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ABSTRACT 

Efficient Clustering Techniques for Managing Large Datasets 
 

by 
Vasanth Nemala 

Dr. Kazem Taghva, Examination Committee Chair 
Professor of Computer Science  
University of Nevada, Las Vegas 

 The result set produced by a search engine in response to the user 

query is very large. It is typically the responsibility of the user to browse 

the result set to identify relevant documents.  Many tools have been 

developed to assist the user to identify the most relevant documents. One 

such a tool is clustering technique. In this method, the closely related 

documents are grouped based on their contents. Hence if a document 

turns out to be relevant, so are the rest of the documents in the cluster. 

 So it would be easy for a user to sift through the result set and find the 

related documents, if all the closely related documents can be grouped 

together and displayed. 

This thesis deals with the computational overhead involved when the 

sizes of document collections grow very large. We will provide a survey of 

some clustering methods that efficiently utilize memory and overcome 

the computational problems when large datasets are involved.
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CHAPTER 1  

 

INTRODUCTION 

Constant advance in science and technology makes collection of data 

and storage much easier and very inexpensive than ever before. This led 

to the formation of enormous datasets in science, government and 

industry, which should be processed or sorted to get useful information. 

For example if we consider the results generated by a search engine 

for a particular query, user has to sift through the long lists and find the 

desired solution. But this job can be very difficult for the user if there are 

millions of web pages displayed as solutions for a given query. Thus 

Clustering techniques can be very useful in grouping the closely related 

solutions of a given query and displaying the results in the form of 

clusters so that the unrelated documents can be avoided even without 

taking a glimpse at them. 

The main idea behind clustering any set of data is to find inherent 

structure in the data, and interpret this structure as a set of groups, 

where the data objects within each cluster should show very high degree 

of similarity known as intra-cluster similarity, while the similarity 

between different clusters should be reduced. 
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Figure1. Depicting the entire clustering process 

 

Clustering is employed in many areas like 

• News articles: Classifying daily news articles into different      

groups like sports, highlights, business and health etc.  

• Classification of web documents (WWW): The results given out by 

the search engines can be clustered according to the degree of 

similarity for the given query. 

Vast repository 
of data.  Ex: 
Web documents 
 

Clustering Techniques (K-means, Birch, DBSCAN, etc.)  

 
Cluster#1 

 
Cluster#2 

 
Cluster#3 

 
Cluster#N 
 



3 
 

• Exploring market: Given a large database with every individual 

customer past purchase records, finding groups of customers with 

similar behavior. 

• Research projects: Collecting large amount of data daily from 

sensors will go useless if certain conclusions or not made. Finding 

necessary relations in collected data and classifying them could draw 

helpful conclusions. 

• Earthquake studies: Identifying dangerous zones by clustering 

observed earthquake epicenters. 

The main problems associated with the traditional clustering 

algorithms are handling multidimensionality and scalability with rapid 

growth in size of data. The increase in size of data increases the 

computational complexities which have a devastating effect on the run-

time and memory requirements for large applications.  

In this thesis, first we present all the major clustering techniques in 

brief and then we discuss about the drawbacks of first generation 

clustering algorithms. Then we signify how current clustering algorithms 

overcome the drawbacks of traditional clustering algorithms. Finally we 

present three clustering techniques in detail that have revolutionized 

clustering in their era of discovery. 
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CHAPTER 2  

 

CLUSTERING: UNSUPERVISED OR MACHINE LEARNING 

Clustering is a division of data into groups of similar objects. Each 

group (= a cluster) consists of objects that are similar between 

themselves and dissimilar to objects of other groups. From the machine 

learning perspective, Clustering can be viewed as unsupervised learning 

of concepts [5]. 

A simple, formal, mathematical definition of clustering, as stated in [6] 

is the following: let X ∈ Rm×n is a set of data items representing a set of m 

points xi in Rn. The goal is to partition X into K groups Ck such that every 

data that belongs to the same group are more “alike” than data in 

different groups. Each of the K groups is called a cluster. The result of 

the algorithm is an injective mapping X→C of data items Xi to clusters 

Ck. 

In recent years, drastic change in use of web and improvement in 

communication in general has led to store loads and loads of information 

in databases. This requirement made lot of researchers to think about 

ways of information retrieval and categorizing the data, so that 

meaningful information can be retrieved.  
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As stated in [7] Unsupervised learning, refers to that class of machine 

learning approach where the system produces certain sequence of 

outputs based on a set of given inputs without any response from its 

environment.  

This chapter deals with the basic concepts of clustering and different 

types of clustering algorithms and goes on to describe how the current 

generation techniques are more advanced and how they overcome the 

drawbacks of first generation clustering techniques. 

 

 

Figure 2. Euclidean Distance Based Clustering in 3-D space 

 

• Intra-cluster distances are minimized and 

• Inter-cluster distances are maximized. 
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2.1 Different Types of Clustering Algorithms 

Clustering can be done in many different ways; each clustering 

technique produces different types of clusters. Some take input 

parameters from the user like number clusters to be formed etc, but 

some decide on the type and amount of data given. The main 

developments have been the introduction to density based and grid 

based clustering methods. Clustering algorithms can be classified into 

five distinct types: 

• Partitioning methods; 

• Hierarchical methods; 

• Model-based methods; 

• Density based methods; and 

• Grid based methods. 

Partitioning Methods 

If a database containing n data objects is given, then a partitioning 

method constructs k clusters of the data where k<=n and k is the input 

parameter provided by the user. That is, it classifies the data into k 

groups which should satisfy the following conditions: (1) each group 

must contain at least one data object and (2) each data object should 

belong to only one group. The second requirement becomes easy in fuzzy 

k-mean clustering in which one object can be resembled by two or more 

groups. 
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With k as the given number of partitions to be made, the partitioning 

method creates an initial partition. Then more number of iterations are 

followed in which objects are moved from one group to other making sure 

that in-cluster similarity is more than similarity with objects in other 

clusters. 

 

 

 

 

 

 

 

Original Points                                        Partition Clustering (k=2) 

Figure 3: Data objects before and after partitioning 

 

Popular Partitioning Methods: K-Means and K-Medoids  

The most well-known and commonly used partitioning methods are k-

means proposed by (Mac Queen 1967) and k-medoids proposed by 

(Kaufman and Rousseeuw 1987).  

2.1.1 The K-Means Method: Centroid-Based Technique 

The k-means algorithm takes input k from the user and partitions n 

data objects into k clusters so that the resulting intra-cluster similarity is 

very high and inter-cluster similarity is very low.  The cluster similarity is 
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calculated based on the mean value of the objects in the cluster. First, it 

randomly picks k data objects as the mean or centroid points. For each 

of the remaining objects, an object assigned to the centroid to which it is 

most similar based on the distance between the object and the cluster 

mean. It then computes the new mean for each cluster. This process 

iterates till good clusters are formed. Typically, squared root function is 

used for this which can be defined as 

E =  

Where x is the point in space representing the given object, and mi is 

the mean of cluster Ci. This function tries to make the clusters as 

separate as possible. The k-means algorithm as in [8] is  

Input: The number of clusters to be formed k, and number of data 

objects contained in the database n. 

Output: Set of clusters k, which minimizes the squared error function. 

Algorithm:  

1) Randomly pick k objects as initial centroids; 

2) Repeat; 

a. Assign the remaining objects to the cluster mean’s that are most  

similar to each of the objects. 

b. Update the cluster means. 

3) Until no change; 
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Figure 4: Clustering a set of points based on k-means method [8] 

 

The method is relatively scalable and efficient in handling large data 

sets because the computational complexity of the method is О (nkt), 

where n is the total number of objects, k is the number of clusters and t 

is the number of iterations. Normally k<<n and t<<n so, the method often 

ends up at local optimum. But the draw backs of this method are;  

1) It can be applied only when mean of a cluster is defined, but when  

data with categorical attributes is involved it cannot be the case; 

2) The user should specify the number of clusters k in advance and 

3) It is sensible to noise and outlier data points. 
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2.1.2 The K-Medoids Method: Representative Point Based 

K-medoids algorithm was developed to overcome the drawbacks of k-

means method which was very sensitive to outliers. An object with some 

extremely large value may substantially distort the distribution of data in 

k-means method. So instead of taking the mean value of objects in a 

cluster as a reference point, an object that is most centrally located in 

the cluster can be taken as a representative object, called as medoid. 

Thus the partitioning method can be performed by minimizing the sum of 

dissimilarities between each object and with its corresponding reference 

point. The algorithm of k-medoids algorithm as in [8] is 

1) Arbitrarily choose k objects as initial medoids; 

2) Repeat; 

a. Assign each object to the cluster corresponding to the nearest  

medoid; 

b. Calculate the objective function, which is the sum of dissimilarities  

of all the objects to their nearest medoid; 

c. Swap the medoid x by an object y if such a swap reduces the  

objective function; 

3) Until no change; 

This algorithm creates k partitions for n given objects. Initially k 

medoids are selected which are located more centrally in each cluster, 

the algorithm repeatedly tries to make a better choice of medoids by 

analyzing all the possible pairs of objects.  
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Figure 5: Clustering using k-medoid method [8] 

 

The measure of clustering quality is calculated for each such 

combination. The best points chosen in one iteration are selected as 

medoids in next iteration. The cost of a single iteration is O (k (n-k) 2). For 

very large values of n and k the computational cost can be very high. 

The k-medoids method is more robust than k-means because it is less 

influenced by outliers or other extreme values than mean. But its 

processing is very costly than k-means method and it also has the 

drawback of user providing the input parameter k (number of clusters to 

be formed).  
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  A,B,C,D,E 

  A,B 

    C,D,E 

   D,E 

 A  B  C  D  E 

AGGLOMERATIVE 

DIVISIVE 

Hierarchical Methods 

The set of given data objects are partitioned in form of a tree like 

structure or nested clusters in hierarchical clustering. The hierarchical 

methods can be classified into two types. 

• Agglomerative and 

• Divisive 

 

 

 

 

 

 

  

 

 

 

 

Figure 6: Agglomerative and Divisive clustering  

 

In agglomerative method also known as bottom-up approach, each 

object forms a separate group. It successively merges the groups close to 

one another by checking the similarity function, until all the groups are 

merged into one, that’s until the top most level of hierarchy is reached or 
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until a termination condition holds. In divisive clustering also known as 

top-down approach, initially all the objects are grouped into a single 

cluster which can also be called as parent. In each successive iteration, a 

cluster is split up into smaller clusters, until eventually each object is in 

one cluster or until a termination condition holds. 

2.1.3 Agglomerative Method 

This method begins by treating each object as an individual cluster 

and then proceeds by merging two nearest clusters. The distance 

between any two clusters m and n is defined by a metric Dm,n. Metrics 

can be single-link, complete-link and group average etc. A general class 

of metrics was given by Lance and Williams [1]. If Dk,ij be the distance 

between cluster k and the union of cluster i and cluster j, then: 

Dk,ij = �iDk,i + �jDk,j + βDi,j + γ|Dk,i - Dk,j| 

The agglomerative method is as follows: 

• Consider each object to be an atomic cluster. The (n x n) distance  

matrix represents the distance between all possible pairs of 

clusters. 

• Find the smallest element in the matrix. This corresponds to the  

pair of clusters that are most similar. Merge these two clusters, say 

m and n, together. 

• Measure the distances between the newly formed cluster and the  
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other remaining clusters using a distance function. Delete the row 

and column of m and overwrite row and column of cluster n with 

the new values. 

• If the current number of clusters is more than k then go to step 2;  

otherwise stop. The merging process can continue until all the 

objects are in one cluster. 

The advantages of hierarchical methods are that they are easy to 

implement computationally. They are able to tackle larger datasets than 

the k-medoids method and we can run the algorithm without providing 

the input k (the number of clusters to be formed). The drawbacks of 

agglomerative method are: 

• The algorithm has O(n3) time complexity. Even though the order of  

the distance matrix decreases with each iteration, the cost of Step2 

on iteration k is O((n - k)2), and we are guaranteed (n - k) iterations 

before we get to k; 

• The clusters produced are heavily dependent on the metric Di, j. 

Different metrics can produce different clusters. For instance, the 

complete-link metric tends to produce spherical clusters, whereas 

the single-link metric produces elongated clusters [1]. 

2.1.4 Divisive Method 

The contrast procedure of agglomerative clustering is the divisive 

method. Initially all the data objects are considered in one cluster. Then 

for each object the degree of irrelevance is measured and the most 
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irrelevant data object is split from the main cluster and a new cluster is 

formed with only that data object in it. The highest degree of irrelevance 

of an object corresponds to the one that is most distant from all other 

objects in that cluster. Let the average distance between object i and the 

cluster Cj be defined as [1]: 

Di,Cj =  

The most irrelevant object splits off and forms a new cluster. This is 

equivalent to splitting the cluster with the largest diameter. The process 

continues until it satisfies certain termination condition, such as a 

desired number of clusters are formed or the distance between two 

closest clusters is above a certain threshold distance. These methods 

face the difficulty of making a right decision of splitting at a high level. 

The algorithm for divisive method is [1]: 

• Select the cluster containing the most distant pair of objects. This  

is the cluster with the largest diameter. 

• Within this cluster, find the object with the largest average 

distance from the other objects. Remove the object from the 

cluster, allowing it to form a new atomic cluster. 

• For object h in the cluster being split, calculate the average  

distance between it and the current cluster; and the average 

distance between the object and the new cluster. If the distance to 

the new cluster is less than the distance between it and the 
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current cluster, move the object h to the new cluster. Loop over all 

the objects in the cluster. 

• If no objects can be moved, but the current number of clusters is  

greater than k, go to step1. Otherwise stop. 

The drawbacks of divisive method are: 

• The time complexity of algorithm is O(n3), O(n2) on the step1 of the  

algorithm for each iteration. Moreover there are expensive 

calculations that may take place in step3 of the algorithm. 

• In step 3 the group averages between an object and the new and  

existing clusters need to be recalculated after an object is moved. 

This will be costly in terms of number of calculations and the 

amount of storage required. 

• The method only searches one of the N(n,k) possible partitions. 

In hierarchical clustering once a split or merge is done, it cannot be 

undone. This fact acts as both key to success and drawback for 

hierarchical clustering. The firmness of hierarchical method leads to less 

computational cost without a combinatorial number of choices but the 

main problem with it is invalid decisions cannot be corrected.  

Hierarchical clustering methods are simple but encounter problems at 

making critical decisions for selection of correct merge are split points. 

Such a decision is critical because once a group of objects is merged or 

split, the process at the next step will work on the newly generated 

clusters. It will never undo what was done previously nor perform object 



17 
 

swapping between clusters. Thus merge or split if not done wise may 

result in low quality clusters. These methods have scaling problem since 

the decision of merge or split needs to examine and evaluate a good 

number of objects or clusters. 

Hierarchical clustering can be improved by integrating this method 

with other clustering techniques for multiple phase clustering. One such 

method known as BIRCH, first partitions objects hierarchically using tree 

structures and then applies other clustering techniques to produce 

refined clusters. This method will be discussed in chapter 4 in detail. 

Model-Based Methods 

The rapid growth in size of datasets has led to increased demand for 

very good clustering methods for analysis, while at the same time 

introducing some constraints in terms of memory usage and 

computational time. Model-based clustering a relatively recent 

development (McLachlan and Basford 1988, Banfield and Raftery 1993, 

Mclachlan and Peel 2000, Fraley and Raftery 2002) has shown good 

performance in many applications.  A model-based method hypothesizes 

a model for each of the clusters, and finds the best fit of the data to that 

model [8].   

In model-based clustering, the data (X1,…..,Xn) are assumed to be 

generated by a mixture model with density 

, 
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where  is a probability distribution with parameters , and  

is the probability of belonging to the kth component or cluster. Most often 

fk are taken to be multivariate normal distributions  parameterized by 

their means µk and covariance’s ∑k. 

Basic Model-Based Clustering Strategy [9]:  

1. Determine the minimum and maximum number of clusters to  

consider (Gmin, Gmax), and a set of candidate parameterizations 

of the Gaussian model. 

2. Do EM for each parameterization and each number of clusters  

Gmin, . . . . . , Gmax, starting with conditional probabilities 

corresponding to a classification from unconstrained model-based 

hierarchical clustering. 

3. Compute BIC for the mixture likelihood with the optimal  

parameters from EM for Gmin, . . . . , Gmax clusters. 

4. Select the model (parameterization / number of clusters) for which  

BIC is maximized. 

In model-based clustering a model can be formulated and fit to the 

data. The process of selecting a model places a great deal of supervision, 

suggesting that the user has reasonable of knowledge about the 

structure of the data. 

2.1.5 EM Algorithm 

Problem of clustering a set of objects can be considered as a missing 

data problem and the missing data can be completed by filling it with 
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observations made on the objects as well as the labels that allocate the 

objects to the correct corresponding groups. Before clustering, the labels 

are missing and all we have are the measurements recorded for the 

objects. 

The EM algorithm is the standard way of analyzing statistical models 

that have missing data. The EM algorithm proceeds by estimating the 

missing data (the E-Step) and then estimating the parameters  of the 

model, through maximum likelihood (the M-Step). 

EM algorithm requires the entire collection of objects and their 

clusters to be represented by a statistical model. The data can be 

considered as a random sample from a mixture of several probability 

distributions. These probability distributions define the clusters. Each 

object is generated by one and only one of these distributions; hence 

belong to one and only one cluster. The likelihood of the data has a 

multinomial form and can be defined as: 

L (ψ) =  ψ) 

where ψ is a set of parameters specifying the current model and 

 is the probability distribution function of the mixture 

distribution. As each object has been generated by one and only one of 

these distributions, the joint density of xi and zi,   can be 

defined as  
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where  represents the prior probability that object i came from the 

component density ; the component densities typically depend on 

additional parameters. The  are 0-1 indicator variables, indicating 

whether object i was generated by  or not and is the 

vector containing the k indicator variables for object i,  ∀i=1,…, 

n. These indicator variables represents missing labels. 

EM algorithm is robust in nature because it can fit an otherwise 

intractable statistical model to the data. The drawbacks of the EM 

algorithm are: 

• It scans the entire dataset for every iteration; 

• By imposing a statistical model on the data, we are depending on a  

huge amount of prior knowledge that may or may not be available. 

• The linear rate of convergence will make it very slow for complex  

models and large datasets. 

• The EM algorithm is dependent on its starting point. 

Density Based Methods 

Density-based clustering methods are based on a local cluster 

criterion. Clusters are assumed as regions in the data space in which the 

objects are dense and the clusters are separated by regions of low object 

density. These regions have an arbitrary shape and the data points 

inside a cluster may be arbitrarily distributed. 



21 
 

                           

Figure 7: Density-Based clustering [11] 

 

The idea is to increase the size of the cluster with data objects as long 

as the density in the “neighborhood” exceeds some threshold, i.e., for 

each data point within a given cluster, the neighborhood of a given 

radius has to contain at least a minimum number of points. Hence the 

density-based clustering can filter out noise and discover clusters of 

arbitrary shape.  

 

 

Figure 8: Defining basic terms of density-based Clustering  

 

General clustering algorithms are attractive for the task of cluster 

identification in spatial databases. But, the application to large spatial 

databases rises the following requirements for clustering algorithms: 
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• Minimum amount of domain knowledge to determine the input  

parameters. 

• Discovering clusters with good efficiency and arbitrary shape on  

large databases. 

The very prominent first generation clustering algorithms offer no 

solution to the combination of these requirements. The main idea is that 

for each object of a cluster, the neighborhood of a given radius (є) (called 

є–neighborhood) has to contain at least minimum number of data 

objects. An object, that is within a given radius (є) containing minimum 

number of neighborhood objects is called as core object [8].  

• An object p is directly density-reachable from object q with respect  

to radius (є) and a minimum number of points in a set of objects D 

if p is within the є–neighborhood of q which contains at least a 

minimum number of points [8]. 

• An object p is density-reachable from object q with respect to  

radius (є) and a minimum number of points in a set of objects D if 

there is a chain of objects p1,….., pn, p1 = q and pn = p such that for 

1 ≤ i ≤ n, pi Є D and pi+1 is directly density reachable from pi with 

respect to є and minimum points [8]. 



23 
 

                                 

Figure 9: Density-reachability 

 

• An object p is density-connected to object q with respect to radius  

(є) and a minimum number of points in a set of objects D if there is 

an object o Є D such that both p and q are density-reachable from 

o with respect to є and minimum number of points [8]. 

 

 

Figure 10: Density-connectivity 

 

Density reachability is the transitive closure of direct density 

reachability, and this relation is asymmetric. Only core objects are 

mutually density reachable. A density-based cluster is a set of density-
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connected  objects which is maximal with respect to density-

reachability, and every object not contained in any cluster is noise [8].  

In this thesis we will see DBSCAN relying on a density-based notion of 

clusters. DBSCAN requires only one input parameter and helps the user 

in determining an appropriate value for it. We will see in detail about the 

DBSCAN algorithm in chapter 4.  

Grid-Based Methods 

A grid-based clustering technique takes in the object space and 

quantizes it into a finite number of cells forming a grid structure. Then 

the method performs all the operations on that grid structure. The main 

advantage of this method is its fast processing time which is independent 

of the number of objects, and dependent only on the number of cells in 

each dimension in the quantized space. Grid-based methods use a single 

uniform grid mesh to partition the entire problem domain into the cells 

and the data objects located within a cell are represented by the cell 

using a set of statistical attributes from the objects. Clustering is 

performed on the grid cells, instead of database itself. Since the size of 

the grid is much less than the number of data objects, the processing 

speed can be significantly improved. 

Most of the data mining applications require the clustering algorithms 

to find clusters embedded in subspaces of high dimensional data, 

scalability, non-presumption of any canonical data distribution, and 

insensitivity to the order of input records.  
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2.1.6 CLIQUE (CLustering In QUEst) 
 
Clique is a grid-based clustering technique that satisfies each of the 

above requirements. It identifies dense clusters in subspaces of 

maximum dimensionality. It generates cluster descriptions in form of 

DNF expressions that are minimized for each of comprehension. It 

produces identical results irrespective of the order in which the input 

records are presented and does not presume any specific mathematical 

form for data distribution [12]. 

Clique is not purely a grid-based clustering technique. It can be 

considered as both density-based and grid-based clustering technique. It 

can automatically identify subspaces of a high dimensional data space 

that allow better clustering than original space.  

 

             
 

Figure 11: Representing CLIQUE clustering technique 



26 
 

Clique technique partitions each dimension into the same number of 

equal length interval. It partitions an m-dimensional data space into 

non-overlapping rectangular units. A unit is dense if the fraction of total 

data points contained in the unit exceeds the input model parameter. A 

cluster is a maximal set of connected dense units within a subspace. 

Partition the data space and find the number of points that lie inside 

each cell of the partition. 

• Identify the subspaces that contain clusters using the Apriori  

principle and then identify clusters: 

a. Determine dense units in all subspaces of interests. 

b. Determine connected dense units in all subspaces of interest. 

• Generate minimal description for the clusters  

a. Determine maximal regions that cover a cluster of connected 

dense units for each cluster 

b. Determination of minimal cover for each cluster 

Strengths and Weaknesses of CLIQUE: 

• It automatically finds subspaces of the highest dimensionality  

such that high density clusters exist in those spaces. 

• It is insensitive to the order of input records and does not presume  

some canonical data distribution. 

• It scales linearly with the size of input and has good scalability as  

the number of dimensions in the data increases. 
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The only weakness of this clustering technique is the accuracy of the 

clustering result may be degraded at the expense of simplicity of the 

method.
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CHAPTER 3  

 

CLUSTERING LARGE DATASETS 

After discussing about all the major types of clustering algorithms, we 

come to a stage where we can form a conclusion, why the traditional 

clustering algorithms have problems with the large datasets. We notice 

that if we want to reduce the algorithm’s computational complexity then 

we need to stop working on distance space. Methods that include 

distance-space functions seem to have more scalability problems than 

their vector-space counterparts. Calculating and storing the relationship 

between all the possible pairs of n objects is O(n2). Calculating the 

distance between two objects can be expensive when the measurements 

are of high dimension. There is no predefined method to choose the 

“center” of a cluster and finding one via some ad-hoc method adds to the 

computational cost.  

It is very clear that vector-space methods enjoy some advantages over 

distance-based methods. If we want to impose a statistical model on the 

vector-space, then we can use statistics estimated from objects in the 

cluster to represent it. The ability of the vector-space models to calculate 

“reliable” representations of each cluster can be used to 
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improve storage and calculation costs. Research has been focused on the 

scalability of clustering algorithms, the effectiveness of techniques for 

clustering complex shapes and types of data, high-dimensional 

clustering techniques and methods for clustering mixed numerical and 

categorical data in large databases.  

3.1 Essential Requirements of Clustering: 

• Scalability: Many clustering algorithms perform well with small  

datasets containing less than 200 data objects. But if the objects 

number is in millions clustering techniques may lead to biased 

results. 

• Different types of Attributes should be Dealt: Many clustering  

algorithms are designed to deal with numerical data. However, 

many applications may require clustering other types of data, such 

as binary, categorical and ordinal data, or mixtures of these types. 

• Discovering Arbitrary Shaped Clusters: Many clustering  

algorithms find clusters based on Euclidean or Manhattan 

distance measures. Algorithms based on such distance measures 

tend to find clusters with spherical shape with similar size and 

density. However, a cluster can be of any shape. It should be very 

important to develop algorithms that find arbitrary shaped 

clusters. 
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• Minimum requirement of domain knowledge: Many clustering  

algorithms require users to initially give the input parameters like 

number of desired clusters etc., The clustering results are often 

very sensitive to input parameters. It is difficult to determine many 

parameters by the user especially for datasets that contain high-

dimensional data. 

• Ability to deal with noisy data: Most of the real time large  

databases have outliers, missing, unknown and erroneous data. 

Some of the clustering algorithms are sensitive to that kind of data 

and may lead to clusters of poor quality. 

• Insensitivity to the Order of Input Records: Some clustering  

methods are sensitive to the order of input records passed to them. 

However the order in which the input records are given to the 

clustering algorithms they should be able to produce same clusters 

in any of the way. 

•  High Dimensionality: Many clustering algorithms are good at  

handling low dimensional data, involving only two to three 

dimensions. The clustering algorithms should be able to cluster 

data objects in high-dimensional space, especially considering that 

data in high-dimensional space can be very sparse and highly 

skewed. 

• Interpretability and Usability: Users may expect the clustering  
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results to be interpretable, comprehensible and usable. Clustering 

may need to be tied up with some specific semantic interpretations 

and applications. It is important to know how an application goal 

may influence the selection of clustering methods. 

3.2 Improving Traditional Methods: 

Large datasets can be clustered by extending the existing methods so 

that they can cope with a large number of objects. The focus is on 

clustering large number of data objects rather than a small number in 

high dimensions. In partitioning methods the improved and refined 

method over k-medoids is CLARANS developed by Ng and Han (1994). 

3.2.1 CLARANS 

CLARANS stands for “Clustering Large Applications based on 

RANdomized Search”. Instead of exhaustively searching a random subset 

of objects, CLARANS proceeds by searching a random subset of the 

neighbors of a particular solution, S. Thus the search for the best 

representation is not confined to a local area of the data. 

The CLARANS algorithm is assisted by two parameters: MAXneigh, the 

maximum number of neighbors of S to access; and MAXsol, the number 

of local solutions to obtain. The CLARANS algorithm is as follows [1]: 

1. Set S to be an arbitrary set of k representative objects. Set i =1. 

2. Set j = 1. 

3. Consider a neighbor R of S at random. Calculate the total swap  

contribution of the two neighbors. 
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4. If R has a lower cost, set R = S and go to step 2. Otherwise increase  

j by one. If j ≤ MAXneigh go to Step 3. 

5. When j > MAXneigh, compare the cost of S with the best solution  

found so far. If the cost of S is less, record this cost and the 

representation. Increment i by one. If i > MAXsol stop, otherwise go 

to step 1. 

3.2.2 Fractionization and Refractionization 

Fractionization was a way of adapting any hierarchical clustering 

method so that it can deal with large datasets. The main idea was to split 

the data into “manageable” subsets called fractions and then apply the 

hierarchical methods to each fraction. The clusters resulting from the 

fractions are then clustered into k groups by the same clustering 

method. The number of groups to be estimated should be provided in 

advance.  

Fractionization 

Let n be the number of data objects and M be the maximum number 

of data objects that can be handled by clustering procedure in a 

reasonable time. The fractionization algorithm is as follows: 

1. Split n objects into fractions of size M each. 

2. Cluster each fraction in  αM clusters, where α<1. Summarize each  

new cluster by its mean. These cluster means are referred as meta-

observations and are treated as they were data. 

3.  If the number of meta-observations is greater than M, then the  
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clustering method still cannot process them. Go to step 1 treating 

the meta-observations as if they were data. 

4. Cluster the meta-observations into k clusters using the desired  

clustering method. 

5. Classify each individual as belonging to the cluster with the  

nearest mean. 

The computational effort required to cluster each fraction is O(M2) and 

so is independent of n. On the ith iteration where there are αi-1(n/M) 

fractions to be processed by the clustering method which means that the 

total running time is linear in n and decreasing in α. But still this 

procedure has problems like specifying the number of clusters in 

advance and involving the formation of meta-observations. 

Refractionization 

Refractionization is the repeated application of the fractionization that 

processes fractions based on the clusters resulting from the previous 

fractionization iteration. The refractionization algorithm is almost the 

same as fractionization algorithm except in 5th step, fractions for the next 

iteration are created as the clusters are formed in step 4. As soon as a 

cluster has M objects in it, consider it to be a fraction and remove it from 

the process. Finally classify each individual as belonging to a cluster 

based on its sufficient statistics. 

The limitations of refractionization method are: Let Kg be the true 

number of groups in the data, Kf be the number of fractions after 
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splitting the data and Km be the number of meta-observations after 

clustering each fraction. 

• If Kg ≤ Km then fractionization method is enough and we don’t need  

to refractionize anymore. This is because the fractions are more 

likely to be good. In the case where Kg ≥ Km, some meta-

observations must be based on clusters that have two or more 

groups. Hence they are not good; 

• Refractionization will not recover the true groups where Kg > KfKm.  

There will be a fraction that contains more than Km groups, leading 

to impurity. 

3.2.3 Mrkd-Trees: an Implementation of EM Algorithm 

The EM algorithm discussed in earlier chapters is relatively slow. The 

main drawback of EM algorithm is it scans the entire dataset on each 

iteration. Mrkd-tree suggested by Moore (1999) reduces the number of 

times the data is accessed. Mrkd stands for “multiple-resolution k-

dimension”, where k is the number of dimensions in the data. 

An mrkd-tree is a binary tree consisting of nodes which contain pieces 

of information. Partitioning the dataset recursively the tree is built in 

such a way that the partitions adapt to the local density of the data. 

Nodes owning more number of points are called as denser regions and 

nodes that own fewer points are called as sparse regions. A node can be 

referred to as either a leaf node or a non-leaf node. A non-leaf node has 

two children, which in turn are nodes that own the two disjoint sub-
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partitions of their parent’s data points. Every node in the tree stores the 

following information: 

• The bounds of the hyper-rectangle that contains all the objects  

owned by the node; and 

• A set of statistics summarizing the data owned by the node. 

If a node is a non-leaf node then it also contains: 

• The value on which the partition of the data is made and the  

dimension to which this value refers. 

These values are used while traversing the tree for the data in a 

particular region of the sample space. The tree is constructed using a 

top-down recursive procedure. The EM algorithm can be invoked on an 

mrkd-tree by calling some function m(·) on the root node; where m(·) is a 

function that returns the  set of sufficient statistics for a given node [1]. 

If m(·) is called on a leaf node, r, then we calculate: 

j = Pr(x Є Cj| , ) =  

Where  is the centroid of the points owned by the node and Cj refers 

to cluster j for j=1,2,….,k. Returning the approximation to the sufficient 

statistic 
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For j = 1,2,…,k, where nr is the number of points owned by node r and 

sr is the sample covariance of the data owned by node r. If m(·) is called 

on a non-leaf node, the function is called recursively on its children. 

3.2.4 Outlier Analysis: 

Some data objects often exist that do not comply with the general 

behavior or models of the data. Such sets of objects which are 

inconsistent with the remaining set of data are called as outliers of the 

dataset. Outliers can be caused by inherent data variability. The data is 

more similar and doesn’t have more variations, if the size of the dataset 

is very less. But when we consider millions of data objects as one dataset 

then the data varies widely. For example the salary of the chief executive 

officer of a company could naturally standout as an outlier among the 

salaries of the employees in a company. 

Many clustering algorithms are trying to eliminate outliers or 

minimize the influence of outliers. In some cases, the outliers themselves 

might be of particular interest. Given a set of data points n and the 

number of outliers k, finding top k outlier points which are considerably 

dissimilar from the remaining data would fetch some analysis. The most 

effective ways for outlier detection are data visualization methods.
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CHAPTER 4  

 

WORKING AND RESULTS OF THREE MAJOR  

CLUSTERING TECHNIQUES 

In this chapter we will see three important clustering algorithms that 

have revolutionized the clustering field in their respective era of 

discovery. The first one is architecture for efficient document clustering 

and retrieval on a dynamic collection of newspaper texts by Alan F. 

Smeaton, Mark Burnett, Francis Crimmins and Gerard Quinn. Second 

one is very famous BIRCH (Balanced Iterative Reducing and Clustering 

using Hierarchies) by Tian Zhang, Raghu Ramakrishnan, and Miron 

Livny. The last one is density-based approach DBSCAN by Martin Ester, 

Hans-peter Kriegel, Jörg Sander and Xiaowei Xu. 

4.1 Efficient Document Clustering and Retrieval on a Dynamic  

Collection of Newspaper Texts: 

This technique uses a number of short-cuts to make the process 

computable for large collection of online newspapers. This technique is 

extensible to dynamic updates of the data and it is implemented on an 

archive of the Irish Times newspaper. 
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A collection of newspaper articles are unlike the normal web 

documents because they are normally of the same magnitude, varying 

from a paragraph to a number of columns. News paper articles are timely 

based documents meaning they are related to their date of publication. 

But most distinguishing characteristic of news paper articles is that they 

are related to previously or subsequently published articles. For example 

an amendment initially is released to the media so that people can read 

and know about it. Then news comes out saying that the amendment is 

passed and will be starting from so and so date. Then the pros and cons 

about the amendment may be discussed by the news paper editorial. So 

this might take months or years together but all the articles published 

are related to that particular amendment. What this means for a 

collection of newspaper articles is that the dependencies between and 

among articles is potentially huge and these dependencies cannot be 

ignored when it comes to navigating the archive. This technique has 

explored document clustering as a technique for generating links 

between related documents as the collection is updated and presenting 

these links as a result of a search. 

4.1.1 System Architecture and Algorithm: 

The main reason for cluster analysis having very less impact on 

information retrieval involving large datasets is the overhead in 

generating the cluster structures. In this technique N × k similarity 

matrix was used for N documents, instead of a full N × N matrix 
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structure. The value of k is a compromise between clustering efficiency 

and storage requirements against completeness of the clustering [13]. 

Meta-document descriptors are assigned to each document 

automatically by this clustering technique. The automatic classification 

allows the use of cluster descriptors to provide a higher level description 

of a document. These descriptors characterize and summarize the 

contents of the cluster. Agglomerative hierarchical type of clustering is 

used which was discussed earlier in chapter two. The method used is 

hierarchical because the cluster formed is hierarchically structured with 

closely related data objects at the leaves of the cluster tree, and less 

closely related at the root. Complete-link clustering method has been 

used which uses the smallest similarity within a cluster as the cluster 

similarity, and every data object within the cluster is related to every 

other with at least the similarity of the cluster.  Complete link clustering 

is known to produce large number of small, tightly bound clusters which 

correspond to the large number of real world events reported in a 

newspaper.  

For testing the appropriateness of this clustering technique the 

developers have collected 100 Mbytes of text from almost 34,768 

individual newspaper articles. This technique requires the similarity of 

each document to every other document is known. For this purpose a 

conventional retrieval technique has been used with term weighting to 

compute inter-document similarity. Treating every document in turn as a 
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query and using a custom search engine to rank it against the existing 

collection of documents.  Document collection greater in size than about 

10,000 cause problems, in addition to computational costs, the similarity 

matrix requires N × N-1 units of memory per matrix element for storage. 

If each matrix element requires 4 bytes then for 1,000,000 documents 

the memory required would be 4Tb. For this problem a solution was 

developed in the current technique by implementing N × k matrix, where 

k is a constant value and k << N. Instead of considering similarity score 

of a document with all the rest of the documents in the collection, just 

consider the top k similarity scores which will produce good clusters with 

less computational overhead. Since the similarity scores drop rapidly 

down the hit list, the results can be comparable after some point of k. 

Testing done by developers revealed that k=30 gave results comparable 

to k=40, mainly because there are frequently few if any documents that 

are cluster candidates lower than the 30th place on the search list [13]. 

Because of N × k similarity matrix, small clusters are formed but 

these do not get integrated into a single overall cluster. The custom 

search engine used in this clustering procedure includes three 

thresholds designed to decrease the computation time but does this 

without the loss of retrieval effectiveness. The first one called as postings 

list threshold processes only some portion of the postings list entry for a 

given search term. The second one called as query term threshold 

processes only some portion of the search terms, depending on the 
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length of the posting list entries. The third threshold creates a reduced 

set of document registers. While processing entries in the inverted file, 

only the first DR unique document identifiers will be assigned similarity 

scores.   

Results: 

Shared SUN UltraSparc with 128 Mbytes RAM but no local disks was 

used to index almost 35,000 documents of Irish Times collection in less 

than 2 hours. N × k similarity matrix was constructed in about 11.75 

hours and the clusters were generated in about 8 minutes. Since, 

dynamic data updates were implemented in the system daily 300 news 

stories can be indexed and added to overall inverted file in about 15 

seconds. Each document was added to the reduced similarity matrix by 

running it as a query and updating all matrix entries at a rate of almost 

50 documents per minute, and the computation of the clustering takes 

about 8 minutes [13].  

4.2 BIRCH: An Efficient Data Clustering Method for  

Very Large Databases 

BIRCH clusters incrementally and dynamically the multi-dimensional 

input  data points to produce best quality clustering with the available 

memory and time constraints. BIRCH is the first clustering technique in 

the field of databases to handle “noise” (data points that vary widely from 

the pattern of original dataset) effectively. Clustering is a procedure of 

identifying sparse and denser regions in a given dataset. Besides, the 
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derived clusters can be visualized more efficiently and effectively than the 

original dataset [14].  

Considering that the amount of memory is much less than the dataset 

size and in process of minimizing the time required for I/O, this 

technique has been designed and developed to deal with very large 

databases. This technique’s I/O cost is linear in the size of the dataset. A 

single scan of the dataset is enough to produce good clusters and 

additional scans which are optional can be made to improve the quality 

of clusters.   

4.2.1 Background of BIRCH 

BIRCH technique is local meaning clustering decision is made without 

scanning all the data points or available clusters. It treats the data space 

as uneven distribution of data points and hence not every data object is 

equally important in clustering. Denser region in data space is 

considered to be a cluster while the sparse regions are avoided optionally 

assuming that they are outliers. It makes use of available memory to 

extreme by deriving the finest possible subclusters while minimizing I/O 

costs by using an in-memory, height-balanced and highly-occupied tree 

structure. Thus using all these features makes BIRCH’s running time 

linearly scalable. Given N d-dimensional data points in a cluster: { i}, 

where i = 1, 2,……,N. we define: 
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Radius (R): average distance from member points to centroid 

 

Diameter (D): average pair-wise distance within a cluster 

 

Given the centroids of two clusters, We define the centroid Euclidean 

distance (D0) and centroid Manhattan distance (D1) of the two clusters 

as: 

 

 

Given N1 d-dimensional data points in a cluster: { i} where i = 1, 2,…, 

N1, and N2 data points in another cluster: { j} where j = N1+1, N1+2, …, 

N1+N2, the average inter-cluster distance D2, average intra-cluster 

distance D3 and variance increase distance D4 of the two clusters are 

defined as: 
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4.2.2 Clustering Feature and CF Tree:  

A clustering feature is a triple summarizing the details about the 

cluster. Given N d-dimensional data points in a cluster: { i}, where i = 1, 

2,…, N, the clustering feature  vector of the cluster is defined as a triple: 

CF = (N, , SS), where N is the number of data points in the cluster,  

is the linear sum of N data points and SS is the square sum of the N data 

points. Let CF1 = (N1, 1, SS1) and CF2 = (N2, 2, SS2) be the CF vectors 

of two disjoint clusters. Then the CF vector of the cluster formed by 

merging the two disjoint clusters is: CF1 + CF2 = (N1 + N2, 1 + 2, SS1 + 

SS2). 

CF Tree:  

A CF tree is a height balanced tree consisting branching factor B and 

threshold T as two main parameters. Each non-leaf node contains at 

most B entries in the form of [CFi, childi ], where i = 1,2,…, B. childi is a 

pointer to its i-th child node, and CFi is the CF of the sub-cluster 

represented by this child [14]. A leaf node contains at most L entries, 

each of the form [CFi,], where i = 1,2,…, L. Each leaf node also has two 

pointers “previous” and “next” which are used to chain all leaf nodes 

together for efficient scans. All entries in a leaf node satisfy a threshold 

requirement with respect to a threshold value T. The tree size is smaller 

if the T value is larger. If a node is required to fit in a page of size P, once 

the dimension d of data space is given then the sizes of leaf and non-leaf 
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entries are known and finally B and L are determined by P. So 

performance tuning can be done by varying P value.  

 

 

 

Figure 12. Different levels of a CF Tree 

 

Insertion into a CF Tree: 

• Finding the appropriate leaf by recursively descending the CF tree  

starting from the root and choosing the closest child node 

according to a chosen distance metric: D0, D1, D2, D3 or D4. 

• If the closest CF leaf node cannot absorb (violating the threshold  
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condition), make a new CF entry. If there is no room for the new 

leaf node then split the parent node. 

• Modify the path to the leaf by updating CF’s on the path or  

splitting nodes. 

• If the space is not enough then threshold value can be increased,  

by doing this CF’s absorb more data. 

• Due to the size restriction of each node they can hold only limited  

number of entries and because of this; natural clusters are not 

formed always. 

 

BIRCH Algorithm 

 

Figure: 13 Different phases of BIRCH algorithm 
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Phase 1 scans all the data and builds an initial in-memory CF tree 

using the available memory and recycling space on disk. This CF tree 

represents the clustering information of the dataset as clear as possible. 

The denser regions are grouped as fine subclusters and sparse data 

points are removed as outliers, and phase 1 creates an in-memory 

summary of the data. This phase is fast because there are no I/O 

operations needed and the problem of clustering the original dataset is 

reduced to a smaller problem of clustering subclusters in the leaf entries. 

Phase 2 is optional acting as a bridge to phase 1 and phase 3; it scans 

the leaf entries in the initial CF tree to rebuild a smaller CF tree, and 

removes more outliers along with grouping crowded subclusters into 

larger ones. 

Phase 3 is the global clustering phase where existing cluster 

algorithm is used on CF entries. This phase helps in fixing the problem 

where natural clusters span nodes. After phase 3, a set clusters are 

obtained that captures the major distribution pattern in the data. But 

still some minor and localized inaccuracies might exist. 

Phase 4 is optional and entails the cost of additional passes over the 

data to correct those inaccuracies and refine the clusters further. In 

phase 4 the centroids of the clusters produced by phase 3 as seeds are 

used and data points are redistributed to its closest seed to obtain a set 

of new clusters.  
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Figure 14. Control flow of phase 1 

 

 In the above diagram we can see the detailed procedure of phase 1. 

Starting with an initial threshold value, it scans the entire data and 

inserts points into the tree. If the method runs out of memory while 

scanning the data then it increases the threshold value, rebuilds a new 

smaller CF tree, by re-inserting the leaf entries of the old tree. After the 

old leaf entries have been re-inserted, the scanning of the data is 

resumed from the point at which it was stopped.  
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Figure 15. Rebuilding CF Tree 

 

 With the natural path order, it scans and frees the old tree path by 

path and at the same time, creates the new tree path by path. 

“OldCurrentPath” starts with the left most path of the old tree and new 

tree starts with the null. For OldCurrentPath the algorithm is [14]: 

• Create the corresponding NewCurrentPath in the new tree by 

adding nodes to the new tree exactly the same as in the old tree, 

so that the new tree ever becomes larger than old tree. 

• With the new threshold, each leaf entry in “OldCurrentPath” is 

tested against the new tree to see if it can fit in the 

“NewClosestPath” that is found top-down with the closest criteria 

in the new tree. If it is true then the “NewClosestPath” is before 

the “NewCurrentPath” then it is inserted in the “NewClosestPath”. 

Old Tree 

OldCurrentPath 

Freed 

NewClosestPath NewCurrentPath 

Created 

New Tree 
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• Once all the entries in “OldCurrentPath” are processed, the 

unwanted nodes along “OldCurrentPath” can be freed.  

• “OldCurrentPath” is assigned to the next path in the old tree if 

there is one and the above steps are repeated. 

Results: 

•  Input parameters: 

• Memory (M): 5% of data set 

• Disk space (R): 20% of M 

• Distance equation: D2 

• Quality equation: weighted average diameter (D) 

• Initial threshold (T): 0.0 

• Page size (P): 1024 bytes 

 

Intended Clustering Result: 
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CLARANS Clustering 

     

 

DS Time D # Scan DS Time DS # Scan 

1 932 2.10 3307 1o 794 2.11 2854 

2 758 2.63 2661 2o 816 2.31 2933 

3 835 3.39 2959 3o 924 3.28 3369 

 

Table 1: Results of CLARANS 

 

BIRCH Clustering:  
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DS Time D #Scan DS Time D # Scan 
1 11.5 1.87 2 1o 13.6 1.87 2 
2 10.7 1.99 2 2o 12.1 1.99 2 
3 11.4 3.95 2 3o 12.2 3.99 2 

 

Table 2: Results of BIRCH 

 

 Initial scan is from disk and subsequent scans are in memory. When 

using Phase 4, page size can vary from 256 to 4096 without much effect 

on the final results. Results generated with low memory can be 

compensated for by multiple iterations of phase 4.  

4.3 DBSCAN 

DBSCAN is a density-based clustering technique, designed to discover 

efficient and good clusters with arbitrary shapes. This clustering 

technique requires only one input parameter and helps user in 

determining an appropriate value for it. The detailed introduction of this 

density-based technique has been discussed earlier in chapter 2. 

4.3.1 A Density Based Notion of Clusters 

 Clusters are regarded as regions in the data space in which the 

objects are dense, and which are separated by regions of low object 

density (noise). These regions may have an arbitrary shape and the 

points inside a region may be arbitrarily distributed. The main idea is 

that for each point of a cluster the neighborhood of a given radius has to 

contain at least a minimum number of points.  
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Figure 16: Sample databases showing obvious clusters and noise 

 

The Eps-neighborhood of a point p, denoted by NEps (p), is defined by 

NEps (p) = {q Є D | dist (p, q) ≤ Eps} where the shape of the neighborhood 

is determined  by the choice of a distance function for two points p and 

q, denoted by dist(p, q). Minimum number of points within the specified 

distance metric is denoted as “MinPts”. But there are two kinds of points 

in a cluster, points inside the cluster are called as core points and points 

on the border of the cluster are called as border points. In general an 

Eps-neighborhood of a border point has less number of points when 

compared to Eps-neighborhood of a core point.  Therefore the minimum 

number of points should be set to a low value in order to include all 

points belonging to the same cluster. For every point p in a cluster C 

there is a point q in C so that p is inside of the Eps-neighborhood of q 

and NEps (q) contains at least MinPts points [15]. 
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An object p is directly density-reachable from object q with respect to 

Eps and MinPts, if p is within the Eps–neighborhood of q which contains 

at least a minimum number of points (MinPts). 

An object p is density-reachable from object q with respect to Eps and 

MinPts, if there is a chain of objects p1,….., pn, p1 = q and pn = p such 

that pi+1 is directly density-reachable from pi. Density-reachability is a 

canonical extension of direct density-reachability. This relation is 

transitive but not symmetric [15].  

An object p is density-connected to object q with respect to Eps and 

MinPts, if there is an object o Є D such that both p and q are density-

reachable from o with respect to Eps and MinPts [15].  

Let D be a database of points. A cluster C with respect to Eps and 

MinPts is a non-empty subset of D satisfying the following conditions 

[15]: 

The Algorithm: 

First, DBSCAN begins with an arbitrary point p and retrieves all 

points that are density-reachable from p with respect to Eps and MinPts. 

If p is a core point then DBSCAN yields a cluster with respect to Eps and 

MinPts, but if p is a border point then no point is density-reachable from 

p and DBSCAN shifts to next point in the database. Global values are 

used for Eps and MinPts because of which DBSCAN can merge two 

clusters into one cluster, if two clusters of different density are close to 

each other.  
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DBSCAN (SetOfPoints, Eps, MinPts) 

// SetOfPoints is UNCLASSIFIED 

ClusterId: = nextId (NOISE); 

FOR i FROM 1 TO SetOfPoints.size DO 

Point: = SetOfPoints.get(i); 

IF Point.ClId = UNCLASSIFIED THEN 

IF ExpandCluster (SetOfPoints, Point,ClusterId, Eps, MinPts) 

THEN ClusterId: = nextId (ClusterId) 

END IF 

END IF 

END FOR 

END; // DBSCAN 

In the above algorithm drawn from [15] SetOfPoints is either the whole 

database or a discovered cluster from a previous run. Eps and MinPts 

are  global density parameters determined either manually or according 

to the heuristics. The function SetOfPoints.get (i) returns the ith element 

of SetOfPoints. ExpandCluster is the main function that is responsible 

for the working of DBSCAN clustering technique. 

Results: 

• DBSCAN is more effective in discovering clusters of arbitrary shape 

than CLARANS. 

• DBSCAN can identify noise whereas CLARANS cannot. 

• Runtime of CLARANS is comparatively very large. 
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• CLARANS cannot be applied for large databases. 

Results show that DBSCAN outperforms CLARANS by a factor of at 

least 100 in terms of efficiency. 
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CHAPTER 5  

 

CONCLUSION AND FUTURE WORK 

The main objective of this thesis was to survey the most important 

clustering algorithms and determine which of them can be used for 

clustering large datasets. Extending or improving basic models of 

clustering as discussed in chapter 3 can help in some ways to deal with 

large datasets but the most successful clustering methods stored 

summary statistics in trees. Building a tree requires only single scan of 

data and inserting a new object into an existing tree is usually very 

simple. By limiting the amount of memory available in the tree building 

process, it is possible for the tree to adapt to fit into main memory.  

This thesis focuses on inspection of most important clustering 

algorithms and further we have discussed the key concepts that allow 

the current clustering methods to manage very large datasets. 

Determining clusters of arbitrary shape, identifying outliers as sparse 

regions and providing computational speed-ups through ignoring sparse 

regions of the data space were the essential steps found in most of the 

current clustering methods.  
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An optimally efficient tree-based data structure should be ascertained 

for clustering problems. Multi-resolution clustering techniques (i.e. 

ability to detect clusters with in a cluster) need to be formalized. The 

ability to cluster data arriving in a constant stream should be 

considered. Tree-based data structures within the online systems should 

be explored as they are likely to be very effective. The below is a list of all 

the clustering methods and their corresponding run times along with 

other specifications. 

 

 Run 
Time 
O(·) 

Estimate 
k 
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Handle 
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Table 3: Run Times and Properties of Clustering Algorithms 
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