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ABSTRACT 

A SURVEY OF CLASSICAL AND RECENT RESULTS IN BIN PACKING 

PROBLEM 

By 

Yoga Jaideep Darapuneni 

 

Dr. Wolfgang Bein, Examination Committee Chair 

Professor, Department of Computer Science 

University of Nevada, Las Vegas 

 

In the classical bin packing problem one receives a sequence of n items 1, 2,…, n with 

sizes s1, s2, . . . ,sn where each item has a fixed size in (0, 1]. One needs to find a 

partition of the items into sets of size1, called bins, so that the number of sets in the 

partition is minimized and the sum of the sizes of the pieces assigned to any bin does not 

exceed its capacity. This combinatorial optimization problem which is NP hard has many 

variants as well as online and offline versions of the problem. Though the problem is well 

studied and numerous results are known, there are many open problems. Recently bin 

packing has gained renewed attention in as a tool in the area of cloud computing. We 

give a survey of different variants of the problem like 2D bin packing, strip packing, bin 

packing with rejection and emphasis on recent results. The thesis contains a discussion of 

a newly claimed tight result for First Fit Decreasing by Dosa et.al. as well as various new 

versions of the problem by Epstein and others. 
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CHAPTER 1 

INTRODUCTION 

1.1 Class P  

Set of decision problems or class of problems for which some algorithm can solve the 

problem in polynomial time. This means that the running time of the algorithm is 

bounded by a polynomial of input size. Let T(n) be the running size of the algorithm for 

input size n. 

∃ a constant k such that the running time T(n) is O(n
k
) 

Example: sorting, minimum spanning tree. 

1.2 Class Np 

In formal terms class Np can be defined as the set of decision problems where the "yes" 

instances can be decided in polynomial time by a non-deterministic Turing machine. 

     Np is the class of decision problems, for which the "yes" answers have proofs 

verifiable in polynomial time by a deterministic Turing machine. The notation Np stands 

for "nondeterministic polynomial time", since originally Np was defined in terms of 

nondeterministic Turing machines (that is, machines that have more than one possible 

move from a given configuration). 

Example: Subset sum problem, bin packing problem. 

http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/Non-deterministic_Turing_machine
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Class P and Class Np can be represented as P and Np respectively. So, P is the class of 

"easy to solve" problems, and NP is the class of "easy to check" problems. The class P in 

contained in class Np i.e. P ⊂ Np. Does P = Np?  

It is an open problem of major importance. 

Is P=Np? 

This is called the P vs Np problem. It is major unsolved problem in the field of computer 

science. 

     If P=Np, then it basically denotes the set of problems that can be verified in 

polynomial time (class Np) can also be solved in polynomial time (Class P). 

     If P ≠Np , it means that there are problems in Np(quickly verifiable) that are hard to 

solve than to verify. This gives rise to the concept of Class Np-Complete and Np-hard 

problems. 

1.3 Np-Hard: 

The set of problems is said to be in Np-hard if it contains the following property 

- If there exists a polynomial time algorithm to solve one of these problems 

then there exists one for every problem in Np. 

Note: Np-hard problems need not be in Np & need not be a decision problem. 

1.4 Np-Complete: 

A decision problem X is Np-complete iff 

- X  ϵ  Np 
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- X is Np-hard (or) if every problem in Np can be reduced to X in polynomial 

time. 

X can be shown to be in Np by showing that a candidate solution to X can be verified in 

polynomial time. 

     Np-complete problems are the hardest problems in Np. The importance of solving a 

Np-complete problem is that if we are able to find an algorithm to solve Np complete 

problem in polynomial time then we can solve every other Np problem in polynomial 

time. 

     No efficient algorithm for an NP-complete problem has ever been found; but nobody 

has been able to prove that such as algorithm does not exist. For many Np optimization 

problems,   serious attempts are made to find the optimal solution in polynomial time but 

since it appears to be intractable we limit ourselves to approximate solutions using r-

approximate algorithms. Now let us discuss about the r-approximate algorithm and its 

solution in the next section. 

1.5 What is r-approximate solution? 

For a given optimization problem P, there exists an algorithm A such that for any instance 

I  it  computes solution  mAPPROX (I) , we say  that  A  provides a r-approximation solution 

for problem P when for any instance I  

    
 

 
 ≤ 

       

          
 ≤ r   

Where mOPT(I) is the optimal solution for instance I of problem P. Here A is said to be  a 

r-approximate algorithm. 
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1.6 Class NPO: 

Class NPO can be defined as a set of problems that allow polynomial time r-approximate 

algorithm. The existence of r-approximate algorithm for Np-hard problems helps in 

finding the approximate or the closest possible solution to the optimal. 

1.7 Class APX: 

APX belongs the class of all NPO problems where for some r ≥ 1 there exist a r-

approximate polynomial time algorithm. 

     So any problem which has r-approximate algorithm is said to be in class APX. Some 

of the problems which belong to the class APX are maximum satisfiability, maximum 

cut, minimum graph coloring restricted to planar graphs, minimum vertex cover, 

minimum bin packing and many more. 

     There are situations where for some NPO problems we cannot find r-approximate 

polynomial time algorithm unless P=Np, which can be interpreted as finding 

approximation algorithm is as hard as to determine optimal solution. This means that 

under the hypothesis P≠Np, class APX is strictly contained in class NPO i.e. APX ⊂ 

NPO. Here in the given expression APX denotes class APX and NPO denotes class NPO. 

     Now as mentioned earlier in the above paragraph, we have situations where there are 

problems belonging to class NPO but does not belong to class APX. For example, 

minimum travelling salesperson problem is an optimization problem which does not have 

an r-approximate polynomial time algorithm. So it does not belong to class APX. Some 

other problems which do not belong to class APX are maximum clique and maximum 

independent set problem. Unfortunately for most of the problems in APX the 
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performance ratio can only be approximated to a certain point, which means that a 

threshold exists t such that r<t becomes computationally difficult. 

1.8 Polynomial time Approximation Scheme (PTAS): 

Let Q be an Np-hard optimization problem. An algorithm A is an approximation scheme 

for Q if for every r > 0, ‘A’ returns a solution Qsol such that   

Qsol ≤ (1 + r) Qopt         ------------ if Q is a minimization problem. 

Qsol ≥ (1 + r) Qopt         ------------ if Q is a maximization problem. 

Qopt means the optimal solution for the problem Q. 

      ‘A’ will be called PTAS, if it runs in polynomial time of n and as we decrease r, the 

running time increases drastically. The dependency on r is exponential, so for example 

the running time can be of form O  
 

  , O  
 

     and many more. 

     Now for any NPO problem, let us suppose there exists a constant k and if its Np-hard 

to describe that for a given instance I, mOPT(I)≤k, then there is no PTAS for that problem 

and a polynomial time algorithm with r < 
   

 
 exists only if P=Np. 

1.9 Class PTAS: 

Class PTAS can be defined as the set of problems that allow PTAS or has a PTAS. So 

any algorithm which contains PTAS is said to belong in class PTAS. 

     By definition class PTAS belongs to class PAX. So the problem which does not 

belong to class APX does not have PTAS too. Example: minimum travelling salesperson 
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problem. So if P≠Np, then PTAS ⊂ APX where PTAS represent class PTAS and APX 

denotes class APX respectively. 

     The following picture depicts the relation between Class NPO, APX and PTAS. With 

the help of the figure below we can understand the relationship between these classes in a 

better way. 

 

Class NPO 

Class APX 

Class PTAS 

Fig 1: Relation between class PTAS, APX and NPO 
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     Bin packing problem does not have PTAS. If P≠Np and r is the approximation ratio to 

bin packing, there is no r- approximate polynomial time algorithm for minimum bin 

packing problem for which r ≤ 
 

 
  ,    .  

1.10 Asymptotic Polynomial time Approximation Scheme (     ): 

Let P be an NPO problem and let there exists a constant k. An algorithm A is said to be 

an asymptotic polynomial approximation scheme for any r ≥ 1,if  the algorithm A for the 

instance I returns a solution whose performance ratio is at most r+
 

       
 where       ) 

denotes the optimal solution and algorithm A runs in polynomial time. 

     Asymptotic polynomial time approximation ratio       ) is a weaker form of 

approximation when compared to PTAS. It is based on the idea that the performance ratio 

of the approximate solution (returned by the respective approximation algorithm) may 

improve as optimal solution becomes bigger. 

     Just like class PTAS we also have class       which is the set of all NPO problems 

that contain an asymptotic polynomial time approximation ratio      ). So the relation 

among PTAS, APX and polynomial time approximation ratio      ) can be given as 

PTAS ⊆        ⊆   APX. 
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CHAPTER 2 

What is Bin-Packing? 

Now coming to our problem, the bin packing problem is considered to be one of the 

combinatorial minimization problems. We receive a sequence of n items L= {1, 2,…, n} 

with sizes s1, s2, . . . , sn and each item has a fixed size in (0, 1]. Now one needs to find a 

partition of the items into sets of size 1 (called bins) so that the number of sets in the 

partition is minimized and the sum of the sizes of the pieces assigned to any bin may not 

exceed its capacity. We say that an item that belongs to a given bin (set) is packed into 

this bin. A bin is empty if no item is packed into it, otherwise it is used. Since the goal is 

to minimize the number of bins used. Bin packing is NP -hard, thus finding an exact 

solution for any given input can be done currently only in exponential time. Since it`s is 

an NP-hard problem and the polynomial time optimization algorithm cannot be found 

unless P=NP. A more reasonable approach would be finding an approximation algorithm 

m that runs in low-order polynomial time and for all instances I, mAPPROX (I) is close to 

mOPT(I). mAPPROX (I) represents the approximate solution for the given instance I . mOPT(I) 

represents the optimal solution for the instance I. mOPT(I) can also be represented as m*(I) 

which means the same.  

     Our primary goal is to fit items into the bins such that the number of bins used is 

minimal. For this purpose, there are several algorithms developed which provides an 

approximate solution bounded by ‘r’ (here ‘r’ is the approximation ratio). These 

algorithms can be broadly classified into two categories 

 Online bin packing Algorithms 

 Offline Bin packing Algorithms 
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     Online bin packing algorithms packs items in the bin as per the input sequence. These 

algorithms does not have knowledge of the next items in the input sequence whereas the 

offline algorithm has knowledge of the next item in the input sequence required for bin 

packing and can possibly arrange them in a particular order before packing the items in 

the bins.  

Theorem: If P≠Np and for any    , we cannot find an r-approximate algorithm for bin 

packing problem whose approximation factor r < 
 

 
 –  . 

Proof: Consider a partition problem which is Np-Complete. This is a decision problem 

where for a given input of n numbers the problem is to decide if there is a way to 

partition or divide n number into two sets, such that each set is equal to 
  

 
. Here    

represents the sum of n numbers. This partition problem can be reduced to the bin 

packing problem where each number correspond to the items and these items should be 

packed into bins of size 
  

 
. So for the given instance the answer to the decision problem 

is “yes” iff n items can be packed into two bins of size 
  

 
. So if there is a 

 

 
 –   

approximation algorithm then it will have to give an optimal packing and thereby solving 

the Np complete partition problem. 

     In the next section we discuss about the offline algorithms of bin packing problem.  

The First fit algorithm is one of the most basic algorithms for bin packing and can be 

used as both online and offline algorithm. 
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2.1 OFFLINE ALGORITHMS FOR BIN PACKING: 

2.1.1 First Fit Algorithm: 

Given an instance x of  OFFLINE BIN PACKING, the algorithm First Fit returns a result 

[1] with value mFF(x) such that mFF(x) < 1.7 mOPT (x)+2  where mOPT (x) denotes the 

optimal solution for an instance x.  The numeric “2” represents the additive constant. 

Algorithm 

Consider bins bj where j ϵ (1, 2 …, n) 

Consider an instance x containing items ai where i ϵ (1, 2 …, n)  

Begin 

  for i := 1 to n do 

  for j := 1 to n do 

  if item ai can fit in the bin bj  

then 

    Insert ai into the bin  

   Break; //exit for j loop 

 //continue for i loop 

End 

2.1.2 First Fit Decreasing Algorithm (FFD): 

First Fit Decreasing is an enhanced algorithm with improved performance ratio and better 

approximation. In fact it is an offline algorithm where the items are first sorted in non-

increasing order as per their size and then processes items as First Fit. 
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     Given an instance x of  BIN PACKING, the algorithm First Fit Decreasing[7] returns 

a result with value mFFD(x) such that mFFD(x) < 
  

 
mOPT (x) + 4 where mOPT (x) denotes the 

optimal solution for an instance x. 

Let us take an example to illustrate the distribution of items using first fit decreasing 

algorithm and optimal packing. 

Consider an instance I of 5n items 

The classifications of 5n items (input sequence of items) is as follows 

 n items of size ½ + ε , 

 n items of size ¼ + 2ε ,  

 n items of size ¼ + ε ,  

 2n items of size ¼ - 2ε.  

Using FFD, these 5n items can be filled in 11n/6 bins (mFFD(I)= 11n/6) .The distribution 

is done in this way, Initially as per the algorithm all the 5n items of different sizes are 

arranged in non-increasing order. After the arrangement, the items are filled into the bins 

as per the first fit algorithm. Now that we have non increasing sequence of input items, 

the first(largest) n items of size ½ + ε  are filled in n different bins since we have unit size 

bins and two items of size ½ + ε  would exceed the size of the bin . Now the next 

sequence of n items of size ¼ + 2ε is filled in the existing n bins as there is enough space 

for them to fit. After filling n items of size ½ + ε, we deal with next sequence of items i.e.  

n items of size ¼ + ε, now since these items cannot fit in the existing bins, new bins are 

opened and these n items are filled in n/3 bins with each bin containing 3 items of size ¼ 

+ ε. Now we are left with final sequence i.e. 2n items of size ¼ - 2ε, 
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Since these items cannot fit in any of the existing opened bins, new bins are opened and 

these 2n items and these items are filled in n/4 bins with each bin containing 4 items of 

size ¼ - 2ε. Hence, in this way the items are filled using the first fit decreasing algorithm. 

In short, the distribution can be described as follows 

 n bins contain each item of size ½ + ε  and ,  ¼ + 2 ε  in one bin . 

 n/3 bins contain three ¼ + ε   size item in each bin. 

 n/2 bins contain four ¼ - 2 ε size items in each bin. 

The optimal bin distribution can be detailed as follows 

 n bins contain each item of size ½ + ε,  ¼ - 2 ε and ¼ + ε  in one bin. 

 n/2 bins contain  two  ¼ + 2ε size items and two ¼ - 2 ε size item in each bin. 

In the below figure case (a) represents optimal bin distribution and case (b) shows the 

FFD bin distribution. 
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k

k

k

k

k

k

k 

… … 

… 
… 

n bins 

n/3 bins 

n/2  bins 

n/2 bins 

½ + ε ¼ +2 ε ¼ + ε 

ε 

n bins 

CASE (a) 

CASE (b) 

Empty 

space 

Fig 2: Optimal bin distribution and distribution using FFD 

algorithm 

¼ -2 ε  
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Thus the optimal solution for the instance of 5n items can be filled in 3n/2 bins (mOPT (x) 

= 3n/2) and for FFD 5n items can be filled in 11n/6 bins (mFFD (x) = 11n/6). So by the 

definition of performance ratio, we can calculate the performance ratio for a given 

instance L by max (
          

       
 

       

          
) where            is the solution returned by 

the approximation algorithm for a given instance L and         represents the optimal 

solution. In the above case            can be replaced by mFFD(x) since our 

approximation algorithm is First fit decreasing and the instance we are dealing with is x. 

Hence by substituting the actual values we get the performance ratio i.e. max (
  

 
 
 

  
) = 

  

 
.  

Hence the above example not only illustrates the distribution of first fit decreasing 

algorithm but also shows that for given instance x the bound 
  

 
 is tight and cannot get 

smaller than that.  

     In this doctoral thesis, D.S.Johnson [1] showed mFFD(x) < 
  

 
 m

*
(x) + 4, he proved that 

the performance ratio for FFD cannot get better than 
  

 
. Though for an instance x, 

mFFD(x) < 
  

 
 mOPT(x) + 4 has tight bound and works considerably well for higher values 

of mOPT(x) (mOPT(x)> 10) , work has been going on to find the closest asymptotic additive 

constant (like 4) which is required to find better approximations for smaller instances. In 

this process, after the D.S.Johnson, B.S.Baker[2] proved that additive constant can be 

reduced to 3. Later in 1991, Yue Minyi [3] proved that additive constant cannot be lesser 

than 1 i.e. mFFD(x) < 
  

 
 m

*
(x) + 1 but the proof is difficult to understand. Later in 1997, L. 

Rongheng, M. Yue [4] furthur tried to reduce the additive constant to 
 

 
 but they did not 

prove the statement but gave a draft about it. They also conjectured that the tight additive 



15 
 

constant can be 
 

 
  (which proves to be an incorrect result). Finally in November 2011 

Gyorgy Dósa, Rongheng Li, Xin Han and  Zsolt Tuza [5] claimed that the lower bound 

for the additive constant is 
 

 
 , but the proof is 30 page long and considers a lot of test 

cases which makes it difficult to understand (not sure about the correctness of the proof). 

     So Gyorgy Dósa, Rongheng Li, Xin Han and  Zsolt Tuza claim  ∀ x, mFFD(x) < 
  

 
 

mOPT(x) + 
 

 
 bound is tight. So the FFD guarantees that it is never more than 22 percent 

worse than optimal. 

     Now to illustrate the tightness (with regards to additive constant 
  

 
) of the expression 

mFFD(x) < 
  

 
 mOPT(x) + 

 

 
 , let us consider an example where the instance is x and it can be 

described as follows 

 4 items of size ½ + ε 

 4 items of size ¼ + 2ε   

 4 items of size ¼ + ε   

 8 items of size ¼ - 2ε 

So for an optimal solution, the items in instance x can be filled in 6 bins (mOPT(x) = 6) and 

the distribution is done as follows 

 4 bins containing 1 item of size ½ + ε, ¼ + ε and ¼ - 2ε in each bin.   

 2 bins containing 2 items of size ¼ + 2ε and ¼ - 2ε in each bin. 
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And now using the first fit decreasing algorithm the items in the same instance x can be 

filled in 8 bins (mFFD(x) = 8)   and its distribution is as follows 

 4 bins containing 1 item of size ½ + ε, ¼ + 2ε   in each bin. 

 1 bin containing 3 items of size ¼ + ε  

Fig 3: Another example for optimal bin distribution and distribution using FFD 

algorithm  
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 1 bin containing 3 items of size ¼ - 2ε and 1 item of size ¼ + ε  

 1 bin containing 3 items of size ¼ - 2ε  

 1 bin containing 1 item of size ¼ - 2ε  

So for the given instance x, if mOPT(x) = 6 then mFFD(x) = 8. So this example follows the 

statement mFFD(x) < 
  

 
 mOPT(x) + 

 

 
.  

Using the above result we can construct a corollary which can be illustrated as follows 

Corollary: 

We know that for an instance x, mFFD(x) < 
  

 
 mOPT(x) + 

 

 
  , Using this let mOPT(x) = M 

and mFFD(x) = N such that ∀M we can deduce maximum of N using the above statement.  

     In the given table below, M represents the number of bins used for optimal packing 

and N represents the maximum possible number of bins used by first fit decreasing 

algorithm. So for example let us consider an instance for which number of bins used for 

optimal packing is 5 i.e. M=5 then using mFFD(x) < 
  

 
 mOPT(x) + 

 

 
 we can give N=6 i.e. 

the maximum possible number of bins used by first fit decreasing is 6 and this value 

cannot be bigger(for M=5). The table below shows the tightness of the asymptotic 

additive constant.   

     In the table below we give maximum values of N for different M values. Without the 

tight upper bound, we could not know the maximum value of N in many cases. Thus the 

table is as follows 
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mOPT(x) = M mFFD(x)= N N-M 

1 1 0 

2 3 1 

3 4 1 

4 5 1 

5 6 1 

6 8 2 

7 9 2 

8 10 2 

9 11 2 

10 12 2 

11 14 3 

12 15 3 

13 16 3 

14 17 3 

15 19 4 

16 20 4 

17 21 4 

18 22 4 

19 23 4 

20 25 5 

 And so on…  

Table 1: Maximum possible values of N for different M using mFFD(x) < 
  

 
 mOPT(x) + 
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As we have discussed, we know that the bin packing problem does not have a PTAS. But 

we also need to know that this problem has an asymptotic polynomial time 

approximation scheme (     ). So let us describe the asymptotic polynomial time 

approximation scheme (     ) for bin packing. 

2.1.3 Asymptotic Polynomial time Approximation Scheme for bin packing problem: 

Since we know that the bin packing problem has an asymptotic polynomial time 

approximation ratio      ).Let us discuss about the algorithm which is an asymptotic 

PTAS.So the following algorithm was given by Fernandez de la Vega, W., and Lueker, 

G.S. [19] in 1981. 

     We have asymptotic PTAS for the bin packing problem. So the algorithm [19] for 

asymptotic PTAS consists of the following 5 steps 

1. Eliminate small items from the instance which needs to be packed. 

2. Group the remaining items into a constant number of size values. 

3. Find optimal solution of the resulting instance. 

4. Ungroup the items. 

5. Re-insert small items. 

Let us define certain variables and constants before each step is explained in detail 

c – Integer constant (c>0) denotes number of different sizes of items. 

δ – Constant (δ ≤ 1) 

B – Size of the bin. 
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Let K be the instance of bin packing and for any rational constant δ ϵ (0,
 

 
 ]  

Kδ – instance obtained by eliminating all items whose sizes are less than δB. 

Now, each step is explained in detail 

Step 1: 

In this step we eliminate small items (size< δB) from the instance K to obtain Kδ. 

Step 2: 

In this step, we group the remaining items in Kδ  into groups of constant size values. 

Procedure: 

Given an instance Kδ, firstly arrange the items in a non-increasing order. Let n represent 

the number of items in a given instance and let p be a constant. 

Consider p ≤ n, let m =  
 

 
  , and partition the n items into m+1 groups. 

     Now we define a new instance Kδ,g with the same bin size B and size of all items in the 

i
th 

( for i= 2,3,…,m+1) group are made equal to the largest item in that respective partition 

or group. The distribution of items in the new instance can be well understood by the 

following example. Consider the instance x containing 11 items and whose sizes are  

{9,8,8,7,7,6,5,4,4,3,3}  .Let p=3, So we can have four groups (since m =  
 

 
 =3) .Let the 

four groups be G1 = { it1,it2,it3} G2 = {it4,it5,it6} G3={it7,it8,it9} and G4 = {it10,it11} 

respectively. 
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     Now the new instance xg has 8 items arranged in 3 groups, three items of size 

7(corresponding to items in group G2), three items of size 5(corresponding to items in 

group G3) and two items of size 3(corresponding to items in group G4). 

 

 

     So now for obtaining xg, we eliminate the last group G1 and then substitute each item 

in the group with the largest or the highest item in that group. Moreover, we can obtain x 

from xg by simply adding p bins which can insert the p items (which were removed).  
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This gives,  

m
*
(xg) ≤ m

*
(x) ≤ m

*
(xg) + p 

Where m
*
(xg) is the optimal solution for instance xg which indicates the filled bins and 

m
*
(x) is the optimal solution for instance x. 

     So if we are able to optimally solve xg then we can find solution for x whose absolute 

error is at most p. We can generalize the above expression for the instance Kδ  and it can 

be shown as m
*
( Kδ,g) ≤ m

*
( Kδ ) ≤ m

*
( Kδ,g) + p where p is the absolute error. 

Step 3: 

In this step we solve the instance (Kδ,g ) which we got from step 2. The procedure to solve 

the instance Kδ,g  is as follows 

     We have instance  Kδ,g and it  can be re- written  as I = {s1 : n1 , s2 : n2, … , sc : nc} 

where c denotes number of different sizes of items and s1,n1 represents the size and the 

number of the items of size s1 respectively. 

For example: I =  { 3 : 4 , 5 : 2 , 7 : 1 }  contains 4 items of size 3, 2 items of size 5 , 1 

item of size 7 and c=3  

For bin packing of instance Kδ,g let each bin can be represented by a vector     = ( b1,b2, … 

,bc) where 0 ≤ bi ≤ n such that    
 
      ≤ B . This implies that the packing of items in 

the bin should not exceed B. 

We also draw an important result, so for each bin 
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     ≤   

 

 
    

 
    

   

 
  ≤  

 

 
   

     The above result implies that the sum of number of different items in each bin should 

not be more than 
 

 
.So we need to choose at most 

 

 
 number of items for a bin from c 

(different size of items) types to fill in a bin and it is equal to  

  q =    
        

 

    
 

 

  

The value q denotes the possible bin types and depends on c and δ and does not depend 

on n. 

Let us consider the example where the given instance is xg 

xg = (7,7,7,5,5,5,3,3) now this instance for step3 can be re written as xg = { 3 : 7 , 3 : 5 , 2 : 

3 } and as we can observe c=3 and let us assume 
 

 
 = 2  then  

q =   
 
  = 10 ways 

Indeed we can have 10 different possible ways to fill a bin(bin types),  using the b vector 

to represent the bin types the result is  as follows, (0,0,0), (0,1,0), (1,0,0), (0,0,1), (1,1,0), 

(0,1,1), (1,0,1), (2,0,0), (0,2,0), (0,0,2) but out of all the possible 10 solutions only 8 

solutions are feasible because the other 2 bins violate the bound given by the size of the 

bin.(i.e., .    
 
      ≤ B) 

     So (1, 1, 0) and (2, 0, 0) are the 2 bin types which are not feasible. Now one of the 

feasible solutions can be 2 bins of type (0,1,1) , 3 bins of type (1,0,0) and 1 bin of type 

(0,1,0) and the optimal solution can be 1 bin of type (0,2,0) , 2 bins of type (1,0,1) , 1 bin 
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of type (1,0,0) and 1 bin of type (0,1,0).  It is evident that the number of feasible solutions 

is bounded by O(n
q
) which implies that the instance can be solved in O(n

q
p(n)) where p is 

a polynomial by exhaustively generating all these feasible solutions. 

Step 4:  

This step primarily deals with ungrouping the items. Now by using the expression                                                                                                          

m
*
( Kδ,g) ≤ m

*
( Kδ ) ≤ m

*
( Kδ,g) + p we can obtain packing of items for Kδ by simply 

adding p bins in which we can insert the first p items(eliminated in step2). 

     Since we know the value of m
*
( Kδ,g), we can find m

*
( Kδ )from the above expression 

i.e., m
*
( Kδ ) ≤ m

*
( Kδ ) ≤ m

*
( Kδ,g) + p . 

The result of m
*
( Kδ ) concludes step 4. 

Step 5: 

In this step we insert small items that were removed in step 1. Now using the first fit 

algorithm small items are inserted to the instance Kδ. Let us suppose items in Kδ instance 

are filled in M bins. So if the small items fit in the existing M bins then the packing is 

done, otherwise  

- M' ≥ 1 new bins have been created. So we can show all bins except at most 

one have an empty space i.e., at most δB.  

This results in the expression 

 (1 – δ) (M + M' - 1)  ≤   
     

 

 
     ≤ m*(K) 
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m*(K) – optimal solution for instance K 

 
     

 

 
      - Sum of items in the given instance/ size of the bin 

The above expression gives 

 M + M' ≤  
 

    
 m*(K) +1 ≤ (1 + 2 δ) m*(K) + 1 

So, given a packing of instance Kδ  with M bins we can find in polynomial time a solution 

for K instance whose measure is at most  

 Max (M, (1 + 2 δ )m*(K) +1) 

Here r = 1+ 2 δ , p = 
      

 
 and Max (M, rm

*
(K) +1) gives solution for packing  

     Another observation is that if r≥2, then First fit algorithm achieves the desired 

performance ratio. So PTAS for bin packing is restricted to r < 2. Now elaborating on M, 

from step4 it is understood that m
*
( Kδ ) ≤ m

*
( Kδ,g) + p where m

*
( Kδ ) = M bins. 

Considering m
*
( Kδ,g) + p, since all items in Kδ have items of size at least δB, we conclude 

δn' ≤ m
*
( Kδ ), here n' is the number of items in the instance Kδ.(all items size is at least 

δB) 

So, p ≤ 
      

 
 n' + 1 =    ) δn' +1 ≤     ) m

*
( Kδ ) + 1  

From step 4 

m
*
( Kδ,g) + p ≤ m

*
( Kδ ) + p 

Substituting p 
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m
*
( Kδ,g) + p ≤ m

*
( Kδ ) +     ) m

*
( Kδ ) + 1 = r m

*
( Kδ ) + 1  

Finally, by replacing r = (1+2δ) and M with r m
*
( Kδ ) + 1  in the final expression we get 

Max (rm
*
(Kδ ) + 1, rm

*
(K)+1 ) 

So given a packing of Kδ with ‘M ‘ bins we can find a solution for K in polynomial time 

whose measure is at most Max (rm
*
(Kδ ) + 1, rm

*
(K)+1). 

Asymptotic PTAS for bin packing: (algorithm in brief) 

Input: Instance K of bin packing and 1 < r < 2 

Begin 

r = 1+2 δ;   p= 
      

 
 n; B is the size of the bin;  

Eliminate small items from the instance K whose size < δB, Let the resulting 

instance be  Kδ and n be the number of items in Kδ 

Partition Kδ instance into m+1 groups where m=
 

 
  , remove the last group and 

combine the rest to form the instance Kδ,g . 

Find the optimal solution for Kδ,g and let the result be m
*
( Kδ,g) 

Insert first p items into the p new bins and calculate m
*
( Kδ ). 

Using First Fit algorithm, reinsert small items to the instance Kδ, calculate and 

return the result Max (rm
*
(Kδ ) + 1  , rm

*
(K)+1) 

End 
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2.2 ONLINE ALGORITHMS FOR BIN PACKING: 

In the online version of bin packing algorithms items are packed in the bin as per the 

input sequence. The current item is packed in the bin before the next item arrives and 

once an item is packed in a particular bin it cannot be moved. Now let us discuss about 

different online algorithms for bin packing algorithms.  

2.2.1 Next Fit Algorithm: 

This algorithm is one of the most basic online algorithms. Before we explain the 

algorithm let us know about a few parameters, bj which represents the j
th 

bin where j=-

1,2,3…,n and ai represents i
th

 item of the input sequence where i=1,2,3…,n. In this 

algorithm, initially all bins are empty and we begin with bin j = 1 and item i = 1. So if bin 

b1 has enough space for item a1 to fit then we assign item a1 to bin b1, otherwise bin b1 is 

closed and a new bin bj+1 (i.e. b2) is opened to fill item ai. A closed bin is never opened 

again for further allocation of items. In this manner we repeat the process till the input 

sequence ends. 

Theorem:  Given an instance x of  ONLINE BIN PACKING, the algorithm Next Fit 

returns a result with value mNF(x) such that mNF(x)/mOPT (x) < 2  where mOPT (x) denotes 

the optimal solution for an instance x. 

Proof:   This proof was taken from a paper written by D.S.Johnson [1]. Firstly, ‘A’ 

denotes the sum of all the item sizes in the bin. In the next fit algorithm, only one bin 

(last used bin) is kept open and when an item doesn`t fit, that bin is closed and a new bin 

is opened. So at any given time only one bin is open and once the bin is closed it cannot 

be opened. Since the sum of the items of any two consecutive bins is always greater than 
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1, the number of bins used by Next fit algorithm is less than 2A.This is because on an 

average the bins are more than half full. On the other hand, the optimal solution uses bins 

which are at least the total size of the items (A). So mOPT (x) > A 

Hence we have mNF(x)/mOPT (x) < 2   

     The following example clearly presents the algorithm and the given instance follows 

the bound stated in this theorem. 

Example: 

Consider there exists an instance of 4n items and the order of the items is as follows: I= 

{ 
 

 
, 

 

  
, 
 

 
, 

 

  
,…, 

 

 
, 

 

  
  (each pair is repeated 2n times). Fig (a) represents the optimal 

solution where the 2n items of size  
 

 
 are filled in n bins and the remaining 2n items of 

size 
 

  
 are filled in a single bin. Hence the mOPT (I) = n+1. Fig (b) represents the 

approximate solution of Next Fit algorithm where 2 items of size  
 

 
 and 

 

  
  are filled in 

each bin, thereby occupying 2n bins to fill the given instance. Hence mNF(I) = 2n.  

Algorithm 

 Consider an instance x containing items ai where i ϵ (1,2 … , n) and no of bins b ‹— 1  

Begin 

 For i := 1 to n do 

 If the item ai can fit in the opened bin then 

 Insert ai into the bin  

Else 

Insert the item ai into a new bin  

b:= b +1 
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   Return b 

End 

 

In fact, there is First Fit algorithm which has a better performance ratio than Next Fit 

when it comes to online algorithms for Bin Packing.  Let us discuss about the first fit 

algorithm in the next section. 
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Fig 5: Example for Optimal bin distribution Vs. distribution using Next-fit algorithm 
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2.2.2 First Fit Algorithm: 

Given an instance x of  ONLINE BIN PACKING, the algorithm First Fit returns a result 

with value mFF(x) such that mFF(x) < 1.7 mOPT (x)+2  where mOPT (x) denotes the optimal 

solution for an instance x.  The numeric “2” represents the additive constant. 

Algorithm 

Consider bins bj where j ϵ (1,2 … , n) 

Consider an instance x containing items ai where i ϵ (1,2 … , n)  

Begin 

  For i := 1 to n do 

  For j := 1 to n do 

  if item ai can fit in the bin bj  

then 

    Insert ai into the bin  

   Break; //exit for j loop 

 //continue for i loop 

End 

     We know that the first fit algorithm is one of the online algorithms for the bin packing 

problem. The only difference between first fit decreasing (FFD) algorithm and first fit 

algorithm is the sorting step where the items are arranged in non-increasing order. Since 

first fit is an online algorithm, the sorting step is skipped and the distribution follows.  

     Ullman and Garey, Graham, and Ullman introduced the study of bin packing analysis 

in their respective papers. They show that the competitive ratio for the first-fit and best-fit 
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satisfy:RFF=
  

  
 and RBF≥ 

  

  
.The following proof was given by D.S.Johnson, Demers, 

Ullamn, Garey and Graham[9]. 

2.2.2.1 Proof for the Upper bound: 

Now for any given instance I let us prove mFF(I) < 1.7 mOPT (I)+2, where mFF(I) gives the 

number of bins filled using first fit algorithm and mOPT (I) gives the optimal distribution 

for the given input sequence. 

Before we begin with the proof let us define the following weight function: 

 

 

w (iti) =  

 

 

     For any given instance I =it1, it2, … , itn , where iti denotes the i
th 

item in the given 

input sequence. Let us define certain functions and variables which will be used in the 

proof. 

w (it)    -     

 

W(I) =        
 
    -   

 

 

W (B) =        
 
     -   

 

 

 
it  if 0 ≤ it ≤ 

 

 
 

 

 
it - 

 

  
  if 

 

 
 ≤ it ≤ 

 

 
 

 

 
it + 

 

  
  if 

 

 
 ≤ it ≤ 

 

 
 

1  if 
 

 
 < it 

Weight function for item it. It gives us the weight for 

the respective it value. 

 

Weight of an instance I calculated by the summation of all 

the weights of the items in the instance I. 

 Weight of the bin B where {    | j= 1,2,…,t} be the items 

assigned to bin B. 
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For the proof of the upper bound mFF(I) < 
   

  
mOPT (I)+2,we need to prove the following 2 

lemmas. | j= 1,2,…,t} be the items assigned to bin B. 

Lemma 1: 

For any bin B filled with items, we have W (B) ≤
  

  
. 

Lemma 2: 

If for any given instance I, first fit algorithm uses k (mFF(I)= k) number bins to fill the 

items then 

      
 
    ≥ mFF(I) – 2 which gives  mFF(I)≤ W(I)+2. 

Now proving the above given 2 lemmas would prove the upper bound for the first fit 

algorithm. 

Proof of lemma 1: 

Now for the given instance, if every item has size ≤ 
 

 
 then 

 
      

   
 ≤ 

 

 
 < 

  

  
 , 

which easily completes the proof. But, in any given scenario we cannot assume that all 

the items in the instance has size≤ 
 

 
 so we consider some iti > 

 

 
 and     ,     ,….,      

represents the rest of the items that packed in the same bin as iti. Since iti > 
 

 
 , the other 

items in the same bin (    ,     ,….,       occupy size < 
 

 
  i.e.       

 
  < 

 

 
. 

And therefore we need to show that         
 
  < 

 

  
. 
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     Without loss of generality, let us assume   ≤ 
 

 
 , so even if there are items(like     ) in 

the instance existing  with size >
 

 
, we can infer      as two items i.e. 

    
  = 

 

 
 and     

 =      
 

 
 < 

 

 
. 

As the weight function w is linear and contains same slope for item size it<
 

 
 and 

 

 
 ≤ it < 

 

 
 

       =w(     
 ) + w(    

 ). 

     Similarly we can assume that in any first fit distribution of instance there is at most 

one item     <
 

 
. So even if there are more items with size<

 

 
 for instance if two items 

         <
 

 
 then we can combine them into a single item      such that     < 

 

 
.The weight 

function for the item      is as follows 

w(    ) ≥ w(    ) + w(    ). 

     In the beginning of the proof we noticed that we can easily deduce the proof if all the 

items in the instance are of size<
 

 
. Since we need to prove the lemma for any instances 

we assumed that in a given bin iti > 
 

 
 and the other items in the same bin 

(    ,     ,….,       occupy size < 
 

 
  i.e.      

 
  < 

 

 
 and therefore prove         

 
  < 

 

  
. 

Using these considerations let us analyze the following cases to prove the lemma 

 Case 1 :If t=1 we have two sub cases: 

i) If     < 
 

 
, then w(     < 

 

 
 <

 

  
. 
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ii) If 
 

 
 ≤     ≤ 

 

 
, then w(     < 

 

 
   

 

  
 < 

 

  
 

If we have any items      in the interval [
 

 
, 
 

 
) then using the procedure mentioned above 

we split it to two items with size≤
 

 
. 

 Case 2 :If t=2 we have two subcases 

i) If     < 
 

 
 ≤     ≤ 

 

 
  then w(              < 

 

 
 +

 

 
   

 

  
  = 

 

  
. 

ii) If 
 

 
 ≤          ≤ 

 

 
  then w(              < 

 

 
 (              

 

  
  < 

 

  
, since 

          < 
 

 
. 

 Case 3 :If t=3 we have two subcases 

i) If     < 
 

 
 ≤     ,     ≤ 

 

 
, we have w(             + w(      ≤ 

 

 
    + 

 

 
 

(            - 
 

  
 ,Since                 < 

 

 
 which gives             

 

 
  

    . Substituting this in the above inequality gives 
 

 
    + 

 

 
 (              

 

  
 

< 
 

  
   

 

 
     < 

 

  
. 

ii) If     ≥ 
 

 
 and     ,     ≤ 

 

 
, we have w(             + w(      < 

 

 
(           

     )  
 

  
 < 

 

  
 , since                 < 

 

 
. 

 Case 4: If t > 3 which is not possible since there is at most one item     <
 

 
 and the 

other items are greater than 
 

 
 . 

Hence in this way we prove this lemma.  

Before we begin with the proof of lemma 2 we need to know about coarseness. 
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Coarseness of a Bin: 

For any bin Bi, we define coarseness as α such that there exists a bin Bj where j<i and size 

of the bin Bj, s(Bj)= 1  α, and for other bins Bk ,k< i, s(Bk) ≥ 1  α. The coarseness of the 

first bin is 0. In this definition s(Bj) , s(Bk) denotes the size of the  bin Bj, Bk which implies 

the amount of space occupied by the items in those bins. 

A bin B with coarseness α contains items packed whose size is greater than α otherwise 

those items are packed in one of the previous bins. Coarseness α for a bin B can be 

considered as the maximum available space in the any of previous bins of B where the 

bins are filled using first fit algorithm. 

Lemma 2: 

If for any given instance I, first fit algorithm uses k (mFF(I)= k) number of bins to fill the 

items then       
 
    ≥ mFF(I) – 2. 

Proof: 

Now if a bin B contains an item it whose size > 
 

 
 then w(B) ≥ 1, so our emphasis will be 

on those bins containing items of size ≤ 
 

 
 and as a result w(B) < 1. Let B1,B2,…,Bz be list of 

non empty bins filled in this particular order. Now coming to coarseness all bins have 

coarseness α< 
 

 
, if a bin B has coarseness α ≥ 

 

 
 then it implies that in bin B there is only 

one item with size> 
 

 
. 

Now to prove this lemma we make use of the following claims which also have to be 

proved. The two claims are as follows 

 



36 
 

Claim 1: 

For a bin B with coarseness α< 
 

 
  and containing items it1≥ … ≥ itk, if       

 
   ≥ 1- α  

then        
 
    ≥ 1. 

Claim 2: 

If a bin B is packed with items it1≥it2≥ … ≥itk  and        
 
    = 1- β , β >0 then either 

(i) k = 1 and it1≤ 
 

 
. 

OR 

(ii)       
 
   ≤ 1- α  - 

 

 
 β. 

Using the above two claims we will prove the bound for the first fit algorithm and the 

two claims will be proven later. 

     Let W(Bi)= 1- βi , βi>0 where W(Bi) represents the weight of the bin Bi  and let αi< 
 

 
 

represents the coarseness of a bin Bi. Let it1
i
, it2

i
,… to denote the items packed in Bi. 

Let us assume a variable l>1, now using the definition of coarseness and claim 2, for 

1<i≤l. 

    
   

 ≥ 1- αi     (1) is derived using the definition of 

coarseness. 

    
   

 ≥ 1- αi-1  - 
 

 
 βi-1     (2) is derived from claim 2. 

Combining (1) and (2) we get  
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αi ≥1-     
   

  ≥ 1- αi-1  - 
 

 
 βi-1    (3)  

Considering (3) we get 

αi ≥ αi-1 + 
 

 
 βi-1   

 

 
(αi- αi-1) ≥ βi-1   

Applying summation, we get 

   
 
   ≤ 

 

 
           

 
   = 

 

 
(  -  ) ≤ 

 

 
. 
 

 
 < 1. 

     Here if we consider case(i) of claim 2 then α ≥ 
 

 
 but we assumed α < 

 

 
 and hence the 

previous bin  size is filled with 1- α > 
 

 
, W(B) ≥ 1 but we know that W(B)=1- β which is a 

contradiction. So case(i) of claim2 does not hold. Since    cannot exceed 1, we have 

   
 
   ≤ 2. Now let m be the number of the bins other than B1,…,Bl used by first fit so 

that m+l= mFF(I). 

W(I) ≥m+      
 
   = m+   

   -   
 
   =m+l-   

 
   ≥ mFF(I)-2. 

So we get, mFF(I)≤W(I) + 2.Hence proved. 

Combining this with lemma 1 we get 

mFF(I)≤ 
  

  
 mOPT(I)  + 2. 

Now we are left dealing with the proving claim1 and claim 2. 

 



38 
 

Claim 1: 

For a bin B with coarseness α< 
 

 
  and containing items it1≥ … ≥ itk, if       

 
   ≥ 1- α then 

       
 
    ≥ 1. 

Proof: 

In an given instance for it1>
 

 
, the result is immediate since w(it1) =1.So we therefore 

assume that it1≤
 

 
.If k ≥ 2 then by the definition of coarseness, we have it1≥ it2 ≥ α where 

α is the coarseness of the bin. Now we need to consider cases based on the different 

values of α. 

Case 1: If α ≤ 
 

 
, then       

 
   ≥ 1- α  ≥ 

 

 
. Now for all items in the range [0,

 

 
] the slope of 

weight function w is greater than 
 

 
, i.e. 

     

  
 ≥ 

 

 
 for 0≤ it≤ 

 

 
 where it represents the item 

whose size is in the range [0,
 

 
]. Since 

     

  
 ≥ 

 

 
 for 0≤ it≤

 

 
, we have        

 
   ≥ 

 

 
. 
 

 
 ≥ 1. 

Case 2: If 
 

 
 ≤ α ≤ 

 

 
, we get three subcases based on the value of k  

(i) k=1. This case is not possible since it1 ≤ 
 

 
, we have       

 
   ≥ 1- α  

which gives 1- α ≤ 
 

 
,this is a contradiction as we have α ≤ 

 

 
  

(ii) k=2.If both it1≥ it2 ≥ 
 

 
, then       

 
   ≥ 2(

 

 
 
 

 
 + 

 

  
) =1. Now if both 

the items it1, it2 are less than 
 

 
, then it1+ it2 < 

 

 
 < 1- α, contradicts 

our hypothesis. If it1 ≥ 
 

 
 and  it2<

 

 
, as it1≥ it2 > α  and α≤

 

 
, we get 
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w(it1) + w(it2) = (
 

 
 it1+ 

 

  
) + (

 

 
 it2- 

 

  
) = 

 

 
 (it1+ it2) + 

 

 
 it2, Since 

it1+ it2 ≥ 1- α and it2 > α  we get w(it1) + w(it2)= 
 

 
 (it1+ it2) + 

 

 
 it2 

≥
 

 
 (1- α) + 

 

 
 α ≥1,since α≤

 

 
. 

(iii) k ≥ 3. The working procedure for this case is similar to the 

previous step. So if both it1≥ it2 ≥ 
 

 
 then we have the claim. If it1 ≥ 

 

 
 and  it2<

 

 
, as it1≥ it2 > α  and α≤

 

 
, we get 

       
 
   = w(it1) + w(it2) +        

 
    ≥ (

 

 
 it1+ 

 

  
) + (

 

 
 it2- 

 

  
)+ 

 

 
      
 
   = 

 

 
      
 
   + 

 

 
 it2 ,  

Since       
 
   ≥ 1- α and it2 > α  we get 

       
 
   ≥

 

 
      
 
   + 

 

 
 it2 ≥ 

 

 
 1- α) + 

 

 
 α≥1, since α≤

 

 
. 

Considering if the first two items are <
 

 
,i.e. 

 

 
  it1≥ it2> α then  

       
 
   = w(it1) + w(it2) +        

 
    ≥ (

 

 
 it1- 

 

  
 )+(

 

 
 it2- 

 

  
)+ 

 

 
      
 
   = 

 

 
      
 
   + 

 

 
 it2 + 

 

 
 it2 -

 

 
. 

Since       
 
   ≥ 1- α and it1≥ it2> α we get 

       
 
   ≥  

 

 
      
 
   + 

 

 
 it2 + 

 

 
 it2 - 

 

 
 ≥
 

 
 1- α) + 

 

 
 α+ 

 

 
 α-

 
 

 
=
 

 
 1- α) + 

 

 
α- 

 

 
=
 

 
  

 

 
 α+

 

 
α- 

 

 
=1.Now let’s move on to the next 

case. 
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Case 3:If 
 

 
 < α < 

 

 
, we get two subcases to deal with i.e. when k=1,2.If k=1 then it1≥1- α 

> 
 

 
. Since it1≥ 

 

 
, we have         . Now for k≥2, we need to do case analysis similar 

to the previous subcases in case2. 

In this manner we can prove the claim 1. 

Proof of Claim 2: 

Claim 2: 

If a bin B is packed with items it1≥it2≥ … ≥itk  and        
 
    = 1- β , β >0 then either 

(i) k = 1 and it1≤ 
 

 
. 

or 

(ii)       
 
   ≤ 1- α  - 

 

 
 β. 

Proof: 

If k=1and it1>
 

 
 then it is not possible that β>0 since         .Now if k ≥2 then by the 

definition of the coarseness of the bin we have it1≥ it2 ≥ α. Let       
 
   = 1- α – γ. Then 

we construct a bin packed with items it3,it4, … itk and two items δ1, δ2 respectively. Now 

let δi ≥ iti and δ1+ δ2 = it1+it2+γ and both δ1, δ2 < 
 

 
.Using claim1 for this bin we get 

       
 
                ≥ 1.       (1) 

For the items in the range [0, 
 

 
  the slope of weight function w is ≤ 

 

 
, so we get 

                           
 

 
 γ.       (2) 
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Now substituting (2) in (1) we get  

       
 
                  

 

 
 γ ≥ 1. 

       
 
                  ≥ 1- 

 

 
 γ. 

But we know that        
 
   = 1- β, substituting this in the above inequality gives 

β ≥ 1- 
 

 
 γ which gives γ ≥ 

 

 
 β. 

Hence the claim holds. 

2.2.3 Best Fit Algorithm:  

Best fit is another online algorithm that packs the input item according to the following 

rule: while trying to pack item ai, the best fit algorithm assigns the item to the bin whose 

empty space is minimum. If the item ai is unable to fit in any of the opened bins then a 

new bin is opened to pack that item ai. 

Algorithm 

Consider bins bj where j ϵ (1,2 … , n) 

Consider an instance x containing items ai where i ϵ (1,2 … , n) and no of bins b ‹— 1  

Begin 

 for  i := 1 to n do 

Sort bins bj in decreasing order such that the bin with minimum space 

available is placed first. Let the sorted sequence be { B1,B2 …. ,Bn} 

 for k:=1 to n do  
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 if the item ai can fit in the bin Bk then 

  Insert ai into the bin  

break; // exit for k loop 

  //continue for i loop  

End 

     Though First Fit and Best Fit are better than Next Fit, the worst case performance is 

the same for all the three algorithms. So there is a need for better approximation 

algorithm. A better approximation algorithm is obtained by observing that the worst 

performance for First Fit (and best fit) seems to occur when smaller items appear before 

larger items in a given instance. 

2.2.4 Harmonic Algorithm: 

Under online algorithms for bin packing problem, we have another algorithm [8] based 

on non-uniform partitioning of interval (0, 1] into M sub-intervals. Consider an instance L 

= {it1,it2,it3 … , itn}, where  0 < s(iti) ≤ 1 , s(iti) denotes the size of item iti in the given 

instance L.  In this algorithm, the interval (0 , 1] is partitioned into harmonic sub intervals 

I
M

 = { ( 0,
 

 
 ] , (

 

 
 

 

   
] , ... ( 

 

 
 , 1] } where M is a positive integer. Now each item iti is 

classified and put in one of these sub intervals based on their size. An item iti is called Ik 

item, if the item size is in the interval Ik = (
 

   
 
 

 
] , k>1.If the item size is in the interval 

IM= ( 0,
 

 
 ] ,then the item is called IM item. In this manner all the items in the instance or 

the sequence are classified. So the Ik filled bin (bin with all  Ik items) packs exactly k 

items irrespective of the actual sizes of the items. Using this background, we discuss 

about Algorithm Harmonic. 
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     This algorithm opens an active bin for each type i.e., one bin of I1 type items, one bin 

of I2 type items and so on. Hence a total of M bins are active at any given time (since M 

sub intervals).When an item iti belonging to sub-interval Ik (Ik  item) arrives, it is 

packed in the corresponding active bin, if that is bin filled and has no enough space to 

pack item Ik then it is closed and a new bin is open for that sub-interval items. This 

harmonic algorithm is independent of the arriving order of the items. A disadvantage with 

this algorithm is when items of size> 
 

 
 are packed then one bin per item is used resulting 

in wasting a lot of free space in each single bin. Now based on the harmonic algorithm 

we have k – binary algorithm which works on the lines of harmonic algorithm. 

2.2.5 k – Binary Algorithm: 

The Algorithm k – binary partitions the interval (0,1] into sub intervals in the following 

given manner (0,1] =    
 
    where 

       

    =    

 

M  represents the number of partitions. For example, if M=3 then the interval (0,1] is 

partitioned into three intervals (0, 
 

 
] , (

 

 
, 
 

 
] , ( 

 

 
,1]. 

Algorithm: 

Begin 

Partition interval (0,1] into M sub-intervals   , k = 1,2,…,M. 

( 
 

  
, 

 

    
]   for  1≤ k < M 

 (0, 
 

    ] for k=M 
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 Bcount = M ; Open M new bins, one for each sub-interval. 

 for k= 1 to M 

  bk = 0,  bk ≤ 1 and 1 < k ≤ M, bk – bin size for sub interval    

 end for 

 for i = 1 to N do 

 if  0 < iti < 
 

  
 then iti is an    item. 

  if  bM + s(iti) > 1 then  

iti does not fit in the    bin. 

   Bcount = Bcount + 1; 

   bM =  0; 

  end if 

      Pack iti item in the opened    bin , bM = bM + s(iti) 

 Else if ∃k 
 

    
 < iti ≤ 

 

  
, 1≤ k ≤ M then iti is a    piece 

  if  bk + s(iti) > 1 then  

iti does not fit in the    bin. 

   Bcount = Bcount + 1; 

   bk =  0; 



45 
 

  end if 

      Pack iti item in the opened    bin , bk = bk + s(iti) 

 End if 

 End for 

 for k = 1 to M do 

  if bk= 0 then 

   Bcount = Bcount - 1; 

  End if 

 End for 

 Output Bcount  

End 

2.3 Summary and Results of standard bin packing: 

We know that bin packing is one of the classic and well-studied problems in the field of 

computer science. Since bin packing belongs to the class of Np hard problems, it is really 

difficult to come up with a polynomial time algorithm which solves the problem to give 

an optimal solution. So as a result, approximation algorithms are presented to find the 

closest possible solution to the optimal. One of the most basic and a simple online 

algorithm is next fit with a competitive ratio of 2. The proof for this ratio is simple and is 

given in the above sections. Now to study the problem we make use of competitive ratio 
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which can also be termed as performance ratio, approximation ratio or worst case ratio. 

The competitive ratio is given different names in textbooks and papers (like performance 

ratio, worst case ratio, approximation ratio). But general practice followed to avoid 

confusion is that competitive ratio is used to analyze online algorithms and worst-case 

ratio, approximation ratio is used for offline algorithms. This is only a general practice 

implemented by some of the researchers and publishers to avoid confusion. In this section 

we make use of two different competitive ratios to study about the results or the bounds. 

The two types of competitive ratios are absolute competitive ratio and asymptotic 

competitive ratio. The asymptotic competitive ratio is used to represent the asymptotic 

cases and is defined in the 2D bin packing section. Now let’s define the absolute 

competitive ratio. For a given instance I, let mA(I) be the number of bins used by the 

online algorithm A ( mA(I) can also be termed as the cost of the algorithm A) and let 

mOPT(I) be the number of bins used by the optimal solution then the absolute competitive 

ratio RA for the online algorithm can be given as RA=     
     

       
 . 

     It was Johnson who extensively studied, analyzed this problem and presented his PhD 

dissertation on this problem in 1973.He showed that next fit has a competitive ratio of 2 

and he [9] also showed that first fit has a asymptotic competitive ratio (performance) ratio 

of 
  

  
 The proof for the ratio is complicated when compared to the proof of next fit 

algorithm (performance ratio =2) and it is explained in the above chapters. After this 

result of first fit, a question was raised by Johnson, if there exists a polynomial time 

online algorithm better than the first fit (i.e. performance ratio < 
  

  
 ). This was resolved 

by Yao [30] who presented refined first fit with an asymptotic performance ratio of 
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    . In the same paper Yao also showed that unless P=Np, it is computationally 

intractable to come up with an online algorithm whose ratio < 
 

 
. Lee and Lee [6] 

presented a refined harmonic algorithm which had a better ratio of 1.63597. This 

harmonic algorithm was further improved by Ramanan, Brown, Lee and Lee [31] in 1989 

developed modified harmonic and modified harmonic 2 whose asymptotic performance 

ratios were 1.61562 and 1.61217. After this result, Seiden [22] in 2002 developed an 

algorithm called super harmonic algorithm achieving an asymptotic performance ratio of 

1.58889 which is by far the best known upper bound in online bin packing algorithms. 

This means that for online bin packing, there is no other algorithm itdeveloped whose 

asymptotic competitive ratio < 1.5889. 

     Coming to results based on absolute competitive ratio, Simchi-Levi [35] showed that 

first fit and best fit has an absolute competitive ratio no more than 1.75 and first fit 

decreasing and best fit decreasing has an absolute competitive ratio of 1.5.These 

algorithms takes O(n    ) time. G.Zhang [37] came up with a constant space online 

algorithm which runs in linear time. Furthermore, he [37] also proved that the algorithm 

returns a result whose absolute competitive ratio is 1.75. He also presented a constant 

space offline algorithm which runs in linear time and showed that the absolute 

approximation ratio is 1.5.Now exploring the lower bounds, Zhang[11] gave a lower 

bound of  
 

 
.This result was given by Zhang which is mentioned in the paper by 

Epstein[11]. This result in Epstein`s paper is referenced from Zhang through private 

communication. So the 
 

 
 is the best known lower bound result for the absolute 

competitive ratios of online bin packing problem. 
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     Now let us discuss about the lower bound results for the asymptotic competitive ratio 

of the online bin packing problem. As we all know Yao [30] also showed that unless 

P=Np, it is computationally intractable to come up with an online algorithm whose 

performance ratio < 
 

 
. This statement shows that 1.5 is the lower bound for the bin 

packing problem. This bound of 1.5 was further improved to 1.536 by Liang [33] and 

Brown [32] individually. This bound was further improved to 1.54014 by Van Vliet [12] 

in 1992. This 1.54 bound is by far the best known lower bound of asymptotic 

approximation ratio for the online bin packing problem. 

     Now coming to the results of the offline version of bin packing, D.S.Johnson [1], in 

this doctoral thesis, showed mFFD(x) < 
  

 
 m

*
(x) + 4, he proved that the performance ratio 

(approximation ratio) for FFD cannot get better than 
  

 
. This results seemed to work 

considerably well for higher values of mOPT(x) (mOPT(x)> 10). After this result, a lot of 

work and research was done to find the closest asymptotic additive constant (like 4) 

which is required to find better approximations for smaller instances. In this process, after 

the D.S.Johnson, B.S.Baker[2] proved that additive constant can be reduced to 3. Later in 

1991,Yue Minyi [3] further reduced additive constant to1 i.e. mFFD(x) < 
  

 
 m

*
(x) + 1. 

Later in 1997, L. Rongheng, M. Yue [4] furthur tried to reduce the additive constant to 
 

 
 

but they did not prove the statement but gave a draft about it. They also conjectured that 

the tight additive constant can be 
 

 
  (which proves to be an incorrect result). Finally in 

November 2011 Gyorgy Dósa, Rongheng Li, Xin Han and  Zsolt Tuza [5] claimed that 

the lower bound for the additive constant is 
 

 
. This bound is the most recent and the best 

known result for the first fit decreasing algorithm. 
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     We also know that the offline bin packing problem admits asymptotic polynomial 

time approximation scheme       ). This algorithm was given by Fernandez la Vega 

and Lueker [19] whose asymptotic approximation ratio is 1+   where   > 0.This can be 

elaborated as for a given instance I and for any  >0, ,we have an asymptotic PTAS 

      ) that runs  in polynomial time and returns a result of at most (1+ ) mOPT(I)+ 1 

bins. If the items are sorted, the running time of this algorithm is O(n) +f(
 

 
). Kamarkar 

and Karp [34] presented asymptotic fully polynomial time approximation scheme 

(AFPTAS) and showed that bin packing problem has an AFPTAS. So for a given 

instance I and  , the ratio can be given as (1+  ) mOPT(I)+ O(
 

  
). The running time of this 

algorithm polynomially depends on 
 

 
. Since asymptotic FPTAS returns a better result 

than      , it is considered to be the best known  upper bound of asymptotic 

approximation ratio for offline bin packing problem. Since we have an algorithm which 

returns an asymptotic approximation ratio of (1+  ),  >0, it is given that the lower bound 

for the asymptotic approximation ratio of offline bin packing is 1. 

     Now let us deal with the results based on absolute competitive (approximation) ratio 

for offline bin packing problem. Simchi-Levi [34] proved that first fit decreasing and best 

fit decreasing has an absolute competitive ratio of  
 

 
. This result is the best known upper 

bound of absolute competitive (approximation) ratio for offline bin packing problem. As 

for the lower bound of the absolute approximation ratio, Garey and Johnson [35] gave a 

bound of 
 

 
 which is considered to be the best known bound. 
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 Asymptotic 

Competitive(approximation) 

Ratio 

Absolute 

Competitive(approximation) 

ratio 

Online bin packing 1.540[12]  

 
 [11] 

Offline bin packing 1  

 
 [35] 

Table 2: Best known Lower bounds for standard bin packing problem. 

 

 Asymptotic 

Competitive(approximation) 

Ratio 

Absolute 

Competitive(approximation) 

ratio 

Online bin packing 1.589 [16]  

 
 [36] 

Offline bin packing FPTAS[33]  

 
 [34] 

Table 3: Best known Upper bounds for standard bin packing problem. 

 

 

 

 

 

 



51 
 

CHAPTER 3 

VARIANTS OF BIN PACKING PROBLEM 

3.1Bin packing with Rejection: 

3.1.1 Introduction to the Problem: 

Bin packing with rejection is considered to be a special case of classical bin packing. The 

bin packing problem with rejection was presented and studied by Dósa and Y.He [10]. In 

bin packing problem, we have the input sequence of items whose size is in the range (0, 

1] and these items needs to be filled in unit sized bins. We have continuous supply of unit 

sized bins and the sum of the items packed in a particular bin should not exceed its bin 

capacity. Our goal is to minimize the number of bins used and each item is packed in one 

bin. So when the item is ready to be packed in the bin, there is a possibility that the item 

might be refused or get rejected to be packed in that bin. This is where we need to 

consider bin packing with rejection. 

     So in a real time scenario or in many applications there are situations where the items 

are refused or rejected to be packed in a bin. When such items are refused or rejected we 

have a cost associated with the item termed as ‘rejection cost’. We need to understand 

that the rejection cost is associated with an item but not with the bins. To understand the 

concept of rejection cost let us consider the following examples. Let us consider an 

application where bins are disks and items are the files which needs to be saved on the 

disks. Now if a file is rejected to be saved on the disk, its rejection cost would be the cost 

of transferring it and saving the file on the alternative media. Similarly in another 

application where bins are storage spaces, rejection cost is paid to the disappointed 
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customer whose items cannot be stored. Thus we came to know that in bin packing with 

rejection each item is associated with a rejection cost. 

     For a given input instance of items I, each item iti   I contains size and rejection cost 

which is denoted by s(iti) and r(iti) respectively. The bin packing with rejection has online 

and offline versions of bin packing. In an online bin packing with rejection each item iti 

belonging to the instance I(containing n items) is represented as (s(it1), r(it1)),(s(it2), 

r(it2)),… (s(itn), r(itn)). The items are arrived one after the other. Upon arrival they must 

be either assigned or rejected. Once an action is made it cannot be revoked. 

     In the bin packing problem, our goal is to minimize the number of bins used for 

packing but in bin packing with rejection our goal is to minimize the sum of the 

following two entities. 

i. Sum of rejection cost of the rejected items. 

ii. Number of bins used for packing the items. 

So our goal is to minimize this sum. The rejection costs are larger than 1. 

     The offline version of the problem is dealt in a different way which is related to 

caching. Dósa and Y.He[10] suggested an application for the offline version of the 

problem where items are files which needs to be used on the local system. A file is used 

exactly once at a later time. One way to deal with this is to download the file to the local 

system and save it on the local server. So when the file is needed, the time taken to 

retrieve the file is quick but it occupies space in the local server. In this option the 

incurred cost is the cost of the local servers. The other option would be downloading the 

file directly from the external server when there is a requirement but the retrieval time is 
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more when compared to the previous option. In the second option the rejection cost is 

associated with the cost of transferring the file from the external server. An algorithm is 

needed to generate minimum cost results or outputs using the two options available. 

3.1.2 Results: 

Dósa and Y.He studied four variants of bin packing with rejection in their paper titled 

“bin packing problems with rejection penalties and their dual problems” [10]. These 

variants are offline and online bin packing with respect to the absolute and the asymptotic 

measures. For offline version of bin packing with rejection Dósa and Y.He present an 

algorithm with absolute approximation ratio of 2 and asymptotic approximation ratio 

of  
 

 
. Furthermore, it is stated that unless P=Np, we cannot have an algorithm with 

absolute approximation ratio less than  
 

 
. 

     The absolute approximation ratio and asymptotic approximation ratio was further 

improved from 2 and 
 

 
 to 

 

 
 and (1+ε) approximation by Leah Epstein [11] using the 

previous results from [10]. 

     Now coming to online version of bin packing with rejection Dósa and Y.He present an 

algorithm with absolute competitive ratio of 2.618 while the lower bound is 2.343.They 

present an algorithm with asymptotic competitive ratio of (1.75+ ε) while the lower 

bound which is 1.5401 was due to Van Vliet [12]. We get the best asymptotic 

competitive ratio for the bounded space algorithms (where only a constant number of 

bins are open bins) and it is shown that the ratio is the same for standard bin packing 

problem in [11]. For instance Epstein adapted Harmonic algorithm of Lee and Lee [6] 

and shown in [11] that they have the same asymptotic competitive ratio of 1.69103 as 
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standard bin packing. Epstein came up with an improved unbounded space algorithm 

which is a modification of modified harmonic algorithm gives asymptotic competitive 

ratio of approximately 1.61562.  

3.2 2D Bin Packing 

3.2.1 Introduction to the Problem 

The classical bin packing problem has been a one of the oldest and well-studied problems 

in field of computer science. In this section we will be discussing about the two 

dimensional bin packing problem and its results. It is observed that the 2D bin packing 

problem is a generalization of the classic bin packing problem. In 2D bin packing, each 

item is associated with two parameters width and height. So, in this problem each item iti 

is a rectangle of width wi ≤ 1 and height hi ≤ 1 where 1 ≤ i ≤ n, here n denotes the number 

of items in the instance. 

     For a given instance I containing n items, each item iti is a rectangle of width wi ≤ 1 

and height hi ≤ 1 needs to be packed into unit sized square bins, our goal is minimize the 

number of bins used for packing. In this problem, the items should be packed in the bins 

with no overlapping. The items are packed such that its sides are parallel to the edges of 

the bin and rotation of the items is not allowed. So in this way we can explain 2D bin 

packing problem. In short, 2D bin packing can be explained as a procedure where the 

given sets of 2D rectangles (items) are packed into unit square bins such that the number 

of packed bins is minimal. Since 2D bin packing problem is a generalization of 1D bin 

packing problem, it is considered to be an Np-hard problem too. 
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     The potential use of 2D bin packing in many real time and industrial applications is a 

motivating factor in studying this problem. This 2D bin packing is used in applications 

like packing items in warehouses and trucks, cutting stock problems (cutting rectangles 

from sheets of a given size) and many more. In the cutting stock problems, we have 

glass/metal rectangular sheets of fixed or standard size. But the requirement from the 

customer could be rectangular sheets with arbitrary sizes which are less than the original 

standard sheet, now the sheets need to be cut in such a way that the numbers of standard 

sheets used is minimum. Especially for these kinds of applications, it is necessary and 

important to study the online version of 2D bin packing and its algorithms. 

     So in the online bin packing, the items are packed as per the input sequence and each 

item is assigned to the bin without the knowledge about the remaining items. To study 

and evaluate the performance of the online bin packing, the commonly used ratio is 

asymptotic competitive ratio. This ratio helps us in assessing the performance of the 

algorithm so let us understand the ratio and its importance. For a given instance I of 

online bin packing, let be the number of bins used by the online algorithm A (mA(I) can 

also be termed as the cost of the algorithm A) and let mOPT(I) be the number of bins used 

by the optimal solution then the asymptotic competitive ratio for the online algorithm can 

be given as 

  
 =       

   
 

{
     

       
 |       ) =  }. 

     After defining the asymptotic competitive ratio, we need to know about the variants in 

the online bin packing problem. In [14], the online bin packing problem is said to have 

two types of models based on the space constraint. They are 
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1. Bounded space model. 

2. Unbounded space model. 

Now that we came to know that there are two variants in the online bin packing, it is 

necessary that we need to know the difference between the two.  

Unbounded Space model: 

In the unbounded space model, there is no limit on the number of active or open bins 

available for packing items whereas in the bounded space model, we have a constant 

number of bins which are opened at any point of time available for packing items.  

Bounded Space Model: 

So in the bounded space model, if an item is ready to be packed and if none of the active 

or opened bins have enough space to that item then one of the bins is closed and a new 

bin is opened. So in this way in the space bounded model, the number of active or opened 

bins is remained constant. This model is practical and seems more realistic where it can 

be implemented in many real time applications. 

     Now in 1-space bounded multi-dimensional bin packing problem, there is only one 

active or opened bin at any given time and since it’s a multidimensional bin packing 

problem we deal with d dimensional hyperbox(items) which needs to be filled in d  

dimensional hypercube  (bins) with unit size where d≥2. We know that any two 

dimensions i and j define a plane Pij.     rotation of the item in any plane Pij is allowed, 

otherwise, the competitive ratio is unbounded. This result is taken from [15]. Keeping all 

these constraints in mind we pack the d dimensional hyberboxes in the d dimensional unit 
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sized cubes trying to minimize the number of bins used. So if the item cannot be packed 

in the active bin then the active bin is closed and a new bin is opened. Once a bin is 

closed, it cannot be opened again. 

     Now let us explain this using an example.  In the given figure below, for an instance I 

we have 3 items it1, it2, it3 which arrive to be packed in the given order. Since we are 

dealing with 1-space 2D online bin packing problem, we need to keep in mind that only 

one bin is allowed to be in active state (opened bin) at any given time. Now after packing 

it1, we need to pack it2 which can be packed in two different ways. One way is to pack 

the item directly with no rotation and the other way is to pack the item after     rotation. 

In the non-optimal configuration the second item is packed with no rotation and then 

when the third item arrives, there is no enough space to accommodate the third item, so a 

new bin is opened. But in the optimal configuration the second is rotated     and then 

packed. As a result there is enough space for the third item which is also packed in the 

same bin. So the below figure explains the packing procedure in 1 space 2D online bin 

packing problem. 

     It was Zhang,Y.L. Chin, Hing-Fung Ting, Xin Han and Zhuo Chang [14] who studied 

this variant of the bin packing problem closely and gave an online algorithm with a 

competitive ratio    which was the first study on 1-space bounded d dimensional bin 

packing problem. 
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3.2.2 Results: 

Firstly discussing about the results of 2D Online bin packing problem, lets present the 

lower bounds of the problem. It was Galambos [18] who provided a lower bound of 1.6 

for the 2D online bin packing problem. This lower bound was improved to 1.808 by 

Galambos & Van Vliet [21] and to 1.857 by Van Vliet[22] and the finally to 1.907 by 

Blitz [23] in the year 1996.  

     Now coming to the Asymptotic competitive ratio which was defined in the above 

section, Coppersmith and Raghavan [20] came up with the first online algorithm with 

asymptotic competitive ratio of 3.25. Csirik[25] in 1993 improved this ratio to 3.0625. 

Csirik and Van Vliet[24] presented an algorithm for all d dimensions and particularly for 

2D online bin packing problem they gave an asymptotic competitive ratio of 2.8596. 

Relying on the techniques of the improved harmonic algorithm, Han [26] in 2001 

improved the ratio to 2.7834. In 2003, Seiden and Van Stee[17] further improved this 

bound to 2.66013. They presented an algorithm regarded as H⊗C where H is the 

harmonic algorithm [6] and C is considered to be an instance of the improved harmonic 

algorithm. After Seiden and Van Stee`s 2.66013 bound, the improved bound for this 

problem became an open question, a lot of work was going on to improve the bound. One 

deliberate idea to improve the bound was to use an instance of super harmonic algorithm 

instead of improved harmonic algorithm which was used by Seiden and Van Stee. 

Nevertheless, Seiden and Van Stee[17] also stated that the previous analysis framework 

doesn`t work to improve the bound further. Finally in 2011, Han, Francis, Zhang and 

Yong [13] presented an improved and a better result. They gave a bound of 2.5545 for the 

2D online bin packing problem which remains to be the most recent result in this domain.                                                                
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     Since it was known that the previous analysis framework cannot be extended to the 

super harmonic algorithm, they came up with a new analysis framework which is useful 

for analyzing online 2D and multidimensional bin packing problems. They also gave a 

new weighting function which was considered to be much simpler than ones given in 

Seiden[16] paper. So the new weighting functions in combination with the new 

framework helped them in designing the algorithm H ⊗ SH+ where H is the harmonic 

algorithm and SH+ is the super harmonic algorithm which gave an upper bound of 

2.5545. 

     Now we discuss about the offline version of the 2D bin packing problem. It was 

Chung [27] in 1982, who gave an approximation algorithm with an asymptotic 

performance ratio of 2.125. This bound was improved to 1.69103 by Caprara [28] in 

2002. Finally in 2009 Bansal [29] further improved this bound by presenting a 

randomized algorithm with asymptotic performance ratio of at most 1.525.He also 

showed that the two-dimensional bin packing problem does not admit an asymptotic 

polynomial-time approximation scheme.  

3.3 2D Strip packing problem and its results: 

In strip packing problem a given set of rectangular input items with width and height 

bounded by 1 is packed into a vertical strip of fixed width 1 and infinite height. The goal 

is to minimize the height of the strip which packs the given input of rectangles. While 

packing no two rectangles should overlap with each other and the sides of the rectangles 

are parallel to the strip sides. Rotations are not allowed. Several industrial applications 

and real life applications like cutting and packing use variants or extensions of this 
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problem and this motivates us to study many 2D bin packing problems(variants of the 

problem). 

     We have online and offline version to this problem. If we know the all the rectangles 

before we pack the items then it is regarded as an offline version whereas in the online 

version the packing is done as per the input sequence and the packing decision is done 

before the next rectangle arrives. Once a rectangle is packed it cannot be moved. Strip 

packing is Np-hard and the lower bound of 1.5401[12] is valid for online strip packing. 

Results: 

Let us now discuss the results of the strip packing problem, for the offline version of the 

strip packing Coffman [44] presented algorithms next fit decreasing height (NFDH) and 

first fit decreasing (FFDH) height which returned asymptotic approximation ratios of 2 

and 1.7 respectively. Golan [45] improved this ratio to 
 

 
. This result was further 

improved when Baker [46] came up with an asymptotic approximation ratio of 
 

 
.Another 

important result for offline strip packing is asymptotic fully polynomial time 

approximation scheme (AFPTAS) by Kenyon and Remila [47]. After this AFPTAS from 

Kenyon and Remila, in 2005 Jansen and Stee [48] presented an AFPTAS which included 

the case where rotations of 90  are allowed. They developed this algorithm using linear 

programming and random techniques. The additive constant of this result was improved 

from O(
 

  
) to 1 by Jansen & Solis-Oba [49] for the cost of a higher running time. 

      Now coming to the absolute approximation ratio Schiermeyer [50] in 1994 and 

Steinberg [51] in 1997 presented algorithms which returned an absolute approximation 

ratio of 2. This remained to be the best upper bound of absolute approximation ratio for 

more than a decade. This upper bound of 2 established for more than a decade was 
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broken when Rolf Harren and Rob van Stee[52] presented an algorithm which returned 

an absolute approximation ratio of 1.9396 . 

     Now coming to the online version of strip packing, Baker and Schwarz [53] 

introduced an online strip packing algorithm called shelf algorithm. In this algorithm 

items are packed left to right in rectangular strips or rows forming levels called shelves. 

The first shelf is placed at the bottom of the bin/strip and the consequent shelves are 

produced by a horizontal line passing through the top of the tallest item in the shelf 

below. This kind of packing items in rectangular strip is shelf packing. The shelf packing 

introduced by Baker and Schwarz [53] was an elegant idea to implement standard bin 

packing algorithms to online strip packing. In this way next fit and first fit algorithms 

were employed to obtain asymptotic competitive ratios of 2 and 1.7 respectively. 

Similarly this idea was extended to harmonic shelf algorithm by Csirik and Woeginger 

[54] to obtain an asymptotic competitive ratio of 1.6910. In 2007 Han [55] further 

improved this bound to 1.5888. He formulated a relation between strip packing and one 

dimensional algorithm and thus showed online strip packing admits an algorithm with 

asymptotic competitive ratio of 1.5888. A lower bound of 2 for the absolute competitive 

ratio of online strip packing was given by Brown [56] in 1982. 
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Chapter 4 

CONCLUSION AND FUTURE WORK 

4.1 Recent Papers or Developments 

It is noted that bin packing problems is one of the classic and challenging problems in the 

field of computer science. This problem has been studied over 30 years and to this date 

work has been going on to find new improvised approaches and better results. However it 

seems most of the easy results has been attained and after analyzing the proofs of these 

results it’s been realized that getting these results was not easy. However bin packing 

problem has been fruitful in developing methods and served as a proving ground for 

techniques for approximation schemes and has helped in developing methods for other 

problems like Scheduling, Resource allocation and many more.  Bin packing to this date 

has ever new applications and especially the variants of bin packing are important to 

information technology. This problem has many potential applications in different real 

world industries (like transportation, logistics, Information Technology etc.). Some of the 

applications are scheduling television programming, cutting stock problem, cloud 

computing, truck loading problem and many more. As we know there are different 

variants of the problem and similarly several approaches for tackling them, a lot of papers 

have been published relating to this problem.  

     In this thesis, we list a few papers published recently which marks the most updated 

work going on in this field. Some of the papers are solving the two-dimensional bin-

packing problem with variable bin sizes by greedy randomized adaptive search 

procedures and variable neighborhood search by Andreas M. Chwatal and Sandro 

Pirkwieser [37] in 2011. In 2011, Friedrich Eisenbrand, Domotor Palvolgyi and Thomas 
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Rothvo[38] presented a paper called Bin Packing via Discrepancy of Permutations. This 

paper was recently revised in February 2012. In 2012, Filipe Brandao and Joao Pedro 

Pedroso [39] presented a paper solving bin packing related problems using an arc flow 

formulation. Abdesslem Layeb and Sara Chenche [40] came up with a paper titled a 

novel GRASP Algorithm for Solving the Bin Packing Problem which was published on 

April 2012.In 2012, Guido Perboli, Roberto Tadei, Mauro M. Baldi [41] published  a 

paper the stochastic generalized bin packing problem and again in the same year along 

with Crainic T.G they presented another paper branch-and-price and beam search 

algorithms for the generalized bin packing problem[42]. In February 2012, Gyorgy Dosa 

and Leah Epstein [43] presented a paper called generalized selfish bin packing. The 

information of these recent papers indicate the amount of work and research going into 

this field and it emphasis the importance of bin packing problem. 

     To share the recent progress in this field of bin packing, a fourth international 

workshop on bin packing and placement constraints BPPC'12 is being held on May 29
th

 

2012 at Nantes, France. This workshop is associated to the Ninth International 

Conference on the Integration of Artificial Intelligence and Operations Research 

techniques in Constraint Programming CPAIOR 2012. 

 

 

 

 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DPerboli,%2520Guido%26authorID%3D16176293900%26md5%3D185067e81178f8690b20fef9ff3ca53f&_acct=C000023038&_version=1&_userid=516213&md5=73f2ca1903763923f8f009c05d5fc330
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DTadei,%2520Roberto%26authorID%3D11041829500%26md5%3D88cad32c9b0df333211c31f967cc49f7&_acct=C000023038&_version=1&_userid=516213&md5=99be294b1bd2f7a19c0ef29c62bb7e35
http://128.84.158.119/find/cs/1/au:+Dosa_G/0/1/0/all/0/1
http://128.84.158.119/find/cs/1/au:+Epstein_L/0/1/0/all/0/1
http://www.emn.fr/z-info/cpaior-2012/
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