
UNLV Theses, Dissertations, Professional Papers, and Capstones

8-1-2012

A Survey of Classical and Recent Results in Bin Packing Problem A Survey of Classical and Recent Results in Bin Packing Problem

Yoga Jaideep Darapuneni
University of Nevada, Las Vegas, darapune@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons, and the Discrete Mathematics and Combinatorics

Commons

Repository Citation Repository Citation
Darapuneni, Yoga Jaideep, "A Survey of Classical and Recent Results in Bin Packing Problem" (2012).
UNLV Theses, Dissertations, Professional Papers, and Capstones. 1663.
https://digitalscholarship.unlv.edu/thesesdissertations/1663

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1663&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1663&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1663&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1663?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1663&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

A SURVEY OF CLASSICAL AND RECENT RESULTS IN BIN PACKING

PROBLEM

by

Yoga Jaideep Darapuneni

A Thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

August 2012

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Yoga Jaideep Darapuneni

entitled

A Survey of Classical and Recent Results in Bin Packing Problem

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science

Wolfgang Bein, Committee Chair

Ajoy K. Datta, Committee Member

Ju-Yeon Jo, Committee Member

Zhiyong Wang, Graduate College Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies

and Dean of the Graduate College

May 2012

iii

ABSTRACT

A SURVEY OF CLASSICAL AND RECENT RESULTS IN BIN PACKING

PROBLEM

By

Yoga Jaideep Darapuneni

Dr. Wolfgang Bein, Examination Committee Chair

Professor, Department of Computer Science

University of Nevada, Las Vegas

In the classical bin packing problem one receives a sequence of n items 1, 2,…, n with

sizes s1, s2, . . . ,sn where each item has a fixed size in (0, 1]. One needs to find a

partition of the items into sets of size1, called bins, so that the number of sets in the

partition is minimized and the sum of the sizes of the pieces assigned to any bin does not

exceed its capacity. This combinatorial optimization problem which is NP hard has many

variants as well as online and offline versions of the problem. Though the problem is well

studied and numerous results are known, there are many open problems. Recently bin

packing has gained renewed attention in as a tool in the area of cloud computing. We

give a survey of different variants of the problem like 2D bin packing, strip packing, bin

packing with rejection and emphasis on recent results. The thesis contains a discussion of

a newly claimed tight result for First Fit Decreasing by Dosa et.al. as well as various new

versions of the problem by Epstein and others.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Wolfgang Bein for chairing my committee and advising this

work. I am thankful for his continuous guidance and patiently clearing all my questions

during the course of my thesis. I really enjoyed the thesis discussions we had and this

helped in finishing my work in time. Without his generous help this thesis would not

have had such a rich content. I am thankful to Dr. Ajoy K Datta for his support and

guidance through my Masters program and help on my thesis. I would also like to

specifically thank Dr. Ju-Yeon Jo and Dr. John Wang for serving on the committee. For

this and for being generous with their time when I needed it, I am deeply indebted to

them.

 I would like to thank the faculty at the School of Computer Science, University of

Nevada, Las Vegas for the formal education along with generous financial support. I

would also like to extend my appreciation towards my family and friends for being there

for me all the time and always encouraging me to strive for the best.

v

TABLE OF CONTENTS

 ABSTRACT . iii

 ACKNOWLEDGEMENTS . iv

 LIST OF TABLES . viii

 LIST OF FIGURES . ix

 1 Introduction 1

 1.1 Class P . 1

 1.2 Class Np . 1

 1.3 Np-Hard . 2

 1.4 Np-Complete . 2

 1.5 What is r-approximate solution? . 3

 1.6 Class NPO . 4

 1.7 Class APX . 4

 1.8 Polynomial time Approximation Scheme (PTAS) 5

 1.9 Class PTAS . 5

 1.10 Asymptotic Polynomial time Approximation Scheme (). 7

vi

 2 WHAT IS BIN PACKING? 8

 2.1 Offline Algorithms for bin packing . 8

 2.1.1 First Fit Algorithm . 10

 2.1.2 First Fit Decreasing Algorithm (FFD) 10

 2.1.3 for bin packing problem . 19

 2.2 Online Algorithms for bin packing 27

 2.2.1 Next-Fit Algorithm . 27

 2.2.2 First- Fit Algorithm . 30

 2.2.2.1 Proof for the Upper Bound 31

 2.2.3 Best- Fit Algorithm . 41

 2.2.4 Harmonic Algorithm . 42

 2.2.5 k – binary Algorithm . 43

 2.3 Summary and Results of Standard bin packing 45

 3 VARIANTS OF BIN PACKING PROBLEM 51

 3.1 Bin Packing with Rejection . 51

 3.1.1 Introduction to the Problem . 51

 3.1.1 Results . 53

 3.2 2D Bin packing . 54

 3.2.1 Introduction to the Problem . 54

 3.2.2 Results . 59

 3.3 2D Strip Packing and its Results . 60

vii

 4 CONCLUSION AND FUTURE WORK 63

 4.1 Recent Papers and developments . 63

 BIBLIOGRAPHY . 65

 VITA . 71

viii

LIST OF TABLES

Table 1 Maximum possible values of N for different M values using the

expression mFFD(x) <

 mOPT(x) +

 . 17

Table 2 Best known Lower bounds for standard bin packing problem 50

Table 3 Best known Upper bounds for standard bin packing problem 50

ix

LIST OF FIGURES

 Fig 1 Relation between class PTAS, APX and NPO . 6

 Fig 2 Optimal bin distribution and distribution using FFD algorithm 13

 Fig 3 Another example for optimal bin distribution and distribution using FFD... 16

Fig 4 Example to explain the distribution and arrangement in step 2 18

Fig 5 Example for Optimal bin distribution vs. distribution using Next fit 29

Fig 6 Example for optimal and Non-optimal configuration of 1 space 2D online bin

packing . 58

x

1

CHAPTER 1

INTRODUCTION

1.1 Class P

Set of decision problems or class of problems for which some algorithm can solve the

problem in polynomial time. This means that the running time of the algorithm is

bounded by a polynomial of input size. Let T(n) be the running size of the algorithm for

input size n.

∃ a constant k such that the running time T(n) is O(n
k
)

Example: sorting, minimum spanning tree.

1.2 Class Np

In formal terms class Np can be defined as the set of decision problems where the "yes"

instances can be decided in polynomial time by a non-deterministic Turing machine.

 Np is the class of decision problems, for which the "yes" answers have proofs

verifiable in polynomial time by a deterministic Turing machine. The notation Np stands

for "nondeterministic polynomial time", since originally Np was defined in terms of

nondeterministic Turing machines (that is, machines that have more than one possible

move from a given configuration).

Example: Subset sum problem, bin packing problem.

http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/Non-deterministic_Turing_machine

2

Class P and Class Np can be represented as P and Np respectively. So, P is the class of

"easy to solve" problems, and NP is the class of "easy to check" problems. The class P in

contained in class Np i.e. P ⊂ Np. Does P = Np?

It is an open problem of major importance.

Is P=Np?

This is called the P vs Np problem. It is major unsolved problem in the field of computer

science.

 If P=Np, then it basically denotes the set of problems that can be verified in

polynomial time (class Np) can also be solved in polynomial time (Class P).

 If P ≠Np , it means that there are problems in Np(quickly verifiable) that are hard to

solve than to verify. This gives rise to the concept of Class Np-Complete and Np-hard

problems.

1.3 Np-Hard:

The set of problems is said to be in Np-hard if it contains the following property

- If there exists a polynomial time algorithm to solve one of these problems

then there exists one for every problem in Np.

Note: Np-hard problems need not be in Np & need not be a decision problem.

1.4 Np-Complete:

A decision problem X is Np-complete iff

- X ϵ Np

3

- X is Np-hard (or) if every problem in Np can be reduced to X in polynomial

time.

X can be shown to be in Np by showing that a candidate solution to X can be verified in

polynomial time.

 Np-complete problems are the hardest problems in Np. The importance of solving a

Np-complete problem is that if we are able to find an algorithm to solve Np complete

problem in polynomial time then we can solve every other Np problem in polynomial

time.

 No efficient algorithm for an NP-complete problem has ever been found; but nobody

has been able to prove that such as algorithm does not exist. For many Np optimization

problems, serious attempts are made to find the optimal solution in polynomial time but

since it appears to be intractable we limit ourselves to approximate solutions using r-

approximate algorithms. Now let us discuss about the r-approximate algorithm and its

solution in the next section.

1.5 What is r-approximate solution?

For a given optimization problem P, there exists an algorithm A such that for any instance

I it computes solution mAPPROX (I) , we say that A provides a r-approximation solution

for problem P when for any instance I

 ≤

 ≤ r

Where mOPT(I) is the optimal solution for instance I of problem P. Here A is said to be a

r-approximate algorithm.

4

1.6 Class NPO:

Class NPO can be defined as a set of problems that allow polynomial time r-approximate

algorithm. The existence of r-approximate algorithm for Np-hard problems helps in

finding the approximate or the closest possible solution to the optimal.

1.7 Class APX:

APX belongs the class of all NPO problems where for some r ≥ 1 there exist a r-

approximate polynomial time algorithm.

 So any problem which has r-approximate algorithm is said to be in class APX. Some

of the problems which belong to the class APX are maximum satisfiability, maximum

cut, minimum graph coloring restricted to planar graphs, minimum vertex cover,

minimum bin packing and many more.

 There are situations where for some NPO problems we cannot find r-approximate

polynomial time algorithm unless P=Np, which can be interpreted as finding

approximation algorithm is as hard as to determine optimal solution. This means that

under the hypothesis P≠Np, class APX is strictly contained in class NPO i.e. APX ⊂

NPO. Here in the given expression APX denotes class APX and NPO denotes class NPO.

 Now as mentioned earlier in the above paragraph, we have situations where there are

problems belonging to class NPO but does not belong to class APX. For example,

minimum travelling salesperson problem is an optimization problem which does not have

an r-approximate polynomial time algorithm. So it does not belong to class APX. Some

other problems which do not belong to class APX are maximum clique and maximum

independent set problem. Unfortunately for most of the problems in APX the

5

performance ratio can only be approximated to a certain point, which means that a

threshold exists t such that r<t becomes computationally difficult.

1.8 Polynomial time Approximation Scheme (PTAS):

Let Q be an Np-hard optimization problem. An algorithm A is an approximation scheme

for Q if for every r > 0, ‘A’ returns a solution Qsol such that

Qsol ≤ (1 + r) Qopt ------------ if Q is a minimization problem.

Qsol ≥ (1 + r) Qopt ------------ if Q is a maximization problem.

Qopt means the optimal solution for the problem Q.

 ‘A’ will be called PTAS, if it runs in polynomial time of n and as we decrease r, the

running time increases drastically. The dependency on r is exponential, so for example

the running time can be of form O

 , O

 and many more.

 Now for any NPO problem, let us suppose there exists a constant k and if its Np-hard

to describe that for a given instance I, mOPT(I)≤k, then there is no PTAS for that problem

and a polynomial time algorithm with r <

 exists only if P=Np.

1.9 Class PTAS:

Class PTAS can be defined as the set of problems that allow PTAS or has a PTAS. So

any algorithm which contains PTAS is said to belong in class PTAS.

 By definition class PTAS belongs to class PAX. So the problem which does not

belong to class APX does not have PTAS too. Example: minimum travelling salesperson

6

problem. So if P≠Np, then PTAS ⊂ APX where PTAS represent class PTAS and APX

denotes class APX respectively.

 The following picture depicts the relation between Class NPO, APX and PTAS. With

the help of the figure below we can understand the relationship between these classes in a

better way.

Class NPO

Class APX

Class PTAS

Fig 1: Relation between class PTAS, APX and NPO

7

 Bin packing problem does not have PTAS. If P≠Np and r is the approximation ratio to

bin packing, there is no r- approximate polynomial time algorithm for minimum bin

packing problem for which r ≤

 , .

1.10 Asymptotic Polynomial time Approximation Scheme ():

Let P be an NPO problem and let there exists a constant k. An algorithm A is said to be

an asymptotic polynomial approximation scheme for any r ≥ 1,if the algorithm A for the

instance I returns a solution whose performance ratio is at most r+

 where)

denotes the optimal solution and algorithm A runs in polynomial time.

 Asymptotic polynomial time approximation ratio) is a weaker form of

approximation when compared to PTAS. It is based on the idea that the performance ratio

of the approximate solution (returned by the respective approximation algorithm) may

improve as optimal solution becomes bigger.

 Just like class PTAS we also have class which is the set of all NPO problems

that contain an asymptotic polynomial time approximation ratio). So the relation

among PTAS, APX and polynomial time approximation ratio) can be given as

PTAS ⊆ ⊆ APX.

8

CHAPTER 2

What is Bin-Packing?

Now coming to our problem, the bin packing problem is considered to be one of the

combinatorial minimization problems. We receive a sequence of n items L= {1, 2,…, n}

with sizes s1, s2, . . . , sn and each item has a fixed size in (0, 1]. Now one needs to find a

partition of the items into sets of size 1 (called bins) so that the number of sets in the

partition is minimized and the sum of the sizes of the pieces assigned to any bin may not

exceed its capacity. We say that an item that belongs to a given bin (set) is packed into

this bin. A bin is empty if no item is packed into it, otherwise it is used. Since the goal is

to minimize the number of bins used. Bin packing is NP -hard, thus finding an exact

solution for any given input can be done currently only in exponential time. Since it`s is

an NP-hard problem and the polynomial time optimization algorithm cannot be found

unless P=NP. A more reasonable approach would be finding an approximation algorithm

m that runs in low-order polynomial time and for all instances I, mAPPROX (I) is close to

mOPT(I). mAPPROX (I) represents the approximate solution for the given instance I . mOPT(I)

represents the optimal solution for the instance I. mOPT(I) can also be represented as m*(I)

which means the same.

 Our primary goal is to fit items into the bins such that the number of bins used is

minimal. For this purpose, there are several algorithms developed which provides an

approximate solution bounded by ‘r’ (here ‘r’ is the approximation ratio). These

algorithms can be broadly classified into two categories

 Online bin packing Algorithms

 Offline Bin packing Algorithms

9

 Online bin packing algorithms packs items in the bin as per the input sequence. These

algorithms does not have knowledge of the next items in the input sequence whereas the

offline algorithm has knowledge of the next item in the input sequence required for bin

packing and can possibly arrange them in a particular order before packing the items in

the bins.

Theorem: If P≠Np and for any , we cannot find an r-approximate algorithm for bin

packing problem whose approximation factor r <

 – .

Proof: Consider a partition problem which is Np-Complete. This is a decision problem

where for a given input of n numbers the problem is to decide if there is a way to

partition or divide n number into two sets, such that each set is equal to

. Here

represents the sum of n numbers. This partition problem can be reduced to the bin

packing problem where each number correspond to the items and these items should be

packed into bins of size

. So for the given instance the answer to the decision problem

is “yes” iff n items can be packed into two bins of size

. So if there is a

 –

approximation algorithm then it will have to give an optimal packing and thereby solving

the Np complete partition problem.

 In the next section we discuss about the offline algorithms of bin packing problem.

The First fit algorithm is one of the most basic algorithms for bin packing and can be

used as both online and offline algorithm.

10

2.1 OFFLINE ALGORITHMS FOR BIN PACKING:

2.1.1 First Fit Algorithm:

Given an instance x of OFFLINE BIN PACKING, the algorithm First Fit returns a result

[1] with value mFF(x) such that mFF(x) < 1.7 mOPT (x)+2 where mOPT (x) denotes the

optimal solution for an instance x. The numeric “2” represents the additive constant.

Algorithm

Consider bins bj where j ϵ (1, 2 …, n)

Consider an instance x containing items ai where i ϵ (1, 2 …, n)

Begin

 for i := 1 to n do

 for j := 1 to n do

 if item ai can fit in the bin bj

then

 Insert ai into the bin

 Break; //exit for j loop

 //continue for i loop

End

2.1.2 First Fit Decreasing Algorithm (FFD):

First Fit Decreasing is an enhanced algorithm with improved performance ratio and better

approximation. In fact it is an offline algorithm where the items are first sorted in non-

increasing order as per their size and then processes items as First Fit.

11

 Given an instance x of BIN PACKING, the algorithm First Fit Decreasing[7] returns

a result with value mFFD(x) such that mFFD(x) <

mOPT (x) + 4 where mOPT (x) denotes the

optimal solution for an instance x.

Let us take an example to illustrate the distribution of items using first fit decreasing

algorithm and optimal packing.

Consider an instance I of 5n items

The classifications of 5n items (input sequence of items) is as follows

 n items of size ½ + ε ,

 n items of size ¼ + 2ε ,

 n items of size ¼ + ε ,

 2n items of size ¼ - 2ε.

Using FFD, these 5n items can be filled in 11n/6 bins (mFFD(I)= 11n/6) .The distribution

is done in this way, Initially as per the algorithm all the 5n items of different sizes are

arranged in non-increasing order. After the arrangement, the items are filled into the bins

as per the first fit algorithm. Now that we have non increasing sequence of input items,

the first(largest) n items of size ½ + ε are filled in n different bins since we have unit size

bins and two items of size ½ + ε would exceed the size of the bin . Now the next

sequence of n items of size ¼ + 2ε is filled in the existing n bins as there is enough space

for them to fit. After filling n items of size ½ + ε, we deal with next sequence of items i.e.

n items of size ¼ + ε, now since these items cannot fit in the existing bins, new bins are

opened and these n items are filled in n/3 bins with each bin containing 3 items of size ¼

+ ε. Now we are left with final sequence i.e. 2n items of size ¼ - 2ε,

12

Since these items cannot fit in any of the existing opened bins, new bins are opened and

these 2n items and these items are filled in n/4 bins with each bin containing 4 items of

size ¼ - 2ε. Hence, in this way the items are filled using the first fit decreasing algorithm.

In short, the distribution can be described as follows

 n bins contain each item of size ½ + ε and , ¼ + 2 ε in one bin .

 n/3 bins contain three ¼ + ε size item in each bin.

 n/2 bins contain four ¼ - 2 ε size items in each bin.

The optimal bin distribution can be detailed as follows

 n bins contain each item of size ½ + ε, ¼ - 2 ε and ¼ + ε in one bin.

 n/2 bins contain two ¼ + 2ε size items and two ¼ - 2 ε size item in each bin.

In the below figure case (a) represents optimal bin distribution and case (b) shows the

FFD bin distribution.

13

k

k

k

k

k

k

k

… …

…
…

n bins

n/3 bins

n/2 bins

n/2 bins

½ + ε ¼ +2 ε ¼ + ε

ε

n bins

CASE (a)

CASE (b)

Empty

space

Fig 2: Optimal bin distribution and distribution using FFD

algorithm

¼ -2 ε

14

Thus the optimal solution for the instance of 5n items can be filled in 3n/2 bins (mOPT (x)

= 3n/2) and for FFD 5n items can be filled in 11n/6 bins (mFFD (x) = 11n/6). So by the

definition of performance ratio, we can calculate the performance ratio for a given

instance L by max (

) where is the solution returned by

the approximation algorithm for a given instance L and represents the optimal

solution. In the above case can be replaced by mFFD(x) since our

approximation algorithm is First fit decreasing and the instance we are dealing with is x.

Hence by substituting the actual values we get the performance ratio i.e. max (

) =

.

Hence the above example not only illustrates the distribution of first fit decreasing

algorithm but also shows that for given instance x the bound

 is tight and cannot get

smaller than that.

 In this doctoral thesis, D.S.Johnson [1] showed mFFD(x) <

 m

*
(x) + 4, he proved that

the performance ratio for FFD cannot get better than

. Though for an instance x,

mFFD(x) <

 mOPT(x) + 4 has tight bound and works considerably well for higher values

of mOPT(x) (mOPT(x)> 10) , work has been going on to find the closest asymptotic additive

constant (like 4) which is required to find better approximations for smaller instances. In

this process, after the D.S.Johnson, B.S.Baker[2] proved that additive constant can be

reduced to 3. Later in 1991, Yue Minyi [3] proved that additive constant cannot be lesser

than 1 i.e. mFFD(x) <

 m

*
(x) + 1 but the proof is difficult to understand. Later in 1997, L.

Rongheng, M. Yue [4] furthur tried to reduce the additive constant to

 but they did not

prove the statement but gave a draft about it. They also conjectured that the tight additive

15

constant can be

 (which proves to be an incorrect result). Finally in November 2011

Gyorgy Dósa, Rongheng Li, Xin Han and Zsolt Tuza [5] claimed that the lower bound

for the additive constant is

 , but the proof is 30 page long and considers a lot of test

cases which makes it difficult to understand (not sure about the correctness of the proof).

 So Gyorgy Dósa, Rongheng Li, Xin Han and Zsolt Tuza claim ∀ x, mFFD(x) <

mOPT(x) +

 bound is tight. So the FFD guarantees that it is never more than 22 percent

worse than optimal.

 Now to illustrate the tightness (with regards to additive constant

) of the expression

mFFD(x) <

 mOPT(x) +

 , let us consider an example where the instance is x and it can be

described as follows

 4 items of size ½ + ε

 4 items of size ¼ + 2ε

 4 items of size ¼ + ε

 8 items of size ¼ - 2ε

So for an optimal solution, the items in instance x can be filled in 6 bins (mOPT(x) = 6) and

the distribution is done as follows

 4 bins containing 1 item of size ½ + ε, ¼ + ε and ¼ - 2ε in each bin.

 2 bins containing 2 items of size ¼ + 2ε and ¼ - 2ε in each bin.

16

And now using the first fit decreasing algorithm the items in the same instance x can be

filled in 8 bins (mFFD(x) = 8) and its distribution is as follows

 4 bins containing 1 item of size ½ + ε, ¼ + 2ε in each bin.

 1 bin containing 3 items of size ¼ + ε

Fig 3: Another example for optimal bin distribution and distribution using FFD

algorithm

17

 1 bin containing 3 items of size ¼ - 2ε and 1 item of size ¼ + ε

 1 bin containing 3 items of size ¼ - 2ε

 1 bin containing 1 item of size ¼ - 2ε

So for the given instance x, if mOPT(x) = 6 then mFFD(x) = 8. So this example follows the

statement mFFD(x) <

 mOPT(x) +

.

Using the above result we can construct a corollary which can be illustrated as follows

Corollary:

We know that for an instance x, mFFD(x) <

 mOPT(x) +

 , Using this let mOPT(x) = M

and mFFD(x) = N such that ∀M we can deduce maximum of N using the above statement.

 In the given table below, M represents the number of bins used for optimal packing

and N represents the maximum possible number of bins used by first fit decreasing

algorithm. So for example let us consider an instance for which number of bins used for

optimal packing is 5 i.e. M=5 then using mFFD(x) <

 mOPT(x) +

 we can give N=6 i.e.

the maximum possible number of bins used by first fit decreasing is 6 and this value

cannot be bigger(for M=5). The table below shows the tightness of the asymptotic

additive constant.

 In the table below we give maximum values of N for different M values. Without the

tight upper bound, we could not know the maximum value of N in many cases. Thus the

table is as follows

18

mOPT(x) = M mFFD(x)= N N-M

1 1 0

2 3 1

3 4 1

4 5 1

5 6 1

6 8 2

7 9 2

8 10 2

9 11 2

10 12 2

11 14 3

12 15 3

13 16 3

14 17 3

15 19 4

16 20 4

17 21 4

18 22 4

19 23 4

20 25 5

 And so on…

Table 1: Maximum possible values of N for different M using mFFD(x) <

 mOPT(x) +

19

As we have discussed, we know that the bin packing problem does not have a PTAS. But

we also need to know that this problem has an asymptotic polynomial time

approximation scheme (). So let us describe the asymptotic polynomial time

approximation scheme () for bin packing.

2.1.3 Asymptotic Polynomial time Approximation Scheme for bin packing problem:

Since we know that the bin packing problem has an asymptotic polynomial time

approximation ratio).Let us discuss about the algorithm which is an asymptotic

PTAS.So the following algorithm was given by Fernandez de la Vega, W., and Lueker,

G.S. [19] in 1981.

 We have asymptotic PTAS for the bin packing problem. So the algorithm [19] for

asymptotic PTAS consists of the following 5 steps

1. Eliminate small items from the instance which needs to be packed.

2. Group the remaining items into a constant number of size values.

3. Find optimal solution of the resulting instance.

4. Ungroup the items.

5. Re-insert small items.

Let us define certain variables and constants before each step is explained in detail

c – Integer constant (c>0) denotes number of different sizes of items.

δ – Constant (δ ≤ 1)

B – Size of the bin.

20

Let K be the instance of bin packing and for any rational constant δ ϵ (0,

]

Kδ – instance obtained by eliminating all items whose sizes are less than δB.

Now, each step is explained in detail

Step 1:

In this step we eliminate small items (size< δB) from the instance K to obtain Kδ.

Step 2:

In this step, we group the remaining items in Kδ into groups of constant size values.

Procedure:

Given an instance Kδ, firstly arrange the items in a non-increasing order. Let n represent

the number of items in a given instance and let p be a constant.

Consider p ≤ n, let m =

 , and partition the n items into m+1 groups.

 Now we define a new instance Kδ,g with the same bin size B and size of all items in the

i
th

(for i= 2,3,…,m+1) group are made equal to the largest item in that respective partition

or group. The distribution of items in the new instance can be well understood by the

following example. Consider the instance x containing 11 items and whose sizes are

{9,8,8,7,7,6,5,4,4,3,3} .Let p=3, So we can have four groups (since m =

 =3) .Let the

four groups be G1 = { it1,it2,it3} G2 = {it4,it5,it6} G3={it7,it8,it9} and G4 = {it10,it11}

respectively.

21

 Now the new instance xg has 8 items arranged in 3 groups, three items of size

7(corresponding to items in group G2), three items of size 5(corresponding to items in

group G3) and two items of size 3(corresponding to items in group G4).

 So now for obtaining xg, we eliminate the last group G1 and then substitute each item

in the group with the largest or the highest item in that group. Moreover, we can obtain x

from xg by simply adding p bins which can insert the p items (which were removed).

22

This gives,

m
*
(xg) ≤ m

*
(x) ≤ m

*
(xg) + p

Where m
*
(xg) is the optimal solution for instance xg which indicates the filled bins and

m
*
(x) is the optimal solution for instance x.

 So if we are able to optimally solve xg then we can find solution for x whose absolute

error is at most p. We can generalize the above expression for the instance Kδ and it can

be shown as m
*
(Kδ,g) ≤ m

*
(Kδ) ≤ m

*
(Kδ,g) + p where p is the absolute error.

Step 3:

In this step we solve the instance (Kδ,g) which we got from step 2. The procedure to solve

the instance Kδ,g is as follows

 We have instance Kδ,g and it can be re- written as I = {s1 : n1 , s2 : n2, … , sc : nc}

where c denotes number of different sizes of items and s1,n1 represents the size and the

number of the items of size s1 respectively.

For example: I = { 3 : 4 , 5 : 2 , 7 : 1 } contains 4 items of size 3, 2 items of size 5 , 1

item of size 7 and c=3

For bin packing of instance Kδ,g let each bin can be represented by a vector = (b1,b2, …

,bc) where 0 ≤ bi ≤ n such that

 ≤ B . This implies that the packing of items in

the bin should not exceed B.

We also draw an important result, so for each bin

23

 ≤

 ≤

 The above result implies that the sum of number of different items in each bin should

not be more than

.So we need to choose at most

 number of items for a bin from c

(different size of items) types to fill in a bin and it is equal to

 q =

The value q denotes the possible bin types and depends on c and δ and does not depend

on n.

Let us consider the example where the given instance is xg

xg = (7,7,7,5,5,5,3,3) now this instance for step3 can be re written as xg = { 3 : 7 , 3 : 5 , 2 :

3 } and as we can observe c=3 and let us assume

 = 2 then

q =

 = 10 ways

Indeed we can have 10 different possible ways to fill a bin(bin types), using the b vector

to represent the bin types the result is as follows, (0,0,0), (0,1,0), (1,0,0), (0,0,1), (1,1,0),

(0,1,1), (1,0,1), (2,0,0), (0,2,0), (0,0,2) but out of all the possible 10 solutions only 8

solutions are feasible because the other 2 bins violate the bound given by the size of the

bin.(i.e., .

 ≤ B)

 So (1, 1, 0) and (2, 0, 0) are the 2 bin types which are not feasible. Now one of the

feasible solutions can be 2 bins of type (0,1,1) , 3 bins of type (1,0,0) and 1 bin of type

(0,1,0) and the optimal solution can be 1 bin of type (0,2,0) , 2 bins of type (1,0,1) , 1 bin

24

of type (1,0,0) and 1 bin of type (0,1,0). It is evident that the number of feasible solutions

is bounded by O(n
q
) which implies that the instance can be solved in O(n

q
p(n)) where p is

a polynomial by exhaustively generating all these feasible solutions.

Step 4:

This step primarily deals with ungrouping the items. Now by using the expression

m
*
(Kδ,g) ≤ m

*
(Kδ) ≤ m

*
(Kδ,g) + p we can obtain packing of items for Kδ by simply

adding p bins in which we can insert the first p items(eliminated in step2).

 Since we know the value of m
*
(Kδ,g), we can find m

*
(Kδ)from the above expression

i.e., m
*
(Kδ) ≤ m

*
(Kδ) ≤ m

*
(Kδ,g) + p .

The result of m
*
(Kδ) concludes step 4.

Step 5:

In this step we insert small items that were removed in step 1. Now using the first fit

algorithm small items are inserted to the instance Kδ. Let us suppose items in Kδ instance

are filled in M bins. So if the small items fit in the existing M bins then the packing is

done, otherwise

- M' ≥ 1 new bins have been created. So we can show all bins except at most

one have an empty space i.e., at most δB.

This results in the expression

 (1 – δ) (M + M' - 1) ≤

 ≤ m*(K)

25

m*(K) – optimal solution for instance K

 - Sum of items in the given instance/ size of the bin

The above expression gives

 M + M' ≤

 m*(K) +1 ≤ (1 + 2 δ) m*(K) + 1

So, given a packing of instance Kδ with M bins we can find in polynomial time a solution

for K instance whose measure is at most

 Max (M, (1 + 2 δ)m*(K) +1)

Here r = 1+ 2 δ , p =

 and Max (M, rm

*
(K) +1) gives solution for packing

 Another observation is that if r≥2, then First fit algorithm achieves the desired

performance ratio. So PTAS for bin packing is restricted to r < 2. Now elaborating on M,

from step4 it is understood that m
*
(Kδ) ≤ m

*
(Kδ,g) + p where m

*
(Kδ) = M bins.

Considering m
*
(Kδ,g) + p, since all items in Kδ have items of size at least δB, we conclude

δn' ≤ m
*
(Kδ), here n' is the number of items in the instance Kδ.(all items size is at least

δB)

So, p ≤

 n' + 1 =) δn' +1 ≤) m

*
(Kδ) + 1

From step 4

m
*
(Kδ,g) + p ≤ m

*
(Kδ) + p

Substituting p

26

m
*
(Kδ,g) + p ≤ m

*
(Kδ) +) m

*
(Kδ) + 1 = r m

*
(Kδ) + 1

Finally, by replacing r = (1+2δ) and M with r m
*
(Kδ) + 1 in the final expression we get

Max (rm
*
(Kδ) + 1, rm

*
(K)+1)

So given a packing of Kδ with ‘M ‘ bins we can find a solution for K in polynomial time

whose measure is at most Max (rm
*
(Kδ) + 1, rm

*
(K)+1).

Asymptotic PTAS for bin packing: (algorithm in brief)

Input: Instance K of bin packing and 1 < r < 2

Begin

r = 1+2 δ; p=

 n; B is the size of the bin;

Eliminate small items from the instance K whose size < δB, Let the resulting

instance be Kδ and n be the number of items in Kδ

Partition Kδ instance into m+1 groups where m=

 , remove the last group and

combine the rest to form the instance Kδ,g .

Find the optimal solution for Kδ,g and let the result be m
*
(Kδ,g)

Insert first p items into the p new bins and calculate m
*
(Kδ).

Using First Fit algorithm, reinsert small items to the instance Kδ, calculate and

return the result Max (rm
*
(Kδ) + 1 , rm

*
(K)+1)

End

27

2.2 ONLINE ALGORITHMS FOR BIN PACKING:

In the online version of bin packing algorithms items are packed in the bin as per the

input sequence. The current item is packed in the bin before the next item arrives and

once an item is packed in a particular bin it cannot be moved. Now let us discuss about

different online algorithms for bin packing algorithms.

2.2.1 Next Fit Algorithm:

This algorithm is one of the most basic online algorithms. Before we explain the

algorithm let us know about a few parameters, bj which represents the j
th

bin where j=-

1,2,3…,n and ai represents i
th

 item of the input sequence where i=1,2,3…,n. In this

algorithm, initially all bins are empty and we begin with bin j = 1 and item i = 1. So if bin

b1 has enough space for item a1 to fit then we assign item a1 to bin b1, otherwise bin b1 is

closed and a new bin bj+1 (i.e. b2) is opened to fill item ai. A closed bin is never opened

again for further allocation of items. In this manner we repeat the process till the input

sequence ends.

Theorem: Given an instance x of ONLINE BIN PACKING, the algorithm Next Fit

returns a result with value mNF(x) such that mNF(x)/mOPT (x) < 2 where mOPT (x) denotes

the optimal solution for an instance x.

Proof: This proof was taken from a paper written by D.S.Johnson [1]. Firstly, ‘A’

denotes the sum of all the item sizes in the bin. In the next fit algorithm, only one bin

(last used bin) is kept open and when an item doesn`t fit, that bin is closed and a new bin

is opened. So at any given time only one bin is open and once the bin is closed it cannot

be opened. Since the sum of the items of any two consecutive bins is always greater than

28

1, the number of bins used by Next fit algorithm is less than 2A.This is because on an

average the bins are more than half full. On the other hand, the optimal solution uses bins

which are at least the total size of the items (A). So mOPT (x) > A

Hence we have mNF(x)/mOPT (x) < 2

 The following example clearly presents the algorithm and the given instance follows

the bound stated in this theorem.

Example:

Consider there exists an instance of 4n items and the order of the items is as follows: I=

{

,

,

,

,…,

,

 (each pair is repeated 2n times). Fig (a) represents the optimal

solution where the 2n items of size

 are filled in n bins and the remaining 2n items of

size

 are filled in a single bin. Hence the mOPT (I) = n+1. Fig (b) represents the

approximate solution of Next Fit algorithm where 2 items of size

 and

 are filled in

each bin, thereby occupying 2n bins to fill the given instance. Hence mNF(I) = 2n.

Algorithm

 Consider an instance x containing items ai where i ϵ (1,2 … , n) and no of bins b ‹— 1

Begin

 For i := 1 to n do

 If the item ai can fit in the opened bin then

 Insert ai into the bin

Else

Insert the item ai into a new bin

b:= b +1

29

 Return b

End

In fact, there is First Fit algorithm which has a better performance ratio than Next Fit

when it comes to online algorithms for Bin Packing. Let us discuss about the first fit

algorithm in the next section.

..

..

. .

.

.

.

.

 n bins 2n bins

2n Items

of size

1/2

2n

items of

size

1/2n

 ½ size

item
 size

(a)Optimal distribution (b)Next fit distribution

Empty

Space

Fig 5: Example for Optimal bin distribution Vs. distribution using Next-fit algorithm

30

2.2.2 First Fit Algorithm:

Given an instance x of ONLINE BIN PACKING, the algorithm First Fit returns a result

with value mFF(x) such that mFF(x) < 1.7 mOPT (x)+2 where mOPT (x) denotes the optimal

solution for an instance x. The numeric “2” represents the additive constant.

Algorithm

Consider bins bj where j ϵ (1,2 … , n)

Consider an instance x containing items ai where i ϵ (1,2 … , n)

Begin

 For i := 1 to n do

 For j := 1 to n do

 if item ai can fit in the bin bj

then

 Insert ai into the bin

 Break; //exit for j loop

 //continue for i loop

End

 We know that the first fit algorithm is one of the online algorithms for the bin packing

problem. The only difference between first fit decreasing (FFD) algorithm and first fit

algorithm is the sorting step where the items are arranged in non-increasing order. Since

first fit is an online algorithm, the sorting step is skipped and the distribution follows.

 Ullman and Garey, Graham, and Ullman introduced the study of bin packing analysis

in their respective papers. They show that the competitive ratio for the first-fit and best-fit

31

satisfy:RFF=

 and RBF≥

.The following proof was given by D.S.Johnson, Demers,

Ullamn, Garey and Graham[9].

2.2.2.1 Proof for the Upper bound:

Now for any given instance I let us prove mFF(I) < 1.7 mOPT (I)+2, where mFF(I) gives the

number of bins filled using first fit algorithm and mOPT (I) gives the optimal distribution

for the given input sequence.

Before we begin with the proof let us define the following weight function:

w (iti) =

 For any given instance I =it1, it2, … , itn , where iti denotes the i
th

item in the given

input sequence. Let us define certain functions and variables which will be used in the

proof.

w (it) -

W(I) =

 -

W (B) =

 -

it if 0 ≤ it ≤

it -

 if

 ≤ it ≤

it +

 if

 ≤ it ≤

1 if

 < it

Weight function for item it. It gives us the weight for

the respective it value.

Weight of an instance I calculated by the summation of all

the weights of the items in the instance I.

 Weight of the bin B where { | j= 1,2,…,t} be the items

assigned to bin B.

32

For the proof of the upper bound mFF(I) <

mOPT (I)+2,we need to prove the following 2

lemmas. | j= 1,2,…,t} be the items assigned to bin B.

Lemma 1:

For any bin B filled with items, we have W (B) ≤

.

Lemma 2:

If for any given instance I, first fit algorithm uses k (mFF(I)= k) number bins to fill the

items then

 ≥ mFF(I) – 2 which gives mFF(I)≤ W(I)+2.

Now proving the above given 2 lemmas would prove the upper bound for the first fit

algorithm.

Proof of lemma 1:

Now for the given instance, if every item has size ≤

 then

 ≤

 <

 ,

which easily completes the proof. But, in any given scenario we cannot assume that all

the items in the instance has size≤

 so we consider some iti >

 and , ,….,

represents the rest of the items that packed in the same bin as iti. Since iti >

 , the other

items in the same bin (, ,…., occupy size <

 i.e.

 <

.

And therefore we need to show that

 <

.

33

 Without loss of generality, let us assume ≤

 , so even if there are items(like) in

the instance existing with size >

, we can infer as two items i.e.

 =

 and

 =

 <

.

As the weight function w is linear and contains same slope for item size it<

 and

 ≤ it <

 =w(
) + w(

).

 Similarly we can assume that in any first fit distribution of instance there is at most

one item <

. So even if there are more items with size<

 for instance if two items

 <

 then we can combine them into a single item such that <

.The weight

function for the item is as follows

w() ≥ w() + w().

 In the beginning of the proof we noticed that we can easily deduce the proof if all the

items in the instance are of size<

. Since we need to prove the lemma for any instances

we assumed that in a given bin iti >

 and the other items in the same bin

(, ,…., occupy size <

 i.e.

 <

 and therefore prove

 <

.

Using these considerations let us analyze the following cases to prove the lemma

 Case 1 :If t=1 we have two sub cases:

i) If <

, then w(<

 <

.

34

ii) If

 ≤ ≤

, then w(<

 <

If we have any items in the interval [

,

) then using the procedure mentioned above

we split it to two items with size≤

.

 Case 2 :If t=2 we have two subcases

i) If <

 ≤ ≤

 then w(<

 +

 =

.

ii) If

 ≤ ≤

 then w(<

 (

 <

, since

 <

.

 Case 3 :If t=3 we have two subcases

i) If <

 ≤ , ≤

, we have w(+ w(≤

 +

(-

 ,Since <

 which gives

 . Substituting this in the above inequality gives

 +

 (

<

 <

.

ii) If ≥

 and , ≤

, we have w(+ w(<

(

)

 <

 , since <

.

 Case 4: If t > 3 which is not possible since there is at most one item <

 and the

other items are greater than

 .

Hence in this way we prove this lemma.

Before we begin with the proof of lemma 2 we need to know about coarseness.

35

Coarseness of a Bin:

For any bin Bi, we define coarseness as α such that there exists a bin Bj where j<i and size

of the bin Bj, s(Bj)= 1 α, and for other bins Bk ,k< i, s(Bk) ≥ 1 α. The coarseness of the

first bin is 0. In this definition s(Bj) , s(Bk) denotes the size of the bin Bj, Bk which implies

the amount of space occupied by the items in those bins.

A bin B with coarseness α contains items packed whose size is greater than α otherwise

those items are packed in one of the previous bins. Coarseness α for a bin B can be

considered as the maximum available space in the any of previous bins of B where the

bins are filled using first fit algorithm.

Lemma 2:

If for any given instance I, first fit algorithm uses k (mFF(I)= k) number of bins to fill the

items then

 ≥ mFF(I) – 2.

Proof:

Now if a bin B contains an item it whose size >

 then w(B) ≥ 1, so our emphasis will be

on those bins containing items of size ≤

 and as a result w(B) < 1. Let B1,B2,…,Bz be list of

non empty bins filled in this particular order. Now coming to coarseness all bins have

coarseness α<

, if a bin B has coarseness α ≥

 then it implies that in bin B there is only

one item with size>

.

Now to prove this lemma we make use of the following claims which also have to be

proved. The two claims are as follows

36

Claim 1:

For a bin B with coarseness α<

 and containing items it1≥ … ≥ itk, if

 ≥ 1- α

then

 ≥ 1.

Claim 2:

If a bin B is packed with items it1≥it2≥ … ≥itk and

 = 1- β , β >0 then either

(i) k = 1 and it1≤

.

OR

(ii)

 ≤ 1- α -

 β.

Using the above two claims we will prove the bound for the first fit algorithm and the

two claims will be proven later.

 Let W(Bi)= 1- βi , βi>0 where W(Bi) represents the weight of the bin Bi and let αi<

represents the coarseness of a bin Bi. Let it1
i
, it2

i
,… to denote the items packed in Bi.

Let us assume a variable l>1, now using the definition of coarseness and claim 2, for

1<i≤l.

 ≥ 1- αi (1) is derived using the definition of

coarseness.

 ≥ 1- αi-1 -

 βi-1 (2) is derived from claim 2.

Combining (1) and (2) we get

37

αi ≥1-

 ≥ 1- αi-1 -

 βi-1 (3)

Considering (3) we get

αi ≥ αi-1 +

 βi-1

(αi- αi-1) ≥ βi-1

Applying summation, we get

 ≤

 =

(-) ≤

.

 < 1.

 Here if we consider case(i) of claim 2 then α ≥

 but we assumed α <

 and hence the

previous bin size is filled with 1- α >

, W(B) ≥ 1 but we know that W(B)=1- β which is a

contradiction. So case(i) of claim2 does not hold. Since cannot exceed 1, we have

 ≤ 2. Now let m be the number of the bins other than B1,…,Bl used by first fit so

that m+l= mFF(I).

W(I) ≥m+

 = m+

 -

 =m+l-

 ≥ mFF(I)-2.

So we get, mFF(I)≤W(I) + 2.Hence proved.

Combining this with lemma 1 we get

mFF(I)≤

 mOPT(I) + 2.

Now we are left dealing with the proving claim1 and claim 2.

38

Claim 1:

For a bin B with coarseness α<

 and containing items it1≥ … ≥ itk, if

 ≥ 1- α then

 ≥ 1.

Proof:

In an given instance for it1>

, the result is immediate since w(it1) =1.So we therefore

assume that it1≤

.If k ≥ 2 then by the definition of coarseness, we have it1≥ it2 ≥ α where

α is the coarseness of the bin. Now we need to consider cases based on the different

values of α.

Case 1: If α ≤

, then

 ≥ 1- α ≥

. Now for all items in the range [0,

] the slope of

weight function w is greater than

, i.e.

 ≥

 for 0≤ it≤

 where it represents the item

whose size is in the range [0,

]. Since

 ≥

 for 0≤ it≤

, we have

 ≥

.

 ≥ 1.

Case 2: If

 ≤ α ≤

, we get three subcases based on the value of k

(i) k=1. This case is not possible since it1 ≤

, we have

 ≥ 1- α

which gives 1- α ≤

,this is a contradiction as we have α ≤

(ii) k=2.If both it1≥ it2 ≥

, then

 ≥ 2(

 +

) =1. Now if both

the items it1, it2 are less than

, then it1+ it2 <

 < 1- α, contradicts

our hypothesis. If it1 ≥

 and it2<

, as it1≥ it2 > α and α≤

, we get

39

w(it1) + w(it2) = (

 it1+

) + (

 it2-

) =

 (it1+ it2) +

 it2, Since

it1+ it2 ≥ 1- α and it2 > α we get w(it1) + w(it2)=

 (it1+ it2) +

 it2

≥

 (1- α) +

 α ≥1,since α≤

.

(iii) k ≥ 3. The working procedure for this case is similar to the

previous step. So if both it1≥ it2 ≥

 then we have the claim. If it1 ≥

 and it2<

, as it1≥ it2 > α and α≤

, we get

 = w(it1) + w(it2) +

 ≥ (

 it1+

) + (

 it2-

)+

 =

 +

 it2 ,

Since

 ≥ 1- α and it2 > α we get

 ≥

 +

 it2 ≥

 1- α) +

 α≥1, since α≤

.

Considering if the first two items are <

,i.e.

 it1≥ it2> α then

 = w(it1) + w(it2) +

 ≥ (

 it1-

)+(

 it2-

)+

 =

 +

 it2 +

 it2 -

.

Since

 ≥ 1- α and it1≥ it2> α we get

 ≥

 +

 it2 +

 it2 -

 ≥

 1- α) +

 α+

 α-

=

 1- α) +

α-

=

 α+

α-

=1.Now let’s move on to the next

case.

40

Case 3:If

 < α <

, we get two subcases to deal with i.e. when k=1,2.If k=1 then it1≥1- α

>

. Since it1≥

, we have . Now for k≥2, we need to do case analysis similar

to the previous subcases in case2.

In this manner we can prove the claim 1.

Proof of Claim 2:

Claim 2:

If a bin B is packed with items it1≥it2≥ … ≥itk and

 = 1- β , β >0 then either

(i) k = 1 and it1≤

.

or

(ii)

 ≤ 1- α -

 β.

Proof:

If k=1and it1>

 then it is not possible that β>0 since .Now if k ≥2 then by the

definition of the coarseness of the bin we have it1≥ it2 ≥ α. Let

 = 1- α – γ. Then

we construct a bin packed with items it3,it4, … itk and two items δ1, δ2 respectively. Now

let δi ≥ iti and δ1+ δ2 = it1+it2+γ and both δ1, δ2 <

.Using claim1 for this bin we get

 ≥ 1. (1)

For the items in the range [0,

 the slope of weight function w is ≤

, so we get

 γ. (2)

41

Now substituting (2) in (1) we get

 γ ≥ 1.

 ≥ 1-

 γ.

But we know that

 = 1- β, substituting this in the above inequality gives

β ≥ 1-

 γ which gives γ ≥

 β.

Hence the claim holds.

2.2.3 Best Fit Algorithm:

Best fit is another online algorithm that packs the input item according to the following

rule: while trying to pack item ai, the best fit algorithm assigns the item to the bin whose

empty space is minimum. If the item ai is unable to fit in any of the opened bins then a

new bin is opened to pack that item ai.

Algorithm

Consider bins bj where j ϵ (1,2 … , n)

Consider an instance x containing items ai where i ϵ (1,2 … , n) and no of bins b ‹— 1

Begin

 for i := 1 to n do

Sort bins bj in decreasing order such that the bin with minimum space

available is placed first. Let the sorted sequence be { B1,B2 …. ,Bn}

 for k:=1 to n do

42

 if the item ai can fit in the bin Bk then

 Insert ai into the bin

break; // exit for k loop

 //continue for i loop

End

 Though First Fit and Best Fit are better than Next Fit, the worst case performance is

the same for all the three algorithms. So there is a need for better approximation

algorithm. A better approximation algorithm is obtained by observing that the worst

performance for First Fit (and best fit) seems to occur when smaller items appear before

larger items in a given instance.

2.2.4 Harmonic Algorithm:

Under online algorithms for bin packing problem, we have another algorithm [8] based

on non-uniform partitioning of interval (0, 1] into M sub-intervals. Consider an instance L

= {it1,it2,it3 … , itn}, where 0 < s(iti) ≤ 1 , s(iti) denotes the size of item iti in the given

instance L. In this algorithm, the interval (0 , 1] is partitioned into harmonic sub intervals

I
M

 = { (0,

] , (

] , ... (

 , 1] } where M is a positive integer. Now each item iti is

classified and put in one of these sub intervals based on their size. An item iti is called Ik

item, if the item size is in the interval Ik = (

] , k>1.If the item size is in the interval

IM= (0,

] ,then the item is called IM item. In this manner all the items in the instance or

the sequence are classified. So the Ik filled bin (bin with all Ik items) packs exactly k

items irrespective of the actual sizes of the items. Using this background, we discuss

about Algorithm Harmonic.

43

 This algorithm opens an active bin for each type i.e., one bin of I1 type items, one bin

of I2 type items and so on. Hence a total of M bins are active at any given time (since M

sub intervals).When an item iti belonging to sub-interval Ik (Ik item) arrives, it is

packed in the corresponding active bin, if that is bin filled and has no enough space to

pack item Ik then it is closed and a new bin is open for that sub-interval items. This

harmonic algorithm is independent of the arriving order of the items. A disadvantage with

this algorithm is when items of size>

 are packed then one bin per item is used resulting

in wasting a lot of free space in each single bin. Now based on the harmonic algorithm

we have k – binary algorithm which works on the lines of harmonic algorithm.

2.2.5 k – Binary Algorithm:

The Algorithm k – binary partitions the interval (0,1] into sub intervals in the following

given manner (0,1] =

 where

 =

M represents the number of partitions. For example, if M=3 then the interval (0,1] is

partitioned into three intervals (0,

] , (

,

] , (

,1].

Algorithm:

Begin

Partition interval (0,1] into M sub-intervals , k = 1,2,…,M.

(

,

] for 1≤ k < M

 (0,

] for k=M

44

 Bcount = M ; Open M new bins, one for each sub-interval.

 for k= 1 to M

 bk = 0, bk ≤ 1 and 1 < k ≤ M, bk – bin size for sub interval

 end for

 for i = 1 to N do

 if 0 < iti <

 then iti is an item.

 if bM + s(iti) > 1 then

iti does not fit in the bin.

 Bcount = Bcount + 1;

 bM = 0;

 end if

 Pack iti item in the opened bin , bM = bM + s(iti)

 Else if ∃k

 < iti ≤

, 1≤ k ≤ M then iti is a piece

 if bk + s(iti) > 1 then

iti does not fit in the bin.

 Bcount = Bcount + 1;

 bk = 0;

45

 end if

 Pack iti item in the opened bin , bk = bk + s(iti)

 End if

 End for

 for k = 1 to M do

 if bk= 0 then

 Bcount = Bcount - 1;

 End if

 End for

 Output Bcount

End

2.3 Summary and Results of standard bin packing:

We know that bin packing is one of the classic and well-studied problems in the field of

computer science. Since bin packing belongs to the class of Np hard problems, it is really

difficult to come up with a polynomial time algorithm which solves the problem to give

an optimal solution. So as a result, approximation algorithms are presented to find the

closest possible solution to the optimal. One of the most basic and a simple online

algorithm is next fit with a competitive ratio of 2. The proof for this ratio is simple and is

given in the above sections. Now to study the problem we make use of competitive ratio

46

which can also be termed as performance ratio, approximation ratio or worst case ratio.

The competitive ratio is given different names in textbooks and papers (like performance

ratio, worst case ratio, approximation ratio). But general practice followed to avoid

confusion is that competitive ratio is used to analyze online algorithms and worst-case

ratio, approximation ratio is used for offline algorithms. This is only a general practice

implemented by some of the researchers and publishers to avoid confusion. In this section

we make use of two different competitive ratios to study about the results or the bounds.

The two types of competitive ratios are absolute competitive ratio and asymptotic

competitive ratio. The asymptotic competitive ratio is used to represent the asymptotic

cases and is defined in the 2D bin packing section. Now let’s define the absolute

competitive ratio. For a given instance I, let mA(I) be the number of bins used by the

online algorithm A (mA(I) can also be termed as the cost of the algorithm A) and let

mOPT(I) be the number of bins used by the optimal solution then the absolute competitive

ratio RA for the online algorithm can be given as RA=

 .

 It was Johnson who extensively studied, analyzed this problem and presented his PhD

dissertation on this problem in 1973.He showed that next fit has a competitive ratio of 2

and he [9] also showed that first fit has a asymptotic competitive ratio (performance) ratio

of

 The proof for the ratio is complicated when compared to the proof of next fit

algorithm (performance ratio =2) and it is explained in the above chapters. After this

result of first fit, a question was raised by Johnson, if there exists a polynomial time

online algorithm better than the first fit (i.e. performance ratio <

). This was resolved

by Yao [30] who presented refined first fit with an asymptotic performance ratio of

47

 . In the same paper Yao also showed that unless P=Np, it is computationally

intractable to come up with an online algorithm whose ratio <

. Lee and Lee [6]

presented a refined harmonic algorithm which had a better ratio of 1.63597. This

harmonic algorithm was further improved by Ramanan, Brown, Lee and Lee [31] in 1989

developed modified harmonic and modified harmonic 2 whose asymptotic performance

ratios were 1.61562 and 1.61217. After this result, Seiden [22] in 2002 developed an

algorithm called super harmonic algorithm achieving an asymptotic performance ratio of

1.58889 which is by far the best known upper bound in online bin packing algorithms.

This means that for online bin packing, there is no other algorithm itdeveloped whose

asymptotic competitive ratio < 1.5889.

 Coming to results based on absolute competitive ratio, Simchi-Levi [35] showed that

first fit and best fit has an absolute competitive ratio no more than 1.75 and first fit

decreasing and best fit decreasing has an absolute competitive ratio of 1.5.These

algorithms takes O(n) time. G.Zhang [37] came up with a constant space online

algorithm which runs in linear time. Furthermore, he [37] also proved that the algorithm

returns a result whose absolute competitive ratio is 1.75. He also presented a constant

space offline algorithm which runs in linear time and showed that the absolute

approximation ratio is 1.5.Now exploring the lower bounds, Zhang[11] gave a lower

bound of

.This result was given by Zhang which is mentioned in the paper by

Epstein[11]. This result in Epstein`s paper is referenced from Zhang through private

communication. So the

 is the best known lower bound result for the absolute

competitive ratios of online bin packing problem.

48

 Now let us discuss about the lower bound results for the asymptotic competitive ratio

of the online bin packing problem. As we all know Yao [30] also showed that unless

P=Np, it is computationally intractable to come up with an online algorithm whose

performance ratio <

. This statement shows that 1.5 is the lower bound for the bin

packing problem. This bound of 1.5 was further improved to 1.536 by Liang [33] and

Brown [32] individually. This bound was further improved to 1.54014 by Van Vliet [12]

in 1992. This 1.54 bound is by far the best known lower bound of asymptotic

approximation ratio for the online bin packing problem.

 Now coming to the results of the offline version of bin packing, D.S.Johnson [1], in

this doctoral thesis, showed mFFD(x) <

 m

*
(x) + 4, he proved that the performance ratio

(approximation ratio) for FFD cannot get better than

. This results seemed to work

considerably well for higher values of mOPT(x) (mOPT(x)> 10). After this result, a lot of

work and research was done to find the closest asymptotic additive constant (like 4)

which is required to find better approximations for smaller instances. In this process, after

the D.S.Johnson, B.S.Baker[2] proved that additive constant can be reduced to 3. Later in

1991,Yue Minyi [3] further reduced additive constant to1 i.e. mFFD(x) <

 m

*
(x) + 1.

Later in 1997, L. Rongheng, M. Yue [4] furthur tried to reduce the additive constant to

but they did not prove the statement but gave a draft about it. They also conjectured that

the tight additive constant can be

 (which proves to be an incorrect result). Finally in

November 2011 Gyorgy Dósa, Rongheng Li, Xin Han and Zsolt Tuza [5] claimed that

the lower bound for the additive constant is

. This bound is the most recent and the best

known result for the first fit decreasing algorithm.

49

 We also know that the offline bin packing problem admits asymptotic polynomial

time approximation scheme). This algorithm was given by Fernandez la Vega

and Lueker [19] whose asymptotic approximation ratio is 1+ where > 0.This can be

elaborated as for a given instance I and for any >0, ,we have an asymptotic PTAS

) that runs in polynomial time and returns a result of at most (1+) mOPT(I)+ 1

bins. If the items are sorted, the running time of this algorithm is O(n) +f(

). Kamarkar

and Karp [34] presented asymptotic fully polynomial time approximation scheme

(AFPTAS) and showed that bin packing problem has an AFPTAS. So for a given

instance I and , the ratio can be given as (1+) mOPT(I)+ O(

). The running time of this

algorithm polynomially depends on

. Since asymptotic FPTAS returns a better result

than , it is considered to be the best known upper bound of asymptotic

approximation ratio for offline bin packing problem. Since we have an algorithm which

returns an asymptotic approximation ratio of (1+), >0, it is given that the lower bound

for the asymptotic approximation ratio of offline bin packing is 1.

 Now let us deal with the results based on absolute competitive (approximation) ratio

for offline bin packing problem. Simchi-Levi [34] proved that first fit decreasing and best

fit decreasing has an absolute competitive ratio of

. This result is the best known upper

bound of absolute competitive (approximation) ratio for offline bin packing problem. As

for the lower bound of the absolute approximation ratio, Garey and Johnson [35] gave a

bound of

 which is considered to be the best known bound.

50

 Asymptotic

Competitive(approximation)

Ratio

Absolute

Competitive(approximation)

ratio

Online bin packing 1.540[12]

 [11]

Offline bin packing 1

 [35]

Table 2: Best known Lower bounds for standard bin packing problem.

 Asymptotic

Competitive(approximation)

Ratio

Absolute

Competitive(approximation)

ratio

Online bin packing 1.589 [16]

 [36]

Offline bin packing FPTAS[33]

 [34]

Table 3: Best known Upper bounds for standard bin packing problem.

51

CHAPTER 3

VARIANTS OF BIN PACKING PROBLEM

3.1Bin packing with Rejection:

3.1.1 Introduction to the Problem:

Bin packing with rejection is considered to be a special case of classical bin packing. The

bin packing problem with rejection was presented and studied by Dósa and Y.He [10]. In

bin packing problem, we have the input sequence of items whose size is in the range (0,

1] and these items needs to be filled in unit sized bins. We have continuous supply of unit

sized bins and the sum of the items packed in a particular bin should not exceed its bin

capacity. Our goal is to minimize the number of bins used and each item is packed in one

bin. So when the item is ready to be packed in the bin, there is a possibility that the item

might be refused or get rejected to be packed in that bin. This is where we need to

consider bin packing with rejection.

 So in a real time scenario or in many applications there are situations where the items

are refused or rejected to be packed in a bin. When such items are refused or rejected we

have a cost associated with the item termed as ‘rejection cost’. We need to understand

that the rejection cost is associated with an item but not with the bins. To understand the

concept of rejection cost let us consider the following examples. Let us consider an

application where bins are disks and items are the files which needs to be saved on the

disks. Now if a file is rejected to be saved on the disk, its rejection cost would be the cost

of transferring it and saving the file on the alternative media. Similarly in another

application where bins are storage spaces, rejection cost is paid to the disappointed

52

customer whose items cannot be stored. Thus we came to know that in bin packing with

rejection each item is associated with a rejection cost.

 For a given input instance of items I, each item iti I contains size and rejection cost

which is denoted by s(iti) and r(iti) respectively. The bin packing with rejection has online

and offline versions of bin packing. In an online bin packing with rejection each item iti

belonging to the instance I(containing n items) is represented as (s(it1), r(it1)),(s(it2),

r(it2)),… (s(itn), r(itn)). The items are arrived one after the other. Upon arrival they must

be either assigned or rejected. Once an action is made it cannot be revoked.

 In the bin packing problem, our goal is to minimize the number of bins used for

packing but in bin packing with rejection our goal is to minimize the sum of the

following two entities.

i. Sum of rejection cost of the rejected items.

ii. Number of bins used for packing the items.

So our goal is to minimize this sum. The rejection costs are larger than 1.

 The offline version of the problem is dealt in a different way which is related to

caching. Dósa and Y.He[10] suggested an application for the offline version of the

problem where items are files which needs to be used on the local system. A file is used

exactly once at a later time. One way to deal with this is to download the file to the local

system and save it on the local server. So when the file is needed, the time taken to

retrieve the file is quick but it occupies space in the local server. In this option the

incurred cost is the cost of the local servers. The other option would be downloading the

file directly from the external server when there is a requirement but the retrieval time is

53

more when compared to the previous option. In the second option the rejection cost is

associated with the cost of transferring the file from the external server. An algorithm is

needed to generate minimum cost results or outputs using the two options available.

3.1.2 Results:

Dósa and Y.He studied four variants of bin packing with rejection in their paper titled

“bin packing problems with rejection penalties and their dual problems” [10]. These

variants are offline and online bin packing with respect to the absolute and the asymptotic

measures. For offline version of bin packing with rejection Dósa and Y.He present an

algorithm with absolute approximation ratio of 2 and asymptotic approximation ratio

of

. Furthermore, it is stated that unless P=Np, we cannot have an algorithm with

absolute approximation ratio less than

.

 The absolute approximation ratio and asymptotic approximation ratio was further

improved from 2 and

 to

 and (1+ε) approximation by Leah Epstein [11] using the

previous results from [10].

 Now coming to online version of bin packing with rejection Dósa and Y.He present an

algorithm with absolute competitive ratio of 2.618 while the lower bound is 2.343.They

present an algorithm with asymptotic competitive ratio of (1.75+ ε) while the lower

bound which is 1.5401 was due to Van Vliet [12]. We get the best asymptotic

competitive ratio for the bounded space algorithms (where only a constant number of

bins are open bins) and it is shown that the ratio is the same for standard bin packing

problem in [11]. For instance Epstein adapted Harmonic algorithm of Lee and Lee [6]

and shown in [11] that they have the same asymptotic competitive ratio of 1.69103 as

54

standard bin packing. Epstein came up with an improved unbounded space algorithm

which is a modification of modified harmonic algorithm gives asymptotic competitive

ratio of approximately 1.61562.

3.2 2D Bin Packing

3.2.1 Introduction to the Problem

The classical bin packing problem has been a one of the oldest and well-studied problems

in field of computer science. In this section we will be discussing about the two

dimensional bin packing problem and its results. It is observed that the 2D bin packing

problem is a generalization of the classic bin packing problem. In 2D bin packing, each

item is associated with two parameters width and height. So, in this problem each item iti

is a rectangle of width wi ≤ 1 and height hi ≤ 1 where 1 ≤ i ≤ n, here n denotes the number

of items in the instance.

 For a given instance I containing n items, each item iti is a rectangle of width wi ≤ 1

and height hi ≤ 1 needs to be packed into unit sized square bins, our goal is minimize the

number of bins used for packing. In this problem, the items should be packed in the bins

with no overlapping. The items are packed such that its sides are parallel to the edges of

the bin and rotation of the items is not allowed. So in this way we can explain 2D bin

packing problem. In short, 2D bin packing can be explained as a procedure where the

given sets of 2D rectangles (items) are packed into unit square bins such that the number

of packed bins is minimal. Since 2D bin packing problem is a generalization of 1D bin

packing problem, it is considered to be an Np-hard problem too.

55

 The potential use of 2D bin packing in many real time and industrial applications is a

motivating factor in studying this problem. This 2D bin packing is used in applications

like packing items in warehouses and trucks, cutting stock problems (cutting rectangles

from sheets of a given size) and many more. In the cutting stock problems, we have

glass/metal rectangular sheets of fixed or standard size. But the requirement from the

customer could be rectangular sheets with arbitrary sizes which are less than the original

standard sheet, now the sheets need to be cut in such a way that the numbers of standard

sheets used is minimum. Especially for these kinds of applications, it is necessary and

important to study the online version of 2D bin packing and its algorithms.

 So in the online bin packing, the items are packed as per the input sequence and each

item is assigned to the bin without the knowledge about the remaining items. To study

and evaluate the performance of the online bin packing, the commonly used ratio is

asymptotic competitive ratio. This ratio helps us in assessing the performance of the

algorithm so let us understand the ratio and its importance. For a given instance I of

online bin packing, let be the number of bins used by the online algorithm A (mA(I) can

also be termed as the cost of the algorithm A) and let mOPT(I) be the number of bins used

by the optimal solution then the asymptotic competitive ratio for the online algorithm can

be given as

 =

{

 |) = }.

 After defining the asymptotic competitive ratio, we need to know about the variants in

the online bin packing problem. In [14], the online bin packing problem is said to have

two types of models based on the space constraint. They are

56

1. Bounded space model.

2. Unbounded space model.

Now that we came to know that there are two variants in the online bin packing, it is

necessary that we need to know the difference between the two.

Unbounded Space model:

In the unbounded space model, there is no limit on the number of active or open bins

available for packing items whereas in the bounded space model, we have a constant

number of bins which are opened at any point of time available for packing items.

Bounded Space Model:

So in the bounded space model, if an item is ready to be packed and if none of the active

or opened bins have enough space to that item then one of the bins is closed and a new

bin is opened. So in this way in the space bounded model, the number of active or opened

bins is remained constant. This model is practical and seems more realistic where it can

be implemented in many real time applications.

 Now in 1-space bounded multi-dimensional bin packing problem, there is only one

active or opened bin at any given time and since it’s a multidimensional bin packing

problem we deal with d dimensional hyperbox(items) which needs to be filled in d

dimensional hypercube (bins) with unit size where d≥2. We know that any two

dimensions i and j define a plane Pij. rotation of the item in any plane Pij is allowed,

otherwise, the competitive ratio is unbounded. This result is taken from [15]. Keeping all

these constraints in mind we pack the d dimensional hyberboxes in the d dimensional unit

57

sized cubes trying to minimize the number of bins used. So if the item cannot be packed

in the active bin then the active bin is closed and a new bin is opened. Once a bin is

closed, it cannot be opened again.

 Now let us explain this using an example. In the given figure below, for an instance I

we have 3 items it1, it2, it3 which arrive to be packed in the given order. Since we are

dealing with 1-space 2D online bin packing problem, we need to keep in mind that only

one bin is allowed to be in active state (opened bin) at any given time. Now after packing

it1, we need to pack it2 which can be packed in two different ways. One way is to pack

the item directly with no rotation and the other way is to pack the item after rotation.

In the non-optimal configuration the second item is packed with no rotation and then

when the third item arrives, there is no enough space to accommodate the third item, so a

new bin is opened. But in the optimal configuration the second is rotated and then

packed. As a result there is enough space for the third item which is also packed in the

same bin. So the below figure explains the packing procedure in 1 space 2D online bin

packing problem.

 It was Zhang,Y.L. Chin, Hing-Fung Ting, Xin Han and Zhuo Chang [14] who studied

this variant of the bin packing problem closely and gave an online algorithm with a

competitive ratio which was the first study on 1-space bounded d dimensional bin

packing problem.

58

it

1

it

1

 it2

 it2

 it3

 it3

Second

item it
2

Third

item it
3

First item it1

Non-optimal configuration of 1 space 2D

online bin packing

 Optimal configuration

Fig 6: Example for optimal and Non-optimal configuration of 1 space

2D online bin packing

First item

it
1

59

3.2.2 Results:

Firstly discussing about the results of 2D Online bin packing problem, lets present the

lower bounds of the problem. It was Galambos [18] who provided a lower bound of 1.6

for the 2D online bin packing problem. This lower bound was improved to 1.808 by

Galambos & Van Vliet [21] and to 1.857 by Van Vliet[22] and the finally to 1.907 by

Blitz [23] in the year 1996.

 Now coming to the Asymptotic competitive ratio which was defined in the above

section, Coppersmith and Raghavan [20] came up with the first online algorithm with

asymptotic competitive ratio of 3.25. Csirik[25] in 1993 improved this ratio to 3.0625.

Csirik and Van Vliet[24] presented an algorithm for all d dimensions and particularly for

2D online bin packing problem they gave an asymptotic competitive ratio of 2.8596.

Relying on the techniques of the improved harmonic algorithm, Han [26] in 2001

improved the ratio to 2.7834. In 2003, Seiden and Van Stee[17] further improved this

bound to 2.66013. They presented an algorithm regarded as H⊗C where H is the

harmonic algorithm [6] and C is considered to be an instance of the improved harmonic

algorithm. After Seiden and Van Stee`s 2.66013 bound, the improved bound for this

problem became an open question, a lot of work was going on to improve the bound. One

deliberate idea to improve the bound was to use an instance of super harmonic algorithm

instead of improved harmonic algorithm which was used by Seiden and Van Stee.

Nevertheless, Seiden and Van Stee[17] also stated that the previous analysis framework

doesn`t work to improve the bound further. Finally in 2011, Han, Francis, Zhang and

Yong [13] presented an improved and a better result. They gave a bound of 2.5545 for the

2D online bin packing problem which remains to be the most recent result in this domain.

60

 Since it was known that the previous analysis framework cannot be extended to the

super harmonic algorithm, they came up with a new analysis framework which is useful

for analyzing online 2D and multidimensional bin packing problems. They also gave a

new weighting function which was considered to be much simpler than ones given in

Seiden[16] paper. So the new weighting functions in combination with the new

framework helped them in designing the algorithm H ⊗ SH+ where H is the harmonic

algorithm and SH+ is the super harmonic algorithm which gave an upper bound of

2.5545.

 Now we discuss about the offline version of the 2D bin packing problem. It was

Chung [27] in 1982, who gave an approximation algorithm with an asymptotic

performance ratio of 2.125. This bound was improved to 1.69103 by Caprara [28] in

2002. Finally in 2009 Bansal [29] further improved this bound by presenting a

randomized algorithm with asymptotic performance ratio of at most 1.525.He also

showed that the two-dimensional bin packing problem does not admit an asymptotic

polynomial-time approximation scheme.

3.3 2D Strip packing problem and its results:

In strip packing problem a given set of rectangular input items with width and height

bounded by 1 is packed into a vertical strip of fixed width 1 and infinite height. The goal

is to minimize the height of the strip which packs the given input of rectangles. While

packing no two rectangles should overlap with each other and the sides of the rectangles

are parallel to the strip sides. Rotations are not allowed. Several industrial applications

and real life applications like cutting and packing use variants or extensions of this

61

problem and this motivates us to study many 2D bin packing problems(variants of the

problem).

 We have online and offline version to this problem. If we know the all the rectangles

before we pack the items then it is regarded as an offline version whereas in the online

version the packing is done as per the input sequence and the packing decision is done

before the next rectangle arrives. Once a rectangle is packed it cannot be moved. Strip

packing is Np-hard and the lower bound of 1.5401[12] is valid for online strip packing.

Results:

Let us now discuss the results of the strip packing problem, for the offline version of the

strip packing Coffman [44] presented algorithms next fit decreasing height (NFDH) and

first fit decreasing (FFDH) height which returned asymptotic approximation ratios of 2

and 1.7 respectively. Golan [45] improved this ratio to

. This result was further

improved when Baker [46] came up with an asymptotic approximation ratio of

.Another

important result for offline strip packing is asymptotic fully polynomial time

approximation scheme (AFPTAS) by Kenyon and Remila [47]. After this AFPTAS from

Kenyon and Remila, in 2005 Jansen and Stee [48] presented an AFPTAS which included

the case where rotations of 90 are allowed. They developed this algorithm using linear

programming and random techniques. The additive constant of this result was improved

from O(

) to 1 by Jansen & Solis-Oba [49] for the cost of a higher running time.

 Now coming to the absolute approximation ratio Schiermeyer [50] in 1994 and

Steinberg [51] in 1997 presented algorithms which returned an absolute approximation

ratio of 2. This remained to be the best upper bound of absolute approximation ratio for

more than a decade. This upper bound of 2 established for more than a decade was

62

broken when Rolf Harren and Rob van Stee[52] presented an algorithm which returned

an absolute approximation ratio of 1.9396 .

 Now coming to the online version of strip packing, Baker and Schwarz [53]

introduced an online strip packing algorithm called shelf algorithm. In this algorithm

items are packed left to right in rectangular strips or rows forming levels called shelves.

The first shelf is placed at the bottom of the bin/strip and the consequent shelves are

produced by a horizontal line passing through the top of the tallest item in the shelf

below. This kind of packing items in rectangular strip is shelf packing. The shelf packing

introduced by Baker and Schwarz [53] was an elegant idea to implement standard bin

packing algorithms to online strip packing. In this way next fit and first fit algorithms

were employed to obtain asymptotic competitive ratios of 2 and 1.7 respectively.

Similarly this idea was extended to harmonic shelf algorithm by Csirik and Woeginger

[54] to obtain an asymptotic competitive ratio of 1.6910. In 2007 Han [55] further

improved this bound to 1.5888. He formulated a relation between strip packing and one

dimensional algorithm and thus showed online strip packing admits an algorithm with

asymptotic competitive ratio of 1.5888. A lower bound of 2 for the absolute competitive

ratio of online strip packing was given by Brown [56] in 1982.

63

Chapter 4

CONCLUSION AND FUTURE WORK

4.1 Recent Papers or Developments

It is noted that bin packing problems is one of the classic and challenging problems in the

field of computer science. This problem has been studied over 30 years and to this date

work has been going on to find new improvised approaches and better results. However it

seems most of the easy results has been attained and after analyzing the proofs of these

results it’s been realized that getting these results was not easy. However bin packing

problem has been fruitful in developing methods and served as a proving ground for

techniques for approximation schemes and has helped in developing methods for other

problems like Scheduling, Resource allocation and many more. Bin packing to this date

has ever new applications and especially the variants of bin packing are important to

information technology. This problem has many potential applications in different real

world industries (like transportation, logistics, Information Technology etc.). Some of the

applications are scheduling television programming, cutting stock problem, cloud

computing, truck loading problem and many more. As we know there are different

variants of the problem and similarly several approaches for tackling them, a lot of papers

have been published relating to this problem.

 In this thesis, we list a few papers published recently which marks the most updated

work going on in this field. Some of the papers are solving the two-dimensional bin-

packing problem with variable bin sizes by greedy randomized adaptive search

procedures and variable neighborhood search by Andreas M. Chwatal and Sandro

Pirkwieser [37] in 2011. In 2011, Friedrich Eisenbrand, Domotor Palvolgyi and Thomas

64

Rothvo[38] presented a paper called Bin Packing via Discrepancy of Permutations. This

paper was recently revised in February 2012. In 2012, Filipe Brandao and Joao Pedro

Pedroso [39] presented a paper solving bin packing related problems using an arc flow

formulation. Abdesslem Layeb and Sara Chenche [40] came up with a paper titled a

novel GRASP Algorithm for Solving the Bin Packing Problem which was published on

April 2012.In 2012, Guido Perboli, Roberto Tadei, Mauro M. Baldi [41] published a

paper the stochastic generalized bin packing problem and again in the same year along

with Crainic T.G they presented another paper branch-and-price and beam search

algorithms for the generalized bin packing problem[42]. In February 2012, Gyorgy Dosa

and Leah Epstein [43] presented a paper called generalized selfish bin packing. The

information of these recent papers indicate the amount of work and research going into

this field and it emphasis the importance of bin packing problem.

 To share the recent progress in this field of bin packing, a fourth international

workshop on bin packing and placement constraints BPPC'12 is being held on May 29
th

2012 at Nantes, France. This workshop is associated to the Ninth International

Conference on the Integration of Artificial Intelligence and Operations Research

techniques in Constraint Programming CPAIOR 2012.

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DPerboli,%2520Guido%26authorID%3D16176293900%26md5%3D185067e81178f8690b20fef9ff3ca53f&_acct=C000023038&_version=1&_userid=516213&md5=73f2ca1903763923f8f009c05d5fc330
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DTadei,%2520Roberto%26authorID%3D11041829500%26md5%3D88cad32c9b0df333211c31f967cc49f7&_acct=C000023038&_version=1&_userid=516213&md5=99be294b1bd2f7a19c0ef29c62bb7e35
http://128.84.158.119/find/cs/1/au:+Dosa_G/0/1/0/all/0/1
http://128.84.158.119/find/cs/1/au:+Epstein_L/0/1/0/all/0/1
http://www.emn.fr/z-info/cpaior-2012/

65

BIBLIOGRAPHY:

1. Johnson, D.S.: Near-optimal bin-packing algorithms. Doctoral Thesis. MIT Press,

Cambridge (1973)

2. Baker, B.S.: A new proof for the first-fit decreasing bin-packing algorithm. J.

Algorithms,49-70(1985)

3. Yue, M.: A simple proof of the inequality FFD(L) ≤ 11/9OPT(L) +1, ∀L, for the

FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 7(4), 321–

331(1991)

4. Li, R., Yue, M.: The proof of FFD(L) ≤ 11/9OPT(L) + 7/9. Chinese Science

Bulletin 42(15) (August 1997)

5. Gyorgy Dósa , Rongheng Li, Xin Han, Zsolt Tuza : Tight absolute bound for First

Fit Decreasing bin-packing: FFD(I) < 11/9 OPT(I) + 6/9.

6. C. Lee and D. Lee. A simple on-line bin-packing algorithm. Journal of ACM,

32:562572,1985.

7. Johnson,D.S., and Garey, M.R.(1985), A 71/60 theorem for bin packing,

J.Complexity 1, 64-106.

8. Doina Bein, Wolfgang Bein, and Swathi Venigella. Cloud Storage and Online Bin

Packing. http://www.egr.unlv.edu/~bein/pubs/bein_cloud_19.pdf.

9. D. S. Johnson, A.Demers, J. D. Ullman, M. R. Garey, and R. L. Graham(1974).

Worst-case performance bounds for simple one-dimensional packing

algorithms.SIAM J. Computing 3, 299-325.

10. G. Dósa and Y. He. Bin packing problems with rejection penalties and their dual

problems. Information and Computation, 204(5):795_815, 2006.

66

11. Leah Epstein. Bin Packing with Rejection revisited. In Proc. of the 4th

International Workshop on Approximation and Online Algorithms (WAOA

2006), pages 146–159, 2006.

12. A. Van Vliet. An improved lower bound for online bin packing algorithms.

Information Processing Letters, 43(5):277_284, 1992.

13. Xin han, Guochuan Zhang, Yong Zhang, Francis y. L. Chin and Hing-Fung Ting.

A new upper bound 2.5545 on 2d online bin packing. Journal ACM Transactions

on Algorithms (TALG), Volume 7 Issue 4, September 2011.

14. Yong Zhang, Francis Y. L. Chin, Hing-Fung Ting, Xin Han, Zhuo Chang: Online

Algorithm for 1-Space Bounded Multi-dimensional Bin Packing. FAW-AAIM

’11,308-318.

15. Fujita, S.: On-Line Grid-Packing with a Single Active Grid. Information

Processing Letters 85, 199–204 (2003).

16. Seiden, S. 2002. On the online bin packing. J. ACM 49, 640–671.

17. Seiden, S. and Van Stee, R. 2003. New bounds for multidimensional packing.

Algorithmica 36, 261–293.

18. Galambos, G. 1991. A 1.6 lower-bound for the two- dimensional on-line rectangle

bin-packing. Acta Cybern.

19. Fernandez de la Vega, W., and Lueker, G.S. (1981), Bin packing can be solved

within 1+ε in linear time, Combinatorica 1, 349-355.

20. Coppersmith, D. and Raghavan, P. (1988), Multi-dimensional online bin packing :

Algorithms and worst-case analysis.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhang:Yong.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chin:Francis_Y=_L=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Ting:Hing=Fung.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chang:Zhuo.html

67

21. Galambos, G. and Van Vliet, A. 1994. Lower bounds for 1-,2- and 3- dimensional

on-line bin packing algorithms. Computing 52,3,281-297.

22. Van Vliet,A. 1995. Lower and upper bounds for online bin packing and

scheduling heuristics. Ph.D. dissertation. Erasmus University.

23. Blitz, D., Van Vliet, A., and Woeginger, G. J. 1996. Lower bounds on the

asymptotic worst-case ratio of online bin packing alorithms. Unpublished

manuscript.

24. Csirik, J. and Van Vliet, A. 1993. An on-line algorithm for multidimensional bin

packing. Oper. Res. Lett 13,149–158.

25. Csirik, J., Frenk, J. B. G., and Labbe, M. 1993. Two-dimensional rectangle

packing: On-line methods and results. Disc. Appl. Math. 45, 3, 197–204.

26. Han, X., Fujita, S., and Guo, H. 2001. A two-dimensional harmonic algorithm

with performance ratio 2.7834.IPSJ SIG Notes 93, 43–50.

27. Chung, F., Garey, M., and Johnson, D. 1982. On packing two-dimensional bins.

SIAM J. Alg. Disc. Meth. 3, 1,66–76.

28. Caprara, A. 2002. Packing 2-dimensional bins in harmony. In Proceedings of the

Symposium on Foundations of Computer Science (FOCS). 490–499.

29. Bansal, N., Caprara, A., and Sviridenko, M. 2009. A new approximation method

for set covering problems with applications to multidimensional bin packing.

SIAM J. Comput. 39, 4, 1256–1278.

30. RAMANAN, P., BROWN, D., LEE, C., AND LEE, D. 1989. On-line bin packing

in linear time. J. Algor. 10, 305–326.

68

31. BROWN, D. J. A lower bound for on-line one-dimensional bin packing

algorithms. Tech. Rep. No.R-864, Coordinated Sci. Lab., Univ. of Illinois,

Urbana, Ill., 1979.

32. LIANG, F. M. A lower bound for on-line bin packing. Inf Proc. Lett. 10 (I 980),

76-79.

33. N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-

dimensional bin packing problem. In Proceedings of the 23rd Annual Symposium

on Foundations of Computer Science (FOCS’82, pages 312–320, 1982.

34. D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Res.

Logist., 41(4):579–585, 1994.

35. M. R. Garey, D. S. Johnson, Computer and Intractability: A Guide to the theory of

NP-Completeness, New York, Freeman, 1979.

36. G. C. Zhang, X. Q. Cai, C. K. Wong, Linear-time approximation algorithms for

bin packing problem, Operations Research Letters, 26(1999) 217-222.

37. Andreas M. Chwatal, Sandro Pirkwieser: Solving the Two-Dimensional Bin-

Packing Problem with Variable Bin Sizes by Greedy Randomized Adaptive

Search Procedures and Variable Neighborhood Search. EUROCAST (1) 2011:

456-463.

38. F. Eisenbrand, D. Palvoelgyi and T. Rothvoss. Bin Packing via Discrepancy of

Permutations. Symposium on Discrete Algorithms (SODA 2011), San Francisco,

USA, January 22-25, 2011.

39. Filipe Brandao , Joao Pedro Pedroso. Solving Bin Packing and Related Problems

Using an Arc Flow Formulation.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chwatal:Andreas_M=.html
http://www.informatik.uni-trier.de/~ley/db/conf/eurocast/eurocast2011-1.html#ChwatalP11

69

40. Abdesslem Layeb, Sara Chenche . A Novel GRASP Algorithm for Solving the

Bin Packing Problem. International Journal of Information Engineering and

Electronic Business (IJIEEB) Volume 4, Number 2, 8-14, April 2012.

41. G. Perboli, R. Tadei, and M. M. Baldi. “The stochastic generalized bin packing

problem”. Discrete Applied Mathematics, 2012.

42. Baldi M. M., Crainic T.G., Perboli G., Tadei R., Branch-and-price and beam

search algorithms for the Generalized Bin Packing Problem, pp. 18, 2012.

43. Gyorgy Dosa, Leah Epstein. Generalized selfish bin packing, 2012.

44. Coffman EG, Garey MR, Johnson DS, Tarjan RE (1980) Performance bounds for

level oriented two dimensional packing algorithms. SIAM J Comput 9:808–826.

45. Golan, Performance bounds for orthogonal, oriented two-dimensional packing

algorithms, SIAM J. Comput. 10, 571-582, 1981.

46. B.S. Baker, D.J. Brown, and H.P. Katseff, A 5/4 algorithm for two-dimensional

packing. J. Algorithms 2, 348-368, 1981.

47. C. Kenyon and E.R´emila, A near-optimal solution to a two-dimensional cutting

stock problem, Mathematics of Operations Research 25, 645-656, 2000.

48. K. Jansen and R. van Stee. On strip packing with rotations. In STOC: Proc. 37
th

ACM Symposium on Theory of Computing, pages 755-761, 2005.

49. K. Jansen and R. Solis-Oba. New approximability results for 2-dimensional

packing problems. In MFCS: Proc. 32nd International Symposium on

Mathematical Foundations of Computer Science, pages 103-114, 2007.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/e/Epstein:Leah.html

70

50. Schiermeyer I (1994) Reverse-fit: a 2-optimal algorithm for packing rectangles.

In:Proceedings of the second annual European symposium on algorithms (ESA),

pp 290–299.

51. Steinberg A (1997) A strip-packing algorithm with absolute performance bound

2. SIAM J Comput 26(2):401–409.

52. Rolf Harren and Rob van Stee (2009):Improved Absolute Approximation Ratios

for Two-Dimensional Packing Problems. Proceedings of the 12th International

Workshop on Approximation Algorithms for Combinatorial Optimization

Problems, LNCS 5687, pp. 177-189.

53. B.S. Baker and J.S. Schwarz, Shelf algorithms for two-dimensional packing

problems,SIAM J. Comput. 12, 508-525, 1983.

54. J. Csirik and G.J. Woeginger, Shelf algorithm for on-line strip packing,

Information Processing Letters 63, 171-175, 1997.

55. Ye D, Zhang G (2007) On-line scheduling of parallel jobs in a list. J Sched

10:407–413.

56. Brown DJ, Baker BS, Katseff HP (1982) Lower bounds for on-line two-

dimensional packing algorithms. Acta Inform 18:207–225.

http://www.mpi-inf.mpg.de/~vanstee/
http://dx.doi.org/10.1007/978-3-642-03685-9
http://dx.doi.org/10.1007/978-3-642-03685-9_14

71

VITA

Graduate College

University of Nevada, Las Vegas

Yoga Jaideep Darapuneni

Home Address :

 1555 E Rochelle Ave, #Apt 252,

 Las Vegas, Nevada - 89119

 Degrees:

 Bachelor of Science in Computer Science, 2006

 Jawaharlal Nehru University, Hyderabad

Thesis Title: A Survey of Recent and Classical Results in Bin Packing Problem.

Thesis Examination Committee:

Chair Person, Dr. Wolfgang Bein, Ph.D.

Committee Member, Dr. Ajoy K Datta, Ph.D.

Committee Member, Dr. Ju-Yeon Jo, Ph.D.

Committee Member, Dr. John Wang, Ph.D.

	A Survey of Classical and Recent Results in Bin Packing Problem
	Repository Citation

	tmp.1374277684.pdf.xj034

