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ABSTRACT 

 

 

by 

Shivam Agarwal 

Dr. Kazem Taghva, Examination Committee Chair 

Professor of Computer Science  

University of Nevada, Las Vegas 

 

 

In this thesis, we report on our experiments for detection and correction of OCR errors 

with web data. More specifically, we utilize Google search to access the big data 

resources available to identify possible candidates for correction. We then use a 

combination of the Longest Common Subsequences (LCS) and Bayesian estimates to 

automatically pick the proper candidate. 

Our experimental results on a small set of historical newspaper data show a recall 

and precision of 51% and 100%, respectively. The work in this thesis further provides a 

detailed classification and analysis of all errors. In particular, we point out the 

shortcomings of our approach in its ability to suggest proper candidates to correct the 

remaining errors. 
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CHAPTER 1 

                                           INTRODUCTION 

The trend to digitize paper based documents such as books and newspapers has 

emerged greatly in the past years. The aim is to preserve old manuscripts which were 

written before invention of word processor. Moreover, digitization helps in making non-

digitized printed media widely available, distributable, and searchable online. For 

instance the Library of Congress (http://www.loc.gov/index.html) has huge historical 

digital collection, all of which has been digitized from paper based books so that they can 

be preserved well. According to estimation more than 200 million books are being 

published every year [1]. All these need to be digitized since it is impossible to store and 

manage all these on a computer. Many institutions have been engaged in large-scale 

digitization projects. For instance, Google have digitized over 20 million books [2] as a 

part of their Google Books service until March 2012. The next step is to apply the OCR 

(Optical Character Recognition) process, which will translate scanned image of each 

document into machine processable text [3]. OCR errors can occur due to the print 

quality of the documents, bad physical condition and the error-prone pattern matching 

techniques of the OCR process. In a report on the accuracy of OCR devices by ISRI [4], 

it has been observed that the accuracy of character recognition varied from 95.64 to 

99.33, depending on the type of OCR devices used. The variation was highest for the 

poor quality pages. It has already been proven in a research connecting OCR with 

information extraction, including [5] and [6] that the quality of information extraction is 

reduced in the presence of OCR errors. There is a great need to do post processing of 

OCR text in order to correct errors. One way to process OCR text can be to manually 

http://www.loc.gov/index.html
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review the OCR output text by hand. But this process can be time consuming, error 

prone, and costly. Researchers have also proposed dictionary based error correction 

approach in which, a lexicon or a lookup dictionary is used to spell check OCR 

recognized words and correct them if they are misspelled [7]. But Dictionaries do not 

support proper and personal names, names of countries, regions, geographical locations, 

technical keywords and domain specific terms. One major drawback is that the content of 

a standard dictionary is static as it is not constantly updated with new emerging words. In 

order to overcome these issues Context-based error correction techniques were explored 

which perform error detection and correction on the basis of semantic context. In this 

thesis we have proposed an approach which performs context sensitive OCR error 

correction with the help of Big Data of Web. 

1.1   Related work 

There has been much effort in the field of correcting OCR errors. Post-processing 

is the last stage of an OCR system whose goal is to detect and correct spelling errors in 

the OCR output text.  

1.1.1 Isolated Word Error Correction Techniques 

            These techniques do not take into consideration the surrounding context for error 

correction. The simplest technique is dictionary lookup, but lookup time can be large if 

dictionary size is huge. However hash tables can be used to gain fast access. The 

advantage is that it reduces large number of comparisons for sequential search in a 

dictionary. The disadvantage is the need to devise clever hash function that avoids 

collisions without requiring huge hash tables. To generate candidates for error correction 

minimum edit distance techniques, similarity key techniques, rule based techniques, n-
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gram based techniques, and neural networks based techniques have been developed [8]. 

In one of the works [9], each word is classified and multi-indexed according to 

combinations of a constant number of characters in the word. Candidate words are 

selected fast and accurately, regardless of error types, as long as the number of errors is 

below a threshold.  Levenstein [10] developed a method of choosing a substitution for 

error, based on minimum number of insertions, deletions or substitution. In the similarity 

key based technique, the idea is to map similarly spelled strings into similar keys. When a 

key is computed for a misspelled string, it provides a pointer to all similarly spelled 

words in the lexicon which may be accepted as candidates [11]. Yannakoudakis and 

Fawthrop [12] conducted a study to create a set of rules based on common misspelling 

pattern and used them to correct errors. Letter n-grams, including trigrams, bigrams, and 

unigrams have been used in OCR correctors to capture the lexical syntax of a dictionary 

and to suggest legal corrections [8]. A related work [13] provides a general overview of 

error correction techniques based on transition and confusion probabilities. In a work 

related with use of neural network, Cherkassky and Vassilas [14] use  backpropagation 

algorithms for correction. 

1.1.2  Context Based Error Correction 

Still there is a class of errors that is beyond the reach of isolated-word error 

correction. This class consists of real word errors, i.e, errors in which one correctly error 

is substituted for another. These error type require information from the surrounding 

context for correction. One such approach is proposed by Xiang Tong and David A. 

Evans [15], based on statistical language modeling (SLM). It uses information from 

various sources such as letter n-grams, character confusion probabilities, and word 
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bigram probabilities. It achieves around 60% error reduction rate. There is a current 

research on a new post-processing method and algorithm for OCR error correction, based 

on huge database of Google’s online web search engine. One of the previous work [16] 

proposes a Post- Processing and context based algorithm for correcting non-word as well 

as the real- word OCR errors. The idea centers on using Google’s online spelling 

suggestion which retrieves a large number of tokens from all over the web and suggests 

the best possible candidate as a correction for errors occurred during OCR process. 

Google’s algorithm automatically examines every single word in the search query for any 

possible misspelling. It first tries to match the query, composed of ordered association of 

words, with any occurrence alike in Google’s index database. If the query is not found, 

Google tries to infer the next possible correct word in the query based on its n-gram 

statistics deduced from its database of indexed webpages. Then an entire suggestion for 

the whole misspelled query is generated and displayed to the user in the form of “did you 

mean: spelling-suggestion”. This procedure has shown a tremendous improvement in 

OCR correction rate. Another approach [17] makes use of Google Web IT 5-gram dataset 

which is colossal volume of data statistics represented as word n-gram sequences with 

their respective frequencies, all extracted from online public web pages. This dataset is 

used as a dictionary to spell check OCR words by using their context. The query consists 

of OCR error in combination with four preceding words in OCR text. It is fed to 

GoogleDataSet, which then generates a list of potential candidates for error correction, 

along with their frequencies. The candidate with highest frequency is then chosen as the 

correction. This approach also showed improvements in OCR error corrections. In 

another approach [18] “dynamic” dictionaries were used via analysis of web pages that fit 
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the given thematic area. Twenty five non function word were extracted from OCR-corpus 

and searched as a disjunctive query in the web; a dictionary is then built from retrieved 

tokens. Candidate ranking is done based on frequency, edit distance, and ground truth 

data. This improved the quality of converted text. In a research work [19] it has been 

shown that correction accuracy is improved when integrating word bigram frequency 

values from the crawls as a new score into a baseline correction strategy based on word 

similarity and word frequency. A related research shows that dynamic dictionaries can 

improve the coverage for the given thematic area in a significant way [20]. 

Still these techniques can be improved by dynamic use of the most recent Google 

data set instead of stored data. Additionally advanced candidate selection algorithms and 

more efficient query formation techniques may improve results. 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

CHAPTER 2 

BACKGROUND 

2.1 Working of OCR 

It involves the following basic steps: 

1) Scanning the paper documents to produce an electronic image. Problems can arise 

if the quality of the original document is poor, or scanning equipment is poor. It 

can lead to errors in later stage. 

2) Zoning [21] which automatically orders the various regions of text in the 

documents. Improper zoning can greatly affect the word order of the scanned 

material and produce an incoherent document. 

3) The segmentation process breaks the various zones into their respective 

components (zones are decomposed into words and words are decomposed into 

characters). Errors can occur if text has broken characters, overlapping characters, 

and nonstandard fonts. 

4) The characters are classified into their respective ASCII characters. Improper 

classification can also lead to erroneous substitution of characters. For instance 

character ‘e’ is often misrecognized as ‘c’ due to similar shapes. These errors 

differ from spelling mistakes which humans make. The figure 2.1 shows the 

typical OCR process: 
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Figure 2.1: Standard OCR Procedure 

 

2.2 Classification of OCR Errors 

Before errors can be corrected they have to be identified and classified. A proper 

classification is important in order to know which kind of errors occur. In related work 

there is one main classification scheme which divides errors into two classes: non-word 

and real-word errors [15]. This classification is not sufficient, so a better classification 

introduced by Esakov, Lopresti and Sandberg [22] is considered, which divides OCR 

errors into six classes. Table 2.1 shows some typical example for each type of the errors: 

1. Insertion of a character 

2. Deletion of a character 

3. Substitution of one character for another (1:1 Substitution) 

4. Substitution of two characters for one (1:2 Substitution) 

5. Substitution of one character for two (2:1 Substitution) 

6. Substitution of two characters for two others (2:2 Substitution) 
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Error type Example 

Insertion bat → ba t 

Deletion brought→ brough 

1:1Substitution j→ i,  v→y , i→r 

1:2 Substitution n→ii , m→ rn 

2:1 Substitution cl→d , tl →k 

2:2 Substitution rw→ nr , rm →nn 

 

Table 2.1: OCR Error Example 

 

2.2.1 Word Error and Non Word Error 

Essentially, there are two types of word errors: non-word errors and real-word errors[15]. 

A non-word error occurs when a word in the OCR text is interpreted as a string that does 

not correspond to any valid word in a given word list or dictionary. A real-word error 

occurs when a source-text word is interpreted as a string that actually does occur in the 

dictionary, but is different from the source-text word. For example, if the source text 

"how was the show" is rendered as "how was he shaw" by an OCR device, then "shaw" is 

a non-word error and "he" is a real-word error.  Generally, non-word errors will never be 

found in any dictionary entry. While non-word errors might be corrected without 

considering the context in which the error occurs, a real-word error can only be corrected 

by taking context into account. Most traditional techniques for word-correction deal with  

non-word error correction and do not consider the context in which the error appears. But  
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for correcting OCR error efficiently, the context can be used as another source of 

information. 

2.2.2 Stopwords 

Stopwords can be defined as those words in the text that do not add to a document 

substance or meaning [23]. Most Information Retrieval techniques ignore the most 

commonly occurring Stopwords. The list might include words such as  “the”, “and”, “ a” 

, “that” , “but”, “ to” , “through” etc. For our work the list is taken from Brown Corpus. 

2.3 Used Methods in Detail 

2.3.1 Longest Common Subsequence Algorithm 

The longest Common Subsequence (LCS) algorithm is string matching algorithm which 

finds the longest subsequence that two sequences have in common. It is based on 

dynamic programming where the problem is solved in terms of smaller subproblems. 

Formally LCS problem is defined as follows: Given a sequence X = (x1, x2…,xn) and 

sequence Y = (y1, y2…,ym), find a sequence Z  such that it is longest sequence and a 

subsequence to both X and Y .The subsequence is defined as a sequence Z= (z1,z2…zk) , 

where there exists a strictly increasing sequence (i1, i2,…ik) of indices of  X such that for all  

j=1…k ,xij =zj  [24] .  Basically the best of the three possible cases is taken: 

1. The longest common subsequence of the strings (x1, x2…,xn-1) and (y1,y2…ym), 

2. The longest common subsequence of the strings (x1, x2…,xn) and (y1,y2…ym-1), 

3. If xn is the same as ym, the longest common subsequence of the strings (x1, x2…,xn-

1)  and (y1,y2…ym-1), followed by the common last character. 

Let LCS (Xi, Yj) represent the set of longest common subsequence of prefixes Xi and Yj. 

This set of sequences is given by the following: 
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LCS(Xi,Yj) = {  0                                          if i=0 or j=0 

LCS (xi-1 , yi-1) + 1                                        if xi=yj 

Longest (LCS (xi ,  yj-1  ) , LCS (xi-1,yj ))      if  xi ≠ yj 

} 

The complete algorithm is stated as follows: 

Algorithm 2.1 Longest Common Subsequence Algorithm 

 

 

FUNCTION LCSLength (X[1..m]
,
 Y[1..n]) 

1:  C = ARRAY(0..m, 0..n) 

2:   For i := 0..m 

3:           C[i,0] = 0 

4:    For j := 0..n 

5:    C[0,j] = 0 

6:         For i := 1..m 

7:   For j := 1..n 

8:   IF(X[i] = Y[j]) 

9:                       C[i,j] := C[i-1,j-1] + 1 

10:              Else: 

11:                   C[i,j] := max(C[i,j-1], C[i-1,j]) 

12:    RETURN C[m,n] 
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Illustration by example 

Let X  be “ABCBDAB” and Y be “BDCABA”. The longest common subsequence 

between X and Y is “BCBA” of length 4. An array C of dimensions m+1,n+1 is created 

and is initialized to 0. The table 2.2 shown below, which is generated by the 

function LCSLength, shows the lengths of the longest common subsequences between 

prefixes of X and Y. The (i+1)
th

 row and (j+1)
th

 column shows the length of the LCS 

between X1…i and Y1…j.  The trace of longest common subsequence between strings X and 

Y at each  iteration is shown in yellow: 

 

 

 

Table 2.2: LCS matrix for the strings “ABCBDAB” and “BDCABA” 

 

2.3.2 Levenshtein Edit Distance 

Levenshtein-Distance is a concept from Information Retrieval [1]. It gives the minimum 

number of insertions, deletions and substitutions of single characters that are necessary in 

order to transform a string x = x1 . . . xn into another string y = y1 . . . ym. It computes 

dissimilarity between two strings. It uses dynamic programming, a method of solving a 

  A B C B D A B 

 0 0 0 0 0 0 0 0 

B 0 0 1 1 1 1 1 1 

D 0 0 1 1 1 2 2 2 

C 0 0 1 2 2 2 2 2 

A 0 1 1 2 2 2 3 3 

B 0 1 2 2 3 3 3 4 

A 0 1 2 2 3 3 4 4 
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large problem by regarding the problem as the sum of the solutions to its recursively 

solved subproblems. 

To compute edit distance ed (x,y) a matrix M1…n+1,1…m+1 is constructed where Mi,j is the 

minimum number of edit operations needed to match xi…i to y1…j. Mathematically, each 

matrix element is calculated as per equation below,  where cost (a,b) =0 if a=b and 1 

otherwise. The matrix element M0,0  is the edit distance between two empty strings. 

M0,0  = 0 

Mi, j = Min { Mi−1, j + 1 ,  Mi ,j−1 + 1,   Mi−1, j−1 +  cost(xi , yj) } 

Table 2.3 below  is an example of matrix produced to calculate the edit distance  between 

the strings “paces” and “pieces”. The minimum edit distance between the two strings is 

given by the matrix entry at position Mm+1,n+1 which is 2. The trace of the minimum 

distance path is shown in yellow. 

 

  p a c e s 

 0 1 2 3 4 5 

p 1 0 1 2 3 4 

i 2 1 1 2 3 4 

e 3 2 2 2 2 3 

c 4 3 3 2 3 3 

e 5 4 4 3 2 3 

s 6 5 5 4 3 2 

 

Table 2.3: Edit Distance Matrix for the strings “paces” and “pieces” 

 

Some more instances of edit distance between words are : 
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1 ed ( bitten, bittem) =1 (substitution of 'n' with 'm') 

2 ed ( hittin hitting) =1 (insert 'g' at the end) 

Algorithm 2.2 Levenshtein  Edit Distance Algorithm 

 

1: int FUNCTION count (string s1, string s2) 

2:  m = s1.length() 

3:  n = s2.length() 

4:  for  i = 0 to m do 

5:   v[i][0] = i 

6:  end for 

7:  for  j = 0 to n do 

8:   v[0][j] = j 

9:  end for 

10: for  i = 1 to m 

11:  for j = 1 to n 

12:   if (s1[i-1] == s2[j-1]) then 

13:    v[i][j] = v[i-1][j-1] 

14:   else 

15:   v[i][j] = 1 + min( min ( v[i] [j-1],v[i-1] [j] ), v[i-1] [j-1] ) 

16:  end if 

17: end for 

18: end for 

19: RETURN v[m][n] 

 

2.3.3 Character Confusion Matrix 

The Confusion matrix is designed to handle the interchange errors which occur 

most frequently during OCR process. The confusion matrix contains original characters 

Ai and their associated corrupted non original characters Bj. This is a probabilistic model 
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which can be used to enhance the process of best candidate selection among the possible 

original words, as a replacement for the OCR error. The probability that OCR produced 

Bj  but Bj was actually Ai in the original text, is given by  Bayes  theorem: 

 
   

   



n

k

kjk

iji

ji

ABpAp

ABpAp
BAp

1

|*

|*
|  

The simple way is to compare both the clean text and OCR text character by character to 

compute the number of times character remains correct and number of times it is 

corrupted to some other character. Thereafter, using the formula used in  [15] to compute 

the Character Confusion Probability we get: 

 
  
 jnum

ijsubnum
jipr

,
|   

where- 

 num (sub(j, i)) is the number of times the character i was corrupted to character j 

in the corresponding OCR text 

 num( j) is number of times the character j occurred in the OCR text 

Let us suppose there are 3 characters i, j and l with total occurrence of 1800 in the 

training data. Since we have both the OCR data and the clean data we can compute the 

Table 2.4. The Table 2.4 below shows a sample where character i occurs 1000 times in 

clean text. However in OCR text it is correctly recognized as i only 950 times, it is 

corrupted to j  30 times and corrupted to l  20 times. Based on this we can compute the 

4following probabilities: 

Probability that OCR read character i correctly is given by  P(i|i) = (950 | 1000) 

Probability that OCR misread character i to j  is given by  P(i|j) = (30 | 510) 
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Probability that OCR misread character i to l  is given by  P(i|l) = (20 | 290) 

 

Char # in clean #i in OCR j l 

i 1000 950 30 20 

j 500 30 450 20 

l 300 20 30 250 

Total 1800 1000 510 290 

 

Table 2.4:  Sample Frequency calculation Table  

 

 i j l 

i P(i | i) P(i |j) P(i|l) 

j P(j | i) P(j | j) P(j | l) 

l P(l | i) P(l | j) P(l | l) 

 

Table 2.5: Sample Structure of Confusion Matrix 

 

2.3.3.1 Using Confusion Matrix 

Let B= B0B1…………Bn  be the OCR produced error string and A= A0A1………….An  be 

one of the candidates for correction. Then probability that OCR corrupted string A to B is 

given by 

 nn BBBAAA .........|......... 1010  which can be computed as: 

P  00 BA  * P  11 | BA …… * P  nn BA |  
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Where  P  nn BA | denotes the probability that the n
th  

character in original  string A was An  

and it was misrecognized by OCR as Bn. 

Example 

Let  error string B=sment 

original string  A=spent 

P (spent| sment ) = P(s|s) * P (p|m) * P(e|e) * P(n|n) * P (t|t) 

To get the values of  P(s|s), P(p|m) etc  Confusion Matrix is used. 

2.3.3.2 Laplace Smoothing 

It is used to ensure that none of the probabilities in the confusion matrix is zero. It 

normalizes all the zero probability to very small non zero numbers by introducing 

Smoothing constant. The modified probability is given by: 

 
 

   














bNNOSK

baNK

*
b|a P  

Where  bap | is the probability of character a being misrecognized by OCR as b 

K is the Smoothing parameter 

N(a→b) is number of times a was misrecognized as b in the OCR text 

NOS denotes the total number of alphabets in the OCR text 

N(b) = total number of times character b occurs in the OCR text 

So this way even if N (a→b) is zero even then P(a|b) will have a very small non zero 

probability. 
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CHAPTER 3 

PROPOSED APPROACH AND IMPLEMENTATION 

3.1  Proposed Approach 

The proposed OCR error correction starts by first cleaning OCR corpus T to 

remove all characters other than ‘a’ to ‘z’ as well as all the stopwords like “is”, “that” etc. 

Then the cleaned text Tc is screened through spell checker Jspell which gives the set of 

all probable errors E. The original document is then manually read to find actual words 

corresponding to each error e in the Error list E. Then each OCR error is concatenated 

with words immediately preceding or following it to generate queries of variable length. 

Formally it can be denoted as: Q=“w-n ...,w-2
 
,w-1 ,e, w1,w2 ,... , wn” where Q represents a 

sentence made out of 2n+1 words, where w-i  represents the i
th

 error that precedes e, and 

w+i  represent i
th

 word following the  E respectively. The number of words 2n+1 can be 

theoretically as large as one wishes but in our experiments ranges over 1,3,5,7 and 9. 

Afterwards query Q is searched in the huge Google database and data consisting 

of top ranked pages Pi where Pi is the i
th

 page returned by Google and i ranges from 

1,2….10, are saved to a HTML (HyperText Markup Language)  file. Then the text is 

parsed to extract all the possible list of corrections called the Correction Candidates,  

denoted as C={c1,c2,c3,….,ck},  where ck denotes the k
th

  candidate spelling. The parsed 

data is also searched for Google’s “did you mean” or “Showing results for” token Ti. If 

any of these token is found then their contents are appended to the list of Correction 

Candidates List C. Now Levenstein edit distance method is applied to find candidate cj 

having lowest edit distance with respect to error e. Additionally Longest Common 

Subsequence (LCS) algorithm is also applied to find candidate ck having longest 
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Common Subsequence with error e. Moreover if Google does not  give “did you mean” 

or “Showing results for” suggestions for an error, then the probability of error e being 

correctly spelled is high. So, while choosing the best candidate an Edit Distance of 0 is 

also allowed and in LCS method the candidate string identical to error string is allowed 

as correction. In case there are more than one best candidate cj or ck then the Confusion 

matrix M is used. M contains the probability P of a particular character being 

misrecognized (by OCR) as one of 26 English alphabets. The matrix M is computed by 

using errors from the ground truth training data. If the error is e= B0B1……Bn and the 

candidate is c =A0 A1..An then probability of c being the correct candidate is given by 

expression: 

P  nn BBBAAA .........|......... 1010  

Which can be computed as: 

P  00 BA  * P  11 | BA …… * P  nn BA |  

where P  00 | BA denotes the probability that the character A0 is misrecognized as B0 by 

OCR. The candidate with highest probability is then chosen as a replacement of wrong 

OCR word. The file containing the best candidates is compared with the original words to 

compute precision, recall and F-measure. 

The proposed algorithm is context-sensitive as it depends on real-world statistics from 

Google data set, primarily extracted from the World Wide Web. Since we know that 

Google search is based on the keyword. So if the input query contains an error, then 

Google search will be based on context of the error and those tokens from the web will be 

retrieved which are most likely to match the query string. 
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3.2 Differences between Related Work and Proposed Approach 

The proposed approach is a context sensitive OCR error correction approach, it 

differs totally from all dictionary based approaches since those use static vocabulary for 

error correction. Moreover in related work [18] query is formed from 25 non function 

words from OCR corpus and uses frequency as one of the candidate selection criteria but 

in our work the variable length queries upto length 9 are formed from the context 

immediately surrounding the error word in OCR corpus. In addition our approach uses 

Longest Common Subsequence as one of the selection criteria. An approach proposed by 

Bassil and Alwani [16] uses just the Google’s online spelling suggestion as a sole source 

of spelling candidate generation and uses queries on length 5 only, whereas in our 

approach candidates are also extracted from the top ten web pages retrieved from Google 

search and experiments are performed on queries of variable length. Another work [17] 

uses offline Google Web IT 5-gram dataset, uses four preceding words to form the query 

and consider frequency as a sole criteria for candidate selection. On the contrary our 

approach uses Google search to retrieve the latest web data dynamically, gives equal 

priority to both preceding and succeeding context to form query and applies more 

sophisticated candidate selection techniques like Levenstein Edit Distance, LCS and 

Bayesian Character Confusion matrix. Another research [19] deals with crawling of 

domain centered corpora using the Yahoo web search engine, chooses context and forms 

query on words frequency basis  and collects top 30 documents retrieved from web. 

However, our work performs domain independent Google web search, do not consider 

frequency while forming context and considers top hundred results for candidate 

generation. 
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Algorithm 3.1  Formal Description of Algorithm 

 

Function ErrorCorrection (Errors E, OCR text T, Ground Truth Training Data TD) 

{ 

//removes all Stopwords from OCR text 

1: Parsed_OCR =  Cleaning ( T ) 

// Computes a 26*26  Computes Confusion Matrix for each characters a through z 

2: ConfusionMatrix M = ComputeConfusionMatrix( OCR Training Data) 

3: for  i = 1 to E 

// puts together the i
th

 error with the two preceding and two succeeding words 

4: Query =Concatenate (w-n ...,w-2
 
,w-1 ,e, w1,w2 ,... , wn) 

//finds the Query Q in huge Google Database 

5: Data D =QueryGoogle (Query Q) 

// the HTML data is parsed to retrieve the keywords or correction candidates 

6: Candidate list Cl =  parsedata (Data) 

7:         Links L[ ] = LinkExtractor (Data)  //L[ ] contains link to next Google pages 

8:  for  j =1 to L 

9:         Data D’= QueryGoogle (link L(j)) 

10:         retrieve K from D’ and append to Cl    // K is the list of keywords 

11:               if  “Did you Mean or “showing results for” token present in Data 

12:          Retrieve the token  and append to Cl 
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// Apply Levenstein edit distance or Longest Common Subsequence to choose best 

candidate Cb 

13:  BestCandidate  Cb = Edit ( e, Cl) or LCS ( e,  Cl) 

14:  If ( count (BestCandidate Cb)  > 1){ 

// appends best candidate with highest transition probability to list of correct candidates 

15:   C = ComputeHighestProbability (error e,  BestCandidates, M) 

16:  Else C=Cb      // appends best candidate to list of correct candidates 

 

17: Return C   // C now contains list of all corrected OCR errors 
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Figure 3.1: OCR Error Correction Procedure 

Diagrammatic Representation of   approach is shown below: 
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3.3 Methodology Details 

 

Step#1 Training data is used to build the Character Confusion matrix of dimension 

26*26. The various modules used for this process are as follows: 

 For this the module CharacterCounter is created which counts the frequency of 

occurrence of each character from ‘a’ to ‘z’ in the cleaned  text as well as in the 

corrupted OCR text. 

 Then module ComputeConfusionMatrix is then used to compute the Character 

confusion matrix containing probability of misrecognition of each of 26 

characters as one of the other 26 character. 

 The method LaplaceFilter is used to assign small non zero probability to the 

entries of Confusion Table which have a zero value in order to make calculation 

feasible. A very small value of  .0001 was chosen for smoothing constant. 

 

Step#2 Preprocessing the testing Data- The data for testing consists of images and its 

corresponding OCR text. 

 

 The first module consists of a function CleanText. It reads each character of OCR 

corpus and filters all characters other than those having ASCII value between 97 

to 122 (ASCII values for characters a to z) or 65 to 90 (ASCII values for 

characters A to Z). The output is saved to a text file named CleanText.txt. 

 The second module consisted of function RemoveStopwords. It reads each word in 

the CleanText file and removes all the stopwords like “is”, “at”, “that” etc. The 

output is saved to a text file StopwordCleaned. 
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Step#3  The evaluation of  Error.txt and Original.txt files 

 The cleaned OCR corpus is fed to Jspell spell checker to generate the list of 

possible misspellings or errors E. These misspellings are saved to the text file 

Errors.txt. Then the original images are read manually to find the corresponding 

correct words for those misspellings and saved to a text file named Original.txt. 

The errors which are originally Proper Nouns, Acronyms or Non-English words 

would be discarded. It is observed that some of the errors found by Jspell are 

actually correctly spelled but even then these are kept in the error list in order to 

test precision, i.e, number of correct word which get corrupted by applying  

procedure. A sample of  Error.txt and Original.txt is given below: 

 

 
 

 

Figure 3.2: Sample Error.txt file and Original.txt 
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Step#4 Query Generation- The module QueryGenerator takes input the list of errors and 

cleaned OCR corpus namely CleanedStopword.txt. It generates query strings of varying 

lengths namely1,3,5,7 and 9. The query is composed of errors the context surrounding it, 

in the OCR text. For instance for the OCR text : 

 “ the magic show was a grcat success and fame !” 

The cleaned text would be: 

 “magic show grcat success fame” 

The precise 5 word query sent to Google by procedure would be: 

 Q=  magic + show  + grcat  + success + fame 

All the generated queries are stored to text file query.txt. 

Step 5 # Crawling Web for extraction of data- A module called QueryGoogle has been 

created which takes the list of queries recursively as input and retrieves results from the 

Google Web Search.  It  parses Google’s standard (browser) search HTML results. The 

HTML source code of top ten pages returned by the  Google are stored in a text file. We 

include a short delay after each page retrieval because Google block IPs (Internet 

Protocol) with too many requests in a short time. Figure 3.3 below shows the sample 

Google response on firing the above query Q5. 
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Figure 3.3: Firing Query to Google 

 

Step # 6 Link extractor- The module LinkExtractor extracts the web links of all the next 

result pages of Google, if present on first search page. All the link are then stored in 

Link.txt text file. For the above query, web links shown below in figure 3.4 (1 thorough 7)  

will be extracted. 

 

 

Figure 3.4: Retrieval of Google Next Page Links 
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Step # 7 Fetching the HTML data from all the Web Links and parsing it to generate list of 

possible correction candidates 

 For fetching Data from the Links method QueryGoogle is called recursively and 

retrieved data is stored in different HTML files. 

 The module ExtractFirstPage is called which parses content of top Google 

HTML page and extracts all the keywords, saves them in a text file named 

FirstPagekeywords.txt. Further the module ExtractNextPageKeywords retrieves 

the keywords from all the next web pages returned by Google, saves them in a file 

named NextPagekeywords.txt. Figure 3.5 shown below is a sample web snippet; 

all the keywords in bold i.e “shows”, “fame”, “grcatesr” will be extracted . 

 The module MergeKeywords facilitates in combining the contents of 

FirstPagekeywords.txt and NextPagekeywords.txt to a text file named 

Merged_keywords.txt. In order to remove redundant words all the unique  

keywords present in Merged_keywords.txt are extracted and written to another file 

Unique_keywords.txt . 

 

 
 

Figure 3.5:  Keyword Extraction from Web Data 
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 Then the top page returned by the Google is parsed by the module 

SuggestionExtractor to extract the contents of “Did you mean” or “Showing 

results for”, if present on the top page. For the snippet shown in figure 3.6, the 

contents “magic show great success fame” will be retrieved and stored in the text 

file named Googlesuggestion.txt. The contents are also appended to the text file 

Unique_keywords.txt to generate the file Candidate.txt, containing an exhaustive 

final list of all possible candidates for error correction. 

 

 

 

Figure 3.6: Extraction of Google Suggestion 

 

Step# 8 Choosing the best correction from Candidate.txt file . 

 To implement Levenstein Edit Distance Algorithm, the module 

ComputeEditDistance is created which takes as input the error e and 

Candidates.txt file and gives the best candidates Cb as output. It computes the 

number of insertions, deletions or substitutions required to transform candidate to 

the error word. Also if the file Googlesuggestion.txt has some content 

corresponding to an error e, then candidate with an edit distance of zero (with 

error) is not considered for correction. A sample of Candidate.txt shown below in 

figure 3.7: 



29 
 

 

 

Figure 3.7: Sample Candidate.txt file 

 

Computations made by module for some of these candidates, will be: 

 ComputeEditDistance ( grcat, great) =1  ( Substitution of c with e ) 

 ComputeEditDistance ( grcat, groat) =1  ( Substitution of c with o ) 

 ComputeEditDistance ( grcat, grant)=2  (substitution of ‘c’ with ‘a’, ‘a’ with ‘n’) 

 ComputeEditDistance ( grcat, grcat) =0 

Now, the Candidate “grcat”, has the lowest Edit Distance with an error “grcat”. But our 

algorithm does not consider this string for correction since Google generates suggestion 

content “Did you mean” for the error “grcat”. The candidates then considered for 

correction are strings “great” and “graot”, having an edit distance of one from the error 

string. Since both candidates have same edit distance from the error, then module 

ComputeProbability is used to break the tie by generate the following conditional 

probabilities: 

 P(great | grcat) = P(g|g) * P(r|r) * P(e|c) * P(a|a) * P(t|t) 
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 P (groat |grcat)= P(g|g) * P(r|r) * P(o|c) * P(a|a) * P(t|t) 

The Confusion Matrix is used to compare character confusion values P(e|c) and P(o|c) i.e 

the probability of character ‘e’ being misrecognized as ‘c’ and probability of character ‘o’ 

being misrecognized ‘c’, by the OCR. The candidate with the highest conditional 

probability with respect to the error , is then chosen as the correction. 

The module ComputeLCS is also used (independently from Edit Distance) to compute the 

best candidate, which has the longest common subsequence with the error, as the 

correction. This method takes the error e and Candidates.txt file as input. For the error 

“grcat” and the Candidate file shown above, some of computations made by the module 

ComputeLCS are shown below: 

 LCS (grcat, great) = 4 Longest subsequence (grat) 

 LCS (grcat, groat) = 4 Longest subsequence (grat) 

 LCS ( grcat, grant) =4 Longest subsequence (grat) 

 LCS ( grcat, cat) =3 Longest subsequence (cat) 

Again there is more than one candidate having the longest LCS with an error string. So in 

order to choose the best candidates among these, the character confusion matrix is used. 

For simplicity the uppercase characters in the candidate strings were converted to lower 

case for comparison with error word. 

Step#9 Finally we compute the precision, recall and F-measure for both the Levenstein 

Edit Distance and the LCS algorithms. 
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

4.1 Evaluation Criteria 

To evaluate the performance of the experiments, we need to evaluate and determine the 

evaluation measures. There are four possible outcomes when we try to apply the 

procedure to correct the errors: 

1. correct → correct: A correct character is still correct at output. This is a true negative 

(TN). 

2. correct → wrong: A correct character is corrected to a wrong character at output. This 

is a false positive (FP). 

3. wrong→correct: A character is corrected by the procedure. This is a true positive (TP). 

4. wrong → wrong: A wrong character is still wrong. This is a false negative (FN). 

Now, using the TN, FP,TP and FN, the measures Precision and Recall [21] can be 

derived as : 

Recall 











FNTP

TP
R  

Precision 











FPTP

TP
P  

The Recall measures the ability of a system to correct errors. In order to get higher recall, 

the number of True corrections (TP) should be more and number of False Corrections 

(FN) should be least. The precision denotes the accuracy of the system; i.e not corrupting 

the correctly spelled words. To gain higher precision the number of corrections needs to 

be more and introduced errors (FP) should be less. Since we consider both recall and 
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precision as equally important, so the harmonic mean of R and P, the simplified F 

measure [25] is given by: 













RP

RP
F

**2
 

4.2 Data Collection 

4.2.1 Training Data – We need a set of training data for building the character confusion 

matrix. The data for first experiment has been taken from a book titled “Notes on 

Witchcraft” with 60 pages, which has been manually corrected with reference to non-

OCR version image of the book. After removing all the characters except a to z the 

training data contained 13,104 words. 

4.2.2 Testing Data- The data for testing the procedure is taken from Library of Congress 

(http://www.loc.gov/index.html) which is the largest library in the world, with millions of 

books, recordings, photographs, maps and manuscripts in its collection. The Library has 

created a website named Chronological America which provides access to digitized 

historic materials primarily through a Web interface enhanced with dynamic HTML 

interactivity for magnification and navigation. It contains digitized newspapers from 

years 1836 to 1922. These newspaper materials were digitized to technical specifications 

designed by the Library of Congress i.e TIFF 6.0, 8-bit grayscale, 400 dpi, 

uncompressed, with specified tag values. 

The testing data is taken from The Mt. Sterling advocate, a newspaper present in 

the Library of Congress collection. The pages were chosen based on various criteria such 

as readability, date of publication and convenience to map with its corresponding OCR 

text. The total of 7 newspaper images are chosen as testing data. Data contains 8,400 
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words after removal of Stopwords and non-alphabetical characters. The corresponding 

OCR text is first is screened through, a spell checker software API called Jspell. It has 

suggested 103 possible errors. The original newspaper images are then read manually in 

order to find the correct words corresponding to these misspelling errors. Finally, the file 

of errors and original are prepared. 

4.3 Results  on Data Set 1 

Table 4.1 below shows the value of Precision and Recall for the Test Data. The 

Recall is attains a lowest value for the 1 word query, it increases fairly as query length is 

increased to 3, it reaches its maximum value 51.5% at a query length 5. Then the value 

decreases a little for a 7 word query. The LCS method gives the highest values for Recall 

and Precision. The procedure does not introduce any errors, since the original data does 

not contain many wrongly spelled words. The procedure is build such that the Precision 

attains the highest performance, even at the cost of low Recall. For cases when Google do 

not generate suggestion of form of “Did you mean”, the string matching algorithms LCS 

and Edit Distance are adapted to allow a candidate identical to the misspelling error as a 

replacement. Consequently, this improved Precision though Recall dropped a little since 

some errors are replaced by themselves. Table 4.2 shows the overall accuracy of system 

in the form of F-measure: 
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 1word 3word 5word 7word 9 word 

Edit R=32 

P=100 

R=44 

P= 100 

R= 48.5 

P= 100 

R=43 

P= 100 

R=40 

P=100 
LCS R=30 

P=100 

R=45 

P= 100 

R=51 

P=100 

R=44 

P= 100 

R=41 

p=100 
 

Table 4.1: Precision –Recall values for Data set 1 

 

Fmeasure 1word 3word 5word 7word 9 word 

Edit 48.48 

 

61.1 65.3 60.1 57.1 

LCS 46.15 62.1 68 61.1 58.15 

 

Table 4.2: F-measure values for Data set 1 

 

4.3.1 Observations on Data Set 1 

It is observed that our approach corrects more errors than the correction suggested 

by Google’s “Did you mean”. If we make candidate selection only on the basis of the 

Google’s “Did you mean” suggestion, then we correct 42 errors out of 95 misspellings 

but our approach is able to correct 49 misspellings. So there is an improvement of around 

16.6% in error correction using our approach. There are many possible reasons for this. 

Firstly, it is observed that in case the context surrounding the error is also misspelled then 

there is least chance Google gives correct suggestion. For instance when the query 

“tne+territory+mnke+advances+tho” containing error “mnke” is fed to Google search 

engine, the Google loads the suggestion “the+territory+mnke+advances+tho”. Hence, 

Google here focuses on correcting the commonly misspelled word “tne” which is the first 
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misspelled string in the search query. However, our approach corrects the error “mnke” 

to “make”. In the second category, Google is not able to load any suggestions. For 

instance for the query “day+Oclock+Mrther+tf+jnd” containing error “Mrther” Google 

does not give any “Did you mean” suggestion. However, our approach corrects the error 

to “mother”. The third reason that our approach is able to correct more errors than Google 

is due to use of Character Confusion Matrix. For instance for the query “work underway 

roaa surVs Yucca” containing error “roaa”, Google does not give any suggestion but our 

procedure selects two possible candidates “rosa” and “road” on basis of LCS. Then the 

conditional probabilities p(road | roaa) and p(rosa | roaa) are computed, after which the 

word “road” is selected as the best candidate. 

We can clearly see that the F-measure is lowest for the 1 word query. For instance 

the error word “mnde” is not corrected when fed as a single word query to web search. 

However when it is fed along with its context in OCR text, web generated the correct 

spelling candidate “made”. If context of the query is not available it becomes unlikely for 

the web to identify error and retrieve relevant webpages. The performance improves a bit 

for a 3 word query as it provides some context but the Recall or F-measure is best for the 

5 word query as it gives the web necessary and sufficient context to generate the possible 

relevant corrections. For instance the error “bo” is not corrected when the 3 word query is 

fed but when the query is expanded to 5 words, the error “bo” got corrected to “be”. The 

score does not increase further for 7 or 9 word query as 5 word query provides sufficient 

and necessary context, expanding query does not affect the performance in terms of the 

retrieval of candidates. Also too much context sometimes redirects to the webpage which 

is the actual source of error and also number of retrieved tokens become less since 
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Google returns pages that match all the search terms. For instance, in case of 9 word 

query “queryaplte+variety+la+contention+anawer+tiled+aupcrlor+court+today” the web 

considered the error “anawer” as correct and retrieved the webpage from which the OCR 

corpus is taken, however for 5 word query web retrieved the correct spelling suggestion 

“answer”. 

Also our approach is not able to correct all the errors even for a five word query. 

There are many reasons for it. To start with, it is observed that nearly 30% of the errors 

that procedure is not able to correct, are originally Stopwords such as “the”, “at”, “an”, 

“of” etc. This is due to reason that Stopwords do not generally add meaning to search. 

But misspelled Stopwords in OCR corpus do not affect the retrieval performance either. 

Many a times (nearly 10%) spelling correction is a variant of errors and string matching 

algorithms are not able to relate these. For instance the error string “spld” is wrongly 

corrected to its plural “splds” instead of “sold”. An s-stemmer can help to recognize such 

pair of words. In few cases, an error word becomes a valid word in other language, hence 

web gives tokens related to those web pages. For instance the word state is misrecognized 

by OCR as “stato” which is a valid word in Italian thus Google treated it as an authentic 

word and do not generate spelling suggestions. A more language restrictive search 

technique might help deal this issue. In some cases erroneous words are mistaken for 

acronyms, proper noun, hence the irrelevant webpages are fetched by search engine, 

which in turn generates irrelevant correction candidates. For instance the error string 

“aro” (originally “are” ) is wrongly corrected to “aro”, one of correction candidates 

generated by Google search. More advanced error detection technique may allow the 

procedure to judge the cases where replacement of error by itself is not allowed. In rare 
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cases the web found the original web source from where the error is taken, hence error 

goes undetected, so no relevant candidates for spelling correction are suggested. As an 

instance for the context string “established+uniform+errades+for+burley” containing 

error “errades”, the top webpage retrieved is from Chronological America webpage. 

Hence, better Information Retrieval models may prove handy. It is also observed that 

sometimes web generated wrong candidates due to the ambigious context. For the context 

“Central+Kentucky+Wo+started+this” the error string “wo” is misrecognized as “who” 

instead of “we”. In some rare cases algorithms chose the wrong candidate as correction. 

The error “ajwnys” is wrongly corrected to “ajwny” instead of “always”, by the LCS. 

Weighted string matching technique can be used, where candidate string with valid entry 

in a dictionary would be given more weight. In some cases the content surrounding the 

misspelling is itself corrupted or misspelled so web could not identify the correct context. 

Moreover, some errors are too much distorted, difficult to get even a valid spelling 

candidate generation. This mostly occurred for the contents of headings in the Bold font, 

as an example the text “Distinctive spring Papering” is corrupted to “gLtsfttttitot Iptttffi 

lajttrtttg”. 

4.4 Results on Data Set 2 

In another experiment the above mentioned data from “Notes on Witchcraft” 

book is used both for training and testing. The data after cleaning contains13,104 words . 

Half of the data is used for training or building character confusion matrix and the other 

half is used for testing the procedure. Table 4.3 below shows precision-recall values 

obtained for the queries of various lengths using each of the methods. Table 4.4 shows 

the F-Measure: 
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 1word 3word 5word 7word 9 word 

Edit Method R = 44 

P = 77 

R= 48 

P= 67 

R =  50 

P =  66 

R=47.5 

P= 61 

R = 47 

P = 50 

LCS Method R=43 

P=78 

R= 47 

P= 66.5 

R=49 

P=67 

R=48 

P= 59.8 

R=45 

p=50 

 

 

Table 4.3: Precision –Recall values for Data Set 2 

 

 

Fmeasure 1word 3word 5word 7word 9 word 

Edit 1 56 

 

55.9 56.9 53.4 48.4 

LCS1 55.4 55.1 56.6 53.3 47.5 

 

Table 4.4: F-measure values for Data Set 2 

 

4.4.1 Observation on Data Set 2- 

For this dataset the recall is best for the five word query. But here unexpectedly 

the precision is best for the single word query. The reason is that the number of errors 

that remain misspelled are maximum for single word query, so even the words which are 

misspellings in original text remain misspelled, increasing the value of Precision. For 

instance, the original text and OCR both contained word “restauration” which remains 

wrongly corrected as “restauration”, when fed as a single word query. However when fed 

with context it got corrected to “restoration” (which is ideally the correct spelling), but 

this would be considered as corrupting the word and hence Precision drops. Even then the 

combined measure of Precision and Recall , the F-measure attains its maximum value for 

the five word query. 
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However Precision drops substantially compared to DataSet1. This is due to the 

fact that the original image itself has many old English or misspelled words such as 

“praestigious”,“Magitians”,“maner”, “heros” etc. So the procedure in addition to 

correcting the spelling mistakes caused by OCR, corrected those misspellings too. But 

since these misspellings are identical in OCR text and original image, so it actually 

becomes a corruption instead of correction. Also the text contains words from German 

vocabulary such as “satisfie” which is corrupted to English word “satisfied” by the 

procedure. It is observed that there are several misspellings that remained uncorrected. To 

start with some German words still remained in the OCR corpus even after manually 

removing them. Due to this, these words became part of the context of the query and web 

retrieved results from irrelevant webpages including pages in German. A non English 

Language word detector may help in efficient query formation. 

4.5 Conclusion and Future Work 

We designed an OCR post processing system based on Big Data. Our 

experimental results on a small set of historical newspaper data show a recall and 

precision of 51% and 100%, respectively. In future dynamic use of Confusion Matrix 

may help. Also stemming techniques can be incorporated. Moreover there is a great need 

for advanced and restrictive web search. Advanced error detection techniques can also be 

used for improving results. 
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Appendix 

 

Chapter A 

 

 

Table A.1 below show the list of errors corrected by my procedure. For most of the errors 

(numbered 1 to 47) the LCS algorithm solely choose the correct candidate. For the errors 

48 and 49 the Character Confusion Matrix helped in choosing the best candidate. Also 

the errors numbered 42 to 49 were corrected by our approach but not by the Google “Did 

you mean” suggestion. 

 

 

 Error Original 

1.  joung young 

2.  gieat great 

3.  wesks weeks 

4.  geting getting 

5.  suiveying surveying 

6.  poweH power 

7.  Ppge Page 

8.  defandants defendants 

9.  ffom from 

10.  Wtednesday Wednesday 

11.  wjre wire 

12.  suppuit support 

13.  nver never 

14.  tneir their 

15.  bo be 
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16.  highrly highly 

17.  oompany company 

18.  dorived derived 

19.  maehine machine 

20.  atteation attention 

21.  nbout about 

22.  ovef over 

23.  aproximateiy approximately 

24.  invesjor investor 

25.  farmors farmers 

26.  unitl until 

27.  wBat what 

28.  receivin receiving 

29.  Fhiance finance 

30.  tfhese these 

31.  ajwnys always 

32.  Rcgardinp Regarding 

33.  teveral several 

34.  jmistmas christmas 

35.  Cnited United 

36.  Hohpital Hospital 

37.  amprovements improvements 

38.  anawer answer 
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39.  yestrday yesterday 

40.  aibilty ability 

41.  tho the 

42.  Fnited united 

43.  mnke make 

44.  brough brought 

45.  matler matter 

46.  ordets orders 

47.  Mrther mother 

48.  roaa road 

49.  mation nation 

 

Table A.1: List of errors corrected by our procedure  

Table 4.2 gives list of errors not corrected by our approach. These can be divided into 

various categories. The main reason for not being able to correct these errors is lack of 

presence of correct spelling correction candidate in the webpages retrieved. Majority of 

these errors (numbered 1 to 15) were originally Stopwords. For the errors numbered 15 to 

36 the web either misrecognized them as some proper noun or acronym, or the context 

surrounding these words is also corrupted. Some of the errors specially 37 to 43 are too 

distorted from original spelling. For some of the errors namely 45 to 46 correct candidate 

could not be selected by procedure. They can be picked by using an stemmer 
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 Error Original 

1.  anJ and 

2.  vho who 

3.  tne the 

4.  bv by 

5.  tho the 

6.  js is 

7.  nn an 

8.  id is 

9.  tharf than 

10.  Thp Than 

11.  Wo We 

12.  jthey they 

13.  aro are 

14.  nbout about 

15.  ot of 

16.  damsile damsite 

17.  rewardeu rewarded 

18.  riehts rights 

19.  eiiort effort 

20.  Stntc state 

21.  okl ok 

22.  Vears years 
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23.  phono phone 

24.  Stntc state 

25.  okl ok 

26.  royival revival 

27.  Engago Engage 

28.  baiiks Banks 

29.  gjad glad 

30.  stato state 

31.  mnde made 

32.  uity unity 

33.  greut great 

34.  dele date 

35.  crroom groom 

36.  wnr war 

37.  rriembers members 

38.  zation caption 

39.  rebuiS rebuilt 

40.  gLtsfttttitot Distinctive 

41.  Iptttffi spring 

42.  lajttrtttg Papering 

43.  niuke make 

44.  engilneer engineers 

45.  ajwnys always 
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46.  greut great 

 

Table A.2: List of errors not corrected by our procedure 

a 5858 

b 1512 

c 4078 

d 3470 

e 10705 

f 1570 

g 1755 

h 2545 

i 6844 

j 295 

k 675 

I 3611 

m 2452 

n 5865 

o 5355 

p 2563 

q 166 

r 6194 

s 6518 

t 6658 
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u 2656 

v 912 

w 1383 

x 348 

y 1213 

z 62 

 

Table A.3 Count of Characters in Training data 

 

b->e 1 

r->s 2 

g->s 3 

f->t 4 

a->u 3 

l->f 3 

t->l 1 

r->x 5 

z->s 2 

a->z 1 

c->e 7 

r->l 3 

f->t 4 
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f->l 6 

h->b 2 

g->c 2 

a->u 3 

v->r 1 

r->e 2 

e->r 2 

x->z 1 

v->y 1 

l->j 2 

e->t 2 

f->i 5 

a->o 8 

l->i 9 

n->m 3 

e->u 1 

u->y 1 

g->s 3 

e->r 2 

t->i 2 

y->s 1 

a->f 1 
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r->i 2 

s->i 1 

c->o 2 

o->c 2 

m->n 3 

v->u 2 

j->i 1 

e->o 1 

f->i 5 

i->l 1 

a->c 1 

a->e 1 

c->o 2 

g->s 3 

v->y 1 

s->a 2 

r->x 5 

f->l 6 

u->i 5 

m->n 3 

r->d 1 

s->e 1 
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d->a 3 

u->v 1 

v->u 2 

e->o 1 

f->i 5 

u->m 1 

h->i 1 

a->d 2 

 

Table A.4: List of Substitution errors in Training Data 
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