
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-2009

A study of relevance feedback in vector space model A study of relevance feedback in vector space model

Deepthi Katta

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons

Repository Citation Repository Citation
Katta, Deepthi, "A study of relevance feedback in vector space model" (2009). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 1123.
https://digitalscholarship.unlv.edu/thesesdissertations/1123

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1123?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

A STUDY OF RELEVANCE FEEDBACK IN

VECTOR SPACE MODEL

by

Deepthi Katta

Bachelor of Technology in Computer Science and Engineering
Vellore Institute of Technology, India

May 2005

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

May 2009

UMI Number: 1472420

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1472420

Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Thesis Approval
The Graduate College

University of Nevada, Las Vegas

APRIL 24TH _,2009_

The Thesis prepared by

DEEPTHI KATTA

Entitled

A STUDY OF RELEVANCE FEEDBACK IN VECTOR SPACE MODEL

is approved in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Examination Committee Chair

Examination Committee Member

Examination Committee Member

Graduate College Vacuity Representative

Dean of the Graduate College

1017-53 11

ABSTRACT

A Study of Relevance Feedback in Vector Space Model

by
Deepthi Katta

Dr. Kazem Taghva, Examination Committee Chair
Professor of Computer Science

University of Nevada, Las Vegas

Information Retrieval is the science of searching for information or

documents based on information need from a huge set of documents. It

has been an active field of research since early 19th century and different

models of retrieval came in to existence to cater the information need.

This thesis starts with understanding some of the basic information

retrieval models, followed by implementation of one of the most popular

statistical retrieval model known as Vector Space Model. This model

ranks the documents in the collection based on the similarity measure

calculated between the query and the respective document. The user

specifies the "information need" which is more commonly known as a

"query" using the visual interface provided. The given query is then

processed and the results are displayed to the user in a ranked order.

We then focus on the Relevance feedback, a technique that modifies

the user query based on the characteristics of the document

iii

collection to improve the results. In this thesis, we explore different

types and models of relevance feedback that can be applied to Vector

Space model and how they affect the performance of the model.

IV

TABLE OF CONTENTS

ABSTRACT iii

LIST OF TABLES vii

LIST OF FIGURES viii

ACKNOWLEDGEMENTS ix

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 MODELS OF RETREIVAL 4
2.1 Boolean Retrieval 4
2.2 Co-ordinate Matching 7
2 .3 Vector Space Model 10
2.4 Probabilistic Model 13
2.5 Language Model 15

CHAPTER 3 IMPLEMENTATION OF VECTOR SPACE MODEL 16
3.1 Document Pre-processing and Term Weight Calculation 19
3.2 Algorithm and Pseudo Code 24
3.3 Interface and Results snapsho t s 29

CHAPTER 4 RELEVANCE FEEDBACK 32
4.1 Types of Relevance Feedback 32

4.1.1 Implicit Feedback 32
4.1.2 Explicit Feedback 33
4.1.3 Pseudo Feedback 33

4.1 Relevance Feedback Models in Vector Space 34
4.2.3 Rocchio Model : 34
4.2.2 Ide Model 35

4 .3 Pseudo Rocchio Relevance Feedback in Vector Space Model 36
4.3.1 Query Expansion 36
4.3.2 Implementation 37
4 .3 .3 Resul ts 40

CHAPTER 5 RESULTS AND EVALUATION 43
5.1 Evaluation of Vector Space Model 43
5.2 Effect on resul ts with Relevance Feedback 46

CHAPTER 6 CONCLUSION AND FUTURE WORK 51

v

BIBLIOGRAPHY 53

VITA 56

VI

LIST OF TABLES

Table 2.1.1 Document collection of four documents 5
Table 2.1.2 Vector representation of document collection and sample

query 8
Table 3.1.1 Document collection 18
Table 3.1.2 Document vectors 18
Table 3.1.3 Cosine similarity measure 19
Table 5.1.1 Precision and recall average values 44
Table 5.1.2 Detailed precision and recall values for sample query 46
Table 5.1.3 Varying the number of top ranked documents 51

vii

LIST OF FIGURES

Figure L.l Retrieval process 3
Figure2.1 Inverted Index of collection 6
Figure2.2 Vector representation of document space 11
Figure3.1 Individual document snapshot 20
Figure3.1.2 Output of Tokenization 21
Figures. 1.2 Wd values .. 23
Figure 3.1.4 wd,t values 24
Figure 3.1.5 wt values 25
Figure 3.3.1 Initial screen 29
Figure 3.3.2 User enters the query and clicks on Search button 30
Figure 3.3.3 User can now click on the label to view the results 31
Figure 3.3.4 Results 31
Figure 4.2.1 Rocchio model illustration.... , 34
Figure 4.3.1 User initiates feedback...... 40
Figure 4.3.2 New results ready for review 41
Figure 4.3.3 Results window 42

viii

ACKNOWLEDGEMENTS

I take this opportunity to sincerely thank my advisor, Dr. Kazem

Taghva who gave me support and guidance throughout this thesis work.

I am greatly indebted to my graduate coordinator Dr. Ajoy K Datta for his

help and invaluable support during my masters program. I also would

like to thank other members of my committee, Dr. Laxmi P. Gewali and

Dr. Venkatesan Muthukumar.

I would like to thank the Department of Computer Science for their

financial support through a Teaching Assistantship.

I owe my loving thanks to my husband, Sandeep Sindol and my family

for standing by me with all their love and encouragement at times I

needed most.

Last but not least, I thank everyone for their support in the successful

completion of this work.

IX

CHAPTER 1

INTRODUCTION

Information retrieval (IR) is defined as 'finding material of an

unstructured nature that satisfies an information need from within large

collections' [1]. In other words, it is the science of searching for

documents which contain the information required. The emergence of

computers had made the task of storing large amounts of information

easy. In 1950, the field of information retrieval (IR) was born, since

finding the information that is useful and required from such collections

had become essential [2].

Data retrieval is a closely related area of Information Retrieval and it

is quite often misinterpreted of both being same. The main difference

between both of them is that, in data retrieval we usually search for an

exact match, that is, we check to see presence or absence of an item in a

file. In information retrieval, the main interest would be to find those

items that match the request partially or not completely and then filter

them to find the best matched items [31.

The most important development in the field of information

1

retrieval was the creation of SMART system at Cornell University by

Gerald Salton and his team in 1960. This system was later used by the

researchers to come up with new methods and models to increase the

search quality. By early 1980's, many information retrieval models were

developed and evaluated based on the previous research. In 1990, the

worldwide TREC (Text Retrieval Conference) project started which was

aimed at the evaluation of methods for querying databases of realistic

size and scope. Prior to the establishment of TREC, there were no large

test datasets, and information retrieval research was dominated by

measured performance on some small databases for which sample

queries and relevance judgments were available [4].

A typical information retrieval system would look like in the figure

below [5]. Retrieval is initiated by the user entering the query wanting to

find documents that match his criteria. Before the retrieval process is

initiated, a text model is developed from the document collection by

performing text operations such as removing stop words and stemming.

The text model is then used to build an index. An index is a critical data

structure because it allows faster searching over large volumes of data.

Inverted Index is the most popular form of index used in different

retrieval models.

2

Text >
Model

text ^

r Inc

i \

Indexing

'

Te
Opei

\

Kt
ations

—e»

Seal cuing

1 '

Ranking

' t
Visual

Interface

t
User

<
Query

Operations

i \

Query

Figure 1.1. Retrieval Process

One of the main objectives of this thesis is to understand several

information retrieval models that were introduced from the time the

concept of retrieval came in to existence to constantly improve the

effectiveness of the retrieval and to serve different needs and

requirements by the user. We start with one of the earliest models of

retrieval called Boolean Retrieval and finish with the latest technique of

retrieval popularly known as Language Model. We then implement one of

the retrieval models known as Vector Space Model and also try to

improve the performance of the same using some query modification

techniques.

3

CHAPTER 2

MODELS OF RETREIVAL

2.1 Boolean Retrieval

In this type of retrieval, the query is formed using operators such as

AND, OR and NOT between the keywords [3]. The documents in this

model are viewed as set of keywords. The query is processed using

inverted index file which is built for the collection in advance. For each

term in the query, the index is searched and the corresponding posting

for the term is retrieved. Posting contains the list of documents in which

the respective term occurs [1]. Once all the postings for the terms in the

query are retrieved, they are merged based on the operator given in the

query. Final outcome in this case the list of the documents is displayed

to the user. In Boolean retrieval, we deal with the exact match, so, it is

often considered as data retrieval model.

4

Simple Example of Boolean query processing

Consider a small document collection of four documents as follows [1]:

Document ID
Doc 1
Doc 2
Doc 3
Doc 4

Text
new home sales top forecasts

home sales rise in July
increase in home sales in July

July new home sales rise

Table 2.1.1 Document collection of four documents

The inverted index for the collection is shown in the figure below, sort-

based indexing is used for building the index, a common technique in

which the terms are sorted and grouped to build the index. The

document frequency of each term is also stored on the index. This

information is used to minimize the amount of temporary memory space

during query processing. In the figure, the left side shows all the terms

which is also called as dictionary and the right hand side shows the

postings.

Let us consider the following Boolean query and see how the result

will be displayed to the end user.

Example User Boolean Query: Forecasts AND New

5

Term Document Frequency Postings

— • 0
• Q - H -
• 0
• H - S

— • m - s
— • m - H
— • m - H

— • Q

Figure2.1. Inverted Index of collection

Forecasts 1

Home 4 4

Increase 1

In 2 2

July 3 3

New 2 2

Rise 2 2

Sales 4 4

Top 1 1

•S-H

H

m-H

First, we need to sort the terms in the query by increasing frequency.

In this case, the first term hence would be Forecasts, so, the

corresponding posting for the term will be loaded in to the memory. The

postings of the remaining terms are compared against the posting in the

memory. Since, it is a conjunctive query, the final result must be the list

of documents which has all the terms in the query. In this case, the

final result would be document 1 since it contains both the terms.

Extended Boolean retrieval models can be built by adding additional

operators other than AND, OR and NOT, such as proximity operators

6

which gives how close two terms specified in the query can occur in the

document.

Boolean retrieval is preferred by users who need greater control over

the retrieved results. Many users use them as it is easy to understand

especially for simple queries. But, the model fails to provide the user

with some of the additional details or features which will help the user

cut down time and effort to find the piece of information of interest. For

example, it does not use or maintain the information on term frequency

which will play an important role in deciding which documents are more

relevant to the query. Also, it just retrieves set of matching documents,

but the results are not ranked, that is they are in no particular order and

user need to browse through all of them to find which one will suit his

requirement [6].

2.2 Co-ordinate Matching

In this model, documents that contain more number of terms in the

query are given more importance than documents which contain few or

none of them. In other words, we are calculating the inner product of

query and each document both represented in form of n-dimensional

vectors, where n is the number of terms in the index and then taking the

result as the similarity measure. This introduces the concept of ranking

and also flexibility to simple Boolean retrieval. The similarity measure

7

between the query and document in this type of retrieval model is

represented as follows [4]

M (Q, Dd) = Q.Dd

For example, if we consider the same document collection given in

Table 2.1.1 and a query "new top". The vector representation of

documents and sample query are given in the table below.

Doc ID
Doc 1
Doc2
Doc3
Doc4
Query

Forecasts
1
0
0
0
0

Home
1
1
1
1
0

Increase
0
0
1
0
0

July
0
1
1
1
0

New
1
0
0
1
1

Sales
1
1
1
1
0

Rise
0
1
0
1
0

Top
1
0
0
0
1

Table 2.1.2 Vector representation of document collection and sample
query

For convenience, I have assumed that stop words have been removed

from the document collection. Stop words are the most common words in

a text like are, in, and etc.

Now, we can calculate the inner product of query and each document

as follows:

M (new top, Docl) = (0, 0, 0, 0, 1, 0, 0, 1) . (1, 1, 0, 0, 1, 1, 0, 1) = 2

M (new top, Doc4) = (0, 0, 0, 0, 1, 0, 0, 1) . (0, 1, 0, 1, 1, 1, 1, 0) = 1

Similarly, we can calculate for the rest of the documents in the collection.

For this example query, the coordinate matching ranking is Docl > Doc4

> Doc2 = Doc3 = 0.

8

The best feature of co-ordinate matching retrieval model is that it is

very simple and straight forward as all the required information is in the

inverted index. Also, in simplest way possible it introduces ranking,

which means that it gives the result to the user's query in form of list of

documents, the document with most of the query terms at the top. But,

it has three notable drawbacks which are listed below [4]

1. Term frequency is not taken in to consideration, that is, in vector

representation we just note if the term is "present" or "not present"

using binary notation.

2. Term scarcity defines how important the term might be in

describing the document, which is also not taken in to

consideration.

3. Long documents might always top the retrieval list since they are

likely to have more of most of the query terms when compared to

small documents.

To overcome first drawback, we can include the with-in document

frequency (fd,t) in the vector representation of documents. This will

change the inner product similarity formulation as given below. [4]

M (Q,Dd) = Q.Dd = \^w q,t .w d,i
tec?

Where w &t is the document-term weight for term t in document d.

Similarly, w q,t is the weight for query vector.

9

To tackle the second problem, the weight of the term [w d,t) has to be

reduced if it appears in many documents. This can be done by

incorporating "Inverse document frequency" in to the term weight, which

gives more importance or weight to the terms which occur less frequently

in the documents and vice versa. Now, weight of the term, wt can be

calculated as

i
Wt = —

ft

Where ft is the number of documents in which term t occurs. Now, w

dt can be calculated as [4]
W At = f d,t X Wt

This type of assigning document-term weights is called TFxIDF rule.

There are many variant methods available in the literature for calculating

document-term weights with different interpretations for relative term

frequency and inverse document frequency. One can choose which one

to use based on a particular situation.

The last problem can be removed by taking the length of the

document, which is count of the terms it contains in to consideration.

2.3 Vector Space Model

Vector space model is considered to be a statistical based retrieval

model since, it uses statistical information to determine the relevance

between the document and the query. In this model, the document is

represented as a vector of keywords from the respective document. The

10

corresponding weights for each keyword determine its importance in the

document and also in the collection [71. Similarly, the query is also a

vector representation of keywords in the query and also has

corresponding weights denoting the importance of the respective

keywords in the query.

Figure 2.2 below [8], shows a typical three dimensional index space

representation of three documents with three distinct terms. Generally,

the index terms are not limited and can be of any magnitude. So, a

document in a collection would be a t-dimensional vector where t is the

number of distinct terms in the document.

^ D , - t T , . T t , T 3 >

* T 2

Figure2.2 Vector representation of document space

11

In a collection, the similarity between the document vector and query

vector is measured and the documents are ranked based on the

measure. One of the most popular and common way to measure the

similarity is known as cosine rule. The logic behind the cosine rule of

ranking is that, if we assume a query vector to be starting from the origin

in the space in some particular direction, the highest rank should be

given to the documents that are closer to the query in angular sense [4].

When two vectors are identical then the angle between them would be

zero, then cos® = 1 since © = 0. This means that similar documents

with the query vector will have higher scores.

The cosine rule for ranking the documents is given below [4].

Cosine (Q, Dd) = rrrr—- S?=i Wq.t.wut
Wq Wd

Where,

Wq = VI?=1 w V and Wd = VS£=i w'dt

In the above equations, wq,t and wd,t denote the weights of the terms

in the query and the document respectively. There are many different

algorithms to weigh these terms and which one to choose depends on the

characteristics of the collection [9]. Once the inverted index similar to

as shown in the Figure 2.1 is built and the weights of the terms in each

document are pre calculated, query weights and cosine measure can

then be calculated once the user initiates the query. The results are

12

displayed to the user in descending order of document's cosine measure

values.

Vector space model is most admired and widely used because of its

simplicity and yet the capability of producing good results. It introduces

ranking to the results and also provides partial matching. Even with

many advantages of the model over others, it is far from being perfect.

One of the main flaws that are observed in vector space model is that it

considers all terms to be independent. In other words, the model

assumes that the terms do not have any relation between them. This

eliminates the two properties, polysemy and Synonymity in which the

terms are related [10].

2.4 Probabilistic Model

The 'probabilistic ranking principle' which states that the documents

need to be ranked or ordered based on their estimated probability of

relevance with respect to the query or the information need is the most

fundamental part of probabilistic model of retrieval [11,1]. Many

probability retrieval techniques proposed over years have different ways

of probability of relevance estimation [2].

Formal Model

Two events can be associated for a document query pair. If we name

the event as R when document D is relevant to Query Q, then the other

event would be a complement of the first, ~R when document D is not

13

relevant to Q. So, P(R/D) gives the value of probability of relevance of

document D. Using Bayes' theorem P(R/D) can be expressed in terms of

P(D/R) as follows [12].

P(D/R)P(R)
P(R/D) = , \

P(D)

To avoid considering the expansion of P(D), we take the log odds

instead of odds as given below.

lotf w m _ l og rtDMim

Since P(R) and P(R) are just scaling factors they can be ignored in the

above equation. Independence assumption is made between the terms in

the simplest version of the model, so P(D/R) can be written as a product

of each term's probabilities: [2]

p (D / R) = ntieQS>p{ti/R-).nmQ,D(i - pwR-y)

The above equation uses two probabilities; one is the probability of

presence of term t(in relevant documents set. The other is the

probability of absence of term tj in relevant documents set. Here, we

consider all the terms which are common to the query and the

document.

Substituting the value of P(D/R) in the log of odds equation and also

removing constant values for a given query, we get the following ranking

function. For further simplification we denote P(ti/R) as pi and P(ti/~R)

as qi [2].

14

The individual fraction value in the above equation is nothing but the

weight of the term ti in document D.

2.5 Language Model

Statistical language models were being used and researched from a very

long time. It is the mechanism of generating text and for many years was

extensively used in the field of speech recognition. But, language modeling

approach to information retrieval was first proposed in 1998. Ponte and Croft

were the first ones to propose an idea that language models can be used for an

effective retrieval [14].

Language modeling approach to information retrieval is based on the idea

that an efficient query can be formulated to get the required results by

imagining or guessing which words the relevant documents would contain and

then using a set of those words in the query. In probabilistic retrieval model

described in the section 2.4, we have seen that the model estimates the

probability of relevance of the document with respect to the query and then

ranks the documents based on the score. In this model, instead of estimating

the probability of relevance, we develop a probabilistic language model called

Md for each document in the collection and the documents are ranked based

on the probability of model generating the query [1].

The probability of generating the query Q given the language model Md, is

represented using P(Q/ Md). The maximum likelihood estimate (MLE) of term

15

t, given the model is given by [14]:

termfrequency in document(tft,d")
P A - (t / ^ - totalnuJer of toU^m

The ranking formula for each document which is P(Q/ Md) can be

calculated using the following [1]:

PA (Q/ Md) = Tltee P
Aml(t/ Md)

The symbol (A) suggests that the model is estimated. One of the important

questions here is that what do we do for the terms that have not occurred in

the document at all? We definitely do not want to assign PAmi(t/ Md) =0, since

if the term did not occur it does not mean that it is not possible, so some

weight should be assigned. The answer to this is smoothing of weights [14].

Usually a minimal value is assigned that means that it might still be possible

for the term to occur. In other words, if tf (t,d) =0, then we assign

PAmi(t/ Md) = —
cs

Where eft is term count in the collection and cs is the total number of tokens in

the collection. There are a variety of smoothing techniques available for

overcoming this practical problem of assigning zero weights [1].

Based on the smoothing method, the probability estimate of generating the

query is calculated for each document and they ranked based on that. Ponte

and Croft in their experiments have compared their language model with

traditional tf idf model on two different query sets and collections. Their

experiments showed that the language model outperformed the other in both

the cases [14].

16

CHAPTER 3

IMPLEMENTATION OF VECTOR SPACE MODEL

A formal introduction to vector space retrieval model is given in the

section 2.3. To get a deeper understanding on how the model works, we

consider a collection with small number of documents, a sample query

and calculate the weights and corresponding cosine similarity measure

to rank the documents. Let us consider the document collection given in

Table 3.1.1, which is of four documents, the number of times a term

occurs in a respective document, is shown in the brackets for

convenience [15]. The document vectors can be constructed in a similar

way we constructed vector representation in Table 2.2, but in this case

the presence and absence of terms in the documents is replaced by

individual term weights. As mentioned earlier, there are many ways to

calculate the term weights. Let us suppose, we have chosen the

following from the literature to calculate the same.

wt = log e (1 + N/ft) -> IDF(Inverse Document Frequency)

rd.t = 1 + loge fd,t -> Within-document frequency

rq,t = 1 -> Query term frequency

17

Wd.t = rd,t -> Weight of document term t

wq,t = rq,t . wt -> Query term weight

Where,

N - Total number of documents in the collection,

ft - Number of documents that contain term t.

Now, the document vectors will look like shown in the Table 3.1.2. Wd

values in the last column of the table are calculated using the individual

Wd,t weights of the terms in the document.

Document ID
Doc 1
Doc 2
Doc 3
Doc 4
Doc 5
Doc 6

Text
apple(3) balloon(2) elephant(l)

apple(l) balloon(2) chocolate(3) duck(l)
balloon(5) elephant(l)

balloon(l) Chocolate(l) elephant(l)
apple(l) balloon(2) Chocolate! 1)

Chocolate(l) elephant(4)

Table 3.1.1 Document Collection

Doc ID
Docl
Doc2
Doc3
Doc4
Doc5
Doc6

ft
Wt

Apple
2.0
1.0
0.0
0.0
1.0
0.0
3

1.0

Balloon
1.69
1.69
2.60
1.0

1.69
0.0
5

0.78

Chocolate
0.0
2.0
0.0
1.0
1.0
1.0
4

0.91

Duck
0.0
1.0
0.0
0.0
0.0
0.0

1
1.9

Elephant
1.0
0.0
1.0
1.0
0.0

2.38
4

0.91

Wd
2.80
2.97
2.78
1.73
2.20
2.58

Table 3.1.2 Document Vectors

18

The Wd, wt and Wd,t values in the table 3.1.2 are pre-calculated using

the information in inverted index , that is before the user is allowed to

enter the query, all the information in the table must be ready for access.

Table 3.1.3 shows the cosine similarity measure for two sample queries

{Duck} and {Duck, Chocolate} on the document collection.

Doc ID

Docl
Doc2
Doc3
Doc4
Doc5
Doc6

Duck
Wq=1.9

0.0
0.33
0.0
0.0
0.0
0.0

Chocolate, Duck
Wq=2.1

0.0
0.59
0.0

0.25
0.19
0.16

Table 3.1.3 Cosine Similarity Measure

Based on the cosine values calculated in Table 3.1.3, for sample query

1, the top ranked document would be document 2 when sorted in

descending order on the measure. Similarly for query 2, the ordering

would be Doc2, Doc4, Doc5, and Doc6.

3.1 Document Pre-processing and Term Weight Calculation

To implement and test a vector space retrieval system, a subset of 400

documents is taken from a document collection known as cranfield test

collection. This collection is available for download on the web [16]. The

19

xml version of the same is used. The collection is also provided with a

set of sample queries and relevance judgments file, this contains the set

of documents that are considered relevant for a query. These judgments

are needed to evaluate the system's performance on retrieval.

A snapshot of an individual document from the collection is shown in

the figure 3.1.

<DOC>

<0OCNG>
1
</DOCNO>
<TIXLE>
experimental investigation of the aerodynamics of a
wing in a slipstream .
</TIXL£>
<AUTHOR>
brers ckman,ni.
</AOTHOR>
<3IBLXO>
j. ae. 3C3. 25, 1958, 324.
</B13LIO>
<X£XT>

an experimental study of a wing in a propeller slipstream was
made in order to determine the spanwise distribution of the lift
increase due to slipstream at different angles of attack of the wing
and at different free stream to slipstream velocity ratios . the
results were intended in part as an evaluation basis for different
theoretical treatments of this problem .

the comparative span loading carves, together with supporting
evidence, showed that a substantial part of the lift increment
produced by the slipstream was due to a /destalling/ or boundary-iayer-
control
effect . the integrated remaining lift increment,
after subtracting this destalling lift, was found to agree
well with a potential flow theory .

an empirical evaluation of the destalling effects was made for
the specific configuration of the experiment .
</TEXT>
</DOC>

Figure 3.1 Individual document snapshot

20

Before we actually build the inverted index for a collection, there are

some preprocessing steps that need to be performed to reduce the

overhead, increase e the speed and also the size of the index. These steps

include parsing the xml document to get just the part in the <Text> tag

[Figure3.2], tokenization, stop word removal and stemming.

While parsing, to separate the content of each document or to mark

the end of document, a key word 'Reuter end' is used at the end of each

document. This idea of marking the document's end is taken from

another familiar test collection known as Reuters, it is specifically used

for text categorization purposes. The code for this task is available on the

web for download [17].

In the next step tokenization, we chop the character sequence in to

what are known as individual tokens [18]. At the same time we also

remove certain unwanted characters like the punctuation marks [1]. For

example, if we consider a character stream from the figure 3.1, "the

integrated remaining lift increment, after subtracting" after tokenization

process the list of tokens produced is given in the figure 3.1.2.

the integrated remaining lift after subtracting

Figure 3.1.2 Output of Tokenization

21

The next step is removing those words from the list of tokens that are

extremely common such as 'and', 'has', 'be' etc. and play no role in

selecting the relevant documents to the user query. Since these words

are of no use they can be removed which will reduce the index and total

number of terms by a significant number. A simple Java program would

do the task, by storing the list of stop words and then comparing them to

the tokens of the collection to remove them.

The last step in the pre-processing is stemming. In this process, the

terms are reduced to their root form. For example, "fishing", "fished",

"fisher" will be reduced to the root word which is "fish". The most

common and empirically effective algorithm for English language is

Porter's algorithm [1]. It is available in several programming languages

on the web [19]. Stemming ends the pre-processing to be performed on

the collection.

After stemming, an inverted index can be built similar to the one in

the figure 2.1. We will only consider unique terms in the collection,

these terms or tokens are also called as index terms. In this case, we will

need some more information in addition to document frequency and term

postings for the calculation of term weights in the document and the

query. We will also need the within document frequency, fd.t for

document term weight calculation. In Java, hash map is the data

structure that can map key value pairs. After building the inverted

22

index, postings, document and term frequency information can be loaded

on to individual hash maps for easy access and fast scanning.

The weights that must be pre calculated before the query processing

are Wd, Wd,t and wt. These values are independent of the query terms or

the information need, so can be calculated in advance. The formulae

used for the calculation are given in chapter 3 introduction. The

snapshot of the calculated values is given in the figure 3.1.3, 3.1.4 and

3.1.5 respectively for Wd, Wd,t and wt.

1 , 1 2 - 4 0 4 6 8 2 2 O 5 9 2 9 1 5 7
2,14-. 9 0 8 5 5 9 1 9 8 0 1 9 8 0 5
3 , 3 . 7 4 1 6 5 7 5 8 6 7 7 3 9 4 1 3
4 . S. 4 1 9 9 3 6 0 3 8 0 0 0 3 2 3
5,6. 0 3 5 5 5 2 6 2 8 2 1 7 9 6 4
6 , l O . 425-4 6 8 2 1 6 4 8 5 0 7 7
7 , 1 5 . 2 8 2 3 8 3 1 5 3 3 1 9 2 4 6
8 , 1 2 . 9 3 9 2 0 5 0 9 1 2 9 6 8 5 6
9 , 1 8 . 6 8 6 8 8 7 3 1 0 0 5 2 3 9 5
1 0 , 7 . 2 3 1 8 0 8 8 0 3 2 1 7 2 1 1
1 1 , l O . 4 8 1 2 6 2 1 2 5 4 0 2 1 5 7
1 2 . 1 1 . 7 8 8 5 9 0 4 6 6 9 0 0 6 4 5
1 3 , 1 2 . 6 9 7 2 9 6 0 8 9 7 5 2 7 4 5
1 4 , 2 0 . 3 5 3 3 7 7 7 7 3 2 2 3 9 2 2
1 5 , 1 2 , 2 1 1 8 0 1 6 8 2 5 4 1 5 5 7
1 6 , 1 2 . 0 2 6 7 0 9 4 8 9 4 7 5 9 2 3
1 7 , 1 2 . 5 2 6 3 5 4 6 2 6 2 4 8 7 3 8
1 8 , 1 1 . 6 5 4 8 8 4 3 2 0 6 5 1 2 7 5
1 9 , 7 . 4 2 9 7 0 2 8 3 7 2 7 6 1 0 2 5
2 0 , 1 4 . 0 4 4 4 54 6 7 3 7 1 7 9 6
2 1 , 8 . 0 5 3 5 S 3 4 7 0 6 8 1 8 9 5
2 2 , 9 . 4 1 9 1 1 2 7 0 4 0 6 7 1 7 6
2 3 , 1 1 . 9 7 6 4 5 3 5 9 1 7 6 6 4 7 9

Figure 3.1.2 Wd values

In figure 3.1.3, the Wd values for each document in the collection is

given. The document number and the values are separated by a comma.

23

acconipam ,152 ,1 .0
accompam* , 207 ,1 .0
acconspani , 261,1 .0
accompani ,53,1.0
accompl1sh,163,1.O
accomplish,172,1.0
accompli sh,192,1.0
accompli sh,47,1.0
accord,110,1.0
accord,125,1.0
accord,133,1.0
accord,134,1.O
accord,152,1.0
accord,263,1.6931471805599454
according"!!,179,1.0
accordingli,184,1.0
accordi ngli,188,1.0
account,132,1.6931471805 5994 54
account: ,134 ,1. 0
account,149,1.0
account,170,1.0
account,171,1.0
account,172,1.0
account,182,1.0
account,202,1.0
account,207,1.0
account,210,1.0
account,22,1.0

Figure 3.1.4 Wd,t values

In figure 3.1.4, Wd.t values of each term in a document is given.

Term, document number and values are separated by a comma.

Similarly in figure 3.1.5, we have wt values separated by a comma with

the index term.

3.2 Algorithm and Pseudo Code

After the pre-calculation is done, the user can now enter a query to

the system to find relevant documents. Given below are the steps that

are performed before the results are given to the user.

1. Query Input and processing.

Ju s t like the test collection, the user's query also needs some

processing before the weight calculation. Since the user enters the

24

query in natural language we do not need the parsing here

described in section 3.1.

'ade.qu.3.36037 5 3S71419
adiabat,3.857214768933X513
adiac,3.S572X476893315X3
adjust,4.94164 24 22609304
admit:,4. 94164 24 22609304
adopt,4.941642422609304
advanc,4.036008985209137
advantag a 3. 5765 502691400:166
advers,3.8572147689331513
aerial,5.631211781821365
aero,4.941642422609304
aer odynawi, 2. 359551917600723
aerodynamieist,5.631211781821365
aeroel astr, 3. 857214 7689331513
aero-foil ,3. 57655O269X400X66
aeronaut, 4 . 0.360089852091.37
aeroplian, 5. 63121178X821365
affect,3.184 974 27 3192 5192
affin,5.631211781S21365
afford,5.63X211781821365
after,3.7065790312133373
a f t e r b o d i , 4 . 0 3 6 0 0 8 9 8 5 2 0 9 1 3 7
afterburn,5.631211781821365
afterfTow,5.6312117S1821365

Figure 3.1.5 Wt values

We perform tokenization, removal of stop words and stermning

on the query. For example, if the user enters the query as 'have

flow fields been calculated for blunt-nosed bodies and compared

with experiment for a wide range of free stream conditions and

body shapes'. After processing steps it becomes 'flow field calcul

blunt nose bodi compare expert wide rang free stream condit bodi

shape'.

Pseudo code

If (txt.Querystring is not null)
{
/ / Get the query in to a string, trim and call string tokenizer
StringTokenizer st = new StringTokenizer(Query);

25

/ / call objects of stemmer and removestopwords class
Removewords rmstopqy_obj= new RemovewordsO;
Stemmer stemqy_obj=new Stemmer();

Try
{
/ / Open a new buffered writer for a file inputqrystring.txt
/ / while string tokenizer has more tokens
while (st.hasMoreTokensO)
{
/ /Write the token to the file inputqrystring.txt
}
/ / close the writer
Writer, closefj;
/ / call removestopwords class
rmstopqy_obj. main(null);
/ / call stemmer class passing required parameters
} / / e n d of try
CatchO
{
/ /Ca tch the exception of buffered writer
} / / end of catch
}

2. Query weights calculation.

After processing the query, for the remaining terms or tokens,

Wq value should be calculated which remains constant for a query.

As mentioned in section 2.3, Wq can be calculated using the

following formula.

wq=Vz?=1w^t

Where wq,t = rq,t . wt as per the literature for weight calculation.

Since, rq,t is 1, we can ignore it and concentrate on getting the wt

values for the stemmed query terms. If the query terms exist in

26

the collection, the wt values of which are pre calculated and are

loaded on to hash maps, we can get those values by accessing the

data structure, otherwise we can consider the wt value to be zero.

Now, the wt values can be used to calculate Wq. Given below the

pseudo code for the function to calculate Wq value once the wq,t

values are ready.

Pseudo code

public double CalculateWq(ArrayList<Double> wqtlist_terms){
/ / declare a double variable to hold the summation value
Double sum_val =0.0;
for(iterate through the passed arraylist wqtlist_terms){
/ / get the current value from the list
/ / calculate the square value of wq,t value
double sq_wqtvalue= Math.pow(wqt_val,2);
sum_val = sumjval +sq_wqtvalue;

} / / end of for
/ / declare a double to hold the final value of Wq
double Wq_value=Math.sqrt(prior_Wq);
/ / return the Wq value to the function
return Wq_value;

} / / end of the function

3. Cosine measure calculation of each document in the collection.

Assuming that all the required hash maps for Wd, Wd.t are loaded

and Wq value for the query is calculated, we can now begin the

calculation of cosine similarity score for each document. We

declare a hash map for holding the scores, first as we do not know

the scores, the keys would be the document id's (1.. . n), n being

the total number of documents in the collection. The values for all

27

the keys are initialized to be zero in the beginning. We do this to

avoid looping through all the documents which will save the

computation time. After the values in the structure are updated

with the summation of query terms that are common to the query

and the document, we normalize the values by the product of Wq

and Wd.

Given below is the pseudo code for the function

CalculateCosineMeasure which takes the calculated Wq value and

an array list of stemmed query words.

Pseudo code

public void CalculateCosineVal(double Wq_val,
ArrayList<String> query_stemmed_words)
{

/ / for each query term
For (int i=0; i<query_stemmed_words.size(); i++)

{
/ / Get the documents list that contain the current

query term
terms_in_docs_List= Get_Docs_of_Term(stemmed_word);
for (int j=0; j< terms_in_docs_List.size(); j++)
{

/ / Get the wd,t and wq,t values of the current
stemmed word

Double wd,t = get the value from hash map
Double wq,t = get the the value from hashmap
/ /Extract the value in the data structure for the

key as DOC
ID and update by adding the product of wa.t and

Wq.t

if (hashmap.contains(j))
{

Cosineval = hashmap.get(j)+ wd.t * wq,t;

28

}
} / / End of inner for loop

} / / end of for
} / / end of the function
//Normalize the values in the data structure

4. Sort and display of results.

In this final step, we access the cosine measures hash map, sort

the values based on cosine score using the java inbuilt function

'collections.sort', we also print the top 20 values to a file which can be

displayed to the user as relevant results.

3.3 Interface and Results snapshots

The interface and classes were implemented in Java using Net Beans

IDE. The screen shot of the screen presented to the user for entering

the query and also to analyze the results is shown in the figure 3.3.1.

£J UNLV Vector Spare Search !^^^^^^^^^^^^^^^^M^BmBK^^^m

Fite Help

U N L V

Vector Space Search Engine

I 1 enter the search string| ; f

j j Search;;.-]

1
i Relevance Psscfbaek 1

Figure 3.3.1 Initial screen

29

In the screenshot given in the figure 3.3.2, the user has entered a

query and pressed the search button to initiate the retrieval process.

'JNLV Vector Space ^ * ' c ' l 5 ' > . f f l H ^ ^ ^ ^ f e S 4 " ; ''$.

Be-*Hrfp.'::::.'!;'?'v

3feflSfil

U N L V

Vector Space Search Engine

what similarity laws must be obeyed when constructing aeroelasti j I j Relevance Feedback

.: Search

Ckfc here to « w the results

Figure 3.3.2 User enters the query and clicks on Search button

Once the search is complete, the label below the text box provided to

enter the query is enabled and the user can click on the label to view the

results. The screenshot of the same is provided in the figure 3.3.3.

The results are displayed to the user in a separate window that pops

up when the user clicks on the label on the screen 'Click here to view the

results'. The screenshot of the results window is shown in the figure

3.3.4.

In figure 3.3.4, the cosine measures and their respective document

numbers are displayed as results separated by a comma.

30

li§SM^^»
i Ftle Help

j

I
?

1
1

. _ .

UNLV 1
Vector Space Search Engine

!v*at similarity tas must be obeyed *hers constructing aeroetesti; f] Relevance Feedback

| .SSBfCh: ; |

Click here to view She results

Figure 3.3.3 User can now click on the label to view the results

'4
_&SBSSKSSiSiM

O. ,Ci,396"?3E

O.03952584038267137,35

O.03333503055135262,50

O.033356322953743436,160

O.03823407184653342,97
O.03767270717186881,25

O.03697122167443S03,53

O.03571S11346336203,232

O . 03S401328583943435, .147

O.03460690378795676,170

O.Q32833321Q9Q87S905, .174

0.03.185780590:151742, .120

O . 03.13308274:13.17369, 157

0.03093407572573561,30

O . 02 9987 624243Q67897 , 240

Q. 02964702442:94 51354,140

Q.029609084292553343,75

Q.029493763915481436, 33

O.02885403004979525,216

O.028721780276883976,89

O.02864023794022483,206

O.028580741653012554,107

O.026643420559059595, 62

O.Q26Q34S61533331987,45

O.02602610815277433,144

•BBBSIK

Figure 3.3.4 Results

31

CHAPTER 4

RELEVANCE FEEDBACK

Users usually feel that effective retrieval query formulation is a

tedious process, especially if they have don't have detailed knowledge of

the document collection. So, to improve the effectiveness initial user

query must be reformulated such that it can provide user with more

relevant documents based on the initially retrieved relevant documents.

One such technique for automatic and controlled query reformulation

was introduced in mid 1960s is relevance feedback. This alteration to

the query actually moves it nearer to the direction of relevant documents

[20].

4.1 Types of Relevance Feedback

Relevance feedback techniques are usually differentiated based on the

type of feedback or involvement of the user.

4.1.1 Implicit Feedback

This type of feedback requires the least amount of effort from the user

to improve the retrieval performance using relevance feedback. Data

required is collected without the user interference by monitoring his

32

behavior while performing the search. Some of the commonly used

behaviors include reading time, scrolling and interaction. For relevant

documents the time spent and reading done will be definitely more than

non relevant ones [21].

4.1.2 Explicit Feedback

In explicit feedback technique, the user's opinion is taken in to

consideration to decide if a document is relevant or not. For example, a

checkbox may be provided for each document retrieved initially, to mark

the relevancy or even options could be given from which the user can

choose one option which gives indication on the relevancy of the

document.

4.1.3 Pseudo Feedback

This type of feedback is also known as blind relevance feedback since

this completely eliminates the user interaction and makes an

assumption that the top k documents in the initial retrieval are relevant.

This technique is automatic and works most of the time. The only

drawback with this comes with the assumption made, when the top k

documents retrieved initially are not actually relevant to the query, then

the relevance feedback applied may drift the results in to a totally

different direction. [1]

33

4.1 Relevance Feedback Models in Vector Space

In section 4.1, we have seen how the feedback techniques are

differentiated based on user interference. But, the techniques are also

different when applied to different information retrieval models. In this

section, we discuss the feedback models that can be applied to a vector

space model. Rocchio and Ide are the two most frequently used feedback

models in vector model. A version of Ide known as Ide dec-hi and

Rocchio are implemented in SMART retrieval system [9].

4.2.3 Rocchio Model

Figure 4.2.1 shows how rocchio relevance feedback works. [1] It

modifies the initial query in a such a way that the revised query is nearer

to the set of relevant documents.

_...--—
Initial ,,-"'"'
query / \ x

' """""••-.

i
\ x

5

i

X

i
I
\ /
\ x/
V
A

T> - 1 V -Revised
quay

- —

"""*A

0
OA
X

0 0

X

.,.--"""

• — —

0

X

0

.-—-

—.-

X

X

. . — • - • "

• • — — —

X X

x x

X

X
J, . ._

.-*•""*

x known aott-

~_
"\
\

x \
i

X

t

X /
1

y

•relevant documents
o known relevant documents

Figure 4.2.1 Rocchio model illustration

34

If the initial query is marked by Qo and the modified query is denoted

by Qi, then, as per the rocchio algorithm the revised query can be

obtained from Qo using the equation given below [22].

Rocchio 0 , = Qo+ P Z k ^ - Y IiU |

Where Rk and Sk are the vectors of relevant and non relevant documents

respectively, n l and n2 are the number of relevant and non relevant

documents considered respectively. (3 and y are the parameters that

control the contribution of relevant and non relevant documents.

4.2.2 Ide Model

In 1971, Ide extended Rocchio's work and proposed two different

feedback models. They are very close to the Rocchio's model of

feedback, in this model the terms found from the previously retrieved

relevant documents are added or subtracted to the original query without

the normalization to obtain the new query. Given below are the two

versions of Ide, one is known as "Ide Regular" and the other is "Ide dec-

hi" [20].

Ide Regular Qi = Qo + Zf^Rk - Zf=15fc

Ide dec-hi Qi = Qo + !*=! Rk - Sk

Where Qo, Qi. Rk, Sk, n l and n2 denote the same as specified in the

section 4.2.1. In the feedback method 'Ide Regular', we consider all the

non relevant documents, but, in the method 'Ide dec-hi', we only consider

35

one non relevant item, usually the one that is retrieved earliest in the

search.

4.3 Pseudo Rocchio Relevance Feedback in Vector Space Model

The implementation and interface for a vector space retrieval model

system is described in the chapter 3. To improve the efficiency and

number of relevant documents retrieved for a given user query, one of

the relevance feedback techniques mentioned in section 4.2 is

incorporated in to the vector space model implemented.

For its simplicity and known efficiency, a pseudo rochhio model of

feedback is implemented. The description on pseudo and rocchio types

of feedback models is given in section 4.1.3 and section 4.2.3

respectively.

4.3.1 Query Expansion

Since it is a pseudo or blind feedback, we assume that the top 10

documents retrieved initially are relevant and use the terms from the

same for query expansion. A new query, Qi is constructed from the initial

user query Qo using rocchio's algorithm where ni in this case would be

10. Given below is the equation of rocchio's model for new query

generation.

Rocchio Q I - Q O + P S S ^ - Y Z E ^

Where,

n l = number of relevant documents = 1 0

36

(3=1 and Y=0(non relevant documents not considered)

Rk = Document vector of relevant document k

Now coming to choosing the terms from the assumed relevant

documents, experiments have shown that selecting all the terms from the

selected documents is not a good option since it might add not so

important terms to the query and also makes the query really huge since

each document may contain hundreds of terms. Study has shown that

using smaller and good set of terms from the relevant documents often

helps in providing the user more number of relevant documents. Also,

there are some term selection techniques available for choosing the terms

based on the document frequency, term frequency or inverse document

frequency information [23].

Number of terms and term selection technique chosen from the

relevant documents usually depends on the document collection, since

different collections seem to perform differently on the criteria chosen.

4.3.2 Implementation

The feedback comes in to picture once the user enters the initial

query and clicks on the search button as shown in the figure 3.3.3. The

following steps are performed for query expansion and reweighing.

1. Get the terms from the top 10 relevant documents retrieved.

In this step, we first get the top 10 document numbers or Id's of

the initial result. We can then pass this id to a function that

37

actually gets the terms in the corresponding document id passed.

Pseudo code of the function getting the terms given the document

id's as input is shown below.

Pseudo code

public ArrayList<String> GetTermsinRelDoc(Integer docnum)

{
/ / function that takes input as one of the top 10 document id

and returns an array of document terms
/ / Get the records (term, document id, Wd.t) where document id

is same as the document id passed
Integer DOCNO=Integer.parseInt(Docnum);
if(DOCNO.compareTo(docnum)== 0)

{ String termandwdt=Wdtval+","+term;
Listterms_reldoc. add (termandwdt);

}
/ / sort based on wd,t value in descending order
/ / only select the top 5 terms from the array
Listterms_reldoc. subList(5, sizeofarray). clear();
/ / return the arraylist
return Listterms_reldoc;
} / / end of function

2. Modify or add the new query term weights after adding the

document terms. A hash map stores the query terms and their

corresponding weights. But these need to be modified, if the term

exists, the weight need to be modified or a new term must be

added if otherwise. Given below is the pseudo code for the same

task that is updating the hash map for each term selected from the

top ten relevant documents.

38

Pseudo code

public void UpdateHashMapqueryterm_wt()
{

/ / for each document in the relevant documents list
for(int i=0;i<RelDocnum_List.size();i++)
{ / / Get the document id and pass it to function that gets the

terms from the document
TermsinRelDoc=GetTermsinRelDoc(DNO);
/ / for each term selected from the document

for(int j=0;j<TermsinRelDoc.size();j++)
{ / / Get the term and get the value from hash map if

entry exists or add one if otherwise.
If (queryterm_wqt_mapping.containsKey(termonly))

{ / / update the current value by adding the fraction
Newwqtval = queryterm_wqt_mapping.get(termonly) +

(wdtdoubval/10);
/ / update the current value for the term in the hash

map with calculated value
queryterm_wqt_mapping. put(termonly, newwqtval);

}
Else

{ / / add new entry to the map
queryterm_wqt_mapping. put(termonly, (wdtdoubval/10

));
}

} / / close of inner for loop
/ / clearing the temporary array for next loop values
TermsinRelDoc.clearfJ;
} / /close of outer for loop
}

3. Use the modified query to calculate new cosine measures. Since

the modified query and the weights are now ready. From here on

the process will be similar to what has been discussed in section

39

3.2. Steps 2, 3, and 4 in the algorithm for vector space model

similarity measure will be repeated here. cosine

4.3.3 Results

As shown in the figure 3.3.3, the check box 'Relevance Feedback' will

be enabled for the user selection once the initial results are ready for the

review. The user can run the retrieval model again for the same query,

the difference this time would be the application of pseudo relevance

feedback to the model for new set of results.

Once the user checks the option for feedback, all the steps given in

section 4.3.2 will be executed in order to display the results. Given below

is the screen shot of user initiating the feedback.

&» UNLV Vector Space $«*"&„

Ftle Help

U N L V
Vector Space Search Engine

i * i
iwhat similarity laws must be obeyed when constructing aeroelasti' P I Relevance FeedbacS |

| 1 Search 1 i

= " J
Figure 4.3.1 User initiates feedback

40

Once the user checks the relevance feedback option, the label 'click

here to view results' will be disabled and will be enabled once the new

results are ready for review as shown in the figure 4.3.2.

1 file Help

s

IBiiiii^^

U N L V |
Vector Space Search Engine

ivshat similarity laws must be obeyed when constructing aeroeiasti 4, Relevance Fee&ack 1

| Search J

C8ck here to view the results

Figure 4.3.2 new results ready for review

The results open in a different window that has information on the

cosine measure and the corresponding document id as shown in the

figure 4.3.3.

41

Results wgjp^tn1^ V-1 _3l - ' y*«\'' «w|

0.4175625294384334,51

0 . 3884611479334916, .102

0.3826366689945764,184

0 . 3811744705870177, .12

O.3614200076463949,56

O.35616736174231584,13

0.35332534440863246,26

O.3S255G3G066547Q55,175

O.34935887302639556,23

0.33998361712828873,45

0.33972568104079176,271

0.3373737368468945,121

O.3324600842090693,78

0.3313194571238483,141

0.3305741092159324,30

0.32998595515556023,75

O.32930306475092813,219

0.3290975923517128,137

0.3274169113823018,220

0.3263749925783051,67

0.32 570:946330608194, 235

0.3243341425020975,261

0.324 6014606236504,2 42

O.32 30787213845554 6,95

0.3225082557872518,84

o a,a.ia.aa,.arT.iCT.a^aagLCiJi?i^..n... a is-

Figure 4.3.3 Results window

42

CHAPTER 5

RESULTS AND EVALUATION

To evaluate any information retrieval system, we need a test

collection, sample set of queries which is the information need and a set

of relevance judgments for the sample queries which has information on

relevant documents for a given query from the collection.

As specified in section 3.1, a subset of cranfield collection is used as a

test collection which is provided with a set of 225 queries along with their

relevance judgments.

5.1 Evaluation of Vector Space Model

There are many ways in which a ranked retrieval system can be

evaluated. Choosing one among them highly depends on the

requirements of the system on the results. Some of very common

evaluation methods of a ranked retrieval are 11-point interpolated

precision or more commonly a recall-precision graph, Mean average

recision (MAP), precision at k and R-precision [1].

For all the evaluation methods we will need two measures in common

which are recall and precision. The precision Pr is defined as a fraction of

relevant documents retrieved in top r ranked documents [4].

43

Number of relevant retreived

total number ratreivad

Recall Rr, on other hand is the fraction of relevant documents

retrieved to the total number of relevant documents for a information

need.

J-J Number of relevant retreived

teealmtmber relevant

Now, for evaluation we consider a set of queries from the sample

queries of the test collection and calculate recall and precision at each

document retrieved. We then average the precision measure across the

measure. The table below gives details on k-precision, k being 20 as we

consider the top retrieved results and also R- precision average value for

set of queries.

Average value
of K-Precision

35%

Average value of Im
precision

54.7%

Average recall after
20 documents

retrieved
66.5%

Table 5.1.1 Precision and Recall average values

Precision at k is nothing but the exact value of precision at some

value of k, where k is the number of top retrieved documents considered.

For example, if we consider a query qi, and suppose it have a total of

44

eight relevant documents as per the relevance judgments of the

collection. At the 20 th document retrieved, the precision value is say

30%, similarly each query will have a different precision value at the

same level. The first column in the table 5.1 shows the average of exact

precision value of all the queries considered.

The second column in the table gives the average of R-precision

values at a particular level of each query considered. R-precision usually

gives better estimate than K- precision since it takes the number of total

relevant documents for a query in to consideration. Suppose a query has

R number of total relevant documents, then we examine top R retrieved

results and say r out of them are relevant which means the value of

precision at that point would be r /R and so will be recall [1]. For

example, if a query has 19 relevant documents, we take the precision

value at 19 based on the number of relevant documents retrieved at that

point.

The last column shows the average of all the exact recall values after

the twentieth document is retrieved.

Table 5.2 shows the calculation of precision and recall after each

document is retrieved for a sample query. The process will be repeated

for each of the query considered to get the average values.

45

Query: "what similarity laws must be obeyed when constructing aero

elastic models of heated high speed aircraft?"

Documents
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Relevant
R
R
R
R
R
R
R
-

R
R
-
-

R
-
-

-

-

-

-

-

Recall
5%
10%
15%
21%
26%
31%
36%
36%
42%
47%
47%
47%
52%
52%
52%
52%
52%
52%
52%
52%

Precis ion
100%
100%
100%
100%
100%
100%
100%
87%
88%
90%
81%
75%
76%
71%
66%
62%
58%
55%
52%
50%

Table 5.1.2 Detailed Precision and Recall values for sample query

5.2 Effect on results with Relevance Feedback

Before we examine the statistics of the retrieval method after applying

relevance feedback to the initial results, we focus on how the results vary

by taking a sample query and comparing the initial results which is the

46

outcome of vector space model with the feedback results. Let us

consider the same query used in section 5.1 for table 5.2.

The relevant documents list for the query from the relevance

judgments of the test collection is given in figure 5.2.1 and the initial

results for the query are given in the figure 5.2.2. The relevant

documents that are retrieved initially are marked with a red rectangle.

1 0 184 2
1 0 29 2
1 0 31 2
1 0 12 3
1 0 51 3
1 0 102 3
1 0 13 4
1 0 14 4
1 0 15 4
1 0 57 2
1 0 185 3
1 0 30 3
1 0 37 3
1 O 52 4
1 0 142 4
1 0 195 4
1 0 5 6 3
1 0 66 3
1 0 95 3

Figure 5.2.1 Relevant documents list of the query

Initially the vector space retrieval model identifies ten of the relevant

documents of the query given in the figure 5.2.1. We then apply

relevance feedback and the results after the feedback is given in figure

5.2.3. We can see that the results have changed quite a bit even though

47

some of the documents retrieved are same in both the cases. The

feedback gives new direction to the results, a simple feedback that

assumes the top k number of retrieved documents as relevant uncovers

two new relevant documents than the vector space. The new relevant

documents are marked in red rectangles.

p
jo
jjo
|o

l o
0
0

, 20564266619344973, 51

,13276611051165688,102

, 12047262548.998089, 12

,0870064.2649090139,184

,08645593121014932,13

, 0341700553817475, 56

, Q7964_018314QQ47S5f 195

0.07744360704638581,252

0.07227158261003213,14

0.06582824562388231,142
"0*SS*?ll'SIl§'lil2lll8b'liS5ll5,i"'T72T3"

, 0656996659672205, 5

, 06549601B83665619, 29

06335599991479703,141

0633299.1342254389, 202

06302735089744586,240

059452656934047034,229

059002320656072464,101

058082849.96622348,214

05763522188395695,78

_ I

Figure 5.2.2 Initial Results of query showing relevant documents

48

Feedback results can be varied and examined for performance

changes by modifying simple parameters such as number of top

documents considered for feedback or even the number of terms from

each assumed relevant document.

[̂Results

0.4102654590805236,51

0.37017789721666117,102

0.34849116394827095,12

0. 3062185485529211,13

0.2882898021.907529,120

0.2881777918307781,253

0.28696362345385024,45

0 .28620169184026434,184

0.2791550417903742, 67

0.2780869011429414, 242

0.27733778210016896,23

0.27615932344897703, 271

0.27526956739298936,251

2742270914406122,95

^ 5 5 4 4 4 552*0*675?
-272483'i"l473597066,3Q|

"2*?Xt>Z9&;Z399Ufca.i7, 19S

0.2709788848820823, 29

0.2664109561213652,229

0.26534849085228945, 75

Figure 5.2.3 Results of feedback showing new relevant documents

49

The most obvious way to measure performance of a system that uses

relevance feedback is to calculate recall and precision again for the new

results and compare the value with the initial ones. The performance

will definitely be high in the second case specifically because the vector

space has already uncovered ample amount of relevant documents in the

set of top retrieved documents that will be ranked higher in the second

set of results.

To overcome this problem, we can use the documents in residual

collection that is by removing the documents which are already marked

relevant for evaluation of new results after feedback, but, doing this

would give the projected performance a lower value almost all the time

than the original query. It is very difficult to compare the performance of

the system with or without relevance feedback. Usually the best

possible way is to do a survey with different users on how many relevant

documents they were able to find using feedback [1].

The relative performance of two different versions or variants of a

feedback method can be compared in a valid way. Table 5.2.1 shows the

performance measures of the two variants of feedback. The variants

differ in the number of documents they consider from the initial results

for feedback. The first one assumes the first five documents being

relevant and the second assumes ten.

50

The performance measures include precision averaged over a set of

queries. Both the variants perform almost same with a minimal

difference between average precision across queries.

Feedback
Variant

1
2

Number of top ranked
documents

5
10

Average
Precision

63.25%
61.25%

Percent
Change

-

-3.0%

Table 5.1.3 varying the number of top ranked documents

Similarly, other parameters can be varied of the feedback method to

compare and the performance and choose the one that is most

appropriate.

51

CHAPTER 6

CONCLUSION AND FUTURE WORK

The main objective of this thesis is to implement and examine a

retrieval model and its behavior when relevance feedback is used. Vector

space retrieval model was implemented among the different models

discussed in chapter 2. Based on the results and evaluation performed

on the model, we can conclude that vector space works really well all by

itself in extracting most of the relevant documents for given information

need. But, with application of one of the simplest forms of feedback

strategy it tends to extract even more documents that are relevant.

This thesis concentrates on Vector space model for retrieval. Other

models can be implemented and the performance between the models

can be compared over a larger collection of data. Also, different feedback

strategies discussed in chapter 4 can be applied to different retrieval

models to analyze which one outperforms the others. It can further be

extended by varying several variants in a feedback method based on term

and document selection.

52

BIBLIOGRAPHY

1. Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schiitze, 'Introduction to Information Retrieval', Chapters 1, 6, 8,
9, 11 & 12, Cambridge University Press, 2008.
http://nlp.stanford.edu/IR-book/htrnl/htmledition/irbook.htrnl.

2. Amit Singhal, 'Modern Information Retrieval: A Brief Overview',
IEEE Data Engineering Bulletin, Volume 24, pages 35-43, 2001.

3. C. J . Van Rijsbergen, 'Information Retrieval', Second Edition,
Chapters 1, 6 & 7, Information Retrieval Group, University of
Glasgow, London: Butterworths, 1979.

4. Ian H. Witten, Alistair Moffat, and Timothy C. Bell, 'Managing
Gigabytes', Second Edition, Chapter 4, Morgan Kaufmann
Publishers, Inc, San Francisco, May 1999.

5. Ricardo Baeza Yates, Berthier Riberio Neto, 'Modern Information
Retrieval', Chapter 1, Addison Wesley, Addison Wesley Longman,
1999.
http://people.ischool.berkeley.edU/~hearst/irbook/l/node2.html.

6. Anselm Spoerri, 'Info Crystal: A Visual Tool for Information
Retrieval', Chapter 2, Massachusetts Institute of Technology, 1995.

7. Dik L. Lee, Huei Chuang, Kent Seamons, 'Document Ranking and
the Vector- Space Model', IEEE, Volume 14, Issue 2, Page(s): 67 -
75, March/April 1997.

8. G. Salton, A. Wong and C. S. Yang, 'A Vector Space Model for
Automatic Indexing', Cornell University, Communications of ACM,
Volume 18, Number 11, Page(s): 613 - 620, November 1975.

9. Kazem Taghva, Julie Borsack and Allen Condit, 'Effects of OCR
Errors on Ranking and Feedback Using the Vector Space Model',
Information Science Research Institute, UNLV, Inf. Proc. and
Management, 32(3): 317-327, 1996.

53

http://nlp.stanford.edu/IR-book/htrnl/htmledition/irbook.htrnl
http://people.ischool.berkeley.edU/~hearst/irbook/l/node2.html

10. Dr. E. Garcia, The Classic Vector Space Model: Description,
Advantages and Limitations of Vector Space Model', Article 3 of
series Term Vector Theory and Keyword Weights.
http://www.rniislita.com/term-vector/term-vector-3.htrnl

11. S. E. Robertson, C. J . van Rijsbergen and M. F. Porter,
'Probabilistic models of Indexing and Searching', Proceedings of the
3rd annual ACM conference on Research and development in
information retrieval, Cambridge, England, Page(s): 35 - 56, June
1980.

12. K. Sparck Jones, S. Walker and S. E. Robertson, 'A Probabilistic
model of Information Retrieval: Development and Comparative
Experiments', Part 1, Information Processing and Management: an
International Journal, Pergamon Press, Inc, Volume 36, Issue 6,
January 2000.

13. LEMUR Toolkit for Language Modeling and Information Retrieval,
background and tutorial
http: / /www. lemurproj ect. org/

14. Jay M. Ponte and W. Bruce Croft, 'A Language Modeling Approach
to Information Retrieval', Proceedings of the 21st annual
international ACM SIGIR conference on Research and development
in information retrieval, Melbourne, Australia, Page(s): 275 - 281,
1998.

15. Kazem Taghva, 'Data Mining Concepts', Lecture Notes, Spring
2008, University of Nevada, Las Vegas

16. Information retrieval group by Keith van Rijsbergen, Test
Collections.
http://ir.dcs.gla.ac.uk/

17. Kiran Pai, 'A simple way to read an XML file in Java', 2002.
http://www.developerfusion.com/code/2064/a-simple-way-to-
read-an-xml-file-in-java/

18. HappyCoders, TokenizingJavasourcecode' (n. d.)
http: / /www.java.happycodings.com/Core_Java/code84.html

19. Martin Porter, 'The Porter Stemming Algorithm', J a n 2006.
http: / /tartarus.org/~martin/PorterStemmer/.

20. Gerald Salton and Chris Buckley, 'Improving Retrieval Performance
by Relevance Feedback', Readings in information retrieval, Page(s):

54

http://www.rniislita.com/term-vector/term-vector-3.htrnl
http://ir.dcs.gla.ac.uk/
http://www.developerfusion.com/code/2064/a-simple-way-to-
http://www.java.happycodings.com/Core_Java/code84.html

355-364, Morgan Kaufmann Publishers Inc, San Francisco, CA,
USA, 1997.

21. Diane Kelly and Nicholas J. Belkin, 'Exploring Implicit Sources of
User Preferences for Relevance Feedback During Interactive
Information Retrieval', School of Communication, Information and
Library Studies, Rutgers, The State University of New Jersey.

22. Donna Harman, 'Relevance Feedback Revisited', Proceedings of the
15th annual international ACM SIGIR conference on Research and
development in information retrieval, Copenhagen, Denmark,
Page(s) :1 - 10, 1992.

23. Carol Lundquist, David A. Grossman, Ophir Frieder, 'Improving
Relevance Feedback in the Vector Space Model', Proceedings of the
sixth international conference on Information and knowledge
management, Las Vegas, Nevada, United States, Page(s): 16 - 23,
1997.

55

VITA

Graduate College
University of Nevada, Las Vegas

Deepthi Katta

Home Address:
4006 Emerald Street, Apt # 105
Torrance, CA - 90503

Degrees:
Bachelor of Technology in Computer Science and Engineering, 2005
Vellore Institute of Technology, India

Thesis Title: A Study of Relevance Feedback in Vector Space Model

Thesis Examination Committee:
Chair Person, Dr. Kazem Taghva, Ph.D.
Committee Member, Dr. Ajoy K. Datta, Ph.D.
Committee Member, Dr. Laxmi P. Gewali, Ph.D
Graduate College Representative, Dr. Muthukumar Venkatesan, Ph.D.

56

	A study of relevance feedback in vector space model
	Repository Citation

	ProQuest Dissertations

