  cell. Such patterns are 

known as static objects in Conway’s Game of Life. [10] 

 

 
 

 
 

 
Figure 2.3.1 Examples of static objects in Conway’s are game of 

life 
 
 
 
 
 
 

2.  Periodic  objects  -  these  are  used  to  synchronize  events  parallel  in  time  and 

coordinate iterative operations. Periodic structures consist of three live cells in a 

row alternatively between three vertical and horizontal cells. The next generation 

cells are deceased by loneliness or overcrowding and new cells are formed which 

are again crushed. There is a mutual placement  which is enough to reproduce a 

similar configuration in the next generation. .These repeating patterns are similar 

to oscillators. [10] 
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Figure 2.3.2 Examples of simple periodic objects in Conway’s Game of 

Life 
 
 
 
 

3.  Moving objects – these have the ability to move information, which Conway 

realized as the  substitute to von Neumann’s wires. Some frequently occurring 

examples are gliders, fish and  spaceships. They can move in any of the eight 

possible directions. Gliders are one of the first to be found and these are formed 

by only five live cells. Hence the consistency of their prevalence. Self propulsion 

is cable by only Gliders and three small space ships. These can be combined to 

form other objects which collide with other type of objects in some ways, like in a 

breeder. [1] 

 
 

Figure 2.3.3 Examples of moving objects in Conway’s game of life 
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There is a possibility of self replicating machines when the system assembles a copy of 

itself and sets in motion assembling pieces to form larger and complex objects which can 

be self reproducing. As they are  capable of self replication, they can also be made to 

perform universal computations from simple  logical primitives of NOT, OR, and AND 

for arguments A and B. 

 

 
2.4 Real world CA examples 

 
We come across complex systems in our daily life. Some of the examples are” 

 

 
 Statistical mechanical systems – before supercomputers were invented, scientists 

were satisfied with purely statistical description of stochastic systems but now the 

scientists use a powerful  computer to experiment by programming the laws of 

physics into a computer model to simulate. For example a lattice gas automaton is 

a model of how gas or plasma interacts in a local space  where each molecule 

cares about its nearest neighbors and nothing else. 

 Autocatalytic chemical sets- it is a collection of chemicals that is self catalyzing 

and therefore capable of highly non linear dynamics. Each molecule in a chemical 

reactant  can  interact  with  other  molecules  which  are  located  near  the  first 

molecule. Local interactions combined with parallel evolution of the 

simultaneously occurring chemical reactions, yield remarkably accurate pictures 

of how these systems self organize. 
 
 
 
 
 
 

 
25 



 Gene regulation- a single gene can activate another gene which in turn activates 

another  gene  and  so  on.  Here  genes  are  not  inhibited  by  space  in  terms  of 

affecting other genes unlike autocatalytic chemical sets. 

 Multi-cellular organisms – a multi-celled organism is formed by pooling several 

single celled organisms which increases its efficiency to survive. 

 Colonies and super-organisms – species in the insect world such as ants, termites, 

bees  and   wasps   form  colonies. They  combine  concepts  of  parallelism, 

specialization, local interactions with limited autonomy. 

 Flocks and herds – birds move in a flock for their safety. They face two sub- 

problems, which they solve by maintaining certain distance from other birds since 

they don’t want to be too close.  They try to be in the middle of flock to avoid 

being attacked by the predators. Similar behavior  can be seen in fish and herds 

too. 

 Ecosystems – there are diverse species in an ecological system which has to be 

stable to  display  a rich variety of population dynamics. Any disturbances to it 

drastically affect the ecosystem. 

 Economies and society – systems have to be competitive and cooperative to be 

controlled economically. Anarchical systems fail in competing with systems that 

cooperate on limited scale. 
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CHAPTER 3 

 

 
AUTONOMOUS AGENTS AND SELF-ORGANISATION 

 
 
 
 
 
 

Autonomy  means  a  self  governing  state,  community  or  groups  who  have  a  unique 

capability of surviving. Autonomous agents are independent agents and they do not take 

commands from other agents though it interacts with its environment and other agents 

too. They can solve tasks in a spread out  fashion where multiple agents coordinate, 

cooperate and compete. Self organization represents a fundamental reallocation of energy 

and action within a system in order to achieve a larger goal. It  results in unexpected 

complex  behavior  from  simple  rules  through  which  stable  patterns  emerge.   Self- 

organization: this type of behavior  is seen in many cases like chemical soups, gene 

regulation systems, super organisms, animal collectives, economical systems etc where 

multiple agents can perform tasks which look global. 

 

Let us examine few examples where such phenomena is observed 
 
 
 
 
 

 

3.1  Termites 
 

 
 
 

Termites  are  small  insects  which  that  roam  around  randomly.  If  we  observe  their 

behavior we can observe the following rules: 
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 Wander around aimlessly, via a random walk, until the termite bumps into a wood 

chip. 

 If the termite is carrying a wood chip, it drops the chips and continues to wander. 

 
 If the termite is not carrying a wood chip, it picks up the one that it bumped into 

and continues to wander. 

 

These rules are very simple to follow. Let us take a small number of termites on a square 

grid on where  the wood chips are randomly placed. We can see that  initially while 

simulating the termites, they  move around randomly moving chips back and forth and 

then form small clusters of wood chips  whenever they bump  into  a wood chip and 

gradually after few more steps they form defined large clusters. Final plot of well defined 

collection can be seen after thousands of time steps.[11] 

 

The other rules that can be used on termites to prevent wastage of time and to form a 

collection of single large pile of chips are: 

 

 The termites make a random left or right and then take a step instead of just taking 

a random step in any direction. 

 After dropping or picking up a wood chip, the termites would always make a 180 

degree turn and hence they can avoid picking up the same piece they dropped. 

 

Many other changes can be added to improve the efficiency of the termites. 
 
 
 
 
 

 

3.2  Virtual Ants 
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Let us take a look upon a single virtual ant on a grid where all t he points are either white 

or black which can generate different type of complex behavior and the ant wraps from 

edge to edge. 

 

Rule set of ant for each time step: 
 

 
 The ant takes a step forward. 

 
 If the ant is now standing on a white point, then it paints the point black and turns 

 
90 degrees to the right. 

 
 Otherwise, if the ant is standing on a black point, then it paints it white and turns 

 
90 degrees to the left. 

 

 
Using these rules we get eight steps that an ant starts initially from a blank grid. We 

know that the  CAs are time reversible and so is the case for Langton’s rules. We can 

determine an ant’s future and also its past steps. For eg if the ant is standing on a black 

cell, then we know that at the previous time step the cell was white and that the ant just 

made a 90 degree turn to the right. Though time reversibility seems to be simple globally 

too, it is not true since it does not necessarily imply global simplicity as we can see from 

the given eight steps that after few steps the ant interacts with the grid locations where it 

has been in the past which shows that the ant acts recursive. The entire future could be 

changed if a cell’s color from the past is flipped at some point.[12] 

 

Suppose we simulate the ant for another 10,000 steps or so we can observe a chaotic 

looking image  with no structure but after that the ant reaches a fixed pattern. James 

Propp  discovered  that  after  another  250  steps  or  more  the  ants  starts  to  build  a 

phenomenon called a highway. The ant will build a highway for ever if there is  an 
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infinite cell space but practically it will eventually intersect a place in the ant’s grid space 

where it has been in the past and then again we can observe the chaotic behavior for few 

steps, but after another few steps  the ant will again build the highway. Thus if the 

number of states that the ant and the grid can be are finite, then the ant will fall into some 

sort of cyclic pattern. 

 

 
 
 
 

Suppose we have two ants in a grid space then at some point  because of the irreversible 

nature, both will move in a single cell space and collide with one another in such a way 

that they start to undo the others work. 

 

We get a situation in the grid where the configuration is same as some previous state but 

the ants positions are swapped and so is the direction they face (opposite in this case). If 

the ants are roaming around for a while without intersecting, then they are cleaning up 

the cell space by a stage of un-building highways and removing random patterns. After 

collision since they are swapped in positions and directions, they go on to build another 

highway system. This type of simulation is oscillating repeats in a cyclic fashion.[13] 

 

When more ants are allowed to travelled in the cell space even more interesting things 

happen and a common occurrence would be building of partial un-built highways. Apart 

from varying the number of ants we could also simulate the paths by having an initial 

configuration of the grid which is not empty, and we could have n states instead of just 

two. The n-bit rule string can thus determine the behavior of an ant. If we have an ant 

with a rule string of all 1s or all 0s, then the ant travels around in a little square. Also if 
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any of the ant has a rule string consisting of at least one 1 or 0, it cannot be confined in 

finite spaced grid. 

 

 
 
 
 

3.3  Flocks, Herds, and Schools 
 
 
 
 
 

We study how agents by themselves produce uninteresting results, but produce a variety 

of behaviors when interacting with similar agents. These agents can be a collection of 

animals such as flocks, herds etc which move about in space in a composed pattern. 

 

A model was created which simulated the motion of flock of birds called boids. Each of 

these follows a set of rules to optimize various goals. The goals that they try to achieve 

are intuitive. Some of the rules are: 

 

 Avoidance – movement of boids in such a way so as to reduce the chances of 

collision 

 Copy – move in the direction of a flock by estimating the other boids velocities 

and directions. 

 Center – moving to the center of the flock so as to avoid exterior exposure 

 
 View – move laterally away from any boid that blocks the view. 

 

 
 
 
 

Avoidance is one of the most important rules and cannot be ignored by any boid. Copy 

and center rules are inactive when the avoidance rule is being followed by a boid as it is 
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difficult for the boid to simultaneously attempt to avoid, and to copy or center on, any 

other boids that are too close. 

 

Copy rule strengthens the boids to stick together over the long term for several reasons 

such as being in a flock keeps them safe and to stay with their mate etc., collisions will 

be reduced if the birds follow this rule as they will maintain same velocities and head in 

the same direction. We allow the boids to have a look at other boids with a fixed angle 

because in reality they cannot really know the velocities of each and every other boid in 

the flock. Another constraint in this rule is that their vision is limited to a finite distance. 

 

Center rule is a very greedy rule where every boid thinks only about their safety at the 

cost of other boids and wants to be in the center of the flock to avoid attacks from their 

predators. Even in center rule the vision of boids is fixed to a certain angle and distance 

but  we  allow  them to  use  a  different  viewing  radius  for  the  purpose  of averaging 

neighbors’ positions. 

 

View rule is not a mandatory rule, it just seemed like a good idea where we partially 

blind the boids with an unrealistic viewing angle to form a “V” by the flock. The view 

rule works by moving the boid  in a direction perpendicular to the vector that joins the 

first boid and the boid that is interfering with its sight. Since there are two such paths, the 

boids select the direction that is closer to the path where the flock is originally heading. 

This rule is faced with an unrealistic effect where in the boid never seems to slow down. 

The visual interference defines a narrow region by an angle and distance.[14] 

 

Now we combine the above goals into a single action, say a single direction which is 

 
obtained by taking the weighted average of the four directions. If v terms are velocity 
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vectors, w terms are weighting factors, and µ is the momentum ( to make the boids move 

along the previous path without changing direction) term, we get 

 

Vnew = µVold + (1-µ)(WavoidVavoid + WcopyVcopy + WcenterVcenter + WviewVview) 
 

 
With the new composite velocity vector and the old position, we get the new position as 

 

 

new old + τVnew  

 
 
 
 
 
 

The ordering of the four weights is 
 

 
Wavoid  > Wview    > Wcenter  > Wcopy  because collision avoidance is more important than 

copying. 

 

Examples of boids in motion: 
 

 
1.  If the view rule is disabled, we see that a disorganized boids combine to form a 

single flock 

 

2.  If we give larger weights to center and avoidance rules while turning off the view 

rule, we get to  see that boids circle each other in a cyclic manner. The smaller 

boids start moving in an eccentric manner for sometime as they catch a glimpse of 

the bigger boid and eventually join the bigger swarm. 
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CHAPTER 4 

 
COMPETITION AND COOPERATION 

 
Even though there is a lot of competition universally among organisms, the need to 

cooperate with each other arises for a better trade of survival. For example, symbiosis 

which is seen even in humans  where bacteria co-exist to help in digestion and it also 

benefits by getting its food. Also many slime molds exhibit cooperation to combine and 

form a large multi-cellular organism when there is a scarcity of food. This is seen even in 

higher class of animals. Cheating in such scenarios is not viable because their success is 

closely related with cooperation. [15] 

 

Axelrod, a scientist examined the necessary requirements for how cooperation evolves in 

a competitive environment, how stable it is, how robust and a profitable strategy it can 

lead to be. This was studied using Game Theory and we look at how few of the games 

described below emulate the tendencies as shown by organisms. The prisoner’s dilemma 

of game theory is a very good example of such strategy. 

 

The game is defined by a set of strategies and a payoff function which determines the 

payoff a player receives when playing its strategy against the strategy of another player. 

Every  individual  follows  a  particular  strategy  and  the  payoff  of  this  strategy  will 

determine the reproduction rate of that individual in relation to other strategies. This 
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ultimately regulates the fraction of players with a particular strategy, since a player never 

changes his strategy and passes his strategy to his offspring in a reproduction event. 

 

 
 
 
 
 
 
 
 

4.1 Non zero sum games and dilemmas 
 

 
We study about games where a possibility arises for cooperation of players, and where 

there are win-win or lose-lose results; such games are called non-zero sum games which 

are realistic. Where as in zero-sum games, there is no universally accepted solution. That 

is, there is no  single optimal strategy  that  is preferable to  all others, nor  is there a 

predictable outcome. Non-zero-sum games are non-strictly competitive, as opposed to the 

completely  competitive  zero-sum  games,  because  such  games  generally  have  both 

competitive and cooperative elements. Players engaged in a non-zero sum conflict have 

some complementary interests and some interests that are completely opposed. [16] 

 

 
 
 
 

4.2 Prisoner’s Dilemma 
 

 
This game is about the interaction between the two players based on an understanding of 

motives and strategies. Let us take two suspects who have been arrested for a crime. 

 

Cooperation is a term where both suspects are silent to protect each other from conviction 

as the police don’t have enough evidence to put them in jail. With the evidence that they 

have in their hand, the suspects can get a sentence of say two years. 
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Defection is something where each suspect is asked separately to confess their crime for 

freedom or reduced sentence. if either one of the suspect confesses then the other suspect 

who doesn't will get ten years in jail and the defector will be rewarded with freedom. If 

both confess, both get five years in jail. 

 

There are many outcomes for these two cases. Cooperation between both players is the 

most benefitting  choice. Because getting 10 years is not a favorable outcome if one of 

them doesn’t cooperate and if both the players doesn’t cooperate then each will get a 5 

year sentence which is not the best outcome either but for a situation like this the best 

strategy would be to for both to confess. In fact there is a more chance of confession by 

one of them. When the players decide to cooperate as the player  defecting can gain 

freedom.[17] 

 

By observing all the above outcomes we can say that when two part ners in crime who are 

guilty have been arrested. The best option for any player is defecting no matter what the 

opponent does. 

 

Table 4.2.1 Pay-off Matrix for 

prisoner’s dilemma 
 

 
 Keep quiet Confess 

Keep quiet 3,3 1,4 

Confess 4,1 2,2 

 

 
 
 

Where 4 represents a player’s most favored outcome and 1 is the least favored outcome. 
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A strategy is said to be strictly dominant if that strategy’s pay off value for a player is 

 
greater than the other. 

 

 
Applications of Prisoner’s Dilemma 

 

 

1. Two countries considering whether to go to war: if we replace the   above two 

words i.e. keep quiet with defend , and confess  with attack, we can see that countries are 

better off defending and each country’s worst outcome is to be defensive while the other 

attacks. 

 

2. International trade: a country deciding whether to levy tax against other country’s 

 
goods or not. 

 

 
3. Advertising of products in a duo-polized market competition. 

 

 
Strict dominance is powerful methodology in game theory and to focus on each player’s 

dominant strategy we have to consider one payoff at a time. When an individual player in 

a game evaluates separately each of the strategy combinations he may face, and, for each 

combination, choose from his  own  strategies the one that gives the best payoff. If the 

same strategy is chosen for each of the  different  combinations of strategies the player 

might face, that strategy is called a "dominant strategy" for that player in that game. 

 

If each player has a dominant strategy, and if each player plays the dominant strategy, 

then that combination of (dominant) strategies and the corresponding payoffs are said to 

constitute the dominant strategy equilibrium for that game. 

 

In the Prisoners' Dilemma game,  to  confess  is  a dominant  strategy,  and  when  both 

 
prisoners confess, that is dominant strategy equilibrium.[18] 
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Stag hunt:   Two hunters are in a hunting range without any communication and they 

have to choose whether to hunt hares or the stag. If both of them are after the hares then 

each captures half of the hares. If one of them hunts for the stag then he is left empty 

handed as the other one hunts all the hares. And if both of them are after the stag, their 

share of stag is greater than the value of all hares. 

 

Table 4.2.2 The payoff matrix for Stag hunt is 

given as follows: 
 

 
 Stag Hare 

Stag 3,3 0,2 

Hare 2,0 1,1 

 

 
 
 

This game lacks a dominant strategy and hence we look for Nash equilibrium. It is a set 

of strategies, for each player such that it has no effect on the other player’s doings. So in 

this example <stag, stag> is Nash equilibrium which is also referred to as pure strategy 

Nash equilibrium (PSNE) because both hunters  are  playing deterministic strategies. If 

iterated  elimination  of  strictly  dominated  strategies reduces  the  game  to  a  single 

outcome, that outcome is Nash equilibrium and it is the only Nash equilibrium of that 

game. 

 

The stag hunt unlike the prisoner’s dilemma can analyze interdependent decisions i.e. 

each hunter’s  individual optimal strategy is a function of other hunter’s choice. It also 

shows how Nash equilibrium need not be efficient as <hare, hare>  can also be seen as a 

sustainable outcome because neither hunter has the opportunity to change depending on 

the other’s doing. 
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Now we look at mixed strategy Nash equilibrium. In the prisoner’s dilemma and stag 

hunt, the players found it beneficial to cooperate with each other whereas in games which 

do not have a pure strategy, players want to see the other perform poorly. Many examples 

fit this type of payoffs; a soccer penalty kick (striker can kick left or right, he wants the 

goalkeeper to dive in the opposite direction), a cricketer can  throw a fast or slow ball 

(batsman can guess either), in football the offense can choose a running play or passing 

play the defense can choose to protect against the pass or run. 

 

Such a strategy can be seen in a daily life example where mom injects fairness among 

siblings by allowing one child to slice the cake and the other to choose either of the two 

pieces, and thus the child tries to slice the cake exactly into two equal pieces. 

 

These are called zero sum games. The primary goal of game theory is to provide a player 

with the best possible strategy for a part icular game. Now we look at one such game as 

described below 

 

 
 
 
 

Matching Pennies 
 

Let us consider a game where two players are given a penny to be placed on a table with 

either side facing up. If both pennies are of the same side then the first player (player A) 

receives them or else the second player (player B) gets them 
 
 

 Heads Tails 

Heads 1,-1 -1,1 

Tails -1,1 1,-1 

 
39 



 
 
 
 
 
 
 
 
 
 
 

Table 4.2.3 Payoff matrix for Matching Pennies 
 

 
The rules for the game can be described in the payoff matrix above.  The best strategy is 

to randomly pick heads or tails with equal probability. This is mixed strategy because 

player should mix things up when there is absence of information. To randomize things 

for mixed strategies, players can decide to flip the coins before placing them and thus the 

probability induced reduces the chances of pure strategies. 

 

Now the generalized expected score for a player is 
 

 
E(A) = HH × PA(heads) × PB(heads) + HT × PA(heads) × (1 – PB(heads)) + TH × (1 – 

 
PA(heads)) × PB(heads) + TT × (1- PA(heads)) × (1- PB(heads)) 

 

 
Where <HH>, <HT>, <TH>, and <TT> correspond to the four possible payoffs for a 

player; PA, PB are probabilities of playing a head by respective players. This equation 

will have at least one  equilibrium  which means that a best strategy can be known by 

looking for flat spots on the surface plot. This equilibrium is known as mixed strategy 

Nash equilibrium. 

 

 
 
 
 

4.3 Iterated Prisoner’s Dilemma 
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The classical IPD is used to study the evaluation of co-operation. Numerous strategies 

can be generated by genetic approaches. 

 

It is identical to the previous version except that the players play for many rounds, and 

also players has an idea about their opponent’s previous moves. Thus decisions can be 

based  on  whether  they  have  been  cooperative  or  not.  Iteration  plays  an  important 

role.[19] 

 

To have a dilemma, the following inequation has to be achieved: 
 

 
Temptation >Reward >Punishment >Sucker’s payoff 

 
 
 
 
 
 

Robert Axelrod assigned numerical values to each of the four possible playoffs so as to 

keep a score of the winner; 5 points for temptation payoff ( DC=5), 3 points for mutual 

cooperation ( CC=3), 1 point as a punishment for mutual defection (DD=1), and 0 points 

as sucker’s payoff ( CD=0). Some of the simple unrealistic strategies: 

 

• all_c: Always cooperates. [c]* 
 

 
• all_d: Always defects. [d]* 

 

 
• tit_for_tat: The tit_for_tat strategy was introduced by Anatole Rapoport. It begins 

to cooperate, and then play what its opponent played in the last move. 

 

• Spiteful: It cooperates until the opponent has defected, after that move it always 

 
defects. 
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• soft_majo: Plays opponent's majority move, if equal then cooperates. First move 

is considered to be equality. 

 

• per_ddc: Plays periodically : [d,d,c]* 
 

 
• per_ccd: Plays periodically : [c,c,d]* 

 

 
• mistrust: Defects, then plays opponent's move. 

 

 
• per_cd: Plays periodically [c,d]. 

 

 
• Pavlov: The win-stay/lose-shift strategy was introduced by Martin Nowak and 

Karl Sigmund. It cooperates if and only if both players opted for the same choice in the 

previous move. 

 

• tf2t: Cooperates except if opponent has defected two consecutive times. 
 

 
• hard_tft: Cooperates except if opponent has defected at least one time in the two 

previous move. 

 

• slow_tft: Plays [c,c], then if opponent plays two consecutive time the same move 

plays its move. 

 

• hard_majo: Plays opponent's majority move, if equal then defects. First move is 

considered to be equality. 

 

• Random: Cooperates with probability ½. 
 

 
To study the behavior of these strategies, two kinds of computation can be done.[20] 
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1. Round-Robin Tournament: Here each strategy meets all other strategies. The sum of 

all scores in each confrontation is its final score. Range in the tournament is used at the 

end to get the measurement of the strategy's strength. This way Axelrod has isolated the 

tit-for-tat strategy. 

 

2. Simulated Ecological Evolution: The population of bad strategies is decreased whereas 

good strategies obtain new elements from the fixed initial population using the Round- 

Robin Tournament made. Once the population is stabilized or does not change anymore, 

the simulation stops. We can see that strategies which try to defect initially are not stable 

and good ones take over. These increasing good ones then stay for longest possible time 

in the population. 

 

The weakness of the above strategies is that they lack memory i.e. they do what they do 

regardless of pervious occurrences of both players. Another strategy that was introduced 

in the tournament was TFT (tit for tat), which punishes any defections later while being 

nice at first i.e. cooperates in the first round of any game of IPD then it will do exactly 

what the opponent did in the previous round. Its same as ALL-C when played against it 

but against ALL-D, it gets beaten first but will reciprocate with defection for the rest of 

the game. 

 

To be good a strategy must: 
 

 
• Be nice, i.e.  not be the first to defect 

 

 
• Be reactive 

 

 
• Forgive 
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• Not be too clever, i.e.  to be simple in order to be understood by its opponent 
 
 
 
 
 
 

4.4 IPD Applications for Complex Systems 
 
 
 
 
 
 

 The Iterated Prisoner’s Dilemma (IPD) is widely used to study the evolution of 

cooperation  between self-interested agents. Existing work asks how genes that 

code for cooperation arise  and spread through a single-species population.   We 

study the competition between different species of agents as a macro-evolutionary 

phenomenon. The more selfish species tend to get extinct while competing. The 

outcome of this competition depends on many factors: chance,  population size, 

the species and their initial proportions in the population. By manipulating some 

of these, we aim to understand better how cooperative behavior can evolve in 

populations of self-interested individuals, and what factors affect that 

evolution.[21] 

 We have seen above that TFT strategy performed well in the aforementioned 

tournaments in a 2-person IPD, but what is the best strategy in an N-person IPD? 

With  the  advancements  in  technology,  every  player's  history  information  of 

choice could be seen by all other players. A new tournament is presented to study 

the strategy selection for NSIPD. [22] 

 

The model for this method is that it has an infinite population of players and there are a 

finite number  of  distinct strategies in this population. Some of which were  used for 

experimentation were – 
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TIT  FOR  TAT  (TFT);  ALLD  (always  Defect  disregarding  the  opponent'  Defect’s 

history); ALLC (always cooperate disregarding the Cooperate opponent's history); RAN 

(Randomly cooperate or defect  regarding the opponent's history); Never Forgive (NF); 

F_1  (forgive  once,  Cooperate  if  opponent  defects  only  once  in  latest  three  moves, 

otherwise defect); F_2 (forgive twice, Cooperate if opponent  defects only two times in 

latest three moves, otherwise defect). 

 

This has shown that TFT does not have overwhelming advantage over other six strategies 

and the best strategy lies on round number and strategy distribution. The second result is 

that ALLD performs worst synthetically. There is no theoretical best strategy and how to 

do well lies on many factors 
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CHAPTER 5 

 
NEURAL NETWORKS 

 
 
 
 
 
 

Natural and Analog Computation 
 

 
The artificial neural networks have been evolving to achieve human like performance in 

the fields of  image and speech recognition which are one of the greatest potential of 

neural  networks.  This  is  a  vast  subject  where  there  are  many  examples,  equations, 

simulations, theorems, implementations that are being studied. 

 

While this is an impractical technique for very complicated complex problems, it still 

demonstrates  how  nature and the laws of physics can work together in order to solve 

interesting problems. There are  many other types of phenomena that can be seen as 

solving optimization problems, if viewed in the right way. 

 

Associative memory and combinatorial optimization problem are two main applications 

of neural networks. Our brain is the best example for associative memory. 

 

The soap bubble can be used as a comparison for distributed dynamical system that can 

compute interesting things. Here the whole soap film wants to minimize its surface area 

and not just one bubble. Each molecule in a soap solution interacts only with a relatively 

small  number  of  neighboring  molecules.  Hence,  a  global  property  surface  area  is 

minimized by only local interactions. Similarly, global properties such as the collection 

of  neural  activations  that  compose  a  distributed  memory  or   the  solut ion  to  an 

optimization problem may emerge from only local interactions.[1] 
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5.1 Artificial Neural Networks 

 
 
 
 
 
 

A typical neuron has a cell body, many dendrites and an axon that ends with a bundle of 

terminal  fibers.  A neuron operates by receiving  signals  from  other  neurons through 

connections,  called synapses.  In  human  brain  there  are  around  one  hundred  billion 

neurons which are connected to another thousand different neurons through the dendrites 

or the cell body itself. The dendrites are receptors for signals generated by other neurons. 

Information is propagated through these connections by sending a pulse  through the 

axon. 

 

The combination of these signals, in excess of a certain threshold or activation level, will 

result in the neuron firing, which is sending a signal onto other neurons connected to it. If 

a neuron fires an electrical impulse is generated. The impulse starts at the base, called the 

hillock, of a long cellular extension, called the axon, and proceeds down the axon to its 

ends. 

 

Artificial  neural  network  is  nothing  but  a  collection  of artificial  neurons  which  are 

interconnected and share the properties of biological neural networks. It is a network of 

simple processing neurons with  limited connectivity which exhibit interesting complex 

behavior.[22] 

 

During the early stages neural networks remained very uncertain for nearly 20 years. The 

 
McCulloch and Pitts model of a neuron has been very important in computer science as it 
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was one of the first. In fact, you can buy MCP neuron at most electronic stores, but they 

are called "threshold logic units." A group of MCP neurons that are connected together is 

called an artificial neural network. Threshold logic unit is a very simplified model of a 

neuron. 

 

In McCulloch-Pitts neural model, the neurons state or activation ai(t), at time t, is a 

function of a weighted sum of all of the incoming signals and in order to excite or a fire a 

neuron at any time, a certain number of synapses must be excited within a period of latent 

addition.  The  position  of  the  neuron  and  its  previous  activity  does  not  affect  this 

number.(if it is greater than the predetermined threshold then it will fire with activation of 

1, else the activation of neuron is 0.) an output signal is either 0 i.e., discrete value or a 

real value number between 0 and 1  The activation function has a sigmoid shape. 

 

 
 
 
 

 
 
 
 
 
 
 

Where - 
 

 
ai(t) is activation value of neuron I at time t 

 

 
wij is strength of synapse connecting neuron j to neuron i 

 

 
bi is threshold that neurons i’s net input must exceed in order to fire 

 

 
Θ(x) is unit step function: 1 if x ≥ 0, 0 if x < 0 
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Sgn(x) is sign function: 1 if x ≥ 0, -1 if x < 0 
 

 
Hi is net input, ∑jwijaj(t), into neuron i 

 

 
This model has been updated but still it has its limitations as it cannot be taken as real. It 

just  reflects  one  or  more  neurophysiologic  observations.  At  a  given  time  step,  the 

activation  values  can  be  updated  in  two  ways.  One  is  synchronous  and  the  other 

asynchronous updating. 

 

Using a directed graph we can represent artificial neural network which consists of many 

neurons that are interconnected. 

 

Here is an example of a directed graph with a n ordered tuples (V,E), where V is the set 

of vertices that  represents neurons and E is the set of edges that represent the synaptic 

strengths i.e., the weights attached.[23] 

 

 
 
 
 

 
 

 
Figure 5.1 Example of a directed graph 

Vertices V = { v1,v2,v3,v4,v5 } 

Edges E = { e1,e2,e3,e4,e5 } 
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5.2 Associative Memory and Hebbian Learning 

 
 
 
 
 
 

One of the most integral parts of our cognitive function is memory. Computers are being 

used  extensively  for  modeling.  Simulation  is  a  very  important  tool to  organize and 

synthesize a coherent understanding from massive amounts of experimental data. Hebb’s 

theory  is  one  of  the  most  earliest   and  realistic  theories  on  associative  memory. 

Associative memory’s function is to recognize previously learned input vectors, from the 

know vectors even if some noise has been added to it. 

 

Hebbian learning is a learning algorithm derived from biological neurons that can be used 

to train associative networks. In Hebbian learning, units that fire together wire together. 

Self organizing is one of the main features of Hebbian learning. [24] 

 

Hebb’s postulate states that, “ when an axon of cell A is near enough to excite cell B or 

repeatedly,  or  persistently takes part  in  firing  it,  some growth process or  metabolic 

change takes place in one or both cells such that A’s efficiency, as one of the cells firing 

B, is increased”. [25] 

 

Though Hebb’s principal is purely theoretical, the mathematical terms for this principal 

has not been formulate by him. One of the basic hebbian learning rules is formulated as, 

 

∆wij= εaiaj 

 

 
Where, ∆ wij denotes the change in weight from unit i to unit j, 
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ai  and aj  denote the activation levels of units i and j respectively, 
 

 
ε denotes the learning rate. 

 

 
Changes in the strength of connection weights in neural networks are an implementation 

of Hebbian  learning. Weight changes as a function of units’ activity levels in Hebbian 

learning. 

 

From the above equation we can say that ai  aj  are directly proportional to the weights i.e., 

as the value of ai  and aj  increases so will the weights.  At a given time t, the value of 

weight can be calculated as, 

 

wij (t)= wij (t-1) + ∆wij 

 
 
 
 
 
 

The problem with our Hebbian rule is that though the weights can increase, they cannot 

decrease. Over successive steps is one of the reasons for this problem because the rule 

forces the weights within the network to become infinitely large. The other reason is that 

the weights cannot decrease accordingly. Hence by normalizing the weight updates with 

the following equation these problems can be solved. 

 

∆ wij (t)= εaj  (ai- wij) 
 

 
Speech and Image Recognition 

 

 
These models are used in speech and image recognition processes to achieve human like 

performances. It consists of many nonlinear computing elements arranged in parallel and 

patterns emulating a biological neural net. These computational nodes are connected via 
 

 
 

51 



variable weights that improve performance in adapting during use. These nets which act 

as highly parallel building blocks can be used to construct more complex systems. They 

also  provide  better   robustness  and  fault-tolerance  than  Von  Neumann  sequential 

computers 

 

Classifiers perform three tasks: 
 

 
1. Identify which class represents the best input pattern ( as generally they are noisy 

inputs) 

 

2. Used as associative memory where the input pattern is used to determine which 

output has to  be  produced. Sometimes only a part of the pattern is available and for 

further  retrieval  there  are  additional  stages  which  design  Hopfield  nets  as  content - 

addressable memories. 

 

3. Perform vector quantization, used to compress the bits in speech and image recognition 

 
for faster transfer of analog data. 
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Figure 5.2 Neural net taxonomy 
 
 
 
 
 
 

Hopfield Net 
 

 
This can be used an associative memory to solve optimization problems. It takes N binary 

inputs; the  output  of each node is fed back to all other nodes via weights. The initial 

weights are set using the exemplary patterns and then when a noisy corrupt pattern is fed, 
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the net iterates in times steps by a given formula to match the pattern. The net output after 

convergence is used directly as the restored memory. The limitations of this net are: 

 

• The number of stored patterns is limited and sometimes many a stored patterns 

can give rise to dubious matches. 

 

• An example pattern can be unstable if it shares many bits in common with another 

example pattern. 

 

 
 
 
 

Hamming Net 
 

 
As seen above the Hopfield net is used where inputs are selected randomly or reversing 

the bits of exemplary patterns in a probabilistic manner, but when binary fixed-length 

signals  are  sent  through  memory-less  binary  symmetric  channels,  the  hamming  bit 

distance is used to calculate the optimum minimum error classifier. Such a model which 

implements  this  algorithm  in  a  neural  net  component  is  called  hamming  net.  (The 

hamming distance is the number of bits in the input which do not match the example bits) 

 

Carpenter/Grosberg Classifier 
 

 
This net  implements a clustering algorithm of leader selection. The leader algorithm 

selects the first input as the exemplar for the first cluster. The next input is compared t o 

this first cluster. It is clustered  with the first if the distance to the first is less than a 

threshold value or it becomes exemplary for a new cluster. This process is repeated so on. 

The structure is similar to hamming net and the matching scores are computed using 
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feed-forward connections. This differs from hamming net in that feedback connections 

are provided from output nodes to the input nodes. 

 

PERCEPTRON 
 

 
It has the ability to recognize simple patterns. The single node computes a weighted sum 

of the inputs (belonging to classes), subtracts a threshold and outputs the decision as a 

non-linearity to determine the class. It forms two decision regions separated by a hyper 

plane  whose  equation  depends  on  the  connection  weights  and  the  thresholds.  The 

structure can be used to implement Gaussian maximum  likelihood classifier, a robust 

technique. 

 

MULTI-LAYER PERCEPTRON 
 

 
These are feed-forward nets with more layers of nodes between inputs and outputs. A 

single layer perception forms half plane decision regions whereas a two-layer perception 

can form any possibly  unbounded convex regions. Multiple layers can form complex 

regions  as  obtained  using  nearest-neighbor  classifiers.  These  can  be  used  to  create 

continuous likelihood functions. 

 

KOHONEN’S SELF ORGANIZING FEATURE MAPS 
 

 
These maps are similar to the placement of neurons in an orderly fashion in our brain. A 

two dimensional array of output nodes is used to form the feature map where each input 

is connected to every output  node  via a variable connection weight. The weights will 

specify  clusters such that  the point  density  of  the vectors tends to  approximate the 

probability  density  function  of  the  input  vectors.  This  is  vital  in  complex  systems 
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reducing the lengths of inter-layer connections. This performs relatively well in noise 

because the number of classes is fixed, weights adapt slowly, and adaptation stops after 

training. 

 

The neural nets potentiality lies in its high speed processing through massively parallel 

implementations. They can be used to 

 

 Analyze and learn about self-organizations 

 
 Analyze and learn about self-organizations 

 
 developing  design  principles  to  solve  sensitivity  problems  for  large  analog 

systems 

 Building complete systems for image and speech recognition 

 
 Determining which algorithm can be implemented using neuron like components. 
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CHAPTER 6 

 

 
CONCLUSION AND RESULTS 

 
 
 
 
 
 

In this thesis, we thoroughly analyzed and studied various complex systems. Examples 

were studied  where various simple rules when applied over a large time led to really 

complex and sometimes unpredictable phenomena, or even settle in a final state which 

does not change with time thereafter. 

 

The simplest ones among these are – 
 

 
 Elementary Cellular Automata 

 
 Wolfram’s classification of elementary CA 

 
 Conway’s Game of Life 

 

 
Of these, we implemented the codes for all the four Wolfram classes of Cellular automata 

with a fixed length 8-bit random sequence, and ran the algorithm for a fixed number of 

steps to study the different ways in which these different classes of CA develop. 

 

Also, a similar scenario has been implemented for the Conway’s Game of Life on a fixed 

size grid  (rather than an infinite grid) starting  with some alive cells and  letting  the 

simulation run for a fixed time to see the evolution with time. 
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We then moved to some more complex systems involving autonomous agents and self 

organization. The ones we studied here were – 

 

 Termites 

 
 Langton’s Virtual Ants (single and multiple) 

 
 Flocks and Herds 

 
 
 
 
 
 

The experiments in NISPD differ from Axelrod’s IPD. We have seen that TFT need not 

be the best over  other six strategies and the best strategy lies on round number and 

strategy distribution; and also shown is that ALLD performs worst. Also defecting is not 

the preferred strategy even if people might  not play game in fixed, repeated long-run 

interactions with certain people. There is no theoretical best strategy and performance is 

based on many factors. A harmonious society with cooperation and competition can be 

built  up  if these factors are constrained  by technology. The evolution of strategy  in 

NSIPD is under investigation. 

 

 
 
 
 

The report  also  described  a wide  variety of neural network  modules  for  associative 

memory,  category  learning, and pattern recognition. The general description of these 

neural nets is given but the field has been emerging rapidly and more complex systems 

are  under  development.  These  have   higher  speeds  of  processing  through  massive 

parallelism  implementing  VLSI.  Future  research  in  solving  dynamic  and  sensitive 

problems for large analog systems can be implemented using neuron like components i.e. 

real time neural net systems. 
 

58 



By studying all of these, we analyzed various simple phenomena leading to complex 

behaviors over  time. Also we saw that the learning algorithms can be used to solve a 

variety of problems in real life. 

 

 
 
 
 

Future Work 
 

 
In the future, we can work on more smart algorithms, or extending the algorithms to have 

graphical outputs for better understanding. Also we can choose some more real life 

problems, and try to implement the concepts learnt and discussed here to try and find 

solutions for them. 
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APPENDIX 
 

 
 

A. One Dimensional Elementary Cellular Automata 
 

 
 

The code below,  written  in Microsoft  Visual Studio  implements a generate case of 

elementary CA. An example of each of the four classes of CA is shown: 

 

The code generates one-dimensional elementary cellular for an 8-bit array over 10 time 

steps. The initial input is taken as randomly generated bit array of length 8. The different 

CA, that are implemented are – 
 
 

 Rule30 - A general CA 

 



 
 

 

Rule250 

 
Rule108 

 

- A Class I CA 

 
- A Class II CA 

 

 Rule90 - A Class III CA 

 
 Rule54 - A Class IV CA 

 
 
 
 

Based on the Wolfram Code of the elementary CA, the corresponding Kernaugh Map is 

used to find the  underlying  logic; which is then used for the implementation of the 

cellular automata. 
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// elementaryCA.cpp : Defines the entry point for the console application. 

 
#include "stdafx.h" 

#include "stdio.h" 
#include "stdlib.h" 

#include "math.h" 

 
const unsigned int nSize = 8; 

const unsigned int nTime = 10; 

 
unsigned int nArray[nTime][nSize] = {0}; 

 
void applyRule30(); // A general CA 

void applyRule250(); // Class I CA 

void applyRule108(); // Class II CA 

void applyRule90(); // Class III CA 

void applyRule54(); // Class IV CA 

 
void printArray(); // Printing CA 

 
int _tmain(int argc, _TCHAR* argv[]) 

{ 

for (int nIndex = 0; nIndex < nSize; nIndex++) 

{ 
nArray[0][nIndex] = rand()%2; 

} 

 
applyRule30(); 

printf("\n A General CA \n"); 

printArray(); 

 
applyRule250(); 

printf("\n A Class I CA \n"); 

printArray(); 

 
applyRule108(); 

printf("\n A Class II CA \n"); 

printArray(); 

 
applyRule90(); 

printf("\n A Class III CA \n"); 

printArray(); 

 
applyRule54(); 

printf("\n A Class IV CA \n"); 

printArray(); 
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return 0; 

} 
 

void applyRule30() 

{ 

for(int nTimeIndex = 1; nTimeIndex < nTime; nTimeIndex++) 

{ 

for(int nIndex = 0; nIndex < nSize; nIndex++) 

{ 

int nLeft, nCurrent, nRight; 

 
nCurrent = nArray[nTimeIndex-1][nIndex]; 

if (nIndex == 0) 

{ 
nLeft = 0; 

nRight = nArray[nTimeIndex-1][nIndex+1]; 

} 

else if (nIndex == nSize-1) 

{ 
 

 
 

} 

else 

{ 
 

 
 

} 

nRight = 0; 

nLeft = nArray[nTimeIndex-1][nIndex-1]; 
 
 
 
 

nLeft = nArray[nTimeIndex-1][nIndex-1]; 

nRight = nArray[nTimeIndex-1][nIndex+1]; 

 

int nNext = (nCurrent + nRight + nCurrent*nRight + 

nLeft*nCurrent*nRight)%2; 

nArray[nTimeIndex][nIndex] = nNext; 

} 

} 

} 
 

void applyRule250() // Class 1 exapmple Also Rule 254 

{ 

for(int nTimeIndex = 1; nTimeIndex < nTime; nTimeIndex++) 

{ 

for(int nIndex = 0; nIndex < nSize; nIndex++) 

{ 

int nLeft, nCurrent, nRight; 

 
nCurrent = nArray[nTimeIndex-1][nIndex]; 

if (nIndex == 0) 
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{ 

nLeft = 0; 
nRight = nArray[nTimeIndex-1][nIndex+1]; 

} 

else if (nIndex == nSize-1) 

{ 
 

 
 

} 

else 
{ 

 

 
 

} 

nRight = 0; 

nLeft = nArray[nTimeIndex-1][nIndex-1]; 
 
 
 
 

nLeft = nArray[nTimeIndex-1][nIndex-1]; 

nRight = nArray[nTimeIndex-1][nIndex+1]; 

 

int nNext = nLeft + nRight - nLeft*nRight; 

nArray[nTimeIndex][nIndex] = nNext; 

} 

} 

} 

void applyRule108() // Class 2 exapmple Also Rule 4 

{ 

for(int nTimeIndex = 1; nTimeIndex < nTime; nTimeIndex++) 

{ 

for(int nIndex = 0; nIndex < nSize; nIndex++) 

{ 

int nLeft, nCurrent, nRight; 

 
nCurrent = nArray[nTimeIndex-1][nIndex]; 

if (nIndex == 0) 

{ 
nLeft = 0; 

nRight = nArray[nTimeIndex-1][nIndex+1]; 

} 

else if (nIndex == nSize-1) 

{ 
 

 
 

} 

else 
{ 

 

 
 

} 

nRight = 0; 

nLeft = nArray[nTimeIndex-1][nIndex-1]; 
 
 
 
 

nLeft = nArray[nTimeIndex-1][nIndex-1]; 

nRight = nArray[nTimeIndex-1][nIndex+1]; 

 

int nNext = (nCurrent + nLeft*nRight)%2; 
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nArray[nTimeIndex][nIndex] = nNext; 

} 
} 

} 
 

void applyRule90() // Class 3 CA, Also see Rule 30 

{ 

for(int nTimeIndex = 1; nTimeIndex < nTime; nTimeIndex++) 

{ 

for(int nIndex = 0; nIndex < nSize; nIndex++) 

{ 

int nLeft, nCurrent, nRight; 

 
nCurrent = nArray[nTimeIndex-1][nIndex]; 

if (nIndex == 0) 

{ 

nLeft = 0; 

nRight = nArray[nTimeIndex-1][nIndex+1]; 

} 

else if (nIndex == nSize-1) 

{ 
 

 
 

} 

else 

{ 
 

 
 

} 

nRight = 0; 

nLeft = nArray[nTimeIndex-1][nIndex-1]; 
 
 
 
 

nLeft = nArray[nTimeIndex-1][nIndex-1]; 

nRight = nArray[nTimeIndex-1][nIndex+1]; 

 

int nNext = (nLeft + nRight)%2; 

nArray[nTimeIndex][nIndex] = nNext; 
} 

} 

} 
 

void applyRule54() // A Class 4 CA, also see Rule 110 

{ 

for(int nTimeIndex = 1; nTimeIndex < nTime; nTimeIndex++) 

{ 

for(int nIndex = 0; nIndex < nSize; nIndex++) 

{ 

int nLeft, nCurrent, nRight; 

 
nCurrent = nArray[nTimeIndex-1][nIndex]; 

if (nIndex == 0) 
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{ 

nLeft = 0; 
nRight = nArray[nTimeIndex-1][nIndex+1]; 

} 

else if (nIndex == nSize-1) 

{ 
 

 
 

} 

else 
{ 

 

 
 

} 

nRight = 0; 

nLeft = nArray[nTimeIndex-1][nIndex-1]; 
 
 
 
 

nLeft = nArray[nTimeIndex-1][nIndex-1]; 

nRight = nArray[nTimeIndex-1][nIndex+1]; 

 

int nNext = (nLeft + nCurrent + nRight + nLeft*nRight)%2; 

nArray[nTimeIndex][nIndex] = nNext; 

} 

} 

} 
 

void printArray() 

{ 
for(int nRowIndex = 0 ; nRowIndex < nTime; nRowIndex++) 

{ 

for(int nColIndex = 0; nColIndex < nSize; nColIndex++) 

{ 

printf(" %d ", nArray[nRowIndex][nColIndex]); 

} 
printf(" \n "); 

} 

} 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

65 



B.  Langton’s Ant 
 

 
 

The  following  codes  written  in  Microsoft  Visual  Studio  are  an  implementation  of 

Langton’s ant on a fixed size grid. We assume a square grid, and place an ant (or two) 

pointing in specific direction(s) on the grid, and run the evolution for a fixed time (twice 

the size of grid in this case). The resulting state of the grid at each time instant is printed 

showing 1’s at the cells, which are in ON state; and 0’s at the cells in the OFF state. 

 

 
 
 

Code for single Langton ant 
 

 
 

// visualAnt.cpp : main project file. 

 
#include "stdafx.h" 

#include "stdio.h" 

 
// GRID SIZE 

const unsigned int nSize = 20; 

 
// CONSTANTS FOR DIRECTIONS, COLORS AND TURNS 

enum Directions 

{ 

North, East, South, West 

}; 
 

enum Colors 

{ 

White, Black 

}; 
 

enum Turn 

{ 

turnRight, turnLeft 

}; 
 

// STRUCTURE THAT DEFINES THE SINGLE BLOCK OF THE GRID 

struct block 

{ 

int nXpos; 
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int nYpos; 

int nColor; 
}Grid[nSize][nSize];  // SQUARE GRID CONTAINING nSize*nSize BLOCKS 

 
// FUNCTION DECLARATIONS 

void InitializeGrid(); 
void SetColor(int *pXpos, int *pYpos); 

void Move(int *pXpos, int *pYpos, int *pDir); 

 
int main() 

{ 

// SETTING THE GRID AND ANT POSITION AND ORIENTATION INITIALLY 

InitializeGrid(); 

 
int nCurrentX = nSize/2; 

int nCurrentY = nSize/2; 

int nDirection = North; 

int nTurn = turnRight; 

 
// POINTERS TO UPDATE VALUES 

 
int *pCurrentX = &nCurrentX; 

int *pCurrentY = &nCurrentY; 

int *pDirection = &nDirection; 

 
// FILE TO SHOW THE CHANGE IN GRID OVER ITERATIONS 

FILE * pFile; 

pFile = fopen("visualAnt.txt", "w"); 

 
// MOVING THE ANT 2*nSize TIMES 

for(int nIndex = 0; nIndex < 2*nSize; nIndex ++) 

{ 

// PRINTING THE CURRENT GRID STATE 

for(int nYIndex = 0; nYIndex < nSize; nYIndex++) 

{ 

for(int nXIndex = 0; nXIndex < nSize; nXIndex++) 

{ 

printf(" %d ", Grid[nXIndex][nYIndex].nColor); 

fprintf(pFile,   " %d ", Grid[nXIndex][nYIndex].nColor); 

} 

printf("\n"); 

fprintf(pFile, "\n"); 

} 

printf("*****************************************"); 

printf("\n\n"); 

fprintf(pFile,"*****************************************"); 
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fprintf(pFile, "\n\n"); 

 
// CHECKING AND CHANGING THE COLOR OF CURRENT BLOCK 

SetColor(&nCurrentX, &nCurrentY); 

 
// SETTING THE TURNING DIRECTION AND ORIENTATION 

if(Grid[nCurrentX][nCurrentY].nColor == Black) 

{ 

nTurn = turnRight; 

if(nDirection == West) 

nDirection = North; 
 

 
 

} 

else 

{ 

else  
nDirection++; 

nTurn = turnLeft; 

if(nDirection == North) 

nDirection = West; 

else 

 
} 

 
nDirection--; 

 

// MOVING THE ANT 

Move(&nCurrentX, &nCurrentY, &nDirection); 

} 
 

fclose(pFile); 
 

getchar(); 

return 0; 

} 
 

// FUNCTION DEFINITIONS 

void InitializeGrid() 

{ 

for(int nYIndex = 0; nYIndex < nSize; nYIndex++) 

{ 

for (int nXIndex = 0; nXIndex < nSize; nXIndex++) 

{ 

Grid[nXIndex][nYIndex].nXpos = nXIndex; 

Grid[nXIndex][nYIndex].nYpos = nYIndex; 

Grid[nXIndex][nYIndex].nColor = White; 

} 

} 

} 
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void SetColor(int *pXpos, int *pYpos) 

{ 

if(Grid[*pXpos][*pYpos].nColor == White) 

Grid[*pXpos][*pYpos].nColor = Black; 

else 

 
} 

 
Grid[*pXpos][*pYpos].nColor = White; 

 

void Move(int *pXpos, int *pYpos, int *pDir) 

{ 
switch (*pDir) 

{ 

case North: 

(*pYpos)--; 

break; 

case East: 

(*pXpos)++; 

break; 

case South: 

(*pYpos)++; 

break; 

case West: 

(*pXpos)--; 

break; 

default: 

break; 
} 

} 
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Code for two Langton ants 
 

 

// visualAnt.cpp : main project file. 

 
#include "stdafx.h" 

#include "stdio.h" 

 
// GRID SIZE 

const unsigned int nSize = 20; 

 
// CONSTANTS FOR DIRECTIONS, COLORS AND TURNS 

enum Directions 

{ 
North, East, South, West 

}; 
 

enum Colors 

{ 

White, Black 

}; 
 

enum Turn 

{ 

turnRight, turnLeft 

}; 
 

// STRUCTURE THAT DEFINES THE SINGLE BLOCK OF THE GRID 

struct block 

{ 

int nXpos; 

int nYpos; 

int nColor; 

}Grid[nSize][nSize];  // SQUARE GRID CONTAINING nSize*nSize BLOCKS 

 
// FUNCTION DECLARATIONS 

void InitializeGrid(); 

void SetColor(int *pXpos, int *pYpos); 
void Move(int *pXpos, int *pYpos, int *pDir); 

 
int main() 

{ 

// SETTING THE GRID AND ANT POSITION AND ORIENTATION INITIALLY 

InitializeGrid(); 

 
// For Ant 1 

int nCurrentX = 2*nSize/3; 
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int nCurrentY = 2*nSize/3; 

int nDirection = North; 
int nTurn = turnRight; 

 
// For Ant 2 

int nCurrentX2 = nSize/3; 
int nCurrentY2 = nSize/3; 

int nDirection2 = North; 

int nTurn2 = turnRight; 

 
// POINTERS TO UPDATE VALUES 

 
// For Ant 1 

int *pCurrentX = &nCurrentX; 

int *pCurrentY = &nCurrentY; 

int *pDirection = &nDirection; 

 
// For Ant 2 

int *pCurrentX2 = &nCurrentX2; 

int *pCurrentY2 = &nCurrentY2; 

int *pDirection2 = &nDirection2; 

 
// FILE TO SHOW THE CHANGE IN GRID OVER ITERATIONS 

FILE * pFile; 

pFile = fopen("visualAnt.txt", "w"); 

 
// MOVING THE ANT 2*nSize TIMES 

for(int nIndex = 0; nIndex < 2*nSize; nIndex ++) 

{ 

// PRINTING THE CURRENT GRID STATE 

for(int nYIndex = 0; nYIndex < nSize; nYIndex++) 

{ 

for(int nXIndex = 0; nXIndex < nSize; nXIndex++) 

{ 

printf(" %d ", Grid[nXIndex][nYIndex].nColor); 

fprintf(pFile,   " %d ", Grid[nXIndex][nYIndex].nColor); 

} 
printf("\n"); 

fprintf(pFile, "\n"); 

} 

printf("*****************************************"); 

printf("\n\n"); 

fprintf(pFile,"*****************************************"); 

fprintf(pFile, "\n\n"); 

 
// CHECKING AND CHANGING THE COLOR OF CURRENT BLOCK 
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SetColor(&nCurrentX, &nCurrentY); 

SetColor(&nCurrentX2, &nCurrentY2); 

 
// SETTING THE TURNING DIRECTION AND ORIENTATION 

if(Grid[nCurrentX][nCurrentY].nColor == Black) 

{ 

nTurn = turnRight; 

if(nDirection == West) 

nDirection = North; 
 

 
 

} 

else 

{ 

else  
nDirection++; 

nTurn = turnLeft; 

if(nDirection == North) 

nDirection = West; 

else 

 
} 

 
nDirection--; 

 

if(Grid[nCurrentX2][nCurrentY2].nColor == Black) 

{ 
nTurn = turnRight; 

if(nDirection2 == West) 

nDirection2 = North; 
 

 
 

} 

else 

{ 

else  
nDirection2++; 

nTurn = turnLeft; 

if(nDirection2 == North) 

nDirection2 = West; 

else 

 
} 

 
nDirection2--; 

 

// MOVING THE ANTS 

Move(&nCurrentX, &nCurrentY, &nDirection); 
Move(&nCurrentX2, &nCurrentY2, &nDirection2); 

} 
 

fclose(pFile); 

 
getchar(); 
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return 0; 

} 
 

// FUNCTION DEFINITIONS 

void InitializeGrid() 

{ 

for(int nYIndex = 0; nYIndex < nSize; nYIndex++) 

{ 

for (int nXIndex = 0; nXIndex < nSize; nXIndex++) 

{ 

Grid[nXIndex][nYIndex].nXpos = nXIndex; 

Grid[nXIndex][nYIndex].nYpos = nYIndex; 

Grid[nXIndex][nYIndex].nColor = White; 

} 

} 

} 
 

void SetColor(int *pXpos, int *pYpos) 

{ 

if(Grid[*pXpos][*pYpos].nColor == White) 

Grid[*pXpos][*pYpos].nColor = Black; 

else 

 
} 

 
Grid[*pXpos][*pYpos].nColor = White; 

 

void Move(int *pXpos, int *pYpos, int *pDir) 

{ 

switch (*pDir) 

{ 

case North: 

(*pYpos)--; 

break; 
case East: 

(*pXpos)++; 

break; 

case South: 

(*pYpos)++; 

break; 
case West: 

(*pXpos)--; 

break; 

default: 

break; 

} 

} 
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C. Conway’s Game of Life 
 

 
 

The code below, written in Microsoft Visual Studio is an implementation of Conway’s 

Game of Life on a fixed size grid. At the start of evolution, some of the cells are put in 

the ON state, and the algorithm is allowed to run for a fixed amount of time. The current 

implementation computes the output on a 10*10  grid, for 10 time steps. The resulting 

state of the grid at each time instant is printed showing 1’s at the cells, which are in ON 

state; and nothing is displayed at the cells in the OFF state. 

 
 
 
 

 
// conway.cpp : Defines the entry point for the console application. 

// 

 
#include "stdafx.h" 

#include "stdio.h" 

 
// Parameters to define size of grid and number of times the loop runs 

const unsigned int nWidth = 10; 

const unsigned int nHeight = 10; 

const unsigned int nLoop = 10; 

 
// Function Declarations 

void clearArray(int nArray[][nWidth]); 

void initializeArray(int nArray[][nWidth]); 

void printArray(int nArray[][nWidth]); 

void calculateNext(int nArray1[][nWidth], int nArray2[][nWidth]); 

void swapArray(int (*nArray1)[nWidth], int (*nArray2)[nWidth]); 

 
int _tmain(int argc, _TCHAR* argv[]) 

{ 
// Two arrays - one to store current state, other to store the computed next state 

int nCurrent[nWidth][nHeight], nNext[nWidth][nHeight]; 

 
clearArray(nCurrent); 

initializeArray(nCurrent); 

 
// Updating the grid nLoop times, and printing the values 

for (int nIndex = 0; nIndex < nLoop; nIndex++) 
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{ 

printf("Time Cycle = %d\n", nIndex+1); 
printArray(nCurrent); 

calculateNext(nCurrent, nNext); 

swapArray(nCurrent, nNext); 

} 
 

return 0; 

} 
 

// Setting all values to OFF state 

void clearArray(int nArray[][nWidth]) 

{ 

for (int nIndex1 = 0; nIndex1 < nHeight; nIndex1++) 

{ 

for(int nIndex2 = 0; nIndex2 < nWidth; nIndex2++) 

nArray[nIndex1][nIndex2] =  0; 

} 

} 
 

// Setting some ON state inputs in grid 

void initializeArray(int nArray[][nWidth]) 

{ 

nArray[4][5] = 1; 

nArray[4][6] = 1; 

nArray[5][4] = 1; 

nArray[3][4] = 1; 

} 
 

// Printing the grid 

void printArray(int nArray[][nWidth]) 

{ 

for (int nIndex1 = 0; nIndex1 < nHeight; nIndex1++) 

{ 

for(int nIndex2 = 0; nIndex2 < nWidth; nIndex2++) 

{ 

if(nArray[nIndex1][nIndex2] == 1) 

printf(" %d ", nArray[nIndex1][nIndex2]); 

else 

 
} 

 
printf("   "); 

printf("\n"); 

} 

} 
 

// Calculating the state of grid at next time 
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void calculateNext(int nArray1[][nWidth], int nArray2[][nWidth]) 

{ 

unsigned int nNeighbours; 

for (int nIndex1 = 0; nIndex1 < nHeight; nIndex1++) 

{ 

for(int nIndex2 = 0; nIndex2 < nWidth; nIndex2++) 

{ 

// Counting Neighbors 

nNeighbours = 0; 

if(nArray1[nIndex1-1][nIndex2] == 1) 

nNeighbours++; 

if(nArray1[nIndex1+1][nIndex2] == 1) 
nNeighbours++; 

if(nArray1[nIndex1][nIndex2-1] == 1) 

nNeighbours++; 

if(nArray1[nIndex1][nIndex2+1] == 1) 
nNeighbours++; 

if(nArray1[nIndex1-1][nIndex2-1] == 1) 
nNeighbours++; 

if(nArray1[nIndex1-1][nIndex2+1] == 1) 
nNeighbours++; 

if(nArray1[nIndex1+1][nIndex2-1] == 1) 
nNeighbours++; 

if(nArray1[nIndex1+1][nIndex2+1] == 1) 

nNeighbours++; 
 

// Setting new values in temporary array 

if(nArray1[nIndex1][nIndex2] == 1 && nNeighbours < 2) 

nArray2[nIndex1][nIndex2] = 0; 

else if(nArray1[nIndex1][nIndex2] == 1 && nNeighbours <= 3) 

nArray2[nIndex1][nIndex2] = 1; 

else if(nArray1[nIndex1][nIndex2] == 1 && nNeighbours > 3) 
nArray2[nIndex1][nIndex2] = 0; 

else if(nArray1[nIndex1][nIndex2] == 0 && nNeighbours == 3) 
nArray2[nIndex1][nIndex2] = 1; 

} 

} 

} 
 

// Updating the grid with newly calculated values 

void swapArray(int (*nArray1)[nWidth], int (*nArray2)[nWidth]) 

{ 

for (int nIndex1 = 0; nIndex1 < nHeight; nIndex1++) 

{ 

for(int nIndex2 = 0; nIndex2 < nWidth; nIndex2++) 

{ 
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int nTemp = nArray1[nIndex1][nIndex2]; 

nArray1[nIndex1][nIndex2] = nArray2[nIndex1][nIndex2]; 

nArray2[nIndex1][nIndex2] = nTemp; 

} 
} 

} 
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