
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-1-2013

Simulated Annealing Approach To Flow Shop Scheduling Simulated Annealing Approach To Flow Shop Scheduling

Sadhana Yellanki
University of Nevada, Las Vegas, yellanki@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons, and the Discrete Mathematics and Combinatorics

Commons

Repository Citation Repository Citation
Yellanki, Sadhana, "Simulated Annealing Approach To Flow Shop Scheduling" (2013). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 1911.
https://digitalscholarship.unlv.edu/thesesdissertations/1911

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1911&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1911&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1911&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1911&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1911?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1911&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

SIMULATED ANNEALING APPROACH

TO FLOW SHOP SCHEDULING

by

Sadhana Yellanki

Bachelor of Technology, Information Technology

Jawaharlal Nehru Technological University, India

2011

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

School of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2013

© Sadhana Yellanki, 2013

All Rights Reserved

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Sadhana Yellanki

entitled

Simulated Annealing Approach to Flow Shop Scheduling

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Wolfgang Bein, Ph.D., Committee Chair

Ajoy K. Datta, Ph.D., Committee Member

Ju-Yeon Jo, Ph.D., Committee Member

Venkatesan Muthukumar, Ph.D., Graduate College Representative

Thomas Piechota, Ph.D., Interim Vice President for Research &

Dean of the Graduate College

May 2013

iii

ABSTRACT

Simulated Annealing Approach to Flow Shop Scheduling

by

Sadhana Yellanki

Dr. Wolfgang Bein, Examination Committee Chair

Professor of Computer Science

University of Nevada, Las Vegas

Flow Shop Scheduling refers to the process of allotting various jobs to the machines

given, such that every job starts to process on a machine n only after it has finished

processing on machine n-1, with each job having n operations to be performed one per

machine. To find a schedule that leads to the optimal utilization of resources, expects the

schedule to finish in a minimum span of time, and also satisfy the optimality criterion set

for the related scheduling problem is NP-Hard, if n > 2. In this thesis, we have

developed an algorithm adopting a heuristic called Simulated Annealing, to act as a

support to the Flow Shop Scheduling. This algorithm tries to deliver good/near optimal

solutions to the given scheduling problem, in a reasonable time. We also carry out

various tests to determine the behavior of the algorithm as well as to evaluate its

effectiveness.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my committee chair, Dr. Wolfgang

Bein for his strong support and guidance throughout my thesis. It gives me great

pleasure in acknowledging his valuable assistance.

 I would also like to thank Dr. Ajoy K. Datta, Dr. Ju-Yeon Jo and Dr. Venkatesan

Muthukumar for being a part of my committee. I convey my special thanks to the

graduate coordinator, Dr. Ajoy K. Datta for all his support and advocacy. I extend

my gratitude to the Computer Science department for funding my Master’s degree.

 I must offer my thanks to all my friends for being helpful all the time. Last but

not the least important, I owe more thanks to my family for their immense love,

support and encouragement.

http://www.egr.unlv.edu/~datta
http://faculty.unlv.edu/jo

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ..iv

TABLE OF CONTENTS ... v

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER 1 INTRODUCTION .. 1

 1.1 Outline... 1

CHAPTER 2 BACKGROUND AND LITERATURE ... 2

 2.1 Scheduling... 2

 2.1.1 Scheduling Problems ... 2

 2.1.2 Terminology in Scheduling.. 3

 2.2 Classes of Scheduling ... 4

 2.2.1 Machine Environment .. 4

 2.2.2 Job Characteristics ... 8

 2.2.3 Optimality Criterion ... 10

 2.3 Flow Shop Scheduling vs. Job Shop Scheduling .. 12

 2.3.1 Example for Flow Shop Scheduling .. 12

 2.3.2 Example for Job Shop Scheduling ... 15

 2.4 Permutation Flow Shop Scheduling ... 17

 2.4.1 PFSP for more than 2 machines ... 18

 2.4.2 PFSP for 2 machines .. 19

 2.4.3 Johnson’s Algorithm .. 19

 2.5 Simulated Annealing ... 21

 2.5.1 Acceptance Probability .. 23

 2.5.2 Cooling Schedule ... 23

 2.5.3 Simulated Annealing Algorithm .. 24

vi

CHAPTER 3 IMPLEMENTATION ... 26

 3.1 Problem Statement ... 26

 3.2 Approach followed towards the solution ... 26

 3.3 Parameters of the Algorithm .. 27

 3.3.1 Input .. 27

 3.3.2 Notations ... 28

 3.3.3 Assumptions .. 30

 3.3.4 Operations ... 30

 3.4 An Example ... 31

CHAPTER 4 FINDINGS ... 36

 4.1 A Classic Example ... 36

 4.2 Conducted Experiments ... 37

 4.2.1 Test1 .. 38

 4.2.2 Test2 .. 40

 4.3 Comparison with Taillard’s Instances ... 42

 4.3.1 Results produced by the Algorithm .. 42

 4.3.2 Conclusion .. 45

CHAPTER 5 CONCLUSION AND FUTURE WORK .. 46

BIBLIOGRAPHY .. 47

VITA ... 49

vii

LIST OF TABLES

2.1 Example to demonstrate Flow Shop Scheduling ... 12

2.2 Example to demonstrate Job Shop Scheduling .. 15

2.3 Example to demonstrate Johnson’s Algorithm .. 20

3.1 Example to demonstrate the behavior of our Algorithm ... 31

4.1 A Classic Example ... 36

4.2 Processing times for Test 1 and Test 2 .. 38

4.3 Results for Test 1 ... 39

4.4 Results for Test 2 ... 41

4.5 Instances of 5 jobs and 20 machines .. 43

4.6 Instances of 10 jobs and 20 machines .. 44

4.7 Instances of 20 jobs and 20 machines .. 45

viii

LIST OF FIGURES

2.1 To demonstrate Flow Shop Scheduling ... 13

2.2 To demonstrate Job Shop Scheduling .. 15

2.3 Optimal Schedule ... 21

3.1 Input to the Algorithm ... 32

3.2 Iterative Improvement .. 33

4.1 Optimal Schedule for the Classic Example .. 37

4.2 Iterative Improvement by the Algorithm for Test 1... 40

4.3 Iterative Improvement by the Algorithm for Test 2... 42

1

CHAPTER 1

INTRODUCTION

Scheduling is a part of daily routine. We plan the daily activities with respect to

time, such that we utilize our time in an optimal manner. In this thesis, we are going

to discuss Flow Shop Scheduling Problem which deals with scheduling and we

make an attempt to obtain improved solutions to the given problem. According to

this problem, given a set of resources called as machines and a set of jobs which are

required to be assigned to their resources, in an optimal manner [3]. It has to be

ensured that the resources should are used efficiently. This problem seems to be

simple, but turns out to be an NP-Hard problem, if the number of resources is more

than 2. So, we develop an algorithm, and conduct various tests to verify how far it

gives us good solutions to the problem considered.

1.1 Outline

Chapter 2 discusses in detail about the basics of scheduling, problems with

scheduling and Permutation Flow Shop Scheduling. Chapter 3 discusses about the

approach followed towards the solution, and the algorithm implemented to solve the

problem considered. Chapter 4 demonstrates the behavior of the algorithm as well

as lists out the results produced. Chapter 5 gives the conclusion and the

improvements that can be made in the future.

2

CHAPTER 2

BACKGROUND AND LITERATURE

This chapter gives an insight about Scheduling, its problems and various other

fundamental aspects of scheduling.

2.1 Scheduling

Scheduling is a branch of science that deals with performing an effective

arrangement of a given set of tasks, on the given resources such that the resources

are allotted to them in an optimal manner.

Though this seems to be simple, there are various kinds of problems associated

with scheduling. They have a history of 50 years, and hence it has a long way to go.

Among the scheduling problems, some of them are a subset of the NP-Hard

problems [1]. These problems are discussed in detail in the next section.

2.1.1 Scheduling Problems

According to Peter Brucker [2], a Scheduling problem can be defined as a problem,

where given a set of m machines Mj (j=1,2,.,m) or Mj ∈ {M1, M2,....,Mm} and n jobs

Ji (i=1,2,.,n) or Ji ∈ {J1, J2,....,Jn} and the task of scheduling is to find a schedule i.e.,

the sequence to be followed by the jobs when they run on a machine.

A job will start processing on machine n only after it finishes its processing on

the machine n-1. Also, all the jobs visit the machines in the same order. It should

be ensured that no job processes on more than machine at the same instance of time.

In such case, if each job has m number of operations associated with it, it is termed

as Flow Shop Scheduling.

3

A parameter is chosen for every Flow Shop problem considered, which has to be

minimized by the schedule chosen. This parameter is called as the Optimality

Criterion.

In Flow Shop, obtaining an optimal schedule which achieves the optimality

criterion set for the problem may not happen in a reasonable time, when the problem

includes more than 2 machines. Under such circumstances, we call it as an NP-Hard

problem. Apart from the case mentioned above, there are some special cases where

Flow Shop Scheduling is non NP-Hard, and they are discussed in the later sections.

2.1.2 Terminology in Scheduling

Job

A Job is as a set of tasks also called as operations, where each operation has a time

interval corresponding to every particular machine on which it has to process. Each

job can be represented as Ji and each operation as Oij, where i denotes the job and j

denotes the machine. This notation is followed throughout the document.

Processing time

Processing time can be defined as the amount of time for which, an operation of a

job processes on a machine. It is represented as pij for an operation Oij. Always,

pij ≥ 0

Idle time

Idle time can be defined as the interval of time for which the machine is idle,

without any job being processed on it.

4

Makespan

The time at which the last job in the schedule is completed on the last machine is

referred to as the Makespan of the schedule and is denoted as Cmax. It is the time by

which all the jobs in the schedule complete all their operations [23].

 The makespan of a schedule whose value is minimal among the makespans of all

the possible schedules for the given problem is the optimal makespan.

Completion time

The amount of time taken by a job Ji to complete its processing on the last machine

is termed as the Completion time of job Ji denoted as Ci.

The sum of completion times ∑Ci of a schedule whose value is minimal among

the ∑Ci values of all the possible schedules for the given problem is the optimal ∑Ci.

2.2 Classes of Scheduling

Based on the attributes associated with the jobs and the machines, Scheduling is

classified into various categories. According to Peter Brucker [2], the different

classes are represented in the form of a α|β|γ notation where, α denotes the machine

environment, β denotes the job characteristics and γ denotes the optimality criterion

for the schedule.

2.2.1 Machine Environment

Different types of machines are available that can be used in the scheduling

environment, with each of them serving their own purpose. The type of the machine

is based on the properties associated with it, and all together constitute to the

machine environment. It is denoted by a string α, and this string has two parts α1, α2

5

each with a specific meaning. In the string α, α2 belongs to the number of machines

used in scheduling.

α1 belongs to the set {o, P, Q, R, PMPM, QMPM, G, X, O, J, F} with each element

in the set, associated with a different functionality. Let us go through all the cases.

Each case is concerned with the way in which, the operations of a job are performed

in a schedule. Each operation Oij is associated with a set of machines represented as

μij ⊆ {M1,...,Mm} where m denotes the number of machines. Oij may be processed

on any of the machines that belong to μij. This property varies upon the type of

machines chosen

[2].

Case 1 α1=o, we have α = α2. It is because, o represents an empty symbol. Here,

each job has only one operation, and it is processed only on a particular machine and

hence it is called a Dedicated machine environment.

Case 2 α1 ∈ {P, Q, R}, then the jobs are said to run on Parallel machines i.e., in

contrast to the above case where a job is dedicated to only to a particular machine to

process, here a job can have more than one operation, and each job can be processed

on all the machines in the set M1 to Mm. We subdivide this case into three parts

based on whether it belongs to P or Q or R [3].

 If α1 = P, then scheduling is performed on Identical Parallel Machines where

the processing times of a job are identical for all the machines in μij i.e., a job

processes on every machine for the same amount of time [21].

Here, we have, pij = pi for each element in μij.

 If α1 = Q, then scheduling is performed on Uniform Parallel Machines. Here,

each machine is associated with a specific speed, and the speed of machine is

6

uniform for all the jobs processing on the same machine. In other terms, if

pij is the processing time of job Ji and sj is the speed of a machine j then, the

amount of time this job processes on this machine is pi/sj, and it is same for

all the jobs on machine Mj [21].

 If α1 = R, then the scheduling is said to be performed on Unrelated Parallel

Machines. In contrast to the above scenario, where every machine is

associated with a specific speed, here every job is associated with a specific

speed for each machine. In other terms, if pij is the processing time for a job

Ji on machine Mj, then the value of pij is equal to pi/sij where, sij is the speed

associated for a particular job on a particular machine.

Case 3 α1 = PMPM or QMPM, then the machines are called the Multipurpose

Machines [4]. PMPM refers to the machines where each job has an identical speed

on all the machines in the scheduling. The speed of one job may vary from another.

QMPM refers to the machines that have same speed associated for all the jobs being

performed on the same machine. This speed might vary from machine to machine.

Case 4 α1 ∈ {G, X, O, J, F}, then the scenario would be having a set of operations

for every job, where each operation is performed on a specific machine.

 If α1 = G, it represents General Flow Shop. In this case, there would be an

order to be followed by the operations in every job, for processing on a

machine. This refers to a precedence relationship among the operations.

According to this relationship, when each operation is associated with a

certain priority, the one with the higher priority processes first than, the one

with the lower priority. When certain conditions are altered in General Flow

7

Shop, it will result in other kinds of scheduling problems like Open Shop,

Job Shop, Flow Shop and Mixed Shop.

 If α1 = J, it denotes Job Shop. In this case, for each job having a set of

operations represented as Oij, there is a relationship is maintained in between

the operations which is called as Precedence. Precedence relationship can be

denoted by the → symbol. If we have Oi1→Oi2, then Oi2 has to start

processing, only after Oi1 is finished.

This relationship is continued in between all the operations Oik where k

denotes number of operations in job Ji

[5]. Also, in this case, each job

follows its own route of visiting the machines.

 If α1 = F, we call it as Flow Shop. This is closely similar to Job Shop and the

only difference here from the above case is that, the number of operations in

a job is equal to the number of machines i.e. we have k=m. We have one

operation processed per machine, and so when all the operations of a job are

put together, they cover all the machines in the set μij

[6]. In this case, all the

jobs maintain the same machine sequence while visiting the machines, in the

process of Scheduling. The job sequence may vary from machine to

machine.

In Flow shop, if the job sequence remains the same for all the machines, it is

called as a Permutation Flow Shop. Job Shop and Flow Shop problems are

discussed in detail in Section 2.3.

 If α1 = O, where O denotes Open Flow Shop, this is again related to Flow

Shop but with a special condition associated with it. In this case, we do not

8

have any priorities assigned to the operations of a job, and so there is no

order to be followed in between the operations of a job when it does its

processing [7].

2.2.2 Job Characteristics

This attribute refers to the types of characteristics with which a job is associated. It

is represented by β, and it is a set containing six characteristics which are denoted as

β ∈ {β1, β2, β3, β4, β5, β6}. Each element of the set represents a different property.

So, this can be divided into six cases.

Case 1 β = β1, then we say the jobs are preempted. β1 represents preemption and so,

β1 = pmtn. Preemption refers to a scenario, where the jobs scheduled are allowed to

undergo interrupts. A particular start time and finish time are associated with every

task that is/wants to be a part of the schedule. If preemption property exists for the

jobs, only then β1 is present in the set β.

Case 2 β = β2, then we say that the jobs have a precedence relationship among them

and β2 = prec. As mentioned earlier, it refers to a relation where jobs are given

some priorities, and based on which the job with higher priority gets scheduled first

before the one with the lower priority. This precedence relationship will be

maintained throughout the schedule. There are various other ways in which the jobs

can be arranged. Some of them are Intree, Outtree, Chains and sp-graphs.

 If the structure is a tree with every node of the tree having 0 or 1 outgoing

node connections, then it is an Intree. Otherwise, if every node in the tree

has 0 or 1 incoming node connections then, it is an Outtree. We represent it

as β2 = Intree or β2 = Outtree, based on the type of the tree. If the structure is

9

a Chain i.e., a tree in which every node is connected to only 0 or 1 other

nodes, then we have β2 = chain.

 If it is a sp-graph or Series-Parallel graph [8], then β2 = sp-graph. This

structure is a Graph say Gi = (Vi, Ai) where i ∈ {1,2}, V represents the vertices

and A represents the arcs, where it can have either a single vertex called as a

Base Graph or it can be a mix of 2 different graphs.

If it is a composition of two graphs, and they are joined such that, the

vertices and arcs of one graph are joined to the vertices and arcs of the other,

then we call it as Series Composition. The other possible way of joining the

two graphs is not only joining the vertices and arcs as before, but also linking

the leaf nodes of one graph to the source nodes of another graph and we call

it as Parallel Composition [2].

If the jobs maintain one among the structures mentioned above, only then we have

β2 present in the set β.

Case 3 β = β3, then we say that a release date ri is associated with every job, which

represents the time at which a job is released i.e., the time at which a job’s first

operation is ready to be processed. ri denotes the release date of a job i. If we have

a release dates associated with jobs, only then, β3 is present in the set β.

Case 4 β = β4, then we say that the jobs are linked with processing times restriction

i.e., if we have all the processing times of the operations of every job equal to 1 i.e.

pi =1 then, we may call it as a unit processing requirement. The restriction can also

be of the form pi = k where k is a constant value. If this restriction property exists

for the jobs, only then β4 is present in the set β.

10

Case 5 β = β5, then we say that all the jobs are associated with a specific deadline di,

which represents the time by which that particular job has to finish its processing on

a machine. We represent it as β5 =di. If deadlines exist for the jobs, only then β5 is

present in the set β.

Case 6 β = β6, then we say that the jobs are processes as batches. Batching can be

defined as a set of jobs which are grouped together to be scheduled back to back

without any set up time in between them.

There are two kinds of batching problems. If the length of the batch is

considered to be the maximum time, among the set of processing times of the jobs in

a batch, it is called as p-batching. Otherwise, if the length of the batch is calculated

as, the sum of the processing times of all the jobs in a batch, it is called as s-

batching. We have β6 = p-batch or β6 = s-batch depending upon the type of the

batching problem considered. If batching property exists for the jobs, only then β6 is

present in the set β.

2.2.3 Optimality Criterion

There will be a cost function associated with every scheduling problem, and the goal

would be to reduce the cost of the schedule associated with, minimizing the

optimality criterion of the problem considered. This parameter may vary from one

problem to another, and it is represented by γ. Some cases with some of the possible

optimality criterions that could be considered are as follows.

Case 1 This case refers to minimizing the total time taken by the last job to finish,

on the last machine in the schedule. The function associated with this parameter is

called as a Bottleneck objective function.

11

Case 2 This case refers to minimizing the sum of completion times of all the jobs in

a schedule. The function associated with this parameter is called as a Sum objective

function.

There can be many other parameters which can be used in an objective function.

Some of them are related to the parameters like Lateness, Earliness, Tardiness,

Deviations and Penalties [9].

Lateness

The amount of time by which a job is late in finishing its processing is termed as

Lateness. If Ci denotes the completion time of a job Ji, then the difference between

the Ci value and the due date di is calculated as the Lateness. Li represents lateness

of a job Ji. So we have,

Li = Ci - di

Earliness

The amount of time by which, a job is early in finishing its processing is termed as

Earliness. If Ci denotes the completion time of processing of a job Ji, then the

difference between di and Ci is calculated as the Earliness. Ei represents earliness of

a job Ji. We also have,

Ei = di - Ci, if Ei > 0

 Ei = 0, if Ei ≤ 0

Tardiness

Tardiness is same as lateness except for the condition that, it is true only when

lateness is positive, otherwise tardiness is 0. It is represented as Ti for a job Ji.

12

Deviations

There are two kinds of deviations. A deviation, which is the square of the lateness

value, is stated as Squared deviation Si.

If the deviation is calculated as the absolute value of lateness, it is termed as

Absolute deviation denoted as Di.

Si = (Ci − di)
2

 Di = |Ci − di|

Unit Penalty

This value pertains to the value of lateness. If the lateness value of a particular job Ji

is greater than 0, then the penalty associated with this job is 1 otherwise it is 0. Unit

penalty is represented by Ui for a job Ji.

2.3 Flow Shop vs. Job Shop Scheduling

We have discussed both the Flow Shop Scheduling and the Job Shop Scheduling

along with their properties. Let us go through an example to demonstrate the

differences between these two scheduling problems [10].

2.3.1 Example for Flow Shop Scheduling Problem

In this example, consider the schedule as J1-J2 on M1, and J2-J1 on M2 for the

example presented in the Table 2.1.

 M1 M2

J1 3 4

J2 2 3

Table 2.1 Example to demonstrate Flow Shop Scheduling

13

In Flow Shop Scheduling, the job schedule may vary from machine to machine but,

the machine sequence followed by the all the jobs should remain the same. In this

example, the machine sequence followed is M1-M2 and the set up times of the jobs

are included in their respective processing times.

The way the jobs are organized on different machines over time is represented

using a Gantt chart. Gantt chart provides the visual representation of this

arrangement. There are two kinds of Gantt charts namely, Machine-Oriented Gantt

chart and Job-Oriented Gantt chart. The horizontal axis of the chart represents the

time frame and this common in both the charts. If the vertical axis represents the

machines, it is a Machine-Oriented Gantt chart, and if it represents the jobs, it is a

Job-Oriented Gantt chart.

Let us consider a Machine-Oriented Gantt Chart for our schedule. So, the Gantt

chart for the concerned problem is represented in Figure 2.1.

Figure 2.1 To demonstrate Flow Shop Scheduling

Following steps are used to demonstrate the Flow Shop Scheduling procedure.

1. At time t=0, on the machine M1, J1 is ready for execution, and J2 executes

only after J1 is done. J1 runs for 3 time units on M1.

 M1

 M2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

14

2. At t=3, J2 runs on M1 for 2 units of time, and now it starts its execution on

M2, and runs for 3 time units. J1 waits for J2 to complete on M2 because; the

job sequence on M2 is J2-J1.

3. At t=8, J2 is done, and J1 starts running on M2 for 4 time units and will finish

at time t=12.

Calculating Cmax

This procedure remains same for all kinds of scheduling problems. For the example

mentioned in Table 2.1, the makespan value can be calculated as follows.

From Figure 2.1, it can be observed that, the last job to be schedule is J1, and it

does its last operation on the last machine M2. As defined earlier, the finishing time

of the last operation of last job J1, is the makespan of the schedule. The time taken

by J1 to complete all its operations is 12 units.

So, for this schedule, we have Cmax = 12.

Calculating ∑Ci

The procedure to calculate the ∑Ci can be described using the same example and

referring to the Figure 2.1.

To obtain the ∑Ci value, calculate the completion times of every job on the last

machine, i.e. the time by a job has completed all the operations on all the machines.

Completion time of J1 = 12

Completion time of J2 = 8

Average completion time = ∑Ci /number of jobs

In this example, we have ∑Ci / njobs = (20/2) = 10

15

2.3.2 Example for Job Shop Scheduling Problem

Let us consider an example presented in Table 2.2 to gain a brief understanding of

Job Shop Scheduling problem.

As said earlier, in Job Shop Scheduling, the order of visiting the machines may

differ from one job to another.

J1 M1(5) M2(8)

J2 M2(4) M1(2)

J3 M1(6) M2(6)

Table 2.2 Example to demonstrate Job Shop Scheduling

It can be noticed from the Table 2.2 that, the machine sequence is varying from one

job to another.

Machine sequence for J1 is M1-M2.

Machine sequence for J2 is M2-M1.

Machine sequence for J3 is M1-M2.

Now, let us design a Gantt chart for this problem so as to analyze this method of

scheduling.

Figure 2.2 To demonstrate Job Shop Scheduling

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 M1

 M2

16

Following steps guide the construction of Gantt chart in Job Shop Scheduling.

1. At time t =0, we have jobs J1 and J3 competing for M1. According to the

Shortest Processing Time rule [22], when there are two different jobs waiting

for the same machine at the same time, then choose the job with the shortest

processing time among them. So, according to this, we chose J1 to be

scheduled on M1.

2. Also at t=0, we have J2 waiting to be processed on M2, and as it is the only

job waiting to be processes on this machine at this point of time, it is right

away scheduled.

3. At t=4, J2 finishes it’s processing on M2 and starts waiting for M1.

4. At t=5, we have jobs J3 and J2 waiting to process on M1. According to the

Shortest Processing Time rule mentioned before, we choose J2 because, on

M1, its processing time is less than that of J3.

5. Also at t=5, we J1 completes its task on M1, it jumps to M2 for its task on this

machine. At this point of time, M2 is free and so, J1 is right away scheduled,

and it processes on this machine for p12 time units.

6. At t=7, J2 finishes its operation on M1, and it is done with all its operations.

So, the Completion time of J2=7.

7. At t=7, M1 becomes free, and we have a job J3 waiting to be scheduled on

M1. It is now scheduled on M1, and will process for p31 time units.

8. At t=13, J1 finishes its operation on M2, and it is done with all its tasks. So,

the Completion time of J1=13.

17

9. At t=13, J3 finishes its operation on M1, and it jumps to M2 for its next

operation for p32 time units. At t=19, it finishes all its tasks. So, the

Completion time of J3=19.

Finally, the Cmax and ∑Ci values for the above schedule are as follows

Cmax = 19.

∑Ci = (13+7+19)/3 = 13.

2.4 Permutation Flow Shop Scheduling Problem

The objective of the algorithm implemented in this thesis, is to focus on the problem

of optimizing the results for Permutation Flow Shop Scheduling (PFSP). For more

than 2 machines, it is an NP-Hard problem. Through this algorithm, we try to obtain

a near optimal solution to this problem. Before going into the details, we will

discuss the basic definition of PFSP [11].

Permutation Flow Shop Scheduling is a special case of Flow Shop Scheduling.

In a Flow Shop Scheduling problem, the job sequence might vary from machine to

machine, and this is called a Regular Flow Shop Problem. PFSP is closely related to

Flow Shop with an additional condition associated with it i.e., the job schedule

remains same for all the machines.

In this kind of scheduling, various permutations are performed with the given

jobs to obtain different schedules. Each permutation is denoted by π. If the given

number of jobs is n, then the possible number of permutations with them is n! [12].

Whether Flow Shop Scheduling problems are NP-Hard or not depends upon the

number of machines used in the scheduling. They are said to be NP-Hard only if the

number of machines m is more than 2 [13]. If the number of machines are less than

18

or equal to 2, it is solvable in polynomial time. In a special case, where all the

processing times of all the jobs are same, it is not an NP-Hard problem irrespective

of the number of machines.

2.4.1 PFSP for more than 2 machines

According to Lemma 6.8 [2], “For problem Fm ||Cmax an optimal schedule exists

with the following properties:

(i) The job sequence on the first two machines is the same.

(ii) The job sequence on the last two machines is the same.

For two or three machines, the optimal solution of the flow shop problem is not better

than that of the corresponding permutation flow shop. This is not the case if there are

more than three machines”.

In PFSP, obtaining the optimal job sequence by performing all the possible

permutations among the jobs, and checking which schedule gives the optimal results

is not possible in a reasonable time if m > 2.

The algorithm we have implemented, tries to reach a near optimal solution for

the given Flow Shop problem, by adopting a heuristic called Simulated Annealing.

This algorithm is discussed in Chapter 3, and the concept of Simulated Annealing is

discussed later in Section 2.5.

According to the α|β|γ – notation, the algorithm mentioned above is designed to

solve a problem which can be represented as Fm|prmu|Cmax, if makespan is the

optimality criterion for the schedule. If we consider the optimality criterion as

minimizing the sum of completion times, then the problem can be denoted as

Fm|prmu|∑Ci [14]. In this notation, F represents flow shop problem m represents

19

the number of machines and prmu is an abbreviation representing the job constraints

on the permutation of the jobs.

The above two problems are strongly NP-Hard for m ≥ 3.

2.4.2 PFSP for 2 machines

PFSP is not NP-Hard for 2 machines, and also for the special case mentioned earlier

i.e., when the processing times of all the jobs are equal. When we have identical

processing times for all the jobs on all the machines, it is non NP-Hard, because

whatever may be the job sequence, all the schedules come up with the same results,

and every schedule is an optimal solution.

According to Theorem 3.6 [2], “For the flow-shop problem F2||∑Ci there exists

an optimal schedule in which both machines process the jobs in the same order”.

There are some algorithms existing to solve and produce an optimal solution to

PFSP for 2 machines, and one among them is the Johnson’s Algorithm. It produces

an optimal solution for the problem F2||Cmax. This algorithm is explained in the next

section.

2.4.3 Johnson’s Algorithm

Johnson’s algorithm gives an optimal solution to the F2||Cmax problem, and here all

the jobs are scheduled in the same order for both machines [15]. In the algorithm

below, T represents the final schedule which is same on both the machines.

If a job i is found with least processing time on machine j, it is either

concatenated with the string L or string R, if j is from M1 or M2 respectively. L and

R hold null values initially and produce the final schedule T, when they are

concatenated. This is the algorithm presented in Algorithm 2.1.

20

Algorithm 2.1 Johnson’s Algorithm

1. Consider two strings L and R and let S be the set of jobs.

2. Find the minimum processing time among all the jobs say pij and i ∈ S.

3. If j = 1, add i to the tail of L.

4. Else if, j = 2, add i to the front of R.

5. Eliminate job i from the set S.

6. If S ≠ empty, go to (2).

7. Concatenate L and R and assign it to T.

8. Stop.

Example

Initially let X = {1...i...n} be the set of all jobs.

The example in Table 2.2 is used to show how Johnson’s algorithm works for a set

of 4 jobs on 2 machines. The optimal schedule is presented in Figure 2.3.

j

i

pi1 pi2

1 1 3

2 2 3

3 4 5

4 3 1

Table 2.3 Example to demonstrate Johnson’s Algorithm

21

1. Let X = {J1, J2, J3, J4}. At the initial step, the minimum processing time found is

1, and this value exists twice in the schedule, as we have both p11=1 and also

p42=1.

We can consider any one job among them, and let us choose p11. So,

concatenate J1 to string L, and eliminate J1 from X. So, L = “J1”.

2. Now, consider p42 and concatenate J4 to R, and then eliminate it from X.

So, R = “J4”.

3. The next minimum value found is p21 = 2. Concatenate J2 to L, and then

eliminate it from X. So, L = “J1 J2”.

4. The next minimum value found is p31 = 3. Concatenate J3 to L and then

eliminate it from X. So, L = “J1 J2 J3”.

So finally, the schedule is the concatenation of L and R and here we have the

sequence as “J1 -J2 -J3 -J4” is the optimal schedule in this example.

The Machine-Oriented Gantt chart for this example can be represented as below in

Figure 2.3.

Figure 2.3 Optimal Schedule

2.5 Simulated Annealing

Simulated annealing is a heuristic which could be adopted by Combinatorial

Optimization Problems like Flow Shop Scheduling.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

 M1

 M2

22

According to Rob A. Rutenbar

[16], the basic idea of this technique has been

inspired from a real time example, the process of annealing. Annealing can be

defined as a process of heating a metal until it reaches a critical temperature i.e., the

temperature at which the metal starts melting. As soon as it happens, the metal is set

to cool down step by step, by exposing it to various temperatures. This is done to

improve some of the characteristics of that metal.

Analogous to the above example, Simulated Annealing is referred to as a generic

heuristic, applied to a problem by starting with a random solution in a solution

space. It continues to search in this solution space for a better solution at its each

iteration, and every time when a new solution if found, it will be accepted or rejected

based upon the fulfillment of a criterion adopted by the problem, by the new

solution.

These iterations are continued to be performed until the algorithm reaches a

terminating point [17]. Simulated Annealing is just a heuristic or technique that can

be applied to the combinatorial optimization problems. It is just a strategy which

could help is obtaining a good solution which may be near optimal, in a feasible

time. They cannot guarantee to produce an optimal solution.

This procedure is continued until it comes out with a solution, which is closer to

the near optimal solution. There are some parameters which are a part of this

heuristic, and they are the Cooling schedule and the Acceptance probability.

The concept of Acceptance probability [18] is explained in the Section 2.5.1 and

the purpose of the Cooling schedule [19] is described in Section 2.5.2.

23

2.5.1 Acceptance probability

The criterion used by the Simulated Annealing technique, when it has to decide

whether or not to accept a newly found solution, that it will come across at its every

new iteration during the search, is the Acceptance probability.

The formula used for calculating the acceptable probability is

P = e
-ΔE/T

ΔE refers to the change of energy, which can be a gain or loss resulted in moving

from one solution to another during the iteration.

T refers to the current temperature value, it is a cooling constant which is one among

the set of values belonging to the cooling schedule.

If there is a loss of energy, a new probability value is generated at current

iteration. It is checked whether this value belongs to the range of the Acceptable

probability for the corresponding T value. If it is the range, the solution is accepted.

Else, it is rejected.

2.5.2 Cooling Schedule

Cooling schedule is the crucial part of this technique. The cooling schedule is a set

of values called cooling constants, analogous to the set of the varying temperatures

use to cool down the metal periodically, in the annealing process.

The values for the cooling schedule are inputted in such a way that, they go

down periodically. If the values in the cooling schedule initially are very high, they

allow the algorithm to start with a search for the solution, in a larger solution space.

Later on for the next values, its value keeps going down i.e., it narrows down the

solution space to restrict and refine the searching process in further iterations [19].

24

So, the higher the cooling constant value, the larger is the solution space. As, the

cooling constant keeps decreasing, the solution space shrinks gradually. It tries to

lead the algorithm into a productive area in the space, where the scope of obtaining

an optimal solution is high.

2.5.3 Simulated Annealing Algorithm

As said earlier, Simulated Annealing is a technique which starts with a random

solution and does an iterative improvement in a step by step process.

It tries to achieve a near optimal solution for the given problem. This algorithm is

explained in Algorithm 3.2 [16].

Notations

Following are the notations used in this algorithm

i – Initial solution and is chosen randomly at the beginning

n – New solution

ΔE – Change of energy in moving from one solution to another

P – Acceptance probability value

p – Probability generated in current iteration

T – Current temperature or a current cooling constant

nitr – number of iterations and nitr >0

25

Algorithm 2.2 Simulated Annealing

1. Start with a random solution i

2. For each value of T

3. Loop until nitr > 0

4. Perform a new iteration and get n

5. Check if ΔE is positive

6. If true, go to(7)

7. Accept n and decrement nitr and go to (3)

8. Else, calculate P = 1/e
(ΔE/T)

 and generate p

9. Check if p ∈ P, if true, go to (7)

10. Else, discard n, decrement nitr and go to (3)

11. End loop.

26

CHAPTER 3

IMPLEMENTATION

In this chapter, the first section describes about the Problem statement, the second

section gives a brief view about the approach followed towards the solution and the

rest of the chapter includes the in detailed discussion about the algorithm

implemented.

3.1 Problem Statement

Some of the Flow Shop Scheduling problems are NP-Hard problems, and PFSP is

one among them. PFSP is a scheduling problem, where we are given a set of

machines Mj for j = 1,2,…,m and a set of jobs Ji for i = 1,2,….,n , and a schedule is

obtained by applying permutations to the given set of jobs such that, the schedule

satisfies the optimality criterion. And, obtaining the optimal job sequence in

polynomial time is NP-Hard for m > 2.

We have implemented an algorithm, which focuses on improvising the solutions

for this NP-Hard problem, and tries to come up with a near optimal solution in a

reasonable time.

3.2 Approach followed towards the solution

The heuristic used here is Simulated Annealing which acts as a background

technique to support PFSP. It helps to gain good and improved results to the given

problem. Simulated Annealing is just a strategy and it doesn’t guarantee the optimal

solutions.

 The near optimal solution here we refer to is a near optimal schedule. It is the

order in which the jobs are scheduled on every machine such that the schedule

27

satisfies the optimality criterion. This algorithm tries to minimize the optimality

criterion chosen for the problem, and it may refer to the makespan value Cmax of the

schedule or the sum of completion times ∑Ci of the schedule.

3.3 Parameters of the Algorithm

3.3.1 Input

The algorithm receives a set of inputs, and tries to give in the best possible solutions.

The basic input is the number of machines and the number of jobs to be scheduled

and their processing times. The critical part of the algorithm is to obtain the best

sequence of the jobs i.e., to find a best schedule. This algorithm does the iterations

in a continuous manner and so, there should be a terminating point for the algorithm,

to know when it has to stop. So, the input set also includes the number of iterations

to perform. The algorithm has to always perform a check at its each new iteration,

to verify that it is not exceeding the given number of iterations.

The rest of the input data belongs to the cooling schedule according to which, the

algorithm alters its search area for the solutions throughout the iterations performed.

The better the values of the cooling constants in the schedule, the better will be the

output. If the values of these constants are high, then the search space is wide and

vice versa. This input plays a key role as the behavior of the algorithm is grounded

on this data. If it is a set of k values and l is the number of iterations, the algorithm

would perform is l*k iterations in total because, it does l iterations for each value in

the set.

28

The final input is the optimality criterion. The choice is to opt for one among, the

makespan Cmax or the sum of completion times ∑Ci, to be minimized by the

algorithm.

3.3.2 Notations

Following are the notations used in the implementation of the algorithm.

Nj – Number of jobs given

Nm – Number of machines given

N_itr – Number of iterations

Ch – M, if Cmax is the optimality criterion

 – S, if ∑Ci is the optimality criterion

Old_seq – Job sequence of previous accepted solution

Best_seq – Best job sequence till the current iteration

New_seq – New job sequence

Δmk1 = Cmax of New_seq - Cmax of Old_seq

Δmk2 = Cmax of New_seq - Cmax of Best_seq

Δ∑Ci1 = ∑Ci of New_seq - ∑Ci of Old_seq

Δ∑Ci2 = ∑Ci of New_seq - ∑Ci of Best_seq

Aprob – Generated Acceptance Probability

Rprob – Random probability generated at current iteration

N_Sch – Number of values in the cooling schedule

Cc – Set of cooling constants

T- Current value from Cc at current iteration.

T_itr = (N_itr *N_sch)

29

Algorithm 3.1

1. Choose Ch = M or S

2. For each value of T in Cc

3. Check N_itr > 0, if true go to (4), else go to (19)

4. Start with Old_seq and Best_seq

5. Calculate Cmax or ∑Ci of Best_seq

6. Calculate Cmax or ∑Ci of Old_seq

7. Perform permutation on Old_seq and generate New_seq

8. Calculate Cmax or ∑Ci of New_seq

9. Calculate Δmk1 or Δ∑Ci1

10. Calculate Δmk2 or Δ∑Ci2

11. If (9) ≤ 0 and (10) ≤ 0 then,

Old_seq = New_seq; Best_seq = New_seq; T_itr--; Go to (3)

12. Else if, (9) ≤ 0 and (10) > 0 then,

Old_seq = New_seq; T_itr--; Go to (3)

13. Else if (6) >0 and (7) >0 then, generate Rprob

14. Calculate Aprob = 1/e
(Δmk1/T)

, if Ch=M.

15. Else, Aprob = 1/e
(Δ∑Ci1/T)

16. If Rprob ∈ Aprob, then solution is escaped from being discarded.

Old_seq = New_seq; T_itr--; Go to (3)

17. Else, solution is discarded.

Perform T_itr--; Go to (3)

18. Stop

30

3.3.3 Assumptions

There are some basic assumptions made by the algorithm, which correspond to the

initial values of some of the parameters used in the algorithm. They are mentioned

as follows

1. Old_seq has the initial value as {1,….., Nj} at the first iteration of the

algorithm, and later on it varies in the following iterations according to the

conditions satisfied.

2. Best_seq has the initial value as {1,….., Nj} at the first iteration of the

algorithm and later on it varies if it finds a much better schedule in the

followed iterations.

3.3.4 Operations

Perform Iteration operation refers to performing iteration on the job sequence

input. This algorithm maintains the job sequence in an array. Two random

positions of the array are picked and swapped, to come up with a new schedule i.e.,

New_seq in a new iteration. Simple swapping strategy is adopted here, in order to

produce a new permutation from the given jobs.

Generate Aprob operation refers to the process of generating the acceptance

probability which calls for the decision, whether or not to accept New_seq generated

in the latest iteration. If the criterion which the algorithm strives to optimize is not

improved with the New_seq, then Aprob is generated. Otherwise, if it gives a sign

of improvement in the solution, then in such cases, the New_seq is right away

accepted.

31

If Ch = M and Δmk1 ≥ 0,

Aprob = 1/e
(Δmk1/T)

If Ch=S and Δ∑Ci1 ≥ 0,

Aprob = 1/e
(Δ∑Ci1/T)

Generate Rprob operation is performed to generate a random probability value

Rprob. It is generated whenever Aprob is generated. In such cases it is checked

whether or not Rprob belongs to Aprob. Only if it is true, the New_seq is considered

for further iterations in the algorithm. Otherwise it is discarded.

3.4 An Example

Consider a small example in Table 3.1 which is intended to reflect working behavior

of the algorithm.

 M1 M2 M3 M4 M5

J1 5 2 3 1 4

J2 1 4 5 6 7

J3 2 7 6 5 1

J4 1 2 3 4 5

J5 5 4 3 2 1

Table 3.1 Example to demonstrate the behavior of our Algorithm

Let us consider the problem of scheduling 3 jobs say J1,J2,J3 to be scheduled on

the 3 machines say M1,M2,M3.

32

The following screens would give a brief view about the working procedure of the

algorithm for the given input. They would display the iterative improvement shown

by the algorithm, over the iterations performed.

Figure 3.1 Input to the Algorithm

The first step is to choose the optimality criterion, which makes the algorithm to

work in the preferred direction i.e., whether to optimize Cmax or ∑Ci accordingly. In

this example, Cmax is chosen as the parameter to optimize. The number of machines,

number of jobs and their processing times are given in the form of an input file.

33

Figure 3.2 : Iterative Improvement

As the number of iterations to be done is 5, we have 5 iterations to be performed per

epoch, where epochs refer to the number of values in the cooling schedule. Here we

have only one epoch and hence the total number of iterations is 5.

In the output section, the variables MS represents the Cmax at the current iteration,

Best represents the best Cmax value the current iteration, Current Iteration represents

the Job Sequence at the current iteration.

In every iteration,

Δmk1= Difference between the current makespan and the makespan of the last

accepted sequence.

If Δmk1 ≤ 0, it indicates an improvement in the solution.

Δmk2 = Difference between the current makespan and the best makespan value

maintained till the current iteration.

If Δmk2 ≤ 0, it indicates an improvement in the new solution.

34

1. At iteration 1,

Job Sequence: J1-J2-J3-J4-J5, MS=39, Best=39

As this is the initial solution, it is accepted and we perform next permutation

for the next iteration on this job sequence.

2. At iteration 2,

Job Sequence: J4-J2-J3-J1-J5, MS = 31

Condition Satisfied: Δmk1 ≤ 0

Condition Satisfied: Δmk2 ≤ 0

So we make, Best = MS. Hence, Best = 31

We accept the solution, and perform the next iteration on this schedule.

3. At iteration 3,

Job Sequence: J4-J2-J5-J1-J3, MS = 33

Condition Failed: Δmk1 ≤ 0

Condition Failed: Δmk2 ≤ 0

So, generate Aprob and Rprob and check if Rprob ∈ Aprob. In this case,

Condition Satisifed: Rprob ∈ Aprob

So, the schedule generated in this iteration is said to be ESCAPED from

being discarded, and the next iteration is performed on this schedule.

4. At iteration 4,

Job Sequence: J3-J2-J5-J1-J4, MS = 43

Condition Failed: Δmk1≤0

Condition Failed: Δmk2≤0

So, generate Aprob and Rprob and check if Rprob ∈ Aprob. In this case,

35

Condition Failed: Rprob ∈ Aprob

So, the schedule generated in this iteration is said to be DISCARDED, and

the next iteration is performed on the last accepted schedule which is here,

the schedule from Iteration 3.

5. At iteration 5,

Job Sequence: J3-J2-J5-J1-J4, MS = 43

Condition Failed: Δmk1 ≤ 0

Condition Failed: Δmk2 ≤ 0

So, we generate Aprob and Rprob and check if Rprob ∈ Aprob. In this case,

Condition Failed: Rprob ∈ Aprob

So, the schedule generated in this iteration is said to be discarded, and the

next iteration is performed on the last accepted schedule which is here, the

schedule from Iteration 3.

As the algorithm has performed the given number of iterations, it terminates and

gives the minimal value it could acquire in 5 iterations. The minimum possible

value the algorithm could get, after performing the given number of iterations is

displayed in the form of final results. The final results also include the job sequence

for which it acquired the minimal value.

So, from this experiment, we can conclude that this algorithm has tried to optimize

the Cmax value from 39 to 31 following an iterative procedure, for the improvement

in the chosen criteria in the given number of iterations. And, the same strategy is

followed if the optimality criteria chosen as ∑Ci.

36

CHAPTER 4

FINDINGS

This chapter gives a detailed view about the results obtained by the Algorithm 3.1

and also gives an insight about the effectiveness of the implementation.

Many experiments have been performed to test the Algorithm 3.1 and it has been

concluded that, the more the algorithm iterates, the higher are the chances of

obtaining much enhanced solution. We do not know what the optimal solution for

the given scheduling problem is, if it is NP-Hard. In order to know how far the

algorithm is performing well, there is a need to find that how close is the solution

generated by the implemented algorithm, when compared with the optimal solution.

So, we consider a benchmark example for which the ideal schedule is already

known, and use this to test the performance of the Algorithm 3.1. So, a standard

example is presented in the first section. The second section explains the outcome

of the algorithm for varied inputs and the last section compares the results of this

algorithm with the standard results acquired by Taillard’s instances.

4.1 A Classic Example

As said before, we need a standard example where we are aware of the optimal

schedule, for the given processing times.

 M1 M2 M3

J1 1 2 3

J2 2 3 4

J3 3 4 5

Table 4.1 A Classic Example

37

So, we considered an example Table 4.1, with 3 jobs and 3 machines, and for which

we know the optimal schedule. This schedule is the optimal solution if the

optimality criterion is Cmax or ∑Ci.

So, the optimal schedule for this problem is J1-J2-J3. This schedule has zero idle

time. We can represent it in the form of a Gantt chart as shown in Figure 4.1.

Figure 4.1 Optimal Schedule for the Classic Example

4.2 Conducted Experiments

In order to test the optimality of the solution produced by our algorithm, we need to

consider a bigger, and another standard example of the same pattern for the

processing times as followed in Table 4.1.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 M1

 M2

 M3

38

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1 6 7 8 9 10 11 12 13 14 15

J2 2 3 4 5 6 7 8 9 10 11

J3 3 4 5 6 7 8 9 10 11 12

J4 1 2 3 4 5 6 7 8 9 10

J5 4 5 6 7 8 9 10 11 12 13

J6 5 6 7 8 9 10 11 12 13 14

J7 7 8 9 10 11 12 13 14 15 16

J8 8 9 10 11 12 13 14 15 16 17

J9 9 10 11 12 13 14 15 16 17 18

J10 10 11 12 13 14 15 16 17 18 19

Table 4.2 Processing times for Test 1 and Test 2

This example is presented with 10 jobs and 10 machines under Table 4.2. , and it is

used as input for both the tests in Section 4.3.1 and Section 4.3.2. In the Output

section of these tests, the outcome of the algorithm for its every 1000
th

 iteration is

tabulated. In Table 4.3 AS and BEST represent average and best ∑Ci respectively.

In Table 4.4 MS represents Cmax value and BEST represents the best Cmax value.

4.2.1 Test 1

Input

Optimality Criterion = ∑Ci.

Number of constants in the cooling schedule = 5

Cooling constants = {500, 450, 300, 150, 50}

Number of iterations = 1000

39

Output

The number of jobs and machines are:

Jobs: 10

Machines: 10

Iteration# Cooling Constant AS BEST

1000 500 206 130

2000 450 200 130

3000 300 172 130

4000 150 133 125

5000 50 160 125

Table 4.3 Results for Test 1

Final Results:

Printing the Best order w.r.t sumCi and Best sumCi value

 J4 - J2 - J3 - J5 - J6 - J1 - J7 - J8 - J10 - J9

Best Average SumCi is: 118

Efficiency:

Efficiency of the algorithm for the given input is calculated based on the optimal

solution of the problem.

 Optimal Schedule: J4 - J2 - J3 - J5 - J6 - J1 - J7 - J8 – J9 – J10

The optimal value of ∑Ci is 116

The final output of the algorithm is 118

40

Graph for Iterative Improvement

A graph has been plotted for easy understanding of the improvement shown by the

algorithm stage by stage.

Figure 4.2 Iterative Improvements by the Algorithm for Test 1

4.2.2 Test 2

Input

Optimality Criterion =. Cmax

Number of constants in the cooling schedule = 5

Cooling constants = {500, 450, 300, 150, 50}

Number of iterations = 1000

Output

The number of jobs and machines are:

Jobs: 10

Machines: 10

116

118

120

122

124

126

128

130

132

0 2000 4000 6000

Average Completion time

Average
Completion time

41

Iteration# Cooling Constant MS BEST

1000 500 235 235

2000 450 271 208

3000 300 244 208

4000 150 262 208

5000 50 271 199

Table 4.4 Results for Test 2

Final Results:

Printing the Best order w.r.t makespan and Best makespan value

 J2 -J3 -J4 -J5-J1 -J7 -J8 -J9 -J10 -J6

Best makespan is: 199

Efficiency:

Efficiency of the algorithm for the given input is calculated based on the optimal

solution of the problem.

Optimal Job Order: J7 –J9 –J1 –J3-J6 –J5 –J10 –J4 –J2 –J8

The optimal value of Cmax is 190.

The final output of the algorithm is 199.

Graph for Iterative Improvement

A graph has been plotted for easy understanding of improvement shown by the

algorithm.

42

Figure 4.3 Iterative Improvements by the Algorithm for Test 2

4.3 Comparison with Taillard’s Instances

Taillard is a great researcher who has performed various experiments on shop

problems and he has presented a set of standard results produced for a set of

standard input instances called Taillard Instances

[20].

A comparison has been made between the results produced by Taillard’s

experiment and the results of Algorithm 3.1. Taillard’s experiments focus on

minimizing the Cmax value of a schedule.

4.3.1 Results produced by the Algorithm

In Table 4.5, 4.6, 4.7, Column 1 represents the Instance number, Column 2 and

Column 3 represent the upper bound and lower bound of Taillard’s experiment

respectively and the Results of our algorithm in Column 4.

195

200

205

210

215

220

225

230

235

240

0 1000 2000 3000 4000 5000 6000

Makespan

Makespan

43

5 jobs and 20 machines

Instance Taillard’s

UB

Taillard’s

LB

Results

1 1278 1232 1265

2 1359 1290 1237

3 1081 1073 1133

4 1293 1268 1449

5 1236 1198 1342

6 1195 1180 1254

7 1239 1226 1221

8 1206 1170 1331

9 1230 1206 1339

10 1108 1082 1231

 Table 4.5 Instances of 5 jobs and 20 machines

Table 4.5 is includes the results of our algorithm for the Taillard’s instances of 5

jobs and 20 machines. Each instance represented in Column 1 is a data set of 5 jobs

and 20 machines.

44

10 jobs and 20 machines

Instance Taillard’s

UB

Taillard’s

LB

Results

1 1582 1448 1595

2 1659 1479 1731

3 1496 1407 1574

4 1378 1308 1409

5 1419 1325 1445

6 1397 1290 1395

7 1484 1388 1515

8 1538 1363 1551

9 1593 1472 1570

10 1591 1356 1707

 Table 4.6 Instances of 10 jobs and 20 machines

Table 4.6 includes the results of our algorithm for all the instances used by Taillard’s

for 10 jobs and 20 machines. Each instance represented in Column 1 is a data set of

10 jobs and 20 machines.

45

20 jobs and 20 machines

Instance Taillard’s

UB

Taillard’s

LB

Results

1 2297 1911 2269

2 2100 1711 2164

3 2326 1844 2202

4 2223 1810 2210

5 2291 1899 2283

6 2226 1875 2215

7 2273 1875 2302

8 2200 1880 2183

9 2237 1840 2291

10 2178 1900 2156

 Table 4.7 Instances of 20 jobs and 20 machines

Similarly, Table 4.7 includes the results of our algorithm for all the instances used

by Taillard for 20 jobs and 20 machines. Each instance represented in Column 1 is a

data set of 20 jobs and 20 machines.

4.3.2 Conclusion

After testing the algorithm and comparing with the Taillard’s instances, it was

observed that, the algorithm we have implemented has performed well for some

instances and needed improvement for some instances.

46

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we have implemented an algorithm, mentioned in Chapter 3 which

was an attempt to provide improvement in the solutions to a scheduling problems

which is NP-Hard. In Chapter 4, we have discussed about all the results produced

by Algorithm 3.1 and tested its efficiency using a standard example. We have also

compared the results of our algorithm with the standard results produced by the

experiments conducted by Taillard.

After all these tests, it can be concluded that our algorithm has performed well in

many cases and its performance depends on the inputs given to the algorithm. The

input here we refer to is the cooling schedule input to the algorithm. We discussed

the importance of this input parameter in Chapter 2 in Section 2.5.2. It has a crucial

role in directing the algorithm towards the optimal solution. Also, when compared

our results with Taillard’s results, it was noticed that our algorithm has exhibited a

good behavior towards most of the instances, and needed improvement for some

instances.

Further improvements can be made in our algorithm so as to bring out much

more enhanced solutions, which can be possible by altering and improving the

cooling schedule and neighborhood of the algorithm.

47

BIBLIOGRAPHY

[1] Cormen, Thomas H., et al. Introduction to algorithms, Third Edition, Chapter 34.

MIT press, 2001.

[2] Brucker, Peter. Scheduling algorithms, Chapter 1, 6. Springer, 2007.

[3] Pinedo, Michael L. Scheduling: theory, algorithms, and systems, Fourth Edition,

Chapter 2. Springer, 2012.

[4] Vaik, Zsuzsanna. On scheduling problems with parallel multi-purpose machines.

Technical Reports, Egervary Research Group on Combinatorial Optimization, Hungary,

www.cs.elte.hu/egres/tr/egres-05-02. pdf, 2005.

[5] Zalzala, Ali MS, and Peter J. Fleming, eds. Genetic algorithms in engineering

systems. Vol. 55. Iet, 1997.

[6] Panneerselvam, R. Production and operations management, Second Edition,

Chapter 14, PHI Learning Pvt. Ltd., 2006.

[7] Leung, Joseph YT, ed. Handbook of scheduling: algorithms, models, and

performance analysis, Vol. 1, Chapter 6. Chapman & Hall/CRC, 2004.

[8] Schoenmakers, L. A. M. A new algorithm for the recognition of series parallel

graphs. Department of Algorithmics and Architecture, CWI, 1995.

[9] Zmaranda, Doina, and Gianina Gabor. "Issues on Optimality Criteria Applied in Real-

Time Scheduling." Int. J. of Computers, Communications and Control 3 (2008): 536-540.

[10] Gonzalez, Teofilo, and Sartaj Sahni. "Flowshop and jobshop schedules: complexity

and approximation." Operations Research 26.1 (1978): 36-52.

[11] Gao, Jian, and Rong Chen. "An NEH-based heuristic algorithm for distributed

permutation flowshop scheduling problems." Scientific Research and Essays6.14 (2011):

3094-3100.

[12] Samia kouki, Samia kouki, Mohamed Jemni Mohamed Jemni, and Talel Ladhari

Talel Ladhari. "Solving the Permutation Flow Shop Problem with Makespan Criterion

using Grids." International Journal of Grid and Distributed Computing4.2 (2011): 53-64.

48

[13] Sotskov, Yu N., and N. V. Shakhlevich. "NP-hardness of shop-scheduling problems

with three jobs." Discrete Applied Mathematics 59.3 (1995): 237-266.

[14] Semančo, Pavol, and Vladimír Modrák. "Hybrid GA-based improvement heuristic

with makespan criterion for flow-shop scheduling problems."ENTERprise Information

Systems (2011): 11-18.

[15] Adusumilli, Kumar, Doina Bein, and Wolfgang Bein. "A Genetic Algorithm for the

Two Machine Flow Shop Problem." Hawaii International Conference on System

Sciences, Proceedings of the 41st Annual. IEEE, 2008.

[16] Rutenbar, Rob A. "Simulated annealing algorithms: An overview." Circuits and

Devices Magazine, IEEE 5.1 (1989): 19-26.

[17] Henderson, Darrall, Sheldon Jacobson, and Alan Johnson. "The theory and practice

of simulated annealing." Handbook of metaheuristics (2003): 287-319.

[18] Anily, S., and A. Federgruen. "Simulated annealing methods with general

acceptance probabilities." Journal of Applied Probability (1987): 657-667.

[19] Hajek, Bruce. "Cooling schedules for optimal annealing." Mathematics of operations

research 13.2 (1988): 311-329.

[20] Taillard’s Instances

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/

[21] Alcan, Pelin, and Huseyin Basligil. "An Application with Non-identical Parallel

Machines using Genetic Algorithm with the Help of Fuzzy Logic." Lecture Notes in

Engineering and Computer Science 2191 (2011).

[22] Oral, Muhittin, and J-L. Malouin. "Evaluation of the shortest processing time

scheduling rule with truncation process." AIIE Transactions 5.4 (1973): 357-365.

[23] Rajkumar, R., et al. "A Bi-Criteria Approach to the M-machine Flowshop

Scheduling Problem." Studies in Informatics and Control 18.2 (2009): 127-136.

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/

49

VITA

Graduate College

University of Nevada, Las Vegas

Sadhana Yellanki

Degrees:

Bachelor of Technology in Information Technology, 2011

Jawaharlal Nehru Technological University

Master of Science in Computer Science, 2013

University of Nevada Las Vegas

Thesis Title: Simulated Annealing Approach to Flow Shop Scheduling

Thesis Examination Committee:

Chair Person, Dr. Wolfgang Bein, Ph.D.

Committee Member, Dr. Ajoy K. Datta, Ph.D.

Committee Member, Dr. Ju-Yeon Jo, Ph.D

Graduate College Representative, Dr. Venkatesan Muthukumar, Ph.D.

	Simulated Annealing Approach To Flow Shop Scheduling
	Repository Citation

	tmp.1377122764.pdf.hBjUl

