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ABSTRACT 

A Study of Relevance Feedback in Vector Space Model 

by 
Deepthi Katta 

Dr. Kazem Taghva, Examination Committee Chair 
Professor of Computer Science 

University of Nevada, Las Vegas 

Information Retrieval is the science of searching for information or 

documents based on information need from a huge set of documents. It 

has been an active field of research since early 19th century and different 

models of retrieval came in to existence to cater the information need. 

This thesis starts with understanding some of the basic information 

retrieval models, followed by implementation of one of the most popular 

statistical retrieval model known as Vector Space Model. This model 

ranks the documents in the collection based on the similarity measure 

calculated between the query and the respective document. The user 

specifies the "information need" which is more commonly known as a 

"query" using the visual interface provided. The given query is then 

processed and the results are displayed to the user in a ranked order. 

We then focus on the Relevance feedback, a technique that modifies 

the user query based on the characteristics of the document 
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collection to improve the results. In this thesis, we explore different 

types and models of relevance feedback that can be applied to Vector 

Space model and how they affect the performance of the model. 
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CHAPTER 1 

INTRODUCTION 

Information retrieval (IR) is defined as 'finding material of an 

unstructured nature that satisfies an information need from within large 

collections' [1]. In other words, it is the science of searching for 

documents which contain the information required. The emergence of 

computers had made the task of storing large amounts of information 

easy. In 1950, the field of information retrieval (IR) was born, since 

finding the information that is useful and required from such collections 

had become essential [2]. 

Data retrieval is a closely related area of Information Retrieval and it 

is quite often misinterpreted of both being same. The main difference 

between both of them is that, in data retrieval we usually search for an 

exact match, that is, we check to see presence or absence of an item in a 

file. In information retrieval, the main interest would be to find those 

items that match the request partially or not completely and then filter 

them to find the best matched items [31. 

The most important development in the field of information 
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retrieval was the creation of SMART system at Cornell University by 

Gerald Salton and his team in 1960. This system was later used by the 

researchers to come up with new methods and models to increase the 

search quality. By early 1980's, many information retrieval models were 

developed and evaluated based on the previous research. In 1990, the 

worldwide TREC (Text Retrieval Conference) project started which was 

aimed at the evaluation of methods for querying databases of realistic 

size and scope. Prior to the establishment of TREC, there were no large 

test datasets, and information retrieval research was dominated by 

measured performance on some small databases for which sample 

queries and relevance judgments were available [4]. 

A typical information retrieval system would look like in the figure 

below [5]. Retrieval is initiated by the user entering the query wanting to 

find documents that match his criteria. Before the retrieval process is 

initiated, a text model is developed from the document collection by 

performing text operations such as removing stop words and stemming. 

The text model is then used to build an index. An index is a critical data 

structure because it allows faster searching over large volumes of data. 

Inverted Index is the most popular form of index used in different 

retrieval models. 
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Figure 1.1. Retrieval Process 

One of the main objectives of this thesis is to understand several 

information retrieval models that were introduced from the time the 

concept of retrieval came in to existence to constantly improve the 

effectiveness of the retrieval and to serve different needs and 

requirements by the user. We start with one of the earliest models of 

retrieval called Boolean Retrieval and finish with the latest technique of 

retrieval popularly known as Language Model. We then implement one of 

the retrieval models known as Vector Space Model and also try to 

improve the performance of the same using some query modification 

techniques. 
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CHAPTER 2 

MODELS OF RETREIVAL 

2.1 Boolean Retrieval 

In this type of retrieval, the query is formed using operators such as 

AND, OR and NOT between the keywords [3]. The documents in this 

model are viewed as set of keywords. The query is processed using 

inverted index file which is built for the collection in advance. For each 

term in the query, the index is searched and the corresponding posting 

for the term is retrieved. Posting contains the list of documents in which 

the respective term occurs [1]. Once all the postings for the terms in the 

query are retrieved, they are merged based on the operator given in the 

query. Final outcome in this case the list of the documents is displayed 

to the user. In Boolean retrieval, we deal with the exact match, so, it is 

often considered as data retrieval model. 
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Simple Example of Boolean query processing 

Consider a small document collection of four documents as follows [1]: 

Document ID 
Doc 1 
Doc 2 
Doc 3 
Doc 4 

Text 
new home sales top forecasts 

home sales rise in July 
increase in home sales in July 

July new home sales rise 

Table 2.1.1 Document collection of four documents 

The inverted index for the collection is shown in the figure below, sort-

based indexing is used for building the index, a common technique in 

which the terms are sorted and grouped to build the index. The 

document frequency of each term is also stored on the index. This 

information is used to minimize the amount of temporary memory space 

during query processing. In the figure, the left side shows all the terms 

which is also called as dictionary and the right hand side shows the 

postings. 

Let us consider the following Boolean query and see how the result 

will be displayed to the end user. 

Example User Boolean Query: Forecasts AND New 
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Term Document Frequency Postings 

— • 0 
• Q - H -
• 0 
• H - S 

— • m - s 
— • m - H 
— • m - H 

— • Q 

Figure2.1. Inverted Index of collection 

Forecasts 1 

Home 4 4 

Increase 1 

In 2 2 

July 3 3 

New 2 2 

Rise 2 2 

Sales 4 4 

Top 1 1 

•S-H 

H 

m-H 

First, we need to sort the terms in the query by increasing frequency. 

In this case, the first term hence would be Forecasts, so, the 

corresponding posting for the term will be loaded in to the memory. The 

postings of the remaining terms are compared against the posting in the 

memory. Since, it is a conjunctive query, the final result must be the list 

of documents which has all the terms in the query. In this case, the 

final result would be document 1 since it contains both the terms. 

Extended Boolean retrieval models can be built by adding additional 

operators other than AND, OR and NOT, such as proximity operators 
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which gives how close two terms specified in the query can occur in the 

document. 

Boolean retrieval is preferred by users who need greater control over 

the retrieved results. Many users use them as it is easy to understand 

especially for simple queries. But, the model fails to provide the user 

with some of the additional details or features which will help the user 

cut down time and effort to find the piece of information of interest. For 

example, it does not use or maintain the information on term frequency 

which will play an important role in deciding which documents are more 

relevant to the query. Also, it just retrieves set of matching documents, 

but the results are not ranked, that is they are in no particular order and 

user need to browse through all of them to find which one will suit his 

requirement [6]. 

2.2 Co-ordinate Matching 

In this model, documents that contain more number of terms in the 

query are given more importance than documents which contain few or 

none of them. In other words, we are calculating the inner product of 

query and each document both represented in form of n-dimensional 

vectors, where n is the number of terms in the index and then taking the 

result as the similarity measure. This introduces the concept of ranking 

and also flexibility to simple Boolean retrieval. The similarity measure 
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between the query and document in this type of retrieval model is 

represented as follows [4] 

M (Q, Dd) = Q.Dd 

For example, if we consider the same document collection given in 

Table 2.1.1 and a query "new top". The vector representation of 

documents and sample query are given in the table below. 

Doc ID 
Doc 1 
Doc2 
Doc3 
Doc4 
Query 

Forecasts 
1 
0 
0 
0 
0 

Home 
1 
1 
1 
1 
0 

Increase 
0 
0 
1 
0 
0 

July 
0 
1 
1 
1 
0 

New 
1 
0 
0 
1 
1 

Sales 
1 
1 
1 
1 
0 

Rise 
0 
1 
0 
1 
0 

Top 
1 
0 
0 
0 
1 

Table 2.1.2 Vector representation of document collection and sample 
query 

For convenience, I have assumed that stop words have been removed 

from the document collection. Stop words are the most common words in 

a text like are, in, and etc. 

Now, we can calculate the inner product of query and each document 

as follows: 

M (new top, Docl) = (0, 0, 0, 0, 1, 0, 0, 1) . (1, 1, 0, 0, 1, 1, 0, 1) = 2 

M (new top, Doc4) = (0, 0, 0, 0, 1, 0, 0, 1) . (0, 1, 0, 1, 1, 1, 1, 0) = 1 

Similarly, we can calculate for the rest of the documents in the collection. 

For this example query, the coordinate matching ranking is Docl > Doc4 

> Doc2 = Doc3 = 0. 

8 



The best feature of co-ordinate matching retrieval model is that it is 

very simple and straight forward as all the required information is in the 

inverted index. Also, in simplest way possible it introduces ranking, 

which means that it gives the result to the user's query in form of list of 

documents, the document with most of the query terms at the top. But, 

it has three notable drawbacks which are listed below [4] 

1. Term frequency is not taken in to consideration, that is, in vector 

representation we just note if the term is "present" or "not present" 

using binary notation. 

2. Term scarcity defines how important the term might be in 

describing the document, which is also not taken in to 

consideration. 

3. Long documents might always top the retrieval list since they are 

likely to have more of most of the query terms when compared to 

small documents. 

To overcome first drawback, we can include the with-in document 

frequency (fd,t) in the vector representation of documents. This will 

change the inner product similarity formulation as given below. [4] 

M (Q,Dd) = Q.Dd = \^w q,t .w d,i 
tec? 

Where w &t is the document-term weight for term t in document d. 

Similarly, w q,t is the weight for query vector. 
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To tackle the second problem, the weight of the term [w d,t) has to be 

reduced if it appears in many documents. This can be done by 

incorporating "Inverse document frequency" in to the term weight, which 

gives more importance or weight to the terms which occur less frequently 

in the documents and vice versa. Now, weight of the term, wt can be 

calculated as 

i 
Wt = — 

ft 

Where ft is the number of documents in which term t occurs. Now, w 

dt can be calculated as [4] 
W At = f d,t X Wt 

This type of assigning document-term weights is called TFxIDF rule. 

There are many variant methods available in the literature for calculating 

document-term weights with different interpretations for relative term 

frequency and inverse document frequency. One can choose which one 

to use based on a particular situation. 

The last problem can be removed by taking the length of the 

document, which is count of the terms it contains in to consideration. 

2.3 Vector Space Model 

Vector space model is considered to be a statistical based retrieval 

model since, it uses statistical information to determine the relevance 

between the document and the query. In this model, the document is 

represented as a vector of keywords from the respective document. The 
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corresponding weights for each keyword determine its importance in the 

document and also in the collection [71. Similarly, the query is also a 

vector representation of keywords in the query and also has 

corresponding weights denoting the importance of the respective 

keywords in the query. 

Figure 2.2 below [8], shows a typical three dimensional index space 

representation of three documents with three distinct terms. Generally, 

the index terms are not limited and can be of any magnitude. So, a 

document in a collection would be a t-dimensional vector where t is the 

number of distinct terms in the document. 

^ D , - t T , . T t , T 3 > 

* T 2 

Figure2.2 Vector representation of document space 
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In a collection, the similarity between the document vector and query 

vector is measured and the documents are ranked based on the 

measure. One of the most popular and common way to measure the 

similarity is known as cosine rule. The logic behind the cosine rule of 

ranking is that, if we assume a query vector to be starting from the origin 

in the space in some particular direction, the highest rank should be 

given to the documents that are closer to the query in angular sense [4]. 

When two vectors are identical then the angle between them would be 

zero, then cos® = 1 since © = 0. This means that similar documents 

with the query vector will have higher scores. 

The cosine rule for ranking the documents is given below [4]. 

Cosine (Q, Dd) = rrrr—- S?=i Wq.t.wut 
Wq Wd 

Where, 

Wq = VI?=1 w V and Wd = VS£=i w'dt 

In the above equations, wq,t and wd,t denote the weights of the terms 

in the query and the document respectively. There are many different 

algorithms to weigh these terms and which one to choose depends on the 

characteristics of the collection [9]. Once the inverted index similar to 

as shown in the Figure 2.1 is built and the weights of the terms in each 

document are pre calculated, query weights and cosine measure can 

then be calculated once the user initiates the query. The results are 
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displayed to the user in descending order of document's cosine measure 

values. 

Vector space model is most admired and widely used because of its 

simplicity and yet the capability of producing good results. It introduces 

ranking to the results and also provides partial matching. Even with 

many advantages of the model over others, it is far from being perfect. 

One of the main flaws that are observed in vector space model is that it 

considers all terms to be independent. In other words, the model 

assumes that the terms do not have any relation between them. This 

eliminates the two properties, polysemy and Synonymity in which the 

terms are related [10]. 

2.4 Probabilistic Model 

The 'probabilistic ranking principle' which states that the documents 

need to be ranked or ordered based on their estimated probability of 

relevance with respect to the query or the information need is the most 

fundamental part of probabilistic model of retrieval [11,1]. Many 

probability retrieval techniques proposed over years have different ways 

of probability of relevance estimation [2]. 

Formal Model 

Two events can be associated for a document query pair. If we name 

the event as R when document D is relevant to Query Q, then the other 

event would be a complement of the first, ~R when document D is not 
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relevant to Q. So, P(R/D) gives the value of probability of relevance of 

document D. Using Bayes' theorem P(R/D) can be expressed in terms of 

P(D/R) as follows [12]. 

P(D/R)P(R) 
P(R/D) = , \ 

P(D) 

To avoid considering the expansion of P(D), we take the log odds 

instead of odds as given below. 

lotf w m _ l og rtDMim 

Since P(R) and P(R) are just scaling factors they can be ignored in the 

above equation. Independence assumption is made between the terms in 

the simplest version of the model, so P(D/R) can be written as a product 

of each term's probabilities: [2] 

p ( D / R ) = ntieQS>p{ti/R-).nmQ,D(i - pwR-y) 

The above equation uses two probabilities; one is the probability of 

presence of term t( in relevant documents set. The other is the 

probability of absence of term tj in relevant documents set. Here, we 

consider all the terms which are common to the query and the 

document. 

Substituting the value of P(D/R) in the log of odds equation and also 

removing constant values for a given query, we get the following ranking 

function. For further simplification we denote P(ti/R) as pi and P(ti/~R) 

as qi [2]. 
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The individual fraction value in the above equation is nothing but the 

weight of the term ti in document D. 

2.5 Language Model 

Statistical language models were being used and researched from a very 

long time. It is the mechanism of generating text and for many years was 

extensively used in the field of speech recognition. But, language modeling 

approach to information retrieval was first proposed in 1998. Ponte and Croft 

were the first ones to propose an idea that language models can be used for an 

effective retrieval [14]. 

Language modeling approach to information retrieval is based on the idea 

that an efficient query can be formulated to get the required results by 

imagining or guessing which words the relevant documents would contain and 

then using a set of those words in the query. In probabilistic retrieval model 

described in the section 2.4, we have seen that the model estimates the 

probability of relevance of the document with respect to the query and then 

ranks the documents based on the score. In this model, instead of estimating 

the probability of relevance, we develop a probabilistic language model called 

Md for each document in the collection and the documents are ranked based 

on the probability of model generating the query [1]. 

The probability of generating the query Q given the language model Md, is 

represented using P(Q/ Md). The maximum likelihood estimate (MLE) of term 
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t, given the model is given by [14]: 

termfrequency in document(tft,d") 
P A - ( t / ^ - totalnuJer of toU^m 

The ranking formula for each document which is P(Q/ Md) can be 

calculated using the following [1]: 

PA (Q/ Md) = Tltee P
Aml(t/ Md) 

The symbol (A) suggests that the model is estimated. One of the important 

questions here is that what do we do for the terms that have not occurred in 

the document at all? We definitely do not want to assign PAmi(t/ Md) =0, since 

if the term did not occur it does not mean that it is not possible, so some 

weight should be assigned. The answer to this is smoothing of weights [14]. 

Usually a minimal value is assigned that means that it might still be possible 

for the term to occur. In other words, if tf (t,d) =0, then we assign 

PAmi(t/ Md) = — 
cs 

Where eft is term count in the collection and cs is the total number of tokens in 

the collection. There are a variety of smoothing techniques available for 

overcoming this practical problem of assigning zero weights [1]. 

Based on the smoothing method, the probability estimate of generating the 

query is calculated for each document and they ranked based on that. Ponte 

and Croft in their experiments have compared their language model with 

traditional tf idf model on two different query sets and collections. Their 

experiments showed that the language model outperformed the other in both 

the cases [14]. 

16 



CHAPTER 3 

IMPLEMENTATION OF VECTOR SPACE MODEL 

A formal introduction to vector space retrieval model is given in the 

section 2.3. To get a deeper understanding on how the model works, we 

consider a collection with small number of documents, a sample query 

and calculate the weights and corresponding cosine similarity measure 

to rank the documents. Let us consider the document collection given in 

Table 3.1.1, which is of four documents, the number of times a term 

occurs in a respective document, is shown in the brackets for 

convenience [15]. The document vectors can be constructed in a similar 

way we constructed vector representation in Table 2.2, but in this case 

the presence and absence of terms in the documents is replaced by 

individual term weights. As mentioned earlier, there are many ways to 

calculate the term weights. Let us suppose, we have chosen the 

following from the literature to calculate the same. 

wt = log e (1 + N/ft) -> IDF( Inverse Document Frequency) 

rd.t = 1 + loge fd,t -> Within-document frequency 

rq,t = 1 -> Query term frequency 

17 



Wd.t = rd,t -> Weight of document term t 

wq,t = rq,t . wt -> Query term weight 

Where, 

N - Total number of documents in the collection, 

ft - Number of documents that contain term t. 

Now, the document vectors will look like shown in the Table 3.1.2. Wd 

values in the last column of the table are calculated using the individual 

Wd,t weights of the terms in the document. 

Document ID 
Doc 1 
Doc 2 
Doc 3 
Doc 4 
Doc 5 
Doc 6 

Text 
apple(3) balloon(2) elephant(l) 

apple(l) balloon(2) chocolate(3) duck(l) 
balloon(5) elephant(l) 

balloon(l) Chocolate(l) elephant(l) 
apple(l) balloon(2) Chocolate! 1) 

Chocolate(l) elephant(4) 

Table 3.1.1 Document Collection 

Doc ID 
Docl 
Doc2 
Doc3 
Doc4 
Doc5 
Doc6 

ft 
Wt 

Apple 
2.0 
1.0 
0.0 
0.0 
1.0 
0.0 
3 

1.0 

Balloon 
1.69 
1.69 
2.60 
1.0 

1.69 
0.0 
5 

0.78 

Chocolate 
0.0 
2.0 
0.0 
1.0 
1.0 
1.0 
4 

0.91 

Duck 
0.0 
1.0 
0.0 
0.0 
0.0 
0.0 

1 
1.9 

Elephant 
1.0 
0.0 
1.0 
1.0 
0.0 

2.38 
4 

0.91 

Wd 
2.80 
2.97 
2.78 
1.73 
2.20 
2.58 

Table 3.1.2 Document Vectors 

18 



The Wd, wt and Wd,t values in the table 3.1.2 are pre-calculated using 

the information in inverted index , that is before the user is allowed to 

enter the query, all the information in the table must be ready for access. 

Table 3.1.3 shows the cosine similarity measure for two sample queries 

{Duck} and {Duck, Chocolate} on the document collection. 

Doc ID 

Docl 
Doc2 
Doc3 
Doc4 
Doc5 
Doc6 

Duck 
Wq=1.9 

0.0 
0.33 
0.0 
0.0 
0.0 
0.0 

Chocolate, Duck 
Wq=2.1 

0.0 
0.59 
0.0 

0.25 
0.19 
0.16 

Table 3.1.3 Cosine Similarity Measure 

Based on the cosine values calculated in Table 3.1.3, for sample query 

1, the top ranked document would be document 2 when sorted in 

descending order on the measure. Similarly for query 2, the ordering 

would be Doc2, Doc4, Doc5, and Doc6. 

3.1 Document Pre-processing and Term Weight Calculation 

To implement and test a vector space retrieval system, a subset of 400 

documents is taken from a document collection known as cranfield test 

collection. This collection is available for download on the web [16]. The 
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xml version of the same is used. The collection is also provided with a 

set of sample queries and relevance judgments file, this contains the set 

of documents that are considered relevant for a query. These judgments 

are needed to evaluate the system's performance on retrieval. 

A snapshot of an individual document from the collection is shown in 

the figure 3.1. 

<DOC> 

<0OCNG> 
1 
</DOCNO> 
<TIXLE> 
experimental investigation of the aerodynamics of a 
wing in a slipstream . 
</TIXL£> 
<AUTHOR> 
brers ckman,ni. 
</AOTHOR> 
<3IBLXO> 
j. ae. 3C3. 25, 1958, 324. 
</B13LIO> 
<X£XT> 

an experimental study of a wing in a propeller slipstream was 
made in order to determine the spanwise distribution of the lift 
increase due to slipstream at different angles of attack of the wing 
and at different free stream to slipstream velocity ratios . the 
results were intended in part as an evaluation basis for different 
theoretical treatments of this problem . 

the comparative span loading carves, together with supporting 
evidence, showed that a substantial part of the lift increment 
produced by the slipstream was due to a /destalling/ or boundary-iayer-
control 
effect . the integrated remaining lift increment, 
after subtracting this destalling lift, was found to agree 
well with a potential flow theory . 

an empirical evaluation of the destalling effects was made for 
the specific configuration of the experiment . 
</TEXT> 
</DOC> 

Figure 3.1 Individual document snapshot 
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Before we actually build the inverted index for a collection, there are 

some preprocessing steps that need to be performed to reduce the 

overhead, increase e the speed and also the size of the index. These steps 

include parsing the xml document to get just the part in the <Text> tag 

[Figure3.2], tokenization, stop word removal and stemming. 

While parsing, to separate the content of each document or to mark 

the end of document, a key word 'Reuter end' is used at the end of each 

document. This idea of marking the document's end is taken from 

another familiar test collection known as Reuters, it is specifically used 

for text categorization purposes. The code for this task is available on the 

web for download [17]. 

In the next step tokenization, we chop the character sequence in to 

what are known as individual tokens [18]. At the same time we also 

remove certain unwanted characters like the punctuation marks [1]. For 

example, if we consider a character stream from the figure 3.1, "the 

integrated remaining lift increment, after subtracting" after tokenization 

process the list of tokens produced is given in the figure 3.1.2. 

the integrated remaining lift after subtracting 

Figure 3.1.2 Output of Tokenization 
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The next step is removing those words from the list of tokens that are 

extremely common such as 'and', 'has', 'be' etc. and play no role in 

selecting the relevant documents to the user query. Since these words 

are of no use they can be removed which will reduce the index and total 

number of terms by a significant number. A simple Java program would 

do the task, by storing the list of stop words and then comparing them to 

the tokens of the collection to remove them. 

The last step in the pre-processing is stemming. In this process, the 

terms are reduced to their root form. For example, "fishing", "fished", 

"fisher" will be reduced to the root word which is "fish". The most 

common and empirically effective algorithm for English language is 

Porter's algorithm [1]. It is available in several programming languages 

on the web [19]. Stemming ends the pre-processing to be performed on 

the collection. 

After stemming, an inverted index can be built similar to the one in 

the figure 2.1. We will only consider unique terms in the collection, 

these terms or tokens are also called as index terms. In this case, we will 

need some more information in addition to document frequency and term 

postings for the calculation of term weights in the document and the 

query. We will also need the within document frequency, fd.t for 

document term weight calculation. In Java, hash map is the data 

structure that can map key value pairs. After building the inverted 
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index, postings, document and term frequency information can be loaded 

on to individual hash maps for easy access and fast scanning. 

The weights that must be pre calculated before the query processing 

are Wd, Wd,t and wt. These values are independent of the query terms or 

the information need, so can be calculated in advance. The formulae 

used for the calculation are given in chapter 3 introduction. The 

snapshot of the calculated values is given in the figure 3.1.3, 3.1.4 and 

3.1.5 respectively for Wd, Wd,t and wt. 

1 , 1 2 - 4 0 4 6 8 2 2 O 5 9 2 9 1 5 7 
2,14-. 9 0 8 5 5 9 1 9 8 0 1 9 8 0 5 
3 , 3 . 7 4 1 6 5 7 5 8 6 7 7 3 9 4 1 3 
4 . S. 4 1 9 9 3 6 0 3 8 0 0 0 3 2 3 
5,6. 0 3 5 5 5 2 6 2 8 2 1 7 9 6 4 
6 , l O . 425-4 6 8 2 1 6 4 8 5 0 7 7 
7 , 1 5 . 2 8 2 3 8 3 1 5 3 3 1 9 2 4 6 
8 , 1 2 . 9 3 9 2 0 5 0 9 1 2 9 6 8 5 6 
9 , 1 8 . 6 8 6 8 8 7 3 1 0 0 5 2 3 9 5 
1 0 , 7 . 2 3 1 8 0 8 8 0 3 2 1 7 2 1 1 
1 1 , l O . 4 8 1 2 6 2 1 2 5 4 0 2 1 5 7 
1 2 . 1 1 . 7 8 8 5 9 0 4 6 6 9 0 0 6 4 5 
1 3 , 1 2 . 6 9 7 2 9 6 0 8 9 7 5 2 7 4 5 
1 4 , 2 0 . 3 5 3 3 7 7 7 7 3 2 2 3 9 2 2 
1 5 , 1 2 , 2 1 1 8 0 1 6 8 2 5 4 1 5 5 7 
1 6 , 1 2 . 0 2 6 7 0 9 4 8 9 4 7 5 9 2 3 
1 7 , 1 2 . 5 2 6 3 5 4 6 2 6 2 4 8 7 3 8 
1 8 , 1 1 . 6 5 4 8 8 4 3 2 0 6 5 1 2 7 5 
1 9 , 7 . 4 2 9 7 0 2 8 3 7 2 7 6 1 0 2 5 
2 0 , 1 4 . 0 4 4 4 54 6 7 3 7 1 7 9 6 
2 1 , 8 . 0 5 3 5 S 3 4 7 0 6 8 1 8 9 5 
2 2 , 9 . 4 1 9 1 1 2 7 0 4 0 6 7 1 7 6 
2 3 , 1 1 . 9 7 6 4 5 3 5 9 1 7 6 6 4 7 9 

Figure 3.1.2 Wd values 

In figure 3.1.3, the Wd values for each document in the collection is 

given. The document number and the values are separated by a comma. 
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acconipam ,152 ,1 .0 
accompam* , 207 ,1 .0 
acconspani , 261,1 .0 
accompani ,53,1.0 
accompl1sh,163,1.O 
accomplish,172,1.0 
accompli sh,192,1.0 
accompli sh,47,1.0 
accord,110,1.0 
accord,125,1.0 
accord,133,1.0 
accord,134,1.O 
accord,152,1.0 
accord,263,1.6931471805599454 
according"!!,179,1.0 
accordingli,184,1.0 
accordi ngli,188,1.0 
account,132,1.6931471805 5994 54 
account: ,134 ,1. 0 
account,149,1.0 
account,170,1.0 
account,171,1.0 
account,172,1.0 
account,182,1.0 
account,202,1.0 
account,207,1.0 
account,210,1.0 
account,22,1.0 

Figure 3.1.4 Wd,t values 

In figure 3.1.4, Wd.t values of each term in a document is given. 

Term, document number and values are separated by a comma. 

Similarly in figure 3.1.5, we have wt values separated by a comma with 

the index term. 

3.2 Algorithm and Pseudo Code 

After the pre-calculation is done, the user can now enter a query to 

the system to find relevant documents. Given below are the steps that 

are performed before the results are given to the user. 

1. Query Input and processing. 

Ju s t like the test collection, the user's query also needs some 

processing before the weight calculation. Since the user enters the 
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query in natural language we do not need the parsing here 

described in section 3.1. 

'ade.qu.3.36037 5 3S71419 
adiabat,3.857214768933X513 
adiac,3.S572X476893315X3 
adjust,4.94164 24 22609304 
admit:,4. 94164 24 22609304 
adopt,4.941642422609304 
advanc,4.036008985209137 
advantag a 3. 5765 502691400:166 
advers,3.8572147689331513 
aerial,5.631211781821365 
aero,4.941642422609304 
aer odynawi, 2. 359551917600723 
aerodynamieist,5.631211781821365 
aeroel astr, 3. 857214 7689331513 
aero-foil ,3. 57655O269X400X66 
aeronaut, 4 . 0.360089852091.37 
aeroplian, 5. 63121178X821365 
affect,3.184 974 27 3192 5192 
affin,5.631211781S21365 
afford,5.63X211781821365 
after,3.7065790312133373 
a f t e r b o d i , 4 . 0 3 6 0 0 8 9 8 5 2 0 9 1 3 7 
afterburn,5.631211781821365 
afterfTow,5.6312117S1821365 

Figure 3.1.5 Wt values 

We perform tokenization, removal of stop words and stermning 

on the query. For example, if the user enters the query as 'have 

flow fields been calculated for blunt-nosed bodies and compared 

with experiment for a wide range of free stream conditions and 

body shapes'. After processing steps it becomes 'flow field calcul 

blunt nose bodi compare expert wide rang free stream condit bodi 

shape'. 

Pseudo code 

If (txt.Querystring is not null) 
{ 
/ / Get the query in to a string, trim and call string tokenizer 
StringTokenizer st = new StringTokenizer(Query); 
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/ / call objects of stemmer and removestopwords class 
Removewords rmstopqy_obj= new RemovewordsO; 
Stemmer stemqy_obj=new Stemmer(); 

Try 
{ 
/ / Open a new buffered writer for a file inputqrystring.txt 
/ / while string tokenizer has more tokens 
while (st.hasMoreTokensO) 
{ 
/ /Write the token to the file inputqrystring.txt 
} 
/ / close the writer 
Writer, closefj; 
/ / call removestopwords class 
rmstopqy_obj. main(null); 
/ / call stemmer class passing required parameters 
} / / e n d of try 
CatchO 
{ 
/ /Ca tch the exception of buffered writer 
} / / end of catch 
} 

2. Query weights calculation. 

After processing the query, for the remaining terms or tokens, 

Wq value should be calculated which remains constant for a query. 

As mentioned in section 2.3, Wq can be calculated using the 

following formula. 

wq=Vz?=1w^t 

Where wq,t = rq,t . wt as per the literature for weight calculation. 

Since, rq,t is 1, we can ignore it and concentrate on getting the wt 

values for the stemmed query terms. If the query terms exist in 
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the collection, the wt values of which are pre calculated and are 

loaded on to hash maps, we can get those values by accessing the 

data structure, otherwise we can consider the wt value to be zero. 

Now, the wt values can be used to calculate Wq. Given below the 

pseudo code for the function to calculate Wq value once the wq,t 

values are ready. 

Pseudo code 

public double CalculateWq(ArrayList<Double> wqtlist_terms){ 
/ / declare a double variable to hold the summation value 
Double sum_val =0.0; 
for(iterate through the passed arraylist wqtlist_terms){ 
/ / get the current value from the list 
/ / calculate the square value of wq,t value 
double sq_wqtvalue= Math.pow(wqt_val,2); 
sum_val = sumjval +sq_wqtvalue; 

} / / end of for 
/ / declare a double to hold the final value of Wq 
double Wq_value=Math.sqrt(prior_Wq); 
/ / return the Wq value to the function 
return Wq_value; 

} / / end of the function 

3. Cosine measure calculation of each document in the collection. 

Assuming that all the required hash maps for Wd, Wd.t are loaded 

and Wq value for the query is calculated, we can now begin the 

calculation of cosine similarity score for each document. We 

declare a hash map for holding the scores, first as we do not know 

the scores, the keys would be the document id's (1.. . n), n being 

the total number of documents in the collection. The values for all 
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the keys are initialized to be zero in the beginning. We do this to 

avoid looping through all the documents which will save the 

computation time. After the values in the structure are updated 

with the summation of query terms that are common to the query 

and the document, we normalize the values by the product of Wq 

and Wd. 

Given below is the pseudo code for the function 

CalculateCosineMeasure which takes the calculated Wq value and 

an array list of stemmed query words. 

Pseudo code 

public void CalculateCosineVal(double Wq_val, 
ArrayList<String> query_stemmed_words) 
{ 

/ / for each query term 
For (int i=0; i<query_stemmed_words.size(); i++) 

{ 
/ / Get the documents list that contain the current 

query term 
terms_in_docs_List= Get_Docs_of_Term(stemmed_word); 
for (int j=0; j< terms_in_docs_List.size(); j++) 
{ 

/ / Get the wd,t and wq,t values of the current 
stemmed word 

Double wd,t = get the value from hash map 
Double wq,t = get the the value from hashmap 
/ /Extract the value in the data structure for the 

key as DOC 
ID and update by adding the product of wa.t and 

Wq.t 

if (hashmap.contains(j)) 
{ 

Cosineval = hashmap.get(j)+ wd.t * wq,t; 
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} 
} / / End of inner for loop 

} / / end of for 
} / / end of the function 
//Normalize the values in the data structure 

4. Sort and display of results. 

In this final step, we access the cosine measures hash map, sort 

the values based on cosine score using the java inbuilt function 

'collections.sort', we also print the top 20 values to a file which can be 

displayed to the user as relevant results. 

3.3 Interface and Results snapshots 

The interface and classes were implemented in Java using Net Beans 

IDE. The screen shot of the screen presented to the user for entering 

the query and also to analyze the results is shown in the figure 3.3.1. 

£J UNLV Vector Spare Search !^^^^^^^^^^^^^^^^M^BmBK^^^m 

Fite Help 

U N L V 

Vector Space Search Engine 

I 1 enter the search string| ; f 

j j Search;;.-] 

1 
i Relevance Psscfbaek 1 

Figure 3.3.1 Initial screen 
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In the screenshot given in the figure 3.3.2, the user has entered a 

query and pressed the search button to initiate the retrieval process. 

'JNLV Vector Space ^ * ' c ' l 5 ' > . f f l H ^ ^ ^ ^ f e S 4 " ; ''$. 

Be-*Hrfp.'::::.'!;'?'v 

3feflSfil 

U N L V 

Vector Space Search Engine 

what similarity laws must be obeyed when constructing aeroelasti j I j Relevance Feedback 

.: Search 

Ckfc here to « w the results 

Figure 3.3.2 User enters the query and clicks on Search button 

Once the search is complete, the label below the text box provided to 

enter the query is enabled and the user can click on the label to view the 

results. The screenshot of the same is provided in the figure 3.3.3. 

The results are displayed to the user in a separate window that pops 

up when the user clicks on the label on the screen 'Click here to view the 

results'. The screenshot of the results window is shown in the figure 

3.3.4. 

In figure 3.3.4, the cosine measures and their respective document 

numbers are displayed as results separated by a comma. 
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Click here to view She results 

Figure 3.3.3 User can now click on the label to view the results 
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O.03952584038267137,35 

O.03333503055135262,50 

O.033356322953743436,160 

O.03823407184653342,97 
O.03767270717186881,25 

O.03697122167443S03,53 

O.03571S11346336203,232 

O . 03S401328583943435, .147 

O.03460690378795676,170 

O.Q32833321Q9Q87S905, .174 

0.03.185780590:151742, .120 

O . 03.13308274:13.17369, 157 

0.03093407572573561,30 

O . 02 9987 624243Q67897 , 240 

Q. 02964702442:94 51354,140 

Q.029609084292553343,75 

Q.029493763915481436, 33 

O.02885403004979525,216 

O.028721780276883976,89 

O.02864023794022483,206 

O.028580741653012554,107 

O.026643420559059595, 62 

O.Q26Q34S61533331987,45 

O.02602610815277433,144 

•BBBSIK 

Figure 3.3.4 Results 
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CHAPTER 4 

RELEVANCE FEEDBACK 

Users usually feel that effective retrieval query formulation is a 

tedious process, especially if they have don't have detailed knowledge of 

the document collection. So, to improve the effectiveness initial user 

query must be reformulated such that it can provide user with more 

relevant documents based on the initially retrieved relevant documents. 

One such technique for automatic and controlled query reformulation 

was introduced in mid 1960s is relevance feedback. This alteration to 

the query actually moves it nearer to the direction of relevant documents 

[20]. 

4.1 Types of Relevance Feedback 

Relevance feedback techniques are usually differentiated based on the 

type of feedback or involvement of the user. 

4.1.1 Implicit Feedback 

This type of feedback requires the least amount of effort from the user 

to improve the retrieval performance using relevance feedback. Data 

required is collected without the user interference by monitoring his 
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behavior while performing the search. Some of the commonly used 

behaviors include reading time, scrolling and interaction. For relevant 

documents the time spent and reading done will be definitely more than 

non relevant ones [21]. 

4.1.2 Explicit Feedback 

In explicit feedback technique, the user's opinion is taken in to 

consideration to decide if a document is relevant or not. For example, a 

checkbox may be provided for each document retrieved initially, to mark 

the relevancy or even options could be given from which the user can 

choose one option which gives indication on the relevancy of the 

document. 

4.1.3 Pseudo Feedback 

This type of feedback is also known as blind relevance feedback since 

this completely eliminates the user interaction and makes an 

assumption that the top k documents in the initial retrieval are relevant. 

This technique is automatic and works most of the time. The only 

drawback with this comes with the assumption made, when the top k 

documents retrieved initially are not actually relevant to the query, then 

the relevance feedback applied may drift the results in to a totally 

different direction. [1] 
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4.1 Relevance Feedback Models in Vector Space 

In section 4.1, we have seen how the feedback techniques are 

differentiated based on user interference. But, the techniques are also 

different when applied to different information retrieval models. In this 

section, we discuss the feedback models that can be applied to a vector 

space model. Rocchio and Ide are the two most frequently used feedback 

models in vector model. A version of Ide known as Ide dec-hi and 

Rocchio are implemented in SMART retrieval system [9]. 

4.2.3 Rocchio Model 

Figure 4.2.1 shows how rocchio relevance feedback works. [1] It 

modifies the initial query in a such a way that the revised query is nearer 

to the set of relevant documents. 
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Figure 4.2.1 Rocchio model illustration 
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If the initial query is marked by Qo and the modified query is denoted 

by Qi, then, as per the rocchio algorithm the revised query can be 

obtained from Qo using the equation given below [22]. 

Rocchio 0 , = Qo+ P Z k ^ - Y IiU | 

Where Rk and Sk are the vectors of relevant and non relevant documents 

respectively, n l and n2 are the number of relevant and non relevant 

documents considered respectively. (3 and y are the parameters that 

control the contribution of relevant and non relevant documents. 

4.2.2 Ide Model 

In 1971, Ide extended Rocchio's work and proposed two different 

feedback models. They are very close to the Rocchio's model of 

feedback, in this model the terms found from the previously retrieved 

relevant documents are added or subtracted to the original query without 

the normalization to obtain the new query. Given below are the two 

versions of Ide, one is known as "Ide Regular" and the other is "Ide dec-

hi" [20]. 

Ide Regular Qi = Qo + Zf^Rk - Zf=15fc 

Ide dec-hi Qi = Qo + !*=! Rk - Sk 

Where Qo, Qi. Rk, Sk, n l and n2 denote the same as specified in the 

section 4.2.1. In the feedback method 'Ide Regular', we consider all the 

non relevant documents, but, in the method 'Ide dec-hi', we only consider 
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one non relevant item, usually the one that is retrieved earliest in the 

search. 

4.3 Pseudo Rocchio Relevance Feedback in Vector Space Model 

The implementation and interface for a vector space retrieval model 

system is described in the chapter 3. To improve the efficiency and 

number of relevant documents retrieved for a given user query, one of 

the relevance feedback techniques mentioned in section 4.2 is 

incorporated in to the vector space model implemented. 

For its simplicity and known efficiency, a pseudo rochhio model of 

feedback is implemented. The description on pseudo and rocchio types 

of feedback models is given in section 4.1.3 and section 4.2.3 

respectively. 

4.3.1 Query Expansion 

Since it is a pseudo or blind feedback, we assume that the top 10 

documents retrieved initially are relevant and use the terms from the 

same for query expansion. A new query, Qi is constructed from the initial 

user query Qo using rocchio's algorithm where ni in this case would be 

10. Given below is the equation of rocchio's model for new query 

generation. 

Rocchio Q I - Q O + P S S ^ - Y Z E ^ 

Where, 

n l = number of relevant documents = 1 0 
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(3=1 and Y=0(non relevant documents not considered) 

Rk = Document vector of relevant document k 

Now coming to choosing the terms from the assumed relevant 

documents, experiments have shown that selecting all the terms from the 

selected documents is not a good option since it might add not so 

important terms to the query and also makes the query really huge since 

each document may contain hundreds of terms. Study has shown that 

using smaller and good set of terms from the relevant documents often 

helps in providing the user more number of relevant documents. Also, 

there are some term selection techniques available for choosing the terms 

based on the document frequency, term frequency or inverse document 

frequency information [23]. 

Number of terms and term selection technique chosen from the 

relevant documents usually depends on the document collection, since 

different collections seem to perform differently on the criteria chosen. 

4.3.2 Implementation 

The feedback comes in to picture once the user enters the initial 

query and clicks on the search button as shown in the figure 3.3.3. The 

following steps are performed for query expansion and reweighing. 

1. Get the terms from the top 10 relevant documents retrieved. 

In this step, we first get the top 10 document numbers or Id's of 

the initial result. We can then pass this id to a function that 
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actually gets the terms in the corresponding document id passed. 

Pseudo code of the function getting the terms given the document 

id's as input is shown below. 

Pseudo code 

public ArrayList<String> GetTermsinRelDoc(Integer docnum) 

{ 
/ / function that takes input as one of the top 10 document id 

and returns an array of document terms 
/ / Get the records (term, document id, Wd.t) where document id 

is same as the document id passed 
Integer DOCNO=Integer.parseInt(Docnum); 
if(DOCNO.compareTo(docnum)== 0) 

{ String termandwdt=Wdtval+","+term; 
Listterms_reldoc. add (termandwdt); 

} 
/ / sort based on wd,t value in descending order 
/ / only select the top 5 terms from the array 
Listterms_reldoc. subList(5, sizeofarray). clear(); 
/ / return the arraylist 
return Listterms_reldoc; 
} / / end of function 

2. Modify or add the new query term weights after adding the 

document terms. A hash map stores the query terms and their 

corresponding weights. But these need to be modified, if the term 

exists, the weight need to be modified or a new term must be 

added if otherwise. Given below is the pseudo code for the same 

task that is updating the hash map for each term selected from the 

top ten relevant documents. 
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Pseudo code 

public void UpdateHashMapqueryterm_wt() 
{ 

/ / for each document in the relevant documents list 
for(int i=0;i<RelDocnum_List.size();i++) 
{ / / Get the document id and pass it to function that gets the 

terms from the document 
TermsinRelDoc=GetTermsinRelDoc(DNO); 
/ / for each term selected from the document 

for(int j=0;j<TermsinRelDoc.size();j++) 
{ / / Get the term and get the value from hash map if 

entry exists or add one if otherwise. 
If (queryterm_wqt_mapping.containsKey(termonly)) 

{ / / update the current value by adding the fraction 
Newwqtval = queryterm_wqt_mapping.get(termonly) + 

(wdtdoubval/10); 
/ / update the current value for the term in the hash 

map with calculated value 
queryterm_wqt_mapping. put(termonly, newwqtval); 

} 
Else 

{ / / add new entry to the map 
queryterm_wqt_mapping. put(termonly, (wdtdoubval/10 

)); 
} 

} / / close of inner for loop 
/ / clearing the temporary array for next loop values 
TermsinRelDoc.clearfJ; 
} / /close of outer for loop 
} 

3. Use the modified query to calculate new cosine measures. Since 

the modified query and the weights are now ready. From here on 

the process will be similar to what has been discussed in section 
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3.2. Steps 2, 3, and 4 in the algorithm for vector space model 

similarity measure will be repeated here. cosine 

4.3.3 Results 

As shown in the figure 3.3.3, the check box 'Relevance Feedback' will 

be enabled for the user selection once the initial results are ready for the 

review. The user can run the retrieval model again for the same query, 

the difference this time would be the application of pseudo relevance 

feedback to the model for new set of results. 

Once the user checks the option for feedback, all the steps given in 

section 4.3.2 will be executed in order to display the results. Given below 

is the screen shot of user initiating the feedback. 

&» UNLV Vector Space $«*"&„ 

Ftle Help 

U N L V 
Vector Space Search Engine 

i * i 
iwhat similarity laws must be obeyed when constructing aeroelasti' P I Relevance FeedbacS | 

| 1 Search 1 i 

= " J 
Figure 4.3.1 User initiates feedback 
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Once the user checks the relevance feedback option, the label 'click 

here to view results' will be disabled and will be enabled once the new 

results are ready for review as shown in the figure 4.3.2. 

1 file Help 

s 

IBiiiii^^ 

U N L V | 
Vector Space Search Engine 

ivshat similarity laws must be obeyed when constructing aeroeiasti 4, Relevance Fee&ack 1 

| Search J 

C8ck here to view the results 

Figure 4.3.2 new results ready for review 

The results open in a different window that has information on the 

cosine measure and the corresponding document id as shown in the 

figure 4.3.3. 
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Results wgjp^tn1^ V-1 _3l - ' y*«\'' «w| 

0.4175625294384334,51 

0 . 3884611479334916, .102 

0.3826366689945764,184 

0 . 3811744705870177, .12 

O.3614200076463949,56 

O.35616736174231584,13 

0.35332534440863246,26 

O.3S255G3G066547Q55,175 

O.34935887302639556,23 

0.33998361712828873,45 

0.33972568104079176,271 

0.3373737368468945,121 

O.3324600842090693,78 

0.3313194571238483,141 

0.3305741092159324,30 

0.32998595515556023,75 

O.32930306475092813,219 

0.3290975923517128,137 

0.3274169113823018,220 

0.3263749925783051,67 

0.32 570:946330608194, 235 

0.3243341425020975,261 

0.324 6014606236504,2 42 

O.32 30787213845554 6,95 

0.3225082557872518,84 

o a,a.ia.aa,.arT.iCT.a^aagLCiJi?i^..n... a is-

Figure 4.3.3 Results window 
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CHAPTER 5 

RESULTS AND EVALUATION 

To evaluate any information retrieval system, we need a test 

collection, sample set of queries which is the information need and a set 

of relevance judgments for the sample queries which has information on 

relevant documents for a given query from the collection. 

As specified in section 3.1, a subset of cranfield collection is used as a 

test collection which is provided with a set of 225 queries along with their 

relevance judgments. 

5.1 Evaluation of Vector Space Model 

There are many ways in which a ranked retrieval system can be 

evaluated. Choosing one among them highly depends on the 

requirements of the system on the results. Some of very common 

evaluation methods of a ranked retrieval are 11-point interpolated 

precision or more commonly a recall-precision graph, Mean average 

recision (MAP), precision at k and R-precision [1]. 

For all the evaluation methods we will need two measures in common 

which are recall and precision. The precision Pr is defined as a fraction of 

relevant documents retrieved in top r ranked documents [4]. 
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Number of relevant retreived 

total number ratreivad 

Recall Rr, on other hand is the fraction of relevant documents 

retrieved to the total number of relevant documents for a information 

need. 

J-J Number of relevant retreived 

teealmtmber relevant 

Now, for evaluation we consider a set of queries from the sample 

queries of the test collection and calculate recall and precision at each 

document retrieved. We then average the precision measure across the 

measure. The table below gives details on k-precision, k being 20 as we 

consider the top retrieved results and also R- precision average value for 

set of queries. 

Average value 
of K-Precision 

35% 

Average value of Im
precision 

54.7% 

Average recall after 
20 documents 

retrieved 
66.5% 

Table 5.1.1 Precision and Recall average values 

Precision at k is nothing but the exact value of precision at some 

value of k, where k is the number of top retrieved documents considered. 

For example, if we consider a query qi, and suppose it have a total of 
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eight relevant documents as per the relevance judgments of the 

collection. At the 20 th document retrieved, the precision value is say 

30%, similarly each query will have a different precision value at the 

same level. The first column in the table 5.1 shows the average of exact 

precision value of all the queries considered. 

The second column in the table gives the average of R-precision 

values at a particular level of each query considered. R-precision usually 

gives better estimate than K- precision since it takes the number of total 

relevant documents for a query in to consideration. Suppose a query has 

R number of total relevant documents, then we examine top R retrieved 

results and say r out of them are relevant which means the value of 

precision at that point would be r /R and so will be recall [1]. For 

example, if a query has 19 relevant documents, we take the precision 

value at 19 based on the number of relevant documents retrieved at that 

point. 

The last column shows the average of all the exact recall values after 

the twentieth document is retrieved. 

Table 5.2 shows the calculation of precision and recall after each 

document is retrieved for a sample query. The process will be repeated 

for each of the query considered to get the average values. 
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Query: "what similarity laws must be obeyed when constructing aero 

elastic models of heated high speed aircraft?" 

Documents 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Relevant 
R 
R 
R 
R 
R 
R 
R 
-

R 
R 
-
-

R 
-
-

-

-

-

-

-

Recall 
5% 
10% 
15% 
21% 
26% 
31% 
36% 
36% 
42% 
47% 
47% 
47% 
52% 
52% 
52% 
52% 
52% 
52% 
52% 
52% 

Precis ion 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
87% 
88% 
90% 
81% 
75% 
76% 
71% 
66% 
62% 
58% 
55% 
52% 
50% 

Table 5.1.2 Detailed Precision and Recall values for sample query 

5.2 Effect on results with Relevance Feedback 

Before we examine the statistics of the retrieval method after applying 

relevance feedback to the initial results, we focus on how the results vary 

by taking a sample query and comparing the initial results which is the 
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outcome of vector space model with the feedback results. Let us 

consider the same query used in section 5.1 for table 5.2. 

The relevant documents list for the query from the relevance 

judgments of the test collection is given in figure 5.2.1 and the initial 

results for the query are given in the figure 5.2.2. The relevant 

documents that are retrieved initially are marked with a red rectangle. 

1 0 184 2 
1 0 29 2 
1 0 31 2 
1 0 12 3 
1 0 51 3 
1 0 102 3 
1 0 13 4 
1 0 14 4 
1 0 15 4 
1 0 57 2 
1 0 185 3 
1 0 30 3 
1 0 37 3 
1 O 52 4 
1 0 142 4 
1 0 195 4 
1 0 5 6 3 
1 0 66 3 
1 0 95 3 

Figure 5.2.1 Relevant documents list of the query 

Initially the vector space retrieval model identifies ten of the relevant 

documents of the query given in the figure 5.2.1. We then apply 

relevance feedback and the results after the feedback is given in figure 

5.2.3. We can see that the results have changed quite a bit even though 
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some of the documents retrieved are same in both the cases. The 

feedback gives new direction to the results, a simple feedback that 

assumes the top k number of retrieved documents as relevant uncovers 

two new relevant documents than the vector space. The new relevant 

documents are marked in red rectangles. 

p 
jo 
jjo 
|o 

l o 
0 
0 

, 20564266619344973, 51 

,13276611051165688,102 

, 12047262548.998089, 12 

,0870064.2649090139,184 

,08645593121014932,13 

, 0341700553817475, 56 

, Q7964_018314QQ47S5f 195 

0.07744360704638581,252 

0.07227158261003213,14 

0.06582824562388231,142 
"0*SS*?ll'SIl§'lil2lll8b'liS5ll5,i"'T72T3" 

, 0656996659672205, 5 

, 06549601B83665619, 29 

06335599991479703,141 

0633299.1342254389, 202 

06302735089744586,240 

059452656934047034,229 

059002320656072464,101 

058082849.96622348,214 

05763522188395695,78 

_ I 

Figure 5.2.2 Initial Results of query showing relevant documents 
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Feedback results can be varied and examined for performance 

changes by modifying simple parameters such as number of top 

documents considered for feedback or even the number of terms from 

each assumed relevant document. 

[̂Results 

0.4102654590805236,51 

0.37017789721666117,102 

0.34849116394827095,12 

0. 3062185485529211,13 

0.2882898021.907529,120 

0.2881777918307781,253 

0.28696362345385024,45 

0 .28620169184026434,184 

0.2791550417903742, 67 

0.2780869011429414, 242 

0.27733778210016896,23 

0.27615932344897703, 271 

0.27526956739298936,251 

2742270914406122,95 

^ 5 5 4 4 4 552*0*675? 
-272483'i"l473597066,3Q| 

"2*?Xt>Z9&;Z399Ufca.i7, 19S 

0.2709788848820823, 29 

0.2664109561213652,229 

0.26534849085228945, 75 

Figure 5.2.3 Results of feedback showing new relevant documents 
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The most obvious way to measure performance of a system that uses 

relevance feedback is to calculate recall and precision again for the new 

results and compare the value with the initial ones. The performance 

will definitely be high in the second case specifically because the vector 

space has already uncovered ample amount of relevant documents in the 

set of top retrieved documents that will be ranked higher in the second 

set of results. 

To overcome this problem, we can use the documents in residual 

collection that is by removing the documents which are already marked 

relevant for evaluation of new results after feedback, but, doing this 

would give the projected performance a lower value almost all the time 

than the original query. It is very difficult to compare the performance of 

the system with or without relevance feedback. Usually the best 

possible way is to do a survey with different users on how many relevant 

documents they were able to find using feedback [1]. 

The relative performance of two different versions or variants of a 

feedback method can be compared in a valid way. Table 5.2.1 shows the 

performance measures of the two variants of feedback. The variants 

differ in the number of documents they consider from the initial results 

for feedback. The first one assumes the first five documents being 

relevant and the second assumes ten. 
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The performance measures include precision averaged over a set of 

queries. Both the variants perform almost same with a minimal 

difference between average precision across queries. 

Feedback 
Variant 

1 
2 

Number of top ranked 
documents 

5 
10 

Average 
Precision 

63.25% 
61.25% 

Percent 
Change 

-

-3.0% 

Table 5.1.3 varying the number of top ranked documents 

Similarly, other parameters can be varied of the feedback method to 

compare and the performance and choose the one that is most 

appropriate. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

The main objective of this thesis is to implement and examine a 

retrieval model and its behavior when relevance feedback is used. Vector 

space retrieval model was implemented among the different models 

discussed in chapter 2. Based on the results and evaluation performed 

on the model, we can conclude that vector space works really well all by 

itself in extracting most of the relevant documents for given information 

need. But, with application of one of the simplest forms of feedback 

strategy it tends to extract even more documents that are relevant. 

This thesis concentrates on Vector space model for retrieval. Other 

models can be implemented and the performance between the models 

can be compared over a larger collection of data. Also, different feedback 

strategies discussed in chapter 4 can be applied to different retrieval 

models to analyze which one outperforms the others. It can further be 

extended by varying several variants in a feedback method based on term 

and document selection. 
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