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ABSTRACT 

A Characterization of Open Shop Scheduling Problems using the Hall Theorem 

and Network Flow 

by 

Arunasri Chitti 

Dr. Wolfgang Bein, Examination Committee Chair 

Professor of Computer Science  

University of Nevada, Las Vegas 

Open shop scheduling problems are combinatorial problems where jobs with certain 

processing requirements on a number of different machines must be arranged in 

such a way that objectives related to completion time are optimized. Such problems 

have applications over a wide spectrum including such as communications, routing 

and manufacturing. 

Many open shop problems are NP-hard but there are a number of special cases 

which possess polynomial solutions in the case of few machines or few jobs or when 

preemption of jobs is permitted. Many such solutions are based in the theory of 

matching or Hall’s theorem, or more generally network flow. The primary focus of 

this thesis is to describe a number of polynomial-time solutions which are 

constructed using these related concepts and methods. 
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CHAPTER 1 

INTRODUCTION 

Scheduling problems are combinatorial problems where jobs with certain processing 

requirements need to be arranged such that different objectives such as time or 

deadline are met or optimized under limited resources such as limited number of 

machines. 

                    The Open shop scheduling has been applied in many areas of 

manufacturing and communications such as scheduling and wavelength assignment 

(SWA), routing in optical transpose interconnect system and in satellites and SOC 

testing.  

 Open Shop Scheduling problems are frequently combinatorially hard i.e. they are 

often NP-Hard. Therefore solutions for these problems are not very simple, but there 

are a number of special cases that do have polynomial solutions and those solutions 

often come from the theory of matching, network flow and Hall’s theorem, which 

are related concepts and methods. 

                     The primary focus of this thesis is to investigate a number of problems 

where we have unifying solutions that come from applying matching and network 

flow techniques. Specifically, we emphasize the use of Hall’s theorem as numerous 

solutions can be derived by applying this theorem directly or iteratively. We also 

discuss the fact that most open shop problems indeed are not easily solvable as we 

can show that open shop problem with three machines without preemption is NP-

Complete. 
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                   The disjunctive graph, a graph with conjunctive and disjunctive edges, is 

frequently used in shop problems. Most open shop problems are not solvable in 

polynomial time and then in order to obtain heuristics we use the disjunctive graph. 

1.1 Outline  

First we begin with the basic scheduling notations that are given in Chapter 2. In 

Chapter 3 we discuss about a simple linear time algorithm for the two machine 

makespan non preemptive scheduling problems. In Chapter 4, we turn to Hall’s 

theorem and its application on various open shop scheduling problems. The 

maximum flow algorithm is demonstrated with an example in Chapter 5. The 

parallel machine problems and the reduction from parallel machines to open shop 

problems are discussed in Chapter 6. Chapter 7 discusses in detail about the hard 

open shop problems and Chapter 8 demonstrates the local neighborhood search and 

shows how disjunctive graph is useful in searching for the neighbors. 
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CHAPTER 2 

Scheduling Problems and Notations 

This chapter provides us with the details about Scheduling and other fundamental 

aspects of Scheduling. 

2.1 Scheduling  

Scheduling deals with the arrangement of a given set of jobs, on the given machine 

such that the provided resources are assigned to the jobs in an optimal way. 

Scheduling provides us the starting and the completion time for each operation or 

job. 

2.2 Scheduling Problems 

According to Peter Brucker
 [1]

, a Scheduling problem is defined as following: 

Given m machines Mj (j= 1, 2...m) and n jobs Ji (i= 1, 2…n), a schedule now is 

allocation of one or more time intervals for each job on one or more machines. 

The open shop problem is defined below: 

Given are m machines denoted by M1, M2…Mm and n jobs denoted by J1, J2… Jn 

and each job consists of m operations which are to be processed on the machines. 

The jth operation of the job Ji must be processed on Mj and the processing time of 

this operation is given by pij ≥ 0. The total processing time for Ji is 
j

ijp and the 

total processing time on machine Mj is
i

ijp . In the open shop problem, the order in 

which operations are processed is immaterial. 
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2.3 Terminology in Scheduling 

Job  

A job is nothing but a set of tasks (operations) and the operations have to be 

processed on the machines for a particular time interval.  A job can be represented as 

Ji and its operations can be represented as Oij, where i is the job and j is the jth 

operation of that job. This notation is used throughout the document. 

Processing Time  

Processing Time is the time that an operation takes when it is processed on a 

machine.It is denoted by pi,j for an operation Oij. The processing time pi,j on any 

machine is ≥0. 

Idle Time  

Idle time is that particular time interval at which the machine is idle and there is no 

task being processed on that machine. 

Makespan  

Makespan of the schedule is the time at which the last job on the last machines gets  

completed.  It is denoted by Cmax. It is nothing but the time at which all the jobs have 

completed processing their operations on the allocated machines.  

The Makespan that has minimum value than all the other possible makespan values 

for a given problem is chosen as the optimal makespan. 

Completion Time 

The Completion time of a job Ji is the amount of time taken by the job to complete 

its processing on the last machine. It is denoted by Ci. 

The sum of the completion times ∑Ci of a schedule whose value is minimum  
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among all the other possible ∑Ci for a problem is considered as the optimal ∑Ci. 

2.4 Classes of Scheduling 

Scheduling is classified into various classes and they are represented in the form of   

notation α | β | γ, where α denotes the machine environment and β denotes the job 

characteristics and γ denotes the optimality criteria for the schedule.                      

2.4.1 Machine Environment                                  

 In Scheduling environment, there are different types of machines that are available. 

Each machine has its own properties associated with it, all these properties 

altogether constitute to the machine environment. The machine environment is 

denoted by α. The string α has two strings α1 and α2. In the string α, α2 is the 

number of machines used in the scheduling. The string α1 belongs to the set {o, P, 

Q, R, PMPM, QMPM, G, X, O, J, and F}. Each element in the set has a different 

functionality. Several cases are discussed below. Each operation Oij is associated 

with a set of machines, represented as μij ⊆ {M1...Mm}, where m denotes the number 

of machines. Oij may be processed on any of the machines that belong to set μij. This 

property varies depending upon the type of machine chosen. 

Case 1: α1 = 0, then we have α = α2. This is called a dedicated machine 

environment.  It is because, 0 represents an empty symbol. Each job has only one 

operation and it is processed only on one machine.      

Case 2: α1 ϵ {P, Q, and R}, now the jobs are said to run on Parallel machines. Here, 

a job can have more than one operation and each job can be processed on all the 

machines  in the set M1 to Mm. This case is subdivided into three parts depending on 

weather it is P or Q or R
 [2]

.  
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If α1 = P, then the processing times of a job for all the machines that belong to the 

set μij are identical. Therefore, the scheduling is said to be done on Identical Parallel 

Machines. Pij = Pi for each element in the set μij. 

If α1 = Q, then each machine is associated with a speed. The speed of the machine is 

uniform for all the jobs processing on the same machine. Now, the scheduling is said 

to be performed on Uniform Parallel Machines. 

If α1 = R, then every machine is associated with a specific speed and every job is  

associated with a specific speed for each machine. In this case, the scheduling is 

said to be performed on Unrelated Parallel Machines. 

Case 4: If α1 = PMPM or QMPM, the machines are said to be called Multipurpose 

Machines
 [34]

. PMPM is that category of machines where each job has identical 

speed on all the machines and where the speed of a job varies from another. QMPM 

is that category of machines that will have the same speed associated with the jobs 

being processed on the same machine. One machine speed may vary from another. 

Case 5: If α1 ϵ {G, X, O, J, F}, then each job would be having a set of operations 

and each operation would be performed on specific machine. 

 When α1 = G, it is called General Flow Shop. Here, an ordering is associated with 

the operations of a job to process on a machine. This ordering is nothing but the 

precedence relation among the operations of a job. Each operation is associated with 

a priority and based on this; the operation with higher priority will be processed first 

than the operation with lowest priority. The General Flow Shop can result in Open 

shop,Flow shop and Job Shop by altering some conditions. 
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 If α1 = J, it is represented as Job Shop. Each job has set of operations Oij.A 

Precedence relation exists among the operations and is denoted by ->. Given a 

constraint Oi1 -> Oi2, the operation Oi2 can start getting processed only after the 

operation Oi1 is finished. This relation exists between all the operation Oi1, Oi2, Oi3, . 

. . . .,Oik , where k is the number of operations of a job
 [35]

. In Job Shop, each job has 

its own machine sequence. 

 If α1 = F, it is represented as Flow Shop 
[36]

. Here, the number of operations of a job 

is same as the number of machines. For each job, there is one operation performed 

per machine. In Flow Shop, all the jobs follow the same machine sequence. The job 

sequence may vary from one machine to other machine. Permutation Flow Shop is a 

special case in Flow Shop where the job sequence is same for all the machines.  

 If α1 = O, it is represented as Open Shop 
[28]

. It is similar to Flow Shop if a special 

constraint is associated with it.There is no precedence relation between the 

operations of a job, i.e.there is no order in which the operations of a job are 

processed. 

2.4.2 Job Characteristics 

Job Characteristics shows the characteristics a job is associated and is represented by 

β. It is a set consisting of six characteristics and is given by { β1, β2, β3, β4, β5, β6 }. 

Each element in the set is associated with a property.  

Case 1: when β = β1, then preemption is applied. The jobs undergo preemption. It is 

given as β = pmtn. Preemption in the schedule allows a job to undergo interruption 

and resume at a later point.  
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Case 2: when β = β2 , then precedence relation is applied. It is given as β = prec. In 

this case, jobs are assigned priorities and the job with higher priority is processed 

first and jobs with lower priority are processed later. The precedence relation is 

maintained through the schedule. There are various structures where the jobs can be 

arranged and they are Intree, Outtree, SP-graph, Chains. 

If the structure is an Intree, we represent it as β2 = Intree. Here, every node of the 

tree has 0 or 1 outgoing connections.  

 If it is an Outtree, every node in tree will be having 0 or 1 incoming connections. It 

is represented as β2 = Outtree. If it is a chain, then every node in the given tree will 

be connected to only 0 or 1 nodes and is represented as β2 = chain. 

If it is a series parallel graph, then it is represented as β2 = sp-graph. It can be a base 

graph with single vertex or it can be a composition of two graphs. In the latter case, 

the graphs are joined in such a way that the vertices of the two graphs are joined 

with one another, also the edges are joined in the similar manner.  There is another 

way in which the graphs can be joined i.e by linking the leaf nodes of one graph 

with the source nodes of other graph.  

Case 3: when β = β3 , then release dates (ri) are associated with each jobs.  Release 

date for a job is the time at which the job’s first operation is available for processing. 

Here, r is the release time and i is the job number. This case is represented as β3 = ri. 

Case 4: when β = β4 , the jobs are associated with processing times. If the processing 

times of the operations of the job are 1, then it is called as unit processing 

requirement.  



9 

 

Case 5:  when β = β5 , the jobs are associated with deadlines di. Here, di represents 

the deadline for the job i. It is the time when a job has to finish its processing on the 

machine. It is represented as β5 = di. 

Case 6: when β = β6 , the jobs are processed as batches. Batching is nothing but 

grouping together a set of jobs and scheduling them back to back with no set up time 

between them. 

There are two types of batching: p-batching and s-batching.  In p-batching, the 

length of the batch is the maximum of the processing times of all the jobs in the 

batch. In s-batching, the length of the batch is the sum of the processing times of the 

jobs in the batch. It can be represented as β6  = p-batch or s-batch.  

2.4.3 Optimality Criteria  

The Optimality Criteria is represented by γ. It is a cost function associated with 

every scheduling problem and the aim is to minimize it as much as possible. The 

following are the cases to be considered.  

Case 1: This is known as bottleneck objective function. This is about minimizing the  

time taken by the last job on the last machine.  

Case 2: This is known as sum objective function. This is about minimizing the sum 

of the completion time of all the jobs.  

The other parameters that are used in this optimality criterion are Lateness, 

Earliness, Tardiness, Deviations and Penalties. 

Lateness: 

It is the amount of time by which the job gets delayed in finishing its processing. Ci 

is the Completion time of the job i and di is the deadline by which the job i has to 
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finish processing Lateness is the difference the Ci  and di values. It is denoted as Ci - 

di.  

Earliness: 

It is amount of time by which the job gets finished early than the given deadline. Ci 

is the Completion time of the job i and di is the deadline of the job i. The difference 

between these two will give the earliness and is represented as  Ei = di – Ci, if the 

difference is greater than 0 else Ei = 0. 

Tardiness: 

It is denoted as Ti for a job i and is same as lateness except that it is true only when 

Li greater than 0, otherwise Ti is 0.  

Deviations: 

There are two kinds of deviations: Squared Deviation and Absolute Deviation.  

Squared Deviation: It is the deviation that is calculated as the squared value of 

lateness and is represented as Si. Si given as (Ci – di )
2
. 

Absolute Deviation: It is the deviation that is calculated as the absolute value of 

lateness and is represented as Di. Di is given as | Ci – di |. 

Unit Penalty: 

It is represented as Ui for a job i and when the value of lateness of a job is greater 

than 0, a penalty of 1 is associated with that job. Else 0 is associated.  
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CHAPTER 3  

O2||Cmax 

Now, we focus on our first Open Shop problem, O2||Cmax that is polynomially 

solvable if there are arbitrary processing times and also if there is no preemption. 

According to Gonzalez and Sahni
[19]

, the algorithm that solves this is described as 

follows: 

Let A and B be the two machines and ai be the processing time of job i on machine 

A and bi be the processing time of job i on machine B, where i= 1..n.  

Consider two sets I and J that are defined below: 

                                     I = {i | ai ≤ bi; i = 1...n} 

                                     J = {i | ai > bi; i = 1…n} 

I is the set of those jobs whose processing time on machine B is greater than or equal 

to on machine A and J is the set of those jobs whose processing time on machine A 

is greater than on machine B. 

We now consider two cases that will give optimal schedules: 

                      ar = max{max{ai | i ϵ I}, max{bi | i ϵ J}} 

An optimal schedule is achieved in the following way: 

 On machine A, all the I – r jobs are scheduled in arbitrary order, then the all the jobs 

in set J are scheduled in arbitrary order and then job r is scheduled. 

 On machine B, first job r is scheduled, then I – r jobs are scheduled in the same 

order as on machine A and then jobs in set J are scheduled in the same order as on 

machine A. 

The optimal schedule is given below: 
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Figure 3.1 Optimal Schedule 

Case 2: 

                     br = max{max{ai | i ϵ I}, max{bi | i ϵ J}} 

An optimal schedule is achieved in the following way: 

 On machine A, first job r is scheduled, then jobs in set J – r are scheduled in an 

arbitrary order, then jobs in set I are scheduled in arbitrary order.  

 On machine B, J – r jobs are scheduled in the same order as on machine A and then 

jobs in set I are scheduled in the same order as on machine A and then job r is 

scheduled. 

The optimal schedule is given below: 

 

Figure 3.2 Optimal Schedule 

Consider the following example: 

Given are five jobs J1, J2, J3, J4, J5 and two machines A and B. 
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 A B 

  

J1 

 

2 

 

1 

  

J2 

 

7 

 

6 

  

J3 

 

2 

 

4 

  

J4 

 

5 

 

3 

  

J5 

 

1 

 

3 

 

Table 3.1 To Demonstrate O2||Cmax 

 

The set I and J are given below: 

                              I = {3, 5} and J = {1, 2, 4} 

Now, we find ar and br values: 

ar is the maximum processing time on machine A from the set I and is given by  

a3 = 2 and br is the maximum processing time on machine B from set J and is given 

by b2 = 6. We know that b2 is greater than a3, therefore our r job is job 2 and we 

show the optimal schedule using case 2. 
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Figure 3.3 To demonstrate O2||Cmax 
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CHAPTER 4 

Hall’s Theorem 

Bipartite Graph: 

A bipartite graph G given as G = (A, B, E) whose vertices are divided into two 

disjoint sets A and B such that every edge in E connects a vertex in A to one vertex 

in B. 

 

Figure 4.1 Bipartite Graph 

Matching: 

A matching for a graph G = (V, E) is set of non-adjacent edges, i.e. no two edges 

share a common. 

4.1 Hall’s Theorem 

Let V1  and V2  be the vertex sets of a bipartite graph G where | V1 | ≤ | V2 | and E is 

the edge set. In a Complete Matching, each vertex in the set V1 is connected by an 

edge with exactly one vertex in the set V2.  

We define Γ(S) as following: 

For a subset S ⊂ V1 ,   

                            Γ(S) = {v ϵ V2 : uv ϵ E for some u ϵ V1 } ⊂ V2. 
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                            γ(S) = {u ϵ V1 : uv ϵ E for some v ϵ V2 } ⊂ V1. 

Where Γ(S) is the image and γ(S) is the pre-image. 

Theorem: 

According to Philip Hall
 [5]

. A bipartite graph G with the vertex sets V1 and V2 where 

| V1 | ≤ | V2 | contains a complete matching if and only if the following Hall’s 

condition holds: 

                                | Γ(S) | ≥ |S| for every S ⊂ V1.  

Proof:   

First, we prove that Hall’s condition implies the existence of a complete matching. 

 

Figure 4.2 To demonstrate Hall’s Theorem 

Consider an arbitrary vertex x ϵ V1. Connect the vertex x with its neighbor y ϵ V2 .  

Consider the remaining graph with x and y removed which has G’ = V1 \ x and  

V2 / y and E – (x, y) and V’ = (V1 / x, V2 / y). 

We consider the following two cases. 

Case 1: 
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Hall’s theorem holds for this graph G’ and therefore recursively get matching for V’ 

and Add(X, Y). 

Case 2: 

                               V1                                     V2 

                                                                                                                          

             |S| = k                                                                 T 

                                                                          y 

                               x                                                  

             |S’|=k’                                                                 V2 –T  

                                                                                     

                                             

Figure 4.3 To demonstrate Hall’s Theorem 

Assume that the Hall’s condition does not hold for this graph G’ but for original 

graph it did hold.Then ∃ S with | S | = k such that Γ(S) < k. 

We divide the sets V1 and V2  into two sets and vertex y is included in one of the sets 

of V2. 

From this follows that Γ(S) = T and | T | = k. 

Therefore | S | = |T | = k. 

Hall’s condition holds for S and T and therefore matching exists.  We look at 

remaining vertices and show that hall’s condition holds for {V1 - S, V2 – T}.  

Let S’ be any subset in the set V1 – S and | S’ | = k’. 

We know that | Γ(S ∪ S’) | ≥ k + k’. 

Γ(S ∪ S’) = Γ(S) ∪ Γ(S’)  
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                  = T ∪ Γ(S’) 

                  = T ⊍ Γ(S’-T) 

By substituting| Γ(S ∪ S’) |= k + k’ we get the following: 

K + k’ ≤ | Γ(S ∪ S’)| = | T | + | Γ(S’-T)| 

                                = k + | Γ(S’-T)| 

The k on both LHS and RHS get cancelled and the result is given as the following: 

                                   | S’ | ≤ | Γ(S’-T)| 

Therefore Hall’s condition holds and matching exits. 

Finally, for the other direction we observe that a complete matching does not exist if 

the above condition is not true for any subset of V1. 

Corollary: 

A bipartite graph G where | V2 | ≤ | V1 | contains a complete matching if and only if  

| γ(S)| ≥ |S| where S ⊂ V2 by Symmetry . 

                               V1                                     V2 

                                                                                                                          

                                                                                         

                 γ(S)                                                       S                                                                                         

                                                                                           

                                                                           

                                                                                     

Figure 4.4 To demonstrate Hall’s Theorem 
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4.2 Theorem: 

Hall’s Theorem can be applied to a bipartite graph G where each vertex has degree 

equal to D and that graph can be colored using exactly D colors. 

Proof: 

Consider a bipartite graph G whose vertices have a degree equal to D. The hall 

condition holds for this graph and therefore matching exists. The graph is colored 

using D colors by performing matching recursively.  

Let us now show this theorem using the following example: 

Consider the fully bipartite graph where each vertex is of degree equal to 3.Clearly 

Hall’s property holds for the graph and therefore matching exists. 

The coloring of a graph is an assignment of colors to edges such that no two edges 

have the same color. 

 

Figure 4.5 To demonstrate D coloring of a Graph  

In our first matching, we color the edges in the matching using yellow color. 
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Figure 4.6 To demonstrate D coloring of a Graph  

Now, we take out this matching and each vertex in the graph has a degree equal to 2. 

The resultant graph is given as: 

 

Figure 4.7 To demonstrate D coloring of a Graph  

Now, we perform the second matching with the green color. 

 

Figure 4.8 To demonstrate D coloring of a Graph  

Now, we take out this matching. Each vertex in the graph has a degree equal to 1. 

The resultant graph is given as: 

 

Figure 4.9 To demonstrate D coloring of a Graph  

Now, we perform the third matching with the red color. 
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Figure 4.10 To demonstrate D coloring of a Graph                       

The bipartite graph G having a degree equal to 3 for every vertex is colored with 

three colors and the resultant graph is given as follows: 

 

Figure 4.11 To demonstrate D coloring of a Graph  

4.3 D-coloring of multi bipartite graph: 

Consider a multi bipartite graph G whose vertices have a degree equal to d. The 

graph can be colored using exactly d colors.  

Proof: 

Let F be all the edges in the multi bipartite graph which leave S. 

Let | | F | | be the number of edges and | | H | | be all the edges for Γ(S). 

we know that | | H | | ≥ | | F | | 

 and | | F | | = d· | S |, | | H | | = d· | Γ(S)|. 

By substituting | | F | | = d· | S |, | | H | | = d· | Γ(S)| in the equation | | H | | ≥ | | F | | we 

get: 
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                                                   d· | Γ(S)| ≥ d·| Γ(S)|  

We know that if | Γ(S)| ≥ | Γ(S)| holds for any subset S of V1 in the graph, matching 

exists. 

Therefore, a multi bipartite graph G can be colored using exactly d colors. 

Let us now apply Hall’s theorem on the following open shop problem: 

4.4 O | Pi,j = 0, 1 |Cmax: 

This is an open shop problem where the processing time of every job on every 

machine is either 0 or 1 and the objective function of minimizing the makespan. 

The open shop scheduling problem with processing times 0 or 1 is called unit 

processing time open shop problem.                              

 M1 M2 M3 M4 

J1 1 1 1  

J2  1 1  

J3    1 

                                   

Table 4.1 To Demonstrate O | Pi,j = 0, 1 |Cmax using Hall’s Theorem 

The lower bound for Cmax is defined below: 

                         L = max { n
i 1max  Li, 

n
j 1max   Tj} 

Where Tj is the total time needed on machine Mj and Li is the length of job i.  

 Clearly. the lower bound for the above problem is 3. We obtain the following 

matrix: 

In the matrix, M5 , M6 , M7 are dummy machines and J4, J5, J6, J7 are dummy  

Jobs. 
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 M1 M2 M3 M4 M5 M6 M7 

J1 1 1 1     

J2  1 1  1   

J3    1  1 1 

J4 1   1 1   

J5 1   1  1  

J6  1   1  1 

J7   1   1 1 

 

Table 4.2 To Demonstrate O | Pi,j = 0, 1 |Cmax using Hall’s Theorem 

The bipartite graph for the above matrix is given below: 

 

Figure 4.12 To Demonstrate O | Pi,j = 0, 1 |Cmax using Hall’s Theorem 

Clearly Hall’s property holds for the above graph and therefore matching exists. 

In our first matching, we color the edges in the matching using blue color. 
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Figure 4.13 To Demonstrate O | Pi,j = 0, 1 |Cmax using Hall’s Theorem 

Now, we take out this matching and each vertex in the graph has a degree equal to 2. 

The resultant graph is given as: 

 

Figure 4.13 To Demonstrate O | Pi,j = 0, 1 |Cmax using Hall’s Theorem 

The Hall’s property holds for the above graph and therefore matching exists. 

Now, we perform the second matching with the violet color. 
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Figure 4.14 To Demonstrate O | Pi,j = 0, 1 |Cmax using Hall’s Theorem 

Now, we take out this matching. Each vertex in the graph has a degree equal to 1. 

The resultant graph is given as: 

 

Figure 4.15 To Demonstrate O | Pi,j = 0, 1 |Cmax using Hall’s Theorem 

The Hall’s property holds for the above graph and therefore matching exists. 

Now, we perform the second matching with the violet color. 



26 

 

 

Figure 4.16 To Demonstrate O | Pi,j = 0, 1 |Cmax using Hall’s Theorem 

The bipartite graph G having a degree equal to 3 for every vertex is colored with 

three colors and the resultant graph is given as follows: 

 

Figure 4.17 To Demonstrate O | Pi,j = 0, 1 |Cmax using Hall’s Theorem 

Here, the colors represent different time unit. 

The Gantt chart is given below: 
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Figure 4.18 To Demonstrate O | Pi,j = 0, 1 |Cmax using Hall’s Theorem 

At least one arc is eliminated after each step. Let r be the operations with processing 

time pij > 0, then we have at most O (r) steps. A matching can be calculated in   

O (r (n+m)
 0.5

) steps. Thus the total complexity is O (r
2
 (n+m)

 0.5
). The complexity 

can be reduced to O (r
2
) due to the fact that in each step the matching from the 

previous step may be used to calculate the new matching. 

4.5 Preemption of Jobs: 

Preemption of a job is also called as job splitting. It is allowed on both job and their 

operations. Preemption is interrupting the processing of a job or an operation and 

resuming at a later time. Now we see the preemptive version of the make span open 

shop problem. 

O | pmtn | Cmax : 

 M1 M2 

J1  2 

J2 1  

J3 2 1 
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Table 4.3 To Demonstrate O | pmtn | Cmax using Hall’s Theorem 

Clearly, the lower bound for the above problem is 3.  

The matrix is given as below: 

 M1 M2 M3 M4 M5 

J1  2 1   

J2 1   2  

J3 2 1    

J4   2 1  

J5     3 

   

Table 4.4 To Demonstrate O | pmtn | Cmax using Hall’s Theorem          

A multi bipartite graph is drawn below for the above matrix. 

The jobs are preempted on the machines so that every node in the graph has a degree 

equal to the lower bound of the given problem. 

 

Figure 4.19 To Demonstrate O | pmtn | Cmax using Hall’s Theorem 
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According to the theorem 4.4, the multi graph can be colored using exactly 3 colors. 

The first Matching with yellow color is given below. 

 

Figure 4.20 To Demonstrate O | pmtn | Cmax using Hall’s Theorem 

After removing this matching, the resultant graph is given below. Every node in the 

graph has a degree equal to 2. 

 

Figure 4.21 To Demonstrate O | pmtn | Cmax using Hall’s Theorem 

The second matching with violet color is given below: 
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Figure 4.22 To Demonstrate O | pmtn | Cmax using Hall’s Theorem 

After removing this matching, the resultant graph is given below. Every node in the 

graph has a degree equal to 1. 

 

Figure 4.23 To Demonstrate O | pmtn | Cmax using Hall’s Theorem 

The third matching with green color is given below: 
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Figure 4.24 To Demonstrate O | pmtn | Cmax using Hall’s Theorem 

  The resultant graph with all the three matching is given below: 

 

Figure 4.25 To Demonstrate O | pmtn | Cmax using Hall’s Theorem 

The Gantt chart for the above problem is given below: 

 

Figure 4.26 To Demonstrate O | pmtn | Cmax using Hall’s Theorem 
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The processing time of the above problem is given by O (r
2
). 

Let us consider another problem: 

 M1 M2 M3 

J1 1 1 1 

J2  1 1 

 

4.5 Table To Demonstrate Preemption using Hall’s Theorem 

The lower bound of the above problem is 3. The matrix is given below: 

 M1 M2 M3 M4 M5 

J1 1 1 1   

J2  1 1  1 

J3 2   1  

J4  1  2  

J5   1  2 

 

4.6 Table To Demonstrate Preemption using Hall’s Theorem 

The bipartite multi graph is given as follows: 
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Figure 4.27 To Demonstrate Preemption using Hall’s Theorem 

The first matching is given below with blue color: 

 

Figure 4.28 To Demonstrate Preemption using Hall’s Theorem                             

Now, we remove the first matching and the resultant graph is given below: 

 

Figure 4.29 To Demonstrate Preemption using Hall’s Theorem 

The second matching is given with red color as below: 
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Figure 4.30 To Demonstrate Preemption using Hall’s Theorem 

Now, we remove the second matching and the resultant graph is given below: 

 

Figure 4.31 To Demonstrate Preemption using Hall’s Theorem 

The third matching is given below with green color: 
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Figure 4.32 To Demonstrate Preemption using Hall’s Theorem 

  The multi bipartite graph with three coloring is given below: 

 

Figure 4.33 To Demonstrate Preemption using Hall’s Theorem 

The Gantt chart for the multi bipartite graph is given below: 

 

Figure 4.34 To Demonstrate Preemption using Hall’s Theorem 
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CHAPTER 5 

Maximum Flow Problem 

According to Ford-Fulkerson
 [31]

, the max flow problem for single source and single 

sink is given as follows: 

A directed capacitated network (V, E, C) connecting a source and a sink t, where V 

is the set of vertices in the network, E is the directed edges (i, j) and C is the set of 

capacities Cij > 0 of the edges (i, j). The problem is to determine the maximum flow 

that can be sent from the source to the sink. 

Mathematical Formulation: 

 For each edge (i, j) ϵ E, let xij be the flow that is sent on the edge (i, j). 

 For each edge (i, j) ϵ E, the flow is bounded above by the capacity Cij of the edge 

and is given as below: 

Cij ≥ xij ≥ 0 

 All the vertices except the source and the sink are transit vertices, i.e. the inflow = 

the outflow. 


 }),(|{ Eikk

kix - 
 }),(|{ Ejij

ijx = 0    for all i  s, t 

 The objective here is to maximize the flow: 


 }),(|{ Ejsj

sjx  

Max Flow Algorithm: 

The algorithm is an iterative method. 

 At each iteration, the algorithm searches for a path from source to sink along which 

it can send a flow. This path is referred as augmenting path. 
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 Along this augmenting path, the capacities of the edges on this path are adjusted 

after the flow has been sent. 

 The algorithm terminates when an augmenting path is not found. 

The capacity of a path is the maximum possible amount we can send along that path. 

Let us consider the following example
 [32]

: 

 

Figure 5.1 To Demonstrate Maximum Flow Problem 

We have the maximum flow of 28 for the above graph and the flow is shown below: 

 

Figure 5.2 To Demonstrate Maximum Flow Problem 
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A minimum cut is partition (A, B) such that A ϵ source s and B ϵ sink t and the 

capacity of (A, B) is the sum of the weights of the edges leaving s. 

 

 

Figure 5.3 To Demonstrate Maximum Flow Problem 

In any network, the maximum flow equals the minimum cut. 

The time complexity of the algorithm is O (m·max|f|), where m is the number of 

edges and max|f| is maximum amount of flow. 
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CHAPTER 6  

Reduction from Parallel Machines to Open Shop 

6.1 P| pmtn | Cmax: 

Given are five jobs J1, J2, J3, J4, J5 and three machines.  

According to Peter Brucker
[1]

 when machines are parallel, each operation of a job 

can be processed on any of the machines.   

The lower bound for the above problem is given as follows: 

max { 
i

max pi , ( 


n

i

ip
1

) / m} 

where m is the number of machines. 

A schedule that can meet this lower bound can be achieved in O (n) time. Now, we 

fill the machines successively. The jobs can be scheduled in any order and the jobs 

can be split whenever the lower bound is met. If the job is split, then we have to 

schedule the second part of the job on second machine at zero time.  

The machine oriented Gantt chart is given as follows: 

 

Figure 6.1 To Demonstrate Parallel Machines Problem 
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The job oriented Gantt chart is given as follows: 

 

 

Figure 6.2 To Demonstrate Parallel Machines Problem 

Let V1 be the set consisting of jobs and V2 be the set consisting of the time slots 

from 1 to 5. 

The following is the bipartite graph of the sets V1 and V2: 

 

Figure 6.3 To Demonstrate Reduction from Parallel Machines to Open Shop 

The bipartite graph satisfies the hall property and therefore by applying hall’s 

theorem matching can be obtained. 

The first matching is obtained with blue color and is given as follows: 
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Figure 6.4 To Demonstrate Reduction from Parallel Machines to Open Shop 

The graph after taking out the first matching (blue matching) is shown below: 

 

Figure 6.5 To Demonstrate Reduction from Parallel Machines to Open Shop 

Each node in the graph has a degree equal to 2. The graph satisfies the hall property 

and therefore the second matching can be obtained with red color. 

 

Figure 6.5 To Demonstrate Reduction from Parallel Machines to Open Shop 
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The resultant graph after taking out the second matching is shown below: 

 

Figure 6.6 To Demonstrate Reduction from Parallel Machines to Open Shop 

The above graph satisfies hall property. Each node has a degree equal to 1. 

Therefore the third matching can be obtained and is shown below: 

 

Figure 6.7 To Demonstrate Reduction from Parallel Machines to Open Shop 

The resultant graph with all the three matching is given below: 
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Figure 6.8 To Demonstrate Reduction from Parallel Machines to Open Shop 

The Gantt chart for the above example is given below: 

The parallel machines problem is reduced to open shop problem using Hall’s 

theorem. 

Here, the colors represent the three machines M1, M2, M3. The coloring satisfies the 

property of scheduling that no job is being processed on more than one machine at 

any point of time and also a machine does not process more than one job at any 

given time. 

 

Figure 6.9 To Demonstrate Reduction from Parallel Machines to Open Shop 
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The processing time of above problem is O (r
2
). 

6.2 P| pmtn;ri | Lmax: 

According to Peter Brucker
[1]

, each job is associated with a release time ri and a 

deadline di where ri ≤ di. Now, we have to find a preemptive schedule with m 

identical machines where the maximum lateness is minimized. We first consider that 

for some given L value, does a schedule exist with n
1max Li ≤ L? 

Also, we want to find out that such a schedule exists if and only if it holds iC  L
id = 

L + di for all i = 1. . . n.  

Here L
id are the modified due dates. 

Therefore, all the jobs i must finish processing before the modified due date L
id and 

cannot be Processed before release time ri. We now know that a job i must be 

processed in the time interval [ ri, 
L
id ]. These are called time windows. We can find 

a preemptive schedule such that a job i is processed in the time interval [ ri, 
L
id ] by 

reducing to a maximum flow problem in a network. The network is constructed as 

follows: 

Let the release times and deadlines be ordered in the sequence t1 ≤ t2 ≤ t3 ≤ t4 ≤ t5 …≤ 

tn. Now, consider the intervals Ia = [ta, ta+1] and Ta is the length of the interval which 

is given by ta+1 – ta for a = 1..r-1.A job vertex is associated with every job i and an 

interval vertex is associated with every Interval. We introduce two vertices s and t 

and these are called the source and the sink. We now have an arc to each job vertex i 

form source s and the capacity is pi and an arc from every interval vertex to sink t 

with a capacity of mTa. If a job Ji can be processed in Ia i.e. if ri ≤ ta and di ≤ ta+1, 
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then there exists an arc from Ji to Ia. The capacity of this arc is Ta. The network N = 

(V, A, c) is given as following: 

 

Figure 6.10 To Demonstrate P| pmtn;ri | Lmax 

The maximum flow of the network is 


n

i

ip
1

if there exists a schedule respecting all 

time windows. Here, the flow xia on the arc (Ji, Ia) corresponds with the time period 

in which Job i is processed in the time interval Ia and we have the following: 

 






1

1

r

a

iax  = pi for i = 1,2 …n 

 




n

i

ax
1

≤ mTa for a = 1,2…n 

 

Now, each job is completely processed and the total amount of processing time in Ia 

is at the most mTa, which is the capacity of m machines. 

When all the deadlines are equal to zero then the same is applied for P | pmtn | Cmax. 



46 

 

The network N can have at most O (n) vertices. The schedule respecting the 

windows can be constructed in O (n
2
) and therefore the windows problem can be 

solved in O (n
3
) time.  

P| pmtn;ri | Cmax: 

Given five jobs and three machines. 

The processing times, release times and deadlines are given as follows: 

P1 = 3, P2 = 3, P3 = 3, P4 = 3, P5 = 3. 

r1 = 0, r2 = 1, r3 = 0, r4 = 2, r5 = 0. 

d1 = 0, d2 = 0, d3 = 0, d4 = 0, d5 = 0. 

Threshold value L = 5. 

Relaxed deadlines: L
id = L + di for all i=0, 1…n. 

5
1d = 5 + 0 =5, 5

2d = 5 + 0 =5, 5
3d = 5 + 0 =5, 5

4d = 5 + 0 =5, 5
5d = 5 + 0 =5. 

The ordered sequence of release times and deadlines is given below: 

                                           0 < 1 < 2 < 5 

                                           t1 < t2 < t3 < t4  

The intervals are given below: 

I1 = [0, 1], T1 = 1 

I2 = [1, 2], T1 = 1 

I3 = [2, 5], T1 = 3 

The time window diagram: 
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Figure 6.11 To Demonstrate Time Window Diagram 

Yes, there exists a feasible schedule for L =5. 

The Gantt chart for the problem: 

 

Figure 6.12 To Demonstrate P| pmtn;ri | Lmax 

The bipartite graph for the above Gantt chart is given below: 
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Figure 6.13 To Demonstrate P| pmtn;ri | Lmax 

The bipartite graph satisfies the hall’s property and therefore matching exists. 

The first matching is given with blue color: 

 

Figure 6.14 To Demonstrate P| pmtn;ri | Lmax 

The graph without the first matching is given below: 
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Figure 6.15 To Demonstrate P| pmtn;ri | Lmax 

The above graph satisfies the hall’s property and therefore matching exists. The 

second matching i.e. Red matching is given below: 

 

Figure 6.16 To Demonstrate P| pmtn;ri | Lmax 

The graph without second matching is given below: 
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Figure 6.17 To Demonstrate P| pmtn;ri | Lmax 

The graph satisfies Hall’s property and therefore matching exists. The third 

matching i.e. Green matching is given below: 

 

Figure 6.18 To Demonstrate P| pmtn;ri | Lmax 

The bipartite graph with all the three matching is given below: 

 

 

Figure 6.19 To Demonstrate P| pmtn;ri | Lmax 

The three colors blue, red, green represent the three machines. Now, we reduce the 

problem to open shop problem. The machine oriented Gantt chart for the open shop 

problem is given below: 
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Figure 6.20 To Demonstrate P| pmtn;ri | Lmax 

The processing time of the above problem is O (n
3
). 
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CHAPTER 7 

Hard Open Shop Problems 

7.1 O3 || Cmax : 

According to Gonzalez and Sahni
[19]

, to prove that the minimum makespan open 

shop nonpreemptive scheduling problem is NP-hard, we reduce the partition 

problem to three machine problems. 

Given are n integers from 1 to n. Now, the partition problem is to determine whether 

or not the Integers {1...n} can be partitioned into two sets A1 and A2 , in such a way 

that each set is equal to T∕ 2, where T = 


n

i

ia
1

(sum of all the integers).  

We consider the reduction of three machine non preemptive open shop scheduling 

problem with 3n + 1 jobs and three machines. 

The 3n set of jobs are introduced as follows: 

Let jobs J1, J2, J3, J4… Jn  be the set of jobs on machine M1 and  k1, k2, k3, k4… kn  be 

the set of jobs on machine M2 and l1, l2, l3, l4… ln be the set of jobs on machine M3.  

J     M1     K     M2    L     M3 

J1     a1       k1      a1       l1     a1 

J2     a2       k2      a2        l2     a2 

J3     a3       k3      a3         l3      a3 

.        .         .        .       .     . 

Jn      an       kn      an         ln    an 

Figure 7.1 To Demonstrate O3||Cmax 

Here, ai is the processing time of each job on each machine. 
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All the jobs in the set J have nonzero tasks on machine M1, the jobs in set k have 

nonzero tasks on machine M2 and jobs in the set l have nonzero tasks on machine  

M3. 

All the jobs in the above instance have one nonzero task except for the last job that 

has nonzero tasks on all the machines. 

Let U3n+1 be the last job and U3n+1 has a processing time of T ∕ 2 on each machine. 

Therefore, the job U3n+1 has to process without interruptions if there exists a 

schedule with a makespan of 3T∕ 2. 

 

Figure 7.2 To Demonstrate O3||Cmax 

We know that this is a nonpreemptive schedule, therefore the job U3n+1 has to be 

processed from time T ∕ 2 to time T on one of the machines. From the above Gantt 

chart we know that there are two disjoint blocks of idle time each having a length of 

T ∕ 2 on one machine. Now, these blocks will be used for processing set of n jobs 

whose processing time corresponds to those sizes in the instance of partition.  

The jobs in the set J have to be processed on machine M1 as shown in the following: 
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Figure 7.3 To Demonstrate O3||Cmax 

Now, the jobs in set l have to be processed on machine M3. 

 

Figure 7.4 To Demonstrate O3||Cmax 

The jobs in the set k are partitioned in such a way that the sum of the processing 

time of jobs in each set is equal to T/2. 

If there exists no partition, then the makespan of 3T/2 cannot be achieved. It is 

because one of the set among the two sets of jobs of the set k has sum of the 

processing times less than the other set. This results in a schedule where the 

makespan extends 3T/2. This is shown below: 
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Figure 7.5 To Demonstrate O3||Cmax 

If partition exists, then the makespan remains 3T/2. It is shown below: 

 

Figure 7.6 To Demonstrate O3||Cmax 

Since partition is required for the makespan to be 3T/2, therefore, the open shop 

nonpreemptive scheduling problem is NP-hard. 

7.2 Disjunctive Graph Model: 

According to Peter Brucker
[1]

, a disjunctive graph is a graph containing disjunctive 

edges. A disjunctive edge connects any two any two nodes from the set V.  

Disjunctive Graphs are used to represent certain feasible solutions for Shop 

problems. The Disjunctive Graph G = (V, C, D) can be defined as follows:  

V: 

 It is the set of nodes representing the operations of all the jobs. There are two 

special nodes known as source 0 and sink *, both belonging to the set V. Here, each 
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node is associated with a weight. The source and the sink nodes have a weight of 

zero, where as other nodes have their processing times as their weights.   

C: 

It is the set of directed Conjunctive Arcs. These arcs represent the precedence 

relation that will exist between the operations of the job. The conjunctive arcs also 

exist between the source and all the operations without predecessor and also 

between sink and all the operations without successor. 

D: 

It is set of undirected disjunctive arcs. This disjunctive arc exists between the 

operations of the Same job which are not connected by conjunctive arcs and also 

between the pair of operations that are to be processed on the same machine which 

are not connected by the conjunctive arcs.  

Consider the following Open Shop Problem: 

Given three jobs J1, J2, J3 and three machines M1, M2, M3. 
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Figure 7.7 To Demonstrate Disjunctive Graph  

From the above graph, we know that the operations of jobs 1, 2 and 3 can be 

processed in an order. Consider J1, Either the first operation or second operation or 

the third operation can start processing first. Similarly, the first operation or second 

operation or third operation is processed at the end. This is represented by the 

conjunctive arcs for all the jobs. Now, the disjunctive arcs indicate that no machine 

can process more than one operation at a time and also no job can be processed on 

more than one machine at any point of time.       

Consider the following problem: 

 J1    J2   J3   J4   J5 

   M1    1     1    2    2   3 

   M2    1    2    1    3   2 

 

Figure 7.8 To Demonstrate Disjunctive Graph  

The Disjunctive Graph for the above open shop problem is given as follows: 

 

Figure 7.9 To Demonstrate Disjunctive Graph  
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The disjunctive graph after fixing the disjunctive arcs is given below: 

 

Figure 7.10 To Demonstrate Disjunctive Graph  

The Gantt chart to represent the above disjunctive graph is given below: 

 

Figure 7.11 To Demonstrate Disjunctive Graph 

The Cmax for the above open shop problem is 10.  
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Chapter 8 

Neighborhood Search 

Neighborhood plays an important role in local search. An efficient neighborhood 

will lead to high quality local optima. The neighborhood is now defined below: 

Consider the disjunctive graph of an open shop problem: 

 

Figure 8.1 To demonstrate Neighborhood for an Open Shop Problem 

Let S be a complete selection, i.e. a disjunctive graph with no cycles and also the all 

the disjunctive edges are fixed. An immediate neighbor of S is defined as: The set of 

all complete selections that are obtained from the graph S by reversing an edge  

(i, j) where i and j are processed on the same machine. The neighbor of S is therefore 

denoted by N (S). 
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Figure 8.2 To Demonstrate the Neighbor of S 

The disjunctive graph in the figure 8.2 is the neighbor of the disjunctive graph in the 

figure 8.1 and is obtained by reversing the edge (O21, O31). 

Local neighborhood search, also known as Hill Climbing, searches for the 

immediate neighbor in order to obtain a better solution i.e. a solution with a better 

Cmax. This algorithm accepts the neighborhood solutions if the solution of the 

neighbor is better than the current solution. The algorithm recursively performs this 

search untill it finds a better solution than the current solution. The algorithm 

terminates when the current solution is our optimal solution. We call this solution as 

the local optima. The disadvantage of this local neighborhood solution is that the 

local optima is the best always.  

The disjunctive graph is used to show how local neighborhood search works. 

We consider the figures 8.1 and figure 8.2 and we know that figure 8.2 is the 

neighbor of the figure 8.1. 

The Gantt chart for the figure 8.2 is given below: 



61 

 

 

Figure 8.3 To Demonstrate the Neighbor of S 

This  Cmax value is worst than the Cmax value of the figure 8.1. Therefore we do not 

accept this solution and search for another better solution. This procedure is repeated 

untill we find the local optimum. 
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CHAPTER 9 

Conclusion and Futurework 

Open Shop Scheduling problem is different from other scheduling problems. This 

shop problem is very closely related to matching. Although, we have surveyed 

number of problems where Hall technique works, yet there are unexplored problems 

where matching is applied. The connection between algorithms of parallel machines 

and open shop are more close than other shop problems. In this thesis, we have 

learnt flow techinques are useful and seem to be one of the strongest tools available 

for non-NP Complete scheduling problem. 
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