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ABSTRACT

Node Filtering and Face Routing for Sensor Network

by

Umang Amatya

Dr. Laxmi P. Gewali, Examination Committee Chair

Professor of Computer Science

University of Nevada, Las Vegas

Greedy forward routing and face routing algorithms have been extensively used for

sending messages in sensor networks. In this thesis, we consider the problem of

filtering redundant nodes in a sensor network as a pre-processing step for face

routing. We propose two algorithms for identifying redundant nodes. We test the

performance of proposed filtering algorithms on generated networks. The prototype

algorithm for testing the proposed algorithms has been implemented in the Java

programming language. Experimental investigation shows that the proposed

filtering algorithms are effective in removing redundant nodes without

compromising the network connectivity.
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CHAPTER 1

INTRODUCTION

Development of efficient algorithms and protocols for sensor network application

has attracted the interest of many researchers for the last 10 years [6]. Sensor

networks have been applied to solve problems in many areas of science and

engineering that include robotics, emergency response, environmental monitoring,

remote sensing, manufacturing, and law enforcement [16]. A sensor network is

formed by wirelessly connecting sensor nodes which are distributed on a two

dimensional surface or embedded in some equipment or gadgets. A sensor node is

essentially a small electrical device containing (i) a small amount of memory, (ii) a

low capacity processing unit, (iii) a radio communication component with range 300

meters, and (iv) some sensing components for measuring physical quantities such as

temperature, pressure, humidity, etc. Nodes within the transmission range can

exchange information wirelessly. Nodes outside the transmission range can

communicate by establishing a sequence of in-range intermediate nodes between

them. This kind of establishing in-range intermediate nodes between two distinct

nodes is called routing.

Computation in a sensor network is much different than in a traditional wired

network. In a sensor network, there is no centralized control for communication.

Communication and computation is preferred to be done locally in a distributed

manner. Each node only knows the position of itself and its in-range neighbors.

A node can explore the presence of other nearby nodes by exchanging information

between k-hop neighbors, where k is usually 1,2, or 3. Computing global properties

of the sensor network that include connectivity, clustering, and coverage by exploring

upto k-hop neighbors (for small k) are the most challenging problems in this emerging
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area of computer science and engineering. Some good progress has been made for

performing routing and clustering in recent years [9] and there are a wealth of fertile

problems to pursue further research.

In this thesis, we are mainly concerned about filtering of nodes as a pre-processing

step for routing in sensor networks. We basically try to identify redundant nodes

present on a network so that we can eliminate such nodes and make the routing

algorithms and protocols more effective and efficient.

Chapter two presents a review of planar graphs that includes Gabriel graph (gg),

relative neighborhood graph (rng), Delaunay triangulation (dt), and restricted

Delaunay graph (rdg). This chapter also contains a review of routing algorithms

from computational geometry that includes greedy forward, face routing, and hybrid

greedy face routing.

The main contributions of the thesis are in Chapter 3. It contains algorithms

for filtering nodes as preprocessing for Face routing. We start with the formulation

of the concepts “redundant nodes” and “equivalent nodes”. The proposed filtering

algorithms are based on retaining only one member from a set of identified redundant

nodes. We show how the removal of a node from a pair of equivalent nodes does not

alter the connectivity and routing construction.

Chapter four describes the implementation of algorithms for generating planar

networks and algorithms for routing that include greedy routing, face routing, and

hybrid greedy face routing. These algorithms are implemented in Java programming

language. The implementation has a front-end graphical user interface that makes

it easy to execute algorithms for generating planar networks and for constructing

routing. Chapter four also contains results of the experimental investigation of the

performance of face routing algorithms after applying filtering. The results show that

the quality of generated routes are preserved after filtering.

In chapter five, we describe the performance of proposed algorithms for several

2



input node distributions. We also suggest some problems for future research.
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CHAPTER 2

REVIEW

In this chapter, we present a comprehensive review of networks that are used for

communication and routing in sensor networks. Most networks reviewed in this

chapter are locally computable, which include Gabriel graph (GG), relative

neighborhood graph (RNG), restricted Delaunay graph (RDG), and Delaunay

triangulation (DT).

2.1 Gabriel graphs

A Gabriel graph GG(S) of a set of point sites S = {p0, p1, p2, . . . , pn−1} is a

network structure first introduced by Gabriel and Sokal [8] in 1969 for analyzing

geographic variation in zoology [10]. This structure is now extensively used for

routing in sensor network and related applications. Gabriel graphs are used to

model proximity (nearness) relations between nodes in two dimensional surfaces.

(a) Point sites S (b) Gabriel graph

Figure 2.1: Formation of Gabriel graph for five point sites

Formally, given a set of point sites S = {p0, p1, p2, . . . , pn−1}, two point sites pi

and pj are connected by an edge ei,j if the disk with diameter ending at pi and pj does

not contain any other point sites. Figure 2.1 illustrates the formation of a Gabriel

graph for five point sites. As shown in Figure 2.1a, the disk with diameter <p3,p4>

is empty and hence p3 and p4 is connected by an edge. On the other hand, the disk

4



with diameter <p1,p3> is not empty and hence they are not connected by an edge.

The Gabriel graph constructed in this manner is shown in Figure 2.1b.

For applications in sensor networks, only those point sites pi and pj are considered

for possible edge connection if the distance between them is less or equal to the wireless

transmission range of nodes.

2.1.1 Algorithm to implement Gabriel graphs

Given a set of point sites S = {p0, p1, p2, . . . , pn−1}, perform empty circle tests

for each pair of points by creating a circle with diameter pi and pj and checking if

other points lie inside it or not. If the circle is empty, then connect those two points.

The graph obtained in this manner is a Gabriel graph. Here, Cn
2 pair of circles has

to be checked for emptiness with n other points. Hence, the total time complexity of

this algorithm is O(n3). This algorithm can be called a Brute Force Algorithm.

Since a Gabriel graph is a subset of Delaunay triangulation, we can construct

Gabriel graphs using Delaunay triangulation. First of all, find Delaunay triangulation

of point sites. This can be computed in O(nlogn) time. Then, perform empty circle

tests on the edges of Delaunay triangle and remove the edges that contain other points

inside them. Here the circle considered for empty test is the circle with the candidate

Delaunay edge as the diameter. Since the edges of Delaunay triangle are of order n

and we need to check for emptiness with n other points, the total time complexity of

this algorithm is O(n2). Such an algorithm can be called a Delaunay Guided Empty

Circle algorithm.

There is another more efficient algorithm to compute Gabriel graphs where we

don’t need to perform any empty circle tests [10], which can be named a Delaunay

and Voronoi Guided Algorithm. We can use the concept of Delaunay triangulation

and Voronoi diagram to construct it. Every edge of Delaunay triangle has its dual

Voronoi edge. The edge belongs to the Gabriel graph if and only if the edge of
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Delaunay triangle intersects its dual Voronoi edge. It takes O(nlogn) time to compute

both Delaunay triangulation and Voronoi diagram and since all edges are of order n,

it takes O(n) time to check for intersection. Thus the total time complexity of this

algorithm is O(nlogn).

The formal sketch of these three algorithms are given below:

Algorithm 1 Basic Algorithm (Brute Force)

1: for i = 0 to TotalV ertices− 1 do
2: for j = 0 to TotalV ertices− 1 do
3: p1 ← V ertices[i]
4: p2 ← V ertices[j]
5: if circle containing p1 and p2 as diameter is empty then
6: connect p1 and p2
7: end if
8: end for
9: end for

Algorithm 2 (Delaunay Guided Empty Circle Algorithm)

1: Find delaunay triangulation induced by point sites in S
2: for i = 0 to TotalDelaunayEdges− 1 do
3: p1 ← DelaunayEdge[i].source
4: p2 ← DelaunayEdge[i].target
5: if circle containing p1 and p2 as diameter is empty then
6: connect p1 and p2
7: end if
8: end for

Algorithm 3 (Delaunay and Voronoi Guided Algorithm)

1: Find voronoi diagram induced by point sites in S
2: Find delaunay triangulation induced by point sites in S
3: for i = 0 to TotalDelaunayedges− 1 do
4: if DelaunayEdges[i] intersect DelaunayEdges[i].dual then
5: print DelaunayEdges[i]
6: end if
7: end for
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2.2 Relative neighborhood graph

The relative neighborhood graph was proposed by Godfried Toussaint in

1980 [15] as a way of defining a structure from a set of points that would match

human perceptions of the shape of the set. This graph is also used to model

proximity (nearness) relations between nodes in two dimensional space.

(a) Point Sites S (b) RNG

Figure 2.2: Formation of relative neighborhood graph of five point sites

Given a set of point sites S= {p0, p1, p2, . . . , pn−1}, two point sites pi and pj are

connected if and only if there does not exist a third point pk that is closer to both pi

and pj than they are to each other. Figure 2.2 shows the relative neighborhood graph

for the set of five point sites. Here, p1 and p3 are connected by an edge because there

are no two edges <p1,pk> and <p3,pk> which are shorter than the edge <p1,p3>. On

the other hand, point sites p1 and p2 are not connected because there are two edges

<p1,p3> and <p2,p3> which are shorter than <p1,p2>.

For applications in sensor networks, we consider the transmission range of point

sites and connect only those two point sites that are within transmission range.

An alternative definition of RNG can be given as follows. Two points pi and pj

are defined as relatively close to each other if d(pi,pj)≤ max[d(pi,pk), d(pj,pk)] for

all k=1...n and k 6= i,j. The graph thus obtained by connecting only points pi and pj

that are relative neighbors is the relative neighborhood graph.

2.2.1 Algorithm to implement Relative neighborhood graph

Given a set of point sites S= {p0, p1, p2, . . . , pn−1}, perform empty lune of

influence tests for each pair of points by creating a circle with center at pi and pj and
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radius equal to <pi,pj> and checking if other points lie inside the lune or not. If the

lune is empty, then connect those two points. The graph obtained in this manner is

a relative neighborhood graph. Here, Cn
2 lunes have to be checked for emptiness with

n other points. Hence, the total time complexity of this algorithm is O(n3).

(a) empty lune (b) non-empty lune

Figure 2.3: Illustrating empty lune of influence test

2.3 Delaunay Triangulation and Variations

Another planar graph that has been used for routing in sensor networks is the

Delaunay triangulation. Delaunay triangulation was first proposed by Boris Delaunay

in 1934 [1]. The Delaunay triangulation of a set of point sites {p0, p1, p2, . . . , pn−1} is

the triangulation such that no circumscribing circle of any triangle in the triangulation

contains any other point site.

Figure 2.4: Illustrating Delaunay Triangulation

Figure 2.4 shows the Delaunay triangulation of 7 point sites. We can see that

circumscribing circles of each triangle contain no point sites. Empty circle property

is elaborately illustrated in Figure 2.5.
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Figure 2.5: Illustrating Empty Circle in Delaunay Triangulation

Figure 2.5 demonstrates an empty circle test on two end points of an edge. In

Figure 2.5(a), we can see that there is an empty circle through p1 and p2 and hence

it is a Delaunay edge. On the other hand, any triangle through p3 and p4 can never

be made empty and hence the edge connecting p3 and p4 is not a Delaunay edge.

Delaunay triangulation is closely related to the structure known as Voronoi

Diagram [4]. In fact it is known that Delaunay triangulation is the dual of Voronoi

diagram. Many algorithms have been reported to compute Delaunay

triangulation [1]. Since Voronoi diagram is the dual of Delaunay triangulation,

algorithms for computing Voronoi diagram can be used for obtaining Delaunay

triangulation and vice versa [12]. The most popular algorithm for computing

Delaunay triangulation is the sweepline algorithm proposed by Fortune [7] which

runs in O(nlogn) time. It is remarked that the problem of computing Delaunay

triangulation has a lower bound of Ω(nlogn) in the comparison tree model of

computation [3]. Hence, Fortunes algorithm is also the optimum algorithm. In the

context of routing in sensor networks, locally computable structures are highly

suitable. Unfortunately Delaunay triangulation can not be computed locally.

However, a super-set of Delaunay triangulation briefly described in the next

subsection can be computed locally.
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2.3.1 Restricted Delaunay Graph(RDG)

Consider a set of point sites S={p0, p1, p2, . . . , pn−1} in the plane. Each point

site corresponds to the position of a sensor node with radio transmission range r=1.

(All sensor nodes have identical transmission range.) Suppose each node pi computes

the Delaunay triangulation of pi and its one hop neighbor. Let T(pi) denote the

Delaunay triangulation of pi and its one hop neighbors N(pi). The triangulation

T(pi) is called the local Delaunay triangulation of pi. The network obtained by the

union of all T(pi)’s is not necessarily planar and it may not be even a triangulation

graph. Let Gu denote the union of all T(pi) for all pi in S. The graph Gu is not

necessarily planar and may not contain all Global Delaunay edges of S. A method of

extracting a planar graph from Gu with 1-hop information exchange was proposed by

Gao et al. [9]. Such a graph is called Restricted Delaunay Graph(RDG).

A technique to obtain RDG Gr from Gu is to remove selected crossing edges

(sr edges) from Gu [9]. The approach is to check the consistency of edges in the

Delaunay triangulation of two neighbor nodes. To understand this method, consider

four nodes p1,p2,p3,p4 as shown in Figure 2.6, where the single triangle is the Delaunay

triangulation T(p1) of 1-hop neighbors N(p1) and p1 itself. On the other hand, the

Delaunay triangulation T(p2) of N(p2) and p2 is shown in Figure 2.6b. The overlay

of T(p1) and T(p2) is shown in Figure 2.6c, where two edges cross making T(p1) ∪

T(p2) non-planar.

Among the crossing pair of edges p1p3 and p2p4, we need to remove one to make

T(p1) ∪ T(p2) planar. The one that is not present in both is removed. The sr edge

so identified is not a global Delaunay edge. After removing sr-edge, we obtain the

RDG Gr of four nodes shown in Figure 2.6d. Although the RDG shown in Figure 2.6

is a triangulation graph, for large number of nodes, it need not be a triangulation.

Furthermore Gr may contain some edges that are not present in global Delaunay

triangulation.
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Figure 2.6: Illustrating formation of restricted delaunay graph

A formal local algorithm to construct RDG Gr can be described as follows. Each

nodes pi determines the Delaunay triangulation T(pi) of pi and its 1-hop neighbors

N(pi). Each neighbor pi and pj exchange T(pi) and T(pj). If an edge in T(pi) is not

valid for T(pj), then that edge is deleted. This local method of removing inconsistency

is sketched as Algorithm 4.

Algorithm 4 Algorithm for resolving inconsistency

1: E(u):= uv | uv ∈ T(u)
2: for each edge uv in E(u) do
3: for each edge w in N(u) do
4: if (u,v ∈ N(w) and uv /∈ T(w)) then
5: delete uv from E(u)
6: end if
7: end for
8: end for

2.4 Routing

Routing is the process of selecting a path in a network for sending

information from source node to destination node along the network [13]. Routes

are constructed in sensor networks using appropriate planar graphs that include

Gabriel graphs, relative neighborhood graphs, and restricted Delaunay graphs. In

general, if a source node s wants to send a message to a destination node t which is
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outside the range of s, then s needs to send the message through a sequence of relay

nodes. This sequence of relay nodes together with source and destination nodes

define a route connecting s to t. The process of generating these routes is called

routing. Some of the well known route construction techniques are greedy forward,

face routing and hybrid greedy face routing.

2.4.1 Greedy forward routing

Greedy forward routing is a very simple yet one of the most powerful routing

algorithms. It constructs route locally in a sequence of steps. In greedy routing, all

of the adjacent nodes that are within transmission range are first detected. The next

node to forward the message is selected from among the adjacent nodes which are

nearer to the target node than the current node. The node that is closest to the

target node gets the message. This process is repeated until target is reached.
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Figure 2.7: Illustrating Greedy routing

We can illustrate it with a simple example as shown in Figure 2.7(a). Let S={s,

p1, p2, p3, p4, t} be the set of nodes where s is the source node and t is the target node.

The source node s has three adjacent nodes p4, p1 and p2. Among those three nodes,

node p4 is selected because the distance between <p4,t> is smaller than <p1,t> and

<p2,t>. Similarly, node p4 has 4 nodes s, p1, p3 and t as adjacent nodes. Since it is

directly connected with t, we have found the routing path s → p4 → t using greedy

forward routing algorithm.

Sometimes, a message gets stuck while using greedy forward routing algorithm.

This occurs when the node itself becomes the shortest node rather than its adjacent
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nodes. In Figure 2.7(b), we can see that node s finds p4 as the next node. Similarly,

node p4 finds node p3 as its next node. Node p3 has p4, p1 and p2 as its adjacent

nodes but none of the nodes have shorter distance than <p3,t> . Hence the message

gets stuck at a local minimum.

2.4.2 Face routing

A message delivery method which is guaranteed to work if there is some path

connecting source node s to target node t is based on the traversal of the faces of the

planar graph formed on the underlying sensor network. A path construction algorithm

based on this approach is known as face routing [13]. We can give a brief description

of face routing algorithm by considering an example planar graph constructed on the

sensor network. The planar graph could be either a Gabriel Graph(GG), or a Relative

Neighborhood Graph(RNG) induced by the sensor nodes. In Figure 2.8, a Gabriel

graph of eighteen nodes S={s, p1, p2, . . . , p15, p16, t} is shown where there are nine

faces that includes the outer unbounded face. Node s and node t are the source node

and target node, respectively.
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Figure 2.8: Illustrating Face Routing

The source node s knows the position of itself, its 1-hop neighbors, and the position

of the target node t. If t is within the transmission range of s, then the message

is delivered directly. Otherwise, the algorithm construct the correct face fc of the

Gabriel graph such that (i) s is a node of fc and (ii) fc is intersected by the guiding line

segment eg=(s, t). The algorithm determines the transition edge ew of fc. Transition
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edge ew of fc is the line segment of fc that is intersected by the guiding segment eg. In

Figure 2.8,(p8, p10) is the transition edge. After constructing the current face fc, the

message traverses counterclockwise along the edges of fc and stops at the transition

edge. The message is then delivered to the other face (f2 in Figure 2.8) incident on

the transition edge.

In the next iteration, one of the nodes of the transition edge becomes the source

node and the other face incident on ew becomes the current face fc. This process of

traversing the faces is continued until the target node t is discovered to deliver the

message. In Figure 2.8, the constructed route is shown by directed segments.

Algorithm 5 Algorithm for face routing

1: p ← s
2: repeat
3: let f be the face of G with p on its boundary that intersects (p,t)
4: traverse f until reaching an edge (u,v) that intersects (p,t) at some point p′ 6=

p
5: p ← p′
6: until p=t

2.4.3 Hybrid greedy face routing

This is a combination of greedy forward routing and face routing. Greedy

forward is used as much as possible and when a stuck node is encountered, face

routing is used to escape from the stuck node.
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Figure 2.9: Illustrating Hybrid greedy face routing

In Figure 2.9, greedy forward algorithm is used until node gets stuck at node
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p7. Face routing is used to rescue the p7 node and reach the target.
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CHAPTER 3

NODE FILTERING FOR FACE ROUTING

In this chapter, we consider the problem of removing redundant or pseudo-redundant

nodes from a set of given nodes. We call this process node filtering.

3.1 Compressing Equivalent Nodes

Consider a set of nodes S= {p0, p1, p2, . . . , pn−1} used for face routing in a

sensor network. Two nodes close to each other are called equivalent if their

transmission ranges cover the same sub-set of nodes. Recall that all nodes are

assumed to have an identical transmission range which is taken, without loss of

generality, as 1. We can illustrate the notion of equivalent nodes with a specific

example. In Figure 3.1, the transmission disks of two nodes p5 and p6 are shown

with dashed circle. This shows that nodes p5 and p6 cover the identical set of nodes

p1,p2,p3,p4,p7 and p8.
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Figure 3.1: Illustrating Equivalent nodes p5 and p6

On the right-side of Figure 3.1, two nodes p10 and p11 are shown which are not

equivalent even though they are very close to each other. There can be many nodes

equivalent to each other in some rare distributions that contain clustered nodes in

some pocket region. This is illustrated in Figure 3.2
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(a) (b)

(c)

Figure 3.2: Illustrating Clusters of Equivalent nodes

Figure 3.2a is a distribution of sensor nodes where there are five distinctly visible

cluster sub-sets of nodes. The clusters that cover identical nodes are highlighted by

drawing circles for their range in Figure 3.2b. It is observed in Figure 3.2b that circles

in a group cover the same set of nodes.

Definition 3.1.1. (Compressed Gabriel Graph) Consider a Gabriel Graph G(V,E)

of a set of sensor nodes. Let C1,C2,...,Ck be the set of equivalent nodes in G(V,E).

The nodes in V not in the equivalent sets are referred to as background nodes and

the set of these nodes is denoted by VB. The set of nodes obtained by adding to

VB exactly one member from each equivalent set is the compressed set of nodes, VC .

The resulting Gabriel graph of VC , denoted by GC(VC ,EC), is the compressed Gabriel

graph. Figure 3.3 shows the original Gabriel graph and its compressed version for

indicated transmission range.
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(a) (b)

Figure 3.3: Illustrating Gabriel Graph and its compressed version

Lemma 3.1.1. If background nodes vi and vk are connected in Gabriel graph G(V,E),

then they are also connected in the compressed Gabriel graph GC(VC,EC).

Proof: Consider any route R connecting node vi to vk that passes through a cluster

Cj. Let ve and vt be the nodes in the background and in R that are closest to the

cluster Cj (Figure 3.4).

vi

ve vj

vk

Cj

R

vt

(a)

Figure 3.4: Illustrating a Proof of Lemma 3.1.1

Let vj be the representative node in Cj. Since ve and vt are connected to some

nodes in Cj, they are also connected to vj by the “special path” (ve,vj,vt) shown by

dashed segments.
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3.2 Solo-Faced Chains

A segment can be viewed to consist of two half-edges. A Gabriel graph in

which edges are split into two half-edges is shown in Figure 3.5b. Let {e1,e2,....,e15}

be the edges of a Gabriel graph. The half-edges of ei are denoted by ei
′ and ei

′′. Note

that ei
′ and ei

′′ are twin half-edges of each other and they are directed reverse to each

other.
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Figure 3.5: Gabriel graph showing edges and its equivalent half edge

Definition 3.2.1. An edge ei is called solo-faced edge if the twin half-edges of ei

i.e. ei
′ and ei

′′ are incident on the same face. In Figure 3.5a, there are three faces

f0,f1, and f2 in the Gabriel graph. Edge e15 is a solo-faced edge since e15
′ and e15

′′

are incident on the same face f1. Similarly e5 is a solo-faced edge as e5
′ and e5

′′ are

incident on the same face f0. On the other hand, e4 is not solo-faced as e4
′ and e4

′′

are incident on faces f0 and f1, respectively.

Definition 3.2.2. (Maximal Solo-Faced Chain) A sequence of consecutive solo-faced

edges is referred to as a solo-faced chain. A solo-faced chain that is not contained in

any other solo-faced chain is called a maximal solo-faced chain. In Figure 3.5 there are

two maximal solo-faced chain which are e7e6e5 and e15e14. Some Gabriel graphs could

have many maximal solo-faced chains. A Gabriel graph with five maximal solo-faced

chains is shown in Figure 3.6
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Figure 3.6: Illustrating Solo-Faced Chains

Remark 3.2.1. From now onward, unless otherwise stated, the term solo-faced chain

will be used to indicate a maximal solo-faced chain.

Definition 3.2.3. (Bridge Solo-Faced Chain) Solo-faced chains can be distinguished

into two types: Bridge type and Non-Bridge type. If the removal of a solo-faced chain

ch1 from the Gabriel graph breaks the graph into two connected components then ch1

is called a bridge solo-faced chain. In Figure 3.7, there are seven solo-faced chains.

Among them only one is a bridge solo-faced chain which is drawn by dashed edges.

Definition 3.2.4. (External Solo-Faced Chains and External Components)

Figure 3.8 shows five clusters of nodes A,B,C,D and E. These clusters contain many

interconnected nodes and solo-faced chains. Let ch1,ch2,ch3 and ch4 be the four

bridge solo-faced chains connecting these five clusters of nodes. These five clusters

of nodes and their bridge solo-faced chains can also be represented in a tree

structure as shown in Figure 3.9.

Let s and t be the source and target node present inside clusters A and E

respectively. From Figure 3.9, we can see that the actual path to travel from source

node to target node is A -> ch3 -> B -> ch1 -> E. Only ch3 and ch1 are the two

bridge solo-faced chains that lie in the path from A to E. All other bridge solo-faced

20



ch1

ch2

ch3
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ch5

ch6

ch7

Figure 3.7: Illustrating Bridge Solo-Faced Chain (ch3-drawn dashed)

chains that don’t lie in the path are called external solo-faced chains. There are also

clusters of nodes that are not present in the path. These type of cluster of nodes are

called external components. In the given figure, two clusters <C,D> and two bridge

solo-faced chains <ch2,ch4> are called external components and external solo-faced

chains respectively.

Figure 3.10 shows the cluster of nodes when non bridge solo-faced chains of

Figure 3.8 are removed from the graph. This removal of chains helps in removing

unnecessary edges from the graph. The graph can be further optimized by removing

external components and external solo-faced chains as shown in Figure 3.11.
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Figure 3.8: Illustrating clusters of nodes connected by Bridge Solo-Faced Chains
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Figure 3.9: Tree representation of Bridge Solo-Faced Chains
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Figure 3.10: Illustrating cluster of nodes without Non Bridge Solo-Faced Chains
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Figure 3.11: Illustrating cluster of nodes after removing External-Components and
External Solo-Faced Chains
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3.3 Extracting Biconnected Clusters

We could use the depth-first search based on connected component

recognition algorithm [14] to extract biconnected clusters. However, a Gabriel graph

is a planar graph and a much simpler algorithm can be designed to extract

biconnected components. To describe such a simpler algorithm, it is necessary to

use the doubly connected edge list (dcel) data structure for representing planar

graphs which is described next.

3.3.1 Planar Graph

A graph G(V,E) is called planar if it can be drawn on a plane without

intersecting edges.

3.3.2 Planar Straight Line Graph

A planar straight line graph is a planar graph containing all straight edges.

They are mostly used to represent maps. Figure 3.12 shows a planar straight line

graph containing five vertices and five edges.

e2

e3

e4

e5

e1

v1

v2

v3

v4 v5

Figure 3.12: Illustrating Planar Straight Line Graph (PSLG)

3.3.3 Doubly Connected Edge List (DCEL)

Double Connected Edge List is a data structure for representing planar straight

line graphs. It was originally suggested by Preparata and Muller in 1978 for the

representation of 3D convex polyhedra [11]. In DCEL, each edge is viewed as a
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pair of twin half-edges pointing in opposite direction. Figure 3.13 shows a doubly

connected edge list data structure containing five vertices, ten half edges and two

faces.

e1

v1

v2

v4

v3 v5

e2 e9

e
10e7

e8

e4
e6

e5

e3

f0

f1

Figure 3.13: Illustrating Doubly Connected Edge List data structure

A DCEL consists of a record for each half edge, face, and vertex. Each half edge

record consists of a twin edge, a previous edge, a next edge, an incident face, and

a source vertex. The face record consists of a bounding half edge, and each vertex

record consists of a incident edge, and its co-ordinate. An example illustrating all the

records for each half edge, face and vertex of Figure 3.13 is shown in Table 3.1, 3.2

and 3.3 respectively.

Half Edge Twin Prev Next Incident Face Source Vertex
e1 e2 e5 e9 f0 v2
e2 e1 e7 e3 f1 v3
e3 e5 e2 e4 f1 v2
e4 e6 e3 e7 f1 v1
e5 e3 e6 e1 f0 v1
e6 e4 e8 e5 f0 v4
e7 e8 e4 e2 f1 v4
e8 e7 e10 e6 f0 v3
e9 e10 e1 e10 f0 v3
e10 e9 e9 e8 f0 v5

Table 3.1: Record for each half-edge
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Face Bounding Half Edge
f0 e9
f1 e7

Table 3.2: Record for each face

Node Incident Edge Co-ordinate
v1 e5 x1,y1
v2 e3 x2,y2
v3 e2 x3,y3
v4 e7 x4,y4
v5 e10 x5,y5

Table 3.3: Record for each Vertex

3.3.4 Degree of Vertices

The degree of vertex v is defined as the total number of edges incident to

that vertex. Let V={v1,v2,v3,v4,v5,v6} be the total vertices and E={e1,e2,e3,e4,e5}

be the total edges present in a graph G(V,E) as shown in Figure 3.14(a). Vertex v3

has degree three because three edges are incident to it. Similarly, vertex v6 and v5

have degree one and two respectively. Figure 3.14(b) shows the edges split into two

half edges for representing it in a Doubly Connected Edge List data structure. An

algorithm to detect vertices of degree one is described in algorithm 6.

Algorithm 6 Detect vertices of degree one

1: if vi.getIncidentEdge().getTwin().getNext()==vi.getIncidentEdge() then
2: return true.
3: else
4: return false.
5: end if

3.3.5 Removal of Floating Chains

Floating chains have at least one vertex with degree one. Figure 3.15 shows

a floating chain e3,e4,e5. In this chain, vertex v6 has degree one and hence this node
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Figure 3.14: Graph showing edges and its equivalent half edge

is removed from the graph. After the removal of vertex v6 and edge e5, vertex v5

becomes another node with degree one. These nodes are removed from the graph

one after another until we don’t find any vertex with degree one. We also need to

consider if the vertex node is the source or target because these nodes shouldn’t be

removed from the graph. The concept of doubly connected edge list data structure is

used to remove floating chains from the graph as shown in Figure 3.15(b).

Algorithm 7 Removing Floating chain

1: Vertex v1,vc
2: HalfEdge e1,e2
3: vc ← vi
4: while vc 6= s or t and deg(vc) == 1 do
5: v1 ← vc
6: e1 ← v1.getIncidentHalfEdge()
7: e2 ← e1.getTwin()
8: vc ← e2.getStartNode()
9: e2.getPrev().setNext(e1.getNext())
10: vc.setIncidentHalfEdge(e1.getNext())
11: remove v1, e1, e2 from the graph
12: end while
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Figure 3.15: Graph showing floating chains.

We assume that the given Gabriel graph G(V,E) contains no floating chain.

If there are floating chains, then we can use Algorithm 7 in Section 3.3.5 to remove

them.

A graph G(V,E) is called biconnected if there are two distinct paths between

any pair of vertices in G(V,E). A biconnected graph remains connected even if some

of its vertices are removed. Figure 3.16(a) is a biconnected graph because any two

pair of vertices have at least two distinct paths. Figure 3.16(b) is not a biconnected

graph because vertex v1 and v4 doesn’t have two distinct paths.

In a connected Gabriel graph G(V,E) without floating chains, there could be

many biconnected components and bridge chains as shown in Figure 3.17. A dcel

representation of G(V,E) is shown in Figure 3.18.
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Figure 3.16: Illustrating biconnected graph

(a)

Figure 3.17: Illustrating biconnected components and bridge chains

(a)

Figure 3.18: DCEL representation of biconnected components and bridge chains
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Definition 3.3.1. A half-edge ei is called a transition half-edge if it satisfies the

following conditions.

i) Half-edge ei is in a bridge-chain.

ii) Let ej=ei.next.twin, then ej.face is not same as ei.face or ej.face is not main

face (outer unbounded face)
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Figure 3.19: Illustrating transition half-edge

Algorithm 8 describes an algorithm to determine transition half edges. This

transition half edge algorithm is used for finding bi-connected graphs in

Algorithm 9. The three half-edges e1, e2, and ec of Algorithm 9 is shown in

Figure 3.19(b). Algorithm 10 describes the procedure to remove external

components and external solo-faced chains from the graph.

Algorithm 8 Find all Transition Half Edge

1: for each edge ei in bridge solo-faced chain do
2: if ei.getNext().getTwin().hasMainFace()==false then
3: add ei to transition edge list
4: end if
5: end for
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Algorithm 9 Find Bi-Connected graph from transition edge

1: transition edge ei
2: half edge e1,e2,ec
3: e1 ← ei
4: e2 ← e1.getNext()
5: if e2.getNext().getTwin().hasMainFace()==true then
6: ec=e2.getNext().getTwin().getNext()
7: else
8: ec=e2.getNext()
9: end if
10: Edgelist el
11: el.add(e2)
12: while ec 6= e2 do
13: el.add(ec)
14: if ec.getNext().getTwin().hasMainFace()==true then
15: ec=ec.getNext().getTwin().getNext()
16: else
17: ec=ec.getNext()
18: end if
19: end while
20: create a polygon p using all the edges of edge list el
21: for each edge e1i present in graph do
22: if e1i is present inside p then
23: el.add(e1i)
24: end if
25: end for
26: output el as total edges of one bi-connected graph obtained from transition edge

ei

Algorithm 10 Remove External Solo-Faced Chains and External Components from
graph

1: label each edge of a bi-connected graph by a tree.
2: use transition half-edge to find connection between two trees
3: find the tree present in source and target
4: use depth first search to find the path from source to target.
5: delete all bridge solo-faced chains that don’t lie in the path
6: delete all vertices and edges that don’t have trees that lie in the path.
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CHAPTER 4

IMPLEMENTATION

This chapter describes the implementation of node filtering and face routing in

sensor networks. All the programs are implemented in Java. The program is divided

into three projects.

The first project shows the implementation of Gabriel Graph, Relative

Neighborhood Graph and Unit Disk Graph. These graphs are implemented for some

randomly generated nodes. It also shows how a node routes a path from source

node to target node using Greedy Routing, Face Routing and Hybrid Routing.

The second project deals with filtering of nodes in a network. This project mainly

focuses on equivalent nodes, solo-faced chains and external components. It shows the

difference in a network before and after removal of equivalent nodes. It also shows

how the network is changed when nodes present on solo-faced chains and external

components are removed from the graph.

The third project is the combination of first and second project. This project

shows how the node routes a path from source node to target node using different

routing algorithms and the difference found when equivalent nodes, solo-faced chains

and external components are removed from the graph.

4.1 Introduction to Java

Java is a programming language developed by James Gosling [2] at Sun

Microsystems. It is a high-level object-oriented programming language. Java

derived much of its syntax from C and C++. Its applications are typically compiled

to bytecode that can run on any Java Virtual Machine(JVM) regardless of computer

architecture. It is intended to let application developers write once, run anywhere
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(WORA) [5], meaning that code that runs on one platform does not need to be

recompiled to run on another.

4.2 Interface Description

4.2.1 Project 1

Figure 4.1 shows the main user interface of project 1. It is drawn by extending

the JFrame class. It consists of a menu bar, a drawing panel, a right panel and a

bottom panel.

Figure 4.1: Illustrating User Interface of Project 1

The menu bar consists of a File Menu which contains 4 menu items Open,

Save, Export and Exit. The Open Menu Item is used for opening a saved file and

Save Menu Item is used for saving the graph. Similarly, Export Menu Item is used

to export the file to XFig format and Exit Menu Item helps to exit the program.

A big center panel is the drawing panel in which all nodes are drawn. It shows all

the graphic output of the program.

A right panel consists of eight checkboxes. The first checkbox is DrawNode. This

checkbox helps in drawing nodes on the drawing panel. A user can check this checkbox
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Figure 4.2: Illustrating Random Nodes

and draw nodes on the drawing panel using mouse. EditNode and DeleteNode

checkboxes are used for editing and deleting nodes respectively. If we select the

SelectSource checkbox and select any node, the node becomes the source. Similarly,

we can select the Target node by selecting the TargetNode check box. The next check

box is Compare which helps to compare the graphs. If this check box is selected and

we try to draw a Gabriel Graph, it opens a new Frame containing Gabriel Graph

and Unit Disk Graph. Steps checkbox helps in displaying steps of routing. The last

checkbox is UseFaceRouting which helps on using the face routing when nodes get

stuck during greedy routing.

A right panel also contains four buttons Random, Clear, Overall, and NextStep.

Random button helps in displaying random nodes. These nodes can be cleared by

using Clear button. Overall Button helps in comparing the path travelled by Greedy

and Face Routing on RNG and GG. NextStep button is used to display the next step

in routing. There is also a range slider to change the range of sensor nodes.

Finally, there is a bottom panel containing seven buttons. DisplayRNG,

DisplayGG and DisplayUDG buttons are used to display Relative neighborhood
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graph, Gabriel graph and Unit disk graph respectively. ClearCanvas button is used

to clear the graph. FaceRouting, Greedy and HybridRouting are the three routing

buttons to demonstrate the routing operations.

Figure 4.2 shows a few red random nodes drawn on the user interface. It is drawn

by clicking Random button. We can also add nodes to it by selecting DrawNode

checkbox. The Gabriel Graph of the above nodes is shown in Figure 4.3. It also

shows the source and target nodes. The greedy routing path taken from source node

to target node is illustrated in Figure 4.4.

Figure 4.3: Illustrating Gabriel Graph containing source and target nodes

4.2.2 Project 2

The user interface of project 2 is similar to project 1. Figure 4.5 illustrates

the user interface of Project 2. It consists of menu bar, drawing panel, range panel

and checkboxes. The menu bar consists of a File Menu which contains 3 menu items

Open, Save and Exit which are similar to Project 1.

The big white panel is a drawing panel where nodes are drawn. The buttom panel

contains a range panel which helps in changing the range of sensor nodes.
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Figure 4.4: Illustrating the routing path taken from source node to target node

The right panel consists of many checkboxes. There are five checkboxes present at

the top of right node. They are DrawNode, EditNode, DeleteNode, DisplayGG and

Displayrange. The top three checkboxes are used for drawing, editing and deleting

nodes. The DisplayGG check box helps in displaying the Gabriel graph of nodes.

The Display range checkbox helps in displaying the range of sensor nodes.

Figure 4.5: Illustrating the user interface of Project 2

There are two tabs, Segment and EqNode. The Segment tab contains five
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checkboxes. The first two checkboxes are used to select source and target. The third

and fourth checkboxes are used to remove and show solo-faced segments respectively.

The last checkbox is used to remove external segments present on the graph. The

graph showing solo-faced segments is illustrated in Figure 4.6. Figure 4.8 shows a

graph when external segments are removed from Figure 4.7.

Figure 4.6: Illustrating solo-faced chains

Figure 4.7: Illustrating graph containing external segments
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Figure 4.8: Illustrating graph after removal of external segments

EqNode tab contains 3 checkboxes. The first checkbox is used to show only one

equivalent node among all equivalent nodes. The second checkbox displays only one

equivalent node picked randomly. The third checkbox is used to display equivalent

nodes. A graph illustrating equivalent nodes is shown in Figure 4.9. There are also

two buttons, Random and Clear which generates and clears all nodes respectively.

Figure 4.9: Illustrating equivalent nodes
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4.2.3 Project 3

The user interface of project 3 consists of a menu bar, drawing panel and right

panel. The menu bar consists of three menu items, open, save and exit. The drawing

panel is used for drawing the graph.

Figure 4.10: Illustrating user interface of project 3

The right panel consists of 15 checkboxes. The first three checkboxes,

DrawNode, EditNode and DeleteNode are used to draw, edit and delete nodes

present on graph. DisplayGG checkbox helps in displaying the Gabriel Graph of

nodes. DisplayRange checkbox is used to display range of each sensor nodes.

There are 2 other checkboxes, SelectSource and SelectTarget, to select source and

target nodes. DisplayEq.Nodes and Only1Eq.Node checkboxes are used to display

equivalent nodes and only one equivalent nodes respectively. The rand checkbox is

used for selecting only one equivalent node in random from clusters of equivalent

nodes.

The ExternalSegment checkbox is used to show only external segments obtained

after removing equivalent nodes, solo-faced chains and external components.

Finally, there are three routing checkboxes, GreedyRouting, FaceRouting and

39



HybridRouting, to show how the path is traced when these routing algorithms are

used.

Figure 4.11: Illustrating greedy routing traced by nodes

Figure 4.12: Illustrating face routing traced by nodes

In Figure 4.11, we can see the path traced when we apply the greedy routing

algorithm. We can also see that the node got stuck while using greedy routing.
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Figure 4.12 shows the path traced when we applied the face routing algorithm.

The rightmost bottom textboxes are used for getting information from the

graph. It provides information regarding total nodes, total equivalent nodes and

total equivalent groups. It also provides information regarding total faces and total

hubs as illustrated in Figure 4.12.

4.3 Observation

Table 4.1a and 4.1b shows the random nodes and their respective ranges taken

for the experiment. Table 4.1a shows the total nodes and their ranges when they are

partially connected and Table 4.1b shows the total nodes when they are completely

connected.

Nodes Range
200 104
300 87
400 75
500 66
700 60

(a)

Nodes Range
200 238
300 192
400 156
500 133
600 116

(b)

Table 4.1: Nodes and their range

We drew Gabriel graphs with the above nodes and tested them in different

ranges. We found out that the equivalent nodes varied with the range of nodes.

Table 4.2a and 4.2b show the results obtained when the graphs were partially and

completely connected respectively. The equivalent nodes got reduced by 12.28% when

nodes were partially connected. On the other hand, the nodes got reduced by 5.17%

when the nodes were completely connected. This shows that equivalent nodes were

mostly found when nodes have a small range (partially connected).

We also counted the total hubs used while routing from source node to target

node under different routing conditions. We experimented with greedy, face and
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Total
Nodes

Range
Total Eq.
Groups

Total Eq.
Nodes

Total Nodes after
removing Eq.

Nodes
% change

200 104 25 55 170 15
300 87 35 76 259 13.67
400 75 38 85 353 11.75
500 66 55 115 440 12
700 60 54 117 637 9

(a)

Total
Nodes

Range
Total Eq.
Groups

Total Eq.
Nodes

Total Nodes after
removing Eq.

Nodes
% change

200 238 12 26 186 7
300 192 9 18 291 3
400 156 20 40 380 5
500 133 22 47 475 5
600 116 29 64 565 5.83

(b)

Table 4.2: Total changes in equivalent nodes

hybrid routing and calculated the total hubs present before and after removing

equivalent nodes. We also tested it when the external components were removed

from the graph. Table 4.3 gives all the details that we calculated when the graph

was partially connected. Table 4.3a gives the changes in hubs when we used greedy

routing. Similarly, Table 4.3b and 4.3c gives all the details about changes obtained

while using face and hybrid routing respectively. We can see that most of the nodes

got stuck when we used greedy routing on partially connected graphs. One of the

most significant results can be seen on Table 4.3b and 4.3c where the total hubs

reduced a lot during face and hybrid routing respectively.

Table 4.4 shows the total change in hubs when different routing algorithms were

used before and after removing equivalent nodes and external segments on completely

connected graphs. Table 4.4a, 4.4b and 4.4c shows the changes obtained when greedy,

face and hybrid routing were used. The table shows that there wasn‘t significant
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Total
Nodes

Range

Total hubs present
Before

Removing Eq.
Nodes

After Removing
Eq. Nodes

After Removing
External
Segments

200 104 11(S) 11(S) 11(S)
300 87 3(S) 3(S) 3(S)
400 75 0(S) 0(S) 0(S)
500 66 2(S) 2(S) 2(S)
700 60 1(S) 1(S) 1(S)

(a)

Total
Nodes

Range

Total hubs present
Before

Removing Eq.
Nodes

After Removing
Eq. Nodes

After Removing
External
Segments

200 104 51 46 42
300 87 782 726 446
400 75 800 713 402
500 66 1044 938 436
700 60 386 350 209

(b)

Total
Nodes

Range

Total hubs present
Before

Removing Eq.
Nodes

After Removing
Eq. Nodes

After Removing
External
Segments

200 104 37 32 32
300 87 289 273 165
400 75 180 165 88
500 66 1443 1493 431
700 60 437 389 243

(c)

Table 4.3: Total changes in hubs (partially connected graph)

improvement when the nodes were completely connected.

From Table 4.3 and 4.4, we can see that more redundant nodes were found on

partially connected graphs.
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Total
Nodes

Range

Total hubs present
Before

Removing Eq.
Nodes

After Removing
Eq. Nodes

After Removing
External
Segments

200 238 23 23 23
300 192 27 27 27
400 156 31 31 31
500 133 35 33 33
600 116 31 28 28

(a)

Total
Nodes

Range

Total hubs present
Before

Removing Eq.
Nodes

After Removing
Eq. Nodes

After Removing
External
Segments

200 238 35 34 34
300 192 32 32 32
400 156 39 38 38
500 133 42 40 40
600 116 45 39 39

(b)

Total
Nodes

Range

Total hubs present
Before

Removing Eq.
Nodes

After Removing
Eq. Nodes

After Removing
External
Segments

200 238 23 23 23
300 192 27 27 27
400 156 31 31 31
500 133 35 33 33
600 116 31 28 28

(c)

Table 4.4: Total changes in hubs (completely connected graph)
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CHAPTER 5

CONCLUSION

We presented a comprehensive review of networks used for communication in

sensor networks. The reviewed networks included relative neighborhood graphs

(RNG), Gabriel graphs (GG), Delaunay triangulation (DT), and restricted

Delaunay graphs (RDG). Well-known routing algorithms for message forwarding in

sensor networks were also examined. The examined routing algorithms include (i)

greedy forward routing (ii) face routing, and (iii) greedy face hybrid routing.

We formulated the notion of redundant nodes in sensor networks. We showed

that only one member from a set of equivalent nodes can be retained. This leads

to a filtering algorithm for removing most redundant nodes. We proved that the

removal of redundant nodes does not affect the connectivity between source node and

target node. Another technique presented to filter unnecessary nodes is the removal

of solo-faced chains. We also show that for fixed source node s and fixed target node

t, some two-connected network components can be removed without compromising

the connectivity between s and t.

We presented an experimental study of the proposed algorithms. The proposed

algorithms were implemented in Java programming language. The resulting prototype

program is easy to use and has a user friendly graphical interface. Observed results

show that the proposed algorithms are effective in filtering redundant nodes. In many

randomly generated networks, 12.28% of nodes can be identified as redundant.

This study can be pursued further. We studied the filtering problem for a two

dimensional network. It would be interesting to extend the proposed algorithm to

non-planar networks including three dimensional graphs.

Another avenue for further research would be to examine the performance of the
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proposed algorithms for actual sensor networks formed by distributing sensor nodes

on the surface of outdoor fields.
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