
UNLV Theses, Dissertations, Professional Papers, and Capstones

12-2010

Dynamic distributed programming and applications to swap edge Dynamic distributed programming and applications to swap edge

problem problem

Feven Z. Andemeskel
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer and Systems Architecture Commons, Digital Communications and Networking

Commons, and the OS and Networks Commons

Repository Citation Repository Citation
Andemeskel, Feven Z., "Dynamic distributed programming and applications to swap edge problem"
(2010). UNLV Theses, Dissertations, Professional Papers, and Capstones. 677.
https://digitalscholarship.unlv.edu/thesesdissertations/677

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/677?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

DYNAMIC DISTRIBUTED PROGRAMMING AND APPLICATIONS TO

ALL BEST SWAP EDGES PROBLEM

by

Feven Z. Andemeskel

Bachelor of Science in Computer Science
University of Asmara, Eritrea

July 2006

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

December 2010

Copyright by Feven Z. Andemeskel 2010
All Rights Reserved

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Feven Z. Andemeskel

entitled

Dynamic Distributed Programming and Applications to Swap Edge
Problem

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Ajoy K. Datta, Committee Chair

Lawrence L. Larmore, Committee Member

Yoohwan Kim, Committee Member

Emma E. Regentova, Graduate Faculty Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies
and Dean of the Graduate College

December 2010

iii

ABSTRACT

Dynamic Distributed Programming and Applications to All Best
Swap Edges Problem

by

Feven Z. Andemeskel

Dr. Ajoy K Datta, Examination Committee Chair
Professor of Computer Science
University of Nevada, Las Vegas

Link failure is a common reason for disruption in communication

networks. If communication between processes of a weighted distributed

network is maintained by a spanning tree T, and if one edge e of T fails,

communication can be restored by finding a new spanning tree, T’. If the

network is 2-edge connected, T’ can always be constructed by replacing e

by a single edge, e’, of the network. We refer to e’ as a swap edge of e.

The best swap edge problem is to find the best choice of e’, that is,

that e which causes the new spanning tree T’ to have the least cost,

where cost is measured in a way that is determined by the application.

Two examples of such measures are total weight of T‘ and diameter of T’.

The all best swap edges problem is the problem of determining, in

advance of any failure, the best swap edge for every edge in T. The

justification for this problem is that we wish to be ready, when a failure

occurs, to quickly activate a replacement for the failed edge.

In this thesis, we give algorithms for the all best swap edges problem

for six different cost measures. We first present an algorithm which can

be adapted to all six measures, and which takes O (d2) time, where d is

iv

the diameter of T. This algorithm is essentially a form of distributed

dynamic programming, since we compute the answers to sub problems

at each node of T.

We then present a novel paradigm for speeding up distributed

computations under certain conditions. We apply this paradigm to find

O(d)-time distributed algorithms for the all best swap edge problem for all

but one of our cost measures.

Formal algorithms and their correctness proofs will be given.

iii

ACKNOWLEDGEMENTS

I would like to start off by thanking my advisor and mentor, Dr. Ajoy

K Datta, whose encouragement, guidance, and support have been

invaluable from the initial to the final level of this thesis work. I would

like to express my greatest gratitude to him for his patience, motivation,

enthusiasm, and sincerity throughout my graduate program.

My sincere thanks also goes to Dr. Lawrence L. Larmore for his

remarkable guidance and help in the technical work of my thesis. I

would like to thank members of my committee, Dr. Yoohwan Kim and Dr.

Emma Regentova.

I would like to thank the School of Computer Science for their

financial support through a Graduate Assistantship.

I would also like to thank my loving family, my parents Zemuy

Andemeskel and Alganesh Ande, and my husband Billen Habte for

standing by me.

Last but not least, I thank God who has made all this possible.

iv

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER 1 INTRODUCTION ...1

1.1 Our Contributions ... 1

1.2 Outline of the Thesis .. 2

1.3 Preliminaries ... 3

CHAPTER 2 DISTRIBUTED SYSTEM AND NETWORKS5

2.1 Distributed Systems .. 5

2.2 Spanning Trees .. 6

2.2.1. Minimum Spanning Tree ... 6

2.2.2. Shortest Paths Tree ... 7

2.2.3. Minimum Diameter Tree .. 8

2.3 SWAPPING ALGORITHMS .. 9

2.3.1. MST Node Replacement Problem ... 10

2.3.2. Minimum Diameter Spanning Tree Swap Edge Problem 11

2.4 All Best Swap Edges Problem ... 12

CHAPTER 3 QUADRATIC TIME SWAP EDGE ALGORITHM............... 17

3.1 The Algorithm BSE .. 17

3.2 General Overview of BSE .. 17

3.3 BSEdist and BSEincr ... 25

3.4 BSEwght .. 27

3.5 BSEmax ... 28

3.6 BSEdiam .. 32

3.6.1. Preprocessing Phase of BSEdiam.. 36

3.6.2. Optimization Phase of BSEdiam ... 38

3.6.3. Computation of ecc T~x (y’) .. 39

3.7 BSEsum ... 42

3.8 Implementation and Complexity of BSE ... 44

3.8.1. Messages ... 44

v

3.8.2. Variables Computed during each Wave 45

3.8.3. Message Protocol ... 47

3.8.4. Computation of Variables .. 49

3.8.5. Complexity .. 54

3.9 Complexity Tradeoffs for BSE ... 56

CHAPTER 4 THE CRITICAL LEVEL PARADIGM 58

4.1 The Min-Max Problem .. 58

4.1.1. Chain Example .. 59

4.1.2. General Tree Example ... 61

4.2 Quadratic Time Algorithm .. 62

4.3 Critical Levels and the Linear Time Algorithm 64

CHAPTER 5 LINEAR TIME ALGORITHMS .. 75

5.1 LINEARdist and LINEARincr .. 76

5.2 Overview of LINEAR ... 77

5.3 The Preprocessing Phase.. 77

5.4 The Ranking Phase .. 78

5.5 Optimization Phase .. 80

5.6 LINEARdist .. 80

5.7 LINEARwght ... 81

CHAPTER 6 LINEARMAX AND LINEARDIAM ... 82

6.1 LINEARmax .. 84

6.2 Computing eccTx (y) .. 85

6.3 Optimization Phase of LINEARmax ... 91

6.3.1. Detailed Explanation of Table 6.3-1 ... 94

6.4 Overview of LINEARdiam ... 95

6.5 The Preprocessing Phase of LINEARdiam .. 96

6.6 Special Levels .. 100

6.7 Partition of Swap_N (y, f) .. 106

6.7.1. Explanation of Table 6.7-1 .. 109

6.7.2. Summary of LINEARdiam ... 110

CHAPTER 7 CONCLUSION .. 111

BIBLIOGRAPHY ... 112

vi

VITA .. 115

vii

LIST OF TABLES

Table 2.4-1 F(T,r,e,e’) for various F. .. 16
Table 3.2-1 Optimization Phase of BSE ... 20
Table 3.6-1 Computation of l_sol (y, x) in BSEdiam 39
Table 3.8-1 Variables in Messages of BSE 46
Table 3.8-2 l_sol (y, x) ... 54
Table 4.1-1 Values of mincost(x) and best(x) 61
Table 4.2-1 Quadratic Time Algorithm for the Min-Max Problem 64
Table 4.3-1 Critical Levels ... 64
Table 4.3-2 Linear Time and Space Algorithm 68
Table 4.3-3 Input, output, and some intermediate values 73
Table 5.2-1 LINEAR .. 77
Table 5.4-1 Ranking Phase ... 79
Table 5.6-1 Computation of subtree_mincost(y, l) in LINEARdist 81
Table 6.2-1 Critical Level Phase .. 90
Table 6.3-1 Computation of up package(y, l) for LINEARmax 94
Table 6.6-1 Special Level Phase for S1 ... 101
Table 6.6-2 Special Level Phase for Processes Not in S1 102
Table 6.7-1 Optimization Phase of LINEARdiam 109
Table 6.7-2 LINEARdiam ... 110

viii

LIST OF FIGURES

Figure 2.4-1 Swap Edges .. 14
Figure 2.4-2 Cross Edges .. 16
Figure 3.2-1 Ancestry of processes. ... 19
Figure 3.2-2 Cross edges are shown as dashed. 22
Figure 3.2-3 Computation of down_package. 22
Figure 3.2-4 Children of x compute down_package 22
Figure 3.2-5 Broadcast wave continues. .. 22
Figure 3.2-6 Broadcast wave is completed....................................... 23
Figure 3.2-7 Convergecast continues. ... 23
Figure 3.2-8 Convergecast continues .. 23
Figure 3.2-9 down package and l_sol . .. 23
Figure 3.2-10 Convergecast wave is completed. 24
Figure 3.2-11 solution(x) is computed. .. 24
Figure 3.3-1 l_sol (u, x) .. 26
Figure 3.5-1 Fmax .. 29
Figure 3.5-2 An example where η (x) = 4. ... 30

Figure 3.5-3 An example where µ(y, x) = 4. 31
Figure 3.6-1 Fdiam ... 34
Figure 3.6-2 Swap edge with respect to Fdiam 34
Figure 3.6-3 avoid(x). .. 36
Figure 3.6-4 If i = j, then eccT~x(y’) = depth(y’) + hk. 40
Figure 3.6-5 α , β , γ , and �k ... 41

Figure 3.7-1 Fsum .. 42
Figure 4.1-1 Doubly Weighted Chain .. 59
Figure 4.1-2 cost(x, y) ... 60
Figure 4.1-3 best(x) and cost(x, y). .. 60
Figure 4.1-4 Array W and cost ... 61
Figure 4.1-5 Doubly Weighted Tree. .. 62
Figure 4.3-1 cost matrix. .. 65
Figure 4.3-2 Comparison of the algorithms. 71
Figure 4.3-3 mincost(x) and best(x) .. 74
Figure 5.4-1 Levels of processes and ranks of cross edges 78
Figure 6.2-1 Example of Tx, where tail (x) is defined. 87
Figure 6.2-2 Example of Tx, where tail (x) is undefined. 87
Figure 6.2-3 illustration of Lemma 6.2 .. 90
Figure 6.3-1 swap_edge_cost, min_up_cost and min_fan_cost........... 93
Figure 6.5-1 restricted, local and full eccentricity. 100
Figure 6.6-1 Computation of Special Levels. 103

1

CHAPTER 1

INTRODUCTION

This thesis considers the concept of Swap Edges. This concept has

been around for quite some time and is becoming increasingly popular.

Link failures leading to disconnection of the backbone tree in a network

are quite common. This becomes a serious issue especially in networks

where construction of the backbone tree is expensive. Edge swapping

provides a relatively less expensive way of maintaining communication

through the backbone in the event of such failures. We will first consider

the all best swap edges problem [5], then give a less expensive algorithm

for the same problem. We will consider six measures, Fdist, Fincr, Fwght,

Fmax, Fsum, and Fdiam Detailed explanation of these measures will be given

in later sections.

1.1 Our Contributions

In this thesis, we give an algorithm for the all best swap edges

problem which takes O(h2) time, where h is the unweighted height of T,

i.e., the greatest hop-distance from r to any leaf of T, and uses O(�x) space

for each process x, where �x is the degree of x. This algorithm can be

used for any one of the six measures mentioned above as an input

parameter.

We then give faster algorithms for all but one of the six measures,

namely all except Fsum. Each of these algorithms takes O(h) time, and

2

still uses only O(�) space per process.

1.2 Outline of the Thesis

We will start off this paper by giving a brief introduction to Distributed

Systems and Spanning Trees. We will mention some of the common

Spanning trees in the second section of CHAPTER 2. In the third section

of that chapter we will introduce the concept of Swap Edges. We will give

some examples of Swap edge algorithms that have been developed.

In CHAPTER 3, we present our version of an algorithm presented in

[8] which we call BSE, which solves the all best swap edge problem for

each of the above measures, differing only in detail for the different

measures. BSE requires space for O(�x) variables to be stored at each

process x, where �x is the degree of x. The time complexity of BSE is

O(h2), where h is the number of layers of T, namely the largest hop-

distance from r to a leaf of T. In separate sections of CHAPTER 3, we

describe the details of each of the six versions of BSE, and we summarize

those details Section 3.8.

In CHAPTER 4,we introduce a new technique, called the critical level

paradigm, and in Chapter 5, we present faster algorithms for the all swap

edges problem for some of the measures, i.e., all except Fsum, using the

critical level paradigm. In each case, the space complexity of our

algorithm is O(�x) for each x, and the time complexity is O(h).

3

1.3 Preliminaries

Output. A solution to the best swap edge problem, given any measure

F and any tree edge e, is an ordered pair (F(T, e, e’), e’), where e’ is a swap

edge for e. We order these pairs lexically, so that e’ is a tie-breaker in

the case that there are equally good swap edges for e. A solution to the

all best swap edges problem then consists of such a solution (F(T, e, e’),

e’) for every tree edge e. (By an abuse of notation, we may also refer to

just F(T, e, e’) as the solution.)

We can encode e’ in any convenient manner. For example, if e’ = {z,

z’}, and if processes have unique IDs, we could encode e’ as (id (z), id (z’)).

We could also encode e’ as (index (z), index (z’)), where index (z) is the

ordered pair (pre_index (z), post_index(z)) of integers defined in Section

3.2, whose definition depends only on the topology of T as an ordered

tree and the position of z in that tree; pre_index (z) is the index of z in the

preorder visitation of T, while post_index (z) is the index of z in the

“mirror preorder” visitation obtained by reversing left and right. We

suggest that the latter encoding is better; if that pair is stored at each

end of e, the indices aid in navigation through T, enabling efficient

communication with the processes at the ends of e’, as we explain in

Section 3.2.

Model of Computation. We use the message passing model of

computation. A process x can send messages to any neighbor y, and can

also receive messages from y, i.e., there are two channels, one in each

4

direction, between any pair of neighbors. No message is lost, and any

message sent reaches its destination within one time unit. The FIFO rule

holds for each channel.

We assume that if x receives a message from any neighbor, it reads

that message instantly. We also assume that if x is enabled to change its

variables or send a message to a neighbor, it will do so instantly.

We define the size of a message to be the number of items (IDs,

numbers, or weights) it contains. We define the space complexity of each

process x to be the maximum number of items that x holds at any one

time. In the algorithms we present in this thesis, all messages will have

size O(1), and we will show that the space complexity of any process x is

O(�x), where �x is the degree, i.e., number of neighbors, of x. Our

algorithms will also have the property that no channel holds more than

one message at any given time.

5

CHAPTER 2

DISTRIBUTED SYSTEM AND NETWORKS

In this chapter, we will give a broad idea of Distributed Systems and

Spanning Trees. In the first section, we will give a brief description of

distributed systems. In the second section, we will discuss some of the

very common spanning trees widely used in distributed systems.

2.1 Distributed Systems

A distributed system is a collection of individual computing devices

that can communicate with each other. It encompasses a wide range of

computer systems, ranging from a VLSI chip, to a tightly-coupled shared

memory multiprocessor, to a local-area cluster of workstation, to the

Internet [1]. The motivation for using a distributed system may include

inherently distributed computations, resource sharing, access to

geographically remote data and resources, enhanced reliability, increased

performance/cost ratio, and scalability. Each computer has a memory-

processing unit, and the computers are connected by a communication

network. These processors need to communicate with each other in

order to achieve some level of coordination to complete a task. There are

two types of communication among these processors; Message Passing

and Shared Memory. Shared memory systems are those in which there

is a shared address space throughout the system. Communication

among processors takes place via shared data variables and control

6

variables. In Message passing systems, the processors communicate by

sending and receiving messages through the links in the network.

2.2 Spanning Trees

A spanning tree for a network is a subgraph of the graph representing

the network that is a tree, and contains all the processors of the network.

They are used whenever one wants to find a simple, cheap, yet efficient

way to connect a set of processors. Spanning trees are very common

because they provide a lot of advantages. They create a sparse sub

graph that reflects a lot about the original graph. They play an

important role in designing efficient routing algorithms. They have also

come very handy in solving very popular problems, such as the Steiner

tree problem and, the traveling salesperson problem.

2.2.1. Minimum Spanning Tree

A minimum spanning tree (MST) of a weighted graph G is a spanning

tree of G whose edges sum to minimum weight. In other words, a

minimum spanning tree is a tree formed from a subset of the edges in a

given undirected graph, with two properties: (1) it spans the graph, i.e., it

includes every vertex in the graph, and (2) it is a minimum, i.e., the total

weight of all the edges is as low as possible [10]. Some common

properties of the tree include possible multiplicity (there may be more

than one MST), uniqueness (if each edge has a distinct weight, then there

will only be one unique minimum spanning tree), minimum-cost sub

7

graph (if the weights are non-negative), cycle property (for any cycle C in

the graph, if the weight of an edge e of C is larger than the weights of

other edges of C, then this edge cannot belong to an MST), cut property

(for any cut C in the graph, if the weight of an edge e of C is smaller than

the weights of other edges of C, then this edge belongs to all MSTs of the

graph.), and minimum-cost edge (if the edge of a graph with the minimum

cost e is unique, then this edge is included in any MST).

 The first algorithm for finding a minimum spanning tree was

developed by Czech scientist Otakar Boruvka in 1926. There are now

two algorithms commonly used, Prim's algorithm and Kruskal's

algorithm [10].

MSTs have a wide range of applications, such as Cable TV, Circuit

design, Islands connection, Clustering gene expression data, and

approximations like the traveling salesperson problem.

2.2.2. Shortest Paths Tree

A shortest path tree, in graph theory, is a sub graph of a given

(possibly weighted) graph constructed so that the distance between a

selected root node and all other nodes is minimal. A known problem

with using shortest path tree in network design is cost, reliability, and

bandwidth required at the node. There are two known algorithms for

finding this tree, Djikstra’s algorithm and Bellman–Ford Algorithm.

The shortest-paths tree problem comes up in practice and arises as a

sub problem in many network optimization algorithms. The shortest

8

path tree is widely used in IP multicast and in some of the application-

level multicast routing algorithms.

2.2.3. Minimum Diameter Tree

The minimum diameter spanning tree (MDST) of G is a spanning tree

of minimum diameter among all possible spanning trees. Some of the

known algorithms for finding MDST are based on the fact that any

shortest-paths tree rooted at a center of an MST is a MDST. Thus this

problem can be reduced to finding the absolute center of a graph and

constructing a tree rooted at that center.

Many computer communication networks require nodes to broadcast

information to other nodes for network control purposes, which is done

efficiently by sending messages over a spanning tree of the network. Now

optimizing the worst-case message propagation delays over a spanning

tree is naturally achieved by reducing the diameter to a minimum,

especially in high-speed networks, where the message delay is essentially

equal to the propagation delay. The use of a control structure spanning

the entire network is a fundamental issue in distributed systems and

interconnection networks. Since all distributed total algorithms have a

time complexity O(D), where D is the network diameter, having a

spanning tree of minimum diameter makes it possible to design a wide

variety of time efficient distributed algorithms.

9

2.3 Swapping Algorithms

Survivability of a communication network denotes the ability of the

network to remain operational even if individual network components

(such as a link or even a node) fail. In the past few years, several

survivability problems have been studied extensely [16]. Sparse

Networks are becoming very popular with the arrival of fiber optics

providing a large bandwidth. However Sparse Networks are vulnerable to

failures. Trees are widely used as the backbone for communication in

most networks. However, we have to look out because a single link

failure might disconnect the backbone if that failing link happens to be a

tree edge. Two different approaches can be followed to solve the problem

of a link failure: either rebuilding a new tree from scratch, or using a

single non-tree edge (called a swap edge) to replace the failing link and

reconnect the network, thus obtaining the so-called swap tree.

In the first case, we are guaranteed to have the most efficient tree for

the network, but it is very expensive both in terms of setup costs and of

time complexity for computing a new tree. The new constructed tree may

also be completely different from the initial one, and therefore, the

updating of a large amount of nodes may be necessary. Furthermore,

constructing a tree for every possible link failure in the network is very

inefficient especially if failing link is supposed to be quickly restored.

In cases where link failures are temporary and can be easily restored,

swapping the failing tree edge with another non-tree edge becomes

10

preferable. This saves us a lot of computation, and makes it also easier

to switch back to the old link as soon as it is restored. In the future

sections, we will see swap algorithms for some of the common trees used

in networks.

Swapping algorithms have been studied in two aspects. One is the

AER (All Edge Replacement) algorithm and the second is ANR (All Node

Replacement) algorithm. In the first case, a swap edge is computed for

every tree edge. The second case deals with pre-computing a new tree

should a node fail. This paper focuses on the AER problem. In the next

few sections, we will see some common swapping algorithms that have

been developed.

2.3.1. MST Node Replacement Problem

Both the ANR and AER problems have been extensively studied in

case of MSTs. In the AER problem, it is easy to see that the failing edge

has to be replaced by a minimum weight non-tree edge forming with the

failing edge a fundamental cycle in G (i.e., a cycle containing just a single

non-tree edge). It was originally addressed by Tarjan [16], under the

guise of the sensitivity analysis of an MST. Later Dixon et al. [5]

proposed an optimal deterministic algorithm and a randomized linear

time algorithm, while Booth and Westbrook [2] devised a linear time

algorithm for the special case in which the graph G is planar. An

improved solution was later developed by Nardelli, Proietti, and

Widmayer [13].

11

For the ANR problem, Tsin first presented an algorithm to update an

MST after a single node deletion [17]. A subsequent parallel solution to

ANR is obtained by combining the parallel algorithms presented by

Johnson and Metaxas [11]. A more efficient parallel technique has been

designed by Das and Loui [4]. The more complex problem of updating a

MST with multiple node and edge deletions was also considered by

Cheng, Cimet, and Kumar [3].

A more efficient algorithm later appeared which solved the ANR

problem where the total amount of data items communicated during the

computation (the data complexity) is O(n2). This was a distributed

algorithm with a broadcast and convergecast phases [7].

2.3.2. Minimum Diameter Spanning Tree Swap Edge Problem

Computing all best swaps of a MDST was one of the first swap

problems that were studied. In [15], an algorithm for this problem is

given which requires O(n m) time and O(m) space, where the given

underlying 2-edge-connected communication network G = (V,E) has n =

|V| nodes and m = |E| edges. For each of the n−1 different tree edges,

their algorithm uses somewhat augmented topology trees to select O(m)

best swap candidates, then evaluates the quality of each of the O(m)

candidate swap edges in O(1) amortized time, and selects the best among

them. In order to obtain the O(1) amortized time for computing the

diameter of the swap tree associated with a given swap edge, information

from a preprocessing phase is used, and then combined with an

12

inductive computation that uses path compression.

Later In [9], the problem was solved with an algorithm that computes

all best swap edges of T in O (n*) messages of size O(1) each, and O(D)

time. If the failing edge e =(p(x),x), each node in Tx considers its own local

swap edges for e, then in total all swap edges for e are considered in a

minimum finding process. This has three phases. In a first

preprocessing phase, a root of the MDST is chosen, and various pieces of

information are computed for each node. Then, in a top-down phase,

each node computes and forwards some “enabling information” for each

node in its own subtree. This information is collected and merged in a

third bottom-up phase, during which each node obtains its best local

swap edge for each edge on its path to the root.

2.4 All Best Swap Edges Problem

In this thesis, we consider the all best swap edges problem [14]. We

are given a 2-edge connected positively weighted network X of processes,

together with a spanning tree T of X, rooted at a process r. We will

assume that T is an ordered tree, i.e., the children of any given process

have a given left-to-right order (although the choice of that order is

arbitrary). Let w(x, y) denote the weight of an edge {x, y} of X. If x ≠ r is a

process, we denote the parent of x, in the tree T, by p(x), the set of

children of x by Chldrn(x), and the subtree of T rooted at x by Tx. We also

write WT (x, y) for the weighted length of the path in T between processes

13

x and y.

We refer to an edge of T as a tree edge, and any other edge of X as a

cross edge. Suppose all communication between processes is routed

through T. If one tree edge e fails, we can write e = {x, p(x)} for some

process x, which we call the point of failure. Since X is 2-edge connected,

communication can be restored by replacing e by some cross edge e’

where the ends of e’ lie in different components of T −e. We call such an

edge e’ a swap edge of e, or a swap edge of x, and we define

SwapEdges(e) = SwapEdges(x) to be the set of all swap edges of e. Of all

possible swap edges of e, we would like to choose the best, where “best”

is defined in a manner determined by the application. The all best swap

edges problem is to identify the best swap edge for every tree edge, so

that in case of any edge failure, the best swap edge can be activated

quickly.

In Figure 2.4-1(a) we show a network with a spanning tree T and four

cross edges. The tree edges are solid, while the cross edges, {u, u’}, {v, v’},

{w,w’} and {z, z’}, are dashed. In (b) and (c), we show all swap edges of

two different choices of failed tree edge, namely {x, p(x)} and {y, p(y)}. The

swap edges of x are {u, u’}, {v, v’}, and {w,w’}, shown in (b). The swap

edges of y are {v, v’}, {w,w’}, and {z, z’}, shown in (c).

14

Figure 2.4-1 : Swap Edges
(a): Tree edges are solid, cross edges are dashed. b): Failure at x. {u,
u’}, {v, v’}, and {w,w’} are the swap edges of x. c): Failure at y. {v, v’},
{w,w’}, and {z, z’} are the swap edges of y.

In [8][9], several different criteria for determining “best” are

considered. In each case, the best swap edge for e is that swap edge e’

for which some measure F(T, r, e, e’) is minimized. We consider six such

measures in this thesis. In each case, let T’ = T − e + e’, the spanning

tree of X which results from deleting e and adding e’, and x is the point of

failure, i.e., e = {x, p(x)}.

• Fdist(T, r, e, e’) = WT’(x, r), the distance from the root to the point of

failure in T’.

• Fincr(T, r, e, e’) = max {WT’(u, r) −WT (u, r) : u є Tx}, the maximum

increase of distance from the root to any process when T is replaced

15

by T’. In Section 3.3, we show that minimizing Fincr is equivalent to

minimizing Fdist.

• Fwght(T, r, e, e’) = w(e’), the weight of the swap edge. If T is a

minimum spanning tree of the network X, then T’ = T − e + e’ is a

minimum spanning tree of X − e.

• Fmax(T, r, e, e’) = max {WT’(u, r) : u є Tx}, the maximum distance, in T’,

from the root to any process in Tx, which is the component of T − e

that contains the point of failure. (The distance from the root to any

process in T~x = T − e − Tx, the other component, remains

unchanged.)

• Fsum(T, r, e, e’) =∑uєTx WT’(u, r), the sum of the distances, in T’, from

the root to all processes in Tx.

• Fdiam(T, r, e, e’) = max {WT’(u, v) : u є Tx and v ∉Tx}. Minimizing this

function minimizes the diameter of T’.

If T is a spanning tree of minimum diameter for the network X, then

T’ = T − e + e’ may not be a spanning tree of X − e of minimum diameter,

as the example given in Figure 3.6-1 shows.

In Figure 2.4-2, we illustrate an example where an edge {x, r} has four

swap edges, e’1, e’2, e’3, and e’4. In Table 2.4-1, we give the values of F(T,

r, e, e’) for the six choices of F, where we assume that all edges have

weight 1. Note that in the case of Fdist or Fincr, e’1 is the best swap edge

for e, in the case of Fmax or Fdiam, e’2 is best, and in the case of Fsum, e’3 is

16

best. Since all edges have the same weight, all swap edges are equally

good in the case of Fwght.

Figure 2.4-2 : Cross Edges
We show T in (a). The edge e has four cross edges. In (b), (c), and (d),
we show the resulting tree T’ = T − e + e’ for three choices of e’. We do
not show the case e’ = e’4

F Fdist Fincr Fwght Fmax Fsum Fdiam

F(T, r, e, e'1) 4 3 1 6 34 7

F(T, r, e, e'2) 5 4 1 4 31 5

F(T, r, e, e'3) 6 5 1 6 30 6

F(T, r, e, e'4) 8 7 1 8 42 8

Table 2.4-1 : F(T,r,e,e’) for the network in Figure 2.4-2 for various F.

17

CHAPTER 3

QUADRATIC TIME SWAP EDGE ALGORITHM

3.1 The Algorithm BSE

In [6], Flocchini et al. give an algorithm for solving the all best swap

edge problem using Fdist as the measure. In [8], Flocchini et al. give a

general algorithm which we call BSE, for the all best swap edges

problem, and then give specific versions of the technique to solve the

problem BSE problem using each of the measures Fincr, Fmax, and Fsum. In

[9], Gfeller et al. give an algorithm for the all best swap edge problem,

using the measure Fdiam. Their algorithm is also a version of BSE.

We will write BSEdist, BSEincr, BSEwght, BSEmax, BSEsum, and BSEdiam to

denote the versions of BSE which minimize the measures Fdist, Fincr, Fwght ,

Fmax, Fsum and Fdiam respectively.

The space complexity of BSE is O(�x) for each process x, provided we

measure space not in bits, but in number of values stored, where each

value is a weight, a pointer to a neighbor of x, or an integer which does

not exceed n. The time complexity of BSE is O(h2), since it proceeds in

waves, one for each level l, where 1 ≤ l ≤ h. The level of a process x is

defined to be the hop-distance from x to r. Wave l computes the best

swap edge for all processes at level l, and each wave takes O(h) time.

3.2 General Overview of BSE

BSE consists of two phases, the preprocessing phase and the

18

optimization phase. The preprocessing phase computes variables that will

be needed by processes during the optimization phase. The set of

variables that are computed during preprocessing depends on which of

the six measures we are to minimize, but those variables always include

size(x) and index (x). We compute size(x), the cardinality of Tx, the

subtree of T rooted at x, for all x in one convergecast wave, starting at the

leaves of T.

We define a left-to-right ordering on the children of each process of T.

Then, define index (x) = (pre_index (x), post_index (x)), the index of x,

where pre_index (x) is the order of x in the preorder visitation of T, and

where post_index (x) is the order of x in the reverse postorder visitation of

T. (Reverse postorder visitation T is the same as preorder visitation after

reversing the roles of left and right.)

Indices are used to determine whether a given process is a descendant

of another. We define a partial order, “≤” on ordered pairs of integers; we

say (a, b) ≤ (c, d) if and only if a ≤c and b ≤d. Then x is an ancestor of y,

i.e., y ∈Tx, if and only if index (x) ≤ index (y). Thus, if e’ = {y, y’} is a cross

edge and y ∈Tx, then e’ ∈ SwapEdges(x) if and only if index (x) ≤ index

(y’). In Figure 3.2-1, we show an example of T where each process is

labeled with its index.

Indices also enable delivery of a message packet along the shortest

path in T. Suppose a process x needs to send a packet to another

process y, and x knows the value of index (y). If index (x) ≤ index (y), then

19

x is an ancestor of y, and x sends the packet to whichever of its children

is also an ancestor of y. Otherwise, x sends the packet to its parent.

Once size has been computed, the values of pre_index and post_index

are computed in a single top down wave. Initially, pre_index (r) = 1 and

post_index (r) = 1. Each process chooses an ordering of its children,

which we call left-to-right order. If the children of x are y1, y2,. . . , ym,

then

pre_index (yi) = pre_index (x) + 1 + ∑ size(yj)

 1 ≤ j < i

post_index (yi) = post_index (x) + 1 + ∑ size(yj)

 1 <j ≤ m

Figure 3.2-1 : Ancestry of processes.
Processes are labeled with their indices. A process x
is an ancestor of y if and only if index (x) ≤ index (y).

20

In every case, there are at most O(�x) values to be computed for each

process x, and the time complexity of the preprocessing phase is O(h).

During the optimization phase, The iteration for each process x ≠ r,

which we call Iteration (x), is represented by Lines 2–10 of Table 3.2-1,

and computes the best swap edge for x. Iteration(x) consists of a

broadcast wave starting at x, represented by Lines 2–5 of Table 3.2-1,

followed by a convergecast wave which ends at x, represented by Lines 6–

10. In the broadcast wave, each process y of Tx creates a down package,

using the down package of its parent (unless y = x), and also using

variables computed during preprocessing. The contents of the down

package depend on which of the six measures is being minimized, but it

always includes index (x), since comparison of the index of x with the

index of the farther end of a cross edge determines whether that cross

edge is a swap edge of x.

1: for all x ≠r in top down order do {Iteration (x)}
2: Compute down_package(x, x).
3: for all y ∈Tx− x in top down order do
4: Compute down_package(y, x), using down_package(p(y), x).
5: end for
6: for all y ∈Tx in bottom up order do
7: Compute l_sol (y, x), using down_package(y, x).
8: subtree_mincost (y, x) min {l_sol (y, x), min {subtree_mincost(z, x) : z

∈ Chldrn(y)}}.
9: end for

10: solution(x) subtree_mincost (x, x).
11: end for

Table 3.2-1 : Optimization Phase of BSE

21

During the convergecast wave of Iteration(x), each process y of Tx

computes l_sol (y, x), the minimum cost for any swap edge of x which is

incident to y. During this computation, y makes use of its down

package, as well as variables computed during preprocessing. Then, y

computes subtree_mincost (y, x), the minimum cost for any swap edge of

x which is incident to any process of Ty, by comparing l_sol (y, x) with

subtree_mincost (z, x) for all z ∈ Chldrn(y). Finally, the minimum cost

for any swap edge of x is solution(x) = subtree_mincost (x, x).

The executions of these iterations cannot overlap, i.e., no process can

be participating in more than one of them at a given time. If x1 and x2 are

independent, meaning that Tx1 and Tx2 are disjoint, the computation of

the best swap edges for x1 and x2 can be executed concurrently. On the

other hand, if y ∈Chldrn(x), then Iteration(y) cannot begin until y is

finished with its participation in Iteration(x).

 At the end of Iteration(x), all variables computed by all y ∈Tx, other

than solution(x) itself, are deleted, to make space for the variables of

subsequent iterations. We review this in detail in Section 3.8.

Figure 3.2-2 through Figure 3.2-11, below, illustrate an example of

Iteration(x). Figure 3.2-2 shows a network, with a rooted spanning tree

and several cross edges. Figure 3.2-3 shows the beginning of the

iteration, after Line 2 of the code given in Table 3.2-1 has executed. The

circle around the process x indicates that it has computed

down_package(x, x).

22

Figure 3.2-2 : Cross edges are
shown as dashed.
Point of failure is x.

Figure 3.2-3 : Iteration begins
with computation of
down_package(x, x).

Figure 3.2-4 : Children of x
compute down_package

Figure 3.2-5 : Broadcast wave
continues.
Variables of down_package are
retained until needed.

23

In Figure 3.2-4 through Figure 3.2-6, the broadcast wave spreads to

the leaves of Tx. The small circle around each process y indicates that

down_package(y, x) has been computed.

Figure 3.2-6 : Broadcast wave
is completed.
l_sol is computed for some
leaves.

Figure 3.2-7 : Convergecast
continues.

Figure 3.2-8 : Convergecast
continues

Figure 3.2-9 : down package
and l_sol are deleted when not
needed.

24

In Figure 3.2-6 through Figure 3.2-10, the broadcast wave of the

iteration is illustrated. The double circle around any process y indicates

that y has computed l_sol (y, x) and subtree_mincost (y, x).

Figure 3.2-10 : Convergecast
wave is completed.

Figure 3.2-11 : solution(x) is
computed.
All values of down package
and l_sol have been deleted.

After a process y no longer needs those values, down_package(y, x)

and subtree_mincost (y, x) are deleted. After subtree_mincost (x, x) is

computed, solution(x) is computed, as indicated by the box around x. No

other variable of Iteration(x) is retained by any process of Tx, and thus its

space is free to be used in the next iteration.

BSE takes O(h) time to execute each Iteration(x). Iterations for all

25

processes at a given level can take place concurrently. Since there are h

such levels, the overall time complexity of BSE is O(h2).

3.3 BSEdist and BSEincr

In addition to size(x) and index (x), the preprocessing phase of BSEdist

computes depth(x) = WT (x, r) for all x.

In the broadcast portion of Iteration(x), down_package(x) consists of

the variables index (x) and WT (y, x). Line 4 of Table 3.2-1 is then

executed by y simply copying the value of index (x) from p(y), and by

computing WT (y, x) = w(y, p(y)) +WT (p(y), x).

Line 8 of Table 3.2-1 is then executed by y by first computing the

length of the shortest path from y to r which uses a swap edge of x

incident to y, and then comparing this value to subtree_mincost (z, x) for

all z ∈ Chldrn(y):

1. Compute l_sol (y, x) = min {WT (y, x) + w(y, y’) + depth(y’) : {y, y’} ∈

SwapEdges(x)}

2. Compute subtree_mincost (y, x) = min { l_sol (y, x), min

{subtree_mincost (z, x) : z ∈ Chldrn(y)}}

Finally, solution(x) = subtree_mincost (x, x).

Figure 3.3-1 illustrates computation of l_sol (y, x) and solution(x) for

Fdist. We assume all edge weights are 1. In (a), y = u, WT (u, x) = 2,

depth(u’) = 3, and l_sol (u, x) = 6. In (b), y = v, WT (v, x) = 1, depth(v’) = 2,

and l_sol (v, x) = 4. Other possible swap edges are not shown; they would

26

give larger values of l_sol (y, x). Then solution(x) = 4, the smallest value of

l_sol (y, x).

Figure 3.3-1 : l_sol (u, x)
All edge weights are 1. Then l_sol (u, x) = 6, and solution(x) = l_sol (v,x) = 4.

 We do not need to separately describe an algorithm which

minimizes Fincr, since the best swap edge for Fdist is also the best swap

edge for Fincr, as stated in Lemma 3.1.

 Lemma 3.1 For any tree edge e = {x, p(x)} and any swap edge e’ of e,

Fincr (T, r, e, e’) = Fdist (T, r, e, e’) − depth(x).

Proof: Since x ∈Tx, Fincr (T, r, e, e’) ≥ WT’(x, r) −WT (x, r) = Fdist (T, r, e, e’)

− depth(x).

27

To prove the converse, let e’ = {z, z’}, where z ∈Tx,and pick y ∈Tx such

that Fincr (T, r, e, e’) = WT’(y, r) −WT (y, r).Then

Fincr(T, r, e, e’) = WT’(y, r) −WT (y, r)

= WT’(y, r) −WT (x, r) −WT (y, x)

≤ WT’(x, r) +WT’(y, x) −WT (x, r) −WT (y, x)

= WT’(x, r) +WT (y, x) −WT (x, r) −WT (y, x)

= WT’(x, r) − depth(x)

= Fdist(T, r, e, e’) − depth(x)

and we are done.

3.4 BSEwght

BSEwght is the simplest of our six versions of BSE. F(T, r, e, e’) = w(e’),

and thus all BSEwght needs to do is find the swap edge of e of smallest

weight.

The preprocessing phase of BSEwght computes only size(x) and index (x)

for all x, and down_package(y, x) contains only the variable index (x).

 Line 4 of Table 3.2-1 is then executed by y simply copying the value

of index (x) from p(y).

Line 8 of Table 3.2-1 is then executed by y by first computing smallest

weight of any swap edge of x incident to y, i.e., min {w(y, y’) : {y, y’} ∈

SwapEdges(x)}, and then comparing this value to subtree_mincost (z, x)

for all z ∈ Chldrn(y):

1. Compute l_sol (y, x) = min {w(y, y’) : {y, y’} ∈ SwapEdges(x)}

28

2. Compute subtree_mincost (y, x) = min { l_sol (y, x), min

{subtree_mincost (z, x) : z ∈ Chldrn(y)}}

Finally, solution(x) = subtree_mincost (x, x).

If T is a minimum spanning tree of X and e’ is the best swap edge for

e, then T’ = T − e + e’ is a minimum spanning tree of X − e. This follows

from the fact that e’ is a swap edge of e if and only if the ends of e’ lie in

two different components of T − e, and the well-known result that, if an

edge of the minimum spanning tree of a weighted graph is deleted, and if

the graph remains connected, then a new minimum spanning tree is

formed by adding the edge of minimum weight that does not create a

cycle.

3.5 BSEmax

For any weighted network Y and any process x of Y, we define eccY (x) =

max u∈Y WY (x, u), the eccentricity of x in Y. Recall that Fmax (T, r, e, e’) =

depth(y’) + w(e’) + eccTx(y), where e = {x, p(x)} and e’ = {y, y’} is a swap

edge of e, and y ∈ Tx. We illustrate Fmax (T, r, e, e’) in Figure 3.5-1.

29

Figure 3.5-1 : Fmax
We show T in (a), together with some cross edges. In (b) we show Fmax
(T, r, e, e1’) and in (c) we show Fmax (T, r, e, e2’), where e1’= {u, u’} and
e2’= {v, v’}.

Besides size(x) and index (x), the preprocessing phase of BSEmax

computes

1. depth(x).

2. height(x) = eccTx(x), the largest weight of any path from x to a leaf of

Tx.

3. If x ≠ r, η (x) = max {WT (p(x), u) : u ∈ Tp(x) − Tx }, the largest weight of

any path in Tp(x) − Tx from p(x) to a leaf of Tp(x) We can also write η (x) =

eccTp(x) – Tx (p(x)). We illustrate an example of η (x) in Figure 3.5-2.

All values of depth are computed in a broadcast wave, and all values

30

of height are computed in a convergecast wave. Once height has been

computed for all processes, all values of η can be computed

simultaneously in O(1) time, since η (x) = max {w(y, p(x)) + height(y) : y ∈

Chldrn(p(x)) − x}.

For notational convenience, we write

• pathT (x, y) = the path in T from x to y. We will write path(x, y) if

T is understood.

• longest_pathT (x) = the longest path in T starting at x. Thus, WT

(longest_pathT) = eccT(x),

• down_path(x) = longest_pathTx (x) the longest path from x to a

leaf of Tx. Thus, WT (down_path(x))=height(x).

Figure 3.5-2 : An example where η (x) = 4.

We assume that all edge weights are 1.

31

For any process x and any y ∈Tx, define µ(y, x) = max {WT (y, u) : u ∈Tx

– Ty }.Then µ(x, x) = 0, and, for y ≠ x, we can write µ(y, x) = eccY (x), where

Y is the network Tx – Ty + {y, p(y)}. Intuitively, µ(y, x) is the length of the

longest path in Tx which starts at y and avoids all children of y. We

illustrate an example of µ(y, x) in Figure 3.5-3.

For any process x and any y ∈Tx, define φ (y, x) = eccTx (y), = max

{height(y), µ(y, x)}, since the longest path in Tx which starts at y must

either go down to a leaf of Ty or up through p(y).

Figure 3.5-3 : An example where µ(y, x) = 4.
We assume that all edge weights are 1.

32

For each x and y ∈Tx, down_package(y, x) consists of the variables

index (x) and µ(y, x). In Line 2 of Table 3.2-1 for Fmax, we already have

index (x) from the preprocessing phase. We let µ(x, x) = 0. To execute

Line 4, y simply copies index (x) from its parent, and computes µ(y, x) =

w(y, p(y)) + max {η (y), µ(p(y), x)}.

Computation of l_sol (y, x) depends on the fact that φ (y, x) is the

maximum of height(y) and µ(y, x). In Line 8 of Table 3.2-1, y computes

φ (y, x) = eccTx(y) = max {height(y), µ(y, x)}, and then l_sol (y, x) = min

{depth(y’) + w(y, y’) + φ (y, x) : {y, y’} ∈ SwapEdges(x)}.

3.6 BSEdiam

The original goal of BSEdiam is to find, for each tree edge e, the swap

edge e’ which minimizes the diameter of T’ = T − e+e’. But Fdiam is defined

to maximize the length of any path from a point in Tx to a point in T~x,

rather than the diameter of T’. However, minimizing Fdiam minimizes the

diameter of T’, as we state in Lemma 3.2 below.

Lemma 3.2 If e is a tree edge of T, and if e’ ∈ SwapEdges(e) is chosen

to minimize Fdiam(T, r, e, e’), then e’ is also a choice of swap edge of e

which minimizes the diameter of T’ = T − e + e’.

Proof: Write e = {x, p(x)}. Let A and B be the diameters of Tx and T~x,

respectively, and let C’ = Fdiam (T, r, e, e’).Then diam(T’), the diameter of T’,

is equal to max {A,B,C’}. Pick e’’ ∈ SwapEdges(e) to minimize the

33

diameter of T’’ = T − e + e’’, and let C’’ = Fdiam(T, r, e, e’’). By definition,

diam(T’’) ≤ diam(T’), Since C’ ≤ C’’, by definition of e’, we also have

diam(T’’) = max {A,B,C’’} ≥ diam(T’). Thus, e’ is also an optimal choice of

swap edge to minimize the diameter of the resultant tree.

We say that a process c of Y is a center of Y if eccY (c) ≤ eccY (x) for any

process x of Y. If Y is a tree, then the center (or centers) of Y can be

computed by a distributed algorithm in O(diam(Y)) time using O(�x) space

per process x, where space is defined in terms of number of items, rather

than bits [12]. We will assume that r is the center of T; if we are given a

rooted tree where the root is not the center, we first apply the algorithm

[12] to redefine the root to be the center.

If e = {x, p(x)} is a tree edge and e’ = {z, z’} is a swap edge of e, let T’ =

T − e + e’. Then we define Fdiam(T, r, e, e’) = eccTx(z) + w(z, z’) + eccT~x(z’).

 If T is a spanning tree of minimum diameter for the network X, then

T’ = T – e + e’ may not be a spanning tree of X − e of minimum diameter,

as the example given in Figure 3.6-1 shows.

34

Figure 3.6-1 : Fdiam
Network X with four processes and five edges is shown in (a). Let all
edge weights be 1. The minimum diameter spanning tree T shown in (a)
has diameter 2. In (b), let e = {x, r}. The swap edge for e which
minimizes Fdiam is e’ = {x, y}, and the resulting tree T’ = T − e + e’ has
diameter 3. However, the minimum diameter spanning tree of X − e has
diameter 2, as shown in (c).

Figure 3.6-2 : Swap edge with respect to Fdiam
T is shown in (a). The failure point is x, and the swap edge is e’. In (b),
the path whose length is Fdiam(T, e, e’) is indicated by heavy lines.

In Figure 3.6-2(a), we show T, e = {x, p(x)}, and one cross edge, e’ = {z,

35

z’}. In Figure 3.6-2(b), we show T’ = T −e+e’. The heavy edges show the

path whose length is Fdiam(T, r, e, e’), consisting of the longest path in Tx

starting at z, the longest path in T~x starting at z’, and the swap edge.

We now give some additional definitions which are needed to describe

BSEdiam.

• A weighted tree graph always has either one or two centers. We

will assume that r is one of those centers. Let Chldrn(r) = {c1,. . .

cm}, where m = �r. Let S be the network obtained from T by deleting

r and all edges of T incident to r. Then S is the disjoint union of m

trees, S1,. . . Sm, where Si is rooted at ci.

• For 1 ≤ i ≤ m, we define hi = w(r, ci) + height(ci), the largest weight of

any path from r to a leaf of Si. Without loss of generality, the

values of hi are monotone decreasing, i.e., hi ≥ hi+1 for 1 ≤ i < m.

Thus, in particular, h1 = h = height(r).

• For any 1 ≤ i ≤ m and any x ∈ Si, we define avoid(x) to be the

largest weight of any path from r to a leaf of Si which avoids, i.e.,

does not contain, x. If no such path exists, we let avoid(x) = 0.

36

Figure 3.6-3 : avoid(x).
Let all edge weights be 1. Then h1 = 7, h2 = 6, and h3 = 2. The
magenta path is the longest path from r through c1 that avoids x,
and thus avoid(x) = 4.

We can compute avoid(x) for all x in O(h) time, in a broadcast wave. If

x = ci for some i, then avoid(x) = 0. Otherwise, avoid(x) = max {avoid(p(x),

η (p(x) + depth(p(x))}.

3.6.1. Preprocessing Phase of BSEdiam

The preprocessing phase of BSEdiam computes the following variables

for each process x.

1. size(x).

2. index (x).

37

3. height(x).

4. depth(x).

5. η (x) = max {WT (p(x), u) : u ∈Tp(x) – Tx , as defined in Section 3.5.

6. branch(x), provided x ≠ r, which is defined to be that value of i such

that x ∈Si.

7. h1, h2, and h3. If c3 does not exist, i.e., �r = 2, we let h3 = 0.

8. Recall the definitions of µ and φ given in Section 3.5.

(a) local_µ(x) = µ(x, ci) where x ∈ Si. This is the length of the

longest path in Si starting from x which avoids Chldrn(x).

(b) local_φ (x) = φ (x, ci) = eccSi(x) where x ∈ Si. This is the length

of the longest path in Si starting from x, and thus equal to

max {local_µ(x), height(x)}.

9. avoid(x) for x ≠ r.

The values of size and index are computed in one convergecast wave

followed by one broadcast wave. The values of height are computed in a

convergecast wave, and the values of depth in a broadcast wave.

After the values of height have been computed, r assigns indices to its

children, using the rule that height(ci+1) ≤ height(ci), and then assigns

branch(ci) = i. The values of branch(x) for all other x ≠ r are then

assigned to all processes in a broadcast wave, since branch(x) =

branch(p(x)).

The values of hi are computed by r. The largest three of those values,

namely hi for i = 1, 2, 3, are broadcast to all processes.

38

Once height(x) has been computed for all x, all values of η can be

computed in O(1) time. The values branch(ci) = i are assigned by r to its

children, and r also computes hi for i ≤ 3. The value of branch(ci) is simply

broadcast to all processes in Si, and the values hi for i ≤ 3 are simply

broadcast to all processes.

Once height(x) has been computed for all x, all values of local_µ can be

computed in a broadcast wave, using the appropriate version of a

formula given in Section 3.5, namely local_µ(x) = w(x, p(x)) + max {η (x),

local_µ(p(x))}.

Once local_µ(x) has been computed for all x, local_φ (x) = max

{local_µ(x), height(x)} can be computed for all x in O(1) time altogether.

The values of avoid(x) for x ≠ r are computed in a broadcast wave. Let

avoid(ci) = 0. For all other x, compute avoid(x) = max {avoid(p(x), η (x) +

depth(p(x))}.

3.6.2. Optimization Phase of BSEdiam

For all x ≠ r and all y ∈Tx, down_package(y, x) consists of index (x) and

µ(y, x).

If y ≠ x, then y computes index (x) from its parent. The variable µ(y, x)

is computed by y in the same manner as given in Section 3.5, and φ (y, x)

= max {µ(y, x), height(y)}.

Execution of Line 8 of Table 3.2-1 for BSEdiam is far more complex

than for BSE for any of the other measures. For that reason, we give the

code for that execution in algorithmic form in Table 3.6-1 below.

39

1: for all y’ such that {y’, y} ∈ SwapEdges(x) do
2: i branch(y)
3: j branch(y’)
4: k the smallest positive integer which is neither i nor j
5: if i = j then
6: eccT~x(y’) depth(y’) + hk

7: else

8: eccT~x(y’) max {local_φ (y’), depth(y’) + avoid(x), depth(y’) + hk}

9: end if

10: cost(y, y’, x) φ (y, x) + w(y, y’) + eccT~x(y’)

11: end for
12: l_sol (y, x) min {cost(y, y’, x) : {y, y’} ∈ SwapEdges(x)}

Table 3.6-1 : Computation of l_sol (y, x) in BSEdiam

3.6.3. Computation of ecc T~x (y’)

We now explain the computation of ecc T~x (y’), the eccentricity of y’ in

the subgraph T~x. Let i = branch(y) and j = branch(y’), and let k be the

smallest positive integer which is neither i nor j. We consider the two

cases: i = j and i ≠ j.

If i = j, then the longest path in T~x from y’ runs from y’ to r, then from

r to the farthest leaf of Sk, as shown in Figure 3.6-4. If i ≠ j, let α be the

longest path in Sj from y’, i.e., the path whose length is eccSj (y’), let β be

the path from y’ to r, let γ be the longest path from r to a leaf of Si which

avoids x, and �k the longest path from r to a leaf of Sk. (If k = 3 and S3 =

we take �k to be the trivial path at r.) The paths α , β , γ , and �k are

illustrated in Figure 3.6-5(a). The path whose length is ecc T~x (y’) is α ,

β +�k or β +γ whichever is longer. The three possibilities are illustrated

in Figure 3.6-5(b)–(d).

40

Figure 3.6-4 : If i = j, then eccT~x(y’) = depth(y’) + hk.

41

Figure 3.6-5 : α , β , γ , and �k

If i ≠ j, eccT~x(y’) is the maximum length of any path in T~x = T−Tx from y’.

In (a), we show α , the longest path in Sj from y’; β , the path from y’ to

r; γ the longest path from r to a process in Si which avoids x, and �k , the

longest path from r to a leaf of Sk. The maximum length path in T~x =
T−Tx from y’ is one of three possibilities, shown in (b)–(d) with heavy
lines. In (b), we show α , in (c) we show β + �k , and in (d) we show β

+ γ .

42

3.7 BSEsum

For any weighted network Y and any process x in Y, we define

path_sumY (x) =∑u∈Y WY (x, u), the path sum of x in Y, the sum of the

shortest weights of paths from x to all processes of Y. Fsum(T, r, e, e’) =

path_sumTx∪ v(r), where v is a virtual edge (not an edge of the original

network) from y to r of length WT’(r, y). We illustrate Tx∪ v in Figure

3.7-1.

Figure 3.7-1 : Fsum
The network Tx∪ v, where v is a virtual edge of length depth(y’)+w(y, y’)
from y to r, where y ∈ Tx and e’ = {y, y’} is a swap edge of x. Fsum(T, r, e,
e’) is the sum of the lengths of the red lines.

43

For convenience, we introduce shorter notation for certain instances

of path_sumY (x):

• For any process x, let sum(x) = path_sumTx(x) =∑u∈Tx WT (u, x).

• For any process x ≠ r, let θ (x) = path_sumTp(x)−Tx (p(x)) =∑u∈Tp(x)-Tx WT

(u, y).

• For any processes x and y ∈Tx, let ν (y, x) = path_sumTx−Ty (y)

=∑u∈Tx-Ty WT (u, x).

• For any processes x and y ∈Tx, let ψ (y, x) = path_sumTx(y) =∑u∈Tx

WT (u, y).

Note that ψ (y, x) = ν (y, x) + sum(y) for y ∈Tx.

The implementation of BSEsum depends on the following observation.

Lemma 3.3 : If y ∈Tx. and e’ = {y, y’} is a swap edge of e = {x, p(x)},

then

Fsum(T, r, e, e’) = size(x) * (depth(y’) + w(y, y’)) + ψ (y, x)

Proof: Let T’ = T − e + e’. Then

Fsum(T, r, e, e’) = ∑ WT’ (r,u)
u ∈Tx

= ∑ (WT’ (r,y) - WT (y,u))
u ∈Tx

= size(x) ·WT’(r, y) + ∑ WT (y,u)
u ∈Tx

= size(x) ·(depth(y’) + w(y, y’)) + ψ (y, x)

During the preprocessing phase of BSEsum, we compute size(x), index

(x), and sum(x) for all x. The values of sum(x) are computed in a

44

convergecast wave. If x is a leaf, then sum(x) = 0. Otherwise, sum(x) =

∑y∈Chldrn(x) (size(y) · w(x, y) + sum(y)).

For each x and y∈Tx, down_package(y, x) consists of the variables

size(x), index (x), and ν (y, x).

Note that

ν (y, x) = w(y, p(y)) · (size(x) − size(y)) + θ (y) + ν (p(y), x)

 ψ (y, x) = sum(y) + ν (y, x)

In Line 8 of Table 3.2-1, y computes

l_sol (y, x) = min{ size(x) ·(depth(y’) + w(y, y’)) + path_sumTx(y) : {y, y’}

∈SwapEdges(x).

3.8 Implementation and Complexity of BSE

We now detail the implementation of BSE, in such a way as to ensure

the complexity results outlined in Section 3.1. The computation of BSE

is primarily organized into either broadcast (topdown from r) or

convergecast (bottom-up from the leaves of T) waves. Each process x

knows its neighbors, N(x), and the weight w(x, y) of the edge to each y ∈

N(x). Furthermore, x knows its parent in T, p(x), and its children in T,

Chldrn(x), and thus x knows Cross_N(x), the set of all neighbors x’ of x

such that {x, x’} is a cross edge. We also assume an ordering on

Chldrn(x), although the choice of that ordering is arbitrary.

3.8.1. Messages

BSE is implemented using eight species of messages. Six of those

45

eight messages are packets of values, which can vary depending on

which of the six functions is used as the measure. Two of the messages,

PRE_DONE and OPT_DONE, carry no values.

1. PRE_DOWN_I is the message sent by each process to its children

during the first broadcast wave of the preprocessing phase.

2. PRE_UP is the message sent by each process, except r, to its

parent during the convergecast wave of the preprocessing phase.

3. PRE_DOWN_II is the message sent by each process to its children

during the second broadcast wave of the preprocessing phase.

4. CROSS(x) is the message sent by a process x to each of its cross

neighbors.

5. PRE_DOWN is the message sent by each process, except r, to its

parent to indicate that it is done with the preprocessing phase.

6. OPT_DOWN(x) is the message sent by each process in Tx to its

children during the broadcast wave Iteration(x) of the optimization phase.

7. OPT_UP(x) is the message sent by each process in Tx, other than x,

to its parent, during the convergecast wave of Iteration(x) of the

optimization phase. At the end of this wave, x computes its best swap

edge.

8. OPT_DONE(x) is the message sent by x to each y ∈ Chldrn(x) to

inform y that Iteration(x) is done, and to start Iteration(y).

3.8.2. Variables Computed during each Wave

In Table 3.8-1, we show which variables of each process are computed

46

during each wave of BSE.

Message /
Wave

BSEdist BSEincr BSEwght BSEmax BSEdiam BSEsum

PRE_DOWN_I
First

Preprocessin
g depth depth (none) depth depth depth

Broadcast
Wave

PRE_UP
Preprocessin

g
Convergecast

Wave

size
height
 size

size
height
size

height
 size

height
size
sum

index

 η

PRE_DOWN_I
I Second

Preprocess-
ing

Broadcast
Wave

index index index
index
η

branch h1,
h2, h3

local_µ
avoid

local_ φ

index θ

index (x)

CROSS(x) index (x)
depth(x)

index (x)
depth(x)

index (x) index (x)
depth(x)

depth(x)
local_φ(x)
branch(x)

index (x)
depth(x)

OPT_DOWN(x
) Broadcast

Wave of
Iteration(x) y

∈ Tx

index (x)
WT (y,x)

index (x)
WT (y,x)

index (x)
index (x)

µ(y,x) φ(y,x)
index (x)

µ(y,x) φ(y,x)

size(x)
index (x)

ν(y,x) ψ(y,x)

OPT_UP(x)
Convergecast

Wave l_sol (y,x) l_sol (y,x) l_sol (y,x) l_sol (y,x) l_sol (y,x) l_sol (y,x)
of Iteration(x)

y ∈ Tx
subtree_
mincost

(y,x)

subtree_
mincost

(y,x)

subtree_mi
ncost (y,x)

subtree_mi
ncost (y,x)

subtree_mi
ncost (y,x)

subtree_mi
ncost (y,x)

Table 3.8-1 : Variables in Messages of BSE

47

3.8.3. Message Protocol

We now show the protocol which guides the timing of the waves of

BSE. Each process is either in the preprocessing mode or the

optimization mode. We assume that the algorithm is initiated by r, and

that all processes are initially in the preprocessing mode. In the case of

BSEdiam, we also assume that r is the center of T, as explained in Section

3.6.

Below, we list which messages each process must receive before

sending a given message. Of course, a process cannot send any message

until after it has computed the variables that it needs to include in that

message; however, we have assumed that that computation is done

instantly.

1. Preprocessing Phase. Processes retain all values computed or read

during the preprocessing phase.

a) (First Broadcast Wave.)

i. r sends PRE_DOWN_I to its children.

ii. For x ≠ r, when x receives PRE_DOWN_I from its parent, x sends

PRE_DOWN_I to its children.

b) (Convergecast Wave.)

i. For x ≠ r, when x has received PRE_DOWN_I from its parent and

PRE_UP from all its children, x sends PRE_UP to its parent.

c) (Second Broadcast Wave.)

i. When r receives PRE_UP from all its children, r sends

48

PRE_DOWN_II to all its children.

ii. For x ≠ r, when x receives PRE_DOWN_II from its parent, x

sends PRE_DOWN_II to all its children and PRE_DONE to its

parent.

d) (Cross.) For all x, when x has received PRE_DOWN_II from its

parent (if any) and PRE_DONE from all its children, x sends

CROSS(x) to each of its cross neighbors. After x has sent CROSS

to, and also received CROSS(x’) from, each x’ ∈ Cross_N(x), x

enters the optimization mode.

2. Optimization Phase.

a) (Broadcast Wave.)

i. When r is in the optimization mode, r initiates Iteration(r) by

sending OPT_DOWN(r) to all its children.

ii. For x ≠ r, when x has received OPT_DONE(p(x)) from its parent

and is in the optimization mode, x initiates Iteration(x) by

sending OPT_DOWN(x) to all its children.

iii. For y ≠ r, if y is in the optimization mode and y has received

OPT_DOWN(x) from its parent, then y sends OPT_DOWN(x) to

all its children.

b. (Convergecast Wave.)

i. For y ≠ x, when y has received OPT_DOWN(x) from its parent

and OPT_UP(x) from all its children, y sends OPT_UP(x) to its

parent and deletes all variables it has computed during

49

Iteration(x).

ii. When x receives OPT_UP(x) from all its children, x sends

OPT_DONE (x) to all its children, then computes solution(x) and

deletes all other variables it has computed during Iteration(x).

3.8.4. Computation of Variables

In Section 3.8.3, we did not mention the calculations a process must

make before sending a message. We now explain those calculations in

detail.

• Computation of depth. Initially, depth(r) 0. The message

PRE_DOWN_I sent by a process x to its children contains the value

of depth(x). When x receives PRE_DOWN_I from its parent, it

computes depth(x) w(x, p(x)) + depth(p(x)).

• Computation of height, in all cases except BSEdist and BSEwght. The

message PRE_UP sent by a process x to its parent contains height(x).

If x is a leaf of T, then height(x) 0. Otherwise, when x receives

PRE_UP from all its children, x computes

height(x) max {w(x, y) + height(y) : y ∈ Chldrn(x)}.

• Computation of size. The message PRE_UP sent by a process x to its

parent contains size(x). If x is a leaf of T, then size(x) 1.

Otherwise, when x receives PRE_UP from all its children, x computes

size(x) 1 + ∑y∈Chldrn(x) size(y).

• Computation of index. The message PRE_DOWN_II sent by a process

x to each child y contains index (y), while r computes index (r) (1,

50

1). When a process x knows the value of index (x), then x computes

index (y) for all y ∈Chldrn(x). If x is not a leaf, let Chldrn(x) = {y1,. . . ,

ym}. Then x computes

pre_index (yi) = pre_index (x) + 1 + ∑ size(yj)
i≤ j <i

post index (yi) = post_index (x) + 1 +∑ size(yj)
 i <j≤m

and index (yi) = (pre_index(yi), post index (yi)).

• Computation of sum, in the case BSEsum. The message PRE_UP sent

by a process x to its parent contains sum(x). If x is a leaf of T, then

sum(x) 0. Otherwise, when x receives PRE_UP from all its

children, x computes sum(x) ∑y∈Chldrn(x) (size(y) · w(y, x) +

sum(y)).

• Computation of η , in the cases BSEmax, BSEdiam, and BSEsum. The

message PRE_DOWN_II sent by a process x to each child y contains

η (y). At the beginning of the second preprocessing broadcast wave,

η (r) 0. Each x computes η (y) max y∈Chldrn(x)-{y}{w(x, z) +

height(z)} for each y ∈ Chldrn(x). If Chldrn(x) = {y}, then η (y) 0.

• Computation of branch, h1, h2, h3, local_µ, avoid, and local_φ in the

case of BSEdiam. Recall that branch(r), local_µ(r), avoid(r), and

local_φ (r) are undefined, while h1, h2 and h3 are constants; these are

computed by r and then sent to all other processes in the second

51

preprocessing down wave.

Let Chldrn(r) = {c1, c2,. . . , cm} and hi = w(r, ci) + height(ci), indexed

such that hi ≥ hi+1 for all 1 ≤ i < m. If m = 2, we let h3 = 0. When r

receives PRE_UP from all its children, it sends h1, h2 and h3 to all its

children in the message PRE_DOWN_II. Also, for each i, r computes

branch(ci) i, local_µ(ci) 0, avoid(ci) 0, and local_φ (ci)

height(ci), and sends those values to ci in PRE_DOWN_II.

For x ≠ r, when x receives PRE_DOWN_II from p(x), it has the values

of branch(x), h1, h2, h3, local_µ(x), avoid(x), and local_φ (x). For each y

∈ Chldrn(x), x sends the values h1, h2, h3 to y in the message

PRE_DOWN_II, as well as the following values which x computes:

1. branch(y) branch(x).

2. local_µ(y) w(x, y) + max local_µ(x)

 η (y)

3. avoid(y) max avoid(x)

depth(x) + η (y)

4. local_φ (y) max local_µ(y)

height(y)

• Computation of θ , in the case BSEsum. The message PRE_DOWN_II

sent by a process x to each child y contains θ (y). At the beginning of

52

the second preprocessing broadcast wave, θ (r) 0. Each x

computes θ (y) ∑y∈Chldrn(x)-(y) (w(x, z) + sum(z)) for each y ∈

Chldrn(x). If Chldrn(x) = {y}, then θ (y) 0.

• The message CROSS(x) from a process x to x’ ∈ Cross_N(x) contains

information that x’ needs during the optimization phase. CROSS(x)

contains index (x), and, in all cases except BSEwght, it contains

depth(x). In the case of BSEdiam, it also contains branch(x) and

local_φ (x).

• The message OPT_DOWN(x) from any process y ∈ Tx to any z ∈

Chldrn(x) contains the value index (x). In the case BSEsum, the

message also contains size(x).

• Computation of WT(y, x), for BSEdist and BSEincr. Each process x

computes WT (x, x) 0. The message OPT_DOWN(x) from any

process y ∈ Tx to any z ∈ Chldrn(y) contains the value WT(y, x).

When z ∈ Chldrn(x) receives the message OPT_DOWN(x) from y, then

z computes WT(z,x) w(z, y) +WT (y, x).

• Computation of µ(y, x) and φ (y, x), for BSEmax and BSEdiam. Each

process x computes µ(x, x) 0. The message OPT_DOWN(x) from

any process y ∈ Tx to any z ∈ Chldrn(x) contains the value µ(y, x),

and y computes φ (y, x) max {µ(y, x), height(y)}.

• After z ∈ Chldrn(y) receives the message OPT_DOWN(x) from y, then

z computes µ(z, x) max {w(z, y) + µ(y, x), η (z)}.

53

• Computation of ν (y, x), for BSEsum. Each process x computes ν (x,

x) 0. The message OPT_DOWN(x) from any process y ∈ Tx to any

z ∈ Chldrn(x) contains the value ν (y, x). When z ∈ Chldrn(y)

receives the message OPT_DOWN(x) from y, then z computes ν (z, x)

w(z, y) · (size(x) − size(z)) + θ (z) + ν (y, x)

• Computation of l_sol (y, x). For y ∈ Tx, define Swap_N(y, x) = {y’ ∈

Cross_N(y) : y’ ∉ Tx}. Recall that we can determine whether y’ ∈ Tx

by comparing index (y’) and index (x), both of which are known to y

after y receives CROSS from y’; and either y = x, or y has received

OPT_DOWN(x) from p(y). If Swap_N(y, x) = 0/ , y assigns l_sol (y, x)

the default value 1. Otherwise, y computes l_sol (y, x), an ordered

pair, in each case as given in Table 3.8-2.

54

Table 3.8-2 : l_sol (y, x)
Value of l_sol (y, x) computed by y during Iteration(x) of the optimization
broadcast wave. Note that l_sol (y, x) is an ordered pair, where the second
member is a swap edge of x. In the case of BSEdiam, let i = branch(y), j =
branch(y’), and k the smallest positive integer not equal to i or j. If i = j,
eccT~x(y’) = depth(y’) + hk. If i ≠ j, eccT~x(y’) = max {local_µ(y’), depth(y’) + hk,
depth(y’) + avoid(x)}

• Computation of subtree_mincost (y, x). After y receives the message

OPT_UP(x) from all its children,y computes subtree_mincost (y, x)

min{l_sol(y, x), min{ min z ∈ Chldrn(y) subtree_mincost (z, x)

• Computation of solution(x). After a process x has received the

message OPT_UP(x) from all its children, x computes solution(x)

subtree_mincost (x, x)

3.8.5. Complexity

In this section, we prove that BSE satisfies the desired complexity

bounds. Let n be the number of processes of the network, m the number

of edges, and �x the degree of any given process x. Let h be the hop-

Case l_sol(y, x)

BSEdist min {(WT (y, x) + w(y, y’) + depth(y’), {y, y’}) : y’ ∈ Swap N (y, x)}

BSEincr
min {(WT (y, x) + w(y, y’) + depth(y’) − depth(x), {y, y’}) : y’ ∈ Swap_N (y,

x)}

BSEwght min {(w(y, y’), {y, y’}) : y’ ∈ Swap_N (y, x)}

BSEmax min {(φ(y, x) + w(y, y’) + depth(y’), {y, y’}) : y’ ∈ Swap_N (y, x)}

BSEdiam min {(φ(y, x) + w(y, y’) + eccT~x (y’), {y, y’}) : y’ ∈ Swap N (y, x)} where

eccT~x (y’) is as explained in Section 3.6

BSEsum min {(ψ(y, x) + size(x) · (w(y, y’) + depth(y’)), {y, y’}) : y’ ∈ Swap_N (y, x)}

55

height of T, and let n* be the number of edges of the transitive closure of

T, i.e.,the number of pairs (y, x) such that y ∈ Tx. (Note that n* = O(nh).)

We measure space by number of items rather than number of bits.

An item can be an integer, a distance (sum of weights of edges), or an ID

of a process.

Lemma 3.4

(A) The time complexity of BSE is O(h2).

(B) The size of each message is O(1).

(C) The space complexity of a process x is O(δx).

(D) The number of messages in each channel at any given time does not

exceed 1.

(E) The total number of messages sent during the execution of BSE is

O(m + n*).

Proof: (A): Each wave moves at least one level up or down T in each

time unit, and hence finishes within h time units, and there are O(h)

waves.

(B): The variables carried in a broadcast or convergecast wave are

listed in Table 3.8-1. The message CROSS contains O(1) variables, and

the other messages carry no variables.

(C): A process x needs O(1) space to store the variables received from

one member of Cross_N (x), and Cross_N (x) has cardinality at most δx.

The space needed by x to store the computations of the preprocessing

phase is O(1). During each iteration of the optimization phase, x stores

56

O(1) temporary variables, but erases all of them at the end of the

iteration. The only information that x retains from the optimization

phase is solution(x), which takes O(1) space.

(D): We consider an edge to have two channels, one in each direction.

A cross edge channel carries only one message altogether. No wave can

be started by a process until the previous wave has passed that process;

this rule is enforced by the messages PRE_DONE and OPT_DONE(x)

(E): The number of CROSS messages is 2m. Each process, other than

r receives exactly one message of type PRE DOWN_I, PRE_DOWN_II, and

OPT_DONE, while each process, other than r, sends exactly one message

of type PRE_UP and PRE_DONE. The number of message sent during

the optimization broadcast waves totals n*, as does The number of

message sent during the optimization convergecast waves. The total

number of messages is thus 2m +2n* + 5(n − 1).

3.9 Complexity Tradeoffs for BSE

There are tradeoffs between space and time complexities of BSE. For

example, Gfeller et al. implement BSEdiam in O(h) time units, where the

space complexity of each process x is O(h+δx), and still have O(m + n*)

messages, of size O(1) each. Alternatively, by allowing messages of O(h +

δx), the number of messages can be reduced to O(n + m).

In CHAPTER 4, we introduce a new technique, which we call the

critical level paradigm. This technique involves precomputation of l_sol(y,

57

x) for all x and all y ∈ Tx, followed by identification of critical levels for

each y. The values of l_sol(y, x) are then deleted to save space; pipelining

permits all calculations to be done without exceeding the O(δx) space

capacity of each process x. In CHAPTER 5, we use this new paradigm to

solve the all best swap edges problem in O(h) time with O(m + n*)

messages of size O(1) each, and space complexity O(δx) for each x, such

that no channel holds more than one message at a time. The solutions

given in that section cover the measures Fdist, Fincr, Fwght, Fmax, and Fdiam,

but not Fsum.

58

CHAPTER 4

THE CRITICAL LEVEL PARADIGM

In CHAPTERS 5 and 6, we present linear time algorithms for all

measures given in Section 3.1, except Fsum. In each case, we overcome

the need for alternating broadcast and convergecast waves by making

use of the concept of critical levels, which we introduce in Section 4.3

below. The heart of the critical level paradigm is that critical levels are

pre-computed during the critical level phase of the algorithm, and that,

during the optimization phase, a process uses its critical level to choose

which of two candidate values to retain, without necessarily being able to

evaluate both of them.

Critical levels are used in several different ways in the various linear

time algorithms, sometimes in different ways within the same algorithm.

Our linear time algorithms for Fdist and Fwght each use critical levels in

just one way. However, our linear time algorithm for Fmax uses critical

levels in two different ways, and our linear time algorithm for Fdiam uses

critical levels in three different ways.

4.1 The Min-Max Problem

In general, the critical level paradigm is used when the goal is to find

the minimum of maxima. We first consider a very simple application.

Suppose we have a tree T of processes, rooted at r, where each process x

has a weight, F (x), and there is a non-negatively weighted edge, with

59

weight w(x, y), between x and y if x and y are neighbors. We call this a

doubly weighted rooted tree. We let W (x, y) be the (weighted) length of

the path in T from x to y.

We write x ≤ y if x is an ancestor of y, x<y if x is a proper ancestor of y.

If x ≤ y, define cost(x, y) = max {W (x, y),F (y)}. The output of the min-max

problem is the value of mincost(x) = min {cost(x, y): x ≤ y}.

Required Output. The required output for the minmax problem is for

each process x to compute mincost(x) = min {cost(x, y): y ≥ x}. We define

best(x) to be equal to that y ≥ x for which cost(x, y)= mincost(x). It is a

fairly straightforward to augment any algorithm that computes

mincost(x), using well-known data structure techniques, so that it also

computes best(x). To simplify our exposition, we will not detail these

augmentations.

We now consider two instances of the min-max problem. In Section

4.1.1, we consider an example where T is a chain, while in Section 4.1.2,

we consider a more general case of a doubly weighted rooted tree.

4.1.1. Chain Example

We first consider the special case that T is a chain. Figure 4.1-1

shows an example.

Figure 4.1-1 : Doubly Weighted Chain

60

Figure 4.1-2 : cost(x, y)
W (b, e) = 36, W (d, f) = 14, F (e) = 33, and F (f) = 16. Thus cost(b, e) = 36 and
cost(d, f) = 16.

Figure 4.1-3 : best(x) and cost(x, y).
Arrows indicate the choices of y = best(x) for each x. The arrows above the line
indicate cases where cost(x, y)= W (x, y), while the arrows below the line indicate
cases where cost(x, y)= F (y).

Figure 4.1-3 shows an arrow from x to best(x) for each x in the

example shown in Figure 4.1-1. The values of mincost(x) and best(x) are

shown in Table 4.1-1 below.

x r a b c d e f g h i

mincost(x) 39 38 36 26 16 11 10 8 8 8

best(x) b e e g g g g i i i

61

Table 4.1-1 : Values of mincost(x) and best(x)

If T is a chain, we can reduce the min-max problem to the problem of

finding all row minima of a triangular matrix. In Figure 4.1-4(a), we

show the array of values of W (x, y) for all x ≤ y, while In Figure 4.1-4(b),

we show the array of values of cost(x, y) for all x ≤ y, for our chain

example. In both arrays, x is the row index and y is the column index.

Then mincost(x) is the minimum entry in row x the cost matrix, while

best(x) is the index of the column in which that entry is found.

Figure 4.1-4 : Array W is shown in (a), and cost in (b), for our chain example

4.1.2. General Tree Example

We now consider an instance of the min-max problem where T is not a

chain, illustrated in Figure 4.1-5. The values of F are enclosed in the

circles representing the vertices, and the edge weights are the labels on

the edges. Each vertex is given a name, a letter in the range a...w.

62

Figure 4.1-5 : Doubly Weighted Tree.
The values of F (x) are written inside the circles representing the processes,
and the edge between processes x and y is labeled with the value w(x, y).

We list just a few results for that example:

best(r) = j

mincost(r) = max {W (r, j),F (j)}

= max {10, 5} = 10

best(g) = i

mincost(g) = max {W (g, i),F (i)}

= max {11, 22} = 22

A more extensive summary of the results will be given in Table 4.2-1

below.

4.2 Quadratic Time Algorithm

We can easily solve the min-max problem with a distributed algorithm

whose time complexity is O(h2), and whose space complexity per process

is O(1) per process. For any x, during the first wave of Iteration(x) of the

63

algorithm, each process y ≥ x calculates W (x, y) and cost(x, y), and then

sends these values to Chldrn(y). During the second wave, each y ≥ x

calculates an intermediate value of mincost(x), which is the minimum

choice of cost(x, z) for all z ≥ y. If y>x, then y sends the intermediate

value up to p(y), while if y = x, the intermediate value is the final value of

mincost(x). All intermediate values calculated during this wave, other

than mincost(x) itself, are deleted to make room for the intermediate

values of subsequent waves.

We now give the code for the quadratic time algorithm in algorithmic

form.

Define subtree_mincost(x, y) = minz≥y mincost(x, z), the best candidate

for mincost(x) among the processes z ≥ y. During the broadcast wave of

Iteration(x), the values of W (x, y) and cost(x, y) are computed for all y in

increasing order. During the convergecast wave of Iteration(x), the values

of subtree_mincost(x, y) are computed for all y, in decreasing order.

Finally, when y = x in the convergecast wave, mincost(x) is known.

1: for all x in top down order do {Iteration (x)}

2: W (x, x) ← 0
3: cost(x, x) ← F (x)
4: for all y such that y>x in top down order do {Broadcast Wave}
5: W (x, y) ← W (x, p(y)) + w(p(y),y)
6: cost(x, y) ← max W (x, y),F (y)
7: end for
8: for all y such that y ≥ x in bottom up order do {Convergecast Wave}

64

 cost(x, y)
9: subtree_mincost(x, y) ← min

 min {subtree_mincost(x, z): z ∈ Chldrn(y)}

10: end for
11: mincost(x) ← subtree_mincost(x, x)
12: end for

Table 4.2-1 : Quadratic Time Algorithm for the Min-Max Problem

In Table 4.2-1, we omit the message passing details. As in our

implementation of BSE, Iteration(x) does not begin until Iteration(p(x)) is

done, and the convergecast wave of each iteration does not begin until

the broadcast wave is done. Figure 4.3-2(a) shows the pattern of these

waves where h = 5.

4.3 Critical Levels and the Linear Time Algorithm

We now give a distributed algorithm for the min-max problem whose

time complexity is linear, i.e., O(h), although the space complexity is still

O(1) per process. In order to accomplish this speed up, we reorganize the

order of computation, and introduce the concept of a critical_level.

Define critical_level(y) = min {level(x): cost(x, y)= F (y)}. Table 4.3-1

gives the critical level of each process in the chain example.

y r a b c d e f g h i

critical_level(j) 0 0 1 0 2 3 1 4 3 7

Table 4.3-1 : Critical Levels

65

It is relatively easy to visualize the meaning of critical levels, when cost

is given in matrix form, as in Figure 4.3-1

Figure 4.3-1 : cost matrix.
The cost matrix shown in Figure 5.4(b). For each y, x = critical_level(y)
is the smallest x such that cost(x, y)= F (y), as indicated by a box around
one entry in each column.

The significance of critical levels is that they allow us to speed up the

distributed algorithm for the min-max problem by an order of magnitude.

The critical level paradigm depends on a few simple results, given below.

Lemma 4.1 : If x1 <x2 ≤ y and cost(x1,y)= F (y), then cost(x2,y)= F (y).

Proof: Suppose cost(x1,y)= F (y); then F (y) − W (x1,y) ≥ 0. Thus F (y) −

W (x2,y)= F (y) − W (x1,y)+ W (x1,x2) ≥ W (x1,x2) ≥ 0.

Corollary 4.2 : If critical_level(y) ≤ x ≤ y, then cost(x, y)= F (y).

We give the code for the linear time algorithm for the min-max

66

problem in algorithmic form in Table 4.3-2. The algorithm consists of

two phases. During the critical level phase, W (x, y) is computed for all x

≤ y, and critical_level(y) is computed for all y. However, the values of W

are deleted as soon as they are no longer needed in order to save space.

For each x, the entries of W (x, y) are computed in increasing order of

y, i.e., left to right in Figure 4.1-4(a). The rows are chosen in decreasing

order, i.e., bottom to top. If W (x, y) ≤ F (y), the value of critical_level(y) is

set to level(x).

For each y, the value of critical_level(y) can be set several times, but

the last value is the correct one. The final values of critical_level(y) for

our example are shown in Table 4.3-2 below.

The iterations are pipelined as soon as Iteration (p(x)) has passed

process x, Iteration(x) can begin. The waves of the iterations do not have

to be synchronous, but they must not collide; process y sends a message

to p(y) when it is done with Iteration (p(x)), permitting p(y) to send its

message for Iteration(x). Thus, all iterations of the phase can be

completed within 2h time units, where h is the height of T.

The optimization phase of the linear time algorithm consists of a

convergecast wave, Iteration(x), for each x. The order of computation is

the opposite of that of the critical level phase. The rows are done in

bottom-up (decreasing x) order, and each row is done in top down

(increasing y) order, (i.e., left to right in the matrix shown in Figure 4.1-4

in the chain case). During Iteration(x), a process y computes two values,

67

subtree_minF (x, y) and subtree_minW (x, y). The heart of the critical level

paradigm is the fact that each z ≥ y contributes either to the computation

of subtree_minF (x, y) or subtree_minW (x, y), but not both; it decides

which one by examining its critical level, and that it can make this choice

without necessarily knowing both candidate solutions. More specifically:

subtree_minF (x, y) = min {F (z): y ≤ z and critical level(z) ≤ level(x)}

subtree_minW (x, y) = min {W (y, z): y ≤ z and critical level(z) > level(x)}

Note that subtree_minW (x, y)= W (y, z) instead of W (x, z), which might

be the actual value of mincost(x). This is because y lacks the information

to compute W (x, z). When W (y, z) is sent to p(y), then, if p(y) decides to

keep that value, it adds W (p(y),y) to that value. If it turns out that z =

best(x) and cost(x, z)= W (x, z), then subtree_minW (x, x) will equal W (x, z),

which is the correct choice of mincost(x).

The waves of the optimization phase are pipelined in the same

manner as those of the critical level phase, and thus that phase takes no

more than 2h time units. Figure 4.3-2 consists of simplified sketches

comparing the wave structures of the quadratic time and the linear time

algorithms, in the case that T is a chain.

68

1: { begin first phase of the linear algorithm }
2: for all x in top down order do
3: compute level(x)
4: end for
5: for all x in bottom up order do
6: e ← level(x)
7: for all y in Tx in top down order do

8: delete W (y, p(x)) { if it exists, to save space }
9: compute W (y, x)

10: if F (y) ≥ W (y, x) then

11: critical level(y) ← e { overwrites any prior value of critical level(y) }

12: end if
13: end for

14: end for

15: { begin second phase of the linear algorithm }
16: for all e in increasing order do
17: for all y such that level(y) ≥ e in bottom-up order do

18: delete subtree_minF (w, e − 1) and subtree_minW (y, e − 1) { if they exist,
to save space }

19: if level(y) ≤ e then

 F (y)
20: subtree_minF (y, e) ← min

 minz∈Chldrn(y) {subtree_minF (z, e)}

21: subtree_minW (y, e) ← minz∈Chldrn(y) {W (z, y)+ subtree_minW (z, e)}

22: else

23: subtree_minF (y, e) ← minz∈Chldrn(y) {subtree_minF (z, e)}

24: subtree_minW (y, e) ← 0
25: end if

26: if level(y)= l then
subtree_minF (y, e)

27: mincost(Ty) ← min
subtree_minW (y, e)

28: end if

29: end for

30: end for

Table 4.3-2 : Linear Time and Space Algorithm for the Min-Max Problem

• Line 2 computes level(x) in a straightforward top-down wave:

level(r)= depth(r) = 0, and level(x)=1+ level(p(x)) for x ≠ r.

• Lines 5–14 give the code for the main loop of the first phase,

69

which computes all values of critical_level. The values of W (y, x)

are computed for this purpose, but are then deleted to save

space. If they were all retained, the space complexity of the

algorithm would be O(h) per process, where h is the height of T.

Any value of W (y, x) which is part of the final solution will be

recomputed during the second phase.

• In Line 9, W (x, x) ← 0, and otherwise W (y, x) ← W (y, p(y)) + W

(p(y),x).

• The heart of the linear time and space algorithm is the fact that F

(y) ≥ W (y, x) if and only if critical level(y) ≤ level(x). The first phase

calculates all values of critical_level with O(h2) calculations,

organized into O(h) waves which take O(h) time each. Using

pipelining, all these waves are completed in O(h) time. By erasing

values computed by each wave, other than the values of

critical_level itself, we save space, and maintain space complexity

of O(1) for each process.

• The value of critical_level(y) can be reset during any number of

iterations of the main loop of the first phase. The correct value

will be the value assigned during the last iteration for which F (y)

≥ W (y, x).

• For each y, the values of subtree_minF (y, e) and subtree_minW (y,

e) are computed during every iteration for which e ≤ level(y). In

Line 19, we delete the values computed during the previous

70

iteration, to save space.

• In Line 27, we assign the final value for each y, when e = level(y).

At this point, we offset the value of subtree_minW (y, e) by

subtracting depth(y).

The optimization phase of the linear time and space algorithm does

not begin until the critical level phase is done. Within each phase, the

waves (Iterations) are pipelined so that, even though there are h + 1

waves which take O(h) time each, After each process y = r executes its

action for Iteration(x) of the critical level phase, y sends a message telling

p(y) that it is ready to participate in Iteration(p(x)). Thus, the waves of

those two iterations do not collide. Since every message must be

delivered within one time unit, all iterations of the critical level phase are

completed within 2h time units. We can similarly ensure that the waves

of the optimization phase also do not collide, and that that phase is

completed within 4h time units.

Figure 4.3-2(b) shows the pattern of these waves where h = 5.

71

Figure 4.3-2 : Comparison of the algorithms.
Comparison of quadratic time algorithm (a) and the linear time
algorithm (b).The algorithms have the same number and length of
waves, but the linear time algorithm uses pipelining in a way that
cannot be done by the quadratic time algorithm without overlapping.

Correctness of the linear time algorithm for the min-max problem

follows from Corollary 4.2 and from Lemma 4.3 below.

Lemma 4.3 Suppose (a1,...am) and (b1,...bm) are sequences of elements

of an ordered set. Let ci = max {ai,bi} for all 1 ≤ i ≤ n. Let A = {1 ≤ i ≤ m : ai

≥ bi}, and B = {1 ≤ i ≤ m : ai <bi}. Let MA = min {ai : i ∈ A} and MB = min {bi :

i ∈ B}. If A = ∅, let MA = ∞ by default, while if B = ∅, let MB = ∞. Then

min1≤i≤m ci = min {MA,MB}.

Proof: If A = ∅, then ci = bi for all i, MA = ∞, and MB = M, and thus we

are done. If B = ∅, we are done by a similar argument.

Otherwise, pick 1 ≤ i, j, k ≤ m such that

• i ∈ A and ai = MA,

• j ∈ B and bj = MB,

72

• ck = M.

Then M = ck ≤ ci = ai = MA, and M = ck ≤ cj = bj = MB. Thus, M ≤ min

{MA,MB}.

To prove the converse, suppose that M< min {MA,MB}. If k ∈ A, then M

= ck = ak ≥ ai = MA, contradiction. On the other hand, if k ∈ B, then M =

ck = bk ≥ bj = MB, contradiction. This completes the proof of Lemma 4.3.

Lemma 4.4 The linear time algorithm for the min-max problem is

correct.

Proof: We first note that critical_level(y) is defined for each process y,

since W (y, y)=0 ≤ F (y).

We next show that the value of critical_level(y), which is stored by the

process y, is correct after completion of the critical level phase. Let e be

the true value of critical_level(y), and let x be the ancestor of y whose level

is l. By definition, F (y) ≥ W (x, y), and thus critical_level(y) ← l during

Iteration(x) of the critical level phase. Also by definition, F (y) <W (x’,y) for

all x’<x, and thus critical_level(y) will not be reset during any subsequent

iteration.

 F (y) if x ≥ critical level(y)
By Corollary 4.2, cost(x, y) =

 W (x, y) otherwise

We now apply Lemma 4.3. We can conclude that the linear time

algorithm computes the correct value of mincost(i).

In Table 4.3-3, we give the input, output, and some intermediate

73

values calculated by the linear time and space algorithm for the instance

shown in Figure 4.1-1. We define choice(x) ∈{F, W }. If mincost(x)= F

(best(x)), then choice(x)= F. Otherwise, choice(x)= W.

x r a b c d e f g h i j k l m n o p q s t u v w

p(x) r r a b c d d f g h a j k l m n o o l s t u t

W(x,p(x)) 0 6 6 5 7 6 5 5 5 6 4 6 5 5 8 5 3 7 5 2 7 10 13

F(x) 50 74 46 30 11 18 24 6 30 22 5 50 37 4 25 45 24 32 22 21 8 46 25

level(x) 0 1 2 3 4 5 5 6 7 8 2 3 4 5 6 7 8 8 5 6 7 8 7

crt_lev(x) 0 0 0 0 3 2 5 5 2 4 1 0 0 5 2 0 4 3 1 2 6 1 4

best(x) j j d d g e g g i i j m m m p p p q u u u v w

choice(x) W F W F W F F F F F F W W F F F F F W F F F F

mincost(x) 10 5 12 11 10 18 6 6 22 22 5 10 5 4 24 24 24 32 9 8 8 46 25

Table 4.3-3 : Input, output, and some intermediate values
for the example instance shown in Figure 5.6.

74

In Figure 4.3-3, we show the same tree, where an arrow points from x

to best(x) for each x. The label on the arrow is mincost(x).

Figure 4.3-3 : mincost(x) and best(x)
Arrows are from x to best(x), and the label on that arrow is mincost(x).

75

CHAPTER 5

LINEAR TIME ALGORITHMS

Gfeller et al. [9] give an O(h)-time algorithm for the all best swap edge

problem, in the case of Fdiam. However, their algorithm uses O(h + δx)

space for a process x.

In CHAPTERS 5 and 6, we present O(h)-time algorithms for the all best

swap edges problem, for five of the six measures defined in Section 3.1

We call these algorithms LINEARdist, LINEARincr, LINEARwght,

LINEARmax, and LINEARdiam, respectively, and all can be considered to be

versions of a general algorithm, which we call LINEAR. The space

complexity of each of these five algorithms is O(δx), i.e., each process x

requires only enough space to store O(δx) variables (where each variable

is an integer or a weight) at any given time. In each case, we achieve the

speed-up by one or more applications of the critical level paradigm

introduced in CHAPTER 4.

• Each of the five algorithms uses the critical level paradigm to

compute rank(y, y’) for every cross edge {y, y’} of T. This is the

only use of the paradigm by LINEARwght, LINEARdist, and

LINEARincr.

• LINEARmax and LINEARdiam use the critical level paradigm to

compute critical_level(x) for each process x. We explain that

computation in this Section 6.2.

• LINEARdiam uses the critical level paradigm to compute

76

special_level(x), which is another version of critical level. We

explain that computation in Section 6.6.

At this point, the reader may ask what, exactly, the critical level

paradigm is; and what, in particular, qualifies a function to be called a

critical level?

We do not give a complete theoretical treatment of critical levels in

this thesis. However, in general, a critical level function is a function

that can be computed top down, which enables another function, whose

computation would otherwise require independent top down followed by

bottom up waves for all processes, to be computed in a single bottom up

wave for each process, thus allowing the waves to be pipelined. All three

of the functions used in this thesis, namely rank, critical level, and

special level, fit this definition.

Each of the five versions of LINEAR consists of at least three phases.

The first phase of each algorithm is preprocessing, and the last is

optimization. Each of the algorithms also includes one phase for each of

the one, two, or three critical level computations.

We will reuse as much notation from Section 3.1 as possible. In each

of our versions of LINEAR, the preprocessing phase computes many of

the same variables computed in the corresponding version of BSE.

5.1 LINEARdist and LINEARincr

We do not need to give separate code for LINEARincr, since the all best

77

swap edges problem for Fincr reduces to the problem for Fdist in a trivial

way, as stated in Lemma 3.1.

5.2 Overview of LINEAR

We give the general code for LINEAR in Table 5.2-1 below. Each of

our four remaining linear time algorithms is a special case of LINEAR.

1: Preprocessing phase
2: Ranking phase
3: (Possibly other critical level phases)
4: for 1 ≤ l ≤ d do

5: for all y such that level(y) ≥ l in bottom up order do {Wave l}
6: Compute up_package(y, l).
7: if level(y)= l then

8: Compute swap_edge_cost(y).
9: end if

10: end for

11: end for

Table 5.2-1 : LINEAR

Each of the phases uses O(1) space per process, except for the

ranking phase, which uses O(δx) space for each process x. The overall

space complexity of LINEAR is thus O(δx) for each x.

5.3 The Preprocessing Phase

In the preprocessing phase (Line 1 of Table 5.2-1), each process x

computes and retains a list of variables, many of which are the same as

for BSE. The exact list depends on which version of LINEAR, but the list

78

always includes index(x). In the subsection devoted to each individual

algorithm, we list the variables computed by that phase.

5.4 The Ranking Phase

In the second phase (Line 2 of Table 5.2-1), the rank of every cross

edge is computed. The rank of a cross edge {x, x’} is defined to be the

level of the nearest common ancestor, in T, of x and x’, and is stored by

both x and x’.

Figure 5.4-1 shows an example network, where tree edges are in bold

and cross edges are dashed. The level of each process is indicated, and

the rank of each cross edge is indicated in color.

Figure 5.4-1 : Levels of processes (black) and ranks of cross edges (red).

The purpose of computing ranks is to allow us to more easily identify

the swap edges of a given process, as stated by Remark 5.1 below.

79

Remark 5.1 If x ≠ r is a process and e’ = {z, z’} is a cross-edge, where z

∈ Tx, then e’

is a swap edge for x if and only if rank(z, z’) < level(x).

For each 0 ≤ l ≤ d, a top-down wave, which we call Wave l, contains

the index of the ancestor_index(y)= index(x) if x is the ancestor of y at level

l. That wave assigns the value l to the rank of any cross edge e’ = {y, y’}

which are swap edges of x. At the next wave, the value of rank(y, y’)

could be reassigned, but the last value of rank(y, y’) assigned will be the

true value.

All values computed during the ranking phase are deleted as soon as

they are no longer needed; only the ranks of the edges are retained. The

rank of each cross edge will be computed and stored twice, once for each

end of that edge. The values computed by the two ends will be the same.

1: for 0 ≤ l ≤ d in increasing order do {Wave l}
2: for all y such that level(y) ≥ l in top-down order do
3: if level(y)= l then
4: ancestor_index(y, l) ← index(y)
5: else
6: ancestor_index(y, l) ← ancestor index(p(y),l)
7: end if
8: for all cross edges {y, y’} do
9: if index(y’) ≥ ancestor index(y, l) then

10: rank(y, y’) ← l
11: end if
12: end for
13: end for
14: end for

Table 5.4-1 : Ranking Phase

Remark 5.2 If rank(x, x’)= l, then, for all l’ ≤ l, the computed value of

rank(x, x’) will be set to l’ during Wave l’, and thus the final computed

80

value of rank(x, x’) will be l.

5.5 Optimization Phase

The code for the optimization phase is given in Lines 4–11 of Table

5.2-1. The list of variables in up_package(y, l) depends on the version of

LINEAR. In each case, each process y is able to compute up_package(y,

l) by using the variables stored at y during the earlier phases, as well as

the variables of up_package(z, l) for all z ∈ Chldrn(y).

5.6 LINEARdist

The preprocessing phase of LINEARdist computes size(x), index(x),

level(x), and depth(x) for all x. These variables are computed in the same

manner as given in Section 3.1. More specifically, depth and level are

computed in a top down wave, size by a subsequent bottom up wave, and

then index by another top down wave.

For any l and any process y such that level(y) ≥ l, up_package(y, l)

consists of only one variable, namely subtree_mincost(y, l). Let x be the

ancestor of y at level l, and let e = {x, p(x)}. Then subtree_mincost(y, l) is

defined to be the minimum, over all e’ ∈ SwapEdges(e) such that e’ has

one end in Ty, of the length of the path in T’ = T − e + e’ from y to r. Code

for the computation of subtree_mincost(y, l) is given in Table 6.3.

1: Swap N (y, l) ←{y’ : {y’,y} is a cross edge and rank(y, y’) >l}
2: for all y’ such that y’ ∈ Swap N (y, l) do

3: cost(y, y’) ← w(y, y’)+ depth(y’)
4: end for

81

 min {cost(y, y’): y’ ∈ Swap N (y, l)}

5: subtree mincost(y, l) ← min

 min {w(z, y)+ subtree mincost(z, l):z ∈ Chldrn(y)}

Table 5.6-1 : Computation of subtree_mincost(y, l) in LINEARdist

The final step of Wave l is to compute swap edge cost(y) to be

subtree_mincost(y, l) for all y such that level(y)= l.

5.7 LINEARwght

LINEARwght is by far the simplest version of LINEAR we consider. The

preprocessing phase computes only size(x) and index(x) for each x, and

up_package(y, l) consists of only one variable, namely subtree_mincost(y,

l) = min {w(z, z’): z ∈ Ty and z’ ∈ Swap N (z, l)}, which is computed by

 min {w(y, y’): y’ ∈ Swap N (y, l)}

subtree_mincost(y, l) ←min

 min {subtree_mincost(z, l): z ∈ Chldrn(y)}

82

CHAPTER 6

LINEARmax and LINEARdiam

In this section, we describe LINEARmax and LINEARdiam, which have a

great deal of common computation.

Suppose level(x)= l, e = {x, p(x)}, y ∈ Tx, and e’ = {y, y’}∈ SwapEdges(e).

Recall that

Fmax(T, r, e, e’)= eccTx (y)+ w(y, y’)+ depth(y’)

and

Fdiam(T, r, e, e’)= eccTx (y)+ w(y, y’)+ eccT~x (y’)

Recall that T~x is the subgraph of T obtained by deleting the vertices of

Tx as well as the edge e.

In both LINEARmax and LINEARdiam, we would like to compute Fmax(T,

r, e, e’) or Fdiam(T, r, e, e’), respectively, when Wave(l) of the optimization

phase reaches y. In BSE, this is no problem, because the broadcast

portion of Wave(l) has brought down_package(y, x), which contains the

data that y needs to compute the function. However, for LINEAR, there

is no down package. At the time y wants to compute the value of the

function, it does not even know the identity of x (although it knows l).

Our first problem, common to both algorithms, is to determine

whether a given cross edge is a member of SwapEdges(x). Just as in

CHAPTER 5, we execute the ranking phase, whose code is given in Table

5.4-1 before the optimization phase. That phase assigns a rank to every

cross edge such that {y, y’}∈ SwapEdges(l) if and only if rank(y, y’) <l.

83

Our second problem, also common to both LINEARmax and

LINEARdiam, is to compute eccTx (y). Recall, from Section 3.1, that

height(x)
 eccTx (y) = max

µ(y, x)

where µ(y, x) is the maximum length of any path in Tx from y to any

point of Tx − Ty, as defined in Section 3.5 and illustrated in Figure 3.5-3.

Because LINEAR uses only constant space per edge, we cannot store

enough information for y to know µ(y, x) for all choices of x. We solve

this problem using the paradigm described in CHAPTER 4, executing a

critical_level phase before the optimization phase; this phase erases all its

computation except for one number, called the critical_level, at each

process. Using that value, y decides whether eccTx (y)= height(y). If so,

there is no problem, since all values of height are computed during the

preprocessing step. Otherwise, y cannot compute eccTx

directly, but

rather, sends enough information up the tree to enables x to compute

that value, if needed, when the wave reaches x.

Our third, and most difficult, problem is encountered only for

LINEARdiam, and that is to compute eccT~x (y’). (The last term of the

formula for Fmax is depth(y’), which is computed during preprocessing.)

Once again, we are able use the critical level paradigm to define the

special level (which is also a critical level, using other criteria) for each

84

process so that it is possible for y compute enough information, and pass

that information up the tree, for x to be able to compute eccT~x (y’) if e’ is

the best swap edge for e. We give the details in Section 6.4

6.1 LINEARmax

The preprocessing phase of LINEARmax computes the following

variables for each process x.

1. size(x), index(x), height(x), depth(x), level(x), and η(x), which have the

same definitions as given in Section 3.1.

2. best_child(x), the best child of x, defined to be that y ∈ Chldrn such

that w(x, y)+ height(y) > w(x, z)+ height(z) for any other child z of x.

Note that, since we use a strict inequality in this definition, a

process can have at most one best child. If Chldrn(x)= ∅, or if there

is more than one choice of y for which w(x, y)+ height(y) is

maximum, best_child(x) is undefined.

3. We define Normal_Chldrn(x) to be the set of all normal children of x,

namely all children which are not the best child of x.

4. secondary_down_path(x) is defined to be the longest path in Tx that

starts at x does not pass through best_child(x). If

Normal_Chldrn(x)= ∅, we define secondary_down_path(x) to be the

trivial path at x. Let secondary height(x)= WT

(secondary_down_path(x)).

Note that all of the above variables can be computed with definitely

85

many broadcast and convergecast waves in O(h) total time.

6.2 Computing eccTx (y)

We first introduce some additional notation.

• Spine(x)= {y ∈ Tx : eccTx (y)= depth(y)}.

• Spine(l)= {Spine(x): level(x)= l}.

• Up(x)= Tx − Spine(x).

• Up(l)= {Up(x): level(x)= l}.

Lemma 6.1 For any process x

(a) If y ∈ Spine(x) and y = x, then p(y) ∈ Spine(x) and y = best child(p(y)).

(b) Spine(x) is a chain.

Proof: We first prove (a). Suppose p(y) ∈ Spine(x). Let σ be the longest

path in Tx from p(y), i.e., W (σ)= eccTx (p(y)). Since W (σ) > depth(p(y)), we

know that y’ ∉ σ. Let τ =(y, p(y)) + σ. Then

depth(y) < depth(p(y))

<W (σ)

<W (τ)

≤ eccTx (y)

and thus y’ ∉Spine(x), contradiction.

Now, suppose that y is not the best child of p(y). There exists z ∈

Chldrn(p(x)), where z = y and depth(z)+ w(z, p(y)) ≥ depth(y)+ w(y, p(y)). Let

σ be the longest path from z to a leaf of Tz, and let τ =(y, p(y)) + (p(y),z)+ σ.

Then

86

depth(y) < depth(y)+ w(y, p(y))

≤ depth(z)+ w(z, p(y))

<W (τ)

≤ eccTx (y)

and thus y’ ∉ Spine(x), contradiction.

Part (b) follows immediately from (a).

Continuing our list of terms, we let

• base(x) = the bottom member of Spine(x), i.e., that process in

Spine(x) of greatest level, which we call the base process of x.

• Base(l)= {base(x): level(x)= l}

• tail(x)= best_child(base(x)), the tail process of x, which may or

may not be defined.

• Tail(l)= {tail(x): level(x)= l}

• Fan(x)= Ttail(x). If tail(x) is undefined, we let Fan(x)= ∅.

• Fan(l)=Υ {Fan(x): level(x)= l}.

In Figure 6.2-1 and Figure 6.2-2, we illustrate some of these

definitions.

87

Figure 6.2-1 : Example of Tx, where tail (x) is defined.Processes of
Spine(x) are solid black, processes of Fan(x) are cyan, and other
processes of Up(x) are gold. The red path in (b) has length eccTx(y), and
the cyan path in (c) has length eccTx(z).

Figure 6.2-2 : Example of Tx, where tail (x) is undefined. Processes of
Spine(x) are solid black, and processes of Up(x) are gold. The red path
in (b) has length eccTx(y), and the red path in (c) has length eccTx(z).

88

We now characterize longest_pathTx (y), the path in Tx from y whose

weight is eccTx. Recall that down_path(z)= longest_pathTz (z) for any

process z, i.e., W (down path(z)= depth(z).

Lemma 6.2 Let y ∈ Tx. Let u be the process of minimum level on

longest_pathTx (y). Then

(a) u ∈ Spine(x).

(b) If y ∈ Fan(x), then longest_pathTx (y) =path (y,u) +

secondary_down_path (u).

(c) If y’∈ Fan(l), then longest_pathTx (y)= path(y, u)+ down_path(u).

Proof: Let s be the other end of longest_pathTx (y). We first prove (a) by

contradiction. Suppose u’∈ Spine(x). Then µ(u, x) > depth(u), which

implies that up_path(u, x) is longer than path(u, s). Thus, path(y, u)+

up_path(u, x) is longer than longest_pathTx (y), contradiction.

We now prove (b). By the definition of u, p(u) does not lie on

longest_pathTx (y), since best_child(u) lies on path(y, u), path(u, s)=

secondary_down_path(u), and we are done.

We now prove (c). If y ∈ Spine(l), then u = y and longest_pathTx (y)=

down_path(y), and we are done. Otherwise, let v be the first member of

Spine(x) in path(y, u). Pick z ∈ Chldrn(v) ∩ path(y, v). Then z ≠

best_child(v) since y’∉Fan(x). Thus, down_path(v)= longest_pathTx (v) does

not contain z, and hence longest_pathTx (y)= path(y, v)+ down_path(v), and

u = v, and we are done.

89

The examples shown in Figure 6.2-1(b) and Figure 6.2-2(b) and Figure

6.2-2(c) illustrate Part (b) of Lemma 6.2, while the example shown in

Figure 6.2-1(c) illustrates Part (c) of the lemma.

In LINEARmax, a process y must know whether it is a member of Up(l)

or Spine(l). It must also know whether it is in Base(l), and whether it is in

Tail(l). These questions can all be answered by y in constant time,

provided critical_level(y) = min {l : y ∈ Spine(l)}, the critical_level of y, has

been computed. We calculate the critical levels using the same

technique that we used in CHAPTER 4.

The critical value of a process y enables y to determine whether it lies

in Up(l) for any given l, as we show in the following lemma.

Lemma 6.3

(a) If l’ <l, then Up(l) ⊆ Up(l’).

(b) y ∈ Up(l) if and only if critical_level(x) ≤ l ≤ level(x).

Proof: To prove (a), pick y ∈ Up(l). Let x be the ancestor of y at level l,

and let x’ be the ancestor of x at level l’ (which is also an ancestor of y).

Then

eccTx’ (y) ≥ eccTx (y) > depth(y)

and hence y ∈ Up(l’) by definition. Part (b) follows immediately.

90

(a) (b) (c)
Figure 6.2-3 : illustration of Lemma 6.2

In the tree shown, the weights of the edges are proportional to vertical
distance in the figure. Spine(l) is the union of chains headed by all
processes at level l. Processes of Spine(l) are solid black. Processes of
Fan(l) are filled in cyan; other processes of Up(l) are filled in gold.
Processes in Base(l) and Tail(l) are circled in black. Spine(2), Up(2), and
Fan(2) are shown in (a). Spine(3), Up(3), and Fan(3) are shown in (b).
Note that Up(3) ⊆ Up(2). The values of critical_level are shown in (c).
Note that x ∈ Spine(l) if and only if critical_level(x) ≤ l ≤ level(x).

In Table 6.2-1, we give the code for the critical level phase.

1: for 0 ≤ l ≤ d in decreasing order do {Wave l}
2: for all x such that level(x)= l concurrently do

3: for all y ∈ Tx − x in top down order do

4: p ← p(y)
5: µ(y, x) ← max {µ(p, x)+ w(y, p),η(y)}

6: if µ(y, x) ≤ depth(y) then

7: critical_level(y) ← l
8: end if

9: end for

10: end for

11: end for

Table 6.2-1 : Critical Level Phase

91

The waves are pipelined, so that the total time required for the critical

level phase is only O(h).

6.3 Optimization Phase of LINEARmax

For any y such that level(y) ≥ l, y can compute the following.

• y ∈ Up(l) if and only if critical level(y) ≥ l.

• y ∈ Spine(l) if and only if critical level(y) <l.

• y ∈ Base(l) if and only if y ∈ Spine(l), and either best_child(y) ∈

Up(l), or best_child(y) is undefined.

• y ∈ Tail(l) if and only if p(y) ∈ Base(l) and y = best_child(p(y)).

The optimization phase is a dynamic programming algorithm, where

up_package(y, l) is the solution to certain sub problems associated with

the process y during Wave l of the phase. To understand the steps of the

optimization phase, we describe the sub problems that must be solved by

y during Wave l.

We first define local_cost(y, l) = min {w(y, y’)+ depth(y’): y’ ∈ Swap N (y,

l)}.

1. For y ∈ Up(l), up_package(y, l) contains

(a) min_up_cost(y, l) = min {local_cost(z, l)+ W (y, z): z ∈ Ty}.

2. If y ∈ Spine(y), then up_package(y) contains

(a) min_normal_cost(y, l) = min { local_cost(z, l)+ W (y, z): z ∈ Ty

and z ≠ Tbest child(y) }

(b) min_fan_cost(y, l) = min {local_cost(z, l)+ W (y, z): z ∈ Ty ∩

92

Fan(l)}. (Note that min_fan_cost(y, l)= ∞ if Ty ∩ Fan(l)= ∅.)

 (c) subtree_mincost(y, l) = min {local_cost(z, l)+ eccTy (z): z ∈ Ty. }

At the conclusion of Wave l, we compute swap_edge_cost(x)=

subtree_mincost(x, l) for all x such that level(x)= l.

Figure 6.3-1 illustrates some of these functions. In the case shown,

level(x)= l = 2. In Figure 6.3-1 (a), we show a path, in red, whose length

is min_up_cost(y, 2), and a path, in cyan, whose length is min_up_cost(z,

2), where y, z ∈ Up(2). In 7.5(b), y ∈ Spine(2). We show a path, in red,

whose length is min_normal_cost(y, 2), and a path, in cyan, whose length

is min_fan_cost(y, 2). In 7.5(c), swap edge cost(x)= subtree_mincost(x, 2) is

the length of the shorter of the two paths (one red, the other cyan)

shown.

93

Figure 6.3-1 : swap_edge_cost, min_up_cost and min_fan_cost
Functions in up_package of descendants of x, where level (x) = l = 2. In
(a), we show min_up_cost(y, 2) and min_up_cost(z, 2), where y, z ∈ Up(2).
In (b), we show min_normal_cost(y, 2) and min_fan_cost(y, 2), where y ∈
Spine(2).In (c), we show two paths whose lengths are candidates for
swap_edge_cost(x) = subtree_mincost(x, 2); the smaller of those two
lengths will be the result.

Finally, in Table 6.3-1, we give the code that is executed at Line 6 of

Table 6.1 in the case of LINEARmax.

1: local_cost(y, l) = min {w(y, y’)+ depth(y’): y’ ∈ Swap N (y, l)}

2: if y ∈ Up(l) then
 local_cost(y, l)

3: min_up_cost(y, l) ← min

 min {min_up_cost(z, l): z ∈ Chldrn(y)}

4: else {y ∈ Spine(l)}
 local_cost(y, l)

5: min_normal_cost(y, l) ← min
 min {min_up_cost(z,l)+ w(y,z): z ∈ Normal_Chldrn(y)}

94

6: if best_child(y) is defined then

7: z ← best child(y)
8: if z ∈ Spine(l) then

9: min_fan_cost(y, l) ← min_fan_cost(z, l)+ w(z, y)
10: else
11: min_fan_cost(y, l) ← min_up_cost(z, l)+ w(z, y)
12: end if

 min_normal_cost(y, l)+ height(y)
13: subtree_mincost(y, l) ← min min_fan_cost(y,l) + secondary_height (y)

 subtree_mincost(z, l)

14: else {y = base(x), and tail(x) undefined}
15: min_fan_cost(y, l) ←∞

16: subtree_mincost(y, l) ← min_normal_cost(y, l)+ height(y)
17: end if
18: end if

Table 6.3-1 : Computation of up package(y, l) for LINEARmax

6.3.1. Detailed Explanation of Table 6.3-1

The best way to understand the code of Table 6.3-1 is to think of it as

computation of one sub problem of a dynamic programming algorithm.

Let x be the ancestor of y at level l, and e = {x, p(x)}. The sub problem is

to compute all information needed to determine whether some e’ = {z,

z’}∈ SwapEdges(x) for z ∈ Ty is the best swap edge for x, and if so, the

value of Fmax(T, r, e, e’).

Recall that Fmax(T, r, e, e’)= W (longest_pathTx(z)) + w(z, z’)+ depth(z’),

where e’ = {z, z’}. If y ∈ Up(l), then the only information that

up_package(y, l) needs to contain is min_up_cost(y, l), the minimum value

of W (path(z, y)) + w(z, z’)+ depth(z’) over all z ∈ Ty such that {z, z’}∈

SwapEdges(x), i.e., rank(z, z’) >l; local_cost(y, l) is a temporary value used

in the computation of min_up_cost(y, l).

95

If y ∈ Spine(l) and if Fan(l) ∩ Tx = ∅, then up_package(y, l) also needs

only one variable, namely subtree_mincost(y, l), which is the minimum

value of eccTy (z)+ w(z, z’)+ depth(z’) over all {z, z’}∈ SwapEdges(x) such

that z ∈ Ty.

If y ∈ Spine(l) and Fan(l) ∩ Tx = ∅, then up_package(y, l) needs two

variables, subtree_mincost(y, l), as described above, and min_fan_cost(y,

l), which is the minimum value of W (path(z, y)) + w(z, z’)+ depth(z’) over

all {z, z’}∈ SwapEdges(x) such that z ∈ Ty ∩ Fan(l).

At most one of those two values will be needed to compute

swap_edge_cost(x). If subtree_mincost(y, l) ≥ min_fan_cost(y, l)+µ(y, x),

then min_fan_cost(y, l) could be discarded; otherwise subtree_mincost(y, l)

could be discarded. But since y does not know the value of µ(y, x), it

cannot discard either.

6.4 Overview of LINEARdiam

Recall that Fdiam(T, r, e, e’)= eccTx (y)+ w(y, y’)+ eccT~x (y’), where e = {x,

p(x)}, y ∈ Tx, and {y, y’}∈ SwapEdges(x). LINEARdiam has all the complexity

of LINEARmax, since it must handle the impossibility of calculating eccTx

(y) during the optimization phase; it also has additional complexity due

to the impossibility of calculating eccT~x (y’) during the optimization

phase.

We handle the latter problem in the same was the former, namely by

running a phase which calculates another version of critical level, which

96

we call special level. If x ∈ C2 and y’ ∈ S1, or if x ∈ C1 and y’ ∉S1, we use

both the special level of y’

and the critical level of y (as computed in Table

6.2-1) to decide which one of following four formulas for eccTx (y)+ w(y,

y’)+ eccT~x (y’) has the largest value:

1. depth(y)+ w(y, y’)+ restr_ecc(y’)

2. µ(y, x)+ w(y, y’)+ restr_ecc(y’)

3. depth(y)+ w(y, y’)+ secondary_ecc(y’)

4. µ(y, x)+ w(y, y’)+ secondary_ecc(y’)

where restr_ecc(y’) and secondary_ecc(y’), defined below, are computed

during the preprocessing phase.

Otherwise, we only need to use critical_level(y) to choose among the

two formulas

1. depth(y)+ w(y, y’)+ eccTx (y’)

2. µ(y, x)+ w(y, y’)+ eccTx (y’)

That decision can be made at the time that up_package(y, l) is

computed, for l = level(x), despite the fact that only one of the two or four

choices can actually be computed at the time.

6.5 The Preprocessing Phase of LINEARdiam

The preprocessing phase of LINEARdiam computes all the same

variables as the preprocessing phase of LINEARmax, together with the

variables in the list that follows. This list is quite long, and the purpose

97

of some of these variables is obscure. We will do our best to explain

them later in the section.

1. branch(x), provided x ≠ r, which is defined to be that value of i such

that x ∈ Si. After height is computed for all processes, the root

labels its children c1,c2,... such that hi ≥ hj if i>j, where we define hi

= w(ci,r)+ height(ci). The value i is then broadcast to all processes in

Si.

2. h1, h2, and h3. The root knows the values of hi for all i, but only the

values of hi for i ≤ 3 are broadcast to all processes.

3. We use the function best_child to define a chain of processes Ci ⊆

Si. Ci contains ci : otherwise, x ∈ Ci. if and only if p(x) ∈ Ci and x =

best_child(p(x)).

If x ∈ Si, we compute chain_level(x) to be the level of the closest

ancestor of x which is in Ci. More formally, let chain level(ci) = 1;

for all other x ∈ Si, let p = p(x), and let

level(x) if x = best_child(p) and
chain_level(p)= level(p)

chain_level(x)=
chain_level(p) otherwise

4. local_µ(x)= µ(x, ci), provided x ≠ r, where x ∈ Si. Recall the definition

of µ given in Section 3.5.

The values of local_µ(x) are computed in a broadcast wave, using

the definition

98

0 if x = ci

local_µ(x)=
w(x, p(x)) + max {local_µ(p(x)),η(x)} otherwise

5. local_φ(x)= eccSi (x) for all i =1, 2, provided x ∈ Si, the local

eccentricity of x. Local eccentricities are computed for all x

concurrently in O(1) time as follows.

local_µ(x)
local_φ(x) = max

depth(x)

6. avoid(x) for all x ∈ C1 + C2, as defined in Section 3.6. If x ∈ Ci, then

avoid(x) is the length of the longest path from r to a leaf of Si which

avoids x. We can compute avoid(x) for all x ∈ Si in a broadcast

wave, as follows:

0 if x = ci

avoid(x)=
max {avoid(p(x)),η(x)+ depth(p(x))} otherwise

depth(x)+ h2 if x ∈ S1

7. eccT (x)=
depth(x)+ h1 otherwise

The full eccentricity of x.

depth(x)+ h3 if x ∈ S1

8. secondary_ecc(x)=

depth(x)+ h2 otherwise

The secondary eccentricity of x. Intuitively, the secondary

eccentricity is the length of the longest path from x, through r, to a

leaf of T which avoids the largest subtree that does not contain x.

99

eccT −S2(x) if x ∈ S1

9. restr_ecc(x)=

eccT −S1(x) otherwise

The restricted eccentricity of x. We compute the restricted

eccentricity of all x as follows.

local_φ(x)
max if x ∈ S1 + S2

restr_ecc(x)= secondary_ecc(x)

secondary_ecc(x) otherwise

Intuitively, the restricted eccentricity is the length of the longest

path from x to a process of T which avoids the largest subtree that

does not contain x. (Unlike for the definition of secondary_ecc(x),

that path need not contain r.)

Figure 6.5-1 below illustrates the definitions of local_φ(x), eccT (x), and

restr_ecc(x).

100

Figure 6.5-1 : restricted, local and full eccentricity.
If x ∈ S1, the local eccentricity of x is the length of the longest path from
x in S1, shown in brown. The full eccentricity of x is the length of the
longest path from x to a point in S2, shown in blue. The restricted
eccentricity of x is either the length of the longest path from x to a point
in S3, shown in magenta, or local_φ(x), whichever is greater.

6.6 Special Levels

We define special_level(x) for all x ≠ r, the special level of x, actually

another kind of critical level in the sense defined in Section 5. We use

special levels to decide among the optional values of eccT~x (y’) during the

optimization phase of LINEARdiam.

For any x ∈ C1, we define

A(x)={ y’ ∉S1 : restr_ecc(y’) ≥ depth(y’)+ avoid(x) }

B(x)= {y’ ∉ S1 : restr_ecc(y’) < depth(y’)+ avoid(x) }

101

For any x ∈ C2, we define

A(x)= y’ ∈ S1 : restr_ecc(y’) ≥ depth(y’)+ avoid(x)

B(x)= y’ ∈ S1 : restr_ecc(y’) < depth(y’)+ avoid(x)

Finally, let

A(l) = {A(x): level(x)= l}

B(l) = {B(x): level(x)= l}

special level(y) = min {l : y ∈ B(l)}

If y ∈ A(l) for all l, we define special_level(y)= ∞.

Special levels are computed by a phase that is analogous to the

computation of critical levels. Computation of special_level(y) for y ∈ S1 is

slightly different than for other processes, so we write two separate

algorithms for the phase.

1: initialize special_level(y) ←∞ for all y ∈ S1

2: for all x ∈ C2 in bottom-up order do

3: l = level(x)
4: for all z ∈ C2 which are ancestors of x in bottom-up order do

5: copy avoid(x) to z
6: end for

7: copy avoid(x) to r
8: for all y ∈ S1 in top down order do

9: copy avoid(x) to y
10: if restr ecc(y) < depth(y)+ avoid(x) then

11: special_level(y) ← l
12: end if

13: end for

14: end for

Table 6.6-1 : Special Level Phase for S1

102

The code for computing special_level(x) for x ∈ S1 is given in Table

6.6-1. The phase consists of pipelined waves, one for each process x of

C2. The wave starts at x, passes through r, and then is broadcast down

to all processes of S1. The variables of each wave (other than the values

of special_level(y) are erased after the wave passes.

The value of special_level(y) could be set, and then reset by successive

waves. The last value is the one that is correct. If Line 11 is never

executed for a specific y, then special_level(y)= ∞ when the phase is done.

The code for computing special_level(x) for x’∈ S1, given in Table 6.6-2,

is very similar.

1: initialize special level(y) ←∞ for all y ∉S1

2: for all x ∈ C1 in bottom-up order do

3: l = level(x)
4: for all z ∈ C1 which are ancestors of x in bottom-up order do

5: copy avoid(x) to z
6: end for

7: for all y ∉ S1 in top down order do

8: copy avoid(x) to y
9: if restr_ecc(y) > depth(y)+ avoid(x) then

10: special_level(y) ← l
11: end if

12: end for

13: end for

Table 6.6-2 : Special Level Phase for Processes Not in S1

In Figure 6.6-1 below, we illustrate steps of the computation of

special_level(x).

103

Figure 6.6-1 : Computation of Special Levels.
(a) shows the depth of all processes, as well as subtrees S1, S2, and S3.
(b) shows eccT (x) in blue and restr_ecc(x) in red for all x.

104

(a) (b)

Figure 6.6-1 : (Continued): (c) shows avoid(x) for all x ∈ C1 + C2 in black,
and chain_level(x) for all x ∈ S1 + S2 in red. Processes of C1 + C2 are
black, and other processes of S1 + S2 are gold. (d) shows processes of
the set A(3) in magenta, and processes of the set B(3) in green.

105

(c) (d)

Figure 6.6-1 : (Continued): (e) shows processes of the set A(4) = A(5) in
magenta, and processes of the set B(4) = B(5) in green. (f) shows
processes of the set A(6) in magenta, and processes of the set B(6) in
green.

106

(e) (f)

Figure 6.6-1 : (Continued): For any l ≥ 7, A(l)= {c1}, and all other pro-
cesses are in B(l), as shown in (g). (h) shows special level(x) for all x, in
magenta.

6.7 Partition of Swap_N (y, f)

For any process y and any l ≤ level(y), the set Swap_N (y, l) is

partitioned, by y, into three sets, C(y, l), E(y, l), and F(y, l). These sets are

defined so that, for x the ancestor of y at level l:

107

eccT (y’) if y’ ∈ C(y, l)

eccT~x (y’)= restr_ecc(y’) if y’ ∈ D(y, l)

depth(y’)+ avoid(x) if y’ ∈ E(y, l)

The partition is implemented by y as follows. For any y’ ∈ Swap_N (y,

l):

• If y ∈ S1 and chain_level(y) ≥ l then

- y’ ∈ C(y, l) if y’ ∈ S1.

- y’ ∈ D(y, l) if y’ ∉S1 and special level(y’) >l.

- y’ ∈ E(y, l) if y’ ∉S1 and special level(y’) ≤ l.

• If y ∈ S2 and chain_level(y) ≥ l then

- y’ ∈ C(y, l) if y’ ∉S1.

- y’ ∈ D(y, l) if y’ ∈ S1 and special level(y’) >l.

- y’ ∈ E(y, l) if y’ ∈ S1 and special level(y’) ≤ l.

• If y ∈ S1 + S2 and chain level(S) <l, or if y’∈ S1 + S2, then y’ ∈ C(y, l).

Using that partition, we now give code for the optimization phase of

LINEARdiam in Table 6.7-1. We make use of intermediate variables whose

names are the same as previously defined variables, concatenated with

C, D, or E.

We give the complete code of LINEARdiam in Table 6.7-1

108

1: for 1 ≤ l ≤ d do
2: for all y such that level(y) ≥ l in bottom up order do
3: local_costC(y, l) = min {w(y, y’)+ eccTx (y’): y’ ∈ C(y, l)}
4: local_costD(y, l) = min {w(y, y’)+ restr ecc(y’): y’ ∈ D(y, l)}
5: local_costE(y, l) = min {w(y, y I)+ depth(y’): y’ ∈ D(y, l)}

6: if y ∈ Up(l) then

 local_costC(y, l)

7: min_up_costC(y, l) ← min

 min{min_up_costC(z, l): z ∈ Chldrn(y)}

 local_costDy, l)

8: min_up_costD(y, l) ← min

 min{min_up_costD(z, l): z ∈ Chldrn(y)}

 local_costE(y, l)

9: min_up_costE(y, l) ← min

 min{min_up_costE(z, l): z ∈ Chldrn(y)}

10 else {y ∈ Spine(l)}

 local_costC(y, l)

11: min_normal_costC(y,l)← min

 min{min_up_costC(z,l):z∈Normal_Chldrn(y)}

 local_costD(y, l)

12: min_normal_costD(y,l)← min

 min{min_up_costD(z,l):z∈Normal_Chldrn(y)}

 local_costE(y, l)

13: min_normal_costE(y,l)← min

 min{min_up_costE(z,l):z∈Normal_Chldrn(y)}

14: if best_child(y) is defined then

15: z ← best child(y)

16: if z ∈ Spine(l) then

17: min_fan_costC(y, l) ← min_fan_costC(z, l)+ w(z, y)

18: min_fan_costD(y, l) ← min_fan_costD(z, l)+ w(z, y)

19: min_fan_costE(y, l) ← min_fan_costE(z, l)+ w(z, y)

20: else

21: min_fan_costC(y, l) ← min_up_costC(z, l)+ w(z, y)

22: min_fan_costD(y, l) ← min_up_costD(z, l)+ w(z, y)

23: min_fan_costE(y, l) ← min_up_costE(z, l)+ w(z, y)

24: end if

109

 min_normal_costC(y, l)+ height(y)

25: subtree_mincostC(y, l)←min min_fan_costC(y, l)+secondary_height(y)

 subtree mincostC(z, l)

 min_normal_costD(y, l)+ height(y)

26: subtree_mincostD(y, l)←min min_fan_costD(y, l)+secondary_height(y)

 subtree mincostD(z, l)

 min_normal_costE(y, l)+ height(y)

27: subtree_mincostE(y, l)←min min_fan_costE(y, l)+secondary_height(y)

 subtree mincostE(z, l)

28: else

29: min_fan_costC(y, l) ←∞

30: min_fan_costD(y, l) ←∞

31: min_fan_costE(y, l) ←∞

32: subtree_mincostC(y, l) ← min_normal_costC(y, l)+ height(y)

33: subtree_mincostD(y, l) ← min_normal_costD(y, l)+ height(y)

34: subtree_mincostE(y, l) ← min_normal_costE(y, l)+ height(y)

35: end if
36: end if
37: if level(y)= l then

 subtree_mincostC(y, l)

38: swap_edge_cost(y) ← min subtree_mincostD(y, l):

 subtree_mincostE(y, l)

39: end if
40: end for
41: end for

Table 6.7-1 : Optimization Phase of LINEARdiam

6.7.1. Explanation of Table 6.7-1

Lines 3–39 of Table 6.7-1 are basically an expansion of Table 6.3-1 to

take into account the multiple possible formulas for eccT~x (y’) in

LINEARdiam. A line of Table 6.3-1 corresponds to up to three lines of

Table 6.7-1.

110

Line 1 of Table 6.3-1 corresponds to Lines 3–5 of Table 6.7-1

Line 3 of Table 6.3-1 corresponds to Lines 7–9 of Table 6.7-1.

Line 5 of Table 6.3-1 corresponds to Lines 11–13 of Table 6.7-1

Line 9 of Table 6.3-1 corresponds to Lines 17–19 of Table 6.7-1

Line 11 of Table 6.3-1corresponds to Lines 21–23 of Table 6.7-1

Line 13 of Table 6.3-1 corresponds to Lines 25–27 of Table 6.7-1

Line 15 of Table 6.3-1 corresponds to Lines 29–31 of Table 6.7-1

Line 16 of Table 6.3-1 corresponds to Lines 32–34 of Table 6.7-1

6.7.2. Summary of LINEARdiam

Finally, we summarize the algorithm LINEARdiam in Table 6.7-2 below.

The time complexity of each phase, and hence of LINEARdiam, is O(h), and

no more than O(δx) variables are stored in any process x at any one time.

1: Preprocessing Phase. {Section 6.5}
2: Ranking Phase. {Table 5.4-1}
3: Critical Level Phase. {Table 6.2-1}
4: Special Level Phase. {Table 6.6-1 and Table 6.6-2}
5: Optimization Phase. {Table 6.7-1}

Table 6.7-2 : LINEARdiam

111

CHAPTER 7

CONCLUSION

This Thesis concentrates on 2-edge connected and weighted

distributed networks that maintain communication by a spanning tree T.

The main purpose is the restoration of such a tree should any of the tree

edges fail. This is resolved by finding a swap edge e’ ∉ T, that gives the

least cost, to replace the failing edge e. This is done in advance of any

failure allowing us to be ready and we refer to it as the all best swap

edges problem.

We stared off by giving algorithms for the all best swap edges problem

for six different cost measures. First, we presented an algorithm which

can be adapted to six cost measures, and which takes O(d2) time, where

d is the diameter of T. We then presented a novel paradigm for speeding

up distributed computations under certain conditions. We have applied

this paradigm to find O(d)-time distributed algorithms for the all best

swap edge problem for all the cost measures except Fsum.

As a future research work, we will try to design a linear time

algorithm for Fsum. We can also investigate possible implementation of

our protocols with the self-stabilization property.

112

BIBLIOGRAPHY

[1] H. Attiya and J. Welch. 2004, Distributed Computing: Fundamentals,

Simulations, and Advanced Topics.

[2] H. Booth and J. Westbrook. 1994, A linear algorithm for analysis of

minimum spanning and shortest-path trees of planar graphs.

Algorithmica 11(4), pp. 341-352.

[3] C. Cheng, I. Cimet and S. Kumar. A protocol to maintain a minimum

spanning tree in a dynamic topology. Presented at Symposium

Proceedings on Communications Architectures and Protocols.

[4] B. Das and M. C. Loui. 2008, Reconstructing a minimum spanning

tree after deletion of any node. Algorithmica 31(4), pp. 530-547.

[5] B. Dixon, M. Rauch and R. E. Tarjan. 1992, Verification and

sensitivity analysis of minimum spanning trees in linear time. SIAM

Journal on Computing 21pp. 1184-1184.

[6] P. Flocchini, A. M. Enriques, L. Pagli, G. Prencipe and N. Santoro.

2006, Point-of-failure shortest-path rerouting: Computing the

optimal swap edges distributively. IEICE Trans. Inf. Syst. 89(2), pp.

700-708.

[7] P. Flocchini, T. Enriquez, L. Pagli, G. Prencipe and N. Santoro. 2007,

Distributed computation of all node replacements of a minimum

spanning tree. Euro-Par 2007 Parallel Processing pp. 598-607.

[8] P. Flocchini, L. Pagli, G. Prencipe, N. Santoro and P. Widmayer. 2008,

Computing all the best swap edges distributively. Journal of Parallel

113

and Distributed Computing 68(7), pp. 976-983.

[9] B. Gfeller, N. Santoro and P. Widmayer. 2007, A distributed algorithm

for finding all best swap edges of a minimum diameter spanning tree.

Distributed Computing pp. 268-282.

[10] M. Grotschel, C. L. Monma and M. Stoer. 1995, Design of survivable

networks. Handbooks in Operations Research and Management

Science 7pp. 617–672.

[11] D. B. Johnson and P. Metaxas. A parallel algorithm for computing

minimum spanning trees. Presented at Proceedings of the Fourth

Annual ACM Symposium on Parallel Algorithms and Architectures.

[12] E. Korach, D. Rotem and N. Santoro. 1984, Distributed algorithms

for finding centers and medians in networks. ACM Transactions on

Programming Languages and Systems (TOPLAS) 6(3), pp. 401.

[13] E. Nardelli, G. Proietti and P. Widmayer. 2004, Nearly linear time

minimum spanning tree maintenance for transient node failures.

Algorithmica 40(2), pp. 119-132.

[14] E. Nardelli, G. Proietti and P. Widmayer. 2003, Swapping a failing

edge of a single source shortest paths tree is good and fast.

Algorithmica 35(1), pp. 56-74.

[15] E. Nardelli, G. Proietti and P. Widmayer. 1998, Finding all the best

swaps of a minimum diameter spanning tree under transient edge

failures. Algorithms—ESA’98 pp. 1-1.

[16] R. E. Tarjan. 1979, Applications of path compression on balanced

114

trees. Journal of the ACM (JACM) 26(4), pp. 690-715.

[17] Y. H. Tsin. 1988, On handling vertex deletion in updating minimum

spanning trees. Information Processing Letters 27(4), pp. 167-168.

115

VITA

Graduate College
University of Nevada, Las Vegas

Feven Z. Andemeskel

Degrees:
Bachelor of Science in Computer Science, 2006
University of Asmara, Eritrea

Thesis Title: Dynamic Distributed Programming and Applications to

Swap Edge Problem

Thesis Examination Committee:

Chair Person, Dr. Ajoy K. Datta, Ph.D.
Committee Member, Dr. Lawrence L. Larmore,Ph.D.
Committee Member, Dr. Yoohwan Kim, Ph.D
Committee Member, Dr. Emma Regentova, Ph.D.

