
UNLV Theses, Dissertations, Professional Papers, and Capstones

2009

Efficient clustering techniques for managing large datasets Efficient clustering techniques for managing large datasets

Vasanth Nemala
University of Nevada Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Databases and Information Systems Commons

Repository Citation Repository Citation
Nemala, Vasanth, "Efficient clustering techniques for managing large datasets" (2009). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 72.
https://digitalscholarship.unlv.edu/thesesdissertations/72

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/72?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

EFFICIENT CLUSTERING TECHNIQUES

FOR MANAGING LARGE DATASETS

by

Vasanth Nemala

Bachelor of Technology, Computer Science

Jawaharlal Nehru Technological University, India
2007

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

August 2009

iii

ABSTRACT

Efficient Clustering Techniques for Managing Large Datasets

by
Vasanth Nemala

Dr. Kazem Taghva, Examination Committee Chair
Professor of Computer Science
University of Nevada, Las Vegas

 The result set produced by a search engine in response to the user

query is very large. It is typically the responsibility of the user to browse

the result set to identify relevant documents. Many tools have been

developed to assist the user to identify the most relevant documents. One

such a tool is clustering technique. In this method, the closely related

documents are grouped based on their contents. Hence if a document

turns out to be relevant, so are the rest of the documents in the cluster.

 So it would be easy for a user to sift through the result set and find the

related documents, if all the closely related documents can be grouped

together and displayed.

This thesis deals with the computational overhead involved when the

sizes of document collections grow very large. We will provide a survey of

some clustering methods that efficiently utilize memory and overcome

the computational problems when large datasets are involved.

iv

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF FIGURES .. vi

ACKNOWLEDGEMENTS ...vii

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 CLUSTERING: UNSUPERVISED LEARNING 4

2.1 Different Types of Clustering Algorithms 6

 2.1.1 The K-Means Method ... 7

 2.1.2 The K-Medoids Method .. 9

 2.1.3 Agglomerative Method .. 13

 2.1.4 Divisive Method ... 14

 2.1.5 EM Algorithm .. 18

 2.1.6 Clique ... 24

CHAPTER 3 CLUSTERING LARGE DATASETS 27

3.1 Essential Requirements of Clustering ... 28

3.2 Improving Traditional Methods ... 30

 3.2.1 Clarans ... 30

 3.2.2 Fractionization and Refractionization 31

 3.2.3 MRKD-Trees .. 33

 3.2.4 Outlier Analysis ... 35

CHAPTER 4 WORKING AND RESULTS OF 3 MAJOR TECHNIQUES . 36

4.1 Efficient Document Clustering and Retrieval 36

 4.1.1 System Architecture and Algorithm 37

4.2 BIRCH .. 40

 4.2.1 Background of BIRCH .. 41

 4.2.2 Clustering Feature and CF Tree 44

4.3 DBSCAN ... 52

 4.3.1 A Density Based Notion of Cluster 52

CHAPTER 5 CONCLUSION AND FUTURE WORK 57

v

BIBLIOGRAPHY ... 60

VITA .. 62

vi

LIST OF FIGURES

Figure1 Depicting the Entire Clustering Process 2
Figure2 Euclidean Distance in 3D Space.. 5
Figure3 Data Objects Before and After Partitioning 7
Figure4 Clustering a Set of Points Based on K-means 9
Figure5 Clustering using K-medoids Method 11
Figure6 Agglomerative and Divisive Clustering 12
Figure7 Density-based Clustering .. 20
Figure8 Basic terms of Density-based Clustering 21
Figure9 Density-reachability .. 22
Figure10 Density-connectivity .. 23
Figure11 Representing CLIQUE Technique... 25
Figure12 Different Levels of a CF Tree .. 45
Figure13 Different Phases of BIRCH Algorithm 46
Figure14 Control Flow of Phase 1... 48
Figure15 Rebuilding CF Tree ... 49
Figure16 Sample Databases Showing Clusters and Noise 53

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express the appreciation to my

committee chair, Dr. Kazem Taghva for all his support and guidance

through every stage of this thesis research. Without his guidance and

persistent help, completion of this thesis would not have been possible.

I would like to thank my committee members, Dr. Gewali and Dr

Datta, whose work demonstrated to me how we can stand in life and

achieve lot of knowledge with simplicity. Special thanks to Dr. Venki for

being a part of my committee.

I would also like to extend my appreciation towards my parents and

my friends for always being there for me through all phases of my work,

for their encouragement and patience and giving me their invaluable

support without which I would never be where I am today.

1

CHAPTER 1

INTRODUCTION

Constant advance in science and technology makes collection of data

and storage much easier and very inexpensive than ever before. This led

to the formation of enormous datasets in science, government and

industry, which should be processed or sorted to get useful information.

For example if we consider the results generated by a search engine

for a particular query, user has to sift through the long lists and find the

desired solution. But this job can be very difficult for the user if there are

millions of web pages displayed as solutions for a given query. Thus

Clustering techniques can be very useful in grouping the closely related

solutions of a given query and displaying the results in the form of

clusters so that the unrelated documents can be avoided even without

taking a glimpse at them.

The main idea behind clustering any set of data is to find inherent

structure in the data, and interpret this structure as a set of groups,

where the data objects within each cluster should show very high degree

of similarity known as intra-cluster similarity, while the similarity

between different clusters should be reduced.

2

 ……

Figure1. Depicting the entire clustering process

Clustering is employed in many areas like

• News articles: Classifying daily news articles into different

groups like sports, highlights, business and health etc.

• Classification of web documents (WWW): The results given out by

the search engines can be clustered according to the degree of

similarity for the given query.

Vast repository
of data. Ex:
Web documents

Clustering Techniques (K-means, Birch, DBSCAN, etc.)

Cluster#1

Cluster#2

Cluster#3

Cluster#N

3

• Exploring market: Given a large database with every individual

customer past purchase records, finding groups of customers with

similar behavior.

• Research projects: Collecting large amount of data daily from

sensors will go useless if certain conclusions or not made. Finding

necessary relations in collected data and classifying them could draw

helpful conclusions.

• Earthquake studies: Identifying dangerous zones by clustering

observed earthquake epicenters.

The main problems associated with the traditional clustering

algorithms are handling multidimensionality and scalability with rapid

growth in size of data. The increase in size of data increases the

computational complexities which have a devastating effect on the run-

time and memory requirements for large applications.

In this thesis, first we present all the major clustering techniques in

brief and then we discuss about the drawbacks of first generation

clustering algorithms. Then we signify how current clustering algorithms

overcome the drawbacks of traditional clustering algorithms. Finally we

present three clustering techniques in detail that have revolutionized

clustering in their era of discovery.

4

CHAPTER 2

CLUSTERING: UNSUPERVISED OR MACHINE LEARNING

Clustering is a division of data into groups of similar objects. Each

group (= a cluster) consists of objects that are similar between

themselves and dissimilar to objects of other groups. From the machine

learning perspective, Clustering can be viewed as unsupervised learning

of concepts [5].

A simple, formal, mathematical definition of clustering, as stated in [6]

is the following: let X ∈ Rm×n is a set of data items representing a set of m

points xi in Rn. The goal is to partition X into K groups Ck such that every

data that belongs to the same group are more “alike” than data in

different groups. Each of the K groups is called a cluster. The result of

the algorithm is an injective mapping X→C of data items Xi to clusters

Ck.

In recent years, drastic change in use of web and improvement in

communication in general has led to store loads and loads of information

in databases. This requirement made lot of researchers to think about

ways of information retrieval and categorizing the data, so that

meaningful information can be retrieved.

5

As stated in [7] Unsupervised learning, refers to that class of machine

learning approach where the system produces certain sequence of

outputs based on a set of given inputs without any response from its

environment.

This chapter deals with the basic concepts of clustering and different

types of clustering algorithms and goes on to describe how the current

generation techniques are more advanced and how they overcome the

drawbacks of first generation clustering techniques.

Figure 2. Euclidean Distance Based Clustering in 3-D space

• Intra-cluster distances are minimized and

• Inter-cluster distances are maximized.

6

2.1 Different Types of Clustering Algorithms

Clustering can be done in many different ways; each clustering

technique produces different types of clusters. Some take input

parameters from the user like number clusters to be formed etc, but

some decide on the type and amount of data given. The main

developments have been the introduction to density based and grid

based clustering methods. Clustering algorithms can be classified into

five distinct types:

• Partitioning methods;

• Hierarchical methods;

• Model-based methods;

• Density based methods; and

• Grid based methods.

Partitioning Methods

If a database containing n data objects is given, then a partitioning

method constructs k clusters of the data where k<=n and k is the input

parameter provided by the user. That is, it classifies the data into k

groups which should satisfy the following conditions: (1) each group

must contain at least one data object and (2) each data object should

belong to only one group. The second requirement becomes easy in fuzzy

k-mean clustering in which one object can be resembled by two or more

groups.

7

With k as the given number of partitions to be made, the partitioning

method creates an initial partition. Then more number of iterations are

followed in which objects are moved from one group to other making sure

that in-cluster similarity is more than similarity with objects in other

clusters.

Original Points Partition Clustering (k=2)

Figure 3: Data objects before and after partitioning

Popular Partitioning Methods: K-Means and K-Medoids

The most well-known and commonly used partitioning methods are k-

means proposed by (Mac Queen 1967) and k-medoids proposed by

(Kaufman and Rousseeuw 1987).

2.1.1 The K-Means Method: Centroid-Based Technique

The k-means algorithm takes input k from the user and partitions n

data objects into k clusters so that the resulting intra-cluster similarity is

very high and inter-cluster similarity is very low. The cluster similarity is

8

calculated based on the mean value of the objects in the cluster. First, it

randomly picks k data objects as the mean or centroid points. For each

of the remaining objects, an object assigned to the centroid to which it is

most similar based on the distance between the object and the cluster

mean. It then computes the new mean for each cluster. This process

iterates till good clusters are formed. Typically, squared root function is

used for this which can be defined as

E =

Where x is the point in space representing the given object, and mi is

the mean of cluster Ci. This function tries to make the clusters as

separate as possible. The k-means algorithm as in [8] is

Input: The number of clusters to be formed k, and number of data

objects contained in the database n.

Output: Set of clusters k, which minimizes the squared error function.

Algorithm:

1) Randomly pick k objects as initial centroids;

2) Repeat;

a. Assign the remaining objects to the cluster mean’s that are most

similar to each of the objects.

b. Update the cluster means.

3) Until no change;

9

Figure 4: Clustering a set of points based on k-means method [8]

The method is relatively scalable and efficient in handling large data

sets because the computational complexity of the method is О (nkt),

where n is the total number of objects, k is the number of clusters and t

is the number of iterations. Normally k<<n and t<<n so, the method often

ends up at local optimum. But the draw backs of this method are;

1) It can be applied only when mean of a cluster is defined, but when

data with categorical attributes is involved it cannot be the case;

2) The user should specify the number of clusters k in advance and

3) It is sensible to noise and outlier data points.

10

2.1.2 The K-Medoids Method: Representative Point Based

K-medoids algorithm was developed to overcome the drawbacks of k-

means method which was very sensitive to outliers. An object with some

extremely large value may substantially distort the distribution of data in

k-means method. So instead of taking the mean value of objects in a

cluster as a reference point, an object that is most centrally located in

the cluster can be taken as a representative object, called as medoid.

Thus the partitioning method can be performed by minimizing the sum of

dissimilarities between each object and with its corresponding reference

point. The algorithm of k-medoids algorithm as in [8] is

1) Arbitrarily choose k objects as initial medoids;

2) Repeat;

a. Assign each object to the cluster corresponding to the nearest

medoid;

b. Calculate the objective function, which is the sum of dissimilarities

of all the objects to their nearest medoid;

c. Swap the medoid x by an object y if such a swap reduces the

objective function;

3) Until no change;

This algorithm creates k partitions for n given objects. Initially k

medoids are selected which are located more centrally in each cluster,

the algorithm repeatedly tries to make a better choice of medoids by

analyzing all the possible pairs of objects.

11

Figure 5: Clustering using k-medoid method [8]

The measure of clustering quality is calculated for each such

combination. The best points chosen in one iteration are selected as

medoids in next iteration. The cost of a single iteration is O (k (n-k) 2). For

very large values of n and k the computational cost can be very high.

The k-medoids method is more robust than k-means because it is less

influenced by outliers or other extreme values than mean. But its

processing is very costly than k-means method and it also has the

drawback of user providing the input parameter k (number of clusters to

be formed).

12

 A,B,C,D,E

 A,B

 C,D,E

 D,E

 A B C D E

AGGLOMERATIVE

DIVISIVE

Hierarchical Methods

The set of given data objects are partitioned in form of a tree like

structure or nested clusters in hierarchical clustering. The hierarchical

methods can be classified into two types.

• Agglomerative and

• Divisive

Figure 6: Agglomerative and Divisive clustering

In agglomerative method also known as bottom-up approach, each

object forms a separate group. It successively merges the groups close to

one another by checking the similarity function, until all the groups are

merged into one, that’s until the top most level of hierarchy is reached or

13

until a termination condition holds. In divisive clustering also known as

top-down approach, initially all the objects are grouped into a single

cluster which can also be called as parent. In each successive iteration, a

cluster is split up into smaller clusters, until eventually each object is in

one cluster or until a termination condition holds.

2.1.3 Agglomerative Method

This method begins by treating each object as an individual cluster

and then proceeds by merging two nearest clusters. The distance

between any two clusters m and n is defined by a metric Dm,n. Metrics

can be single-link, complete-link and group average etc. A general class

of metrics was given by Lance and Williams [1]. If Dk,ij be the distance

between cluster k and the union of cluster i and cluster j, then:

Dk,ij = �iDk,i + �jDk,j + βDi,j + γ|Dk,i - Dk,j|

The agglomerative method is as follows:

• Consider each object to be an atomic cluster. The (n x n) distance

matrix represents the distance between all possible pairs of

clusters.

• Find the smallest element in the matrix. This corresponds to the

pair of clusters that are most similar. Merge these two clusters, say

m and n, together.

• Measure the distances between the newly formed cluster and the

14

other remaining clusters using a distance function. Delete the row

and column of m and overwrite row and column of cluster n with

the new values.

• If the current number of clusters is more than k then go to step 2;

otherwise stop. The merging process can continue until all the

objects are in one cluster.

The advantages of hierarchical methods are that they are easy to

implement computationally. They are able to tackle larger datasets than

the k-medoids method and we can run the algorithm without providing

the input k (the number of clusters to be formed). The drawbacks of

agglomerative method are:

• The algorithm has O(n3) time complexity. Even though the order of

the distance matrix decreases with each iteration, the cost of Step2

on iteration k is O((n - k)2), and we are guaranteed (n - k) iterations

before we get to k;

• The clusters produced are heavily dependent on the metric Di, j.

Different metrics can produce different clusters. For instance, the

complete-link metric tends to produce spherical clusters, whereas

the single-link metric produces elongated clusters [1].

2.1.4 Divisive Method

The contrast procedure of agglomerative clustering is the divisive

method. Initially all the data objects are considered in one cluster. Then

for each object the degree of irrelevance is measured and the most

15

irrelevant data object is split from the main cluster and a new cluster is

formed with only that data object in it. The highest degree of irrelevance

of an object corresponds to the one that is most distant from all other

objects in that cluster. Let the average distance between object i and the

cluster Cj be defined as [1]:

Di,Cj =

The most irrelevant object splits off and forms a new cluster. This is

equivalent to splitting the cluster with the largest diameter. The process

continues until it satisfies certain termination condition, such as a

desired number of clusters are formed or the distance between two

closest clusters is above a certain threshold distance. These methods

face the difficulty of making a right decision of splitting at a high level.

The algorithm for divisive method is [1]:

• Select the cluster containing the most distant pair of objects. This

is the cluster with the largest diameter.

• Within this cluster, find the object with the largest average

distance from the other objects. Remove the object from the

cluster, allowing it to form a new atomic cluster.

• For object h in the cluster being split, calculate the average

distance between it and the current cluster; and the average

distance between the object and the new cluster. If the distance to

the new cluster is less than the distance between it and the

16

current cluster, move the object h to the new cluster. Loop over all

the objects in the cluster.

• If no objects can be moved, but the current number of clusters is

greater than k, go to step1. Otherwise stop.

The drawbacks of divisive method are:

• The time complexity of algorithm is O(n3), O(n2) on the step1 of the

algorithm for each iteration. Moreover there are expensive

calculations that may take place in step3 of the algorithm.

• In step 3 the group averages between an object and the new and

existing clusters need to be recalculated after an object is moved.

This will be costly in terms of number of calculations and the

amount of storage required.

• The method only searches one of the N(n,k) possible partitions.

In hierarchical clustering once a split or merge is done, it cannot be

undone. This fact acts as both key to success and drawback for

hierarchical clustering. The firmness of hierarchical method leads to less

computational cost without a combinatorial number of choices but the

main problem with it is invalid decisions cannot be corrected.

Hierarchical clustering methods are simple but encounter problems at

making critical decisions for selection of correct merge are split points.

Such a decision is critical because once a group of objects is merged or

split, the process at the next step will work on the newly generated

clusters. It will never undo what was done previously nor perform object

17

swapping between clusters. Thus merge or split if not done wise may

result in low quality clusters. These methods have scaling problem since

the decision of merge or split needs to examine and evaluate a good

number of objects or clusters.

Hierarchical clustering can be improved by integrating this method

with other clustering techniques for multiple phase clustering. One such

method known as BIRCH, first partitions objects hierarchically using tree

structures and then applies other clustering techniques to produce

refined clusters. This method will be discussed in chapter 4 in detail.

Model-Based Methods

The rapid growth in size of datasets has led to increased demand for

very good clustering methods for analysis, while at the same time

introducing some constraints in terms of memory usage and

computational time. Model-based clustering a relatively recent

development (McLachlan and Basford 1988, Banfield and Raftery 1993,

Mclachlan and Peel 2000, Fraley and Raftery 2002) has shown good

performance in many applications. A model-based method hypothesizes

a model for each of the clusters, and finds the best fit of the data to that

model [8].

In model-based clustering, the data (X1,…..,Xn) are assumed to be

generated by a mixture model with density

,

18

where is a probability distribution with parameters , and

is the probability of belonging to the kth component or cluster. Most often

fk are taken to be multivariate normal distributions parameterized by

their means µk and covariance’s ∑k.

Basic Model-Based Clustering Strategy [9]:

1. Determine the minimum and maximum number of clusters to

consider (Gmin, Gmax), and a set of candidate parameterizations

of the Gaussian model.

2. Do EM for each parameterization and each number of clusters

Gmin, , Gmax, starting with conditional probabilities

corresponding to a classification from unconstrained model-based

hierarchical clustering.

3. Compute BIC for the mixture likelihood with the optimal

parameters from EM for Gmin, , Gmax clusters.

4. Select the model (parameterization / number of clusters) for which

BIC is maximized.

In model-based clustering a model can be formulated and fit to the

data. The process of selecting a model places a great deal of supervision,

suggesting that the user has reasonable of knowledge about the

structure of the data.

2.1.5 EM Algorithm

Problem of clustering a set of objects can be considered as a missing

data problem and the missing data can be completed by filling it with

19

observations made on the objects as well as the labels that allocate the

objects to the correct corresponding groups. Before clustering, the labels

are missing and all we have are the measurements recorded for the

objects.

The EM algorithm is the standard way of analyzing statistical models

that have missing data. The EM algorithm proceeds by estimating the

missing data (the E-Step) and then estimating the parameters of the

model, through maximum likelihood (the M-Step).

EM algorithm requires the entire collection of objects and their

clusters to be represented by a statistical model. The data can be

considered as a random sample from a mixture of several probability

distributions. These probability distributions define the clusters. Each

object is generated by one and only one of these distributions; hence

belong to one and only one cluster. The likelihood of the data has a

multinomial form and can be defined as:

L (ψ) = ψ)

where ψ is a set of parameters specifying the current model and

 is the probability distribution function of the mixture

distribution. As each object has been generated by one and only one of

these distributions, the joint density of xi and zi, can be

defined as

20

where represents the prior probability that object i came from the

component density ; the component densities typically depend on

additional parameters. The are 0-1 indicator variables, indicating

whether object i was generated by or not and is the

vector containing the k indicator variables for object i, ∀i=1,…,

n. These indicator variables represents missing labels.

EM algorithm is robust in nature because it can fit an otherwise

intractable statistical model to the data. The drawbacks of the EM

algorithm are:

• It scans the entire dataset for every iteration;

• By imposing a statistical model on the data, we are depending on a

huge amount of prior knowledge that may or may not be available.

• The linear rate of convergence will make it very slow for complex

models and large datasets.

• The EM algorithm is dependent on its starting point.

Density Based Methods

Density-based clustering methods are based on a local cluster

criterion. Clusters are assumed as regions in the data space in which the

objects are dense and the clusters are separated by regions of low object

density. These regions have an arbitrary shape and the data points

inside a cluster may be arbitrarily distributed.

21

Figure 7: Density-Based clustering [11]

The idea is to increase the size of the cluster with data objects as long

as the density in the “neighborhood” exceeds some threshold, i.e., for

each data point within a given cluster, the neighborhood of a given

radius has to contain at least a minimum number of points. Hence the

density-based clustering can filter out noise and discover clusters of

arbitrary shape.

Figure 8: Defining basic terms of density-based Clustering

General clustering algorithms are attractive for the task of cluster

identification in spatial databases. But, the application to large spatial

databases rises the following requirements for clustering algorithms:

22

• Minimum amount of domain knowledge to determine the input

parameters.

• Discovering clusters with good efficiency and arbitrary shape on

large databases.

The very prominent first generation clustering algorithms offer no

solution to the combination of these requirements. The main idea is that

for each object of a cluster, the neighborhood of a given radius (є) (called

є–neighborhood) has to contain at least minimum number of data

objects. An object, that is within a given radius (є) containing minimum

number of neighborhood objects is called as core object [8].

• An object p is directly density-reachable from object q with respect

to radius (є) and a minimum number of points in a set of objects D

if p is within the є–neighborhood of q which contains at least a

minimum number of points [8].

• An object p is density-reachable from object q with respect to

radius (є) and a minimum number of points in a set of objects D if

there is a chain of objects p1,….., pn, p1 = q and pn = p such that for

1 ≤ i ≤ n, pi Є D and pi+1 is directly density reachable from pi with

respect to є and minimum points [8].

23

Figure 9: Density-reachability

• An object p is density-connected to object q with respect to radius

(є) and a minimum number of points in a set of objects D if there is

an object o Є D such that both p and q are density-reachable from

o with respect to є and minimum number of points [8].

Figure 10: Density-connectivity

Density reachability is the transitive closure of direct density

reachability, and this relation is asymmetric. Only core objects are

mutually density reachable. A density-based cluster is a set of density-

24

connected objects which is maximal with respect to density-

reachability, and every object not contained in any cluster is noise [8].

In this thesis we will see DBSCAN relying on a density-based notion of

clusters. DBSCAN requires only one input parameter and helps the user

in determining an appropriate value for it. We will see in detail about the

DBSCAN algorithm in chapter 4.

Grid-Based Methods

A grid-based clustering technique takes in the object space and

quantizes it into a finite number of cells forming a grid structure. Then

the method performs all the operations on that grid structure. The main

advantage of this method is its fast processing time which is independent

of the number of objects, and dependent only on the number of cells in

each dimension in the quantized space. Grid-based methods use a single

uniform grid mesh to partition the entire problem domain into the cells

and the data objects located within a cell are represented by the cell

using a set of statistical attributes from the objects. Clustering is

performed on the grid cells, instead of database itself. Since the size of

the grid is much less than the number of data objects, the processing

speed can be significantly improved.

Most of the data mining applications require the clustering algorithms

to find clusters embedded in subspaces of high dimensional data,

scalability, non-presumption of any canonical data distribution, and

insensitivity to the order of input records.

25

2.1.6 CLIQUE (CLustering In QUEst)

Clique is a grid-based clustering technique that satisfies each of the

above requirements. It identifies dense clusters in subspaces of

maximum dimensionality. It generates cluster descriptions in form of

DNF expressions that are minimized for each of comprehension. It

produces identical results irrespective of the order in which the input

records are presented and does not presume any specific mathematical

form for data distribution [12].

Clique is not purely a grid-based clustering technique. It can be

considered as both density-based and grid-based clustering technique. It

can automatically identify subspaces of a high dimensional data space

that allow better clustering than original space.

Figure 11: Representing CLIQUE clustering technique

26

Clique technique partitions each dimension into the same number of

equal length interval. It partitions an m-dimensional data space into

non-overlapping rectangular units. A unit is dense if the fraction of total

data points contained in the unit exceeds the input model parameter. A

cluster is a maximal set of connected dense units within a subspace.

Partition the data space and find the number of points that lie inside

each cell of the partition.

• Identify the subspaces that contain clusters using the Apriori

principle and then identify clusters:

a. Determine dense units in all subspaces of interests.

b. Determine connected dense units in all subspaces of interest.

• Generate minimal description for the clusters

a. Determine maximal regions that cover a cluster of connected

dense units for each cluster

b. Determination of minimal cover for each cluster

Strengths and Weaknesses of CLIQUE:

• It automatically finds subspaces of the highest dimensionality

such that high density clusters exist in those spaces.

• It is insensitive to the order of input records and does not presume

some canonical data distribution.

• It scales linearly with the size of input and has good scalability as

the number of dimensions in the data increases.

27

The only weakness of this clustering technique is the accuracy of the

clustering result may be degraded at the expense of simplicity of the

method.

28

CHAPTER 3

CLUSTERING LARGE DATASETS

After discussing about all the major types of clustering algorithms, we

come to a stage where we can form a conclusion, why the traditional

clustering algorithms have problems with the large datasets. We notice

that if we want to reduce the algorithm’s computational complexity then

we need to stop working on distance space. Methods that include

distance-space functions seem to have more scalability problems than

their vector-space counterparts. Calculating and storing the relationship

between all the possible pairs of n objects is O(n2). Calculating the

distance between two objects can be expensive when the measurements

are of high dimension. There is no predefined method to choose the

“center” of a cluster and finding one via some ad-hoc method adds to the

computational cost.

It is very clear that vector-space methods enjoy some advantages over

distance-based methods. If we want to impose a statistical model on the

vector-space, then we can use statistics estimated from objects in the

cluster to represent it. The ability of the vector-space models to calculate

“reliable” representations of each cluster can be used to

29

improve storage and calculation costs. Research has been focused on the

scalability of clustering algorithms, the effectiveness of techniques for

clustering complex shapes and types of data, high-dimensional

clustering techniques and methods for clustering mixed numerical and

categorical data in large databases.

3.1 Essential Requirements of Clustering:

• Scalability: Many clustering algorithms perform well with small

datasets containing less than 200 data objects. But if the objects

number is in millions clustering techniques may lead to biased

results.

• Different types of Attributes should be Dealt: Many clustering

algorithms are designed to deal with numerical data. However,

many applications may require clustering other types of data, such

as binary, categorical and ordinal data, or mixtures of these types.

• Discovering Arbitrary Shaped Clusters: Many clustering

algorithms find clusters based on Euclidean or Manhattan

distance measures. Algorithms based on such distance measures

tend to find clusters with spherical shape with similar size and

density. However, a cluster can be of any shape. It should be very

important to develop algorithms that find arbitrary shaped

clusters.

30

• Minimum requirement of domain knowledge: Many clustering

algorithms require users to initially give the input parameters like

number of desired clusters etc., The clustering results are often

very sensitive to input parameters. It is difficult to determine many

parameters by the user especially for datasets that contain high-

dimensional data.

• Ability to deal with noisy data: Most of the real time large

databases have outliers, missing, unknown and erroneous data.

Some of the clustering algorithms are sensitive to that kind of data

and may lead to clusters of poor quality.

• Insensitivity to the Order of Input Records: Some clustering

methods are sensitive to the order of input records passed to them.

However the order in which the input records are given to the

clustering algorithms they should be able to produce same clusters

in any of the way.

• High Dimensionality: Many clustering algorithms are good at

handling low dimensional data, involving only two to three

dimensions. The clustering algorithms should be able to cluster

data objects in high-dimensional space, especially considering that

data in high-dimensional space can be very sparse and highly

skewed.

• Interpretability and Usability: Users may expect the clustering

31

results to be interpretable, comprehensible and usable. Clustering

may need to be tied up with some specific semantic interpretations

and applications. It is important to know how an application goal

may influence the selection of clustering methods.

3.2 Improving Traditional Methods:

Large datasets can be clustered by extending the existing methods so

that they can cope with a large number of objects. The focus is on

clustering large number of data objects rather than a small number in

high dimensions. In partitioning methods the improved and refined

method over k-medoids is CLARANS developed by Ng and Han (1994).

3.2.1 CLARANS

CLARANS stands for “Clustering Large Applications based on

RANdomized Search”. Instead of exhaustively searching a random subset

of objects, CLARANS proceeds by searching a random subset of the

neighbors of a particular solution, S. Thus the search for the best

representation is not confined to a local area of the data.

The CLARANS algorithm is assisted by two parameters: MAXneigh, the

maximum number of neighbors of S to access; and MAXsol, the number

of local solutions to obtain. The CLARANS algorithm is as follows [1]:

1. Set S to be an arbitrary set of k representative objects. Set i =1.

2. Set j = 1.

3. Consider a neighbor R of S at random. Calculate the total swap

contribution of the two neighbors.

32

4. If R has a lower cost, set R = S and go to step 2. Otherwise increase

j by one. If j ≤ MAXneigh go to Step 3.

5. When j > MAXneigh, compare the cost of S with the best solution

found so far. If the cost of S is less, record this cost and the

representation. Increment i by one. If i > MAXsol stop, otherwise go

to step 1.

3.2.2 Fractionization and Refractionization

Fractionization was a way of adapting any hierarchical clustering

method so that it can deal with large datasets. The main idea was to split

the data into “manageable” subsets called fractions and then apply the

hierarchical methods to each fraction. The clusters resulting from the

fractions are then clustered into k groups by the same clustering

method. The number of groups to be estimated should be provided in

advance.

Fractionization

Let n be the number of data objects and M be the maximum number

of data objects that can be handled by clustering procedure in a

reasonable time. The fractionization algorithm is as follows:

1. Split n objects into fractions of size M each.

2. Cluster each fraction in αM clusters, where α<1. Summarize each

new cluster by its mean. These cluster means are referred as meta-

observations and are treated as they were data.

3. If the number of meta-observations is greater than M, then the

33

clustering method still cannot process them. Go to step 1 treating

the meta-observations as if they were data.

4. Cluster the meta-observations into k clusters using the desired

clustering method.

5. Classify each individual as belonging to the cluster with the

nearest mean.

The computational effort required to cluster each fraction is O(M2) and

so is independent of n. On the ith iteration where there are αi-1(n/M)

fractions to be processed by the clustering method which means that the

total running time is linear in n and decreasing in α. But still this

procedure has problems like specifying the number of clusters in

advance and involving the formation of meta-observations.

Refractionization

Refractionization is the repeated application of the fractionization that

processes fractions based on the clusters resulting from the previous

fractionization iteration. The refractionization algorithm is almost the

same as fractionization algorithm except in 5th step, fractions for the next

iteration are created as the clusters are formed in step 4. As soon as a

cluster has M objects in it, consider it to be a fraction and remove it from

the process. Finally classify each individual as belonging to a cluster

based on its sufficient statistics.

The limitations of refractionization method are: Let Kg be the true

number of groups in the data, Kf be the number of fractions after

34

splitting the data and Km be the number of meta-observations after

clustering each fraction.

• If Kg ≤ Km then fractionization method is enough and we don’t need

to refractionize anymore. This is because the fractions are more

likely to be good. In the case where Kg ≥ Km, some meta-

observations must be based on clusters that have two or more

groups. Hence they are not good;

• Refractionization will not recover the true groups where Kg > KfKm.

There will be a fraction that contains more than Km groups, leading

to impurity.

3.2.3 Mrkd-Trees: an Implementation of EM Algorithm

The EM algorithm discussed in earlier chapters is relatively slow. The

main drawback of EM algorithm is it scans the entire dataset on each

iteration. Mrkd-tree suggested by Moore (1999) reduces the number of

times the data is accessed. Mrkd stands for “multiple-resolution k-

dimension”, where k is the number of dimensions in the data.

An mrkd-tree is a binary tree consisting of nodes which contain pieces

of information. Partitioning the dataset recursively the tree is built in

such a way that the partitions adapt to the local density of the data.

Nodes owning more number of points are called as denser regions and

nodes that own fewer points are called as sparse regions. A node can be

referred to as either a leaf node or a non-leaf node. A non-leaf node has

two children, which in turn are nodes that own the two disjoint sub-

35

partitions of their parent’s data points. Every node in the tree stores the

following information:

• The bounds of the hyper-rectangle that contains all the objects

owned by the node; and

• A set of statistics summarizing the data owned by the node.

If a node is a non-leaf node then it also contains:

• The value on which the partition of the data is made and the

dimension to which this value refers.

These values are used while traversing the tree for the data in a

particular region of the sample space. The tree is constructed using a

top-down recursive procedure. The EM algorithm can be invoked on an

mrkd-tree by calling some function m(·) on the root node; where m(·) is a

function that returns the set of sufficient statistics for a given node [1].

If m(·) is called on a leaf node, r, then we calculate:

j = Pr(x Є Cj| ,) =

Where is the centroid of the points owned by the node and Cj refers

to cluster j for j=1,2,….,k. Returning the approximation to the sufficient

statistic

36

For j = 1,2,…,k, where nr is the number of points owned by node r and

sr is the sample covariance of the data owned by node r. If m(·) is called

on a non-leaf node, the function is called recursively on its children.

3.2.4 Outlier Analysis:

Some data objects often exist that do not comply with the general

behavior or models of the data. Such sets of objects which are

inconsistent with the remaining set of data are called as outliers of the

dataset. Outliers can be caused by inherent data variability. The data is

more similar and doesn’t have more variations, if the size of the dataset

is very less. But when we consider millions of data objects as one dataset

then the data varies widely. For example the salary of the chief executive

officer of a company could naturally standout as an outlier among the

salaries of the employees in a company.

Many clustering algorithms are trying to eliminate outliers or

minimize the influence of outliers. In some cases, the outliers themselves

might be of particular interest. Given a set of data points n and the

number of outliers k, finding top k outlier points which are considerably

dissimilar from the remaining data would fetch some analysis. The most

effective ways for outlier detection are data visualization methods.

37

CHAPTER 4

WORKING AND RESULTS OF THREE MAJOR

CLUSTERING TECHNIQUES

In this chapter we will see three important clustering algorithms that

have revolutionized the clustering field in their respective era of

discovery. The first one is architecture for efficient document clustering

and retrieval on a dynamic collection of newspaper texts by Alan F.

Smeaton, Mark Burnett, Francis Crimmins and Gerard Quinn. Second

one is very famous BIRCH (Balanced Iterative Reducing and Clustering

using Hierarchies) by Tian Zhang, Raghu Ramakrishnan, and Miron

Livny. The last one is density-based approach DBSCAN by Martin Ester,

Hans-peter Kriegel, Jörg Sander and Xiaowei Xu.

4.1 Efficient Document Clustering and Retrieval on a Dynamic

Collection of Newspaper Texts:

This technique uses a number of short-cuts to make the process

computable for large collection of online newspapers. This technique is

extensible to dynamic updates of the data and it is implemented on an

archive of the Irish Times newspaper.

38

A collection of newspaper articles are unlike the normal web

documents because they are normally of the same magnitude, varying

from a paragraph to a number of columns. News paper articles are timely

based documents meaning they are related to their date of publication.

But most distinguishing characteristic of news paper articles is that they

are related to previously or subsequently published articles. For example

an amendment initially is released to the media so that people can read

and know about it. Then news comes out saying that the amendment is

passed and will be starting from so and so date. Then the pros and cons

about the amendment may be discussed by the news paper editorial. So

this might take months or years together but all the articles published

are related to that particular amendment. What this means for a

collection of newspaper articles is that the dependencies between and

among articles is potentially huge and these dependencies cannot be

ignored when it comes to navigating the archive. This technique has

explored document clustering as a technique for generating links

between related documents as the collection is updated and presenting

these links as a result of a search.

4.1.1 System Architecture and Algorithm:

The main reason for cluster analysis having very less impact on

information retrieval involving large datasets is the overhead in

generating the cluster structures. In this technique N × k similarity

matrix was used for N documents, instead of a full N × N matrix

39

structure. The value of k is a compromise between clustering efficiency

and storage requirements against completeness of the clustering [13].

Meta-document descriptors are assigned to each document

automatically by this clustering technique. The automatic classification

allows the use of cluster descriptors to provide a higher level description

of a document. These descriptors characterize and summarize the

contents of the cluster. Agglomerative hierarchical type of clustering is

used which was discussed earlier in chapter two. The method used is

hierarchical because the cluster formed is hierarchically structured with

closely related data objects at the leaves of the cluster tree, and less

closely related at the root. Complete-link clustering method has been

used which uses the smallest similarity within a cluster as the cluster

similarity, and every data object within the cluster is related to every

other with at least the similarity of the cluster. Complete link clustering

is known to produce large number of small, tightly bound clusters which

correspond to the large number of real world events reported in a

newspaper.

For testing the appropriateness of this clustering technique the

developers have collected 100 Mbytes of text from almost 34,768

individual newspaper articles. This technique requires the similarity of

each document to every other document is known. For this purpose a

conventional retrieval technique has been used with term weighting to

compute inter-document similarity. Treating every document in turn as a

40

query and using a custom search engine to rank it against the existing

collection of documents. Document collection greater in size than about

10,000 cause problems, in addition to computational costs, the similarity

matrix requires N × N-1 units of memory per matrix element for storage.

If each matrix element requires 4 bytes then for 1,000,000 documents

the memory required would be 4Tb. For this problem a solution was

developed in the current technique by implementing N × k matrix, where

k is a constant value and k << N. Instead of considering similarity score

of a document with all the rest of the documents in the collection, just

consider the top k similarity scores which will produce good clusters with

less computational overhead. Since the similarity scores drop rapidly

down the hit list, the results can be comparable after some point of k.

Testing done by developers revealed that k=30 gave results comparable

to k=40, mainly because there are frequently few if any documents that

are cluster candidates lower than the 30th place on the search list [13].

Because of N × k similarity matrix, small clusters are formed but

these do not get integrated into a single overall cluster. The custom

search engine used in this clustering procedure includes three

thresholds designed to decrease the computation time but does this

without the loss of retrieval effectiveness. The first one called as postings

list threshold processes only some portion of the postings list entry for a

given search term. The second one called as query term threshold

processes only some portion of the search terms, depending on the

41

length of the posting list entries. The third threshold creates a reduced

set of document registers. While processing entries in the inverted file,

only the first DR unique document identifiers will be assigned similarity

scores.

Results:

Shared SUN UltraSparc with 128 Mbytes RAM but no local disks was

used to index almost 35,000 documents of Irish Times collection in less

than 2 hours. N × k similarity matrix was constructed in about 11.75

hours and the clusters were generated in about 8 minutes. Since,

dynamic data updates were implemented in the system daily 300 news

stories can be indexed and added to overall inverted file in about 15

seconds. Each document was added to the reduced similarity matrix by

running it as a query and updating all matrix entries at a rate of almost

50 documents per minute, and the computation of the clustering takes

about 8 minutes [13].

4.2 BIRCH: An Efficient Data Clustering Method for

Very Large Databases

BIRCH clusters incrementally and dynamically the multi-dimensional

input data points to produce best quality clustering with the available

memory and time constraints. BIRCH is the first clustering technique in

the field of databases to handle “noise” (data points that vary widely from

the pattern of original dataset) effectively. Clustering is a procedure of

identifying sparse and denser regions in a given dataset. Besides, the

42

derived clusters can be visualized more efficiently and effectively than the

original dataset [14].

Considering that the amount of memory is much less than the dataset

size and in process of minimizing the time required for I/O, this

technique has been designed and developed to deal with very large

databases. This technique’s I/O cost is linear in the size of the dataset. A

single scan of the dataset is enough to produce good clusters and

additional scans which are optional can be made to improve the quality

of clusters.

4.2.1 Background of BIRCH

BIRCH technique is local meaning clustering decision is made without

scanning all the data points or available clusters. It treats the data space

as uneven distribution of data points and hence not every data object is

equally important in clustering. Denser region in data space is

considered to be a cluster while the sparse regions are avoided optionally

assuming that they are outliers. It makes use of available memory to

extreme by deriving the finest possible subclusters while minimizing I/O

costs by using an in-memory, height-balanced and highly-occupied tree

structure. Thus using all these features makes BIRCH’s running time

linearly scalable. Given N d-dimensional data points in a cluster: { i},

where i = 1, 2,……,N. we define:

43

Radius (R): average distance from member points to centroid

Diameter (D): average pair-wise distance within a cluster

Given the centroids of two clusters, We define the centroid Euclidean

distance (D0) and centroid Manhattan distance (D1) of the two clusters

as:

Given N1 d-dimensional data points in a cluster: { i} where i = 1, 2,…,

N1, and N2 data points in another cluster: { j} where j = N1+1, N1+2, …,

N1+N2, the average inter-cluster distance D2, average intra-cluster

distance D3 and variance increase distance D4 of the two clusters are

defined as:

44

45

4.2.2 Clustering Feature and CF Tree:

A clustering feature is a triple summarizing the details about the

cluster. Given N d-dimensional data points in a cluster: { i}, where i = 1,

2,…, N, the clustering feature vector of the cluster is defined as a triple:

CF = (N, , SS), where N is the number of data points in the cluster,

is the linear sum of N data points and SS is the square sum of the N data

points. Let CF1 = (N1, 1, SS1) and CF2 = (N2, 2, SS2) be the CF vectors

of two disjoint clusters. Then the CF vector of the cluster formed by

merging the two disjoint clusters is: CF1 + CF2 = (N1 + N2, 1 + 2, SS1 +

SS2).

CF Tree:

A CF tree is a height balanced tree consisting branching factor B and

threshold T as two main parameters. Each non-leaf node contains at

most B entries in the form of [CFi, childi], where i = 1,2,…, B. childi is a

pointer to its i-th child node, and CFi is the CF of the sub-cluster

represented by this child [14]. A leaf node contains at most L entries,

each of the form [CFi,], where i = 1,2,…, L. Each leaf node also has two

pointers “previous” and “next” which are used to chain all leaf nodes

together for efficient scans. All entries in a leaf node satisfy a threshold

requirement with respect to a threshold value T. The tree size is smaller

if the T value is larger. If a node is required to fit in a page of size P, once

the dimension d of data space is given then the sizes of leaf and non-leaf

46

entries are known and finally B and L are determined by P. So

performance tuning can be done by varying P value.

Figure 12. Different levels of a CF Tree

Insertion into a CF Tree:

• Finding the appropriate leaf by recursively descending the CF tree

starting from the root and choosing the closest child node

according to a chosen distance metric: D0, D1, D2, D3 or D4.

• If the closest CF leaf node cannot absorb (violating the threshold

47

condition), make a new CF entry. If there is no room for the new

leaf node then split the parent node.

• Modify the path to the leaf by updating CF’s on the path or

splitting nodes.

• If the space is not enough then threshold value can be increased,

by doing this CF’s absorb more data.

• Due to the size restriction of each node they can hold only limited

number of entries and because of this; natural clusters are not

formed always.

BIRCH Algorithm

Figure: 13 Different phases of BIRCH algorithm

48

Phase 1 scans all the data and builds an initial in-memory CF tree

using the available memory and recycling space on disk. This CF tree

represents the clustering information of the dataset as clear as possible.

The denser regions are grouped as fine subclusters and sparse data

points are removed as outliers, and phase 1 creates an in-memory

summary of the data. This phase is fast because there are no I/O

operations needed and the problem of clustering the original dataset is

reduced to a smaller problem of clustering subclusters in the leaf entries.

Phase 2 is optional acting as a bridge to phase 1 and phase 3; it scans

the leaf entries in the initial CF tree to rebuild a smaller CF tree, and

removes more outliers along with grouping crowded subclusters into

larger ones.

Phase 3 is the global clustering phase where existing cluster

algorithm is used on CF entries. This phase helps in fixing the problem

where natural clusters span nodes. After phase 3, a set clusters are

obtained that captures the major distribution pattern in the data. But

still some minor and localized inaccuracies might exist.

Phase 4 is optional and entails the cost of additional passes over the

data to correct those inaccuracies and refine the clusters further. In

phase 4 the centroids of the clusters produced by phase 3 as seeds are

used and data points are redistributed to its closest seed to obtain a set

of new clusters.

49

Figure 14. Control flow of phase 1

 In the above diagram we can see the detailed procedure of phase 1.

Starting with an initial threshold value, it scans the entire data and

inserts points into the tree. If the method runs out of memory while

scanning the data then it increases the threshold value, rebuilds a new

smaller CF tree, by re-inserting the leaf entries of the old tree. After the

old leaf entries have been re-inserted, the scanning of the data is

resumed from the point at which it was stopped.

50

Figure 15. Rebuilding CF Tree

 With the natural path order, it scans and frees the old tree path by

path and at the same time, creates the new tree path by path.

“OldCurrentPath” starts with the left most path of the old tree and new

tree starts with the null. For OldCurrentPath the algorithm is [14]:

• Create the corresponding NewCurrentPath in the new tree by

adding nodes to the new tree exactly the same as in the old tree,

so that the new tree ever becomes larger than old tree.

• With the new threshold, each leaf entry in “OldCurrentPath” is

tested against the new tree to see if it can fit in the

“NewClosestPath” that is found top-down with the closest criteria

in the new tree. If it is true then the “NewClosestPath” is before

the “NewCurrentPath” then it is inserted in the “NewClosestPath”.

Old Tree

OldCurrentPath

Freed

NewClosestPath NewCurrentPath

Created

New Tree

51

• Once all the entries in “OldCurrentPath” are processed, the

unwanted nodes along “OldCurrentPath” can be freed.

• “OldCurrentPath” is assigned to the next path in the old tree if

there is one and the above steps are repeated.

Results:

• Input parameters:

• Memory (M): 5% of data set

• Disk space (R): 20% of M

• Distance equation: D2

• Quality equation: weighted average diameter (D)

• Initial threshold (T): 0.0

• Page size (P): 1024 bytes

Intended Clustering Result:

52

CLARANS Clustering

DS Time D # Scan DS Time DS # Scan

1 932 2.10 3307 1o 794 2.11 2854

2 758 2.63 2661 2o 816 2.31 2933

3 835 3.39 2959 3o 924 3.28 3369

Table 1: Results of CLARANS

BIRCH Clustering:

53

DS Time D #Scan DS Time D # Scan
1 11.5 1.87 2 1o 13.6 1.87 2
2 10.7 1.99 2 2o 12.1 1.99 2
3 11.4 3.95 2 3o 12.2 3.99 2

Table 2: Results of BIRCH

 Initial scan is from disk and subsequent scans are in memory. When

using Phase 4, page size can vary from 256 to 4096 without much effect

on the final results. Results generated with low memory can be

compensated for by multiple iterations of phase 4.

4.3 DBSCAN

DBSCAN is a density-based clustering technique, designed to discover

efficient and good clusters with arbitrary shapes. This clustering

technique requires only one input parameter and helps user in

determining an appropriate value for it. The detailed introduction of this

density-based technique has been discussed earlier in chapter 2.

4.3.1 A Density Based Notion of Clusters

 Clusters are regarded as regions in the data space in which the

objects are dense, and which are separated by regions of low object

density (noise). These regions may have an arbitrary shape and the

points inside a region may be arbitrarily distributed. The main idea is

that for each point of a cluster the neighborhood of a given radius has to

contain at least a minimum number of points.

54

Figure 16: Sample databases showing obvious clusters and noise

The Eps-neighborhood of a point p, denoted by NEps (p), is defined by

NEps (p) = {q Є D | dist (p, q) ≤ Eps} where the shape of the neighborhood

is determined by the choice of a distance function for two points p and

q, denoted by dist(p, q). Minimum number of points within the specified

distance metric is denoted as “MinPts”. But there are two kinds of points

in a cluster, points inside the cluster are called as core points and points

on the border of the cluster are called as border points. In general an

Eps-neighborhood of a border point has less number of points when

compared to Eps-neighborhood of a core point. Therefore the minimum

number of points should be set to a low value in order to include all

points belonging to the same cluster. For every point p in a cluster C

there is a point q in C so that p is inside of the Eps-neighborhood of q

and NEps (q) contains at least MinPts points [15].

55

An object p is directly density-reachable from object q with respect to

Eps and MinPts, if p is within the Eps–neighborhood of q which contains

at least a minimum number of points (MinPts).

An object p is density-reachable from object q with respect to Eps and

MinPts, if there is a chain of objects p1,….., pn, p1 = q and pn = p such

that pi+1 is directly density-reachable from pi. Density-reachability is a

canonical extension of direct density-reachability. This relation is

transitive but not symmetric [15].

An object p is density-connected to object q with respect to Eps and

MinPts, if there is an object o Є D such that both p and q are density-

reachable from o with respect to Eps and MinPts [15].

Let D be a database of points. A cluster C with respect to Eps and

MinPts is a non-empty subset of D satisfying the following conditions

[15]:

The Algorithm:

First, DBSCAN begins with an arbitrary point p and retrieves all

points that are density-reachable from p with respect to Eps and MinPts.

If p is a core point then DBSCAN yields a cluster with respect to Eps and

MinPts, but if p is a border point then no point is density-reachable from

p and DBSCAN shifts to next point in the database. Global values are

used for Eps and MinPts because of which DBSCAN can merge two

clusters into one cluster, if two clusters of different density are close to

each other.

56

DBSCAN (SetOfPoints, Eps, MinPts)

// SetOfPoints is UNCLASSIFIED

ClusterId: = nextId (NOISE);

FOR i FROM 1 TO SetOfPoints.size DO

Point: = SetOfPoints.get(i);

IF Point.ClId = UNCLASSIFIED THEN

IF ExpandCluster (SetOfPoints, Point,ClusterId, Eps, MinPts)

THEN ClusterId: = nextId (ClusterId)

END IF

END IF

END FOR

END; // DBSCAN

In the above algorithm drawn from [15] SetOfPoints is either the whole

database or a discovered cluster from a previous run. Eps and MinPts

are global density parameters determined either manually or according

to the heuristics. The function SetOfPoints.get (i) returns the ith element

of SetOfPoints. ExpandCluster is the main function that is responsible

for the working of DBSCAN clustering technique.

Results:

• DBSCAN is more effective in discovering clusters of arbitrary shape

than CLARANS.

• DBSCAN can identify noise whereas CLARANS cannot.

• Runtime of CLARANS is comparatively very large.

57

• CLARANS cannot be applied for large databases.

Results show that DBSCAN outperforms CLARANS by a factor of at

least 100 in terms of efficiency.

58

CHAPTER 5

CONCLUSION AND FUTURE WORK

The main objective of this thesis was to survey the most important

clustering algorithms and determine which of them can be used for

clustering large datasets. Extending or improving basic models of

clustering as discussed in chapter 3 can help in some ways to deal with

large datasets but the most successful clustering methods stored

summary statistics in trees. Building a tree requires only single scan of

data and inserting a new object into an existing tree is usually very

simple. By limiting the amount of memory available in the tree building

process, it is possible for the tree to adapt to fit into main memory.

This thesis focuses on inspection of most important clustering

algorithms and further we have discussed the key concepts that allow

the current clustering methods to manage very large datasets.

Determining clusters of arbitrary shape, identifying outliers as sparse

regions and providing computational speed-ups through ignoring sparse

regions of the data space were the essential steps found in most of the

current clustering methods.

59

An optimally efficient tree-based data structure should be ascertained

for clustering problems. Multi-resolution clustering techniques (i.e.

ability to detect clusters with in a cluster) need to be formalized. The

ability to cluster data arriving in a constant stream should be

considered. Tree-based data structures within the online systems should

be explored as they are likely to be very effective. The below is a list of all

the clustering methods and their corresponding run times along with

other specifications.

 Run
Time
O(·)

Estimate
k

Arbitrary
Shapes

Handle
Noise

One
Scan
of
Data

Will
Stop

k-means
k-medoids

Agglomerative
Divisive

EM Algorithm

n
n2

n3

n2

n

�

�
�

Fract.
Refract.
BIRCH

Mrkd-EM

n
n
n

n.log n

�

�

�

�
�

�

�

DBSCAN
DENCLUE
DBCLASD

STING
SOON

n.log n
n

n.log n
n
n2

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Table 3: Run Times and Properties of Clustering Algorithms

60

BIBLIOGRAPHY

1. Clustering Large Datasets by D. P. Mercer
http://www.stats.ox.ac.uk/~mercer/documents/Transfer.pdf

2. Amit Singhal, ‘Modern Information Retrieval: A Brief Overview’,
IEEE Data Engineering Bulletin, Volume 24, pages 35-43, 2001.

3. C. J. Van Rijsbergen, ‘Information Retrieval’, Second Edition,
Chapters 1, 6 & 7, Information Retrieval Group, University of
Glasgow, London: Butterworths, 1979.

4. Ian H. Witten, Alistair Moffat, and Timothy C. Bell, ‘Managing
Gigabytes’, Second Edition, Chapter 4, Morgan Kaufmann
Publishers, Inc, San Francisco, May 1999.

5. Ricardo Baeza Yates, Berthier Riberio Neto, ‘Modern Information
Retrieval’, Chapter 1, Addison Wesley, Addison Wesley Longman,
1999.
http://people.ischool.berkeley.edu/~hearst/irbook/1/node2.html.

6. T. Graepel. Statistical physics of clustering algortihms. Technical

Re-port 171822, FB Physik, Institut fur Theoretische Physic, 1998.

7. Zoubin Ghahramani, ‘Unsupervised Learning’, Chapters 1 & 2,
University of College, London, September 2004.

8. Data Mining - Concepts and Techniques by Jiawei Han and
Micheline Kamber. Chapter 8(Cluster Analysis).

9. Incremental Model-Based Clustering for Large Datasets With Small
Clusters by Chris Fraley, Adrian Rafteryz and Ron Wehrensy :
Technical Report No. 439

10. Dr. E. Garcia, ‘The Classic Vector Space Model: Description,
Advantages and Limitations of Vector Space Model’, Article 3 of
series Term Vector Theory and Keyword Weights.
http://www.miislita.com/term-vector/term-vector-3.html

61

11. S. E. Robertson, C. J. van Rijsbergen and M. F. Porter,
‘Probabilistic models of Indexing and Searching’, Proceedings of the
3rd annual ACM conference on Research and development in
information retrieval, Cambridge, England, Page(s): 35 - 56, June
1980.

12. Automatic Subspace Clustering of High Dimensional Data for Data
Mining Applications by Rakesh Agrawal, Johannes Gehrke,
Dimitrios Gunopulos and Prabhakar Raghavan.

13. Architecture for efficient document clustering and retrieval on a
dynamic collection of newspaper texts by Alan F. Smeaton, Mark
Burnett, Francis Crimmins and Gerard Quinn.

14. BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies) by Tian Zhang, Raghu Ramakrishnan, and Miron
Livny.

15. Density-based approach DBSCAN by Martin Ester, Hans-peter
Kriegel, Jörg Sander and Xiaowei Xu.

16. Information retrieval group by Keith van Rijsbergen, Test
Collections.
http://ir.dcs.gla.ac.uk/

17. Kiran Pai, ‘A simple way to read an XML file in Java’, 2002.
http://www.developerfusion.com/code/2064/a-simple-way-to-
read-an-xml-file-in-java/

18. HappyCoders,‘TokenizingJavasourcecode’(n.d.)
http://www.java.happycodings.com/Core_Java/code84.html

19. Martin Porter, ‘The Porter Stemming Algorithm’, Jan 2006.

http://tartarus.org/~martin/PorterStemmer/.

20. Gerald Salton and Chris Buckley, ‘Improving Retrieval Performance
by Relevance Feedback’, Readings in information retrieval, Page(s):
355-364, Morgan Kaufmann Publishers Inc, San Francisco, CA,
USA, 1997.

21. Diane Kelly and Nicholas J. Belkin, ‘Exploring Implicit Sources of

User Preferences for Relevance Feedback During Interactive
Information Retrieval’, School of Communication, Information and
Library Studies, Rutgers, The State University of New Jersey.

62

VITA

Graduate College
University of Nevada, Las Vegas

Vasanth Nemala

Home Address:

1555 E Rochelle Ave, Apt#247
Las Vegas, NV 89119

Degrees:

Bachelor of Technology in Computer Science, 2007
Jawaharlal Nehru Technological University

Thesis Title: Efficient Clustering Techniques for Managing Large Datasets

Thesis Examination Committee:
Chair Person, Dr. Kazem Taghva, Ph.D.
Committee Member, Dr. Ajoy K. Datta, Ph.D.
Committee Member, Dr. Laxmi P. Gewali, Ph.D
Graduate College Representative, Dr. Muthukumar Venkatesan, Ph.D.

	Efficient clustering techniques for managing large datasets
	Repository Citation

	Microsoft Word - $ASQ24250_supp_05AA2CFC-7883-11DE-B6DF-343ED352ABB1.doc

