
UNLV Theses, Dissertations, Professional Papers, and Capstones

12-2010

Pattern extraction from the world wide web Pattern extraction from the world wide web

Praveena Mettu
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Mettu, Praveena, "Pattern extraction from the world wide web" (2010). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 741.
https://digitalscholarship.unlv.edu/thesesdissertations/741

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/741?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

PATTERN EXTRACTION FROM THE WORLD WIDE WEB

by

Praveena Mettu

Bachelor of Technology, Computer Science and Engineering
Jawaharlal Nehru Technological University, India

May 2008

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

December 2010

Copyright by Praveena Mettu 2011

All Rights Reserved

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Praveena Mettu

entitled

Pattern Extraction from the World Wide Web

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Kazem Taghva, Committee Chair

Ajoy K. Datta, Committee Member

Laxmi P. Gewali, Committee Member

Muthukumar Venkatesan, Graduate Faculty Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies

and Dean of the Graduate College

December 2010

iii

ABSTRACT

Pattern Extraction from the World Wide Web

by

Praveena Mettu

Dr. Kazem Taghva, Examination Committee Chair
Professor, Department of Computer Science

University of Nevada, Las Vegas

The World Wide Web is a source of huge amount of unlabeled

information spread across different sources in varied formats. This

presents us with both opportunities and challenges in leveraging such

large amount of unstructured data to build knowledge bases and to

extract relevant information.

As part of this thesis, a semi-supervised logistic regression model

called “Dual Iterative Pattern Relation Extraction” proposed by Sergey

Brin is selected for further investigation. DIPRE presents a technique

which exploits the duality between sets of patterns and relations to grow

the target relation starting from a small sample.

This project built in JAVA using "Google AJAX Search API" includes

designing, implementing and testing DIPRE approach in extracting

various relationships from the web.

Keywords: Pattern Extraction, Machine Learning, DIPRE

iv

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF FIGURES .. v

ACKNOWLEDGEMENTS .. vi

CHAPTER 1 INTRODUCTION ... 1
 1.1 Aims and Objectives .. 2

 1.2 Thesis Organization... 3

CHAPTER 2 LITERATURE OVERVIEW .. 4

2.1 Information Extraction Systems .. 5

 2.2 DIPRE Algorithm .. 9

CHAPTER 3 IMPLEMENTATION .. 12

3.1 Choosing the search engine .. 12

3.2 Choosing the programming Language ... 13
3.3 Overview of Java Program ... 14

 3.3.1 User Interface .. 14

 3.3.2 Find Occurances ... 15
 3.3.3 Get the next set of tuples .. 18

 3.3.4 Output ... 18

CHAPTER 4 RESULTS AND EVALUATION ... 25

CHAPTER 5 CONCLUSION AND FUTURE WORK 34
5.1 Conclusion ... 34

5.2 Future Possibilities.. 35

BIBLIOGRAPHY ... 38

VITA .. 40

v

LIST OF Figures

Figure 1 Pattern Learner ... 5

Figure 2 DIPRE Algorithm ... 10

Figure 3 Input for parameter1 ... 14
Figure 4 Input for parameter2 ... 14

Figure 5 Input for SearchSite .. 15

Figure 6 Json operations to fetch results from internet 16

Figure 7.1 Result Set1 ... 19
Figure 7.2 Result Set2 ... 20

Figure 7.3 Result Set3 ... 21

Figure 7.4 Result Set4 ... 22
Figure 8 Google Query Restriction ... 36

vi

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank Dr. Kazem Thagva, my

research advisor for his support and guidance. Through-out the project,

he provided with a lot of ideas and sound advice.

I am also grateful to all the faculty, librarians and secretaries at

University of Nevada, Las Vegas.

It is a pleasure to offer my regards to my friends and students at the

University for a stimulating and fun-filled environment to learn and

grow. Thanks a ton for the camaraderie and entertainment.

Lastly and most importantly, I would like to thank my family for all

the love and sacrifices they made for my well-being. To them, I dedicate

this thesis.

1

CHAPTER 1

INTRODUCTION

The World Wide Web, with its masses of unstructured and

inconsistently coordinated information is easier to construe by humans

than by machines.

Imagine what could be done if we can train systems to analyze text

and mine the enormous amount of data created by people on the

Internet. It would become the source of unprecedented amount of

information easily interpreted by machines, thus maximizing both people

and computer resources. It would include the largest and most diverse

databases of people, products and academic work constantly growing

with thousands of new web pages appearing everyday in the World Wide

Web [1].

Information Extraction (IE) can be dated back to the early days of

Natural Language Processing (NLP) in the 70’s. IE is a technique to

retrieve focused target relations from unstructured machine-readable

documents by means of NLP [2]. Most information extraction systems are

based on rule-based methods that employ some form of machine

learning. They can generate rules based on labeled-data which

unfortunately may require labor-intensive hand-coding of search

patterns. Data may also need to be massaged specific to the desired

target relation which we want to extract. One approach to automating

2

the information extraction process is a class of techniques called

semantic bootstrapping. In general, these techniques use some form of

machine learning to recognize semantic patterns in large amounts of

unlabelled data. The recognized patterns are then applied iteratively to

extract more semantics. Effectively, semantic bootstrapping applies

semantic labels to the data based on what it already knows and then

labels even more data based on the new labels it applied [3].

1.1 Aims and Objectives

This thesis focuses on extracting entities from World Wide Web which

have a relationship between them that is similar to the one existing

between the two entities provided. There have been a number of

algorithms proposed in recent years aimed at extracting relationships

between entities. In this thesis, by implementing one of those algorithms,

we intend to evaluate its validity and proficiency.

In his experiment, Sergey Brin focused on extracting (author, title)

pairs from web pages. Given the nature of the data, there must have

been heavy use of HTML formatting tags to automatically generate

patterns consisting of authors and titles from various book-related sites,

often in tables or lists. However, in our experiment we want to enlarge

the data-set on which DIPRE can be executed and evaluate its

effectiveness on a more free-form natural language text in internet [3].

3

1.2 Thesis Organization

Chapter 2 covers the Literature Review, which discusses a general

approach to various research topics in information extraction. This

chapter also covers some techniques for extracting factual information

from the web and their applications that relate to this thesis.

Chapter 3 covers the approach implemented in this thesis (Java

program, Google search API). It analyses the algorithm and design

decisions made for the project. Explanation of various parts of the

algorithm and how they function together is provided. Also, the technical

challenges faced during project implementation and how they were over-

come are mentioned.

Chapter 4 lists the results from the execution of the java program

built based on DIPRE algorithm when provided with a seed pair. It also

discusses the effectiveness and limitations of the algorithm.

Finally, Chapter 5 concludes the entire thesis and suggests how this

utility program can be improvised for future work.

4

CHAPTER 2

LITERATURE OVERVIEW

This chapter presents relevant background knowledge that is closely

related to this thesis. This will help readers to easily understand the

analysis.

Machine Learning allows computer programs to automatically

improve by interpreting the obtained results. This concept can be applied

in Natural Language Processing by either annotating examples of

mapping we are interested in or by applying a machinery to learn from

examples. Since Information Extraction systems have to process large

bodies of information, machine learning is an integral part of such

algorithms.

Reducing the human workload in developing extraction rules is a

huge challenge in Information Extraction. Depending on the level of

human involvement most adaptive information extraction systems use

different machine learning algorithms. However, many IE systems use

very complex pre-defined rules rather than using any machine learning

technique at all to accomplish the extraction task [4]. In the first section

of this chapter, each type of IE system is reviewed and their advantages

and disadvantages are discussed briefly. In the second section, we

discuss Sergey Brin’s DIPRE algorithm.

5

2.1 Information Extraction Systems

Information Extraction Systems usually rely on a set of Seed-Patterns

that they use to compare and retrieve relevant information from plain

text. The new-patterns retrieved can be used as both extractors and

discriminators.

Figure 1: Pattern Learner [5]

Extractors can be further used as seed-patterns to extract new

patterns.Not every extracted pattern may be relevant for our study. By

adding those to the Discriminators list (negative list), we improve the

overall accuracy of the algorithm. These discriminators prevent the

algorithm from issues of semantic drift, where erroneous new patterns

cause the system to run off track.

Many different IE approaches have been developed in the recent past

for various IE tasks depending on the goal of study and the nature of

6

information source. However, no matter which data sources are utilized

in relation extraction, all Information Extraction Systems have to meet

three requirements:

1) A source which comprises of entities of our interest hidden in plain

text. A group of such databanks will serve as data sources from which

semantic relations will be extracted

2) A semantic or linguistic source in which the context for relations

between entities is provided

3) Algorithms for automatic execution of processing operations.

How well a relation extractor performs is determined mainly by the

contextual information sources and algorithms [6]. A heavy rule-based

extractor with a good context source need not always contain “pattern

learning algorithms”. However, this involves humungous human effort.

Pattern Learning algorithms generate their rules from examples thus

reducing human effort.The early IE systems were primarily rule-based.

Skillful engineers embed the extraction rules in these systems using their

knowledge in the domain. Unfortunately, natural languages are

extremely flexible and it is impossible to hand code a set of rules to

extract accurate information from a variety of web pages with varying

structures. Hence, more intelligent and scalable approaches were sought

after.

Machine Learning techniques can help train IE systems to discover

new extraction rules automatically with experience. This is much faster

7

than the rule-based approach and has been used more often in recent IE

system developments. Depending upon the amount of human

intervention required, Machine Learning (ML) approaches can be roughly

divided into 3 categories [4].

Supervised IE systems: These methods use a set of manually labeled

data to construct extraction rules. This approach is relatively more

automated compared to a rule-based approach, however needs human

supervision.AutoSlog is a relationship extraction approach based on this

method [7]. It needs texts and tagged noun phrases to generate patterns.

For example, let us consider this sentence:

“A pedestrian was attacked by a dog”

Manually, “pedestrian” is tagged as a victim and “dog” as the

perpetrator of a murder.AutoSlog will propose “<X> was attacked” as a

pattern where <X> is a victim. It can use this pattern to find more

victims.It will also propose “was attacked by <Y>” as a pattern where <Y>

is the perpetrator. It can find more perpetrators by matching new

sentences with learned pattern.The laborious job of manually annotating

training documents makes this approach unfavorable in many practical

scenarios.

Non-Supervised IE systems: These methods use highly automated

algorithms hence; do not require any training documents or any human

supervision. However, as a drawback they tend to suffer from

inaccuracies in results.AutoFeed [8], Yangarber [9] and KnowItAll [10] are

8

examples of this method.Although these methods are still “young”, they

suggest futuristic possibilities of building automated information

extraction systems that can be used in many practical applications like

search engines, knowledge-based AI systems, etc [10].

Semi-Supervised IE systems: These methods are somewhere in-

between supervised and unsupervised IE systems.The advantage of a

semi-supervised method over supervised method is that, given a small

set of annotated examples, these methods can generate their own

training data through “active learning”. These are also the most practical

methods used in IE systems.In the process of active learning, a small

amount of labeled training set is fed to the algorithm. It applies these

rules to classify unlabeled data. The most trusted newly classified sets

along with their labels are added to the training set. The algorithm re-

learns from this new training set. These rules are again applied to

classify unlabeled data. This procedure is applied repeatedly until

unlabeled data set is exhausted or the trust-worthiness of the results

drops below a threshold.

DIPRE (Dual Iterative Pattern Relation Extraction) [1] and Snowball

[11] are two examples of Semi-Supervised IE systems which are used in

extracting patterns from unstructured text.Traditional IE systems tend to

extract all semantic information from each document. However, DIPRE

and Snowball help create knowledge base from the web by reading only

relevant content of the documents. They can extract pairs of related

9

entities, like authors and their books, from the web using a small group

of seed pairs. They are especially effective in extracting commonly

occurring relationships like (authors, books), (acronyms, meanings), etc.

The relation extraction approach described in DIPRE [1] is the core

algorithm involved in a lot of other semi-supervised algorithms as well.

Hence, it is of utmost importance for any IE system architect to

understand this algorithm. In the next section, we shall discuss DIPRE

[1] in detail.

2.2 Dipre Algorithm

DIPRE algorithm by Brin [1] is one of the earliest examples of

discovering binary relationships using bootstrap learning approach. This

is a technique where the duality between sets of relations is exploited to

grow the target relations starting from a small sample.

Brin demonstrated this principle by finding authors and titles in the

WWW. Let’s say we look for “Mario Puzo” and “The Godfather” in the

internet. There could be a few repeated patterns when you observe the

citations of this book, for example “The Godfather was written by Mario

Puzo”. By looking for these “repeated patterns” in the internet, there is a

good chance of uncovering other authors and titles. For example, the

pattern/relation “was written by” could lead to various citations like

“Catch-22 was written by Joseph Heller”, “Gone with the wind was

written by Margaret Mitchell”, etc. These new authors and titles can

again be used to find new patterns.

10

Figure 2: DIPRE Algorithm

Steps in DIPRE:

1. Start with a small set of trusted pairs (authors, books)

2. Find occurrences of these pairs in the WWW or in a defined set of

 Websites/WebPages

3. Identify generalized patterns from the citations fetched in step 2.

4. Use these identified patterns to find more pairs in the web.

5. Repeat steps 2 to 4 until no new patterns can be learnt.

11

Pattern Generation (Step 3) is the most critical step in this algorithm.

The accuracy of results and performance can get hugely impacted

depending on how the implementation of this step is designed.Many

complex variations of DIPRE algorithm have been proposed in the recent

past; each with different ideas of pattern generation (Step 3). However, in

this project we will focus on the well-known DIPRE algorithm originally

suggested by Brin.

12

CHAPTER 3

IMPLEMENTATION

There were two major decisions that had to be made before beginning

the development of the application.

1. Search Engine

2. Programming Language

3.1 Choosing the search engine

There are various APIs available to retrieve information from the

internet. Famous ones are listed below:

Google AJAX Search API [12]: This is a JavaScript Library that

returns JSON encoded results for easy processing. It has a limit of 64

results per query.

Bing API [13]: Also known as the Live Search API, this API was built

by Microsoft on standards that are based on SOAP, XML and WSDL

technologies. It provides an XML web service through a SOAP API.

Historically, this API has been more tested using C# projects. Hence, is

more suitable to the .NET platform.

Yahoo BOSS API [14]: BOSS (Build Your Own Search Service) is

Yahoo!’s open search web services platform. For each query, this API can

return up to 100 results in XML or JSON format. It also has the ability to

restrict search in a pre-defined set of websites.

13

NewYork Times Article Search API [15]: This is another interesting API

which searches NYTimes articles to retrieve headlines, abstracts, lead

paragraphs and links to associated multimedia. This API also returns

results in JSON format.Before using any of these APIs, we need to adhere

to their Terms of Service.There is not much of a difference between these

APIs. Almost all of them retrieve results in JSON format which is I believe

is an easy-to-use form of representing data similar to XML. We chose

Google AJAX Search API for this implementation simply because it is the

current market leader and has been researched extensively.

3.2 Choosing the Programming Language

JSON (JavaScript Object Notation) [16] is a lightweight data-

interchange format. It is based on a subset of the JavaScript

Programming Language, Standard ECMA-262 3rd Edition - December

1999. JSON is a text format that is completely language independent but

uses conventions that are familiar to programmers of the C-family of

languages, including C, C++, C#, Java, JavaScript, Perl, Python, and

many others.

We considered coding the algorithm either in C#, java or Perl.

Eventually, we chose java as it is comparatively much faster than the

others.

http://javascript.crockford.com/
http://javascript.crockford.com/
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

14

3.3 Overview of Java Program

In this section, we explain the UI and various sections of the

algorithm.

3.3.1 User Interface

As per DIPRE, we intend to take two parameters as input from user.

In Brin’s example, the study was focused on Books & Authors. However,

in our experiment, we intend to apply DIPRE algorithm on any related

parameters.

Figure 3: Input for parameter1

Figure 4: Input for parameter2

After providing the parameters, user can also specify any site where

the search has to be restricted to. By default, we intend to search in

15

www.wikipedia.org because that’s where we found most of our results.

However, user is free to change it to any other specific site. If the

SearchSite is not specified, the search will be similar to a standard

“Google Search” where it looks for these two related parameters all over

the internet.

Figure 5: Input for SearchSite

3.3.2 Find Occurrences

Using these details, we generate the string that needs to be passed to

the Google AJAX Search API. The following is done to build the search

string.

1. Replace all spaces with + in parameters.

2. If SearchSite is empty, replace it with www.google.com

3. SearchString = "%22 " + parameter1 + "%22" + "+" + "%22 " +

 parameter2 + "%22" + " site:" + searchsite

Then the URL is built using this searchstring which can be passed to

the search API.

16

URL:"http://ajax.googleapis.com/ajax/services/search/web?start=0&

rsz=large&v=1.0&q=" + searchstring

The API result set is in the form of a JSON object. Within this object,

there are eight occurrences inside an array. The program loops on the

array and each result string is subdivided into “prefix”, “middle term”

and “suffix” sections by looking up parameter1 and parameter2 in the

string.

Figure 6: json operations to fetch results from internet

17

Before working with json objects, json library has to be downloaded

from json.org and added to the library list of the project.The above code

describes how the results are fetched from the search API.The connection

is opened for the specific URL which was built using the parameters

passed by user.The inputstream is read line by line and appended to

String Builder. This is then converted into a string “response”. The data

in “response” is put into a JSON object “json”.The array list of results in

json object can be looped on. As per Google AJAX Search API

documentation, Title,Titlenoformatting,Url and Content tags can be used

to get specific information from each result in Json object. By fetching

the content into a string, it can be subdivided into various sections by

looking for the parameters in the string.Once these sub-strings are

stored, we can get the next set of eight results from the search API by

passing the following string.

"http://ajax.googleapis.com/ajax/services/search/web?start=8&rsz=l

arge&v=1.0&q=" + query

Parameter “start” tells the API where to start returning the results

from. For example, if “start” is set as 8, then results 9-16 are passed

back to the program.Parameter result size “rsz” can be set as small or

large. Small gives 4 results and large gives 8 results at a time.The query

is repeated by passing 8,16,24,32,40,48,56 as “start” parameters.

Eventually, we get up to 64 results.

18

3.3.3 Get the next set of tuples

Most of the times, we get bad results because all the results need not

always be relevant to the experiment. Hence, of the 64 results only a few

maybe relevant for our analysis. The valid results are stored.Parsing

through the valid results, most repeated “middle term” is fetched. Also,

the longest common substring is fetched from “prefix” and “suffix”.

We prepare a query string by using these substrings.

Search query = Longest_prefix + "+*" + most_repeated_middle_term +

"*+" + Longest_suffix + " site:” + searchsite

By passing this query to the search API, we can again get up to 64

results of new tuples. However, very few of them will be valid tuples.The

occurrences of these valid tuples can again be searched in the internet to

get valid relations. Such iterations can continue until the search API

stops returning valid results.There has to be a filtering algorithm to

determine valid tuples. They can also be manually checked before using

to get next set of relations. This is a common problem in a lot of semi-

supervised learning algorithms.

3.3.4 Output

The results are displayed on the console using a simple

“System.out.println” statement.Let’s say I search for “Lebron James” and

“NBA” in “Wikipedia.org”. Following is the result retrieved.

Querying for : %22 lebron+james%22+%22 nba%22 site:wikipedia.org

19

Figure 7.1: Result Set1

20

Figure7.2: Result Set2

21

Figure 7.3: Result Set3

22

Figure7.4: Result Set4

Repeated middle term: BECAME THE YOUNGEST

number of times repeated: 3

Longest common url:

http://en.wikipedia.org/wiki/2007%25E2%2580%259308_Cleveland_Ca

valiers_season

Longest common prefix: ON DECEMBER 17 2007

23

Longest common suffix: PLAYER TO SCORE ON FEBRUARY 22 2008

LEBRON JAMES GRABBED HIS 2500TH REBOUND AS A CAVALIER

Finding other parameters related to term: ON DECEMBER 17 2007

+*BECAME THE YOUNGEST*+ PLAYER TO SCORE ON FEBRUARY 22

2008 LEBRON JAMES GRABBED HIS 2500TH REBOUND AS A

CAVALIER

site:http://en.wikipedia.org/wiki/2007%25E2%2580%259308_Clevelan

d_Cavaliers_season

Results: NIL

Explanation of output:

1. LEBRON JAMES-A-NBA-B-2-C-

http://en.wikipedia.org/wiki/LeBron_James-D-YAHOO NEWS

HTTPSPORTSYAHOOCOM-E-

NEWSSLUGAPLEBRONSBOOKAMPPROVAPAMPTYPE LGNS

LIVINGSTON BILL JULY 22 2009 QUOTNEW-F- BOOK TELLS OF A

The substrings are separated using identifiers –A-, -B-, -C-, -D-, -E- and

–F-

Parameter 1 : LEBRON JAMES

Parameter 2 : NBA

Order of parameters in the result : 2 (1 implies parameter1 came

ahead of parameter2 in the result and 2 implies the opposite)

Link to webpage where the content was found :

http://en.wikipedia.org/wiki/LeBron_James

http://en.wikipedia.org/wiki/LeBron_James

24

Middle Term : YAHOO NEWS HTTPSPORTSYAHOOCOM

Prefix :

NEWSSLUGAPLEBRONSBOOKAMPPROVAPAMPTYPE GNS LIVINGSTON

BILL JULY 22 2009 QUOTNEW

Suffix : BOOK TELLS OF A

And the most common repeated term was “BECAME THE

YOUNGEST” and obviously there were no results found for further

iterations. This happens often with DIPRE because the principle used in

determining the next tuples is not very robust.

25

CHAPTER 4

RESULTS AND EVALUATION

In his experiment, Brin used DIPRE [1] to build a database of

{Authors, Titles}. He started off with an initial sample of 5 books.

Eventually, after numerous iterations and a bit of manual intervention to

remove bogus data retrieved, he claimed to have built a repository of

around 15,000 unique books. He suggested that the same principles can

be applied to other domains like movies, music, restaurants, etc. Brin

also mentioned that a sophisticated version of DIPRE may also be able to

extract people directories, product catalogs, and more.

We wanted to experimentally test and evaluate some of these claims

about the abilities of Brin’s DIPRE algorithm. As part of the experiment,

we developed our own implementation of DIPRE in a java program which

uses Google AJAX Search API as the web crawling tool.

This program developed as part of this project can be used to get

relations between any two parameters. However, in this experiment we

decided to focus on music and build a repository of {singers, songs};

similar to Brin’s experiment which built a repository of {Authors, Titles}.

We started the experiment with only one set of related parameters.

Parameter1: Bryan Adams

Parameter2: song

SearchSite: Wikipedia.org

26

The query “"%22 " + BRYAN+ADAMS + "%22" + "+" + "%22 " + SONG +

"%22" + " site:" + WIKIPEDIA.ORG” resulted in a list of songs by Bryan

Adams.

The longest prefix was “is a”, most repeated middle term was “written by”

and there was no longest suffix.

When the query “IS A +*WRITTEN BY*+

site:http://en.wikipedia.org/wiki/” was passed to the search API, it

resulted in more singers and their songs.

Iteration 1

Parameters:

Parameter1: Bryan Adams

Parameter2: song

SearchSite: Wikipedia.org

Analysis of Search Results:

Repeated middle term: WRITTEN BY

Longest common url: http://en.wikipedia.org/wiki/

Longest common prefix: IS A

Longest common suffix:

Result List of songs by Bryan Adams:

Everything I do I do it for you

Mysterious ways

Waking Up the Neighbours

Summer of 69

27

Heaven

Christmas Time

Run To You

Relevant parameters with similar relation:

Search Query to get more tuples: IS A + *WRITTEN BY* +

site:http://en.wikipedia.org/wiki/

Tuple 2a: Parameter1: SONG, Parameter2: COCHRANE, searchsite:

http://en.wikipedia.org/wiki/

Tuple 2b: Parameter1: SONG, Parameter2: KNIGHT AND MIKE

CHAPMAN, searchsite: http://en.wikipedia.org/wiki/

Tuple 2c: Parameter1: SONG, Parameter2: DYLAN, searchsite:

http://en.wikipedia.org/wiki/

Tuple 2d: Parameter1: SONG, Parameter2: EVANS, searchsite:

http://en.wikipedia.org/wiki/

Tuple 2e: Parameter1: SONG, Parameter2: musician Tom Johnston,

searchsite: http://en.wikipedia.org/wiki/

Tuple 2f: Parameter1: SONG, Parameter2: ADAMS AND JIM VALLANCE,

searchsite: http://en.wikipedia.org/wiki/

Iteration 2

(2a)

Parameters:

Parameter1: COCHRANE

Parameter2: SONG

http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/

28

SearchSite: http://en.wikipedia.org/wiki/

Analysis of Search Results:

No identifiable Repeated middle term.

Result List of songs by COCHRANE:

Life is a highway

(2b)

Parameters:

Parameter1: KNIGHT AND MIKE CHAPMAN

Parameter2: SONG

SearchSite: http://en.wikipedia.org/wiki/

Analysis of Search Results:

No identifiable Repeated middle term.

Result List of songs by KNIGHT AND MIKE CHAPMAN:

Silent Wings

(2c)

Parameters:

Parameter1: DYLAN

Parameter2: SONG

SearchSite: http://en.wikipedia.org/wiki/

Analysis of Search Results:

No identifiable Repeated middle term.

Result List of songs by DYLAN:

I shall be released

http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/

29

All along the watch tower

(2d)

Parameters:

Parameter1: EVANS

Parameter2: SONG

SearchSite: http://en.wikipedia.org/wiki/

Analysis of Search Results:

Repeated middle term: FEATURED

Longest common url: http://en.wikipedia.org/wiki/

Longest common prefix:

Longest common suffix:

Result List of songs by EVANS:

Trapped in the closet

This is home

Relevant parameters with similar relation:

Search Query to get more tuples: Song + *FEATURED* +

site:http://en.wikipedia.org/wiki/

Tuple 3a: Parameter1: SONG, Parameter2: AKON, searchsite:

http://en.wikipedia.org/wiki/

Tuple 3b: Parameter1: SONG, Parameter2: SLEEPY BROWN, searchsite:

http://en.wikipedia.org/wiki/

Tuple 3c: Parameter1: SONG, Parameter2: TIMBALAND, searchsite:

http://en.wikipedia.org/wiki/

http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/

30

(2e)

Parameters:

Parameter1: musician Tom Johnston

Parameter2: SONG

SearchSite: http://en.wikipedia.org/wiki/

Analysis of Search Results:

No identifiable Repeated middle term.

Result List of songs by MUSICIAN TOM JOHNSTON:

 Nil

(2f)

Parameters:

Parameter1: ADAMS AND JIM VALLANCE

Parameter2: SONG

SearchSite: http://en.wikipedia.org/wiki/

Analysis of Search Results:

Repeated middle term: WRITTEN BY BRYAN

Longest common url: http://en.wikipedia.org/wiki/

Longest common prefix: IS A

Longest common suffix:

Result List of songs by ADAMS & JIM VALENCE:

 Summer of 69

 Reckless

Relevant parameters with similar relation:

http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/

31

Search Query to get more tuples: Song +*WRITTEN BY BRYAN*+

site:http://en.wikipedia.org/wiki/

Tuple 3d: Parameter1: SONG, Parameter2: BRYAN-MICHAEL COX,

searchsite: http://en.wikipedia.org/wiki/

Tuple 3e: Parameter1: SONG, Parameter2: BRIAN WILSON, searchsite:

http://en.wikipedia.org/wiki/

Tuple 3f: Parameter1: SONG, Parameter2: BRIAN MOLKO, searchsite:

http://en.wikipedia.org/wiki/

Tuple 3g: Parameter1: SONG, Parameter2: BRIAN MAY, searchsite:

http://en.wikipedia.org/wiki/

Tuple 3h: Parameter1: SONG, Parameter2: BRYAN FERRY, searchsite:

http://en.wikipedia.org/wiki/

Similarly, iteration 3 is also performed with these 8 tuples to get

more songs and singers. Eventually after 4 iterations following 43 results

were retrieved:

1. Everything I do I do it for you by Bryan Adams

2. Mysterious ways by Bryan Adams

3. Waking Up the Neighbours by Bryan Adams

4. Summer of 69 by Bryan Adams
5. Heaven by Bryan Adams

6. Christmas Time by Bryan Adams

7. Run To You by Bryan Adams
8. Reckless by Bryan Adams

9. Life is a highway by Cochrane

10. Silent Wings by Knight and Mike
11. I shall be released By Bob Dylan

12. All along the watch tower By Bob Dylan

13. Trapped in the closet by Evans
14. This is home by Evans

15. Freedom by Akon

http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/

32

16. Trouble Nobody by Akon

17. The Sweet Escape by Akon
18. I Wanna Love You by Akon

19. We Don’t Care by Akon

20. Pot of Gold by Akon
21. Hypnotized by Akon

22. I Cant Wait by Sleepy Brown

23. Morning After Dark by Timbaland

24. Scream by Timbaland
25. Release by Timbaland

26. Good Vibrations by Brian Wilson

27. The Warmth of The Sun by Brian Wilson
28. Sleeping with Ghosts by Brian Molko

29. Battle for the Sun by Brian Molko

30. Pure Morning by Brian Molko
31. Without Im Nothing by Brian Molko

32. Tear The Signs Down by Brian Molko

33. Made in Heaven by Brian May
34. A Hard Rain by Brian Ferry

35. All Along the Watchtower by Brian Ferry

36. Avalon by Brian Ferry

37. Another Time Another Place by Brian Ferry
38. Positively 4th Street by Brian Ferry

39. You Wont See ME by Brian Ferry

40. Shes Leaving Home by Brian Ferry
41. Street Life by Brian Ferry

42. I Put a Spell On You by Brian Ferry

43. Jealous Guy by Brian Ferry

Usually, the results tend to wander off after 4 iterations. Robust

filtering techniques are required to make sure the results stay relevant to

the experiment. Manual interventions are also mandated to make sure

we get the right results.

For example, let’s say after analyzing the results we get a most

commonly repeated middle term but no longest_common_prefix or a

longest_common_suffix. In such cases, since we are looking specifically

for songs in this particular example, we can add “song” as a prefix or a

33

suffix in the search query and try to induce results related the

experiment. Brin did similar adjustments to the algorithm and there have

been many researchers who proposed similar enhancements to DIPRE.

34

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

DIPRE has a simple generalization principle to control its expansion

process based on longest matching prefix/suffix and most often repeated

middle term. This does not always pick high quality tuples for next set of

iterations. This leads to bad results and high recalls. Sometimes, there

cannot be any iteration possible at all as the prefix, middle term and

suffix found after the very first query can be erratic.

The primary difference between this experiment and the one did by

Brin was that Brin’s focus was on extracting author&books from the

internet. This experiment applies the same principles on a broader set

and looks to retrieve relations between any two parameters.

During my experiments with various parameters, usually after a

couple of iterations, there were a lot of patterns generated by many

seemingly valid results. However, these patterns tend to generate bad

results after a while making the system unstable. Unless we develop good

filtering algorithms, it is difficult to scale up DIPRE algorithm to build

practical knowledge databases.

Infact, research mentions that this instability is a common problem in

many bootstrapping algorithms [3].

However, to Brin’s credit, it has to be acknowledged that up to the

point patterns started delivering divergent results; the data retrieved had

35

reasonable accuracy. His research has allowed others to come up with

many models as enhancements to DIPRE; paving path for future

research work in trying to make semi-supervised models better day by

day.

5.2 Future Possibilities

There are a lot of practical applications that can be built based on

machine learning. Examples could be to build knowledge bases,

comparison-shopping [17], medical applications like counting redblood

cells, recognition of cell tissues through microscopes to the detection of

tumours in magnetic resonance scans and the inspection of bones and

joints in X-ray images.

Recommendations for future enhancements to the current JAVA

program.

1.Implement Snowball algorithm:This is an algorithm similar to

DIPRE. While using DIPRE, system usually becomes unstable after a few

iterations due to incorrect relations in results causing a snowball effect

leading to bad patterns which introduce more bad relations. Snowball

algorithm re-evaluates the patterns after each iteration and only the ones

with highest confidence are kept for next iteration. Hence, Snowball gives

more precise results. Unlabeled text as data: Feed unlabeled text to the

algorithm instead of crawling web pages in the World Wide Web.

36

2.Using the algorithm, do a comparative study of results from various

web search engines like Google AJAX Search API, Bing API and Yahoo

BOSS API.Find a way to remove restrictions on usage of Google Search

API.We can get only 64 results from a search query using Google AJAX

Search API.Google sometimes suspects the queries from our application

as automated queries from robots/spiders and stops responding.

Figure 8: Google Query Restriction

Computer Science Department at UNLV should make a formal request

to Google Inc. to remove these limitations for a certain “Google AJAX

Search API Key”. This way, we can pass this key in the search queries

from our applications and Google would know that UNLV Computer

37

Science Department is sending the query for educational purpose. A few

Universities have done the same and Google Inc. has good-heartedly

provided them with greater access.

38

BIBLIOGRAPHY

[1]. Sergey Brin. A Thesis on “Extracting Patterns and Relations from the
World Wide Web”, Computer Science Department, Stanford University.

[2]. Wikipedia, the free Encyclopedia on “Information Extraction”.
http://en.wikipedia.org/wiki/Information_extraction

[3]. Dmitri Bobrovnikoff. A Thesis on “Semantic Bootstrapping with a
Cluster-Based Extension to DIPRE”, Computer Science Department,

Stanford University.

[4]. Lei Xia. A Thesis on “Adaptive Relationship Extraction by Machine
Learning”, Department of Computer Science, University of Sheffield.

[5]. Doug Downey, Oren Etzioni, Stephen Soderland, and Daniel S. Weld.
A thesis on “Learning Text Patterns for Web Information Extraction and
Assessment”, Department of Computer Science and Engineering,

University of Washington

[6]. Miao Chen, Xiaozhong Liu and Jian Qin. Proceedings from

“International Conference on Dublin Core and Metadata Applications” in

2008.

[7]. Ellen Riloff. “Automatically constructing a dictionary for information
extraction Tasks”, in proceeding of the eleventh national conference on

artificial intelligence

[8]. Bora Gazen and Steven Minton. “Overview of AutoFeed: An
Unsupervised Learning System for Generating Webfeeds”.

[9]. R Yangarber, R Grishman, Parsi Tapamainen and S Huttunen.

“Unsupervised discovery of scenario-level patterns for information
extraction”, in Proceedings of Conference on Applied Natural Language

Processing ANLP-NAACL, pages ”282–289”, Seattle, WA, 2002.

[10]. O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked,
S. Soderland, D. Weld, and A. Yates. “Unsupervised named-entity
extraction from the web: An experimental study”.

[11]. Eugene Agichtein and Luis Gravano. “Snowball: Extracting relations
from large plaintext collections”, in Proceedings of the Fifth ACM

International Conference on Digital Libraries, 2000.

http://en.wikipedia.org/wiki/Information_extraction

39

[12]. Google AJAX Search API.

http://code.google.com/apis/ajaxsearch/documentation/
[13]. Bing API. http://msdn.microsoft.com/en-

us/library/dd251056.aspx

[14]. Yahoo BOSS API.

http://developer.yahoo.com/search/boss/boss_guide/

[15]. NewYork Times Article Search API.
http://developer.nytimes.com/docs/article_search_api/

[16] JSON. http://www.json.org/

[17]. Line Ekvil. A Survey on “Information Extraction from World Wide
Web”, July 1999.

http://code.google.com/apis/ajaxsearch/documentation/
http://msdn.microsoft.com/en-us/library/dd251056.aspx
http://msdn.microsoft.com/en-us/library/dd251056.aspx
http://developer.yahoo.com/search/boss/boss_guide/
http://developer.nytimes.com/docs/article_search_api/
http://www.json.org/

40

VITA

Graduate College
University of Nevada, Las Vegas

Praveena Mettu

Degrees:

Bachelor of Technology in Computer Science and Engineering, 2008
Jawaharlal Nehru Technological University, India

Thesis Title: Pattern Extraction from the World Wide Web

Thesis Examination Committee:

Chair Person, Dr. Kazem Taghva, Ph.D.

Committee Member, Dr. Ajoy K. Datta, Ph.D.

Committee Member, Dr. Laxmi P. Gewali, Ph.D
Graduate College Representative, Dr. Muthukumar Venkatesan, Ph.D

	Pattern extraction from the world wide web
	Repository Citation

	tmp.1305837443.pdf.d6LjZ

