
UNLV Theses, Dissertations, Professional Papers, and Capstones

8-1-2013

Utilizing Big Data in Identification and Correction of OCR Errors Utilizing Big Data in Identification and Correction of OCR Errors

Shivam Agarwal
University of Nevada, Las Vegas, AGARWAL3@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Agarwal, Shivam, "Utilizing Big Data in Identification and Correction of OCR Errors" (2013). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 1914.
https://digitalscholarship.unlv.edu/thesesdissertations/1914

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1914&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1914?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1914&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

UTILIZING BIG DATA IN IDENTIFICATION AND CORRECTION OF OCR

ERRORS

.

by

 Shivam Agarwal

A Thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

August 2013

Copyright by Shivam Agarwal 2013

All Rights Reserved

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Shivam Agarwal

entitled

Utilizing Big Data in Identification ad Correction of OCR Errors

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Kazem Taghva, Ph.D., Committee Chair

Laxmi P. Gewali, Ph.D., Committee Member

Ajoy K. Datta, Ph.D., Committee Member

Emma Regentova, Ph.D., Graduate College Representative

Kathryn Hausbeck Korgan, Ph.D., Interim Dean of the Graduate College

August 2013

iii

ABSTRACT

by

Shivam Agarwal

Dr. Kazem Taghva, Examination Committee Chair

Professor of Computer Science

University of Nevada, Las Vegas

In this thesis, we report on our experiments for detection and correction of OCR errors

with web data. More specifically, we utilize Google search to access the big data

resources available to identify possible candidates for correction. We then use a

combination of the Longest Common Subsequences (LCS) and Bayesian estimates to

automatically pick the proper candidate.

Our experimental results on a small set of historical newspaper data show a recall

and precision of 51% and 100%, respectively. The work in this thesis further provides a

detailed classification and analysis of all errors. In particular, we point out the

shortcomings of our approach in its ability to suggest proper candidates to correct the

remaining errors.

iv

ACKNOWLEDGEMENTS

I would like to take this opportunity to express the appreciation to my committee chair,

Dr. Kazem Taghva for all his support and guidance through every stage of this thesis

research. Without his guidance and persistent help, completion of this thesis would not

have been possible.

 I am very thankful to my graduate coordinator, Dr. Ajoy K Datta for his help and

invaluable support during my masters program. I extend my gratitude to Dr. Laxmi P.

Gewali, and Dr. Emma Regentova for accepting to be a part of my committee. A special

thanks to Edward Jorgensen for his help during my TA work. I would also like to take

this opportunity to extend my gratitude to the staff of computer science department for all

their help.

 I would also like to extend my appreciation towards my parents and my friends for

always being there for me through all phases of my work, for their encouragement and

giving me their invaluable support without which I would never be where I am today.

v

TABLE OF CONTENTS

ABSTRACT…………………………………………………………………………… iii

ACKNOWLEDGEMENTS………..…………………………………………….…….. iv

LIST OF TABLES………………………………………………………………………vii

LIST OF FIGURES ……………………………………………………………………viii

LIST OF ALGORITHMS…………………………………………………….………….ix

CHAPTER 1 INTRODUCTION…………………………………………………………1

1.1 Related Work………………………………………………………………………… 2

 1.1.1 Isolated Word Error Correction Techniques………………………….………2

 1.1.2 Context Based Error Correction…………………………………………..…..3

CHAPTER 2 BACKGROUND……………………………………………..…..………...6

 2.1 Working of OCR ……………………………………………………………..…..….6

 2.2 Classification of OCR Errors………………………………………………….…..….7

 2.2.1 Word Error and Non Word Error…………………………………………....8

 2.2.2 Stopwords……………………………………………………………………9

2.3 Used Methods in Detail…………………………………………………….…………9

 2.3.1 Longest Common Subsequence Algorithm………………………………..…9

 2.3.2 Levenstein Edit Distance……………………………………………………11

 2.3.3 Character Confusion Matrix………………………………………………...13

 2.3.3.1 Using Confusion Matrix………………………………………...…..15

 2.3.3.2 Laplace Smoothing……………………………………………….....16

CHAPTER 3 PROPOSED APPROACH AND IMPLEMENTATION………………....17

3.1 Proposed Approach………………………………………………………………......17

3.2 Difference Between Related Work and Proposed Approach………………………...19

3.3 Methodology Details ... ……23

CHAPTER 4 EXPERIMENTS AND RESULTS……………………………………….31

4.1 Evaluation Criteria…………………………………………………………………...31

4.2 Data Collection…………………………………………………………………....... 32

4.2.1 Training Data ………………………………………………………………...32

4.2.2 Testing Data .. 32

4.3 Results on Data Set 1……………………………………………………………….. 33

 4.3.1 Observations for Data Set 1…………………………………………………..34

4.4 Results on Data Set 2 .……………………………………………………………….37

 4.4.1 Observations for Data Set 2…………………………………………………..38

4.5 Conclusion and Future Work………………………………….……………….…….39

Appendix .. …………...40

vi

BIBLIOGRAPHY ... 50

VITA ... 53

vii

LIST OF TABLES

Table 2.1 OCR Error Example …………………………………………….………….7

Table 2.2 LCS matrix for the strings “ABCBDAB” and “BDCABA”………………...11

Table 2.3 Edit Distance Matrix for the strings “paces” and “pieces” ………………...12

Table 2.4 Sample Frequency calculation Table ..………..……………………………15

Table 2.5 Sample Structure of Confusion Matrix …………………………….………15

Table 4.1 Precision-Recall values for Data Set 1 ……………………………………..34

Table 4.2 F-measure values for Data set 1 ……………………………………..……..34

Table 4.3 Precision-Recall values for Data Set 2 ..…………………..………………38

Table 4.4 F-measure values for Data Set 2 ……………………..…..………………38

viii

LIST OF FIGURES

Figure 2.1 Standard OCR Procedure…………………………………………………....7

Figure 3.1 OCR Error Correction Procedure…………………………………………. 22

Figure 3.2 Sample Error.txt and Original.txt…………………………………………..24

Figure 3.3 Firing Query to Google…. …………………………………………………26

Figure 3.4 Retrieval of Google Next Page Links ………………………...…………....26

Figure 3.5 Keyword Extraction from Web Data ………………………………………27

Figure 3.6 Extraction of Google Suggestion ……………………..……………………28

Figure 3.7 Sample Candidate.txt file ………………………………………………..29

ix

LIST OF ALGORITHMS

 2.1 Longest Common Subsequence Algorithm……………………………………......10

 2.2 Levenshtein Edit Distance Algorithm ……………………………………………..13

 3.1 Formal Description of Algorithm……..………………...…….………………...…20

1

CHAPTER 1

 INTRODUCTION

The trend to digitize paper based documents such as books and newspapers has

emerged greatly in the past years. The aim is to preserve old manuscripts which were

written before invention of word processor. Moreover, digitization helps in making non-

digitized printed media widely available, distributable, and searchable online. For

instance the Library of Congress (http://www.loc.gov/index.html) has huge historical

digital collection, all of which has been digitized from paper based books so that they can

be preserved well. According to estimation more than 200 million books are being

published every year [1]. All these need to be digitized since it is impossible to store and

manage all these on a computer. Many institutions have been engaged in large-scale

digitization projects. For instance, Google have digitized over 20 million books [2] as a

part of their Google Books service until March 2012. The next step is to apply the OCR

(Optical Character Recognition) process, which will translate scanned image of each

document into machine processable text [3]. OCR errors can occur due to the print

quality of the documents, bad physical condition and the error-prone pattern matching

techniques of the OCR process. In a report on the accuracy of OCR devices by ISRI [4],

it has been observed that the accuracy of character recognition varied from 95.64 to

99.33, depending on the type of OCR devices used. The variation was highest for the

poor quality pages. It has already been proven in a research connecting OCR with

information extraction, including [5] and [6] that the quality of information extraction is

reduced in the presence of OCR errors. There is a great need to do post processing of

OCR text in order to correct errors. One way to process OCR text can be to manually

http://www.loc.gov/index.html

2

review the OCR output text by hand. But this process can be time consuming, error

prone, and costly. Researchers have also proposed dictionary based error correction

approach in which, a lexicon or a lookup dictionary is used to spell check OCR

recognized words and correct them if they are misspelled [7]. But Dictionaries do not

support proper and personal names, names of countries, regions, geographical locations,

technical keywords and domain specific terms. One major drawback is that the content of

a standard dictionary is static as it is not constantly updated with new emerging words. In

order to overcome these issues Context-based error correction techniques were explored

which perform error detection and correction on the basis of semantic context. In this

thesis we have proposed an approach which performs context sensitive OCR error

correction with the help of Big Data of Web.

1.1 Related work

There has been much effort in the field of correcting OCR errors. Post-processing

is the last stage of an OCR system whose goal is to detect and correct spelling errors in

the OCR output text.

1.1.1 Isolated Word Error Correction Techniques

 These techniques do not take into consideration the surrounding context for error

correction. The simplest technique is dictionary lookup, but lookup time can be large if

dictionary size is huge. However hash tables can be used to gain fast access. The

advantage is that it reduces large number of comparisons for sequential search in a

dictionary. The disadvantage is the need to devise clever hash function that avoids

collisions without requiring huge hash tables. To generate candidates for error correction

minimum edit distance techniques, similarity key techniques, rule based techniques, n-

3

gram based techniques, and neural networks based techniques have been developed [8].

In one of the works [9], each word is classified and multi-indexed according to

combinations of a constant number of characters in the word. Candidate words are

selected fast and accurately, regardless of error types, as long as the number of errors is

below a threshold. Levenstein [10] developed a method of choosing a substitution for

error, based on minimum number of insertions, deletions or substitution. In the similarity

key based technique, the idea is to map similarly spelled strings into similar keys. When a

key is computed for a misspelled string, it provides a pointer to all similarly spelled

words in the lexicon which may be accepted as candidates [11]. Yannakoudakis and

Fawthrop [12] conducted a study to create a set of rules based on common misspelling

pattern and used them to correct errors. Letter n-grams, including trigrams, bigrams, and

unigrams have been used in OCR correctors to capture the lexical syntax of a dictionary

and to suggest legal corrections [8]. A related work [13] provides a general overview of

error correction techniques based on transition and confusion probabilities. In a work

related with use of neural network, Cherkassky and Vassilas [14] use backpropagation

algorithms for correction.

1.1.2 Context Based Error Correction

Still there is a class of errors that is beyond the reach of isolated-word error

correction. This class consists of real word errors, i.e, errors in which one correctly error

is substituted for another. These error type require information from the surrounding

context for correction. One such approach is proposed by Xiang Tong and David A.

Evans [15], based on statistical language modeling (SLM). It uses information from

various sources such as letter n-grams, character confusion probabilities, and word

4

bigram probabilities. It achieves around 60% error reduction rate. There is a current

research on a new post-processing method and algorithm for OCR error correction, based

on huge database of Google’s online web search engine. One of the previous work [16]

proposes a Post- Processing and context based algorithm for correcting non-word as well

as the real- word OCR errors. The idea centers on using Google’s online spelling

suggestion which retrieves a large number of tokens from all over the web and suggests

the best possible candidate as a correction for errors occurred during OCR process.

Google’s algorithm automatically examines every single word in the search query for any

possible misspelling. It first tries to match the query, composed of ordered association of

words, with any occurrence alike in Google’s index database. If the query is not found,

Google tries to infer the next possible correct word in the query based on its n-gram

statistics deduced from its database of indexed webpages. Then an entire suggestion for

the whole misspelled query is generated and displayed to the user in the form of “did you

mean: spelling-suggestion”. This procedure has shown a tremendous improvement in

OCR correction rate. Another approach [17] makes use of Google Web IT 5-gram dataset

which is colossal volume of data statistics represented as word n-gram sequences with

their respective frequencies, all extracted from online public web pages. This dataset is

used as a dictionary to spell check OCR words by using their context. The query consists

of OCR error in combination with four preceding words in OCR text. It is fed to

GoogleDataSet, which then generates a list of potential candidates for error correction,

along with their frequencies. The candidate with highest frequency is then chosen as the

correction. This approach also showed improvements in OCR error corrections. In

another approach [18] “dynamic” dictionaries were used via analysis of web pages that fit

5

the given thematic area. Twenty five non function word were extracted from OCR-corpus

and searched as a disjunctive query in the web; a dictionary is then built from retrieved

tokens. Candidate ranking is done based on frequency, edit distance, and ground truth

data. This improved the quality of converted text. In a research work [19] it has been

shown that correction accuracy is improved when integrating word bigram frequency

values from the crawls as a new score into a baseline correction strategy based on word

similarity and word frequency. A related research shows that dynamic dictionaries can

improve the coverage for the given thematic area in a significant way [20].

Still these techniques can be improved by dynamic use of the most recent Google

data set instead of stored data. Additionally advanced candidate selection algorithms and

more efficient query formation techniques may improve results.

6

CHAPTER 2

BACKGROUND

2.1 Working of OCR

It involves the following basic steps:

1) Scanning the paper documents to produce an electronic image. Problems can arise

if the quality of the original document is poor, or scanning equipment is poor. It

can lead to errors in later stage.

2) Zoning [21] which automatically orders the various regions of text in the

documents. Improper zoning can greatly affect the word order of the scanned

material and produce an incoherent document.

3) The segmentation process breaks the various zones into their respective

components (zones are decomposed into words and words are decomposed into

characters). Errors can occur if text has broken characters, overlapping characters,

and nonstandard fonts.

4) The characters are classified into their respective ASCII characters. Improper

classification can also lead to erroneous substitution of characters. For instance

character ‘e’ is often misrecognized as ‘c’ due to similar shapes. These errors

differ from spelling mistakes which humans make. The figure 2.1 shows the

typical OCR process:

7

Figure 2.1: Standard OCR Procedure

2.2 Classification of OCR Errors

Before errors can be corrected they have to be identified and classified. A proper

classification is important in order to know which kind of errors occur. In related work

there is one main classification scheme which divides errors into two classes: non-word

and real-word errors [15]. This classification is not sufficient, so a better classification

introduced by Esakov, Lopresti and Sandberg [22] is considered, which divides OCR

errors into six classes. Table 2.1 shows some typical example for each type of the errors:

1. Insertion of a character

2. Deletion of a character

3. Substitution of one character for another (1:1 Substitution)

4. Substitution of two characters for one (1:2 Substitution)

5. Substitution of one character for two (2:1 Substitution)

6. Substitution of two characters for two others (2:2 Substitution)

8

Error type Example

Insertion bat → ba t

Deletion brought→ brough

1:1Substitution j→ i, v→y , i→r

1:2 Substitution n→ii , m→ rn

2:1 Substitution cl→d , tl →k

2:2 Substitution rw→ nr , rm →nn

Table 2.1: OCR Error Example

2.2.1 Word Error and Non Word Error

Essentially, there are two types of word errors: non-word errors and real-word errors[15].

A non-word error occurs when a word in the OCR text is interpreted as a string that does

not correspond to any valid word in a given word list or dictionary. A real-word error

occurs when a source-text word is interpreted as a string that actually does occur in the

dictionary, but is different from the source-text word. For example, if the source text

"how was the show" is rendered as "how was he shaw" by an OCR device, then "shaw" is

a non-word error and "he" is a real-word error. Generally, non-word errors will never be

found in any dictionary entry. While non-word errors might be corrected without

considering the context in which the error occurs, a real-word error can only be corrected

by taking context into account. Most traditional techniques for word-correction deal with

non-word error correction and do not consider the context in which the error appears. But

9

for correcting OCR error efficiently, the context can be used as another source of

information.

2.2.2 Stopwords

Stopwords can be defined as those words in the text that do not add to a document

substance or meaning [23]. Most Information Retrieval techniques ignore the most

commonly occurring Stopwords. The list might include words such as “the”, “and”, “ a”

, “that” , “but”, “ to” , “through” etc. For our work the list is taken from Brown Corpus.

2.3 Used Methods in Detail

2.3.1 Longest Common Subsequence Algorithm

The longest Common Subsequence (LCS) algorithm is string matching algorithm which

finds the longest subsequence that two sequences have in common. It is based on

dynamic programming where the problem is solved in terms of smaller subproblems.

Formally LCS problem is defined as follows: Given a sequence X = (x1, x2…,xn) and

sequence Y = (y1, y2…,ym), find a sequence Z such that it is longest sequence and a

subsequence to both X and Y .The subsequence is defined as a sequence Z= (z1,z2…zk) ,

where there exists a strictly increasing sequence (i1, i2,…ik) of indices of X such that for all

j=1…k ,xij =zj [24] . Basically the best of the three possible cases is taken:

1. The longest common subsequence of the strings (x1, x2…,xn-1) and (y1,y2…ym),

2. The longest common subsequence of the strings (x1, x2…,xn) and (y1,y2…ym-1),

3. If xn is the same as ym, the longest common subsequence of the strings (x1, x2…,xn-

1) and (y1,y2…ym-1), followed by the common last character.

Let LCS (Xi, Yj) represent the set of longest common subsequence of prefixes Xi and Yj.

This set of sequences is given by the following:

10

LCS(Xi,Yj) = { 0 if i=0 or j=0

LCS (xi-1 , yi-1) + 1 if xi=yj

Longest (LCS (xi , yj-1) , LCS (xi-1,yj)) if xi ≠ yj

}

The complete algorithm is stated as follows:

Algorithm 2.1 Longest Common Subsequence Algorithm

FUNCTION LCSLength (X[1..m]
,
 Y[1..n])

1: C = ARRAY(0..m, 0..n)

2: For i := 0..m

3: C[i,0] = 0

4: For j := 0..n

5: C[0,j] = 0

6: For i := 1..m

7: For j := 1..n

8: IF(X[i] = Y[j])

9: C[i,j] := C[i-1,j-1] + 1

10: Else:

11: C[i,j] := max(C[i,j-1], C[i-1,j])

12: RETURN C[m,n]

11

Illustration by example

Let X be “ABCBDAB” and Y be “BDCABA”. The longest common subsequence

between X and Y is “BCBA” of length 4. An array C of dimensions m+1,n+1 is created

and is initialized to 0. The table 2.2 shown below, which is generated by the

function LCSLength, shows the lengths of the longest common subsequences between

prefixes of X and Y. The (i+1)
th

 row and (j+1)
th

 column shows the length of the LCS

between X1…i and Y1…j. The trace of longest common subsequence between strings X and

Y at each iteration is shown in yellow:

Table 2.2: LCS matrix for the strings “ABCBDAB” and “BDCABA”

2.3.2 Levenshtein Edit Distance

Levenshtein-Distance is a concept from Information Retrieval [1]. It gives the minimum

number of insertions, deletions and substitutions of single characters that are necessary in

order to transform a string x = x1 . . . xn into another string y = y1 . . . ym. It computes

dissimilarity between two strings. It uses dynamic programming, a method of solving a

 A B C B D A B

 0 0 0 0 0 0 0 0

B 0 0 1 1 1 1 1 1

D 0 0 1 1 1 2 2 2

C 0 0 1 2 2 2 2 2

A 0 1 1 2 2 2 3 3

B 0 1 2 2 3 3 3 4

A 0 1 2 2 3 3 4 4

12

large problem by regarding the problem as the sum of the solutions to its recursively

solved subproblems.

To compute edit distance ed (x,y) a matrix M1…n+1,1…m+1 is constructed where Mi,j is the

minimum number of edit operations needed to match xi…i to y1…j. Mathematically, each

matrix element is calculated as per equation below, where cost (a,b) =0 if a=b and 1

otherwise. The matrix element M0,0 is the edit distance between two empty strings.

M0,0 = 0

Mi, j = Min { Mi−1, j + 1 , Mi ,j−1 + 1, Mi−1, j−1 + cost(xi , yj) }

Table 2.3 below is an example of matrix produced to calculate the edit distance between

the strings “paces” and “pieces”. The minimum edit distance between the two strings is

given by the matrix entry at position Mm+1,n+1 which is 2. The trace of the minimum

distance path is shown in yellow.

 p a c e s

 0 1 2 3 4 5

p 1 0 1 2 3 4

i 2 1 1 2 3 4

e 3 2 2 2 2 3

c 4 3 3 2 3 3

e 5 4 4 3 2 3

s 6 5 5 4 3 2

Table 2.3: Edit Distance Matrix for the strings “paces” and “pieces”

Some more instances of edit distance between words are :

13

1 ed (bitten, bittem) =1 (substitution of 'n' with 'm')

2 ed (hittin hitting) =1 (insert 'g' at the end)

Algorithm 2.2 Levenshtein Edit Distance Algorithm

1: int FUNCTION count (string s1, string s2)

2: m = s1.length()

3: n = s2.length()

4: for i = 0 to m do

5: v[i][0] = i

6: end for

7: for j = 0 to n do

8: v[0][j] = j

9: end for

10: for i = 1 to m

11: for j = 1 to n

12: if (s1[i-1] == s2[j-1]) then

13: v[i][j] = v[i-1][j-1]

14: else

15: v[i][j] = 1 + min(min (v[i] [j-1],v[i-1] [j]), v[i-1] [j-1])

16: end if

17: end for

18: end for

19: RETURN v[m][n]

2.3.3 Character Confusion Matrix

The Confusion matrix is designed to handle the interchange errors which occur

most frequently during OCR process. The confusion matrix contains original characters

Ai and their associated corrupted non original characters Bj. This is a probabilistic model

14

which can be used to enhance the process of best candidate selection among the possible

original words, as a replacement for the OCR error. The probability that OCR produced

Bj but Bj was actually Ai in the original text, is given by Bayes theorem:

n

k

kjk

iji

ji

ABpAp

ABpAp
BAp

1

|*

|*
|

The simple way is to compare both the clean text and OCR text character by character to

compute the number of times character remains correct and number of times it is

corrupted to some other character. Thereafter, using the formula used in [15] to compute

the Character Confusion Probability we get:

 jnum

ijsubnum
jipr

,
|

where-

 num (sub(j, i)) is the number of times the character i was corrupted to character j

in the corresponding OCR text

 num(j) is number of times the character j occurred in the OCR text

Let us suppose there are 3 characters i, j and l with total occurrence of 1800 in the

training data. Since we have both the OCR data and the clean data we can compute the

Table 2.4. The Table 2.4 below shows a sample where character i occurs 1000 times in

clean text. However in OCR text it is correctly recognized as i only 950 times, it is

corrupted to j 30 times and corrupted to l 20 times. Based on this we can compute the

4following probabilities:

Probability that OCR read character i correctly is given by P(i|i) = (950 | 1000)

Probability that OCR misread character i to j is given by P(i|j) = (30 | 510)

15

Probability that OCR misread character i to l is given by P(i|l) = (20 | 290)

Char # in clean #i in OCR j l

i 1000 950 30 20

j 500 30 450 20

l 300 20 30 250

Total 1800 1000 510 290

Table 2.4: Sample Frequency calculation Table

 i j l

i P(i | i) P(i |j) P(i|l)

j P(j | i) P(j | j) P(j | l)

l P(l | i) P(l | j) P(l | l)

Table 2.5: Sample Structure of Confusion Matrix

2.3.3.1 Using Confusion Matrix

Let B= B0B1…………Bn be the OCR produced error string and A= A0A1………….An be

one of the candidates for correction. Then probability that OCR corrupted string A to B is

given by

 nn BBBAAA|......... 1010 which can be computed as:

P 00 BA * P 11 | BA …… * P nn BA |

16

Where P nn BA | denotes the probability that the n
th

character in original string A was An

and it was misrecognized by OCR as Bn.

Example

Let error string B=sment

original string A=spent

P (spent| sment) = P(s|s) * P (p|m) * P(e|e) * P(n|n) * P (t|t)

To get the values of P(s|s), P(p|m) etc Confusion Matrix is used.

2.3.3.2 Laplace Smoothing

It is used to ensure that none of the probabilities in the confusion matrix is zero. It

normalizes all the zero probability to very small non zero numbers by introducing

Smoothing constant. The modified probability is given by:

bNNOSK

baNK

*
b|a P

Where bap | is the probability of character a being misrecognized by OCR as b

K is the Smoothing parameter

N(a→b) is number of times a was misrecognized as b in the OCR text

NOS denotes the total number of alphabets in the OCR text

N(b) = total number of times character b occurs in the OCR text

So this way even if N (a→b) is zero even then P(a|b) will have a very small non zero

probability.

17

CHAPTER 3

PROPOSED APPROACH AND IMPLEMENTATION

3.1 Proposed Approach

The proposed OCR error correction starts by first cleaning OCR corpus T to

remove all characters other than ‘a’ to ‘z’ as well as all the stopwords like “is”, “that” etc.

Then the cleaned text Tc is screened through spell checker Jspell which gives the set of

all probable errors E. The original document is then manually read to find actual words

corresponding to each error e in the Error list E. Then each OCR error is concatenated

with words immediately preceding or following it to generate queries of variable length.

Formally it can be denoted as: Q=“w-n ...,w-2

,w-1 ,e, w1,w2 ,... , wn” where Q represents a

sentence made out of 2n+1 words, where w-i represents the i
th

 error that precedes e, and

w+i represent i
th

 word following the E respectively. The number of words 2n+1 can be

theoretically as large as one wishes but in our experiments ranges over 1,3,5,7 and 9.

Afterwards query Q is searched in the huge Google database and data consisting

of top ranked pages Pi where Pi is the i
th

 page returned by Google and i ranges from

1,2….10, are saved to a HTML (HyperText Markup Language) file. Then the text is

parsed to extract all the possible list of corrections called the Correction Candidates,

denoted as C={c1,c2,c3,….,ck}, where ck denotes the k
th

 candidate spelling. The parsed

data is also searched for Google’s “did you mean” or “Showing results for” token Ti. If

any of these token is found then their contents are appended to the list of Correction

Candidates List C. Now Levenstein edit distance method is applied to find candidate cj

having lowest edit distance with respect to error e. Additionally Longest Common

Subsequence (LCS) algorithm is also applied to find candidate ck having longest

18

Common Subsequence with error e. Moreover if Google does not give “did you mean”

or “Showing results for” suggestions for an error, then the probability of error e being

correctly spelled is high. So, while choosing the best candidate an Edit Distance of 0 is

also allowed and in LCS method the candidate string identical to error string is allowed

as correction. In case there are more than one best candidate cj or ck then the Confusion

matrix M is used. M contains the probability P of a particular character being

misrecognized (by OCR) as one of 26 English alphabets. The matrix M is computed by

using errors from the ground truth training data. If the error is e= B0B1……Bn and the

candidate is c =A0 A1..An then probability of c being the correct candidate is given by

expression:

P nn BBBAAA|......... 1010

Which can be computed as:

P 00 BA * P 11 | BA …… * P nn BA |

where P 00 | BA denotes the probability that the character A0 is misrecognized as B0 by

OCR. The candidate with highest probability is then chosen as a replacement of wrong

OCR word. The file containing the best candidates is compared with the original words to

compute precision, recall and F-measure.

The proposed algorithm is context-sensitive as it depends on real-world statistics from

Google data set, primarily extracted from the World Wide Web. Since we know that

Google search is based on the keyword. So if the input query contains an error, then

Google search will be based on context of the error and those tokens from the web will be

retrieved which are most likely to match the query string.

19

3.2 Differences between Related Work and Proposed Approach

The proposed approach is a context sensitive OCR error correction approach, it

differs totally from all dictionary based approaches since those use static vocabulary for

error correction. Moreover in related work [18] query is formed from 25 non function

words from OCR corpus and uses frequency as one of the candidate selection criteria but

in our work the variable length queries upto length 9 are formed from the context

immediately surrounding the error word in OCR corpus. In addition our approach uses

Longest Common Subsequence as one of the selection criteria. An approach proposed by

Bassil and Alwani [16] uses just the Google’s online spelling suggestion as a sole source

of spelling candidate generation and uses queries on length 5 only, whereas in our

approach candidates are also extracted from the top ten web pages retrieved from Google

search and experiments are performed on queries of variable length. Another work [17]

uses offline Google Web IT 5-gram dataset, uses four preceding words to form the query

and consider frequency as a sole criteria for candidate selection. On the contrary our

approach uses Google search to retrieve the latest web data dynamically, gives equal

priority to both preceding and succeeding context to form query and applies more

sophisticated candidate selection techniques like Levenstein Edit Distance, LCS and

Bayesian Character Confusion matrix. Another research [19] deals with crawling of

domain centered corpora using the Yahoo web search engine, chooses context and forms

query on words frequency basis and collects top 30 documents retrieved from web.

However, our work performs domain independent Google web search, do not consider

frequency while forming context and considers top hundred results for candidate

generation.

20

Algorithm 3.1 Formal Description of Algorithm

Function ErrorCorrection (Errors E, OCR text T, Ground Truth Training Data TD)

{

//removes all Stopwords from OCR text

1: Parsed_OCR = Cleaning (T)

// Computes a 26*26 Computes Confusion Matrix for each characters a through z

2: ConfusionMatrix M = ComputeConfusionMatrix(OCR Training Data)

3: for i = 1 to E

// puts together the i
th

 error with the two preceding and two succeeding words

4: Query =Concatenate (w-n ...,w-2

,w-1 ,e, w1,w2 ,... , wn)

//finds the Query Q in huge Google Database

5: Data D =QueryGoogle (Query Q)

// the HTML data is parsed to retrieve the keywords or correction candidates

6: Candidate list Cl = parsedata (Data)

7: Links L[] = LinkExtractor (Data) //L[] contains link to next Google pages

8: for j =1 to L

9: Data D’= QueryGoogle (link L(j))

10: retrieve K from D’ and append to Cl // K is the list of keywords

11: if “Did you Mean or “showing results for” token present in Data

12: Retrieve the token and append to Cl

21

// Apply Levenstein edit distance or Longest Common Subsequence to choose best

candidate Cb

13: BestCandidate Cb = Edit (e, Cl) or LCS (e, Cl)

14: If (count (BestCandidate Cb) > 1){

// appends best candidate with highest transition probability to list of correct candidates

15: C = ComputeHighestProbability (error e, BestCandidates, M)

16: Else C=Cb // appends best candidate to list of correct candidates

17: Return C // C now contains list of all corrected OCR errors

22

Figure 3.1: OCR Error Correction Procedure

Diagrammatic Representation of approach is shown below:

Errors
Stored

Apply Levenstein edit
distance or Longest
Common Subsequence
to choose best
candidate Ci

Is the Ci

unique?

Bayesian Confusion
Matrix (26*26) used to
calculate candidate
with highest probability

 Training Data
containing
OCR text and
Original Text

returned

Confusion Table

Generator append

selected

candidate Cs

to the output

yes

yes

No

Input OCR text

T

No

Don’t

save

Save

nono Extract
"Did you

mean
token

Receives
the data

Remove all characters

except ‘a’ to ‘z’

Jspell Remove

Stopwords

Generate
Query

Google Search
Engine
Query

 Suggestions

Did you

mean?

Extract all the
keywords and append
them as candidate in a
text file candidate.txt

Google Data
HTML data for Google

pages

Link Extractor
Retrieves the links for
top 10 Google pages

returned

23

3.3 Methodology Details

Step#1 Training data is used to build the Character Confusion matrix of dimension

26*26. The various modules used for this process are as follows:

 For this the module CharacterCounter is created which counts the frequency of

occurrence of each character from ‘a’ to ‘z’ in the cleaned text as well as in the

corrupted OCR text.

 Then module ComputeConfusionMatrix is then used to compute the Character

confusion matrix containing probability of misrecognition of each of 26

characters as one of the other 26 character.

 The method LaplaceFilter is used to assign small non zero probability to the

entries of Confusion Table which have a zero value in order to make calculation

feasible. A very small value of .0001 was chosen for smoothing constant.

Step#2 Preprocessing the testing Data- The data for testing consists of images and its

corresponding OCR text.

 The first module consists of a function CleanText. It reads each character of OCR

corpus and filters all characters other than those having ASCII value between 97

to 122 (ASCII values for characters a to z) or 65 to 90 (ASCII values for

characters A to Z). The output is saved to a text file named CleanText.txt.

 The second module consisted of function RemoveStopwords. It reads each word in

the CleanText file and removes all the stopwords like “is”, “at”, “that” etc. The

output is saved to a text file StopwordCleaned.

24

Step#3 The evaluation of Error.txt and Original.txt files

 The cleaned OCR corpus is fed to Jspell spell checker to generate the list of

possible misspellings or errors E. These misspellings are saved to the text file

Errors.txt. Then the original images are read manually to find the corresponding

correct words for those misspellings and saved to a text file named Original.txt.

The errors which are originally Proper Nouns, Acronyms or Non-English words

would be discarded. It is observed that some of the errors found by Jspell are

actually correctly spelled but even then these are kept in the error list in order to

test precision, i.e, number of correct word which get corrupted by applying

procedure. A sample of Error.txt and Original.txt is given below:

Figure 3.2: Sample Error.txt file and Original.txt

25

Step#4 Query Generation- The module QueryGenerator takes input the list of errors and

cleaned OCR corpus namely CleanedStopword.txt. It generates query strings of varying

lengths namely1,3,5,7 and 9. The query is composed of errors the context surrounding it,

in the OCR text. For instance for the OCR text :

 “ the magic show was a grcat success and fame !”

The cleaned text would be:

 “magic show grcat success fame”

The precise 5 word query sent to Google by procedure would be:

 Q= magic + show + grcat + success + fame

All the generated queries are stored to text file query.txt.

Step 5 # Crawling Web for extraction of data- A module called QueryGoogle has been

created which takes the list of queries recursively as input and retrieves results from the

Google Web Search. It parses Google’s standard (browser) search HTML results. The

HTML source code of top ten pages returned by the Google are stored in a text file. We

include a short delay after each page retrieval because Google block IPs (Internet

Protocol) with too many requests in a short time. Figure 3.3 below shows the sample

Google response on firing the above query Q5.

26

Figure 3.3: Firing Query to Google

Step # 6 Link extractor- The module LinkExtractor extracts the web links of all the next

result pages of Google, if present on first search page. All the link are then stored in

Link.txt text file. For the above query, web links shown below in figure 3.4 (1 thorough 7)

will be extracted.

Figure 3.4: Retrieval of Google Next Page Links

27

Step # 7 Fetching the HTML data from all the Web Links and parsing it to generate list of

possible correction candidates

 For fetching Data from the Links method QueryGoogle is called recursively and

retrieved data is stored in different HTML files.

 The module ExtractFirstPage is called which parses content of top Google

HTML page and extracts all the keywords, saves them in a text file named

FirstPagekeywords.txt. Further the module ExtractNextPageKeywords retrieves

the keywords from all the next web pages returned by Google, saves them in a file

named NextPagekeywords.txt. Figure 3.5 shown below is a sample web snippet;

all the keywords in bold i.e “shows”, “fame”, “grcatesr” will be extracted .

 The module MergeKeywords facilitates in combining the contents of

FirstPagekeywords.txt and NextPagekeywords.txt to a text file named

Merged_keywords.txt. In order to remove redundant words all the unique

keywords present in Merged_keywords.txt are extracted and written to another file

Unique_keywords.txt .

Figure 3.5: Keyword Extraction from Web Data

28

 Then the top page returned by the Google is parsed by the module

SuggestionExtractor to extract the contents of “Did you mean” or “Showing

results for”, if present on the top page. For the snippet shown in figure 3.6, the

contents “magic show great success fame” will be retrieved and stored in the text

file named Googlesuggestion.txt. The contents are also appended to the text file

Unique_keywords.txt to generate the file Candidate.txt, containing an exhaustive

final list of all possible candidates for error correction.

Figure 3.6: Extraction of Google Suggestion

Step# 8 Choosing the best correction from Candidate.txt file .

 To implement Levenstein Edit Distance Algorithm, the module

ComputeEditDistance is created which takes as input the error e and

Candidates.txt file and gives the best candidates Cb as output. It computes the

number of insertions, deletions or substitutions required to transform candidate to

the error word. Also if the file Googlesuggestion.txt has some content

corresponding to an error e, then candidate with an edit distance of zero (with

error) is not considered for correction. A sample of Candidate.txt shown below in

figure 3.7:

29

Figure 3.7: Sample Candidate.txt file

Computations made by module for some of these candidates, will be:

 ComputeEditDistance (grcat, great) =1 (Substitution of c with e)

 ComputeEditDistance (grcat, groat) =1 (Substitution of c with o)

 ComputeEditDistance (grcat, grant)=2 (substitution of ‘c’ with ‘a’, ‘a’ with ‘n’)

 ComputeEditDistance (grcat, grcat) =0

Now, the Candidate “grcat”, has the lowest Edit Distance with an error “grcat”. But our

algorithm does not consider this string for correction since Google generates suggestion

content “Did you mean” for the error “grcat”. The candidates then considered for

correction are strings “great” and “graot”, having an edit distance of one from the error

string. Since both candidates have same edit distance from the error, then module

ComputeProbability is used to break the tie by generate the following conditional

probabilities:

 P(great | grcat) = P(g|g) * P(r|r) * P(e|c) * P(a|a) * P(t|t)

30

 P (groat |grcat)= P(g|g) * P(r|r) * P(o|c) * P(a|a) * P(t|t)

The Confusion Matrix is used to compare character confusion values P(e|c) and P(o|c) i.e

the probability of character ‘e’ being misrecognized as ‘c’ and probability of character ‘o’

being misrecognized ‘c’, by the OCR. The candidate with the highest conditional

probability with respect to the error , is then chosen as the correction.

The module ComputeLCS is also used (independently from Edit Distance) to compute the

best candidate, which has the longest common subsequence with the error, as the

correction. This method takes the error e and Candidates.txt file as input. For the error

“grcat” and the Candidate file shown above, some of computations made by the module

ComputeLCS are shown below:

 LCS (grcat, great) = 4 Longest subsequence (grat)

 LCS (grcat, groat) = 4 Longest subsequence (grat)

 LCS (grcat, grant) =4 Longest subsequence (grat)

 LCS (grcat, cat) =3 Longest subsequence (cat)

Again there is more than one candidate having the longest LCS with an error string. So in

order to choose the best candidates among these, the character confusion matrix is used.

For simplicity the uppercase characters in the candidate strings were converted to lower

case for comparison with error word.

Step#9 Finally we compute the precision, recall and F-measure for both the Levenstein

Edit Distance and the LCS algorithms.

31

CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Evaluation Criteria

To evaluate the performance of the experiments, we need to evaluate and determine the

evaluation measures. There are four possible outcomes when we try to apply the

procedure to correct the errors:

1. correct → correct: A correct character is still correct at output. This is a true negative

(TN).

2. correct → wrong: A correct character is corrected to a wrong character at output. This

is a false positive (FP).

3. wrong→correct: A character is corrected by the procedure. This is a true positive (TP).

4. wrong → wrong: A wrong character is still wrong. This is a false negative (FN).

Now, using the TN, FP,TP and FN, the measures Precision and Recall [21] can be

derived as :

Recall

FNTP

TP
R

Precision

FPTP

TP
P

The Recall measures the ability of a system to correct errors. In order to get higher recall,

the number of True corrections (TP) should be more and number of False Corrections

(FN) should be least. The precision denotes the accuracy of the system; i.e not corrupting

the correctly spelled words. To gain higher precision the number of corrections needs to

be more and introduced errors (FP) should be less. Since we consider both recall and

32

precision as equally important, so the harmonic mean of R and P, the simplified F

measure [25] is given by:

RP

RP
F

**2

4.2 Data Collection

4.2.1 Training Data – We need a set of training data for building the character confusion

matrix. The data for first experiment has been taken from a book titled “Notes on

Witchcraft” with 60 pages, which has been manually corrected with reference to non-

OCR version image of the book. After removing all the characters except a to z the

training data contained 13,104 words.

4.2.2 Testing Data- The data for testing the procedure is taken from Library of Congress

(http://www.loc.gov/index.html) which is the largest library in the world, with millions of

books, recordings, photographs, maps and manuscripts in its collection. The Library has

created a website named Chronological America which provides access to digitized

historic materials primarily through a Web interface enhanced with dynamic HTML

interactivity for magnification and navigation. It contains digitized newspapers from

years 1836 to 1922. These newspaper materials were digitized to technical specifications

designed by the Library of Congress i.e TIFF 6.0, 8-bit grayscale, 400 dpi,

uncompressed, with specified tag values.

The testing data is taken from The Mt. Sterling advocate, a newspaper present in

the Library of Congress collection. The pages were chosen based on various criteria such

as readability, date of publication and convenience to map with its corresponding OCR

text. The total of 7 newspaper images are chosen as testing data. Data contains 8,400

33

words after removal of Stopwords and non-alphabetical characters. The corresponding

OCR text is first is screened through, a spell checker software API called Jspell. It has

suggested 103 possible errors. The original newspaper images are then read manually in

order to find the correct words corresponding to these misspelling errors. Finally, the file

of errors and original are prepared.

4.3 Results on Data Set 1

Table 4.1 below shows the value of Precision and Recall for the Test Data. The

Recall is attains a lowest value for the 1 word query, it increases fairly as query length is

increased to 3, it reaches its maximum value 51.5% at a query length 5. Then the value

decreases a little for a 7 word query. The LCS method gives the highest values for Recall

and Precision. The procedure does not introduce any errors, since the original data does

not contain many wrongly spelled words. The procedure is build such that the Precision

attains the highest performance, even at the cost of low Recall. For cases when Google do

not generate suggestion of form of “Did you mean”, the string matching algorithms LCS

and Edit Distance are adapted to allow a candidate identical to the misspelling error as a

replacement. Consequently, this improved Precision though Recall dropped a little since

some errors are replaced by themselves. Table 4.2 shows the overall accuracy of system

in the form of F-measure:

34

 1word 3word 5word 7word 9 word

Edit R=32

P=100

R=44

P= 100

R= 48.5

P= 100

R=43

P= 100

R=40

P=100
LCS R=30

P=100

R=45

P= 100

R=51

P=100

R=44

P= 100

R=41

p=100

Table 4.1: Precision –Recall values for Data set 1

Fmeasure 1word 3word 5word 7word 9 word

Edit 48.48

61.1 65.3 60.1 57.1

LCS 46.15 62.1 68 61.1 58.15

Table 4.2: F-measure values for Data set 1

4.3.1 Observations on Data Set 1

It is observed that our approach corrects more errors than the correction suggested

by Google’s “Did you mean”. If we make candidate selection only on the basis of the

Google’s “Did you mean” suggestion, then we correct 42 errors out of 95 misspellings

but our approach is able to correct 49 misspellings. So there is an improvement of around

16.6% in error correction using our approach. There are many possible reasons for this.

Firstly, it is observed that in case the context surrounding the error is also misspelled then

there is least chance Google gives correct suggestion. For instance when the query

“tne+territory+mnke+advances+tho” containing error “mnke” is fed to Google search

engine, the Google loads the suggestion “the+territory+mnke+advances+tho”. Hence,

Google here focuses on correcting the commonly misspelled word “tne” which is the first

35

misspelled string in the search query. However, our approach corrects the error “mnke”

to “make”. In the second category, Google is not able to load any suggestions. For

instance for the query “day+Oclock+Mrther+tf+jnd” containing error “Mrther” Google

does not give any “Did you mean” suggestion. However, our approach corrects the error

to “mother”. The third reason that our approach is able to correct more errors than Google

is due to use of Character Confusion Matrix. For instance for the query “work underway

roaa surVs Yucca” containing error “roaa”, Google does not give any suggestion but our

procedure selects two possible candidates “rosa” and “road” on basis of LCS. Then the

conditional probabilities p(road | roaa) and p(rosa | roaa) are computed, after which the

word “road” is selected as the best candidate.

We can clearly see that the F-measure is lowest for the 1 word query. For instance

the error word “mnde” is not corrected when fed as a single word query to web search.

However when it is fed along with its context in OCR text, web generated the correct

spelling candidate “made”. If context of the query is not available it becomes unlikely for

the web to identify error and retrieve relevant webpages. The performance improves a bit

for a 3 word query as it provides some context but the Recall or F-measure is best for the

5 word query as it gives the web necessary and sufficient context to generate the possible

relevant corrections. For instance the error “bo” is not corrected when the 3 word query is

fed but when the query is expanded to 5 words, the error “bo” got corrected to “be”. The

score does not increase further for 7 or 9 word query as 5 word query provides sufficient

and necessary context, expanding query does not affect the performance in terms of the

retrieval of candidates. Also too much context sometimes redirects to the webpage which

is the actual source of error and also number of retrieved tokens become less since

36

Google returns pages that match all the search terms. For instance, in case of 9 word

query “queryaplte+variety+la+contention+anawer+tiled+aupcrlor+court+today” the web

considered the error “anawer” as correct and retrieved the webpage from which the OCR

corpus is taken, however for 5 word query web retrieved the correct spelling suggestion

“answer”.

Also our approach is not able to correct all the errors even for a five word query.

There are many reasons for it. To start with, it is observed that nearly 30% of the errors

that procedure is not able to correct, are originally Stopwords such as “the”, “at”, “an”,

“of” etc. This is due to reason that Stopwords do not generally add meaning to search.

But misspelled Stopwords in OCR corpus do not affect the retrieval performance either.

Many a times (nearly 10%) spelling correction is a variant of errors and string matching

algorithms are not able to relate these. For instance the error string “spld” is wrongly

corrected to its plural “splds” instead of “sold”. An s-stemmer can help to recognize such

pair of words. In few cases, an error word becomes a valid word in other language, hence

web gives tokens related to those web pages. For instance the word state is misrecognized

by OCR as “stato” which is a valid word in Italian thus Google treated it as an authentic

word and do not generate spelling suggestions. A more language restrictive search

technique might help deal this issue. In some cases erroneous words are mistaken for

acronyms, proper noun, hence the irrelevant webpages are fetched by search engine,

which in turn generates irrelevant correction candidates. For instance the error string

“aro” (originally “are”) is wrongly corrected to “aro”, one of correction candidates

generated by Google search. More advanced error detection technique may allow the

procedure to judge the cases where replacement of error by itself is not allowed. In rare

37

cases the web found the original web source from where the error is taken, hence error

goes undetected, so no relevant candidates for spelling correction are suggested. As an

instance for the context string “established+uniform+errades+for+burley” containing

error “errades”, the top webpage retrieved is from Chronological America webpage.

Hence, better Information Retrieval models may prove handy. It is also observed that

sometimes web generated wrong candidates due to the ambigious context. For the context

“Central+Kentucky+Wo+started+this” the error string “wo” is misrecognized as “who”

instead of “we”. In some rare cases algorithms chose the wrong candidate as correction.

The error “ajwnys” is wrongly corrected to “ajwny” instead of “always”, by the LCS.

Weighted string matching technique can be used, where candidate string with valid entry

in a dictionary would be given more weight. In some cases the content surrounding the

misspelling is itself corrupted or misspelled so web could not identify the correct context.

Moreover, some errors are too much distorted, difficult to get even a valid spelling

candidate generation. This mostly occurred for the contents of headings in the Bold font,

as an example the text “Distinctive spring Papering” is corrupted to “gLtsfttttitot Iptttffi

lajttrtttg”.

4.4 Results on Data Set 2

In another experiment the above mentioned data from “Notes on Witchcraft”

book is used both for training and testing. The data after cleaning contains13,104 words .

Half of the data is used for training or building character confusion matrix and the other

half is used for testing the procedure. Table 4.3 below shows precision-recall values

obtained for the queries of various lengths using each of the methods. Table 4.4 shows

the F-Measure:

38

 1word 3word 5word 7word 9 word

Edit Method R = 44

P = 77

R= 48

P= 67

R = 50

P = 66

R=47.5

P= 61

R = 47

P = 50

LCS Method R=43

P=78

R= 47

P= 66.5

R=49

P=67

R=48

P= 59.8

R=45

p=50

Table 4.3: Precision –Recall values for Data Set 2

Fmeasure 1word 3word 5word 7word 9 word

Edit 1 56

55.9 56.9 53.4 48.4

LCS1 55.4 55.1 56.6 53.3 47.5

Table 4.4: F-measure values for Data Set 2

4.4.1 Observation on Data Set 2-

For this dataset the recall is best for the five word query. But here unexpectedly

the precision is best for the single word query. The reason is that the number of errors

that remain misspelled are maximum for single word query, so even the words which are

misspellings in original text remain misspelled, increasing the value of Precision. For

instance, the original text and OCR both contained word “restauration” which remains

wrongly corrected as “restauration”, when fed as a single word query. However when fed

with context it got corrected to “restoration” (which is ideally the correct spelling), but

this would be considered as corrupting the word and hence Precision drops. Even then the

combined measure of Precision and Recall , the F-measure attains its maximum value for

the five word query.

39

However Precision drops substantially compared to DataSet1. This is due to the

fact that the original image itself has many old English or misspelled words such as

“praestigious”,“Magitians”,“maner”, “heros” etc. So the procedure in addition to

correcting the spelling mistakes caused by OCR, corrected those misspellings too. But

since these misspellings are identical in OCR text and original image, so it actually

becomes a corruption instead of correction. Also the text contains words from German

vocabulary such as “satisfie” which is corrupted to English word “satisfied” by the

procedure. It is observed that there are several misspellings that remained uncorrected. To

start with some German words still remained in the OCR corpus even after manually

removing them. Due to this, these words became part of the context of the query and web

retrieved results from irrelevant webpages including pages in German. A non English

Language word detector may help in efficient query formation.

4.5 Conclusion and Future Work

We designed an OCR post processing system based on Big Data. Our

experimental results on a small set of historical newspaper data show a recall and

precision of 51% and 100%, respectively. In future dynamic use of Confusion Matrix

may help. Also stemming techniques can be incorporated. Moreover there is a great need

for advanced and restrictive web search. Advanced error detection techniques can also be

used for improving results.

40

Appendix

Chapter A

Table A.1 below show the list of errors corrected by my procedure. For most of the errors

(numbered 1 to 47) the LCS algorithm solely choose the correct candidate. For the errors

48 and 49 the Character Confusion Matrix helped in choosing the best candidate. Also

the errors numbered 42 to 49 were corrected by our approach but not by the Google “Did

you mean” suggestion.

 Error Original

1. joung young

2. gieat great

3. wesks weeks

4. geting getting

5. suiveying surveying

6. poweH power

7. Ppge Page

8. defandants defendants

9. ffom from

10. Wtednesday Wednesday

11. wjre wire

12. suppuit support

13. nver never

14. tneir their

15. bo be

41

16. highrly highly

17. oompany company

18. dorived derived

19. maehine machine

20. atteation attention

21. nbout about

22. ovef over

23. aproximateiy approximately

24. invesjor investor

25. farmors farmers

26. unitl until

27. wBat what

28. receivin receiving

29. Fhiance finance

30. tfhese these

31. ajwnys always

32. Rcgardinp Regarding

33. teveral several

34. jmistmas christmas

35. Cnited United

36. Hohpital Hospital

37. amprovements improvements

38. anawer answer

42

39. yestrday yesterday

40. aibilty ability

41. tho the

42. Fnited united

43. mnke make

44. brough brought

45. matler matter

46. ordets orders

47. Mrther mother

48. roaa road

49. mation nation

Table A.1: List of errors corrected by our procedure

Table 4.2 gives list of errors not corrected by our approach. These can be divided into

various categories. The main reason for not being able to correct these errors is lack of

presence of correct spelling correction candidate in the webpages retrieved. Majority of

these errors (numbered 1 to 15) were originally Stopwords. For the errors numbered 15 to

36 the web either misrecognized them as some proper noun or acronym, or the context

surrounding these words is also corrupted. Some of the errors specially 37 to 43 are too

distorted from original spelling. For some of the errors namely 45 to 46 correct candidate

could not be selected by procedure. They can be picked by using an stemmer

43

 Error Original

1. anJ and

2. vho who

3. tne the

4. bv by

5. tho the

6. js is

7. nn an

8. id is

9. tharf than

10. Thp Than

11. Wo We

12. jthey they

13. aro are

14. nbout about

15. ot of

16. damsile damsite

17. rewardeu rewarded

18. riehts rights

19. eiiort effort

20. Stntc state

21. okl ok

22. Vears years

44

23. phono phone

24. Stntc state

25. okl ok

26. royival revival

27. Engago Engage

28. baiiks Banks

29. gjad glad

30. stato state

31. mnde made

32. uity unity

33. greut great

34. dele date

35. crroom groom

36. wnr war

37. rriembers members

38. zation caption

39. rebuiS rebuilt

40. gLtsfttttitot Distinctive

41. Iptttffi spring

42. lajttrtttg Papering

43. niuke make

44. engilneer engineers

45. ajwnys always

45

46. greut great

Table A.2: List of errors not corrected by our procedure

a 5858

b 1512

c 4078

d 3470

e 10705

f 1570

g 1755

h 2545

i 6844

j 295

k 675

I 3611

m 2452

n 5865

o 5355

p 2563

q 166

r 6194

s 6518

t 6658

46

u 2656

v 912

w 1383

x 348

y 1213

z 62

Table A.3 Count of Characters in Training data

b->e 1

r->s 2

g->s 3

f->t 4

a->u 3

l->f 3

t->l 1

r->x 5

z->s 2

a->z 1

c->e 7

r->l 3

f->t 4

47

f->l 6

h->b 2

g->c 2

a->u 3

v->r 1

r->e 2

e->r 2

x->z 1

v->y 1

l->j 2

e->t 2

f->i 5

a->o 8

l->i 9

n->m 3

e->u 1

u->y 1

g->s 3

e->r 2

t->i 2

y->s 1

a->f 1

48

r->i 2

s->i 1

c->o 2

o->c 2

m->n 3

v->u 2

j->i 1

e->o 1

f->i 5

i->l 1

a->c 1

a->e 1

c->o 2

g->s 3

v->y 1

s->a 2

r->x 5

f->l 6

u->i 5

m->n 3

r->d 1

s->e 1

49

d->a 3

u->v 1

v->u 2

e->o 1

f->i 5

u->m 1

h->i 1

a->d 2

Table A.4: List of Substitution errors in Training Data

50

BIBLIOGRAPHY

[1] “The Boston Public Library”,(Janurary,2010)

http://www.bpl.org/general/about/bpl_an_overview_2010

[2]Vincent, L. (2007, September). Google Book Search: Document understanding on a

massive scale. In Document Analysis and Recognition, 2007. ICDAR 2007. Ninth

International Conference on (Vol. 2, pp. 819-823). IEEE.

[3] Klein, S. T., Ben-Nissan, M., & Kopel, M. (2002). A voting system for automatic

OCR correction.

[4] Cheriet, M., Kharma, N., Liu, C. L., & Suen, C. (2007). Character recognition

systems: a guide for students and practitioners. Wiley-Interscience.

[5] Taghva, K., Beckley, R., & Coombs, J. (2006). The effects of OCR error on the

extraction of private information. In Document Analysis Systems VII (pp. 348-357).

Springer Berlin Heidelberg..

[6] Miller, D., Boisen, S., Schwartz, R., Stone, R., & Weischedel, R. (2000, April).

Named entity extraction from noisy input: speech and OCR. In Proceedings of the sixth

conference on Applied natural language processing (pp. 316-324). Association for

Computational Linguistics.

.

[7] Lebert, M. (2008). Project Gutenberg (1971-2008). Project Gutenberg.).

[8] Bokser, M. (1992). Omnidocument technologies. Proceedings of the IEEE,80(7),

1066-1078.

[9] Levenshtein, V.I., Binary codes capable of correcting deletions, insertions, and

reversals, Cybernetics and Control Theory, 10(8), 707-710, (1966).

[10] Niwa, N., Kayashima, K., & Shimeki, Y. (1992). Postprocessing for character

recognition using keyword information. In IAPR Workshop Machine Vision

Applications (pp. 519-522)

[11] Taghva, K., Borsack, J., & Condit, A. (1994, August). Results of applying

probabilistic IR to OCR text. In Proceedings of the 17th annual international ACM

SIGIR conference on Research and development in information retrieval(pp. 202-211).

Springer-Verlag New York, Inc.

[12] Kise, K., Shiraishi, T., Takamatsu, S., & Fukunaga, K. (1996). A method of

post‐processing for character recognition based on syntactic and semantic analysis of

sentences. Systems and computers in Japan, 27(9), 94-107.

51

[13] Hull, J. J. (1996). Incorporating language syntax in visual text recognition with a

statistical model. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 18(12), 1251-1255.

[14] Dictionaries, O. (2011). Oxford Dictionaries Online.

[15] Tong, X., & Evans, D. A. (1996, August). A statistical approach to automatic OCR

error correction in context. In Proceedings of the fourth workshop on very large

corpora (pp. 88-100).

[16] Bassil, Y., & Alwani, M. (2012). Ocr post-processing error correction algorithm

using Google online spelling suggestion. arXiv preprint arXiv:1204.0191.

[17] Bassil, Y., & Alwani, M. (2012). OCR Context-Sensitive Error Correction Based on

Google Web 1T 5-Gram Data Set. arXiv preprint arXiv:1204.0188.

[18] Mihov, S., Koeva, S., Ringlstetter, C., Schulz, K. U., & Strohmaier, C. (2004).

Precise and efficient text correction using Levenshtein automata, dynamic Web

dictionaries and optimized correction models. In Proceedings of Workshop on

International Proofing Tools and Language Technologies.

[19] Ringlstetter, C., Schulz, K. U., & Mihov, S. (2007). Adaptive text correction with

Web-crawled domain-dependent dictionaries. ACM Transactions on Speech and

Language Processing (TSLP), 4(4), 9.

[20] Strohmaier, C., Ringlstetter, C., Schulz, K. U., & Mihov, S. (2003, August). Lexical

postcorrection of OCR-results: The web as a dynamic secondary Dictionary.

In Proceedings of the 7th International Conference on Document Analysis and

Recognition (ICDAR) (pp. 1133-1137).

[21] Taghva, K., & Stofsky, E. (2001). OCRSpell: an interactive spelling correction

system for OCR errors in text. International Journal on Document Analysis and

Recognition, 3(3), 125-137.

.

[22] Esakov, J., Lopresti, D. P., & Sandberg, J. S. (1994, March). Classification and

distribution of optical character recognition errors. In IS&T/SPIE 1994 International

Symposium on Electronic Imaging: Science and Technology (pp. 204-216). International

Society for Optics and Photonics.

[23] Croft, W. B., Harding, S. M., Taghva, K., & Borsack, J. (1994, April). An evaluation

of information retrieval accuracy with simulated OCR output. InSymposium on Document

Analysis and Information Retrieval (pp. 115-126).

.[24] Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). 1 99 0. Introduction to

Algorithms. MIT Press, Cambridge, MA..

52

[25] Reynaert, M. (2008, May). All, and only, the errors: more complete and consistent

spelling and ocr-error correction evaluation. In 6th International Conference on

Language Resources and Evaluation (pp. 1867-1872).

53

VITA

Graduate College

University of Nevada, Las Vegas

Shivam Agarwal

Degrees:

Bachelor of Technology in Computer Science, 2011

Indian Institute of Information Technology

Master of Science in computer science, 2013

University of Nevada Las Vegas

Thesis Title: Utilizing Big Data in Identification and Correction of OCR Errors

Thesis Examination Committee:

Chair Person, Dr. Kazem Taghva, Ph.D.

Committee Member, Dr. Ajoy K. Datta, Ph.D.

Committee Member, Dr. Laxmi P. Gewali, Ph.D

Graduate College Representative, Dr. Emma Regentova, Ph.D.

	Utilizing Big Data in Identification and Correction of OCR Errors
	Repository Citation

	tmp.1383695626.pdf.BLVwK

