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ABSTRACT 

Dynamic Distributed Programming and Applications to All Best 
Swap Edges Problem 

 
by 

Feven Z. Andemeskel 

Dr. Ajoy K Datta, Examination Committee Chair 
Professor of Computer Science  
University of Nevada, Las Vegas 

Link failure is a common reason for disruption in communication 

networks.  If communication between processes of a weighted distributed 

network is maintained by a spanning tree T, and if one edge e of T fails, 

communication can be restored by finding a new spanning tree, T’.  If the 

network is 2-edge connected, T’ can always be constructed by replacing e 

by a single edge, e’, of the network.  We refer to e’ as a swap edge of e. 

The best swap edge problem is to find the best choice of e’, that is, 

that e which causes the new spanning tree T’ to have the least cost, 

where cost is measured in a way that is determined by the application.  

Two examples of such measures are total weight of T‘ and diameter of T’. 

The all best swap edges problem is the problem of determining, in 

advance of any failure, the best swap edge for every edge in T.  The 

justification for this problem is that we wish to be ready, when a failure 

occurs, to quickly activate a replacement for the failed edge. 

In this thesis, we give algorithms for the all best swap edges problem 

for six different cost measures.  We first present an algorithm which can 

be adapted to all six measures, and which takes O (d2) time, where d is 
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the diameter of T.  This algorithm is essentially a form of distributed 

dynamic programming, since we compute the answers to sub problems 

at each node of T. 

We then present a novel paradigm for speeding up distributed 

computations under certain conditions.  We apply this paradigm to find 

O(d)-time distributed algorithms for the all best swap edge problem for all 

but one of our cost measures. 

Formal algorithms and their correctness proofs will be given. 
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CHAPTER 1  

INTRODUCTION 

This thesis considers the concept of Swap Edges.  This concept has 

been around for quite some time and is becoming increasingly popular.  

Link failures leading to disconnection of the backbone tree in a network 

are quite common.  This becomes a serious issue especially in networks 

where construction of the backbone tree is expensive.  Edge swapping 

provides a relatively less expensive way of maintaining communication 

through the backbone in the event of such failures.  We will first consider 

the all best swap edges problem [5], then give a less expensive algorithm 

for the same problem.  We will consider six measures, Fdist, Fincr, Fwght, 

Fmax, Fsum, and Fdiam   Detailed explanation of these measures will be given 

in later sections. 

1.1 Our Contributions 

In this thesis, we give an algorithm for the all best swap edges 

problem which takes O(h2) time, where h is the unweighted height of T, 

i.e., the greatest hop-distance from r to any leaf of T, and uses O(�x) space 

for each process x, where �x is the degree of x.  This algorithm can be 

used for any one of the six measures mentioned above as an input 

parameter.  

We then give faster algorithms for all but one of the six measures, 

namely all except Fsum.  Each of these algorithms takes O(h) time, and 
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still uses only O(�) space per process. 

1.2 Outline of the Thesis 

We will start off this paper by giving a brief introduction to Distributed 

Systems and Spanning Trees.  We will mention some of the common 

Spanning trees in the second section of CHAPTER 2.  In the third section 

of that chapter we will introduce the concept of Swap Edges.  We will give 

some examples of Swap edge algorithms that have been developed. 

In CHAPTER 3, we present our version of an algorithm presented in 

[8] which we call BSE, which solves the all best swap edge problem for 

each of the above measures, differing only in detail for the different 

measures.  BSE requires space for O(�x) variables to be stored at each 

process x, where �x is the degree of x.  The time complexity of BSE is 

O(h2), where h is the number of layers of T, namely the largest hop-

distance from r to a leaf of T.  In separate sections of CHAPTER 3, we 

describe the details of each of the six versions of BSE, and we summarize 

those details Section 3.8. 

In CHAPTER 4,we introduce a new technique, called the critical level 

paradigm, and in Chapter 5, we present faster algorithms for the all swap 

edges problem for some of the measures, i.e., all except Fsum, using the 

critical level paradigm.  In each case, the space complexity of our 

algorithm is O(�x) for each x, and the time complexity is O(h). 
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1.3 Preliminaries 

Output.  A solution to the best swap edge problem, given any measure 

F and any tree edge e, is an ordered pair (F(T, e, e’), e’), where e’  is a swap 

edge for e.  We order these pairs lexically, so that e’  is a tie-breaker in 

the case that there are equally good swap edges for e.  A solution to the 

all best swap edges problem then consists of such a solution (F(T, e, e’), 

e’)  for every tree edge e.  (By an abuse of notation, we may also refer to 

just F(T, e, e’) as the solution.)  

We can encode e’ in any convenient manner.  For example, if e’ = {z, 

z’}, and if processes have unique IDs, we could encode e’ as (id (z), id (z’)).  

We could also encode e’ as (index (z), index (z’)), where index (z) is the 

ordered pair (pre_index (z), post_index(z)) of integers defined in Section 

3.2, whose definition depends only on the topology of T as an ordered 

tree and the position of z in that tree; pre_index (z) is the index of z in the 

preorder visitation of T, while post_index (z) is the index of z in the 

“mirror preorder” visitation obtained by reversing left and right.  We 

suggest that the latter encoding is better; if that pair is stored at each 

end of e, the indices aid in navigation through T, enabling efficient 

communication with the processes at the ends of e’, as we explain in 

Section 3.2.   

Model of Computation.  We use the message passing model of 

computation.  A process x can send messages to any neighbor y, and can 

also receive messages from y, i.e., there are two channels, one in each 
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direction, between any pair of neighbors.  No message is lost, and any 

message sent reaches its destination within one time unit.  The FIFO rule 

holds for each channel. 

We assume that if x receives a message from any neighbor, it reads 

that message instantly.  We also assume that if x is enabled to change its 

variables or send a message to a neighbor, it will do so instantly.   

We define the size of a message to be the number of items (IDs, 

numbers, or weights) it contains.  We define the space complexity of each 

process x to be the maximum number of items that x holds at any one 

time.  In the algorithms we present in this thesis, all messages will have 

size O(1), and we will show that the space complexity of any process x is 

O(�x), where �x is the degree, i.e., number of neighbors, of x.  Our 

algorithms will also have the property that no channel holds more than 

one message at any given time. 
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CHAPTER 2  

DISTRIBUTED SYSTEM AND NETWORKS 

In this chapter, we will give a broad idea of Distributed Systems and 

Spanning Trees.  In the first section, we will give a brief description of 

distributed systems.  In the second section, we will discuss some of the 

very common spanning trees widely used in distributed systems.   

2.1 Distributed Systems 

A distributed system is a collection of individual computing devices 

that can communicate with each other.  It encompasses a wide range of 

computer systems, ranging from a VLSI chip, to a tightly-coupled shared 

memory multiprocessor, to a local-area cluster of workstation, to the 

Internet [1].  The motivation for using a distributed system may include 

inherently distributed computations, resource sharing, access to 

geographically remote data and resources, enhanced reliability, increased 

performance/cost ratio, and scalability.  Each computer has a memory-

processing unit, and the computers are connected by a communication 

network.  These processors need to communicate with each other in 

order to achieve some level of coordination to complete a task.  There are 

two types of communication among these processors; Message Passing 

and Shared Memory.  Shared memory systems are those in which there 

is a shared address space throughout the system.  Communication 

among processors takes place via shared data variables and control 
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variables.  In Message passing systems, the processors communicate by 

sending and receiving messages through the links in the network.   

2.2 Spanning Trees 

A spanning tree for a network is a subgraph of the graph representing 

the network that is a tree, and contains all the processors of the network.  

They are used whenever one wants to find a simple, cheap, yet efficient 

way to connect a set of processors.  Spanning trees are very common 

because they provide a lot of advantages.  They create a sparse sub 

graph that reflects a lot about the original graph.  They play an 

important role in designing efficient routing algorithms.  They have also 

come very handy in solving very popular problems, such as the Steiner 

tree problem and, the traveling salesperson problem.   

2.2.1. Minimum Spanning Tree 

A minimum spanning tree (MST) of a weighted graph G is a spanning 

tree of G whose edges sum to minimum weight.  In other words, a 

minimum spanning tree is a tree formed from a subset of the edges in a 

given undirected graph, with two properties: (1) it spans the graph, i.e., it 

includes every vertex in the graph, and (2) it is a minimum, i.e., the total 

weight of all the edges is as low as possible [10].  Some common 

properties of the tree include possible multiplicity (there may be more 

than one MST), uniqueness (if each edge has a distinct weight, then there 

will only be one unique minimum spanning tree), minimum-cost sub 
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graph (if the weights are non-negative), cycle property (for any cycle C in 

the graph, if the weight of an edge e of C is larger than the weights of 

other edges of C, then this edge cannot belong to an MST), cut property 

(for any cut C in the graph, if the weight of an edge e of C is smaller than 

the weights of other edges of C, then this edge belongs to all MSTs of the 

graph.), and minimum-cost edge (if the edge of a graph with the minimum 

cost e is unique, then this edge is included in any MST). 

 The first algorithm for finding a minimum spanning tree was 

developed by Czech scientist Otakar Boruvka in 1926.  There are now 

two algorithms commonly used, Prim's algorithm and Kruskal's 

algorithm [10].  

MSTs have a wide range of applications, such as Cable TV, Circuit 

design, Islands connection, Clustering gene expression data, and 

approximations like the traveling salesperson problem. 

2.2.2. Shortest Paths Tree 

A shortest path tree, in graph theory, is a sub graph of a given 

(possibly weighted) graph constructed so that the distance between a 

selected root node and all other nodes is minimal.  A known problem 

with using shortest path tree in network design is cost, reliability, and 

bandwidth required at the node.  There are two known algorithms for 

finding this tree, Djikstra’s algorithm and Bellman–Ford Algorithm. 

The shortest-paths tree problem comes up in practice and arises as a 

sub problem in many network optimization algorithms.  The shortest 
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path tree is widely used in IP multicast and in some of the application-

level multicast routing algorithms. 

2.2.3. Minimum Diameter Tree 

The minimum diameter spanning tree (MDST) of G is a spanning tree 

of minimum diameter among all possible spanning trees.  Some of the 

known algorithms for finding MDST are based on the fact that any 

shortest-paths tree rooted at a center of an MST is a MDST.  Thus this 

problem can be reduced to finding the absolute center of a graph and 

constructing a tree rooted at that center. 

Many computer communication networks require nodes to broadcast 

information to other nodes for network control purposes, which is done 

efficiently by sending messages over a spanning tree of the network.  Now 

optimizing the worst-case message propagation delays over a spanning 

tree is naturally achieved by reducing the diameter to a minimum, 

especially in high-speed networks, where the message delay is essentially 

equal to the propagation delay.  The use of a control structure spanning 

the entire network is a fundamental issue in distributed systems and 

interconnection networks.  Since all distributed total algorithms have a 

time complexity O(D), where D is the network diameter, having a 

spanning tree of minimum diameter makes it possible to design a wide 

variety of time efficient distributed algorithms. 
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2.3 Swapping Algorithms 

Survivability of a communication network denotes the ability of the 

network to remain operational even if individual network components 

(such as a link or even a node) fail.  In the past few years, several 

survivability problems have been studied extensely [16].  Sparse 

Networks are becoming very popular with the arrival of fiber optics 

providing a large bandwidth.  However Sparse Networks are vulnerable to 

failures.  Trees are widely used as the backbone for communication in 

most networks.  However, we have to look out because a single link 

failure might disconnect the backbone if that failing link happens to be a 

tree edge.  Two different approaches can be followed to solve the problem 

of a link failure: either rebuilding a new tree from scratch, or using a 

single non-tree edge (called a swap edge) to replace the failing link and 

reconnect the network, thus obtaining the so-called swap tree. 

In the first case, we are guaranteed to have the most efficient tree for 

the network, but it is very expensive both in terms of setup costs and of 

time complexity for computing a new tree.  The new constructed tree may 

also be completely different from the initial one, and therefore, the 

updating of a large amount of nodes may be necessary.  Furthermore, 

constructing a tree for every possible link failure in the network is very 

inefficient especially if failing link is supposed to be quickly restored. 

In cases where link failures are temporary and can be easily restored, 

swapping the failing tree edge with another non-tree edge becomes 
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preferable.  This saves us a lot of computation, and makes it also easier 

to switch back to the old link as soon as it is restored.  In the future 

sections, we will see swap algorithms for some of the common trees used 

in networks. 

Swapping algorithms have been studied in two aspects.  One is the 

AER (All Edge Replacement) algorithm and the second is ANR (All Node 

Replacement) algorithm.  In the first case, a swap edge is computed for 

every tree edge.  The second case deals with pre-computing a new tree 

should a node fail.   This paper focuses on the AER problem.  In the next 

few sections, we will see some common swapping algorithms that have 

been developed.   

2.3.1. MST Node Replacement Problem 

Both the ANR and AER problems have been extensively studied in 

case of MSTs.  In the AER problem, it is easy to see that the failing edge  

has to be replaced by a minimum weight non-tree edge forming with the 

failing edge a fundamental cycle in G (i.e., a cycle containing just a single 

non-tree edge).  It was originally addressed by Tarjan [16], under the 

guise of the sensitivity analysis of an MST.  Later Dixon et al.  [5] 

proposed an optimal deterministic algorithm and a randomized linear 

time algorithm, while Booth and Westbrook [2] devised a linear time 

algorithm for the special case in which the graph G is planar.  An 

improved solution was later developed by Nardelli, Proietti, and 

Widmayer [13]. 
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For the ANR problem, Tsin first presented an algorithm to update an 

MST after a single node deletion [17].  A subsequent parallel solution to 

ANR is obtained by combining the parallel algorithms presented by 

Johnson and Metaxas [11].  A more efficient parallel technique has been 

designed by Das and Loui [4].  The more complex problem of updating a 

MST with multiple node and edge deletions was also considered by 

Cheng, Cimet, and Kumar [3]. 

A more efficient algorithm later appeared which solved the ANR 

problem where the total amount of data items communicated during the 

computation (the data complexity) is O(n2).  This was a distributed 

algorithm with a broadcast and convergecast phases [7]. 

2.3.2. Minimum Diameter Spanning Tree Swap Edge Problem 

Computing all best swaps of a MDST was one of the first swap 

problems that were studied.  In [15], an algorithm for this problem is 

given which requires O(n m ) time and O(m) space, where the given 

underlying 2-edge-connected communication network G = (V,E) has n = 

|V| nodes and m = |E| edges.  For each of the n−1 different tree edges, 

their algorithm uses somewhat augmented topology trees to select O( m ) 

best swap candidates, then evaluates the quality of each of the O( m ) 

candidate swap edges in O(1) amortized time, and selects the best among 

them.  In order to obtain the O(1) amortized time for computing the 

diameter of the swap tree associated with a given swap edge, information 

from a preprocessing phase is used, and then combined with an 
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inductive computation that uses path compression.   

Later In [9], the problem was solved with an algorithm that computes 

all best swap edges of T in O (n*) messages of size O(1) each, and O(D) 

time.  If the failing edge e =(p(x),x), each node in Tx considers its own local 

swap edges for e, then in total all swap edges for e are considered in a 

minimum finding process.  This has three phases.  In a first 

preprocessing phase, a root of the MDST is chosen, and various pieces of 

information are computed for each node.  Then, in a top-down phase, 

each node computes and forwards some “enabling information” for each 

node in its own subtree.  This information is collected and merged in a 

third bottom-up phase, during which each node obtains its best local 

swap edge for each edge on its path to the root. 

2.4 All Best Swap Edges Problem 

In this thesis, we consider the all best swap edges problem [14].  We 

are given a 2-edge connected positively weighted network X of processes, 

together with a spanning tree T of X, rooted at a process r.  We will 

assume that T is an ordered tree, i.e., the children of any given process 

have a given left-to-right order (although the choice of that order is 

arbitrary).  Let w(x, y) denote the weight of an edge {x, y} of X.  If x ≠ r is a 

process, we denote the parent of x, in the tree T, by p(x), the set of 

children of x by Chldrn(x), and the subtree of T rooted at x by Tx.  We also 

write WT (x, y) for the weighted length of the path in T between processes 
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x and y.   

We refer to an edge of T as a tree edge, and any other edge of X as a 

cross edge.  Suppose all communication between processes is routed 

through T.  If one tree edge e fails, we can write e = {x, p(x)} for some 

process x, which we call the point of failure.  Since X is 2-edge connected, 

communication can be restored by replacing e by some cross edge e’ 

where the ends of e’ lie in different components of T −e.  We call such an 

edge e’ a swap edge of e, or a swap edge of x, and we define 

SwapEdges(e) = SwapEdges(x) to be the set of all swap edges of e.  Of all 

possible swap edges of e, we would like to choose the best, where “best” 

is defined in a manner determined by the application.  The all best swap 

edges problem is to identify the best swap edge for every tree edge, so 

that in case of any edge failure, the best swap edge can be activated 

quickly.   

In  Figure 2.4-1(a) we show a network with a spanning tree T and four 

cross edges. The tree edges are solid, while the cross edges, {u, u’}, {v, v’}, 

{w,w’} and {z, z’}, are dashed.  In (b) and (c), we show all swap edges of 

two different choices of failed tree edge, namely {x, p(x)} and {y, p(y)}.  The 

swap edges of x are {u, u’}, {v, v’}, and {w,w’}, shown in (b).  The swap 

edges of y are {v, v’}, {w,w’}, and {z, z’}, shown in (c). 



14 
 

 

Figure 2.4-1 : Swap Edges  
(a): Tree edges are solid, cross edges are dashed.  b): Failure at x.  {u, 
u’}, {v, v’}, and {w,w’} are the swap edges of x.  c): Failure at y.  {v, v’}, 
{w,w’}, and {z, z’} are the swap edges of y. 

 

 

In [8][9], several different criteria for determining “best” are 

considered.  In each case, the best swap edge for e is that swap edge e’ 

for which some measure F(T, r, e, e’) is minimized.  We consider six such 

measures in this thesis.  In each case, let T’ = T − e + e’, the spanning 

tree of X which results from deleting e and adding e’, and x is the point of 

failure, i.e., e = {x, p(x)}.   

• Fdist(T, r, e, e’) = WT’(x, r), the distance from the root to the point of 

failure in T’. 

• Fincr(T, r, e, e’) = max {WT’(u, r) −WT (u, r) : u є Tx}, the maximum 

increase of distance from the root to any process when T is replaced 
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by T’.  In Section 3.3, we show that minimizing Fincr is equivalent to 

minimizing Fdist. 

• Fwght(T, r, e, e’) = w(e’), the weight of the swap edge.  If T is a 

minimum spanning tree of the network X, then T’ = T − e + e’ is a 

minimum spanning tree of X − e. 

• Fmax(T, r, e, e’) = max {WT’(u, r) : u є Tx}, the maximum distance, in T’, 

from the root to any process in Tx, which is the component of T − e 

that contains the point of failure.  (The distance from the root to any 

process in T~x = T − e − Tx, the other component, remains 

unchanged.) 

• Fsum(T, r, e, e’) =∑uєTx WT’(u, r), the sum of the distances, in T’, from 

the root to all processes in Tx. 

• Fdiam(T, r, e, e’) = max {WT’(u, v) : u є Tx and v ∉Tx}.  Minimizing this 

function minimizes the diameter of T’.   

If T is a spanning tree of minimum diameter for the network X, then  

T’ = T − e + e’  may not be a spanning tree of X − e of minimum diameter, 

as the example given in  Figure 3.6-1 shows. 

In Figure 2.4-2, we illustrate an example where an edge {x, r} has four 

swap edges, e’1, e’2, e’3, and e’4.  In Table 2.4-1, we give the values of F(T, 

r, e, e’)  for the six choices of F, where we assume that all edges have 

weight 1.  Note that in the case of Fdist or Fincr, e’1 is the best swap edge 

for e, in the case of Fmax or Fdiam, e’2 is best, and in the case of Fsum, e’3  is 
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best.  Since all edges have the same weight, all swap edges are equally 

good in the case of Fwght. 

 

 

 

Figure 2.4-2 : Cross Edges  
We show T in (a).  The edge e has four cross edges.  In (b), (c), and (d), 
we show the resulting tree T’ = T − e + e’ for three choices of e’.  We do 
not show the case e’ = e’4 

 

 

F Fdist Fincr Fwght Fmax Fsum Fdiam 

       
F(T, r, e, e'1) 4 3 1 6 34 7 

F(T, r, e, e'2) 5 4 1 4 31 5 

F(T, r, e, e'3) 6 5 1 6 30 6 

F(T, r, e, e'4) 8 7 1 8 42 8 

Table 2.4-1 : F(T,r,e,e’) for the network in Figure 2.4-2 for various F. 
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CHAPTER 3  

QUADRATIC TIME SWAP EDGE ALGORITHM 

3.1  The Algorithm BSE 

In [6], Flocchini et al.  give an algorithm for solving the all best swap 

edge problem using Fdist as the measure.  In [8], Flocchini et al.  give a 

general algorithm which we call BSE, for the all best swap edges 

problem, and then give specific versions of the technique to solve the 

problem BSE problem using each of the measures Fincr, Fmax, and Fsum.  In 

[9], Gfeller et al.  give an algorithm for the all best swap edge problem, 

using the measure Fdiam.  Their algorithm is also a version of BSE. 

We will write BSEdist, BSEincr, BSEwght, BSEmax, BSEsum, and BSEdiam to 

denote the versions of BSE which minimize the measures Fdist, Fincr, Fwght , 

Fmax, Fsum and Fdiam  respectively.   

The space complexity of BSE is O(�x) for each process x, provided we 

measure space not in bits, but in number of values stored, where each 

value is a weight, a pointer to a neighbor of x, or an integer which does 

not exceed n.  The time complexity of BSE is O(h2), since it proceeds in 

waves, one for each level l, where 1 ≤ l ≤ h.  The level of a process x is 

defined to be the hop-distance from x to r.  Wave l computes the best 

swap edge for all processes at level l, and each wave takes O(h) time. 

3.2 General Overview of BSE 

BSE consists of two phases, the preprocessing phase and the 
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optimization phase.  The preprocessing phase computes variables that will 

be needed by processes during the optimization phase.  The set of 

variables that are computed during preprocessing depends on which of 

the six measures we are to minimize, but those variables always include 

size(x) and index (x).  We compute size(x), the cardinality of Tx, the 

subtree of T rooted at x, for all x in one convergecast wave, starting at the 

leaves of T. 

We define a left-to-right ordering on the children of each process of T.  

Then, define index (x) = (pre_index (x), post_index (x)), the index of x, 

where pre_index (x) is the order of x in the preorder visitation of T, and 

where post_index (x) is the order of x in the reverse postorder visitation of 

T.  (Reverse postorder visitation T is the same as preorder visitation after 

reversing the roles of left and right.)  

Indices are used to determine whether a given process is a descendant 

of another.  We define a partial order, “≤” on ordered pairs of integers; we 

say (a, b) ≤ (c, d) if and only if a  ≤c and b ≤d.  Then x is an ancestor of y, 

i.e., y ∈Tx, if and only if index (x) ≤ index (y).  Thus, if e’ = {y, y’} is a cross 

edge and y ∈Tx, then e’ ∈ SwapEdges(x) if and only if index (x) ≤ index 

(y’).  In Figure 3.2-1, we show an example of T where each process is 

labeled with its index.   

Indices also enable delivery of a message packet along the shortest 

path in T.  Suppose a process x needs to send a packet to another 

process y, and x knows the value of index (y).  If index (x) ≤ index (y), then 
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x is an ancestor of y, and x sends the packet to whichever of its children 

is also an ancestor of y.  Otherwise, x sends the packet to its parent.   

Once size has been computed, the values of pre_index and post_index 

are computed in a single top down wave.  Initially, pre_index (r) = 1 and 

post_index (r) = 1.  Each process chooses an ordering of its children, 

which we call left-to-right order.  If the children of x are y1, y2,. . . , ym, 

then  

pre_index ( yi ) = pre_index (x) + 1 + ∑ size( yj ) 

                                             1 ≤ j < i 

post_index ( yi ) = post_index (x) + 1 +  ∑ size( yj ) 

                                                                              1 <j ≤ m 

 

 

 

Figure 3.2-1 : Ancestry of processes. 
Processes are labeled with their indices.  A process x 
is an ancestor of y if and only if index (x) ≤ index (y). 
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In every case, there are at most O(�x) values to be computed for each 

process x, and the time complexity of the preprocessing phase is O(h).   

During the optimization phase, The iteration for each process x ≠ r, 

which we call Iteration (x), is represented by Lines 2–10 of Table 3.2-1, 

and computes the best swap edge for x.  Iteration(x) consists of a 

broadcast wave starting at x, represented by Lines 2–5 of Table 3.2-1, 

followed by a convergecast wave which ends at x, represented by Lines 6–

10.  In the broadcast wave, each process y of Tx creates a down package, 

using the down package of its parent (unless y = x), and also using 

variables computed during preprocessing.  The contents of the down 

package depend on which of the six measures is being minimized, but it 

always includes index (x), since comparison of the index of x with the 

index of the farther end of a cross edge determines whether that cross 

edge is a swap edge of x.   

 

 

 
1: for all x ≠r  in top down order do {Iteration (x)} 
2:           Compute down_package(x, x). 
3:           for all y ∈Tx− x in top down order do 
4:                     Compute down_package(y, x), using down_package(p(y), x). 
5:           end for 
6:           for all y ∈Tx in bottom up order do 
7:               Compute l_sol (y, x), using down_package(y, x). 
8:                subtree_mincost (y, x)    min {l_sol (y, x), min {subtree_mincost(z, x) : z 

∈  Chldrn(y)}}. 
9:           end for 

10:         solution(x)   subtree_mincost (x, x). 
11: end for 

 
Table 3.2-1 : Optimization Phase of BSE 



21 
 

During the convergecast wave of Iteration(x), each process y of Tx 

computes l_sol (y, x), the minimum cost for any swap edge of x which is 

incident to y.  During this computation, y makes use of its down 

package, as well as variables computed during preprocessing.  Then, y 

computes subtree_mincost (y, x), the minimum cost for any swap edge of 

x which is incident to any process of Ty, by comparing l_sol (y, x) with 

subtree_mincost (z, x)  for all z ∈ Chldrn(y).  Finally, the minimum cost 

for any swap edge of x is solution(x) = subtree_mincost (x, x). 

The executions of these iterations cannot overlap, i.e., no process can 

be participating in more than one of them at a given time.  If x1 and x2  are 

independent, meaning that Tx1  and Tx2  are disjoint, the computation of 

the best swap edges for x1 and x2  can be executed concurrently.  On the 

other hand, if y ∈Chldrn(x), then Iteration(y) cannot begin until y is 

finished with its participation in Iteration(x). 

 At the end of Iteration(x), all variables computed by all y ∈Tx, other 

than solution(x) itself, are deleted, to make space for the variables of 

subsequent iterations.  We review this in detail in Section 3.8.   

Figure 3.2-2 through Figure 3.2-11, below, illustrate an example of 

Iteration(x).  Figure 3.2-2 shows a network, with a rooted spanning tree 

and several cross edges.  Figure 3.2-3 shows the beginning of the 

iteration, after Line 2 of the code given in Table 3.2-1 has executed.  The 

circle around the process x indicates that it has computed 

down_package(x, x). 
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Figure 3.2-2 : Cross edges are 
shown as dashed.   
Point of failure is x. 

 

 

 

Figure 3.2-3 : Iteration begins 
with computation of 
down_package(x, x). 

 
Figure 3.2-4 : Children of x 
compute down_package 

 
Figure 3.2-5 : Broadcast wave 
continues. 
Variables of down_package are 
retained until needed. 
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In Figure 3.2-4 through Figure 3.2-6, the broadcast wave spreads to 

the leaves of Tx.  The small circle around each process y indicates that 

down_package(y, x) has been computed. 

 

 

Figure 3.2-6 : Broadcast wave 
is completed.   
l_sol is computed for some 
leaves. 

 

 

Figure 3.2-7 : Convergecast 
continues. 

 

Figure 3.2-8 : Convergecast 
continues 

 

Figure 3.2-9 : down package 
and l_sol are deleted when not 
needed. 
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In Figure 3.2-6 through Figure 3.2-10, the broadcast wave of the 

iteration is illustrated.  The double circle around any process y indicates 

that y has computed l_sol (y, x) and subtree_mincost (y, x). 

 

 

 

Figure 3.2-10 : Convergecast 
wave is completed. 

 

 

Figure 3.2-11 : solution(x) is 
computed.   
All values of down package 
and l_sol have been deleted. 

 

 

After a process y no longer needs those values, down_package(y, x) 

and subtree_mincost (y, x) are deleted.  After subtree_mincost (x, x) is 

computed, solution(x) is computed, as indicated by the box around x.  No 

other variable of Iteration(x) is retained by any process of Tx, and thus its 

space is free to be used in the next iteration. 

BSE takes O(h) time to execute each Iteration(x). Iterations for all 
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processes at a given level can take place concurrently.  Since there are h 

such levels, the overall time complexity of BSE is O(h2). 

3.3 BSEdist and BSEincr  

In addition to size(x) and index (x), the preprocessing phase of BSEdist 

computes depth(x) = WT (x, r) for all x.   

In the broadcast portion of Iteration(x), down_package(x) consists of 

the variables index (x) and WT (y, x).  Line 4 of Table 3.2-1 is then 

executed by y simply copying the value of index (x) from p(y), and by 

computing WT (y, x) = w(y, p(y)) +WT (p(y), x).   

Line 8 of Table 3.2-1 is then executed by y by first computing the 

length of the shortest path from y to r which uses a swap edge of x 

incident to y, and then comparing this value to subtree_mincost (z, x) for 

all z ∈ Chldrn(y): 

1.  Compute l_sol (y, x) = min {WT (y, x) + w(y, y’) + depth(y’) : {y, y’}  ∈ 

SwapEdges(x)}  

2.  Compute subtree_mincost (y, x) = min { l_sol (y, x), min 

{subtree_mincost (z, x) : z ∈  Chldrn(y)}} 

Finally, solution(x) = subtree_mincost (x, x).   

Figure 3.3-1 illustrates computation of l_sol (y, x) and solution(x) for 

Fdist.  We assume all edge weights are 1.  In (a), y = u, WT (u, x) = 2, 

depth(u’) = 3, and l_sol (u, x) = 6.  In (b), y = v, WT (v, x) = 1, depth(v’) = 2, 

and l_sol (v, x) = 4.  Other possible swap edges are not shown; they would 
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give larger values of  l_sol (y, x).  Then solution(x) = 4, the smallest value of 

l_sol (y, x). 

 

 

 

Figure 3.3-1 : l_sol (u, x) 
All edge weights are 1.  Then l_sol (u, x) = 6, and solution(x) = l_sol (v,x) = 4. 

 

 

    We do not need to separately describe an algorithm which 

minimizes Fincr, since the best swap edge for Fdist is also the best swap 

edge for Fincr, as stated in Lemma 3.1. 

 Lemma 3.1 For any tree edge e = {x, p(x)} and any swap edge e’ of e, 

Fincr (T, r, e, e’) = Fdist (T, r, e, e’) − depth(x). 

Proof: Since x ∈Tx, Fincr (T, r, e, e’) ≥ WT’(x, r) −WT (x, r) = Fdist (T, r, e, e’) 

− depth(x). 
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To prove the converse, let e’ = {z, z’}, where z ∈Tx,and pick y ∈Tx such 

that Fincr (T, r, e, e’) = WT’(y, r) −WT (y, r).Then 

Fincr(T, r, e, e’) = WT’(y, r) −WT (y, r) 

= WT’(y, r) −WT (x, r) −WT (y, x) 

≤ WT’(x, r) +WT’(y, x) −WT (x, r) −WT (y, x) 

= WT’(x, r) +WT (y, x) −WT (x, r) −WT (y, x) 

= WT’(x, r) − depth(x) 

= Fdist(T, r, e, e’) − depth(x) 

and we are done.   

3.4  BSEwght 

BSEwght is the simplest of our six versions of BSE.  F(T, r, e, e’) = w(e’), 

and thus all BSEwght needs to do is find the swap edge of e of smallest 

weight.   

The preprocessing phase of BSEwght computes only size(x) and index (x) 

for all x, and down_package(y, x) contains only the variable index (x). 

 Line 4 of Table 3.2-1 is then executed by y simply copying the value 

of index (x) from p(y).   

Line 8 of Table 3.2-1 is then executed by y by first computing smallest 

weight of any swap edge of x incident to y, i.e., min {w(y, y’) : {y, y’} ∈  

SwapEdges(x)}, and then comparing this value to subtree_mincost (z, x) 

for all z ∈  Chldrn(y): 

1.  Compute l_sol (y, x) = min {w(y, y’) : {y, y’} ∈  SwapEdges(x)}  
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2.  Compute subtree_mincost (y, x) = min { l_sol (y, x), min 

{subtree_mincost (z, x) : z ∈ Chldrn(y)}} 

Finally, solution(x) = subtree_mincost (x, x).   

If T is a minimum spanning tree of X and e’  is the best swap edge for 

e, then T’ = T − e + e’ is a minimum spanning tree of X − e.  This follows 

from the fact that e’ is a swap edge of e if and only if the ends of e’  lie in 

two different components of T − e, and the well-known result that, if an 

edge of the minimum spanning tree of a weighted graph is deleted, and if 

the graph remains connected, then a new minimum spanning tree is 

formed by adding the edge of minimum weight that does not create a 

cycle.   

3.5  BSEmax 

For any weighted network Y and any process x of Y, we define eccY (x) = 

max u∈Y WY (x, u), the eccentricity of x in Y.  Recall that Fmax (T, r, e, e’) = 

depth(y’) + w(e’) + eccTx(y), where e = {x, p(x)} and e’ = {y, y’} is a swap 

edge of e, and y ∈ Tx.  We illustrate Fmax (T, r, e, e’) in Figure 3.5-1. 
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Figure 3.5-1 : Fmax 
We show T in (a), together with some cross edges.  In (b) we show Fmax 
(T, r, e, e1’) and in (c) we show Fmax (T, r, e, e2’), where e1’= {u, u’} and 
e2’= {v, v’}. 

 

 

Besides size(x) and index (x), the preprocessing phase of BSEmax 

computes  

1.  depth(x). 

2.  height(x) = eccTx(x), the largest weight of any path from x to a leaf of 

Tx. 

3.  If x ≠ r, η (x) = max {WT (p(x), u) : u  ∈ Tp(x) − Tx }, the largest weight of 

any path in Tp(x) − Tx  from p(x) to a leaf of Tp(x) We can also write η (x) = 

eccTp(x) – Tx (p(x)).  We illustrate an example of η (x) in Figure 3.5-2. 

All values of depth are computed in a broadcast wave, and all values 
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of height are computed in a convergecast wave.  Once height has been 

computed for all processes, all values of η  can be computed 

simultaneously in O(1) time, since η (x) = max {w(y, p(x)) + height(y) : y  ∈ 

Chldrn(p(x)) − x}. 

For notational convenience, we write 

• pathT (x, y) = the path in T from x to y.  We will write path(x, y) if 

T is understood. 

• longest_pathT (x) = the longest path in T starting at x.  Thus, WT 

(longest_pathT) = eccT(x), 

• down_path(x) = longest_pathTx (x) the longest path from x to a 

leaf of Tx.  Thus, WT (down_path(x))=height(x). 

 

 

 

Figure 3.5-2 : An example where η (x) = 4. 

We assume that all edge weights are 1. 
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For any process x and any y ∈Tx, define µ(y, x) = max {WT (y, u) : u ∈Tx 

– Ty }.Then µ(x, x) = 0, and, for y ≠ x, we can write µ(y, x) = eccY (x), where 

Y is the network Tx – Ty + {y, p(y)}.  Intuitively, µ(y, x) is the length of the 

longest path in Tx which starts at y and avoids all children of y.  We 

illustrate an example of µ(y, x) in Figure 3.5-3.   

For any process x and any y ∈Tx, define φ (y, x) = eccTx (y), = max 

{height(y), µ(y, x)}, since the longest path in Tx  which starts at y must 

either go down to a leaf of Ty  or up through p(y).   

 

 

 

Figure 3.5-3 : An example where µ(y, x) = 4.   
We assume that all edge weights are 1. 
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For each x and y ∈Tx, down_package(y, x) consists of the variables 

index (x) and µ(y, x).  In Line 2 of Table 3.2-1 for Fmax, we already have 

index (x) from the preprocessing phase.  We let µ(x, x) = 0.  To execute 

Line 4, y simply copies index (x) from its parent, and computes µ(y, x) = 

w(y, p(y)) + max {η (y), µ(p(y), x)}. 

Computation of l_sol (y, x) depends on the fact that φ (y, x) is the 

maximum of height(y) and µ(y, x).  In Line 8 of Table 3.2-1, y computes 

φ (y, x) = eccTx(y) = max {height(y), µ(y, x)}, and then l_sol (y, x) = min 

{depth(y’) + w(y, y’) + φ (y, x) : {y, y’}  ∈ SwapEdges(x)}.   

3.6 BSEdiam 

The original goal of BSEdiam is to find, for each tree edge e, the swap 

edge e’ which minimizes the diameter of T’ = T − e+e’.  But Fdiam is defined 

to maximize the length of any path from a point in Tx to a point in T~x, 

rather than the diameter of T’.  However, minimizing Fdiam minimizes the 

diameter of T’, as we state in Lemma 3.2 below. 

Lemma 3.2 If e is a tree edge of T, and if e’  ∈ SwapEdges(e) is chosen 

to minimize Fdiam(T, r, e, e’), then e’  is also a choice of swap edge of e 

which minimizes the diameter of T’ = T − e + e’. 

Proof: Write e = {x, p(x)}.  Let A and B be the diameters of Tx and T~x, 

respectively, and let C’ = Fdiam (T, r, e, e’).Then diam(T’), the diameter of T’, 

is equal to max {A,B,C’}.  Pick e’’ ∈ SwapEdges(e) to minimize the 
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diameter of T’’ = T − e + e’’, and let C’’ = Fdiam(T, r, e, e’’).  By definition, 

diam(T’’) ≤ diam(T’), Since C’ ≤ C’’, by definition of e’, we also have 

diam(T’’) = max {A,B,C’’} ≥ diam(T’).  Thus, e’ is also an optimal choice of 

swap edge to minimize the diameter of the resultant tree.   

We say that a process c of Y is a center of Y if eccY (c) ≤ eccY (x) for any 

process x of Y.  If Y is a tree, then the center (or centers) of Y can be 

computed by a distributed algorithm in O(diam(Y )) time using O(�x) space 

per process x, where space is defined in terms of number of items, rather 

than bits [12].  We will assume that r is the center of T; if we are given a 

rooted tree where the root is not the center, we first apply the algorithm  

[12] to redefine the root to be the center.   

If e = {x, p(x)} is a tree edge and e’ = {z, z’} is a swap edge of e, let T’ = 

T − e + e’.  Then we define Fdiam(T, r, e, e’) = eccTx(z) + w(z, z’) + eccT~x(z’). 

 If T is a spanning tree of minimum diameter for the network X, then 

T’ = T – e + e’ may not be a spanning tree of X − e of minimum diameter, 

as the example given in Figure 3.6-1 shows.   
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Figure 3.6-1 : Fdiam 
Network X with four processes and five edges is shown in (a).  Let all 
edge weights be 1.  The minimum diameter spanning tree T shown in (a) 
has diameter 2.  In (b), let e = {x, r}.  The swap edge for e which 
minimizes Fdiam is e’ = {x, y}, and the resulting tree T’ = T − e + e’ has 
diameter 3.  However, the minimum diameter spanning tree of X − e has 
diameter 2, as shown in (c). 

 

 

Figure 3.6-2 : Swap edge with respect to Fdiam 
T is shown in (a).  The failure point is x, and the swap edge is e’.  In (b), 
the path whose length is Fdiam(T, e, e’) is indicated by heavy lines. 

 

 

In Figure 3.6-2(a), we show T, e = {x, p(x)}, and one cross edge, e’ = {z, 
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z’}.  In Figure 3.6-2(b), we show T’ = T −e+e’.  The heavy edges show the 

path whose length is Fdiam(T, r, e, e’), consisting of the longest path in Tx 

starting at z, the longest path in T~x starting at z’, and the swap edge.  

We now give some additional definitions which are needed to describe 

BSEdiam.   

• A weighted tree graph always has either one or two centers.  We 

will assume that r is one of those centers.  Let Chldrn(r) = {c1,. . .  

cm}, where m = �r.  Let S be the network obtained from T by deleting 

r and all edges of T incident to r.  Then S is the disjoint union of m 

trees, S1,. . .  Sm, where Si is rooted at ci.   

• For 1 ≤  i ≤ m, we define hi = w(r, ci) + height(ci), the largest weight of 

any path from r to a leaf of Si.  Without loss of generality, the 

values of hi are monotone decreasing, i.e., hi ≥ hi+1 for 1 ≤  i < m.  

Thus, in particular, h1 = h = height(r).   

• For any 1 ≤  i ≤ m and any x ∈ Si, we define avoid(x) to be the 

largest weight of any path from r to a leaf of Si which avoids, i.e., 

does not contain, x.  If no such path exists, we let avoid(x) = 0. 
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Figure 3.6-3 : avoid(x). 
Let all edge weights be 1.  Then h1 = 7, h2 = 6, and h3 = 2.  The 
magenta path is the longest path from r through c1 that avoids x, 
and thus avoid(x) = 4. 

 

 

We can compute avoid(x) for all x in O(h) time, in a broadcast wave.  If 

x = ci for some i, then avoid(x) = 0.  Otherwise, avoid(x) = max {avoid(p(x), 

η (p(x) + depth(p(x))}. 

3.6.1. Preprocessing Phase of BSEdiam 

The preprocessing phase of BSEdiam computes the following variables 

for each process x. 

1. size(x). 

2. index (x). 
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3. height(x). 

4. depth(x). 

5. η (x) = max {WT (p(x), u) : u  ∈Tp(x) – Tx , as defined in Section 3.5. 

6. branch(x), provided x ≠ r, which is defined to be that value of i such 

that x  ∈Si. 

7. h1, h2, and h3.  If c3 does not exist, i.e., �r = 2, we let h3 = 0. 

8. Recall the definitions of µ and φ  given in Section 3.5. 

(a) local_µ(x) = µ(x, ci) where x  ∈ Si.  This is the length of the 

longest path in Si starting from x which avoids Chldrn(x). 

(b) local_φ (x) = φ (x, ci) = eccSi(x) where x  ∈ Si.  This is the length 

of the longest path in Si starting from x, and thus equal to 

max {local_µ(x), height(x)}. 

9. avoid(x) for x ≠ r. 

The values of size and index are computed in one convergecast wave 

followed by one broadcast wave.  The values of height are computed in a 

convergecast wave, and the values of depth in a broadcast wave. 

After the values of height have been computed, r assigns indices to its 

children, using the rule that height(ci+1) ≤ height(ci), and then assigns 

branch(ci ) = i.  The values of branch(x) for all other x ≠ r are then 

assigned to all processes in a broadcast wave, since branch(x) = 

branch(p(x)).   

The values of hi are computed by r.  The largest three of those values, 

namely hi  for i = 1, 2, 3, are broadcast to all processes.   
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Once height(x) has been computed for all x, all values of η can be 

computed in O(1) time.  The values branch(ci) = i are assigned by r to its 

children, and r also computes hi  for i ≤ 3.  The value of branch(ci) is simply 

broadcast to all processes in Si, and the values hi  for i ≤ 3 are simply 

broadcast to all processes. 

Once height(x) has been computed for all x, all values of local_µ can be 

computed in a broadcast wave, using the appropriate version of a 

formula given in Section 3.5, namely local_µ(x) = w(x, p(x)) + max {η (x), 

local_µ(p(x))}. 

Once local_µ(x) has been computed for all x, local_φ (x) = max 

{local_µ(x), height(x)} can be computed for all x in O(1) time altogether.   

The values of avoid(x) for x ≠  r are computed in a broadcast wave.  Let 

avoid(ci) = 0.  For all other x, compute avoid(x) = max {avoid(p(x), η (x) + 

depth(p(x))}.   

3.6.2. Optimization Phase of BSEdiam  

For all x ≠ r and all y ∈Tx, down_package(y, x) consists of index (x) and 

µ(y, x).   

If y ≠ x, then y computes index (x) from its parent.  The variable µ(y, x) 

is computed by y in the same manner as given in Section 3.5, and φ (y, x) 

= max {µ(y, x), height(y)}.   

Execution of Line 8 of Table 3.2-1 for BSEdiam is far more complex 

than for BSE for any of the other measures.  For that reason, we give the 

code for that execution in algorithmic form in Table 3.6-1 below. 
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1: for all y’ such that {y’, y}  ∈  SwapEdges(x) do 
2:            i   branch(y) 
3:            j   branch(y’) 
4:            k    the smallest positive integer which is neither i nor j 
5:            if i = j then 
6:                     eccT~x(y’)   depth(y’) + hk 

7:            else 

8:                     eccT~x(y’)   max {local_φ (y’), depth(y’) + avoid(x), depth(y’) + hk} 

9:            end if 

10:             cost(y, y’, x)   φ (y, x) + w(y, y’) + eccT~x(y’)    

11: end for 
12: l_sol (y, x)   min {cost(y, y’, x) : {y, y’}  ∈  SwapEdges(x)} 

 
Table 3.6-1 : Computation of  l_sol (y, x) in BSEdiam 

 

 

3.6.3. Computation of ecc T~x (y’) 

We now explain the computation of ecc T~x (y’), the eccentricity of y’ in 

the subgraph T~x.  Let i = branch(y) and j = branch(y’), and let k be the 

smallest positive integer which is neither i nor j.  We consider the two 

cases: i = j and i ≠ j. 

If i = j, then the longest path in T~x  from y’ runs from y’ to r, then from 

r to the farthest leaf of Sk, as shown in Figure 3.6-4.  If i  ≠  j, let α  be the 

longest path in Sj  from y’, i.e., the path whose length is eccSj (y’), let β  be 

the path from y’ to r, let  γ  be the longest path from r to a leaf of Si which 

avoids x, and �k  the longest path from r to a leaf of Sk.  (If k = 3 and S3 =  

we take �k  to be the trivial path at r.) The paths  α , β , γ  , and �k   are 

illustrated in Figure 3.6-5(a).  The path whose length is ecc T~x (y’) is α , 

β +�k   or β +γ   whichever is longer.  The three possibilities are illustrated 

in Figure 3.6-5(b)–(d). 
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Figure 3.6-4 : If i = j, then eccT~x(y’) = depth(y’) + hk. 
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Figure 3.6-5 : α , β , γ  , and �k    

If i ≠ j, eccT~x(y’) is the maximum length of any path in T~x = T−Tx  from y’.  

In (a), we show α , the longest path in Sj from y’; β , the path from y’ to 

r; γ  the longest path from r to a process in Si which avoids x, and �k  , the 

longest path from r to a leaf of Sk.  The maximum length path in T~x = 
T−Tx   from y’ is one of three possibilities, shown in (b)–(d) with heavy 
lines.  In (b), we show α , in (c) we show β  + �k  , and in (d) we show  β  

+ γ . 



42 
 

3.7 BSEsum 

For any weighted network Y and any process x in Y, we define 

path_sumY (x) =∑u∈Y WY (x, u), the path sum of x in Y, the sum of the 

shortest weights of paths from x to all processes of Y.  Fsum(T, r, e, e’) = 

path_sumTx∪ v(r), where v is a virtual edge (not an edge of the original 

network) from y to r of length WT’(r, y).  We illustrate Tx∪ v in Figure 

3.7-1. 

 

 

 

Figure 3.7-1 : Fsum 
The network Tx∪ v, where v is a virtual edge of length depth(y’)+w(y, y’) 
from y to r, where y ∈ Tx and e’ = {y, y’} is a swap edge of x.  Fsum(T, r, e, 
e’) is the sum of the lengths of the red lines. 
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For convenience, we introduce shorter notation for certain instances 

of path_sumY (x): 

• For any process x, let sum(x) = path_sumTx(x) =∑u∈Tx WT (u, x). 

• For any process x ≠ r, let θ (x) = path_sumTp(x)−Tx (p(x)) =∑u∈Tp(x)-Tx WT 

(u, y). 

• For any processes x and y ∈Tx, let ν (y, x) = path_sumTx−Ty (y) 

=∑u∈Tx-Ty WT (u, x). 

• For any processes x and y ∈Tx, let  ψ (y, x) = path_sumTx(y) =∑u∈Tx 

WT (u, y). 

Note that ψ  (y, x) = ν (y, x) + sum(y) for y ∈Tx. 

The implementation of BSEsum depends on the following observation. 

Lemma 3.3  : If y ∈Tx.  and e’ = {y, y’} is a swap edge of e = {x, p(x)}, 

then 

Fsum(T, r, e, e’) = size(x) * ( depth(y’) + w(y, y’) ) +  ψ (y, x) 

Proof: Let T’ = T − e + e’.  Then 

Fsum(T, r, e, e’) =  ∑ WT’ (r,u) 
u ∈Tx 

= ∑   (WT’ (r,y) - WT (y,u)) 
u ∈Tx 

= size(x) ·WT’(r, y) + ∑  WT (y,u) 
u ∈Tx 

= size(x) ·( depth(y’) + w(y, y’) ) +  ψ (y, x) 

During the preprocessing phase of BSEsum, we compute size(x), index 

(x), and sum(x) for all x.  The values of sum(x) are computed in a 
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convergecast wave.  If x is a leaf, then sum(x) = 0.  Otherwise, sum(x) = 

∑y∈Chldrn(x) (size(y) · w(x, y) + sum(y)). 

For each x and y∈Tx, down_package(y, x) consists of the variables 

size(x), index (x), and  ν (y, x). 

Note that 

ν (y, x) = w(y, p(y)) · (size(x) − size(y)) + θ (y) + ν (p(y), x) 

 ψ (y, x) = sum(y) +  ν  (y, x) 

In Line 8 of Table 3.2-1, y computes 

l_sol (y, x) = min{ size(x) ·( depth(y’) + w(y, y’) ) + path_sumTx(y) : {y, y’} 

∈SwapEdges(x). 

3.8 Implementation and Complexity of BSE 

We now detail the implementation of BSE, in such a way as to ensure 

the complexity results outlined in Section 3.1.  The computation of BSE 

is primarily organized into either broadcast (topdown from r) or 

convergecast (bottom-up from the leaves of T) waves.  Each process x 

knows its neighbors, N(x), and the weight w(x, y) of the edge to each y ∈ 

N(x).  Furthermore, x knows its parent in T, p(x), and its children in T, 

Chldrn(x), and thus x knows Cross_N(x), the set of all neighbors x’ of x 

such that {x, x’} is a cross edge.  We also assume an ordering on 

Chldrn(x), although the choice of that ordering is arbitrary. 

3.8.1. Messages 

BSE is implemented using eight species of messages.  Six of those 
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eight messages are packets of values, which can vary depending on 

which of the six functions is used as the measure.  Two of the messages, 

PRE_DONE and OPT_DONE, carry no values. 

1.  PRE_DOWN_I is the message sent by each process to its children 

during the first broadcast wave of the preprocessing phase. 

2.  PRE_UP is the message sent by each process, except r, to its 

parent during the convergecast wave of the preprocessing phase. 

3.  PRE_DOWN_II is the message sent by each process to its children 

during the second broadcast wave of the preprocessing phase. 

4.  CROSS(x) is the message sent by a process x to each of its cross 

neighbors. 

5.  PRE_DOWN is the message sent by each process, except r, to its 

parent to indicate that it is done with the preprocessing phase. 

6.  OPT_DOWN(x) is the message sent by each process in Tx to its 

children during the broadcast wave Iteration(x) of the optimization phase. 

7.  OPT_UP(x) is the message sent by each process in Tx, other than x, 

to its parent, during the convergecast wave of Iteration(x) of the 

optimization phase.  At the end of this wave, x computes its best swap 

edge.   

8.  OPT_DONE(x) is the message sent by x to each y ∈ Chldrn(x) to 

inform y that Iteration(x) is done, and to start Iteration(y). 

3.8.2.  Variables Computed during each Wave 

In Table 3.8-1, we show which variables of each process are computed 
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during each wave of BSE. 

 

 

Message / 
Wave 

BSEdist  BSEincr  BSEwght  BSEmax  BSEdiam  BSEsum  

PRE_DOWN_I 
First 

Preprocessin
g depth  depth  (none)  depth  depth  depth  

Broadcast 
Wave 

      

PRE_UP 
Preprocessin

g 
Convergecast 

Wave 

size  
height 
  size  

size  
height  
size  

height 
 size  

height  
size  
sum  

     

index  

 

     η   

PRE_DOWN_I
I Second 

Preprocess-
ing 

Broadcast 
Wave 

index  index  index  
index  
η  

branch h1, 
h2, h3 

local_µ  
avoid 

local_ φ 

index θ  

     

index (x)  

 

CROSS(x) index (x) 
depth(x)  

index (x) 
depth(x)  

index (x)  index (x) 
depth(x)  

depth(x) 
local_φ(x) 
branch(x)  

index (x) 
depth(x)  

OPT_DOWN(x
) Broadcast 

Wave of 
Iteration(x) y 

∈ Tx 

index (x) 
WT (y,x)  

index (x) 
WT (y,x)  

index (x)  
index (x) 

µ(y,x) φ(y,x)  
index (x) 

µ(y,x) φ(y,x)  

size(x) 
index (x) 

ν(y,x) ψ(y,x)  

OPT_UP(x) 
Convergecast 

Wave l_sol (y,x)  l_sol (y,x)  l_sol (y,x)  l_sol (y,x)  l_sol (y,x)  l_sol (y,x)  
of Iteration(x) 

y ∈ Tx 
subtree_
mincost 

(y,x)  

subtree_
mincost 

(y,x)  

subtree_mi
ncost (y,x)  

subtree_mi
ncost (y,x)  

subtree_mi
ncost (y,x)  

subtree_mi
ncost (y,x)  

Table 3.8-1 : Variables in Messages of BSE 
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3.8.3. Message Protocol 

We now show the protocol which guides the timing of the waves of 

BSE.  Each process is either in the preprocessing mode or the 

optimization mode.  We assume that the algorithm is initiated by r, and 

that all processes are initially in the preprocessing mode.  In the case of 

BSEdiam, we also assume that r  is the center of T, as explained in Section 

3.6.   

Below, we list which messages each process must receive before 

sending a given message.  Of course, a process cannot send any message 

until after it has computed the variables that it needs to include in that 

message; however, we have assumed that that computation is done 

instantly. 

1. Preprocessing Phase.  Processes retain all values computed or read 

during the preprocessing phase.   

a) (First Broadcast Wave.) 

i. r sends PRE_DOWN_I to its children. 

ii. For x ≠ r, when x receives PRE_DOWN_I from its parent, x sends 

PRE_DOWN_I to its children. 

b) (Convergecast Wave.) 

i. For x ≠ r, when x has received PRE_DOWN_I  from its parent and 

PRE_UP from all its children, x sends PRE_UP to its parent. 

c) (Second Broadcast Wave.) 

i. When r receives PRE_UP from all its children, r sends 
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PRE_DOWN_II  to all its children. 

ii. For x ≠ r, when x receives PRE_DOWN_II  from its parent, x 

sends PRE_DOWN_II  to all its children and PRE_DONE to its 

parent. 

d) (Cross.) For all x, when x has received PRE_DOWN_II  from its 

parent (if any) and PRE_DONE from all its children, x sends 

CROSS(x) to each of its cross neighbors.  After x has sent CROSS 

to, and also received CROSS(x’) from, each x’ ∈ Cross_N(x), x 

enters the optimization mode. 

2. Optimization Phase. 

a) (Broadcast Wave.)  

i. When r is in the optimization mode, r initiates Iteration(r) by 

sending OPT_DOWN(r) to all its children.   

ii. For x ≠ r, when x has received OPT_DONE(p(x)) from its parent 

and is in the optimization mode, x initiates Iteration(x) by 

sending OPT_DOWN(x) to all its children. 

iii. For y ≠ r, if y is in the optimization mode and y has received 

OPT_DOWN(x) from its parent, then y sends OPT_DOWN(x) to 

all its children. 

b. (Convergecast Wave.)  

i. For y ≠ x, when y has received OPT_DOWN(x) from its parent 

and OPT_UP(x) from all its children, y sends OPT_UP(x) to its 

parent and deletes all variables it has computed during 
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Iteration(x). 

ii. When x receives OPT_UP(x) from all its children, x sends 

OPT_DONE (x) to all its children, then computes solution(x) and 

deletes all other variables it has computed during Iteration(x). 

3.8.4. Computation of Variables  

In Section 3.8.3, we did not mention the calculations a process must 

make before sending a message.  We now explain those calculations in 

detail.   

• Computation of depth.  Initially, depth(r)  0.  The message 

PRE_DOWN_I sent by a process x to its children contains the value 

of depth(x).  When x receives PRE_DOWN_I from its parent, it 

computes depth(x)  w(x, p(x)) + depth(p(x)).   

• Computation of height, in all cases except BSEdist and BSEwght.  The 

message PRE_UP sent by a process x to its parent contains height(x).  

If x is a leaf of T, then height(x)  0.  Otherwise, when x receives 

PRE_UP from all its children, x computes  

height(x)  max {w(x, y) + height(y) : y  ∈ Chldrn(x)}. 

• Computation of size.  The message PRE_UP sent by a process x to its 

parent contains size(x).  If x is a leaf of T, then size(x) 1.  

Otherwise, when x receives PRE_UP from all its children, x computes 

size(x) 1 + ∑y∈Chldrn(x) size(y). 

• Computation of index.  The message PRE_DOWN_II sent by a process 

x to each child y contains index (y), while r computes index (r)  (1, 



50 
 

1).  When a process x knows the value of index (x), then x computes 

index (y) for all y ∈Chldrn(x).  If x is not a leaf, let Chldrn(x) = {y1,. . . , 

ym}.  Then x computes  

pre_index (yi) = pre_index (x) + 1 + ∑  size(yj)   
i≤ j <i 
 

post index (yi) = post_index (x) + 1 +∑  size(yj)   
  i <j≤m 

 

and index (yi) = (pre_index(yi), post index (yi)). 

• Computation of sum, in the case BSEsum.  The message PRE_UP sent 

by a process x to its parent contains sum(x).  If x is a leaf of T, then 

sum(x) 0.  Otherwise, when x receives PRE_UP from all its 

children, x computes sum(x)   ∑y∈Chldrn(x) (size(y) · w(y, x) + 

sum(y)). 

• Computation of η , in the cases BSEmax, BSEdiam, and BSEsum.  The 

message PRE_DOWN_II sent by a process x to each child y contains 

η (y).  At the beginning of the second preprocessing broadcast wave, 

η (r)  0.  Each x computes η (y) max y∈Chldrn(x)-{y}{w(x, z) + 

height(z)} for each y ∈ Chldrn(x).  If Chldrn(x) = {y}, then η (y) 0.   

• Computation of branch, h1, h2, h3, local_µ, avoid, and local_φ  in the 

case of BSEdiam.  Recall that branch(r), local_µ(r), avoid(r), and 

local_φ (r) are undefined, while h1, h2 and h3 are constants; these are 

computed by r and then sent to all other processes in the second 
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preprocessing down wave. 

Let Chldrn(r) = {c1, c2,. . . , cm} and hi = w(r, ci) + height(ci), indexed 

such that hi ≥ hi+1 for all 1 ≤ i < m.  If m = 2, we let h3 = 0.  When r 

receives PRE_UP from all its children, it sends h1, h2 and h3 to all its 

children in the message PRE_DOWN_II.  Also, for each i, r computes 

branch(ci)  i, local_µ(ci)    0, avoid(ci)  0, and local_φ (ci) 

height(ci), and sends those values to ci  in PRE_DOWN_II. 

For x ≠ r, when x receives PRE_DOWN_II from p(x), it has the values 

of branch(x), h1, h2, h3, local_µ(x), avoid(x), and local_φ (x).  For each y 

∈ Chldrn(x), x sends the values h1, h2, h3 to y in the message 

PRE_DOWN_II, as well as the following values which x computes:  

1.  branch(y)    branch(x). 

 

2.  local_µ(y)    w(x, y) + max    local_µ(x) 

       η (y) 

 

3.  avoid(y)    max   avoid(x) 

depth(x) + η (y) 

 
 

4.  local_φ  (y)  max local_µ(y) 

height(y) 

 

• Computation of θ , in the case BSEsum.  The message PRE_DOWN_II 

sent by a process x to each child y contains θ (y).  At the beginning of 



52 
 

the second preprocessing broadcast wave, θ (r) 0.  Each x 

computes θ (y)   ∑y∈Chldrn(x)-(y) (w(x, z) + sum(z)) for each y ∈  

Chldrn(x).  If Chldrn(x) = {y}, then θ (y) 0. 

• The message CROSS(x) from a process x to x’  ∈ Cross_N(x) contains 

information that x’ needs during the optimization phase.  CROSS(x) 

contains index (x), and, in all cases except BSEwght, it contains 

depth(x).  In the case of BSEdiam, it also contains branch(x) and 

local_φ (x). 

• The message OPT_DOWN(x) from any process y ∈ Tx to any z ∈ 

Chldrn(x) contains the value index (x).  In the case BSEsum, the 

message also contains size(x). 

• Computation of WT(y, x), for BSEdist and BSEincr.  Each process x 

computes WT (x, x) 0.  The message OPT_DOWN(x) from any 

process y ∈ Tx to any z ∈ Chldrn(y) contains the value WT(y, x).  

When z ∈ Chldrn(x) receives the message OPT_DOWN(x) from y, then 

z computes WT(z,x) w(z, y) +WT (y, x). 

• Computation of µ(y, x) and φ (y, x), for BSEmax and BSEdiam.  Each 

process x computes µ(x, x) 0.  The message OPT_DOWN(x) from 

any process y ∈ Tx to any z ∈ Chldrn(x) contains the value µ(y, x), 

and y computes φ (y, x) max {µ(y, x), height(y)}. 

• After z ∈ Chldrn(y) receives the message OPT_DOWN(x) from y, then 

z computes µ(z, x) max {w(z, y) + µ(y, x), η (z)}. 
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• Computation of ν (y, x), for BSEsum.  Each process x computes ν  (x, 

x) 0.  The message OPT_DOWN(x) from any process y ∈ Tx to any 

z ∈ Chldrn(x)  contains the value ν (y, x).  When z ∈ Chldrn(y) 

receives the message OPT_DOWN(x)  from y, then z computes ν (z, x) 

w(z, y) · (size(x) − size(z)) + θ (z) + ν (y, x) 

• Computation of l_sol (y, x).  For y ∈ Tx, define Swap_N(y, x) = {y’ ∈ 

Cross_N(y) : y’ ∉ Tx}.  Recall that we can determine whether y’ ∈ Tx 

by comparing index (y’) and index (x), both of which are known to y 

after y receives CROSS from y’; and either y = x, or y has received 

OPT_DOWN(x) from p(y).  If Swap_N(y, x) = 0/ , y assigns l_sol (y, x) 

the default value 1.  Otherwise, y computes l_sol (y, x), an ordered 

pair, in each case as given in Table 3.8-2. 
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Table 3.8-2 : l_sol (y, x) 
Value of  l_sol (y, x) computed by y during Iteration(x) of the optimization 
broadcast wave.  Note that l_sol (y, x) is an ordered pair, where the second 
member is a swap edge of x.  In the case of BSEdiam, let i = branch(y), j = 
branch(y’), and k the smallest positive integer not equal to i or j.  If i = j, 
eccT~x(y’) = depth(y’) + hk.  If i ≠ j, eccT~x(y’) = max {local_µ(y’), depth(y’) + hk, 
depth(y’) + avoid(x)} 

 

 

• Computation of subtree_mincost (y, x).  After y receives the message 

OPT_UP(x) from all its children,y computes subtree_mincost (y, x) 

min{l_sol(y, x), min{ min z ∈ Chldrn(y) subtree_mincost (z, x) 

• Computation of solution(x).  After a process x has received the 

message OPT_UP(x) from all its children, x computes solution(x) 

subtree_mincost (x, x) 

3.8.5. Complexity 

In this section, we prove that BSE satisfies the desired complexity 

bounds.  Let n be the number of processes of the network, m the number 

of edges, and �x  the degree of any given process x.  Let h be the hop-

Case  l_sol(y, x) 

BSEdist  min {(WT (y, x) + w(y, y’) + depth(y’), {y, y’}) : y’ ∈ Swap N (y, x)}  

BSEincr  
min {(WT (y, x) + w(y, y’) + depth(y’) − depth(x), {y, y’}) : y’ ∈ Swap_N (y, 

x)}  

BSEwght  min {(w(y, y’), {y, y’}) : y’ ∈ Swap_N (y, x)}  

BSEmax  min {(φ(y, x) + w(y, y’) + depth(y’), {y, y’}) : y’ ∈ Swap_N (y, x)}  

BSEdiam  min {(φ(y, x) + w(y, y’) + eccT~x (y’), {y, y’}) : y’ ∈ Swap N (y, x)} where 

eccT~x (y’) is as explained in Section 3.6  

BSEsum  min {(ψ(y, x) + size(x) · (w(y, y’) + depth(y’)), {y, y’}) : y’ ∈ Swap_N (y, x)}  
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height of T, and let n* be the number of edges of the transitive closure of 

T, i.e.,the number of pairs (y, x) such that y ∈ Tx.  (Note that n* = O(nh).) 

We measure space by number of items rather than number of bits.  

An item can be an integer, a distance (sum of weights of edges), or an ID 

of a process.   

Lemma 3.4 

(A) The time complexity of BSE is O(h2).   

(B) The size of each message is O(1).   

(C) The space complexity of a process x is O(δx).   

(D) The number of messages in each channel at any given time does not 

exceed 1.   

(E) The total number of messages sent during the execution of BSE is 

O(m + n* ).   

Proof: (A): Each wave moves at least one level up or down T in each 

time unit, and hence finishes within h time units, and there are O(h) 

waves.   

(B): The variables carried in a broadcast or convergecast wave are 

listed in Table 3.8-1.  The message CROSS contains O(1) variables, and 

the other messages carry no variables.   

(C): A process x needs O(1) space to store the variables received from 

one member of Cross_N (x), and Cross_N (x) has cardinality at most δx.  

The space needed by x to store the computations of the preprocessing 

phase is O(1).  During each iteration of the optimization phase, x stores 
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O(1) temporary variables, but erases all of them at the end of the 

iteration.  The only information that x retains from the optimization 

phase is solution(x), which takes O(1) space.   

(D): We consider an edge to have two channels, one in each direction.  

A cross edge channel carries only one message altogether.  No wave can 

be started by a process until the previous wave has passed that process; 

this rule is enforced by the messages PRE_DONE and OPT_DONE(x)  

(E): The number of CROSS messages is 2m.  Each process, other than 

r receives exactly one message of type PRE DOWN_I, PRE_DOWN_II, and 

OPT_DONE, while each process, other than r, sends exactly one message 

of type PRE_UP and PRE_DONE.  The number of message sent during 

the optimization broadcast waves totals n*, as does The number of 

message sent during the optimization convergecast waves.  The total 

number of messages is thus 2m +2n* + 5(n − 1).   

3.9  Complexity Tradeoffs for BSE  

There are tradeoffs between space and time complexities of BSE.  For 

example, Gfeller et al.  implement BSEdiam in O(h) time units, where the 

space complexity of each process x is O(h+δx), and still have O(m + n*) 

messages, of size O(1) each.  Alternatively, by allowing messages of O(h + 

δx), the number of messages can be reduced to O(n + m).   

In CHAPTER 4, we introduce a new technique, which we call the 

critical level paradigm.  This technique involves precomputation of l_sol(y, 
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x) for all x and all y ∈ Tx, followed by identification of critical levels for 

each y.  The values of l_sol(y, x) are then deleted to save space; pipelining 

permits all calculations to be done without exceeding the O(δx) space 

capacity of each process x.  In CHAPTER 5, we use this new paradigm to 

solve the all best swap edges problem in O(h) time with O(m + n*) 

messages of size O(1) each, and space complexity O(δx) for each x, such 

that no channel holds more than one message at a time.  The solutions 

given in that section cover the measures Fdist, Fincr, Fwght, Fmax, and Fdiam, 

but not Fsum.   
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CHAPTER 4  

THE CRITICAL LEVEL PARADIGM 

In CHAPTERS 5 and 6, we present linear time algorithms for all 

measures given in Section 3.1, except Fsum.  In each case, we overcome 

the need for alternating broadcast and convergecast waves by making 

use of the concept of critical levels, which we introduce in Section 4.3 

below.  The heart of the critical level paradigm is that critical levels are 

pre-computed during the critical level phase of the algorithm, and that, 

during the optimization phase, a process uses its critical level to choose 

which of two candidate values to retain, without necessarily being able to 

evaluate both of them.   

Critical levels are used in several different ways in the various linear 

time algorithms, sometimes in different ways within the same algorithm.  

Our linear time algorithms for Fdist and Fwght each use critical levels in 

just one way.  However, our linear time algorithm for Fmax uses critical 

levels in two different ways, and our linear time algorithm for Fdiam uses 

critical levels in three different ways.   

4.1 The Min-Max Problem  

In general, the critical level paradigm is used when the goal is to find 

the minimum of maxima.  We first consider a very simple application.  

Suppose we have a tree T of processes, rooted at r, where each process x 

has a weight, F (x), and there is a non-negatively weighted edge, with 
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weight w(x, y), between x and y if x and y are neighbors.  We call this a 

doubly weighted rooted tree.  We let W (x, y) be the (weighted) length of 

the path in T from x to y.   

We write x ≤ y if x is an ancestor of y, x<y if x is a proper ancestor of y.  

If x ≤ y, define cost(x, y) = max {W (x, y),F (y)}.  The output of the min-max 

problem is the value of mincost(x) = min {cost(x, y): x ≤ y}.   

Required Output.  The required output for the minmax problem is for 

each process x to compute mincost(x) = min {cost(x, y): y ≥ x}.  We define 

best(x) to be equal to that y ≥ x for which cost(x, y)= mincost(x).  It is a 

fairly straightforward to augment any algorithm that computes 

mincost(x), using well-known data structure techniques, so that it also 

computes best(x).  To simplify our exposition, we will not detail these 

augmentations.   

We now consider two instances of the min-max problem.  In Section 

4.1.1, we consider an example where T is a chain, while in Section 4.1.2, 

we consider a more general case of a doubly weighted rooted tree.   

4.1.1. Chain Example  

We first consider the special case that T is a chain.  Figure 4.1-1 

shows an example.   

 

 

 

Figure 4.1-1 : Doubly Weighted Chain 
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Figure 4.1-2 : cost(x, y) 
W (b, e) = 36, W (d, f) = 14, F (e) = 33, and F (f) = 16.  Thus cost(b, e) = 36 and 
cost(d, f) = 16.   

 

 

 

Figure 4.1-3 : best(x)  and cost(x, y). 
Arrows indicate the choices of y = best(x) for each x.  The arrows above the line 
indicate cases where cost(x, y)= W (x, y), while the arrows below the line indicate 
cases where cost(x, y)= F (y).   

 

  

Figure 4.1-3 shows an arrow from x to best(x) for each x in the 

example shown in Figure 4.1-1.  The values of mincost(x) and best(x) are 

shown in Table 4.1-1 below.   

 

 

x r          a          b          c          d          e          f          g          h          i 

mincost(x) 39       38        36        26        16        11        10        8        8          8 

best(x) b          e          e          g          g          g          g          i          i            i 
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Table 4.1-1 : Values of mincost(x) and best(x) 

If T is a chain, we can reduce the min-max problem to the problem of 

finding all row minima of a triangular matrix.  In Figure 4.1-4(a), we 

show the array of values of W (x, y) for all x ≤ y, while In Figure 4.1-4(b), 

we show the array of values of cost(x, y) for all x ≤ y, for our chain 

example.  In both arrays, x is the row index and y is the column index.  

Then mincost(x) is the minimum entry in row x the cost matrix, while 

best(x) is the index of the column in which that entry is found.   

 

 

 

Figure 4.1-4 : Array W is shown in (a), and cost in (b), for our chain example 

 

 

4.1.2. General Tree Example  

We now consider an instance of the min-max problem where T is not a 

chain, illustrated in Figure 4.1-5.  The values of F are enclosed in the 

circles representing the vertices, and the edge weights are the labels on 

the edges.  Each vertex is given a name, a letter in the range a...w.   
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Figure 4.1-5 : Doubly Weighted Tree. 
The values of F (x) are written inside the circles representing the processes, 
and the edge between processes x and y is labeled with the value w(x, y).   

 

 

We list just a few results for that example:  

best(r)      = j  

mincost(r) = max {W (r, j),F (j)}  

= max {10, 5} = 10  

best(g)      = i  

mincost(g) = max {W (g, i),F (i)}  

= max {11, 22} = 22  

A more extensive summary of the results will be given in Table 4.2-1 

below.   

4.2 Quadratic Time Algorithm  

We can easily solve the min-max problem with a distributed algorithm 

whose time complexity is O(h2), and whose space complexity per process 

is O(1) per process.  For any x, during the first wave of Iteration(x) of the 
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algorithm, each process y ≥ x calculates W (x, y) and cost(x, y), and then 

sends these values to Chldrn(y).  During the second wave, each y ≥ x 

calculates an intermediate value of mincost(x), which is the minimum 

choice of cost(x, z) for all z ≥ y.  If y>x, then y sends the intermediate 

value up to p(y), while if y = x, the intermediate value is the final value of 

mincost(x).  All intermediate values calculated during this wave, other 

than mincost(x) itself, are deleted to make room for the intermediate 

values of subsequent waves.   

We now give the code for the quadratic time algorithm in algorithmic 

form.   

Define subtree_mincost(x, y) = minz≥y mincost(x, z), the best candidate 

for mincost(x) among the processes z ≥ y.  During the broadcast wave of 

Iteration(x), the values of W (x, y) and cost(x, y) are computed for all y in 

increasing order.  During the convergecast wave of Iteration(x), the values 

of subtree_mincost(x, y) are computed for all y, in decreasing order.  

Finally, when y = x in the convergecast wave, mincost(x) is known.   

 

 

 
1: for all x in top down order do {Iteration (x)} 

2:         W (x, x) ← 0  
3:         cost(x, x) ← F (x)  
4:         for all y such that y>x in top down order do {Broadcast Wave} 
5:                 W (x, y) ← W (x, p(y)) + w(p(y),y)  
6:                 cost(x, y) ← max W (x, y),F (y)  
7:         end for  
8:         for all y such that y ≥ x in bottom up order do {Convergecast Wave} 
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  cost(x, y) 
9:                 subtree_mincost(x, y) ← min  

                                                                     min {subtree_mincost(x, z): z ∈ Chldrn(y)} 
 

10:       end for  
11:       mincost(x) ← subtree_mincost(x, x)  
12: end for  

Table 4.2-1 : Quadratic Time Algorithm for the Min-Max Problem  

 

 

In Table 4.2-1, we omit the message passing details.  As in our 

implementation of BSE, Iteration(x) does not begin until Iteration(p(x)) is 

done, and the convergecast wave of each iteration does not begin until 

the broadcast wave is done.  Figure 4.3-2(a) shows the pattern of these 

waves where h = 5.   

4.3 Critical Levels and the Linear Time Algorithm  

We now give a distributed algorithm for the min-max problem whose 

time complexity is linear, i.e., O(h), although the space complexity is still 

O(1) per process.  In order to accomplish this speed up, we reorganize the 

order of computation, and introduce the concept of a critical_level.   

Define critical_level(y) = min {level(x): cost(x, y)= F (y)}.  Table 4.3-1 

gives the critical level of each process in the chain example.   

 

 

y r        a        b       c       d       e       f       g       h       i    

critical_level(j)  0       0        1       0       2       3       1       4       3       7       

Table 4.3-1 : Critical Levels 
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It is relatively easy to visualize the meaning of critical levels, when cost 

is given in matrix form, as in Figure 4.3-1 

 

 

Figure 4.3-1 : cost matrix. 
The cost matrix shown in Figure 5.4(b).  For each y, x = critical_level(y) 
is the smallest x such that cost(x, y)= F (y), as indicated by a box around 
one entry in each column.   

 

 

The significance of critical levels is that they allow us to speed up the 

distributed algorithm for the min-max problem by an order of magnitude.  

The critical level paradigm depends on a few simple results, given below.   

Lemma 4.1 : If x1 <x2 ≤ y and cost(x1,y)= F (y), then cost(x2,y)= F (y).   

Proof: Suppose cost(x1,y)= F (y); then F (y) − W (x1,y) ≥ 0.  Thus F (y) − 

W (x2,y)= F (y) − W (x1,y)+ W (x1,x2) ≥ W (x1,x2) ≥ 0. 

Corollary 4.2 : If critical_level(y) ≤ x ≤ y, then cost(x, y)= F (y).   

We give the code for the linear time algorithm for the min-max 
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problem in algorithmic form in Table 4.3-2.  The algorithm consists of 

two phases.  During the critical level phase, W (x, y) is computed for all x 

≤ y, and critical_level(y) is computed for all y.  However, the values of W 

are deleted as soon as they are no longer needed in order to save space.   

For each x, the entries of W (x, y) are computed in increasing order of 

y, i.e., left to right in Figure 4.1-4(a).  The rows are chosen in decreasing 

order, i.e., bottom to top.  If W (x, y) ≤ F (y), the value of critical_level(y) is 

set to level(x).   

For each y, the value of critical_level(y) can be set several times, but 

the last value is the correct one.  The final values of critical_level(y) for 

our example are shown in Table 4.3-2 below.   

The iterations are pipelined as soon as Iteration (p(x)) has passed 

process x, Iteration(x) can begin.  The waves of the iterations do not have 

to be synchronous, but they must not collide; process y sends a message 

to p(y) when it is done with Iteration (p(x)), permitting p(y) to send its 

message for Iteration(x).  Thus, all iterations of the phase can be 

completed within 2h time units, where h is the height of T.   

The optimization phase of the linear time algorithm consists of a 

convergecast wave, Iteration(x), for each x.  The order of computation is 

the opposite of that of the critical level phase.  The rows are done in 

bottom-up (decreasing x) order, and each row is done in top down 

(increasing y) order, (i.e., left to right in the matrix shown in Figure 4.1-4 

in the chain case).  During Iteration(x), a process y computes two values, 
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subtree_minF (x, y) and subtree_minW (x, y).  The heart of the critical level 

paradigm is the fact that each z ≥ y contributes either to the computation 

of subtree_minF (x, y) or subtree_minW (x, y), but not both; it decides 

which one by examining its critical level, and that it can make this choice 

without necessarily knowing both candidate solutions.  More specifically:  

 

subtree_minF (x, y)   =   min {F (z): y ≤ z and critical level(z) ≤ level(x)} 

subtree_minW (x, y)  =   min {W (y, z): y ≤ z and critical level(z) > level(x)}  

 

Note that subtree_minW (x, y)= W (y, z) instead of W (x, z), which might 

be the actual value of mincost(x).  This is because y lacks the information 

to compute W (x, z).  When W (y, z) is sent to p(y), then, if p(y) decides to 

keep that value, it adds W (p(y),y) to that value.  If it turns out that z = 

best(x) and cost(x, z)= W (x, z), then subtree_minW (x, x) will equal W (x, z), 

which is the correct choice of mincost(x).   

The waves of the optimization phase are pipelined in the same 

manner as those of the critical level phase, and thus that phase takes no 

more than 2h time units.  Figure 4.3-2 consists of simplified sketches 

comparing the wave structures of the quadratic time and the linear time 

algorithms, in the case that T is a chain.   
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1:  { begin first phase of the linear algorithm } 
2:  for all x in top down order do  
3:          compute level(x)  
4:  end for  
5:  for all x in bottom up order do  
6:          e ← level(x)  
7:          for all y in Tx in top down order do  

8:                  delete W (y, p(x)) { if it exists, to save space } 
9:                  compute W (y, x)  

10:                   if F (y) ≥ W (y, x) then  

11:                       critical level(y) ← e { overwrites any prior value of critical level(y) } 

12:                   end if  
13:            end for  

14:   end for  

15:   { begin second phase of the linear algorithm } 
16:   for all e in increasing order do            
17:          for all y such that level(y) ≥ e in bottom-up order do  

18:             delete subtree_minF (w, e − 1) and subtree_minW (y, e − 1) { if they exist, 
to save space } 

19:               if level(y) ≤ e then 
 
 

   F (y) 
20:                       subtree_minF (y, e) ← min  

   minz∈Chldrn(y) {subtree_minF (z, e)} 

 

21:                       subtree_minW (y, e) ← minz∈Chldrn(y) {W (z, y)+ subtree_minW (z, e)} 

22:               else  

23:                       subtree_minF (y, e) ← minz∈Chldrn(y) {subtree_minF (z, e)} 

24:                       subtree_minW (y, e) ← 0  
25:               end if  

26:               if level(y)= l then   
subtree_minF (y, e) 

27:                       mincost(Ty) ← min  
subtree_minW (y, e)  
 

28:               end if  

29:          end for  

30:  end for  

 

Table 4.3-2 : Linear Time and Space Algorithm for the Min-Max Problem 

 

 

• Line 2 computes level(x) in a straightforward top-down wave: 

level(r)= depth(r) = 0, and level(x)=1+ level(p(x)) for x ≠ r.   

• Lines 5–14 give the code for the main loop of the first phase, 
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which computes all values of critical_level.  The values of W (y, x) 

are computed for this purpose, but are then deleted to save 

space.  If they were all retained, the space complexity of the 

algorithm would be O(h) per process, where h is the height of T.  

Any value of W (y, x) which is part of the final solution will be 

recomputed during the second phase.   

• In Line 9, W (x, x) ← 0, and otherwise W (y, x) ← W (y, p(y)) + W 

(p(y),x).   

• The heart of the linear time and space algorithm is the fact that F 

(y) ≥ W (y, x) if and only if critical level(y) ≤ level(x).  The first phase 

calculates all values of critical_level with O(h2) calculations, 

organized into O(h) waves which take O(h) time each.  Using 

pipelining, all these waves are completed in O(h) time.  By erasing 

values computed by each wave, other than the values of 

critical_level itself, we save space, and maintain space complexity 

of O(1) for each process.   

• The value of critical_level(y) can be reset during any number of 

iterations of the main loop of the first phase.  The correct value 

will be the value assigned during the last iteration for which F (y) 

≥ W (y, x).   

• For each y, the values of subtree_minF (y, e) and subtree_minW (y, 

e) are computed during every iteration for which e ≤ level(y).  In 

Line 19, we delete the values computed during the previous 
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iteration, to save space.   

• In Line 27, we assign the final value for each y, when e = level(y).  

At this point, we offset the value of subtree_minW (y, e) by 

subtracting depth(y).   

The optimization phase of the linear time and space algorithm does 

not begin until the critical level phase is done.  Within each phase, the 

waves (Iterations) are pipelined so that, even though there are h + 1 

waves which take O(h) time each, After each process y = r executes its 

action for Iteration(x) of the critical level phase, y sends a message telling 

p(y) that it is ready to participate in Iteration(p(x)).  Thus, the waves of 

those two iterations do not collide.  Since every message must be 

delivered within one time unit, all iterations of the critical level phase are 

completed within 2h time units.  We can similarly ensure that the waves 

of the optimization phase also do not collide, and that that phase is 

completed within 4h time units.   

Figure 4.3-2(b) shows the pattern of these waves where h = 5.   

 



71 
 

 

Figure 4.3-2 :  Comparison of the algorithms. 
Comparison of quadratic time algorithm (a) and the linear time 
algorithm (b).The algorithms have the same number and length of 
waves, but the linear time algorithm uses pipelining in a way that 
cannot be done by the quadratic time algorithm without overlapping. 

 

 

 

Correctness of the linear time algorithm for the min-max problem 

follows from Corollary 4.2 and from Lemma 4.3 below.   

Lemma 4.3 Suppose (a1,...am) and (b1,...bm) are sequences of elements 

of an ordered set.  Let ci = max {ai,bi} for all 1 ≤ i ≤ n.  Let A = {1 ≤ i ≤ m : ai 

≥ bi}, and B = {1 ≤ i ≤ m : ai <bi}.  Let MA = min {ai : i ∈ A} and MB = min {bi : 

i ∈ B}.  If A = ∅, let MA = ∞ by default, while if B = ∅, let MB = ∞.  Then 

min1≤i≤m ci = min {MA,MB}.   

Proof: If A = ∅, then ci = bi for all i, MA = ∞, and MB = M, and thus we 

are done.  If B = ∅, we are done by a similar argument.   

Otherwise, pick 1 ≤ i, j, k ≤ m such that  

• i ∈ A and ai = MA,  

• j ∈ B and bj = MB,  
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• ck = M.   

 

Then M = ck ≤ ci = ai = MA, and M = ck ≤ cj = bj = MB.  Thus, M ≤ min 

{MA,MB}.   

To prove the converse, suppose that M< min {MA,MB}.  If k ∈ A, then M 

= ck = ak ≥ ai = MA, contradiction.  On the other hand, if k ∈ B, then M = 

ck = bk ≥ bj = MB, contradiction.  This completes the proof of Lemma 4.3.   

Lemma 4.4 The linear time algorithm for the min-max problem is 

correct.   

Proof: We first note that critical_level(y) is defined for each process y, 

since W (y, y)=0 ≤ F (y).   

We next show that the value of critical_level(y), which is stored by the 

process y, is correct after completion of the critical level phase.  Let e be 

the true value of critical_level(y), and let x be the ancestor of y whose level 

is l.  By definition, F (y) ≥ W (x, y), and thus critical_level(y) ← l during 

Iteration(x) of the critical level phase.  Also by definition, F (y) <W (x’,y) for 

all x’<x, and thus critical_level(y) will not be reset during any subsequent 

iteration.   

  F (y) if x ≥ critical level(y) 
By Corollary 4.2, cost(x, y) =      

 W (x, y) otherwise  
 

We now apply Lemma 4.3.  We can conclude that the linear time 

algorithm computes the correct value of mincost(i).   

In Table 4.3-3, we give the input, output, and some intermediate 
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values calculated by the linear time and space algorithm for the instance 

shown in Figure 4.1-1.  We define choice(x) ∈{F, W }.  If mincost(x)= F 

(best(x)), then choice(x)= F.  Otherwise, choice(x)= W.   

 

 

x  r a b c d e f g h i j k l m n o p q s t u v w 

p(x)  r r a b c d d f g h a j k l m n o o l s t u t 

W(x,p(x))  0 6 6 5 7 6 5 5 5 6 4 6 5 5 8 5 3 7 5 2 7 10 13 

F(x)  50 74 46 30 11 18 24 6 30 22 5 50 37 4 25 45 24 32 22 21 8 46 25 

level(x)  0 1 2 3 4 5 5 6 7 8 2 3 4 5 6 7 8 8 5 6 7 8 7 

crt_lev(x)  0 0 0 0 3 2 5 5 2 4 1 0 0 5 2 0 4 3 1 2 6 1 4 

best(x)  j j d d g e g g i i j m m m p p p q u u u v w 

choice(x)  W F W F W F F F F F F W W F F F F F W F F F F 

mincost(x)  10 5 12 11 10 18 6 6 22 22 5 10 5 4 24 24 24 32 9 8 8 46 25 

Table 4.3-3 : Input, output, and some intermediate values 
for the example instance shown in Figure 5.6. 
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In Figure 4.3-3, we show the same tree, where an arrow points from x 

to best(x) for each x.  The label on the arrow is mincost(x).   

 

 

 

Figure 4.3-3 : mincost(x) and best(x) 
Arrows are from x to best(x), and the label on that arrow is mincost(x).   
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CHAPTER 5  

LINEAR TIME ALGORITHMS 

Gfeller et al.  [9] give an O(h)-time algorithm for the all best swap edge 

problem, in the case of Fdiam.  However, their algorithm uses O(h + δx) 

space for a process x.   

In CHAPTERS 5 and 6, we present O(h)-time algorithms for the all best 

swap edges problem, for five of the six measures defined in Section 3.1 

We call these algorithms LINEARdist, LINEARincr, LINEARwght, 

LINEARmax, and LINEARdiam, respectively, and all can be considered to be 

versions of a general algorithm, which we call LINEAR.  The space 

complexity of each of these five algorithms is  O(δx), i.e., each process x 

requires only enough space to store  O(δx) variables (where each variable 

is an integer or a weight) at any given time.  In each case, we achieve the 

speed-up by one or more applications of the critical level paradigm 

introduced in CHAPTER 4.   

• Each of the five algorithms uses the critical level paradigm to 

compute rank(y, y’) for every cross edge {y, y’} of T.  This is the 

only use of the paradigm by LINEARwght, LINEARdist, and 

LINEARincr.   

• LINEARmax and LINEARdiam use the critical level paradigm to 

compute critical_level(x) for each process x.  We explain that 

computation in this Section 6.2.   

• LINEARdiam uses the critical level paradigm to compute 
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special_level(x), which is another version of critical level.  We 

explain that computation in Section 6.6.   

At this point, the reader may ask what, exactly, the critical level 

paradigm is; and what, in particular, qualifies a function to be called a 

critical level?  

We do not give a complete theoretical treatment of critical levels in 

this thesis.  However, in general, a critical level function is a function 

that can be computed top down, which enables another function, whose 

computation would otherwise require independent top down followed by 

bottom up waves for all processes, to be computed in a single bottom up 

wave for each process, thus allowing the waves to be pipelined.  All three 

of the functions used in this thesis, namely rank, critical level, and 

special level, fit this definition.   

Each of the five versions of LINEAR consists of at least three phases.  

The first phase of each algorithm is preprocessing, and the last is 

optimization.  Each of the algorithms also includes one phase for each of 

the one, two, or three critical level computations.   

We will reuse as much notation from Section 3.1 as possible.  In each 

of our versions of LINEAR, the preprocessing phase computes many of 

the same variables computed in the corresponding version of BSE.   

5.1 LINEARdist and LINEARincr  

We do not need to give separate code for LINEARincr, since the all best 
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swap edges problem for Fincr reduces to the problem for Fdist in a trivial 

way, as stated in Lemma 3.1.   

5.2 Overview of LINEAR  

We give the general code for LINEAR in Table 5.2-1 below.  Each of 

our four remaining linear time algorithms is a special case of LINEAR.   

 

 

 
1: Preprocessing phase  
2: Ranking phase  
3: (Possibly other critical level phases)  
4: for 1 ≤ l ≤ d do  

5:       for all y such that level(y) ≥ l in bottom up order do {Wave l} 
6:              Compute up_package(y, l).   
7:              if level(y)= l then  

8:                     Compute swap_edge_cost(y).   
9:              end if  

10:       end for  

11: end for  

Table 5.2-1 : LINEAR 
 

 

Each of the phases uses O(1) space per process, except for the 

ranking phase, which uses O(δx) space for each process x.  The overall 

space complexity of LINEAR is thus O(δx) for each x.   

5.3 The Preprocessing Phase  

In the preprocessing phase (Line 1 of Table 5.2-1), each process x 

computes and retains a list of variables, many of which are the same as 

for BSE.  The exact list depends on which version of LINEAR, but the list 
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always includes index(x).  In the subsection devoted to each individual 

algorithm, we list the variables computed by that phase.   

5.4 The Ranking Phase  

In the second phase (Line 2 of Table 5.2-1), the rank of every cross 

edge is computed.  The rank of a cross edge {x, x’} is defined to be the 

level of the nearest common ancestor, in T, of x and x’, and is stored by 

both x and x’.   

Figure 5.4-1 shows an example network, where tree edges are in bold 

and cross edges are dashed.  The level of each process is indicated, and 

the rank of each cross edge is indicated in color.   

 

 

 

Figure 5.4-1 : Levels of processes (black) and ranks of cross edges (red). 

The purpose of computing ranks is to allow us to more easily identify 

the swap edges of a given process, as stated by Remark 5.1 below.   
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Remark 5.1 If x ≠ r is a process and e’ = {z, z’} is a cross-edge, where z 

∈ Tx, then e’ 
 
is a  swap edge for x if and only if rank(z, z’) < level(x).   

For each 0 ≤ l ≤ d, a top-down wave, which we call Wave l, contains 

the index of the ancestor_index(y)= index(x) if x is the ancestor of y at level 

l.  That wave assigns the value l  to the rank of any cross edge e’ = {y, y’} 

which are swap edges of x.  At the next wave, the value of rank(y, y’) 

could be reassigned, but the last value of rank(y, y’) assigned will be the 

true value.   

All values computed during the ranking phase are deleted as soon as 

they are no longer needed; only the ranks of the edges are retained.  The 

rank of each cross edge will be computed and stored twice, once for each 

end of that edge.  The values computed by the two ends will be the same.   

 

 

 
1: for 0 ≤ l ≤ d in increasing order do {Wave l} 
2:       for all y such that level(y) ≥ l in top-down order do  
3:               if level(y)= l then  
4:                      ancestor_index(y, l) ← index(y)  
5:              else  
6:                           ancestor_index(y, l) ← ancestor index(p(y),l)  
7:              end if  
8:              for all cross edges {y, y’} do  
9:                     if index(y’) ≥ ancestor index(y, l) then  

10:                              rank(y, y’) ← l  
11:                     end if  
12:              end for  
13:       end for  
14: end for  

Table 5.4-1 : Ranking Phase 

Remark 5.2 If rank(x, x’)= l, then, for all l’ ≤ l, the computed value of 

rank(x, x’) will be set to l’ during Wave l’, and thus the final computed 
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value of rank(x, x’) will be l.   

5.5 Optimization Phase  

The code for the optimization phase is given in Lines 4–11 of Table 

5.2-1.  The list of variables in up_package(y, l) depends on the version of 

LINEAR.  In each case, each process y is able to compute up_package(y, 

l) by using the variables stored at y during the earlier phases, as well as 

the variables of up_package(z, l) for all z ∈ Chldrn(y).   

5.6 LINEARdist  

The preprocessing phase of LINEARdist computes size(x), index(x), 

level(x), and depth(x) for all x.  These variables are computed in the same 

manner as given in Section 3.1.  More specifically, depth and level are 

computed in a top down wave, size by a subsequent bottom up wave, and 

then index by another top down wave.   

For any l and any process y such that level(y) ≥ l, up_package(y, l) 

consists of only one variable, namely subtree_mincost(y, l).  Let x be the 

ancestor of y at level l, and let e = {x, p(x)}.  Then subtree_mincost(y, l) is 

defined to be the minimum, over all e’ ∈ SwapEdges(e) such that e’ has 

one end in Ty, of the length of the path in T’ = T − e + e’ from y to r.  Code 

for the computation of subtree_mincost(y, l) is given in Table 6.3.   

 
1: Swap N (y, l) ←{y’ : {y’,y} is a cross edge and rank(y, y’) >l} 
2: for all y’ such that y’ ∈ Swap N (y, l) do  

3:        cost(y, y’) ← w(y, y’)+ depth(y’)  
4: end for    
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                                                  min {cost(y, y’): y’ ∈ Swap N (y, l)} 

5: subtree mincost(y, l) ← min 

                                                          min {w(z, y)+ subtree mincost(z, l):z ∈ Chldrn(y)} 
 

Table 5.6-1 : Computation of subtree_mincost(y, l) in LINEARdist 

 

 

The final step of Wave l is to compute swap edge cost(y) to be 

subtree_mincost(y, l) for all y such that level(y)= l.   

5.7 LINEARwght  

LINEARwght is by far the simplest version of LINEAR we consider.  The 

preprocessing phase computes only size(x) and index(x) for each x, and 

up_package(y, l) consists of only one variable, namely subtree_mincost(y, 

l) = min {w(z, z’): z ∈ Ty and z’ ∈ Swap N (z, l)}, which is computed by  

  

                                              min {w(y, y’): y’ ∈ Swap N (y, l)} 

subtree_mincost(y, l) ←min  

                                              min {subtree_mincost(z, l): z ∈ Chldrn(y)} 
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CHAPTER 6  

LINEARmax and LINEARdiam 

In this section, we describe LINEARmax and LINEARdiam, which have a 

great deal of common computation.   

Suppose level(x)= l, e = {x, p(x)}, y ∈ Tx, and e’ = {y, y’}∈ SwapEdges(e).  

Recall that  

Fmax(T, r, e, e’)= eccTx (y)+ w(y, y’)+ depth(y’)  

and  

Fdiam(T, r, e, e’)= eccTx (y)+ w(y, y’)+ eccT~x (y’)  

Recall that T~x is the subgraph of T obtained by deleting the vertices of 

Tx as well as the edge e.   

In both LINEARmax and LINEARdiam, we would like to compute Fmax(T, 

r, e, e’) or Fdiam(T, r, e, e’), respectively, when Wave(l) of the optimization 

phase reaches y.  In BSE, this is no problem, because the broadcast 

portion of Wave(l) has brought down_package(y, x), which contains the 

data that y needs to compute the function.  However, for LINEAR, there 

is no down package.  At the time y wants to compute the value of the 

function, it does not even know the identity of x (although it knows l).   

Our first problem, common to both algorithms, is to determine 

whether a given cross edge is a member of SwapEdges(x).  Just as in 

CHAPTER 5, we execute the ranking phase, whose code is given in Table 

5.4-1 before the optimization phase.  That phase assigns a rank to every 

cross edge such that {y, y’}∈ SwapEdges(l) if and only if rank(y, y’) <l.   
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Our second problem, also common to both LINEARmax and 

LINEARdiam, is to compute eccTx (y).  Recall, from Section 3.1, that  

 

height(x) 
   eccTx (y) = max  

µ(y, x)  
 

where µ(y, x) is the maximum length of any path in Tx from y to any 

point of Tx − Ty, as defined in Section 3.5 and illustrated in Figure 3.5-3.   

Because LINEAR uses only constant space per edge, we cannot store 

enough information for y to know µ(y, x) for all choices of x.  We solve 

this problem using the paradigm described in CHAPTER 4, executing a 

critical_level phase before the optimization phase; this phase erases all its 

computation except for one number, called the critical_level, at each 

process.  Using that value, y decides whether eccTx (y)= height(y).  If so, 

there is no problem, since all values of height are computed during the 

preprocessing step.  Otherwise, y cannot compute eccTx
 
directly, but 

rather, sends enough information up the tree to enables x to compute 

that value, if needed, when the wave reaches x.   

Our third, and most difficult, problem is encountered only for 

LINEARdiam, and that is to compute eccT~x (y’).  (The last term of the 

formula for Fmax is depth(y’), which is computed during preprocessing.) 

Once again, we are able use the critical level paradigm to define the 

special level (which is also a critical level, using other criteria) for each 



84 
 

process so that it is possible for y compute enough information, and pass 

that information up the tree, for x to be able to compute eccT~x (y’) if e’ is 

the best swap edge for e.  We give the details in Section 6.4 

6.1 LINEARmax  

The preprocessing phase of LINEARmax computes the following 

variables for each process x.   

1.  size(x), index(x), height(x), depth(x), level(x), and η(x), which have the 

same definitions as given in Section 3.1.   

2.  best_child(x), the best child of x, defined to be that y ∈ Chldrn such 

that w(x, y)+ height(y) > w(x, z)+ height(z) for any other child z of x.  

Note that, since we use a strict inequality in this definition, a 

process can have at most one best child.  If Chldrn(x)= ∅, or if there 

is more than one choice of y for which w(x, y)+ height(y) is 

maximum, best_child(x) is undefined.   

3.  We define Normal_Chldrn(x) to be the set of all normal children of x, 

namely all children which are not the best child of x.   

4.  secondary_down_path(x) is defined to be the longest path in Tx that 

starts at x does not pass through best_child(x).  If 

Normal_Chldrn(x)= ∅, we define secondary_down_path(x) to be the 

trivial path at x.  Let secondary height(x)= WT 

(secondary_down_path(x)).   

Note that all of the above variables can be computed with definitely 
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many broadcast and convergecast waves in O(h) total time.   

6.2 Computing eccTx (y)  

We first introduce some additional notation.   

• Spine(x)= {y ∈ Tx : eccTx (y)= depth(y)}.   

• Spine(l)= {Spine(x): level(x)= l}.   

• Up(x)= Tx − Spine(x).   

• Up(l)= {Up(x): level(x)= l}.   

Lemma 6.1 For any process x  

(a) If y ∈ Spine(x) and y = x, then p(y) ∈ Spine(x) and y = best child(p(y)).   

(b) Spine(x) is a chain.   

Proof: We first prove (a).  Suppose p(y) ∈ Spine(x).  Let σ be the longest 

path in Tx from p(y), i.e., W (σ)= eccTx (p(y)).  Since W (σ) > depth(p(y)), we 

know that y’ ∉ σ.  Let τ =(y, p(y)) + σ.  Then  

depth(y) < depth(p(y))  

<W (σ)  

<W (τ )  

≤ eccTx (y)  

and thus y’ ∉Spine(x), contradiction.   

Now, suppose that y is not the best child of p(y).  There exists z ∈ 

Chldrn(p(x)), where z = y and depth(z)+ w(z, p(y)) ≥ depth(y)+ w(y, p(y)).  Let 

σ be the longest path from z to a leaf of Tz, and let τ =(y, p(y)) + (p(y),z)+ σ.  

Then  
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depth(y) < depth(y)+ w(y, p(y))  

≤ depth(z)+ w(z, p(y))  

<W (τ)  

≤ eccTx (y)  

and thus y’ ∉ Spine(x), contradiction.   

Part (b) follows immediately from (a).   

Continuing our list of terms, we let  

• base(x) = the bottom member of Spine(x), i.e., that process in 

Spine(x) of greatest level, which we call the base process of x.   

• Base(l)= {base(x): level(x)= l}  

• tail(x)= best_child(base(x)), the tail process of x, which may or 

may not be defined.   

• Tail(l)= {tail(x): level(x)= l}  

• Fan(x)= Ttail(x).  If tail(x) is undefined, we let Fan(x)= ∅. 

• Fan(l)=Υ {Fan(x): level(x)= l}.   

In Figure 6.2-1 and Figure 6.2-2, we illustrate some of these 

definitions.   
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Figure 6.2-1 : Example of Tx, where tail (x) is defined.Processes of 
Spine(x) are solid black, processes of Fan(x) are cyan, and other 
processes of Up(x) are gold.  The red path in (b) has length eccTx(y), and 
the cyan path in (c) has length eccTx(z). 

 

 

 

Figure 6.2-2 : Example of Tx, where tail (x) is undefined.  Processes of 
Spine(x) are solid black, and processes of Up(x) are gold.  The red path 
in (b) has length eccTx(y), and the red path in (c) has length eccTx(z).   
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We now characterize longest_pathTx (y), the path in Tx from y whose 

weight is eccTx.  Recall that down_path(z)= longest_pathTz (z) for any 

process z, i.e., W (down path(z)= depth(z).   

Lemma 6.2 Let y ∈ Tx.  Let u be the process of minimum level on 

longest_pathTx (y).  Then  

(a) u ∈ Spine(x).   

(b) If y ∈ Fan(x), then longest_pathTx (y) =path (y,u) +  

secondary_down_path (u).   

(c) If y’∈ Fan(l), then longest_pathTx (y)= path(y, u)+ down_path(u).   

 

Proof: Let s be the other end of longest_pathTx (y).  We first prove (a) by 

contradiction.  Suppose u’∈ Spine(x).  Then µ(u, x) > depth(u), which 

implies that up_path(u, x) is longer than path(u, s).  Thus, path(y, u)+ 

up_path(u, x) is longer than longest_pathTx (y), contradiction.   

We now prove (b).  By the definition of u, p(u) does not lie on 

longest_pathTx (y), since best_child(u) lies on path(y, u), path(u, s)= 

secondary_down_path(u), and we are done.   

We now prove (c).  If y ∈ Spine(l), then u = y and longest_pathTx (y)= 

down_path(y), and we are done.  Otherwise, let v be the first member of 

Spine(x) in path(y, u).  Pick z ∈ Chldrn(v) ∩ path(y, v).  Then z ≠ 

best_child(v) since y’∉Fan(x).  Thus, down_path(v)= longest_pathTx (v) does 

not contain z, and hence longest_pathTx (y)= path(y, v)+ down_path(v), and 

u = v, and we are done.   
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The examples shown in Figure 6.2-1(b) and Figure 6.2-2(b) and Figure 

6.2-2(c) illustrate Part (b) of Lemma 6.2, while the example shown in 

Figure 6.2-1(c) illustrates Part (c) of the lemma.   

In LINEARmax, a process y must know whether it is a member of Up(l) 

or Spine(l).  It must also know whether it is in Base(l), and whether it is in 

Tail(l).  These questions can all be answered by y in constant time, 

provided critical_level(y) = min {l : y ∈ Spine(l)}, the critical_level of y, has 

been computed.  We calculate the critical levels using the same 

technique that we used in CHAPTER 4.   

The critical value of a process y enables y to determine whether it lies 

in Up(l) for any given l, as we show in the following lemma.   

 

Lemma 6.3  

(a) If l’ <l, then Up(l) ⊆ Up(l’).   

(b) y ∈ Up(l) if and only if critical_level(x) ≤ l ≤ level(x).   

Proof: To prove (a), pick y ∈ Up(l).  Let x be the ancestor of y at level l, 

and let x’ be the ancestor of x at level l’ (which is also an ancestor of y).  

Then  

eccTx’ (y) ≥ eccTx (y) > depth(y) 

and hence y ∈ Up(l’) by definition.  Part (b) follows immediately.   
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(a)                                (b)                               (c) 
Figure 6.2-3 : illustration of Lemma 6.2 

In the tree shown, the weights of the edges are proportional to vertical 
distance in the figure.  Spine(l) is the union of chains headed by all 
processes at level l.  Processes of Spine(l) are solid black.  Processes of 
Fan(l) are filled in cyan; other processes of Up(l) are filled in gold.  
Processes in Base(l) and Tail(l) are circled in black.  Spine(2), Up(2), and 
Fan(2) are shown in (a).  Spine(3), Up(3), and Fan(3) are shown in (b).  
Note that Up(3) ⊆ Up(2).  The values of critical_level are shown in (c).  
Note that x ∈ Spine(l) if and only if critical_level(x) ≤ l ≤ level(x).   

 

 

In Table 6.2-1, we give the code for the critical level phase.   

 

 

 
1: for 0 ≤ l ≤ d in decreasing order do {Wave l} 
2:       for all x such that level(x)= l concurrently do  

3:            for all y ∈ Tx − x in top down order do  

4:                  p ← p(y)  
5:                  µ(y, x) ← max {µ(p, x)+ w(y, p),η(y)} 

6:                  if µ(y, x) ≤ depth(y) then  

7:                        critical_level(y) ← l  
8:                  end if  

9:             end for  

10:      end for  

11: end for  

 

Table 6.2-1 : Critical Level Phase  
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The waves are pipelined, so that the total time required for the critical 

level phase is only O(h).   

6.3 Optimization Phase of LINEARmax  

For any y such that level(y) ≥ l, y can compute the following.   

• y ∈ Up(l) if and only if critical level(y) ≥ l.   

• y ∈ Spine(l) if and only if critical level(y) <l.   

• y ∈ Base(l) if and only if y ∈ Spine(l), and either best_child(y) ∈ 

Up(l), or best_child(y) is undefined.   

• y ∈ Tail(l) if and only if p(y) ∈ Base(l) and y = best_child(p(y)).   

The optimization phase is a dynamic programming algorithm, where 

up_package(y, l) is the solution to certain sub problems associated with 

the process y during Wave l of the phase.  To understand the steps of the 

optimization phase, we describe the sub problems that must be solved by 

y during Wave l.   

We first define local_cost(y, l) = min {w(y, y’)+ depth(y’): y’ ∈ Swap N (y, 

l)}.   

1.  For y ∈ Up(l), up_package(y, l) contains  

(a) min_up_cost(y, l) = min {local_cost(z, l)+ W (y, z): z ∈ Ty}.   

2.  If y ∈ Spine(y), then up_package(y) contains  

(a) min_normal_cost(y, l) = min { local_cost(z, l)+ W (y, z): z ∈ Ty 

and z ≠ Tbest child(y) } 

(b) min_fan_cost(y, l) = min {local_cost(z, l)+ W (y, z): z ∈ Ty ∩ 



92 
 

Fan(l)}.  (Note that min_fan_cost(y, l)= ∞ if Ty ∩ Fan(l)= ∅.) 

 (c) subtree_mincost(y, l) = min {local_cost(z, l)+ eccTy (z): z ∈ Ty.  } 

At the conclusion of Wave l, we compute swap_edge_cost(x)= 

subtree_mincost(x, l) for all x such that level(x)= l.   

Figure 6.3-1 illustrates some of these functions.  In the case shown, 

level(x)= l = 2.  In Figure 6.3-1 (a), we show a path, in red, whose length 

is min_up_cost(y, 2), and a path, in cyan, whose length is min_up_cost(z, 

2), where y, z ∈ Up(2).  In 7.5(b), y ∈ Spine(2).  We show a path, in red, 

whose length is min_normal_cost(y, 2), and a path, in cyan, whose length 

is min_fan_cost(y, 2).  In 7.5(c), swap edge cost(x)= subtree_mincost(x, 2) is 

the length of the shorter of the two paths (one red, the other cyan) 

shown.   
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Figure 6.3-1 : swap_edge_cost, min_up_cost and min_fan_cost 
Functions in up_package of descendants of x, where level (x) = l = 2.  In 
(a), we show min_up_cost(y, 2) and min_up_cost(z, 2), where y, z ∈ Up(2).  
In (b), we show min_normal_cost(y, 2) and min_fan_cost(y, 2), where y ∈ 
Spine(2).In (c), we show two paths whose lengths are candidates for 
swap_edge_cost(x) = subtree_mincost(x, 2); the smaller of those two 
lengths will be the result. 

 

 

Finally, in Table 6.3-1, we give the code that is executed at Line 6 of 

Table 6.1 in the case of LINEARmax.   

 
1: local_cost(y, l) = min {w(y, y’)+ depth(y’): y’ ∈ Swap N (y, l)} 

2: if y ∈ Up(l) then  
     local_cost(y, l) 

3:     min_up_cost(y, l) ← min  

     min {min_up_cost(z, l): z ∈ Chldrn(y)} 
 

4: else {y ∈ Spine(l)}  
        local_cost(y, l) 

5:     min_normal_cost(y, l) ← min  
       min {min_up_cost(z,l)+ w(y,z): z ∈ Normal_Chldrn(y)} 
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6:     if best_child(y) is defined then  

7:          z ← best child(y)  
8:          if z ∈ Spine(l) then  

9:               min_fan_cost(y, l) ← min_fan_cost(z, l)+ w(z, y)  
10:          else  
11:               min_fan_cost(y, l) ← min_up_cost(z, l)+ w(z, y)  
12:          end if   

 min_normal_cost(y, l)+ height(y)  
13:          subtree_mincost(y, l) ← min    min_fan_cost(y,l) +  secondary_height (y) 

 subtree_mincost(z, l)  
 

14:     else {y = base(x), and tail(x) undefined} 
15:          min_fan_cost(y, l) ←∞  

16:          subtree_mincost(y, l) ← min_normal_cost(y, l)+ height(y)  
17:     end if  
18: end if  

 

Table 6.3-1 : Computation of up package(y, l) for LINEARmax 

 

 

6.3.1. Detailed Explanation of Table 6.3-1 

The best way to understand the code of Table 6.3-1 is to think of it as 

computation of one sub problem of a dynamic programming algorithm.  

Let x be the ancestor of y at level l, and e = {x, p(x)}.  The sub problem is 

to compute all information needed to determine whether some e’ = {z, 

z’}∈ SwapEdges(x) for z ∈ Ty is the best swap edge for x, and if so, the 

value of Fmax(T, r, e, e’).   

Recall that Fmax(T, r, e, e’)= W (longest_pathTx(z)) + w(z, z’)+ depth(z’), 

where e’ = {z, z’}.  If y ∈ Up(l), then the only information that 

up_package(y, l) needs to contain is min_up_cost(y, l), the minimum value 

of W (path(z, y)) + w(z, z’)+ depth(z’) over all z ∈ Ty such that {z, z’}∈ 

SwapEdges(x), i.e., rank(z, z’) >l; local_cost(y, l) is a temporary value used 

in the computation of min_up_cost(y, l).   
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If y ∈ Spine(l) and if Fan(l) ∩ Tx = ∅, then up_package(y, l) also needs 

only one variable, namely subtree_mincost(y, l), which is the minimum 

value of eccTy (z)+ w(z, z’)+ depth(z’) over all {z, z’}∈ SwapEdges(x) such 

that z ∈ Ty.   

If y ∈ Spine(l) and Fan(l) ∩ Tx = ∅, then up_package(y, l) needs two 

variables, subtree_mincost(y, l), as described above, and min_fan_cost(y, 

l), which is the minimum value of W (path(z, y)) + w(z, z’)+ depth(z’) over 

all {z, z’}∈ SwapEdges(x) such that z ∈ Ty ∩ Fan(l).   

At most one of those two values will be needed to compute 

swap_edge_cost(x).  If subtree_mincost(y, l) ≥ min_fan_cost(y, l)+µ(y, x), 

then min_fan_cost(y, l) could be discarded; otherwise subtree_mincost(y, l) 

could be discarded.  But since y does not know the value of µ(y, x), it 

cannot discard either.   

6.4 Overview of LINEARdiam  

Recall that Fdiam(T, r, e, e’)= eccTx (y)+ w(y, y’)+ eccT~x (y’), where e = {x, 

p(x)}, y ∈ Tx, and {y, y’}∈ SwapEdges(x).  LINEARdiam has all the complexity 

of LINEARmax, since it must handle the impossibility of calculating eccTx 

(y) during the optimization phase; it also has additional complexity due 

to the impossibility of calculating eccT~x (y’) during the optimization 

phase.   

We handle the latter problem in the same was the former, namely by 

running a phase which calculates another version of critical level, which 
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we call special level.  If x ∈ C2 and y’ ∈ S1, or if x ∈ C1 and y’ ∉S1, we use 

both the special level of y’
 
and the critical level of y (as computed in Table 

6.2-1) to decide which one of following four formulas for eccTx (y)+ w(y, 

y’)+ eccT~x (y’) has the largest value:  

1. depth(y)+ w(y, y’)+ restr_ecc(y’)  

2. µ(y, x)+ w(y, y’)+ restr_ecc(y’)  

3. depth(y)+ w(y, y’)+ secondary_ecc(y’)  

4. µ(y, x)+ w(y, y’)+ secondary_ecc(y’)  

 

where restr_ecc(y’) and secondary_ecc(y’), defined below, are computed 

during the preprocessing phase.   

Otherwise, we only need to use critical_level(y) to choose among the 

two formulas  

1. depth(y)+ w(y, y’)+ eccTx (y’)  

2. µ(y, x)+ w(y, y’)+ eccTx (y’)  

That decision can be made at the time that up_package(y, l) is 

computed, for l = level(x), despite the fact that only one of the two or four 

choices can actually be computed at the time.   

6.5 The Preprocessing Phase of LINEARdiam  

The preprocessing phase of LINEARdiam computes all the same 

variables as the preprocessing phase of LINEARmax, together with the 

variables in the list that follows.  This list is quite long, and the purpose 
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of some of these variables is obscure.  We will do our best to explain 

them later in the section.   

1. branch(x), provided x ≠ r, which is defined to be that value of i such 

that x ∈ Si.  After height is computed for all processes, the root 

labels its children c1,c2,...  such that hi ≥ hj if i>j, where we define hi 

= w(ci,r)+ height(ci).  The value i is then broadcast to all processes in 

Si.   

2. h1, h2, and h3.  The root knows the values of hi for all i, but only the 

values of hi for i ≤ 3 are broadcast to all processes.   

3. We use the function best_child to define a chain of processes Ci ⊆ 

Si.  Ci contains ci : otherwise, x ∈ Ci. if and only if p(x) ∈ Ci and x = 

best_child(p(x)).   

If x ∈ Si, we compute chain_level(x) to be the level of the closest 

ancestor of x which is in Ci.  More formally, let chain level(ci) = 1; 

for all other x ∈ Si, let p = p(x), and let  

level(x)                 if x = best_child(p) and 
chain_level(p)= level(p) 

chain_level(x)=  
chain_level(p)        otherwise  

 
4. local_µ(x)= µ(x, ci), provided x ≠ r, where x ∈ Si.  Recall the definition 

of µ given in Section 3.5.   

The values of local_µ(x) are computed in a broadcast wave, using 

the definition  
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0 if x = ci 

local_µ(x)=  
w(x, p(x)) + max {local_µ(p(x)),η(x)}   otherwise  

 
5. local_φ(x)= eccSi (x) for all i =1, 2, provided x ∈ Si, the local 

eccentricity of x.  Local eccentricities are computed for all x 

concurrently in O(1) time as follows.   

local_µ(x) 
local_φ(x) = max  

depth(x)  
 

6. avoid(x) for all x ∈ C1 + C2, as defined in Section 3.6.  If x ∈ Ci, then 

avoid(x) is the length of the longest path from r to a leaf of Si which 

avoids x.  We can compute avoid(x) for all x ∈ Si in a broadcast 

wave, as follows:  

0                                                   if x = ci 

avoid(x)=  
max {avoid(p(x)),η(x)+ depth(p(x))}         otherwise  

 
depth(x)+ h2               if x ∈ S1 

7. eccT (x)=  
depth(x)+ h1                    otherwise  

 
The full eccentricity of x.   

depth(x)+ h3             if x ∈ S1 

8. secondary_ecc(x)=  

depth(x)+ h2             otherwise  

 

The secondary eccentricity of x.  Intuitively, the secondary 

eccentricity is the length of the longest path from x, through r, to a 

leaf of T which avoids the largest subtree that does not contain x.   
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eccT −S2(x)              if x ∈ S1 

9. restr_ecc(x)=  

eccT −S1(x)              otherwise  

 

The restricted eccentricity of x.  We compute the restricted 

eccentricity of all x as follows.   

local_φ(x) 
max                                    if x ∈ S1 + S2 

restr_ecc(x)=                            secondary_ecc(x) 
 

secondary_ecc(x)                 otherwise  
 

Intuitively, the restricted eccentricity is the length of the longest 

path from x to a process of T which avoids the largest subtree that 

does not contain x.  (Unlike for the definition of secondary_ecc(x), 

that path need not contain r.)  

Figure 6.5-1 below illustrates the definitions of local_φ(x), eccT (x), and 

restr_ecc(x).   
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Figure 6.5-1 : restricted, local and full eccentricity. 
If x ∈ S1, the local eccentricity of x is the length of the longest path from 
x in S1, shown in brown.  The full eccentricity of x is the length of the 
longest path from x to a point in S2, shown in blue.  The restricted 
eccentricity of x is either the length of the longest path from x to a point 
in S3, shown in magenta, or local_φ(x), whichever is greater. 

 

 

6.6 Special Levels  

We define special_level(x) for all x ≠ r, the special level of x, actually 

another kind of critical level in the sense defined in Section 5.  We use 

special levels to decide among the optional values of eccT~x (y’) during the 

optimization phase of LINEARdiam.   

For any x ∈ C1, we define  

A(x)={ y’ ∉S1 : restr_ecc(y’) ≥ depth(y’)+ avoid(x) } 

B(x)= {y’ ∉ S1 : restr_ecc(y’) < depth(y’)+ avoid(x) } 
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For any x ∈ C2, we define  

A(x)= y’ ∈ S1 : restr_ecc(y’) ≥ depth(y’)+ avoid(x)  

B(x)= y’ ∈ S1 : restr_ecc(y’) < depth(y’)+ avoid(x)  

Finally, let  

A(l)  =      {A(x): level(x)= l} 

B(l)  =      {B(x): level(x)= l}  

special level(y) = min {l : y ∈ B(l)}  

If y ∈ A(l) for all l, we define special_level(y)= ∞.   

Special levels are computed by a phase that is analogous to the 

computation of critical levels.  Computation of special_level(y) for y ∈ S1 is 

slightly different than for other processes, so we write two separate 

algorithms for the phase.   

 

 

 
1: initialize special_level(y) ←∞ for all y ∈ S1 

2: for all x ∈ C2 in bottom-up order do  

3:      l = level(x)  
4:      for all z ∈ C2 which are ancestors of x in bottom-up order do  

5:               copy avoid(x) to z  
6:       end for  

7:      copy avoid(x) to r  
8:      for all y ∈ S1 in top down order do  

9:               copy avoid(x) to y  
10:                if restr ecc(y) < depth(y)+ avoid(x) then  

11:                         special_level(y) ← l  
12:               end if  

13:      end for  

14: end for  

 

Table 6.6-1 : Special Level Phase for S1 
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The code for computing special_level(x) for x ∈ S1 is given in Table 

6.6-1.  The phase consists of pipelined waves, one for each process x of 

C2.  The wave starts at x, passes through r, and then is broadcast down 

to all processes of S1.  The variables of each wave (other than the values 

of special_level(y) are erased after the wave passes.   

The value of special_level(y) could be set, and then reset by successive 

waves.  The last value is the one that is correct.  If Line 11 is never 

executed for a specific y, then special_level(y)= ∞ when the phase is done.   

The code for computing special_level(x) for x’∈ S1, given in Table 6.6-2, 

is very similar.   

 

 

 
1: initialize special level(y) ←∞ for all y ∉S1  

2: for all x ∈ C1 in bottom-up order do  

3:      l = level(x)  
4:      for all z ∈ C1 which are ancestors of x in bottom-up order do  

5:            copy avoid(x) to z  
6:      end for  

7:      for all y ∉  S1 in top down order do  

8:            copy avoid(x) to y  
9:            if restr_ecc(y) > depth(y)+ avoid(x) then  

10:                        special_level(y) ← l  
11:            end if  

12:      end for  

13: end for  

 

Table 6.6-2 : Special Level Phase for Processes Not in S1 

 

 

In Figure 6.6-1 below, we illustrate steps of the computation of 

special_level(x).   
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Figure 6.6-1 : Computation of Special Levels. 
(a) shows the depth of all processes, as well as subtrees S1, S2, and S3.  
(b) shows eccT (x) in blue and restr_ecc(x) in red for all x. 
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(a)                                                           (b) 

 

Figure 6.6-1 : (Continued): (c) shows avoid(x) for all x ∈ C1 + C2 in black, 
and chain_level(x) for all x ∈ S1 + S2 in red.  Processes of C1 + C2 are 
black, and other processes of S1 + S2 are gold.  (d) shows processes of 
the set A(3) in magenta, and processes of the set B(3) in green.   
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(c)                                                       (d) 

 

Figure 6.6-1 : (Continued): (e) shows processes of the set A(4) = A(5) in 
magenta, and processes of the set B(4) = B(5) in green.  (f) shows 
processes of the set A(6) in magenta, and processes of the set B(6) in 
green.   
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(e)                                                                    (f) 
  
Figure 6.6-1 : (Continued): For any l ≥ 7, A(l)= {c1}, and all other pro-
cesses are in B(l), as shown in (g).  (h) shows special level(x) for all x, in 
magenta. 

 

 

6.7 Partition of Swap_N (y, f)  

For any process y and any l ≤ level(y), the set Swap_N (y, l) is 

partitioned, by y, into three sets, C(y, l), E(y, l), and F(y, l).  These sets are 

defined so that, for x the ancestor of y at level l:  
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eccT (y’) if y’ ∈ C(y, l) 

eccT~x (y’)=        restr_ecc(y’) if y’ ∈ D(y, l) 

depth(y’)+ avoid(x) if y’ ∈ E(y, l)  

 
The partition is implemented by y as follows.  For any y’ ∈ Swap_N (y, 

l):  

• If y ∈ S1 and chain_level(y) ≥ l then  

- y’ ∈ C(y, l) if y’ ∈ S1.   

- y’ ∈ D(y, l) if y’ ∉S1 and special level(y’) >l.   

- y’ ∈ E(y, l) if y’ ∉S1 and special level(y’) ≤ l.   

• If y ∈ S2 and chain_level(y) ≥ l then  

- y’ ∈ C(y, l) if y’ ∉S1.   

- y’ ∈ D(y, l) if y’ ∈ S1 and special level(y’) >l.   

- y’ ∈ E(y, l) if y’ ∈ S1 and special level(y’) ≤ l.   

• If y ∈ S1 + S2 and chain level(S) <l, or if y’∈ S1 + S2, then y’ ∈ C(y, l).   

Using that partition, we now give code for the optimization phase of 

LINEARdiam in Table 6.7-1.  We make use of intermediate variables whose 

names are the same as previously defined variables, concatenated with 

C, D, or E.   

We give the complete code of LINEARdiam in Table 6.7-1 

 

 

 

 



108 
 

 
1: for 1 ≤ l ≤ d do  
2:    for all y such that level(y) ≥ l in bottom up order do  
3:        local_costC(y, l) = min {w(y, y’)+ eccTx (y’): y’ ∈  C(y, l)} 
4:        local_costD(y, l) = min {w(y, y’)+ restr ecc(y’): y’ ∈  D(y, l)} 
5:        local_costE(y, l) = min {w(y, y I)+ depth(y’): y’ ∈  D(y, l)} 

6:        if y ∈ Up(l) then  

 
     local_costC(y, l) 

7:             min_up_costC(y, l) ← min  

                                                            min{min_up_costC(z, l): z ∈  Chldrn(y)} 

 
 

    local_costDy, l) 

8:             min_up_costD(y, l) ← min  

                                                       min{min_up_costD(z, l): z ∈  Chldrn(y)} 
 
 

     local_costE(y, l) 

9:             min_up_costE(y, l) ← min  

                                                       min{min_up_costE(z, l): z ∈  Chldrn(y)} 

 

 
10         else {y ∈  Spine(l)}  

 
       local_costC(y, l) 

11:           min_normal_costC(y,l)← min  

            min{min_up_costC(z,l):z∈Normal_Chldrn(y)} 

 
 

       local_costD(y, l) 

12:           min_normal_costD(y,l)← min  

           min{min_up_costD(z,l):z∈Normal_Chldrn(y)} 

 
       local_costE(y, l) 

13:           min_normal_costE(y,l)← min  

            min{min_up_costE(z,l):z∈Normal_Chldrn(y)} 

 
                      

14:            if best_child(y) is defined then  

15:                z ← best child(y)  

16:                if z ∈  Spine(l) then  

17:                     min_fan_costC(y, l) ← min_fan_costC(z, l)+ w(z, y)  

18:                     min_fan_costD(y, l) ← min_fan_costD(z, l)+ w(z, y)  

19:                     min_fan_costE(y, l) ← min_fan_costE(z, l)+ w(z, y)  

20:                else  

21:                     min_fan_costC(y, l) ← min_up_costC(z, l)+ w(z, y)  

22:                     min_fan_costD(y, l) ← min_up_costD(z, l)+ w(z, y)  

23:                     min_fan_costE(y, l) ← min_up_costE(z, l)+ w(z, y)  

24:                end if  
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  min_normal_costC(y, l)+ height(y)  

25:                     subtree_mincostC(y, l)←min    min_fan_costC(y, l)+secondary_height(y)
 

    subtree mincostC(z, l) 

 

 

  min_normal_costD(y, l)+ height(y)  

26:                     subtree_mincostD(y, l)←min    min_fan_costD(y, l)+secondary_height(y)
 

    subtree mincostD(z, l) 

 

  min_normal_costE(y, l)+ height(y)  

27:                     subtree_mincostE(y, l)←min    min_fan_costE(y, l)+secondary_height(y)
 

    subtree mincostE(z, l) 
 

28:            else  

29:                     min_fan_costC(y, l) ←∞  

30:                     min_fan_costD(y, l) ←∞  

31:                     min_fan_costE(y, l) ←∞  

32:                     subtree_mincostC(y, l) ← min_normal_costC(y, l)+ height(y)  

33:                     subtree_mincostD(y, l) ← min_normal_costD(y, l)+ height(y)  

34:                     subtree_mincostE(y, l) ← min_normal_costE(y, l)+ height(y)  

35:            end if  
36:        end if  
37:        if level(y)= l then  

        subtree_mincostC(y, l)  

38:            swap_edge_cost(y) ← min     subtree_mincostD(y, l):
  

       subtree_mincostE(y, l)  
 

39:       end if  
40:     end for  
41: end for  
 

Table 6.7-1 : Optimization Phase of LINEARdiam 

 

 

  

6.7.1. Explanation of Table 6.7-1 

Lines 3–39 of Table 6.7-1 are basically an expansion of Table 6.3-1 to 

take into account the multiple possible formulas for eccT~x (y’) in 

LINEARdiam.  A line of Table 6.3-1 corresponds to up to three lines of 

Table 6.7-1. 
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Line 1 of Table 6.3-1 corresponds to Lines 3–5 of Table 6.7-1 

Line 3 of Table 6.3-1 corresponds to Lines 7–9 of Table 6.7-1.   

Line 5 of Table 6.3-1 corresponds to Lines 11–13 of Table 6.7-1 

Line 9 of Table 6.3-1 corresponds to Lines 17–19 of Table 6.7-1 

Line 11 of Table 6.3-1corresponds to Lines 21–23 of Table 6.7-1 

Line 13 of Table 6.3-1 corresponds to Lines 25–27 of Table 6.7-1 

Line 15 of Table 6.3-1 corresponds to Lines 29–31 of Table 6.7-1 

Line 16 of Table 6.3-1 corresponds to Lines 32–34 of Table 6.7-1 

6.7.2. Summary of LINEARdiam  

Finally, we summarize the algorithm LINEARdiam in Table 6.7-2 below.  

The time complexity of each phase, and hence of LINEARdiam, is O(h), and 

no more than O(δx) variables are stored in any process x at any one time.   

 

 

 
1: Preprocessing Phase.  {Section  6.5} 
2: Ranking Phase.  {Table 5.4-1} 
3: Critical Level Phase.  {Table 6.2-1} 
4: Special Level Phase.  {Table 6.6-1 and Table 6.6-2} 
5: Optimization Phase.  {Table 6.7-1} 

 

Table 6.7-2 : LINEARdiam 
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CHAPTER 7   

CONCLUSION 

This Thesis concentrates on 2-edge connected and weighted 

distributed networks that maintain communication by a spanning tree T. 

The main purpose is the restoration of such a tree should any of the tree 

edges fail. This is resolved by finding a swap edge e’ ∉ T, that gives the 

least cost, to replace the failing edge e. This is done in advance of any 

failure allowing us to be ready and we refer to it as the all best swap 

edges problem. 

We stared off by giving algorithms for the all best swap edges problem 

for six different cost measures. First, we presented an algorithm which 

can be adapted to six cost measures, and which takes O(d2) time, where 

d is the diameter of T. We then presented a novel paradigm for speeding 

up distributed computations under certain conditions. We have applied 

this paradigm to find O(d)-time distributed algorithms for the all best 

swap edge problem for all the cost measures except Fsum.  

As a future research work, we will try to design a linear time 

algorithm for Fsum. We can also investigate possible implementation of 

our protocols with the self-stabilization property.
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