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ABSTRACT 

 

A Taxonomy of Polynomially Solvable Shop Problems with Limited Number 

of Machines or Jobs 

 

By 

 

Megha Sairam Darapuneni 

Dr. Wolfgang Bein, Examination Committee Chair 

Professor, Department of Computer Science 

University of Nevada, Las Vegas. 

 

Among shop scheduling problems, job shop and mixed shop are one of the most general  

models encompassing open shop and flow shop.  Many job shop problems are NP hard, but 

there are numerous cases, which possess polynomial solutions when the number of jobs or 

the number of machines (or both) is limited.  

This thesis gives an overview of methods and algorithms for solving – in polynomial time – 

such special shop problems, including open, flow, job shop and mixed shop.  The tools used 

include Monge interchange, dynamic programming, greedy techniques and sweep line 

algorithms and the primary focus of this thesis is to give a taxonomy of such problems with 

their solutions. Additionally the thesis outlines a neighborhood search technique which uses 

the disjunctive graph model and which can be applied as a heuristic for a wide range of NP-

hard shop problems. 
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CHAPTER 1 

INTRODUCTION 

 

The main purpose of this paper is to study and assess various methods for solving the shop 

scheduling problems in polynomial time. In addition, we look into methods for achieving 

near optimal solutions for NP-hard shop problems. We cover a wide range of polynomially 

solvable shop problems along with some of the special and harder cases. 

Scheduling in general is the process of decision making and a time management tool to 

utilize the available resources in a effective manner for a productive outcome. Making up a 

schedule is a common activity for every person in every walk of life. Though it may seem to 

be an easy process, there have been many NP-hard
[5] 

scheduling problems in computer 

science which have not been resolved for the past 60 years and more . The difficulty and the 

wide application of scheduling is what makes this a hot topic of research even today. Here, 

we are going to discuss about different scheduling shop problems along with some of the 

algorithms for solving these problems. 

Among the shop problems, the job shop scheduling problem is considered the most difficult 

case . It is regarded as one of the most difficult NP-hard, combinatorial problem. The flow 

shop and the open shop scheduling problems are considered special cases of the more 

general job shop problem . So, we start with the classic geometric approach for solving the 

job shop scheduling problem with two machines. Then, we are going to discuss the two 

machine job shop algorithm, flow shop problem using the Johnsons algorithm and then the 

two machine open shop algorithm . Similarly, we deal with a set of polynomially solvable 

shop problems. Finally, we discuss the disjunctive graph model and its application in meta 
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heuristic methods like local neighborhood search and simulated annealing for finding near 

optimal solutions for NP-hard problems. 

Let us take a brief look into what is coming in the following chapters and how this paper is 

organized. Chapter 1 deals with the introduction and the outline of this paper. In Chapter 2, 

we are introduced to the concept of scheduling, scheduling problems and the notations used. 

In this chapter, we get an insight into the scheduling problems and are presented with 

examples for the different shop scheduling problems. We start with the job shop scheduling 

problem in chapter 3 where we will be looking into the classical geometric approach for 

solving the job shop problem with two jobs. In chapter 4, we discuss the two machine job 

shop problem. Chapter 5 explains the Johnson's algorithm for solving the two machine flow 

shop problem. Chapter 6 gives us an insight into the two machine open shop problem and 

the algorithm. In chapter 7, we are going to discuss the mixed shop problems. In Chapter 8, 

we look into some of the methods for dealing with NP-hard shop problems. Lastly in 

chapter 9, we will be finishing off our paper with a good conclusion. 
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Chapter 2 

Scheduling Problem Notations and Examples 

 

2.1 Introduction to Scheduling and  Scheduling Notations 

Let us suppose we have a certain number of  jobs to be done with a limited amount of 

resources available(i.e. time, workforce, etc). we need to learn the concept of scheduling to 

complete our task at ease. Let us first learn what scheduling means. Scheduling is the 

process of deciding how to assign our available resources between a variety of possible 

tasks trying to optimize one or more performance measures. As we can understand, there 

can be many types of scheduling problems based on many factors. Among those problems, 

we are going to deal with Job Shop Scheduling Problem. 

According to Peter Brucker 
[1]

, a schedule can be defined as : Given m number of machines 

Mj ( j = 1,2,3,......m ) and n number of jobs Ji  ( i = 1,2,3,4,....n). A schedule can be defined 

as, allocating one or more time intervals to one or more machines for any given job. A 

Schedule is usually represented by using Gantt charts. 

2.1.1 Notations in Scheduling  

To understand the representation of a scheduling problem, we are required to learn the 

meaning of the following notations : 

  Notation - Machine Environment, 

β Notation - Job Characteristics and 

γ Notation - Optimality Criterion. 

 A scheduling problem is defined by the above elements where the   notation represents the 

machine environment, β represents the job characteristics and γ represents the optimality 
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criterion of a given problem. Each of these notations inturn have a lot of possibilities. These 

notations were brought into light by Graham et al. 

Any job ji can consist of n number of operations oi1,oi2,.....,oin. Each operation oij can in turn 

have a processing requirement pij. Likewise ,we can have many more factors coming into 

play in a scheduling problem like : 

Processing time pij - Processing time can be defined as the amount of time taken to process 

an operation oij on a particular machine.  

Idle time - Idle time can be defined as the amount of time a machine is kept idle without 

any operation being processed on it . 

Release time ri - This attribute implies when a particular job or operation would be 

available  for processing.  

Due date(Deadline) di -This attribute implies when a job is supposed to be completed. 

Completion time Ci - It is the completion time of a any  job present in our schedule. 

Makespan max{Ci ; i = 1,2,3.....,n} - Makespan can be defined as the  maximum of  

completion times of all jobs on our schedule. 

Total Flow Time      
    - Sum of completion times of all the jobs on our schedule. 

Lateness Li - It is the extra time taken by a job beyond its deadline. 

                 Li  = Ci - di . 

Earliness Ei - It is the difference between the deadline and completion time of a job and is 

greater than or equal to zero. 

                Ei = max{0 , di  - Ci }. 

Tardiness Ti - It is the difference between the completion time and the due date and cannot 

be less than zero. 
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                Ti = max{0, Ci - di }. 

Absolute deviation  Di = | Ci - di |. 

Squared deviation Si =  ( Ci - di )
2 

. 

Unit Penalty  Ui 

 

 Ui =    0  if   Ci <= di ;    

                  1  if  otherwise.  

 

2.2 Machine Environment  

The machine environment is denoted by α symbol where α = α1α2. we can have the 

following possible values for α1 = ο, P , Q , R, PMPM, QMPM , G , X , O , J , F where ο is 

nothing but void. When α1= ο, then  α = α2.  

α2  represents the number of machines and can be any positive integer. When α2 = x, where x 

represents a random positive integer, it implies a fixed number of machines present .When 

the number of machines present is arbitrary, α2 would be set to  α2 = ο. 

Each of these notation when considered alone (with α1 = ο or α2 = ο) or with any other 

combinations imply a meaning. Following are some of the important cases we could see in 

the machine environment for a given problem :  

When α1 = ο, the given scheduling problem implies that each of the job has to be processed 

on a dedicated machine. 

When any job in our given schedule is allowed to be processed on any of the 

machines(Parallel Machines) available M1, M2,......, Mm  then in the machine environment , 

α1 can have values P,Q or R
[13]

  (α1 ϵ { P , Q , R } ).We need to remember that a machine 
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can process at most one job at a time and a particular job cannot be processed on more than 

one machine at a time. 

When the value of α1 = P , it implies that the machines are identical parallel machines 

.This means that any job on our schedule would require pj units of time to be processed on 

any machine as all the machines are identical in this case. 

When the value of α1 = Q , this implies we  have uniform parallel machines in our 

scheduling problem . In this scenario, each machine j has a speed  sj > 0 . Let us consider a 

job j here which has to be processed entirely on machine j, the total processing time for job i 

to be processed on machine j can be given as pij =  pi  / sj .  

When the value of α1 = R, then the machines on present in our scheduling problem imply 

unrelated parallel machines . These machines are different from uniform parallel 

machines as machines in this environment are not uniform and their relative performance on 

each job varies i.e. each of the speed of any machine in this environment depends on both 

the machine and the job to be processed. Thus, for a given job i and a machine j, time 

required to process job i on machine j pij = pi / sij . 

When the value of α1 = PMPM  or α1 = QMPM, this implies we are given with a set of 

multi - purpose machines
[14]

 . In case of PMPM, the machines have identical speeds and 

when it is the case of QMPM, the multi - purpose machines would be having uniform 

speeds. 

 When the value of α1 ϵ { G, X, O, J, F } ,these kind of problems are called Shop 

Problems. In this shop environment, each job Ji  would be in turn made up of operations 

Oi1,Oi2,........,Oin where each operation is required to be processed on any specific machine 

.The processing time of operations vary and can be zero. In addition, there can be a 
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precedence relation between the operations. This kind of a general model is called General 

shop and is represented by α1 = G . All the other kinds of shop problems are a variation to  

the general shop  problem. 

 

2.3 SHOP PROBLEMS  

2.3.1 Job Shop Problem  

When the value of  α1= J , the given problem is called a job shop scheduling problem. In 

this kind of problem, there is an order in which the operations have to be performed. An 

operation Oin  cannot be performed unless all the predecessor operations in the order are 

completed. 

2.3.2 Flow Shop Problem  

A Flow shop problem is represented by α1 = F . We can say that a flow shop problem is a 

special case of  a job shop problem. In a flow shop problem, the order in which the 

operations are being processed is the same for all the jobs. But , all the jobs need not have 

the same processing times on a given machine i.e. different jobs may have different 

processing times on a same machine. If all the machines have the same job order, then we 

call it a permutation flow shop. 

2.3.3 Open Shop Problem  

An open shop problem can be represented by α1 = O  . An open shop problem is similar to a 

flow shop problem except that there is no constraint on all the jobs having the same order of 

operations i.e. operations belonging to a job can be processed in any order but no more than 

one operation of the same job is allowed to process at the same point of time
[15]

. 

2.3.4 Mixed Shop Problem 
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A mixed shop problem is represented by α1 = X .  In a mixed shop problem , some of the 

jobs may have a specified machine order as in a job shop and some of the jobs may have 

their operations performed in an arbitrary machine order as in an open shop .So ,we can say 

that a mixed shop is a combination of job shop and open shop.  

The value of α2 in our machine environment represents the number of machines present in a 

given scenario. If the value of α2 is equal to some positive integer Z where Z = 

1,2,3,4......,then it implies that Z number of machines present. If α2 = k where k represents 

some arbitrary number , it implies some fixed number of machines available where as when 

α2 = ο ,then the number of machines present is arbitrary . 

 

2.4 JOB CHARACTERISTICS   

The job characteristics of a schedule is represented by β which is made of six elements β1, 

β2, β3, β4, β5 and β6. Each of these elements specify a certain job character of the given 

schedule. 

When β = β1 , it indicates that preemption is allowed in the schedule which means that a 

job or a certain operation could be paused at any time and can be resumed later even on a 

different machine . A job or an operation can be preempted more than once . When 

preemption is allowed in a schedule, we set β1 = pmtn . 

When β = β2 , it indicates that a precedence relation exists among the jobs which means 

that jobs can be dependent on each other .A given job Jm  must be completed in order to start 

a job Jn and a job Jo  would start processing only after job Jn  completes. These precedence 

relations could be imagined in the  form of an acyclic directed graph G = ( V, E ) where 

vertices  V = {1,2,3,4,.....,n } are the jobs and edges  E represents the precedence relation 
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where ( m, n ) ϵ E if and only if Jn starts only after completion of job Jm .This precedence is 

represented as Jm → Jn . When there is a precedence relation among jobs, we represent β2 = 

prec. There are more than one kind of precedence relations possible and are represented by 

chains, trees, an intree, an outtree, or a series parallel graph changing the  β2 representation 

accordingly. 

If  β2 = tree , it means that G could either represent an intree or an outtree but if β2 = intree , 

then G represents an intree . An intree is a rooted tree where the maximum out degree of 

any node in the tree is one. Thus an intree looks like it is directed towards the root . 

If β2 = outtree , then G represents an outtree . An outtree is a rooted tree where the 

maximum in degree is one .Thus, an outtree could look like it is directed away from root 

(like an inverted tree). 

If β2 = chains, then G represents a set of chains . A chain is a tree where in the out degree 

and the in degree can be at most one . 

If β2 = sp-graph, then G represents a series parallel graph . When the graph here is made up 

of only one vertex and is series parallel, it is called a Base graph. when we form a graph G = 

( V1   V2 , E1   E2 )  joining the vertices and edges of graphs G1 and G2 resulting in a 

series parallel graph, it is called a Parallel composition . When we form a series parallel 

graph G joining the vertices and edges of G1 and G2 and also joining the edges from the 

sinks of G1 to the sources of G2, it is called a Series composition. 

When β = β3, then it indicates that each job may have a release time .This means that a 

particular job Ji  having release time ri = z, then job Ji would be available for processing 

after 'z' units of time. When there are release times specified for jobs on our schedule and 

represented by ri then β3 = ri . 
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When β = β4, then we may be talking about a restriction on the processing times or the 

number of operations . When β4 is equal to  pij = 1, then it  implies that all the jobs on the 

schedule are supposedly having a processing time of one unit . We may also see a case 

where pi = n, implying that jobs have n processing time requirement where 'n' is a constant 

value. 

When β = β5, then each of the jobs Ji  may be having a deadline di .This means that the job Ji 

must be completed by the time di . When deadlines are specifies for the jobs, we represent 

β5 = di . 

When β = β6 , it implies that batching in allowed in our schedule. A batch is nothing but a 

group of jobs processed together on a given machine . The finishing time of all job present 

in a given batch is equal to the finishing time of the batch . These batches require a set up 

time prior to getting started . The setup time for all the batches in a given schedule would be 

the same . 

Batching problems are of two kinds : β6 =  p - batch problems and β6 = s - batch problems 

.In a p-batching problem, the length of the batch is nothing but the maximum of the 

processing times all the jobs present in that given batch where as in a s-batching problem, 

the length of the batch is the sum of the processing times of all the jobs present in that given 

batch . 

 

2.5 OPTIMALITY CRITERIA  

Optimality criteria is represented by γ . Every scheduling problem is associated with  a cost 

and our feasible schedule should try minimize the total cost for the schedule. Generally, the 

total cost function is of two types : Bottleneck objective and sum objectives . A bottle neck 
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objective function refers to minimizing the total time taken by a schedule to finish the last 

job  where as the sum objective function refers to  minimizing the total sum of completion 

times of all the jobs present on the schedule . 

There can be many kinds of objective functions and most of them depend on attributes like 

completion times Ci, deadlines di  of any given job Ji . Most commonly used objective 

functions are : 

Makespan 

This can be related to the bottleneck objective function  and is given as : 

Cmax = Max { Ci , Where i = 1, 2, . . . . . , n } . 

When Makespan is the objective function in our problem, we represent γ = Cmax . 

Total Weighted Flow Time  

The total flow time  is given as :  ∑ Ci   

The total weighted flow time is given as : ∑ Ciwi from i = 1, 2, . . . . , n . 

Lateness 

Li  = Ci - di . 

Earliness  

Ei = max{0 , di  - Ci }. 

Tardiness 

Ti = max{0, Ci - di }. 

Absolute Deviation 

Di = | Ci - di | 

Standard Deviation 

Si =  ( Ci - di )
2 

. 
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Unit Penalty 

Ui =  0  if Ci <= di ;    

Ui =  1   otherwise . 

2.6 Shop Problems and Examples 

2.6.1 General Shop Problem  

We can define a general shop scheduling problem as follows . Consider we have n  number 

of jobs where i = 1,.......,n and m number of machines M1,......,Mm . A job i be made of more 

than one operation Oij where j = 1,........,ni  with a processing time of Pij . An operation Oij is 

required to be processed on a particular machine μij where μij ϵ { M1,.......,Mm }. Among 

these operations, there can exist a precedence relation . A job can only be processed on one 

machine at a point of time and a machine can process only one job at any point of time. 

Our objective function here is to find a feasible schedule such that it minimizes the 

respective objective function given in the problem.  

All the shop problems we discuss here are a special case of the general shop problem. 

  2.6.2 Job Shop Problem Example  

The job shop problem is considered a special case of  the general shop problem and the flow 

shop problem. Here we have a precedence constraint of the form Oij → Oi,j+1 where j = 

1,......ni -1 .The machine order constraint is already defined in the problem as follows : 

J || ∑ Ci  

Job  J1 M1(3) M2(2) M3(3) 

Job  J2 M1(2) M3(2) M2(4) 

Job  J3 M2(3) M1(1) M3(1) 

 

Table 2.1 An example problem illustrating job shop scheduling problem 
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In Table 2.1, consider job J1. We have a precedence constraint such that operation O11 on 

M1 should be processed before starting O12  on M2 and so on. Likewise, we have the 

machine order defined for every job. 

Using the rules of dispatching, we can construct a schedule minimizing the make span. 

Now, let us see how trying to optimize the make span effects the sum of completion times. 

Here is a machine oriented Gantt Chart for the schedule constructed.(See Figure 2.1) 

 

 

 

pi      1          2        3        4        5        6         7        8        9      10         11       12        13       

  Job J1 -                        Job J2 -                         Job J3 - 

Figure 2.1 Gantt Chart for the Job Shop Problem minimizing Total Completion times. 

Here, Cmax = 13 ; ∑ Ci = 5 + 8 + 13 = 26 . 

Let us see if we can further optimize the make span and how it effects the completion time.   

 

 

 

pi      1         2         3        4        5        6          7        8         9        10          11       12        13 

Job J1 -                            Job J2 -                       Job J3 - 

Figure 2.2 Gantt Chart for the Job Shop Problem minimizing the Make span. 

Here Cmax = 11, ∑ Ci = 10 + 11 + 11 = 32 . 

  M1 

 

 

M2 

 

 

M3 

 

 

  M1 

 

 

M2 

 

 

M3 

 

 



14 

 

From Figure 2.2,it is clear that the make span is minimized from the previous schedule but 

the sum of completion times has increased drastically .This change may not be the same for 

every scheduling problem though. 

2.6.3 Flow Shop Problem Example  

A flow shop is a special case of the general shop where each job can consist of m operations 

and an operation Oij is required to be processed only on Mj where j = 1,.......,m. There exists 

a precedence constraint of the form Oij → Oi,j+1 for each i = 1,......,m. The only difference 

between the job shop and flow shop is that the operation number j here represents the 

machine on which Oij is processed which means that in a flow shop, each job is processed 

first on machine 1 and then machine 2 and so on.  

Let us consider the following flow shop scheduling problem. In a flow shop, the machine 

order remains the same for all the jobs as seen below. Given are the processing times of  

each operation belonging to a particular job and to be only processed on that particular 

machine. 

 M1 M2 M3 

Job  J1 2 2 3 

Job  J2 1 4 3 

Job  J3 4 1 4 

 

Table 2.2 An example problem illustrating Flow shop scheduling problem 

Now using basic rules of dispatching , let us come up with a schedule which minimizes the 

make span(see Figure 2.3). 

 



15 

 

 

Figure 2.3 Gantt Chart 1 for the Flow shop problem. 

Apparently from Figure 2.3, 

Cmax = 15 and  

∑Ci = 7 + 9 + 15 = 31 . 

Let us see if we could come up with a better schedule (See Figure 2.4) 

 

Figure 2.4 Gantt Chart 2 for the Flow Shop Problem 

From Figure 2.4, 

Cmax  = 15 and 

∑Ci = 7 + 8 + 15 = 30. 
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Apparently, there has not been a change in the make span from the previous schedule but 

the total completion time had been minimized. 

2.6.4 Open Shop Scheduling Problem Example : 

Open shop is a special case of the general shop problem where each job i can consist of m 

operations j = 1,......,m and operation Oij is to be processed on machine Mj .  The operations 

can be processed in an arbitrary order unlike the job shop and the flow shops. 

Let us consider the following open shop problem where the numbers represent the 

processing times of the operations on their respective machines. 

 M1 M2 M3 

Job  J1 1 2 3 

Job  J2 4 1 4 

Job  J3 0 4 5 

 

Table 2.3 An example problem illustrating Open shop scheduling problem. 

Using the rules of dispatching, let us try to construct a schedule such that we minimize the 

make span . 

 

Figure 2.5 Machine Oriented Gantt Chart Minimizing the Make span. 
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Here, 

Cmax = 12 and  

∑Ci = 5 + 9 + 12 = 26.  

In Figure 2.5, the make span is optimized as the completion time on machine 3 cannot be 

reduced any further. 

2.6.5 Mixed Shop Problem  

A mixed shop problem is a combination of the open shop and the job shop problem. It is 

denoted by X. So, a mixed shop consists of both job shop jobs and open shop jobs. 
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CHAPTER 3 

Job Shop Problem : Using a Geometric Approach 

3.1 Job Shop Scheduling Problem 

Let us suppose we have n number of jobs to be processed where i = 1, 2, 3, . . . . , n and m 

number of machines M1, M2 , . . . . . . , Mm. Each job  i is  in turn made up of ni number of 

operations Oi,1 , Oi,2 , Oi,3 , . . . . , Oi,ni  where each job has an operation precedence 

constraint i.e. the operations should be processed in an order  Oi,j → Oi,j+1 . This implies that 

operation Oi,j+1 is available for processing only after operation Oi,j is completed.  Each of 

these operations Oi,j can be processed only on a particular machine Mm  with a specific 

processing time Pi,j requirement. The goal is to find a feasible schedule which optimizes the 

objective function specified in our problem. 

 

3.2 Problem with two jobs : Geometric Approach  

A job shop problem with two jobs with objective function Cmax is polynomially solvable 

using the geometric approach. The geometric approach reduces the two job shop scheduling 

problem to a shortest path problem in a two dimensional plane with rectangular shaped 

objects present as obstacles
[2]

 . We deal with the case where the objective function is 

Makespan. 

J | n = 2 | Cmax  

Given below are the attributes for the problem to be solved : 

Job J1 M2(2) M1(1) M3(2) M1(3) 

Job J2 M2(1) M3(1) M1(3) M2(1) 

Table 3.1 Example to demonstrate the geometric approach 
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In Table 3.1, first row represents all the operations belonging to job J1 and the second row 

corresponds to all the operations belonging to job J2.All the operations are represented by 

the machine number they are to be processed on along with the processing time requirement 

which is shown in the braces. As this is a job shop problem there is a precedence constraint 

which is implied in the figure in the order the operations are shown in each row i.e. in the 

first row operation O1,1 which is to be processed on machine M2 comes before operation 

O1,2 which is to be processed only on machine M1. 

 

Figure 3.1 Graphical representation of a job shop problem with two jobs 

Firstly, the problem is reduced to a shortest path problem in a two dimensional plane with 

rectangle objects acting as obstacles. Let us see how the graph can be developed so that we 

can represent our problem. 
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Each of the jobs are represented on one of the axis .As we would be having only two jobs in 

our case, we will be representing job J1 on X- axis and job J2 on Y-axis. 

Now as each axis represents an axis on the graph, we would be representing the respective 

operations of each job on their respective axis in the order  in which the operations are to be 

processed .(See Figure 3.1) 

The processing times of these operations are represented by the intervals on their respective 

axis ( J1 - X axis ; J2 - Y axis) .We will label each of these intervals with the machine 

number on which the respective operation is to be performed. 

For each operation in job J1, any operation in job J2 shares a common machine, we represent 

that region with a rectangular box. Likewise, we do this for all the operations in job J1 

representing the operations sharing the same machine with rectangle obstacles. 

Now, a feasible schedule corresponds to a path in the following graph starting from point O 

to point F.As we can notice in Figure 3.1, we could have more than one paths as we have 

more than one schedule for any given problem but there exists only one feasible schedule. 

Figure 3.2 represents all the paths possible in our graph. Each path is represented by a 

unique color.  
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Figure 3.2 Graph representing possible paths 

Each path shall be holding the following properties : 

The path is made up of segments which can be either horizontal , progressing along X axis 

or vertical, progressing along Y axis or head diagonal along a 45 degree angle. A horizontal 

or vertical path implies that at a point of time only one job is being processed but a diagonal 

path indicates that both jobs are being processed at that point of time . 

No path can go through any of the obstacles present in the diagram.If a path passes through 

a region in the obstacle, it implies that both jobs are being processed that too on the same 

machine which is not allowed .So,any path is not allowed to pass through the interiors of an 

obstacle. 

The length of the path can be given as length of horizontalparts + length of vertical parts 

+length of diagnol parts .Length of the horizontal parts(or vertical) can be noticed along the 

X-axis(Y-axis) where as length of the diagnolpart is equal to (length of dianol part)/√2. 
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We can have more than one path from O to F but only the shortest path among them is 

considered as a optima schedule.  

The next step is to construct our network N = ( V, A, d ) where V represents the set of 

vertices, A represents the set of arcs and d is the set of distances. This network can be 

constructed as follows : 

Firstly, we recognize the set of vertices V . V consists of points O, F and all the north-west 

and south-east corners of all the obstacles present in our graph. O is considered as a 

degenerate point where the south-east corner and the north west-corner meet. 

To construct the set of arcs A, consider any vertex i ϵ V / {F} i.e. any vertex from the set V 

except point F . We go diagonally at 45
0
 from this point in the north-east direction. Any 

vertex i can at most have two successors We would be having two scenarios here.  

In the first case (See Figure 3.3(b)), the only successor to point i is F.The path (i, F) makes 

the arc here and consists of the path from point i to the boundary and along the boundary to 

the point F. 

In the second case(See Figure 3.3(a)), the path encounters  a obstacle D instead of the 

boundaries resulting in  two successors to the point i. The path goes from point i to the 

obstacle's north-west corner or its south-east corner resulting in two arcs (i, j) and (i, k) 

where j is the north-west corner and 'k' is the south east corner of obstacle D. So, point i will 

be having two successors - the north-east corner and south-west corner of obstacle D .(as 

shown in Figure 3(a)). 
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 (a)                                                                                     (b) 

Figure 3.3 Possible Successors of a Vertex i . 

Now, in the process of constructing our graph, the next step is to order the obstacles .This 

ordering is done according to the lexicographic order of the north-west corners . Let us 

suppose we have obstacles  Di  and Dj whose north-west corners have co-ordinates (xi , yi) 

and (xj , yj) . Then ,  

if         yi < yj                  then  Di  <  Dj  

else if  yi = yj and xi < xj  then  Di  <  Dj 

else                                         

Dj  <  Di . 

Likewise, if the total number of restricted regions are r  .Then , the ordering or these 

obstacles would look as follows : 

D1 < D2  < D3  < . . . . . . . . . . . . < Dr. 
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Figure 3.4 Graph after ordering the obstacles. 

 

3.2.1 Constructing the Network 

We will be using a sweep line  to construct our network N = G( V , A , d ) where V is the 

set of vertices, A set of arcs and d is the set of distances. The resulting network will be a 

weighted acyclic directed graph. This network  N can be constructed in O(n log n)  steps 

where n is the number of obstacles in the plane and the shortest path in the network N can 

be found in O(n)  time
[3]

 . Let us see the steps in constructing this graph. 

Firstly, a sweep is applied across the graph using a north-east south-west directed line  . 

This line is moved from north-west to south-east direction parallel to itself. This line 

equation can be given as y - x = c. 
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The set S holds the set of restricted regions which are currently in contact with the sweep 

line along with the intervals imposed by them  on the sweep line . The set S is updated 

whenever changes occur during the sweep i.e. when the sweep line encounters a north-west 

corner or a south-east corner of an obstacle. 

When the sweep line encounters a north-west corner  'x' of an obstacle Di , Di is inserted 

into S. If  S holds any other element Dj  with NW corner ' k ' and SE corner ' l ' which is next 

to Di in the lexicographic order, then (x , k) and (x , l) are inserted into A and the distances 

d(x , k) and d(x , l) are calculated. If no such element exists is S, then (x,F) is inserted into A 

and the distance d(x,F) is calculated. 

When the sweep line encounters a south-east corner 'y' of any obstacle Di ,then the set S is 

checked for any element Dj with NW corner 'k' and SE corner 'l' that is next to Di in 

lexicographic order. If such an element exists, then (y,k) and (y,l) are inserted into A and the 

distances d(y,k) and d(y,l) are calculated. If no such element exists in S, then (y,F) is 

inserted into A and distance d(y,F) is calculated. Finally, Di is removed from S. 

Let us see how we can construct a graph network for our problem using the sweep line (See 

Figure 3.5) . 
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Figure 3.5 Graph 1 with Sweep Line for constructing the Network N. 

 

Let us consider we have the set S as a bag to hold elements and a sweep line L that helps us 

construct our graph. All the changes in the sweep and the bag are noted. Let us see how the 

set S and A would look like for every change that occurs during the sweep .The graph is 

constructed as follows : 

Step 1 : 

Initially, the sweep line(L) y - x = c intersects the north-west corner A of the obstacle 

D5.(Figure 5(a)). As set S contains only D5 , (A,F) is inserted into A and the distance d(A,F) 

is calculated. Apparently from Figure 5(a), d(A,F) = 8 .  

D5     
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Step 2 : 

The sweep line encounters the south east corner  of D5  or the north west corner of D3. 

 

Figure 3.6 Graph 2 with Sweep Line for constructing the Network N. 

 

Figure 3.6 Graph representing different stages for constructing the Network N. 

As the sweep line hits the south east corner of obstacle D5 , the set S is checked for any 

elements next to D5 in lexicographic order. As S now holds only D5 (B,F) is inserted into A 

and the distance d(B, F) is calculated. Apparently from Figure 5(b),d(B, F) = 6.Now, D5  is 

removed from S. 

As B is also the north-west corner of D3,D3 is inserted into S which is currently empty. Arc 

(B,F) and its distance has been already calculated and inserted into A. 
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D3     

Step 3: 

The sweep line intersects the north-west corner C of obstacle D1 . 

 

Figure 3.7 Graph 3 with Sweep Line for constructing the Network N. 

Now, the sweep line is in contact with the north west corner of obstacle D1 .So,D1 inserted 

into the set S. Now, S is checked for any elements which are next to D1 in lexicographic 

order. As, we can see S currently holds D3 other than D1. D3 is next to D1.So,arcs (C, B) and 

(C, E) are inserted into A and the distances d(C, B) and d(C, E) are noted. 

D3 D1    

 

Step 4 : 

Sweep line L is in contact with the north-west corner D of the restricted region D4. 
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Figure 3.8 Graph 4 with Sweep Line for constructing the Network N. 

 

As L is in contact with the NW corner of D4, it is inserted into S. 

D3 D1 D4   

As we can see S does not hold any element next to D4 in lexicographic order .So, arc (D, F) 

is inserted into A and the distance d(D, F) is noted.  

Step 5: 

Sweep line L comes into contact with the vertex O . 
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Figure 3.9 Graph 5 with Sweep Line for constructing the Network N. 

 

As we have said before ,O is a degenerate point where the NE and SW vertices meet. This 

can be seen as a special case. Apparently, from the graph, if we consider it as a vertex 

belonging to region Di, then D1  is the next element to it in S .So arcs (O, C) and (O, G) are 

inserted into A and the distances d(O, C) and d(O, G) are noted. Finally ,this region is 

deleted from the set S.  

Similarly when the sweep line hits F, no changes would occur in S and A as F is considered 

the last point in our graph and there would be no  elements next to it belonging to the set V. 

 

Step 6 : 
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Sweep line L is in contact with the SE corner of D3 or the NW corner of D2 E. 

 

Figure 3.10 Graph 6 with Sweep Line for constructing the Network N. 

  

As L is in contact with the SE corner of D3,we check for any elements next to D3. As S 

contains D4 which is higher in lexicographic order than D3, arcs (E, D) and (E, I) are 

inserted into A and the distances d(E, D) and d(E, I) are noted. Now, D3is removed from S. 

As E is also the NW corner of D2 ,it is inserted into S. 

D1 D4 D2   
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D4  is the next element to D2 in the set S. Apparently, from the Figure the NW and SE 

corners of D4 are denoted as D and I respectively. So, arcs (E, D) and (E, I) are inserted into 

A and their respective distances are noted. 

Step 7: 

The Sweep line L is in contact with the SE corner of D1. 

 

 

Figure 3.11 Graph 7 with Sweep Line for constructing the Network N. 

 

As L is in contact with G,SE corner of D1 set S is checked for any elements next to D1 .Here 

we have D2 and D4 which are higher than D1 in lexicographic order but D2 comes first .So, 

D2 (with NE corner E and SE corner H) is considered as the next element to D1. So, arcs (G, 
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E) and (G, H) are inserted into A and their respective distances are noted.Finally,D1 is 

removed from S. 

D4 D2    

 

Step 8 : 

Sweep line L is in contact with the SE corner of D2. 

As the sweep line hits the south east corner of obstacle D2 , the set S is checked for any 

elements next to D2 in lexicographic order.  

Figure 3.12 Graph 8 with Sweep Line for constructing the Network N. 

 

As S now holds only D4 which is next to D2 , arcs (H, D) and (H, I) are inserted into A and 

the distances  d(H, D) and d(H, I) are calculated. Now, D2 is removed from S. 
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D4     

 

Step 9 : 

 Now the sweep line is in contact with the SE corner I of D4. 

As we can see S currently holds no other element other than D4. So, arc (I, F) is inserted 

into A and its distance d(I, F) is calculated and noted.Finally,D4 is removed from S making 

it an empty set. 

     

 

Figure 3.13 Graph 9 with Sweep Line for constructing the Network N. 
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The Sweep line L has swept the whole region where, changes occur when it comes into 

contact with any i ϵ V/ { F } creating a set of arcs A and their respective distances d 

constructing our graph G (V, A, d) . 

 

Finally , let us see what elements we have in V, A and d : 

V = { O, A, B, C, D, E, G, H, I } 

A = { (A, F), (B, F), (C, B), (C, E), (D, F), (O, C), (O, G), (E, D), (E, I), (G, E), (G, H), (H, 

D), (H, I), (I,F) } 

d = {    (A, F) = 8, (B, F) = 6, (C, B) = 4, (C, E)= 3, (D, F) = 3 , (O, C) = 1, (O, G) = 2, (E, 

D) = 3, (E, I) = 5,  (G, E) = 2, (G, H) = 3, (H, D) = 4, (H, I) = 3, (I,F) = 4. } 

Finally, the resulting acyclic weighted directed graph for our problem is as follows : 

 

Figure 3.14 Network N Constructed from the job shop problem. 

 

On Observing Figure 3.14, I found the following shortest paths from O to F : 

Path 1 : 

O  → G → E → D → F . 
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The total weight of this path would be : 

2 + 2 + 3 + 3 = 10. 

Path 2 : 

O → C → E → D → F . 

The total weight of this path : 

1 + 3 + 3 + 3 = 10. 

 Let us see the corresponding schedules for the paths mentioned above  

Schedule for Path 1 : 

The Gantt chart for the schedule according to path 1 looks  as follows . 

Apparently, here 

Cmax = 10 

 

Figure 3.15 Job Oriented Gantt Chart for path 1. 

 

Schedule for path 2 : 

The schedule corresponding to path 2 looks as follows : 

Here, apparently Makespan is equal to 10 

Cmax = 10. 
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Figure 3.16 Job Oriented Gantt Chart for path 2. 
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CHAPTER 4 

Solving Job Shop Problem with a limited number of machines 

Among the shop problems, Job shop scheduling problems are considered the most popular  

and difficult ones  to solve. In this Chapter, let us have a look at the job shop problems 

which can be solved in polynomial time when the number of machines are limited. 

4.1 Job shop problem with two machines  

Among some of the only few job shop problems which can be solved in polynomial or 

pseudo polynomial time, a two machine job shop problem with at most two operations per 

job problem is one among them. We discuss this algorithm in the following section 4.1.1. 

 

4.1.1 J2 | ni ≤ 2 | Cmax 

This problem is solved by reducing it into a two-machine flow shop problem which is 

solved using the Johnson’s algorithm
[6]

 ( Refer to section 5.1 ). 

Let us see how this problem is solved following the steps below: 

All the jobs in our problem are divided into the following subsets: 

I1 – Set of all the jobs which are executed only on machine 1. 

I2 – Set of all the jobs which are executed only on machine 2. 

I1, 2 – Set of all the jobs which are executed on machine 1 and then on machine 2. 

I2, 1 – Set of all the jobs which are executed on machine 2 and then on machine 1. 

 

For the set of jobs in   I1,2 ,  find the optimal sequence R1,2 . This is going to be a two 

machine flow shop problem which can be solved using Johnson’s algorithm. 
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Similarly, for the set of jobs in I2,1 , find the optimal sequence R2,1 .This is nothing but a two 

machine flow shop problem which can be solved using Johnson’s algorithm. 

Now on machine one ,schedule jobs belonging to I1,2 according to the sequence R1,2 . Then 

schedule jobs belonging to I1 in an arbitrary order. Now schedule jobs belonging to I2,1 

according to the sequence R2,1 . 

Now on machine two , schedule jobs belonging to I2,1 according to the sequence R2,1 . Now 

schedule jobs belonging to I2 arbitrarily. Lastly schedule jobs belonging to I1,2 according to 

the sequence R1,2. 

A schedule is said to be an active schedule if we cannot perform any of those jobs earlier 

without violating scheduling constraints. 

Let us consider the resulting schedule from the above algorithm is an active schedule. Then, 

there would be at least one machine  processing all the jobs without any idle time. 

 

Let us say                 ≤              +           

i.e. sum of processing times of all the jobs belonging to I2,1 on machine two is less than or 

equal to sum of processing times of all the jobs belonging to I1,2 on machine one plus sum 

of all the processing times of all the jobs belonging to I1 on machine one. Then, there will 

be no idle time on machine one. Otherwise, there would be no idle time on machine two. 

 

4.1.2 J2 | N=K | Cmax   

In the previous section , we have shown that a two machine job shop problem can be solved 

when the number of operations are fixed to at most two operations. It has been proved that 

J2 || Cmax  problem is NP-hard
[23]

.But, the two machine job shop problem where the number 
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of jobs is fixed to a constant k has been solved in polynomial time even when the machines 

are repeated in a job i.e. μi,j = μi,j+1 for a given job i. In this algorithm, the problem J2 | N = k 

| Cmax  is reduced to a shortest path problem in an acyclic network consisting of O(r
k
) 

vertices where r is the maximum length of a job (number of operations ) i.e.  

r = 
n

i 1
max


ni . 

The time complexity for constructing this network is equal to  O ( r
2k

) steps . Thus, the total 

time complexity for solving this two machine job shop problem is O ( r
2k

) 
[4]

 . However, the 

three machine job shop problem J3|| n = 3 | Cmax and J3|| n = 3 | Cmax with k = 3 is proven 

to be NP-hard
[5]

. 
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CHAPTER 5 

Dealing with Flow Shop Problem 

5.1 Johnsons Algorithm for solving two machine flow shop problem  

 

F2 || Cmax 

This is one among the very few flow shop problems  and the only one with Cmax criterion 

which can be solved in polynomial time .An algorithm has been developed by Johnson
[6]

 

which can solve the two machine flow shop problem with Cmax criterion in polynomial time. 

Let us consider the following two machine problem and solve it using the Johnson's 

algorithm . 

  

Pi1 

 

Pi2 

 

J1 

 

2 

 

5 

 

J2 

 

4 

 

3 

 

J3 

 

1 

 

6 

 

J4 

 

5 

 

3 

Table 5.1 An example problem illustrating two machine Flow shop scheduling 

problem using Johnson's Algorithm. 

Algorithm 5.1.1 Johnson's Algorithm Pseudo code 

Algorithm F2 || Cmax 
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X : = {1,2,.......,n}; T : = Φ ; R : = Φ ; 

While X ≠ Φ DO 

BEGIN 

Find i
*
 , j

*
 with Pi*j* = min { Pi,j | i ϵ X ; j = 1, 2 }; 

If  j
* 
= 1 THEN T : = T ο i

*
 ELSE R : = i

*
 ο R ; 

X = X\{ i
*
} 

END; 

L: = T ο R  

Firstly, we are given a flow shop scheduling problem with two machines and any number of 

jobs with arbitrary processing times. Let X be the set of all the processing times Pij and set T 

and R initialized to null . 

Select job  i* with least processing time. If two jobs have minimum processing times , select 

any one of the jobs randomly. If the selected processing time belongs to an operation on 

machine 1(j = 1),then insert that job i* to the end of the list T.  Otherwise, insert the 

corresponding job to the beginning of the list R. Now, remove the job i* from the list X . 

We repeat the above step until there are no jobs left in the list X. 

Now , we have a final list L which is formed with combining list T and R .  

L = T ο R 

This list L is nothing but our optimal sequence of jobs on both machines 1 and 2 . 

Applying these steps to our problem , we would get  

Set T = { 3 , 1 } 

I = { 4 , 2 }. 

Therefore , L = T ο R  
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i.e. L = { 3 , 1 , 4 , 2 } . 

 Let us construct a Gantt chart based on the above sequence and see what the optimum  

Makespan is. 

 

Figure 5.1 Gantt Chart representing the schedule obtained from Johnson's Algorithm. 

Here Cmax = 18 . 

According to Lemma 6.8,it states that For the problem Fm || Cmax an optimal schedule exists 

with the following properties : 

The job sequence on the first two machines is the same . 

The job sequence on the last two machines is the same. 

In a flow shop , if the optimal or final schedule has job sequences π1 , π2 , . . . . . , πm where 

π1 = π2 = . . . . . = πm , then it is called a permutation flow shop . The above Lemma states 

that when we are presented with at most three machines ,the optimal solution is equal to that 

of the corresponding permutation flow shop. This does not apply when we have more than 

three machines in the flow shop. 

5.2 Lemma 1 :  

Let L : = L(1) , . . . . , L(n) be a list constructed by Algorithm F2 || Cmax . Then  

min {Pi1 , Pj2 } < min { Pj1 , Pi2 } 

implies that job i appears before job j in L . 

 Proof : 
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Let us assume that Pi1 < min { Pj1 , Pi2 }, 

then it means that  Pi1  < Pi2 . 

This would mean that according to Johnson's Algorithm , job i is added to the end of the list 

T. 

 Now, let us see what are the possible cases of dealing with job j. 

If job j is added to R, then apparently it comes after job i which is in the set T proving that 

job j comes after job i . 

Else if job j appears in T , it would be after job i .This is because  Pi1 < Pj1 .So, job j is 

performed after job i when min {Pi1 , Pj2 } < min { Pj1 , Pi2 }. 

Similarly, 

If Pj2 < min { Pj1 , Pi2 } , it would belong to set R which makes Pi1 the next minimum value 

and to be inserted into set T. 

Therefore, job j appears after job i is done in L. 

5.3 Lemma 2 : 

Consider a schedule in which job j is scheduled immediately after job i . Then 

min { Pj1 , Pi2 } ≤ min { Pi1 , Pj2 } 

implies that i and j can be swapped without increasing the Cmax value . 

Proof :  

Let us consider that job j comes immediately after job i, then we will be having the 

following type of scenarios :(See Figure 5.2) 
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Figure 5.2  Scheduling representing different scenarios when job j comes after job i . 

Let us denote the length of the time period from the beginning to job i to the end of job j by 

Wij .Then, Wij is nothing but the maximum of sum of processing times of jobs on machine 1 

and machine 2 as follows . 

Wij = max { Pi1 + Pj1 + Pj2 , Pi1 + Pi2 + Pj2 , x + Pi2 + Pj2 } 

 We can write the same equation as  

Wij = max { Pi1 + Pj2 + max{ Pj1 , Pi2 } , x + Pi2 + Pj2 }. 

 

In the same manner , if job j comes before job i then 

Wji = max { Pj1 + Pi2 + max{ Pi1 , Pj2 } , x + Pi2 + Pj2 }. 

Let us say that job i is scheduled immediately after  job j , then we can say 

min { Pj1 , Pi1 } ≤ min { Pi1 , P j2 } 

By multiplying the above inequality with -1 , we get  

max { -Pi1 , -Pj2 } ≤ max { -Pj1 , -Pi2 }. 

Now adding Pi1 + Pi2 + Pj1 + Pj2  to both sides ,we get 

Pi1 + Pi2 + Pj1 + Pj2 + max { -Pi1 , -Pj2 } ≤  Pi1 + Pi2 + Pj1 + Pj2 + max { -Pj1 , -Pi2 } 
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Simplifying the above equation, we get 

Pi2 + Pj1 + max { Pi1 , Pj2 } ≤  Pi1 + Pj2 + max { Pj1 , Pi2 } 

which would imply the following  

Wji ≤ Wij. 

which means that by swapping the jobs i and j , the Cmax value will remain the same. 

5.4 Theorem 1 : 

The sequence L : L(1) , . . . . , L(n) constructed by the algorithm F2 || Cmax is optimal. 

Proof : 

Let us consider that O is a set of all optimal sequences . 

Let us say our sequence L obtained by using the algorithm does not belong to this set O. 

L ∉ O. 

Consider a sequence R where R ϵ O  i.e. R is an optimal sequence . 

Let us say that sequence L and R have a similar job order till n-1 with n being the last 

job(maximal). 

L(v)  =  R(v) where v = 1,2,......., n-1 . 

Let L(n) = i and R(n) = j where i ≠ j . 

In the sequence R, job i may or may not be a immediate successor to job j. Let us say that 

job k is scheduled between job j and i .Now, job sequence R and L will look as follows 

L : 1, 2, . . . . , n-1, i, k, j. 

R : 1, 2, . . . . , n-1, j, k, i. 

In L ,as job k is scheduled immediately after job i we can say ( From Lemma 6.9 ) 

min { Pk1 , Pi2 } ≥ min { Pi1 , Pk2 }. 
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This implies that in sequence R ,we can swap k and i without increasing the Cmax value 

(from Lemma 6.10).Job i is swapped with its immediate predecessor without increasing the 

objective value. Finally, we get a sequence R' which will still be optimal and belongs to the 

set O and R'(v) will now be equal to L(v) i.e. 

R'(v) ϵ O ; 

R' (v) = L (v) where v = 1, 2, . . . ., n. 

contradicting that n is maximal 
 

Therefore L is optimal and L ϵ O. 
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CHAPTER 6 

Open Shop Problems 

6.1 Two machine open shop problem O2 || Cmax  

In an open shop problem, each job i contains a number of operations Oij ( j = 1, . . . . ,m ) 

where an operation Oij has to be processed only on machine Mj . These operations can be 

performed in an arbitrary order i.e. there is no precedence relation between the operations . 

When the processing times of the operations are arbitrary and with no preemption allowed, 

the two machine open shop scheduling problem with make span as optimality criterion is 

the only problem that can be solved in polynomial time . Let us have a look at the algorithm 

defined to solve this problem. 

O2 || Cmax 

Let us assume the two machines present in our problem as machine A and machine B .Let ai 

, bi be the processing times of operations belonging to  job i on machine A and B 

respectively. 

Now, we define two sets I and J which would hold the jobs with following properties : 

I = { i | ai ≤ bi ; i = 1, . . . . ,n } and 

J= { i | bi < ai ; i = 1, . . . . ,n } .  

The above notation simply means that set I consists of all the jobs where the processing 

time of operation on machine A is greater than or equal to the processing time of operation 

on machine A and set J consists of all those jobs whose operations on machine B have a 

greater processing time than the operations on machine A. 

Now,  

ar = max { ai | i ϵ I } and 
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br = max {bi | i ϵ J }. 

This means that ar is the maximum processing time among all ai of jobs belonging to set I 

and br is the maximum processing time among bi of jobs belonging to set J . 

We will be considering two cases here : 

 

Case 1 : 

When ar >  br (Here r is nothing but the job in ar), an optimal schedule is constructed in the 

following manner : 

On machine A ,schedule all jobs in I except r ( I - r ) in an arbitrary manner , then all jobs in 

J in arbitrary order and lastly job r. 

Now on machine B, schedule job r first then all the jobs in I except r ( I - r )in the same 

order as scheduled on machine A and lastly all jobs in  J in the same order as followed on 

machine A. 

    

A 

B 

I - r J r 

r I - r J 

 

Figure 6.1 Optimal Schedule for O2||Cmax when ar > br. 

Case 2 : 

When ar  ≤ br ( In this case r is the job in br), an optimal schedule is constructed in the 

following manner : 

 On machine A , schedule job r ,then all jobs in J - r in arbitrary order and lastly all jobs in I 

in arbitrary order. 
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On machine B , schedule  all jobs in J -r in the same order as on machine A ,then all jobs in 

I in the same order as in machine A and lastly job r. 

 

A 

B 

r J - r I 

J - r I r 

 

Figure 6.2 Optimal Schedule for O2||Cmax when ar ≤ br. 

6.2 An Example problem : 

 M1      M2 

J1 

J2 

J3 

J4 

J5 

3 3 

4 1 

2 5 

4 2 

5 8 

Table 6.1 An example problem illustrating O2||Cmax Algorithm. 

In Table 6.1,we have two machines M1 and M2 and five jobs with their respective 

operations on both the machines. 

Firstly, let us find the set I and J. 

Set I  = set of jobs whose ai ≤ bi. 

Here apparently, jobs 1,3 and 5 hold this property .So ,these jobs are inserted into set I . 

I = { 1, 3 , 5 }. 

Set J = set of jobs whose bi > ai . 

Here apparently , the remaining jobs 2 and 4 hold this property. So they are inserted into set 

J. 
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J = { 2, 4 }. 

Now, let us find the processing times ar and br from the respective sets I and J. 

Among all the jobs in I, job 5 has the maximum ai value of 5. 

Therefore, 

ar = a5 = 5 . 

Among all jobs in J , job 4 has the maximum bi value of 2 . 

Therefore ,  

br = b4 = 2 .  

As we can see, apparently here a5 > b4 ( 5 > 2 ). 

So, we follow case 1. 

Now r = 5 .  

and the schedule constructed following our algorithm would look like : 

 

Figure 6.3 Machine Oriented Gantt Chart representing the schedule obtained using 

O2||Cmax Algorithm. 

Here, Cmax  = 19. 
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CHAPTER 7 

Mixed Shop Scheduling Problems 

7.1 Mixed Shop Problems  

A mixed shop can be defined as a combination of open shop and job shop. This means in a 

mixed shop, we will have a mixture of open shop jobs and job shop jobs. The order in 

which the operations are processed is fixed in a job shop job but in a open shop job, the 

order in which the operations of the job are processed  can be arbitrary. We denote the 

mixed shop problems with X. 

As mixed shop problems consist of both job shop jobs and open shop jobs,  only some of 

the mixed shop problems have been solved in polynomial time. Among them  are X2|ni ≤ 

2|Cmax  and X2|pmtn; ni ≤ 2|Cmax ,which have been solved in O(n log n) steps
[8]

. An O(r
3
 + 

n) algorithm
[9]

 has been defined for solving X2|nJ = 2;pmtn|Cmax problem and the problem 

X2|nJ = k; nO = l |  Cmax has been solved in O(r
3n

J 2
n

O )time. 

 

7.2 Mixed Shop with two jobs  

X | pmtn ; n =2 | Cmax 

Shakhlevich and Sotskov
[7]

 have shown that the preemptive mixed shop problem with two 

jobs i.e. one open shop job and one job shop job with an arbitrary regular objective function 

can be solved using an O(r) algorithm  where r is the maximum number of operations 

among the jobs. They have also shown that the problems X | n =2 | Cmax and X | n=2 | ∑Ci 

are NP-hard. 

Let us assume that the given jobs are J1 and J2 where job J1 represents the job shop job and 

job J2 represents the open shop job. Let O1j be operations belonging to the job shop job J1 
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where j  = 1,.....,n1 where operation O1j has a processing time of P1j and is supposed to be 

processed on machine μj ϵ {M1,........,Mm}.Let O2j be the operations belonging to the open 

shop job J2 where j = 1,.....,n2 = m where O2j has a processing time of P2j and is supposed to 

be processed on machine Mj . 

let Ti be equal to the total processing time of Ji where i = 1,2. 

Ti =


in

j

ijP
1

  ( i = 1, 2. ) 

Now, we have two cases to consider here : T1 ≥ T2  and T1 < T2 . 

7.2.1 Case 1 :  

T1 ≥ T2   

Lets us say there exists an index l (1 ≤ l ≤ n1) such that  




l

j

jP
1

1

= T2 .  

This means that the sum of processing times of operations in job1 which are performed on 

machines M1,.....,Ml must be equal to T2. If not ,we split an operation on J1 into two 

operations. 

Now, for every value of k = 1,......., m we say  

Sk = P2k + 




lj

M

j

kj

P


1 . 

and S = Sk* ꞉꞊꞊ 
n

k 1
max


Sk . 

Now when S ≤ T2  and when S > T2 ,we use different approaches to solve our problem. 

7.2.1.1 Sub case 1 : S ≤ T2   
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In this case, it is possible to construct a schedule where C1 (completion time of J1) = T1 and 

C2(Completion time of J2) = T2 which is an optimal schedule. Assume that we only consider 

operations O11,.....,O1l  belonging to J1 and construct a schedule U with a make span of T2, 

then it equivalent to proving that our schedule is optimal. In addition when the operations  

O1,l+1,......,
1,1 nO belonging to J1 are scheduled without any interruption on their respective 

machines, we get C1 = T1 and C2 = T2 .  

Firstly, we need to come up with a schedule U. To do this, we make use of the two job open  

shop problem algorithm (equivalent to O2||Cmax) .We consider our above problem as two 

job  

open shop problem with processing times  

p1k = 




lj

M

j

kj

P


1 and p2k = P2k for k = 1,.......,m. 

Let us see how we can solve this using the following example problem : 

 

Figure 7.1 An example mixed shop problem for sub case 1. 

In  Figure 7.1, J1 represents the job shop job and J2 represents the open shop job along with  

their respective operations and processing times. As J1 is a job shop job, it has to be 

processed in 

 the job order mentioned in the example. Operations in J2 can be processed in an arbitrary 

order. 
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Let us calculate the values of T1 and T2. 

Here apparently T1 = 4+3+2+1+2+6 = 18. 

T2 = 5+2+3+4 = 14. 

We have T1 > T2. 

Apparently, we do not have a index l here such that 


l

j

jP
1

1 = T2.So,let us break the last  

operation of J1 on M4 into two operations as following : 

 

Figure 7.2. Problem after breaking operations on J1 . 

Now, from the above figure we can say l = 4.We do not consider the last operation on J1 

and calculate the corresponding Sk for k = 1,.....,m. 

S1 = 5+4+1 = 10; S2 = 2+2 = 4 ; S3 = 3+3+2 = 8 ; S4 = 4+2 = 6. 

From the above k* = 1 and S = Sk* = 10. 

As S  < T2, we follow sub case 1 . 

Let us now truncate this problem into a two job open shop problem as follows : 

i 1 2 3 4 

ai 5 2 5 2 

bi 5 2 3 4 

Table 7.1 Two Job Open Shop problem 
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In Table 7.1, ai  implies all the operations belonging to J1  and bi  implies all the operations 

belonging to 

 J2 where i is the machine number. 

Applying the two job open shop algorithm from * ,we get  

I = { 1 , 2 , 4 } 

J = { 3 } 

ar = a1 = 5; 

br = b3 = 3. 

ar > br and r  = 1. 

The resulting schedule will be as follows : 

 

Figure 7.3 Resulting Schedule obtained after using the algorithm in 6.1 . 

Now, the last step in this algorithm is to cut the schedule in Figure 7.3 along the original 

operations of J1 into smaller pieces and reschedule these pieces such that we get a 

preemptive schedule for the above truncated problem. Adding the operations of J1 scheduled 

after T2 will give us the final optimal schedule. 
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Figure 7.4 Schedule representing the cuts along the operations of J1 . 

We split the schedule along the red dotted lines in our example which represent the 

operations in J1 (See Figure 7.4 ).This leaves us with the following smaller operations in J2 . 

J2 : M1(2) ;  M1(2) ;  M1(1) ;  M2(2) ;  M4(2) ;  M4(2) ; M3(2) ;  M3(1) . 

After rescheduling these operations and adding the operations in J1  after T2 , our final 

optimal schedule will be : 

 

Figure 7.5 Optimal Schedule for sub case 1 instance of X |n=2;pmtn |Cmax 

In figure 7.5 , 

 C1 = T1 = 18. 

C2 = T2 = 14 and 

Cmax = 18. 

 



58 

 

7.2.1.2 Sub case 2 : S = Sk* > T2 

In this case, there exists no schedule with Ci = Ti for i =1,2.Even when C2 = T2 ,there will be 

at least one operation O1j  where μj = Mk* and j ≤ l which would finish later than T2 making 

the completion time of J1 greater than T1. 

Let us consider the following example to explain how to proceed in this case (See 7.6) 

 

Figure 7.6 Example problem illustrating sub case 2 . 

In Figure 7.6 , 

T1 = 17 > T2 = 11. 

So we follow case 1 and find an index l such that 


l

j

jP
1

1 = T2. For this ,the last operation 

in J1 on machine 1 needs to be ignored for now. 

We have l = 3 and so 

S1 = 13 ; S2 = 6 ; S3 = 3. 

Apparently, Here S1 > S2 > S3  and   Sk* = S1 = 13  and k* = 1. 

We have Sk* > T2 . 

Let us first consider the following cases  

i. Here C1 = T1  and we are minimizing C2 as follows  
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ii. Here C2 = T2' and T1 < C1 < T1* as follows 

 

iii. Here C2 = T2 and we minimize C1 as follows 

 

Figure 7.7 Possible Schedules for the sub case 2 where S > T2 and T2 ≤ T1 

In this example, we have k* = 1 .Now, Let us denote the minimal C2 value in case 1 by T2* 

and the minimal C1 value in case 3 by T1* . 

For every value of T2 ≤ T ≤ T2* ,we define  

f(T) = min { f(s,T) | T1 ≤ s ≤ T1* } 

Then, 
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F(T*) = min{ f(T) | T2 ≤ T ≤ T2* } will be our optimal solution . We consider at the most n1 

different values of T to calculate T1* . 

we start from the optimized schedule where T = T2* (case i) and go till T = T2 .From the 

figure, we can say that  to decrease the value of T from T2* in case i ,the only way to do this 

is to increase s from T1 to T2* i.e. we move the last operation of J1 on M1 to the right by 

T2*-T1 units and then move the last operation of J2 to the far left as possible. 

Now, 

f(T2') = min { f(T) | T2' ≤ T ≤ T2* } 

We further try to decrease the value of T . In our example ,we reduce T from T =T2' to T = 

T2 by further moving the operations of J1 to the left and the operation of J2 to the left as in 

case iii. This will be the last instance in our example as T cannot be further reduced (as seen 

in the figure ) and now T = T2 and C1 = T1*.Finally ,we have F(T*) = min{ f(T2*), f(T2'), 

f(T2) }.In our case f(s,T) will be the make span of the schedule at that instance. In simple 

words, we start from T = T2* and calculate the Makespan. Now, we try to reduce T from 

T2* by changing the value of s and end up with case ii . We further reduce T till T = T2 

noting down the make span for every instance. Now ,the optimal schedule will be the one 

with the minimum make span value. 

In our example , we know F(T*) = min{ f(T2*), f(T2'), f(T2) } which is equal to  

F(T*) = min{ 19 ,19 , 20 }, 

Hence, we can say that case i or case ii can be our optimal schedule here. 

 

7.2.2 Case 2 : 

 T1 < T2 
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In this case ,we can define  

Sk =   P2k + 
 kj M

jP


1    for  k = 1,......m. 

As in the previous case, we will be having two cases here when Sk ≤ T1 and Sk > T1 . 

7.2.2.1 sub case 1 : Sk ≤ T1 

As in our case 1 ,when Sk ≤ T1 ,there exists an optimal schedule with Ci = Ti where i = 1,2.   

We follow the same procedure as in case 1 except that here J1 < J2 and we add the extra jobs 

of J2 (instead of J1 as in previous case ) to the optimal schedule obtained using the O2||Cmax 

algorithm. 

7.2.2.2 sub case 2 : Sk > T1 

When Sk > T1 and Sk ≤ T2 , then we will have an optimal schedule with Ci = Ti where i = 

1,2.But when Sk > T1 and Sk  > T2 , we follow the same procedure as in the previous sub 

case 2(when T1 > T2). 
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CHAPTER 8 

DEALING WITH NP-HARD PROBLEMS 

 

8.1 Proof that O3 || Cmax  is NP-Hard 

There are efficient algorithms for solving the non preemptive open shop problem where the 

number of machines m = 2 .Does this mean that there exists a similar algorithm to solve the 

non preemption open shop problem for m =3 ?We would be able to answer this question by 

proving the fact that   O3 || Cmax   is NP-hard
[15]

. For this purpose, Gonzalez and Sahni
[10]

 

reduced the partition problem into a instance of a three machine open shop problem. So, in 

simple terms this would be our problem: 

Given an non preemptive open shop problem where m = 3, n number of jobs with 

processing time Pi,m where 1 ≤ i ≤ n and 1 ≤ m ≤ 3 .Let us say we have a dead line D, so do 

we have a schedule where the make span is less than or equal to D ? The partition problem 

is: can the set of all objects J = { j1,.......,jn } with weights w(ji) be partitioned into two sets J1 

and J2 such that the sum of the weights of jobs in each set be equal to T/2 where T = ∑ w(ji) 

where 1 ≤ i ≤ n. 

Let us consider the following instance of the open shop problem  

From partition problem J = { j1,......, jn } , let us construct an open shop problem with 3n+1 

number of jobs and three machines m = 3.Let us say we have all the jobs with only one 

operation except for one job which has three operations ,one on each machine with a 

processing time of T/2 units. 
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Let us say we have n number of jobs processing on each machine plus the extra special job. 

Let these n jobs imply the objects in the set J and the processing times imply their respective 

weights. Then, the processing times would look like : 

w(ji) = Pi,1 ; Pi,2 = Pi,3 = 0 ;    for 1 ≤ i ≤ n ; 

w(ji) = Pi,2 ; Pi,1 = Pi,3 = 0 ;    for n+1 ≤ i ≤ 2n ; 

w(ji) = Pi,3 ; Pi,1 = Pi,2 = 0 ;    for 2n+1 ≤ i ≤ 3n ; 

P3n+1,1 = P3n+1,2 = P3n+1,3 = T/2 ;    

where T =        
      and  D = 3T/2 . 

We now say that this problem can be done with a make span less than or equal to D only if 

there exists a partition for J. 

Proof : 

Let us prove this by contradiction. Firstly, assume that we have a schedule with a make span 

less than or equal to 3T/2 and that J has no partition. 

As we know job 3n+1 has a processing of T/2 units on each machine and since preemption 

is not allowed ,this job has to be processed all the time on any one of the machines.(see 

Figure 8.1) 

 

Figure 8.1 Architecture representing a instance for proving O3||Cmax is NP-hard. 
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As preemption is not allowed, there exists at least one operation from job 3n+1on any of the 

machine l such that it starts at T/2 and is processed till T units of time. On this machine l, 

apparently there would be two disjoint blocks of idle times with a length of T/2 units each. 

As we know , n number of jobs are to be processed on each machine with a total processing 

time of T. 

As J has  no partition, it cannot be divided into two sets where each set has a total 

processing time of T/2 and so all the time preceding the job j3n+1 on machine l cannot be 

used. So, all the remaining jobs to be processed on machine l will require more than T/2 

units after processing job 3n+1 . This makes the finishing time exceed 3T/2 time units 

contradicting our assumptions. 

Therefore0, we cannot have a schedule with a Makespan less than or equal to D = 3T/2 

when the set J has no partition. Hence, the non preemption open shop  make span problem is 

NP-hard when m = 3. 

Since the  above partition problem in not NP-complete in the strong sense(unless P = NP) , 

we cannot say that the open shop problem in NP-hard in the strong sense. However, it has 

been proven that an open shop problem is NP-hard in the strong sense with arbitrary number 

of machines by reducing the 3-partition problem to it. 

 

8.2 THE DISJUNCTIVE GRAPH MODEL 

The Disjunctive graph model is a commonly use method to represent  general shop 

scheduling problems mainly job shop. It can be used to construct optimal schedules. 

For a given instance of a shop problem, a disjunctive graph G(V, C, D) can be defined as 

follows: 
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V : V denotes a set of vertices corresponding to the operations of any job in the schedule. 

This set has additional two vertices called the source and the sink (0,*).Each of these nodes 

have an associated weight to it which is nothing but the processing times of that particular 

operation the node is representing the weights of source and the sink are zero.  

C : C is a set of conjunctive arcs which reflect the precedence constraints initially 

connecting every two consecutive tasks of the same job. 

D : Undirected disjunctive edges belonging to set D connect mutually unordered tasks 

which require the same machine for their execution (a disjunctive edge can be represented 

by two opposite directed arcs).  

The job shop scheduling problem requires to find an optimal order of all tasks on the 

machines, resulting in a schedule with the minimal length. In the disjunctive graph model, 

this is equivalent to directing all disjunctive arcs, i.e. to turn each undirected disjunctive arc 

into a directed arc. This is called a selection S. Thus, we can define a selection S as a set of 

directed disjunctive arcs. The disjunctive arcs which have been directed are called fixed. By 

fixing directions of all disjunctive edges, the execution order of all conflicting tasks 

requiring the same machine is determined and a complete schedule is obtained. We have to 

make sure that : 

 Our resulting graph  is acyclic and 

 each disjunctive undirected edge is converted to a fixed directed arc. 

 Then, the resulting length of the longest path from the source to sink i.e. the sum of all the 

processing times, in our new graph should be minimal which is nothing but out make span. 

Now , a selection S is called a complete selection if : 

 Every disjunctive arc in the graph is fixed  and 
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 The graph G(S) = ( V , C   S ) does not contain any cycles i.e. an acyclic graph . 

Apparently, any feasible schedule will make an complete selection. So, when we have 

scheduling problem we can say that our goal is to find a complete selection which optimizes 

the objective function. For a given complete selection S, the make span or maximum of 

completion times (Cmax) is equal to the length of the longest path (sum of processing times 

of operations along this path) from the source 0 to the sink * .This longest path is called the 

critical path. 

 

8.3 Disjunctive Graph Example using a job shop problem 

In Table 8.1,we have a job shop problem and let us try to give a optimal schedule and 

represent that schedule using disjunctive graphs . 

 

Job  J1 M3(2) M1(4) M2(2) 

Job  J2 M2(4) M1(3)  

Job  J3 M1(3) M2(2) M3(3) 

 

Table 8.1 An example  job shop problem to illustrate the disjunctive graph model. 

Figure 8.2 represents a disjunctive graph for a schedule for the job shop problem in Table 

8.1.On directing the disjunctive arcs here , we get a schedule here.(see Figure 8.3). 
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Figure 8.2 Disjunctive Graph Representing the problem in Table 8.1 . 

 

Figure 8.3 Disjunctive Graph representing a schedule for the problem in Table 8.1 
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On observation, the longest path in figure 8.3 is A →C→F→E→H→K resulting in a make 

span of 13. A Gantt diagram for the above disjunctive graph in Figure 8.3 follows  

 

Figure 8.4 Gantt Chart for a Schedule represented in the Disjunctive graph-Figure 8.3 

From figure 8.4, Cmax = 13. 

Let us swap one of the disjunctive arcs and see if we could come up with a better schedule . 

Let us change the order of jobs on machine one. From the disjunctive graph, we can see that 

job 1 is being performed on machine 1 after job 3 .Let us swap the edges in the graph so that 

job 3 comes after job 1 on machine 1 and let us see how it affects the make span. 

 

Figure 8.5 Disjunctive Graph representing a schedule 
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In figure 8.5, the longest path is A→C→F→E→D→G→I→K resulting in a make span of 

19 which is much worse than our previous schedule. Likewise , local neighborhood search 

techniques can be used to reach optimal or near optimal solution(See Section 8.5) . Thus, a 

disjunctive graph not only is a way of representing a schedule but also helps to construct 

better ones. 

 

8.4 Neighborhoods 

In a combinatorial optimization problem, we are faced with finding an optimal object from a 

given finite set of objects. The optimality here relates to some criterion which decides the 

quality of each solution. The set of feasible solutions is discrete or can be reduced to 

discrete  from which our goal is to find the best solution. Mostly, these kind of problems are 

NP-hard
[12]

. So, we focus on finding good approximation algorithms using local search 

methods. 

Neighborhood plays an important role in deciding the quality of the local search algorithm. 

An efficient neighborhood leads to a high quality local optima. Let us define a 

neighborhood in our job shop scheduling problem context. 

Consider a job shop scheduling problem represented using the disjunctive graph G = ( 

V,C,D )  (Refer to Section 8.2). Let S be a complete selection in G corresponding to an  

acyclic graph G(S) = ( V,C   S ). An immediate neighbor of S can be defined as the set of 

all complete selections obtained from S by reversing an arc (v,w) belonging to the critical 

path where v and w  are processed on the same machine .This neighbor is denoted by N1(S). 

Likewise, we may have N2(S), N3(S), and so on.  
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8.4.1 Lemma 1 : Consider a complete selection S with p as the longest path in G(S) . Let 

(v,w) be a arc in p such that v and w are processed on the same machine. Then , S' which is 

derived from S by reversing (v,w) will also be a complete selection. 

Proof : 

Let us consider G(S') derived from G(S) is cyclic. 

Then, this implies that arc (w,v) obtained by reversing (v,w) in S belongs to the cycle c in S' 

as G(S) has no cycles . 

We know that (v,w) does not belong to cycle c. 

Therefore, c has more than two vertices. 

In addition, we can say that v and w are the only vertices which belong to both c and the 

longest path p. 

Now, let us say that we replace the arc (v,w) in p by the sub path from v to w in c .Then, 

there will be a path in G(S) longer than p. This is a contradiction to the fact that p is the 

longest path in G(S). 

Thus by proof of contradiction, we can say that G(S') is acyclic and thus a complete 

selection. 

We represent the set of all complete selections obtained  from a complete selection S by 

reversing an arc(v,w) in the critical path in G(S)  by N1(S) where v,w are supposed to be 

processed on the same machine. 

A neighborhood N is called opt-connected , if from S we can find an optimal solution from 

a limited number of moves . This means that we can reach a optimal solution Sk from S0 = S 

where we have a sequence of complete selections S0 , S1 , . . . ,Sk such that Si+1 ϵ N(Si) for i 

= 0,1.....,k-1.It has been shown that N1 and N2 is opt-connected
[1]

. 
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8.5 Local Neighborhood Search or Hill Climbing  

Combinatorial optimization problems relate to the set of problems in which we face a 

situation where we have to find an optimal solution among a finite or  infinite set of 

solutions. Here, optimality may relate to some criterion which decides the quality of each 

solution. Many of these combinatorial optimization problems are NP-hard
[12]

 .As we know, 

NP- hard problems cannot be solved in polynomial times. So, our interest is in the 

algorithms which can find near optimal solutions with decent running times. Local search 

algorithms fall under this category of approximation algorithms. 

A local neighborhood search or hill climber algorithm searches the immediate neighbors for 

a better solution. It simply accepts  the neighbor solutions that are better than the current 

solution. We recursively do this process until the algorithm  could not find a better solution 

than the current solution. Then, the algorithm stops and the current solution would be our 

optimal or near optimal solution. This solution here is called the local optima. The 

disadvantage of the local search is that the algorithm may be caught in a poor local optima. 

Thus the local optima may not be the best solution always. To overcome this problem ,we 

define the simulated annealing algorithm in section 8.6 that finds the best solution possible 

in a wider space. 

Only a few shop problems have been solved in polynomial time till date. Many of them 

remain to be NP-hard problems. Local neighborhood search can be used in our scenario to 

achieve near optimal solutions. Let us consider the job shop problem example defined in 

table 8.1.Let us see how we can use local search to find a better solution .Firstly , to apply 

the local search we use the disjunctive graph model. Represent the job shop problem using 

the disjunctive graph as in Figure 8.1. Our optimality criteria be make span. 
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We start with a complete selection S initially. Let G(S) = ( V , C   S ) be the corresponding 

graph of the selection S. Figure 8.3 represents the graph G(S) .Apparently, the make span 

here is 13 . Let us now do a local neighborhood search to find a better solution. Consider the 

neighbor  S1 = N(S) defined in the below figure 8.6 .  

 

Figure 8.6 Graph representing a neighbor of S. 

On observing figure 8.6,apparently the longest path here is A→B→E→F→K (Here we 

have more than one longest path. We choose one among them ) which is our make span = 

9.Apparently this is better than our previous solution from figure 8.2 which is our local 

optimum. Let us see if there is any neighbor with a better local optima. All the neighbors S2 

= N(S1) seem to have a poor solution than S1. Figure 8.7 represents S2 a neighbor of S1 . 
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Figure 8.7 Disjunctive Graph representing a neighbor of S1 . 

From figure 8.7,the longest path is A→B→E→H→G→I→K  which makes it to a sum of 

13 which is much worse than our current local optima. Likewise, all the neighbors of S1 are 

searched for a better solution .If none of them turn out to be better than our local optimum, 

the algorithm stops. Here S1 in figure 8.6 gives our optimal solution . 

 

8.6 Simulated Annealing 

Simulated annealing is similar to the local neighborhood search algorithm except that it also 

accepts a neighbor with a worse solution (with some probability).It can be defined as a 

generic heuristic for a global optimization problem where we start from an initial state 

(some feasible solution ) and iteratively improvise it to find a better near optimal solution 

.This algorithm overcomes the loop holes of the local search algorithm by considering a 
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wider space than the local optima. The name of this algorithm comes from the process of 

annealing in metal works. 

Annealing is a metallurgical process involving heating and cooling of a material to alter its 

physical properties and reduce their defects. During the cooling process, the material tends 

to retain its newly obtained properties but at higher temperatures, the material tends to 

accept changes made to it. In simulated annealing, we follow the same process. Here , we 

use a temperature variable to simulate the annealing heating process. Initially, this variable 

is set to a high value and eventually this value falls down as the algorithm runs. As long as 

this variable has a higher value, the algorithm will be allowed to accept worse solutions than 

our current solution at a higher frequency rate . This allows our algorithm to look beyond 

the local optima range during the early stages of the algorithm. As the temperature variable 

value drops, so is the probability of accepting worse solutions which gradually results in the 

algorithm focusing  on a  specific area of the search space in which hopefully, a near 

optimum solution can be found. This process of gradual cooling is what makes the 

simulated annealing algorithm effective at finding near optimum solutions in large problems 

where we may have numerous local optimums. 

 

8.6.1 Acceptance Probability Function 

In simulated annealing, we know that the algorithm accepts worse solutions once in a while. 

But when and on which basis does the algorithm accept the worse solution which ultimately 

makes it go beyond the local optima. 

 Firstly, We check if the neighboring solution is better than our current solution. If yes, the 

neighboring solution becomes the current solution unconditionally. If not , then the 
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algorithm decides to accept it or not based on certain factors like how worse is the 

neighboring solution than the current solution and what is the current value of the 

temperature variable. 

Let us denote the current state as S and the neighboring state be S'. Let C be the cost 

function and the cost of  the state S is given as C(S) and the neighboring state S' as 

C(S').Here we are trying to minimize the cost(as in make span in a shop problem). We 

denote the temperature variable with T. The probability function is denoted by Pt at an 

instance when T = t and can be given as  

 

Pt =              1                                 if  C(S')  ≤ C(S) 

                 exp( C(S) - C(S') / t )     if  C(S')  > C(S) 

 

At higher temperatures , the algorithm is more likely to accept worse solutions . When the 

neighbor has a relatively higher cost and the difference between the neighbor cost and the 

current cost is small and the temperature variable has a higher value, the probability of 

accepting that neighbor is more. 

 

8.6.2 Pseudo Code  

The following pseudo code represents the implementation of the simulated annealing 

algorithm as discussed so far. Let us consider we are starting the algorithm from the feasible 

state S0.For each round of the iterative process, the temperature variable is reduced by some 

amount defined by the user, but should reach T = 0 by the end of the time available. 

Metropolis loop is the essential characteristic of the simulated annealing algorithm. The 
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statement N(S) implies that a random feasible neighbor of S is selected. Here the function 

random( ) is a random number generator between [0.1) . 

 

Pseudo code : Simulate Annealing 

1. S : = S0  ; C = C(S)               // Initializing variables state S and cost C to initial state. 

2. Sb : = S ; Cb  = C                  //Best state Sb and best cost Cb  initialized . 

3. T : = T0 ;                               // T0 implies the initial temperature reading. 

4. While(STOP)             //Until stopping criteria is met. 

5. Repeat (K)                             // K is a pre chosen 

6. S' : =  N(S) ;                          // Select a Neighbor of S 

7. C' : = C(S')                // Cost of the selected neighbor. 

8. If C' < C THEN          // If neighbor solution better than current.                

Sb = S' ; Cb = C ;                   // update best state and cost. 

9. IF Pt > random( ) THEN          // If probability greater than random 

S = S' ; C = C'       // Change current state and cost 

10. END Repeat;  

11. T : = Update( T ) ;  // Temperature updated for every iteration. 

12. END While; 

13. RETURN Sb and Cb.   // Return best solution .  
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CHAPTER 9 

CONCLUSION 

In this thesis, we have given an introduction to Scheduling and discussed different 

algorithms to solve the shop scheduling problems. Basically, scheduling has a significant 

role in many disciplines . It is nothing but decision making and deals with resource 

allocation to tasks with an objective to optimize a given optimality criterion. The concept of 

scheduling is significant in areas such as Manufacturing , Business, Engineering, 

Management, Computing, Industries, construction ,etc.  

We have investigated various methods to solve shop scheduling problems in this thesis. It is 

very apparent how challenging and hard these problems can be .Research and study  has 

been going on some of these problems for more than 50 years. In addition, shop problems 

have their application across different fields . We have discussed different shop problems 

which have been solved in polynomial time. But there are many more and in fact most of 

the shop problems still have not been solved and are considered to be NP-Hard problems. 
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