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ABSTRACT

Detours Admitting Short Paths

by

Reshma Koganti

Dr. Laxmi Gewali, Examination Committee Chair
Professor of Computer Science

University of Nevada, Las Vegas

Finding shortest paths between two vertices in a weighted graph is a well ex-

plored problem and several efficient algorithms for solving it have been reported.

We propose a new variation of this problem which we call the Detour Admit-

ting Shortest Path Problem (DASPP). We present an efficient algorithm for solving

DASPP. This is the first algorithm that constructs a shortest path such that each

edge of the shortest path admits a detour with no more than k−hops. This al-

gorithm has important applications in transportation networks. We also present

implementation issues for the detour admitting shortest path algorithm.
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CHAPTER 1

INTRODUCTION

The problem of computing shortest paths in a weighted graph has been con-

sidered by many researchers [9, 10, 11, 15]. Algorithms for computing the shortest

path have been reported for the last fifty years [11]. Dijkstra published the first

provably correct algorithm [11] for solving the shortest path problem. Many vari-

ations of the shortest path problems have been suggested [1, 5, 9, 16, 26]. In almost

all such variations, Dijkstra’s concept of relaxation has been used as an important

ingredient. Use of sophisticated data structures have been suggested [8] for speed-

ing up the time complexity of Dijkstra’s algorithm.

In real world applications, there are limitations of the shortest path itself which

can be briefly listed as follows.

• The shortest path may not be reliable in a dynamically changing environ-

ment. If an edge e of the shortest path connecting source vertex s to target

vertex t is broken unexpectedly then the path obtained by replacing the bro-

ken edge e by a detour could be very long. In some situations the detour for

some edges of the shortest path may not exist.

• For applications in trajectory planning for aerial vehicles, a shortest path may

not be acceptable. If two consecutive edges of the shortest path make a sharp

angle, then the implied turn angle between them could be very tight and may

not be feasible as a trajectory for aerial vehicles. What is needed is a shortest

path without sharp turns.

• Even a shortest path without sharp turns may not be useful in a dynamic en-

vironment where edges can appear or disappear in an unpredictable manner.

If an edge e of the shortest path disappears then it may not be feasible to re-

compute the new shortest path, if the time for recomputation is comparable

to the time required to traverse edge e. In such situations, it is necessary to

1



have multiple short length paths connecting the source vertex to the target

vertex.

In this thesis, we are proposing a variation of the shortest path problem with

increased reliability in trajectory planning applications. We consider the detour

property in addition to total length in developing the algorithm. We refer to such

paths as detour admitting shortest paths. We show how to modify the standard Di-

jkstra’s algorithm so that the resulting shortest path also admits k-detours (detour

with at most k edges) for all edges of the path.

The thesis is organized as follows. Chapter two presents a review of existing

variations on the shortest path algorithm that include (i) Sharp-Turn constraints (ii)

Multiple shortest paths, and (iii) Update of the shortest paths. In chapter three, we

present the main contributions of the thesis. We propose a polynomial time algo-

rithm to compute a shortest path that admits k-detours for all its edges. The time

complexity of the proposed algorithm is O(|E|.(|E| + |V | + dk
max) + |V |2), where

|E| and |V | denote the set of edges and the set of vertices of the input graph G.

Further more, dmax denotes the value of the maximum degree of vertices in G. We

consider another version of the detour admitting short path problem that does not

allow overlap between detours and the short path. For this version we present an

algorithm that runs in O(|V ||E|(dk
max + |E| log |E|)) time. This algorithm produces

paths of short lengths but is not necessarily of shortest length. In chapter four, we

describe the implementation of several algorithms that include (i) Dijkstra shortest

path algorithm (ii) k-bounded Breadth First Search (BFS) algorithm and (iii) Detec-

tion of k-detour algorithm. The implementation is done in the JAVA programming

language with a user-friendly front-end Graphical User Interface (GUI). Finally in

chapter five, we discuss extensions and further research problems related to detour

admitting shortest paths.

2



CHAPTER 2

LITERATURE REVIEW

In this chapter we present a review of shortest path algorithms under various

constraints. We first describe an overview of Dijkstra’s shortest path algorithm in

which the shortest path is computed without any constraint. We also address the

problem of efficiently computing all-pair shortest path problems. In particular, we

examine the use of the “Locally Shortest Path (LSP)”property for developing faster

all-pair shortest path algorithms. We then address the problems of computing

shortest paths under other constraints that include (i) Turn-Angle and (ii)Visibility

properties.

Standard Shortest Path Algorithms

The problem of computing the shortest path between two nodes in a given

network is a well investigated problem and several algorithms have been reported

in the literature [1, 9, 10, 11, 15, 27]. The shortest path problem can be formally

stated as follows.

Given: A weighted graph G(V,E) and source vertex s.

Question: Find the length of the shortest path connecting s to all other vertices in

the graph.

One of the most widely used algorithm for computing shortest paths is Dijk-

stra’s shortest path algorithm [11]. This algorithm is based on the greedy paradigm

[8]. The algorithm maintains shortest paths from source vertex to a selected set of

vertices R. Initially only the source vertex is included in R. The algorithm picks

the new vertex to include in R by examining all candidate vertices in V − R. The

vertex that minimizes the length of shortest path from s using vertices in R as the

intermediate vertices is taken as the next vertex w to add to R. This greedy process

continues until all vertices are included in R. The result is the shortest path tree

3



rooted at source vertex s.

This algorithm can be sketched as follows:

Dijkstra’s Shortest Path Algorithm

Input: Weighted graph G(V, E), source nodes, number of vertices

Output: Implicit representation of shortest path tree rooted at s

Algorithm 1 Dijkstra’s Shortest Path
1: {Cost[][] array holds weights of edges}
2: {dist[] used to record distance from s to other nodes }
3: {path[i] holds node index of the previous node}
4: {of ith vertex in the shortest path}
5: {The number of vertices n=|V |}
6: boolR[n];
7: {represent processed nodes}
8: for i = 1 to n do
9: R[i] = false;

10: dist[i] = cost[s][i];
11: end for
12: R[s] = true;
13: dist[s] = 0.0; {put s in R}
14: for num = 2 to n do
15: u = 2;
16: for i = 3 to n do
17: if ((R[i]== false) and (dist[i] < dist[u])) then
18: u = i;
19: end if
20: R[u] = true; {put u to R}
21: for w = 1 to n do
22: if ((R[w]==false) and (dist[w] > dist[u] + cost[u][w])) then
23: dist[w] = dist[u]+ cost[u][w];
24: path[w] = u;
25: end if
26: end for
27: end for
28: end for

Faster All-Pair Shortest Path Algorithms.

To compute the shortest paths between all pairs of vertices using Dijkstra’s al-

gorithm, a straightforward approach is to repeat the execution of the algorithm

by taking each of the |V | = n vertices as the source vertex. This approach clearly

4
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Figure 1 Dijkstra’s approach for Shortest Path extension.

takes O(n3) time. Computing all pair shortest paths in time less than O(n3) (i.e

o(n3)) is a very interesting problem and some progress has been achieved in re-

cent years [9, 10]. The technique presented in [9, 10] is based on the use of the

optimal-substructure property of the shortest path which can be stated as follows.

OS-Property(Optimal substructure property): Every sub-path of a shortest path

must be the shortest path connecting corresponding end vertices. In other words,

OS-Property states that if vi1 ,vi2 ,... vik is the shortest path connecting vi1 to vik then

vip , vip+1...vir must also be the shortest path connecting vip to vir , where 1 < p < r.

Dijkstra’s algorithm computes the shortest path tree in a greedy manner by

adding a new vertex to the partially constructed shortest path tree. Consider the

partially constructed shortest path connecting vertex x to the vertex y as shown in

Figure 1, where the outgoing edges from vertex y are drawn as directed edges. We

refer to these edges as fringe edges.

Dijkstra’s algorithm examines all the fringe edges incident at y to include the

next vertex. Demetrescu and Italiano [9, 10] argue that it may not be necessary to

examine all the fringe edges to include as the next vertex. They argue that it is

necessary to examine only those fringe edges yz such that both πxy and πaz are the

sub paths of πxz, where πvw denotes the shortest path connecting vw, and a is the

vertex as depicted in Figure 1.

A path whose all proper sub-paths are the shortest path is called locally shortest

5
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Figure 2 All fringe edges cab be LSP.

paths(LSP) [9, 10]. So, if the path obtained by adding a fringe edge is a LSP then

only those fringe edges need to be considered. However, it turns out that some

graphs can be constructed for which all fringe edges can appear as LSP. In Figure

2, the shortest path connecting a to h is shown. We can observe that all fringe edges

incident at vertex h are LSP.

Reference [9] reports that in the worst case there can be O(mn) LSP paths in

some network, where m is the number of edges in the graph. Thus even if an algo-

rithm keeps track of LSPs, the time complexity of all pair shortest path algorithm

based on the Dijkstra’s algorithm still remains O(n3).

Even though the number of locally shortest paths (LSP) could be O(n3) in gen-

eral, there are some classes of graphs for which the number of LSPs is significantly

small. As reported in [9], the number of LSPs in a road network is O(n2). Further-

more, for the network consisting of Internet Autonomous Systems, the number of

LSP’s is also close to O(n2).

The notion of LSP has been successfully used for developing an algorithm for

maintaining all pair shortest paths in a dynamically changing networks. In a dy-

namically changing networks, edge weights may change as time progresses. For

example, in traffic networks, if edge weights are assigned a weight reflecting the

traffic flow, then the resulting network changes with time. When an edge weight
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changes, recomputing the shortest paths all over again would be very time con-

suming. The concept of LSP has been used to update all pair shortest paths when

the weights of some edges change [9].

If edge weights are allowed to only increase as time progresses then the idea of

LSPs have been used effectively to develop efficient shortest path updating algo-

rithms [9].

If the edge weights are allowed to have a sequence of weight increases, then

during each update the number of paths that can stop being locally shortest are

known to be O(n2) and the number of new paths that can start being locally short-

est are also known to be O(n2) [9]. Using these ideas, updates of locally shortest

paths can be done in O(n2 log(n)) time per edge weight increase.

Similarly updating the LSP’s for a sequence of weight decrease can be done in

O(n2 log n) per edge weight decrease.

If edge weights are allowed to be a sequence of both weight increase and de-

crease, LSP can no longer be used directly. If the increased and decreased edge

weights are intermixed, there may be O(mn) changes in the set of locally shortest

paths during each update.

Turn-Angle Constrained Shortest Paths

An interesting variation of shortest path problem has been introduced in [1].

This variation deals with requirements for turn angles in the shortest path. Specif-

ically, the problem is to compute a shortest path in a geometric graph such that

the turn angles between consecutive edges of the path should not be more than a

certain given angle.

Angle constrained shortest paths have applications for trajectory planning of

aerial vehicles. If a path has sharp turn angles then such paths can not be used as

trajectories for flying aerial vehicles. In fact, most aerial vehicles can not have turn

angles larger than 30◦ [16].

An efficient algorithm for computing angle-constrained shortest paths in geo-

7
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metric graphs is reported in [1]. Note that in a geometric graph, edges satisfy the

triangle inequality. The paper describes a graph transformation technique which

can be briefly described as follows.

Given a geometric graph G(V, E), a transformed graph G′(V ′, E ′) is constructed

such that each edge ei ϵ E becomes a vertex of G′ and two nodes in G′ are connected

by an edge if the corresponding edges in G′ are consecutive and the implied turn

angle is less than a predefined threshold value.

Angle constrained shortest paths can be obtained by applying Dijkstra’s algo-

rithm to the transformed graph. The resulting algorithm runs in O(|E| log |V |) time

[1]. An example of graph transformation is shown in Figure 3.

Visibility Constrained Shortest Paths

The problem of computing shortest paths satisfying visibility requirements has

been considered in robotics and computational geometry [2, 3, 4, 6, 7, 12, 13, 14, 17,
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18, 19, 20, 21, 24, 23, 25]. Given a set of polygonal obstacles in two dimensions, a

shortest path from which all points in the free-space is visible is called the Shortest

Watchman Path. Note that free-space is the space not occupied by the obstacles.

Figure 4 shows a collection of obstacles and a shortest watchman path. The path is

drawn with dashed edges.
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Figure 4 Illustrating a Shortest Watchman Path.

It is known that the problem of computing the shortest watchman path/route

in the presence of polygonal obstacle is NP-hard [6]. Computing watchman routes

(closed path) inside a polygon has also been considered [5]. It is known that the

shortest watchman route inside a rectilinear polygon can be computed in O(n log n)

time, where n is the number of vertices in the polygon. An example of the shortest

watchman route inside a rectilinear polygon is shown in Figure 5.

Computing shortest watchman routes inside simple polygons (not necessarily

rectilinear) is a much more difficult problem. The first polynomial time algorithm

for constructing shortest watchman routes inside a simple polygon was reported

in [5]. Other variations of the watchman route problem and the development of

incremental and approximation algorithms are reported in [12, 13, 14, 17, 21]. It

is noted that construction of shortest watchman paths and routes have been con-

9



Figure 5 Illustrating shortest Watchman Route Inside a Rectilinear Polygon.

stantly investigated for the last twenty five years and same interesting results are

reported in [12, 13, 14, 17, 18, 19, 20, 21, 24].
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CHAPTER 3

DETOURS ADMITTING SHORTEST PATHS

In this chapter we propose a new variation of the shortest path problem that

has rich applications inF transportation networks. This variation considers the

construction of shortest paths satisfying detour properties. We first consider the

notion of detours in a shortest path. While some paths could admit detours for all

of its edges, others may not admit at all. After formulating the notion of bounded

detours in a path, we proceed to the development of efficient algorithms for com-

puting shortest paths that admit detours for all its edges. We also explore the

development of detour admitting path construction algorithms such that no de-

tour overlaps with the shortest path. This variation of the shortest path problem

seems to be very hard and we propose a polynomial time algorithm for obtaining

the solution.

Problem Formulation

Consider a path PT1 = vi1 , vi2 , vi3 ... vik connecting vertex vi1 to vertex vik in a

weighted geometric graph G(V, E) with set of vertices V = v1, v2, ..., vn and sets of

edges E = e1, e2, ..., em. Note that edges of a geometric graph G(V,E) satisfy the

triangle inequality. Figure 6 shows a path connecting source vertex s = v1 to target

vertex t = v7. The path is drawn high-lighted with thick edges. In fact this path is

also the shortest path connecting vertex v1 to vertex v7 in G(V, E).

Definition 3.1 A detour for an edge e = (vik , vik+1
) is a path connecting vik to vik+1

that

does not include edge e. In Figure 6, edge e2 = (v2, v3) has 2-hop detour (v2, v9, v3). The

edge e2 has many other detours including the one with 4-hops (v2, v23, v22, v24, v3). On the

other hand edge (v5, v6) does not have any detour with less than 8 hops.

The notion of detour can be extended from a single edge to a sub-path (se-

quence of edges) in a straightforward manner. The detour for a sub-path Pi,j con-
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necting vertex vi to vertex vj is a path connecting vi to vj that does not include

any edge in the path. In Figure 6, a detour for sub-path (v1, v2, v3, v4) is given by

(v1, v10, v9, v11, v12, v4). In our investigation we are interested in detours with small-

est number of edges. Such detours are also shortest detours if distance is measured

in terms of the number of edges in the path. The shortest detour for edge (vik , vij)

is denoted by dt(ik, ij). Similarly the shortest detour for sub-path P1 is denoted as

dt(PT1).

The problem of computing shortest detours has important application in path

planning in transportation networks. Consider the problem of planning the short-

est path between two given nodes in a road network. The shortest such path can

be computed by using Dijkstra’s shortest path algorithm [8, 11, 22]. Such a shortest

path may not be reliable in situations when an unexpected traffic-jam occurs. Sup-

pose we have computed a shortest path P1 for travel in a road network. If one of

the edges e in P1 ceases to be functional due to a traffic-jam or road accident then

we can not use the precomputed path for the intended travel. We need to make a

detour around edge e to reach the destination. For certain kinds of road networks

some edges of the shortest path may not support a detour or the detour may be

too long. This can be clarified by inspecting the shortest path in Figure 6. Suppose

edge (v5, v6) breaks down in the highlighted shortest path. No detours of length

shorter than 8 hops exist for this edge. In fact the shown network can be easily

modified so that no detours are available for edge (v5, v6). This observation mo-

tivates us to consider the problem of computing the shortest path connecting two

given nodes in a geometric network such that the resulting shortest path should

admit (if possible) detours of short lengths for all its edges. The problem can be

formally defined as follows.

Detour admitting shortest path problem (DASPP)

Given : (i) A weighted graph G(V, E).

(ii) Start node s, target node t.

12
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Figure 6 Illustrating a shortest s-t path in a geometric graph

(iii)An integer k.

Question : Find a shortest path connecting s to t in G such that the shortest path

admits a detour of at most k hops for all its edges.

Recognizing Detour Admitting Paths

We now proceed to develop an algorithm for checking whether a given path

admits k-bounded detours. For this purpose we need to use a variation of the

Breadth First Search (BFS) algorithm. We start with a short overview of BFS. BFS

explores a graph starting from a given source node s. The nodes are visited in the

order of their shortest distance d(v) from s. Note that distance d() is measured in

term of the number of edges. BFS first explores nodes at 1 edge away from s. Next

it explores nodes 2 edges away from s. In general, nodes at distance k are explored

only after visiting nodes at distance k−1. BFS uses a queue to record vertices at the

front of the exploration. The front vertices are the ones that are at the boundary of

explored and unvisited vertices. At first the source vertex is entered in the queue.
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Figure 7 Execution Trace of BFS

The algorithm proceeds for exploration by taking a node v from the queue. When

node v is visited, its adjacent vertices that have not been visited before are inserted

into the queue. Due to the first-in-first-out property of the queue, the vertices of

the graph are explored in the order of their distances from the source vertex. The

application of BFS produces a exploration tree called a BFS-tree. A partial snap-

shot of the execution of BFS on a graph is illustrated in Figure 7 where tree-edges

implicitly constructed by BFS are shown by shades. The details of BFS can be found

in [8].

We can modify the standard BFS algorithm [8] to obtain a k-bounded detour

detection algorithm for an edge e = (vi, vj). We need to pass k (maximum number

of allowed hops) as a parameter. When the first vertex u removed from the queue

has distance from the source vertex s equal to k, the search stops. The search also

stops when one of the leaf nodes in the partially constructed BFS tree is the node vj .

The algorithm takes the weighted graph G, designated edge e, and hop-count limit

k as its parameters and outputs boolean value true if there is a detour of at most
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k-hops for edge e = (vi, vj). If the detour does not exist then it returns ’false’. The

main ingredient of the algorithm is to grow the BFS-tree so that vertex vj becomes

one of the leaves of the constructed BFS tree. If vertex vj is not found even after

exploring k level nodes then the algorithm concludes that no k-detour exits for

edge e = (vi, vj).

All unprocessed nodes are initially marked ’white’. Distance from the root node

vi (the start vertex of edge e) to other nodes w’s, discarding edge e, are maintained

on the node record as w.d. Initially, w.d is set to ∞ for all nodes other than node

vi. When search tree construction is progressing, the pointer to the parent node

of w, in the partially constructed BFS tree, is recorded as w.π. The search-tree

construction stops when ever vertex vj (the end vertex of edge e) is encountered or

the value of w.d is greater than k. A formal description of the algorithm is listed as

k-Hop Detour Algorithm (Algorithm 2).

If the execution of the k-Hop Detour Algorithm returns true then the k-detour

path corresponding edge e can be extracted by following the parent vertices start-

ing from the end vertex vj of edge e. This is listed below as Algorithm Output

Detour (Algorithm 3).

Theorem 3.1: Given (i) a path P1, (ii) integer k, and (iii)the underlying weighted geo-

metric graph G(V, E), we can determine whether or not path P1 is k-detour supporting in

O(dk
max r) time, where dmax is the maximum degree of node in G, and r is the number of

edges in the path.

Proof. We apply the k-detour algorithm for all edges of the path. If the algorithm

returns true for all edges then the path is k-detour admitting. One execution of

k-detour algorithm takes O(dk
max) time, which can be argued as follows. In the

process of finding a k-detour for edge e, it first explores O(dmax) edges and each

dmax edge has at most O(dmax) more edges to explore. Such explorations continues

for at most k− 1 levels. Adding up the total work done for all levels of exploration

we come up with a geometric progression: d1
max + d2

max + d3
max...d

k−1
max. This sum is
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Algorithm 2 k-Hop Detour Algorithm
1: bool k-detour(G, e, k)
2: s = e.getStart();
3: w = e.getEnd();
4: for u ϵ G.V − s do
5: u.color = white;
6: u.d = ∞ ;
7: u.π = nil;
8: end for
9: s.color = gray;

10: s.d = 0;
11: s.ϵ = nil;
12: Q= ∅;
13: Remove e from G;
14: bool detourPresent = false;
15: ENQUEUE(Q, s)
16: while Q is not empty do
17: u = DEQUEUE(Q);
18: if u== w then
19: detourPresent = true;
20: break;
21: end if
22: if u.d== k then
23: break;
24: end if
25: for v ϵ G.Adj[u] do
26: if v.color= white then
27: v.color = gray;
28: v.d = u.d + 1;
29: v.π = u;
30: ENQUEUE(Q, v);
31: end if
32: u.color=black;
33: end for
34: end while
35: return detourPresent;
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Figure 8 Illustrating the proof of Lemma 3.1

less or equal to O(dk). If the path P1 has r edges then the total time to check detour

for all edges of the path becomes O(dk
max r).

Algorithm 3 OutputDetour
u = e.getStart();
v = e.getEnd();
while v ̸= u do

output(v);
v = u.π;

end while

Constructing Detour Admitting Shortest Path

We observed in the previous section that all edges of a network need not sup-

port a k-detour. It is then interesting to explore that if an edge e does not have a

k-detour then can this edge be in the k-detour of some other edge? The following

lemma settles this inquiry.

Lemma 3.1: If an edge e = (u, v) is not k-detour supported, then e can not be in the

k−detour of any other edge.

Proof. Assume to the contrary that e is in the k-detour of some other edge e
′

=

(u
′
, v

′). Then the path u− u
′ − v

′ − v (refer to Figure 8) has at most k-hops and this

becomes the k-hop-detour for edge e - a contradiction.

One approach to computing a detour admitting shortest path is to first identify
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Figure 9 Showing edges not admitting 5-detour

all edges that do not support k-detours. In Figure 9, edges that do not support

5-detours are marked with dashed edges. Let G
′
(V

′
, E

′
) denote the reduced graph

obtained by deleting all dashed edges. It is noted that as a direct consequence of

Lemma 3.1 we can safely remove such edges without compromising k-detours for

other edges. We can then execute Dijkstra’s shortest path algorithm on G
′
(V

′
, E

′
)

to find the shortest k-detour admitting path. Figure 20 shows the reduced graph

after deleting edges not admitting 5-detours from the graph of Figure 9. The short-

est path on the reduced graph admits 5-detours for all edges. In Figure 10, the

shortest path from s to t admitting 5-detours is drawn with thick edges. A formal

description of the algorithm based on this approach is listed as Algorithm 4.

Theorem 3.2: Detour Admitting Shortest Path Algorithm (Algorithm 4) can be executed

in O(|E|(|E|+ |V |+ dk
max) + |V |2) time.

Proof. Removal of edges not admitting a k-detour (lines 8 thru 12) takes O(|E|(|E|+
|V | + dk

max) time. Distance initialization (lines 14 thru 17) takes (|V |) time. The

nested for-loops for path update (lines 20 thru 34) takes O(|V |2) time. Hence the
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Algorithm 4 Detour Admitting Shortest Path Algorithm
1: ShortestPathWithDetour(int s, float cost[][], float dist[], int path[], int n, int k,

int t )
2: {Cost[][] array holds weights of edges}
3: {dist[] used to record distance from s to other nodes }
4: {path[i] holds node index of the previous node}
5: {of ith vertex in the shortest path}
6: {The number of vertices n=|V |}
7: { Remove edges not admitting detour}
8: for edge eij ϵ E do
9: if k-detour(G,eij ,k) == false then

10: cost[i][j]= ∞;
11: end if
12: end for

{Distance Initialization}
13: bool R[n];
14: for i = 1 to n do
15: R[i] = false;
16: dist[i] = cost[s][i];
17: end for
18: R[s] = true;
19: dist[s] = 0.0; {put s in R}
20: for num = 2 to n do
21: u = 2;
22: for i = 3 to n do
23: if ((R[i]== false) and (dist[i] < dist[u])) then
24: u = i;
25: end if
26: end for
27: R[u] = true; {put u to R}
28: for w = 1 to n do
29: if ((R[w]==false) and (dist[w] > dist[u] + cost[u][w])) then
30: dist[w] = dist[u]+ cost[u][w];
31: path[w] = u;
32: end if
33: end for
34: end for
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Figure 10 Reduced graph and the shortest path that admits 5-detour

total time adds up to O(|E|(|E|+ |V |+ dk
max) + |V |2).

Theorem 3.3: Algorithm 3 correctly computes the shortest path in which each edge

admits a k-detour.

Proof. Observe that if there is a path in the original graph G connecting s and t

that admits k-detours on all its edges then that path is also retained in the reduced

graph G′. This follows from the fact that only those edges are removed from G

that do not admit k-detours. Further more, Lemma 3.1 confirms that the deleted

edges can not be the edges of any k-detours. The fact that the path computed by

G′ is indeed the shortest one follows directly from the correctness of the standard

Dijkstra’s shortest path algorithm.

Observation 3.1: In the solution obtained by using Algorithm 4, the k-detour of an edge

could include edge(s) of the shortest path. This is shown in the Figure 11. In the figure, if

edge v2v3 is broken, the shortest detour for this edge is v2v9v3 which does not include the

shortest path. On the other hand, the shortest detour for edge v3v4 is (v3, v2, v8, v4) which

20



overlaps with the shortest path in edge (v3, v2).

v1
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v8

v3 v4

v5

Figure 11 A detour can overlap with the shortest path
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v5

Figure 12 Non-overlapping shortest path tree

Non-Overlapping k-Detour Admitting Paths

It is very interesting to construct a short length path connecting two vertices

such that the path admits k-detours and the detour for each edge of the path does

not overlap with the path itself. The problem can be formally stated as follows.

Overlap-Free Detour Admitting Short Path Problem (OF-DASPP)

Given : (i) A weighted graph G(V, E).
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(ii) Start node s, target node t, integer k

Question : Find a short path connecting s to t in G such that the path admits a

detour of at most k hops for all its edges and no detour overlaps with the path.

v0

v2
v7

v20

v11

v6

v18

v9

v5

v12

vl

R V−R

Figure 13 Illustrating partially built short path tree by Dijkstra’s algorithm

Let us now explore how the Dijkstra’s shortest path algorithm can be adjusted

so that the k-detour for each edge does not overlap with the path. For this pur-

pose we need to look in detail how Dijkstra’s shortest path algorithm maintains

its shortest path tree as nodes are processed one by one. A snap-shot of the state

of Dijkstra’s algorithm when a few nodes are processed can be pictured as shown

in Figure 13. In the figure the set of processed nodes R are in the left side and the

remaining unprocessed nodes V-R are in the right side. The fringe edges are the

edges connecting vertex set R with vertex set V-R. While the vertex of the fringe

edge in R is called itsstart vertex, the one in V-R is called its forward vertex. The

set of processed nodes are arranged in a shortest path tree rooted at the source

node s. To update the shortest path tree in R, Dijkstra’s algorithm picks node w

in V-R that has the smallest distance from source vertex s for all choices of w in

22



V-R. The fringe edge corresponding to the smallest distance node w in V-R is ref-

ereed to as the light edge. To grow the partially constructed shortest path tree,

Dijkstra’s algorithm adds the light edge, and updates distances to the remaining

vertices in V-R. But the selected light edge may not support a k-detour. This means

we need to check the candidate fringe edge e for overlap with edges in the shortest

path from the source node s to the leaf node corresponding to e. The fringe edge

that minimizes the distance to node w in V-R and such that its k-detour does not

intersect with the corresponding shortest path is called a non-overlapping fringe

edge.

To develop an algorithm to solve OF-DASPP, we modify the standard Dijkstra’s

algorithm to essentially reject those fringe edges that overlap with the partially

constructed shortest path. The fringe edges are examined in the increasing order

of its distance to the forward node of the fringe edge from the source node. If a

fringe edge does not admit a k-detour or the k-detour overlaps with the shortest

path, then it becomes invalid. When a fringe edge Euy (u is the start node and

y is the forward node) is selected we first compute its shortest detour which we

denote by path1. Next we extract shortest path path2 from s to u by following

the parent nodes from u to s. The two paths path1 and path2 are examined for

any overlapping edges. If there is no overlap between them then the fringe edge

euy is added to the partially constructed shortest path tree to grow it. If all fringe

edges are found invalid then the solution does not exist. A formal sketch of the

algorithm is listed as Algorithm 5 (Non-Overlapping Detour Admitting Short Path

Algorithm).

The time complexity of the algorithm can be done in a straightforward manner.

Distance initialization (line 3 thru line 6) can be done in O(n) time. There can be

O(|E|) edges in the set of fringe edges for each instance of partial shortest path

tree. Hence one execution of line 10 takes O(|E| log |E|) time. Computation of k-

detour (line 14) needs O(dk
max) time. Overlap between two paths (line 17) takes

O(|E| log |E|) time. Time for shortest path extraction (line 16) takes O(|E|) time.
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Algorithm 5 Non-Overlapping Detour Admitting Short Path Algorithm
1: ShortestPathWithDetour(int s, float cost[][], float dist[], int path[], int n)
{Distance Initialization}

2: bool R[n];
{Initialize distance from source node s to other nodes}

3: for i = 1 to n do
4: R[i] = false;
5: dist[i] = cost[s][i];
6: end for
7: R[s] = true; {put s in R}
8: dist[s] = 0.0; {Distance from source node to itself is zero}
9: for num = 2 to n do

10: Let L be the list of fringe edges sorted by distance to forward vertices
11: bool found = false;
12: for j = 1 to L.size() do
13: euy = L[j];
14: path1 = k-detour(G, euy, k); {obtain detour-path}
15: if (path1 != null) then
16: path2 = pathToRoot(y); {shortest path to node y}
17: if (not overlap(path1, path2)) then
18: found =true; {path1 and path2 do not overlap}
19: end if
20: end if
21: end for
22: if found then
23: R[u] = true; {put u to R - k-detour is present}
24: for w = 1 to n do
25: if ((R[w]==false) and (dist[w] > dist[u] + cost[u][w])) then
26: dist[w] = dist[u]+ cost[u][w]; {update shortest distance}
27: path[w] = u; {record parent node}
28: end if
29: end for
30: else
31: stop; {Solution does not exist}
32: end if
33: end for
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Thus total time for the first inner-for-loop is O(|E|(dk
max + |E| log |E|). Time for the

second inner-forloop is O(n). The total time for the entire algorithm adds up to

O(n|E|(dk
max + |E|log|E|)). Hence we have the following theorem.

Theorem 3.4: Overlap-Free Detour Admitting Short Path can be computed in O(n|E|(dk
max+

|E| log |E|)) time.

It is noted that the above algorithm produces a path of short length but it does

not guarantee that the path is shortest.
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CHAPTER 4

IMPLEMENTATION

This chapter describes an implementation and study of the construction of

shortest paths satisfying detour properties. The programs were implemented in

Java,Version 1.5.

The implementation of the Detour Admitting Shortest Paths problem is carried

out in two stages. In the first stage, Dijkstra’s Shortest Path Algorithm is applied to

the graph G(V,E), while the second stage deals with the shortest path admitting

k−bounded detour by using a variation of the Breadth First Search (BFS) algo-

rithm.

Dijkstra’s Shortest Path Interface

The implementation is done by permitting the user to generate a graph or read

any pre-designed graph from a file consisting of V vertices and E edges. The graph

can be edited by adjusting edges and vertices. The source vertex can be fixed at any

vertex in the graph G(V, E). Once the graph is finalized, the user can execute the

program to generate the Dijkstra’s shortest path from the selected source vertex.

The shortest path tree (SPT) rooted at the source vertex can be displayed.

Interface description

The main Graphical User Interface (GUI) window is implemented by extend-

ing the JFrame class component in javax.swing which consists of three panels, as

shown in Figure 14. The menu bar panel is added to the JFrame on the top, which

contains the File menu. All other panels contained within the JFrame object are

constructed by using the JPanel class. The whole panel is classified as left, center

and right, where the left panel contains the radio buttons that are used to select

the color of the graph. It consists of three colors red, blue and green. The center
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Figure 14 GUI Layout

panel contains the main display area where the graph is drawn and manipulated.

Finally, the right panel contains the check boxes and buttons which are used to se-

lect and manipulate the edges and vertices of the graph. Initially, a simple planar

graph with only one face (triangle) is displayed. Figure 15 shows the actual GUI as

presented to the user at the start of the program. The initial triangle planar graph

can be grown to a bigger planar graph by adding a sequence of edges, by splitting

edges and by splitting faces. Edge addition, edge split and face split can be done

one at a time. For convenience, we highlight the currently selected face.

There are several checkboxes and buttons present to manipulate and generate

the graph. We will describe the functionality of each checkbox and button in Table

1 and Table 2 respectively.

Program menu items

A File tab is represented as a menu item in the program. The File menu items

enable the user to (i) read and open previously saved graph files, (ii) save a gener-

ated graph to a file and (iii) export the generated graph to the file in .eps format. A

brief description of the File items is provided in Table 3. Figure 16 and Figure 17
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Figure 15 The Initial Display of GUI for graph construction.

show the GUI representation of the File menu item and selection panel to choose

or save the graph G(V, E) respectively.

Shortest Path Generation

The shortest path tree of the generated or selected graph can be produced by

selecting source vertex s. The program generates all shortest paths from the se-

lected source vertex s to all other vertices. The shortest path tree is generated by

applying Dijkstra’s Shortest Path Algorithm as discussed in Chapter 2. The result-

ing shortest paths are highlighted with thick solid edges while the original graph

is shown as dashed lines. Figure 18 and Figure 19 show the GUI presented for the

user in which the Dijkstra checkbox is enabled and the Shortest Path Tree (SPT) is

generated. Note the tree generated is in a new GUI Frame which contains a file

Menu option ”Export to XFig” which brings up a file save panel so that the user

can export the shortest path tree generated in a eps file format. This is shown in

the Figure 20.
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Figure 16 Snap-Shot of File-menu pull down.

Figure 17 Prompting user for File selection.
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Figure 18 GUI Displaying Geometric Graph.

Figure 19 Display of Shortest Path Tree and the corresponding Graph.
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Table 1 CheckBox description.

1 Add Edge Add an edge to any vertex vi of a selected face of the
graph. It also shows a pre-drawn edge with a dashed
green lines to verify the edge is in its correct position.

2 Split Edge Splits the selected edge into two parts by generating a
new vertex to the selected edge.

3 DeleteV Deletes the selected vertex of a graph by updating the
values to the connecting vertices.

4 EditV Can move the position of selected vertex by dragging
mouse.

5 MovePoly The graph can be moved to any selected mouse cursor
location on the center panel.

6 Split-Face Used for splitting the face by joining two vertices with
an edge.

7 SelectFace Used to select the face of a graph where the mouse
cursor position is placed.

8 DeleteEdge Used to remove the selected edge from the graph.
9 Dijkstra Used to select a source vertex by using a mouse cur-

sor position and draws a shortest path tree from the
source vertex to every vertex in the graph by using
Dijkstra’s algorithm in a separate GUI Frame.

10 Dijkstra with BFS Used for (i) Selecting source vertex s, (ii) Displaying
shortest path tree(SPT) rooted at s, (iii) Selecting edge
for displaying bounded BFS-tree and (iv) For display-
ing k-detour for the selected edge of the shortest path
tree.

11 BFS BFS tree of the graph is shown in a separate GUI
Frame by selecting a root vertex by using a mouse
cursor position until a maximum hop count of k is
reached.

k-Bounded Detour Interface

The k-bounded detour provides an implementation that allows the user to

know if the shortest path is admitting k-bounded detours. This is found by us-

ing a variation of the Breadth First Search (BFS) algorithm. The program finds

a possibly overlapping k−detour admitting shortest path from the user specified

positions of the source vertex s to the target vertex t.
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Table 2 Buttons description.

1 MoveRight Used to move the graph to the right of the center Panel
by 10 pixels

2 MoveDown Used to move the graph to the down of the center
Panel by 10 pixels

3 MoveUp Used to move the graph to the up of the center Panel
by 10 pixels

4 ClearCanv Used to clear the center Panel by deleting the graph.

Table 3 File Menu Items description.

1 Read File Brings up a file selection panel, user can choose a pre
generated graph file.

2 Save File Brings up a file save panel, user can save a new gener-
ated file or replace an existing file.

3 Export to XFig Brings up a file save panel. The user can save a new
generated graph in eps format.

Interface Description

The k-detour admitting shortest path program has the same main display win-

dow as that of the previous program implementation, which is done by extending

the JFrame class component in javax.swing. Figure 21 shows the program GUI

which is presented to the user. The program has a checkbox created by name Di-

jkstra and BFS and a textField which accepts the maximum number of hop count

in executing the BFS tree. The program’s output has two different JFrame display

windows where one shows the shortest path tree from the selected source vertex

s to target vertex t along with bounded Breadth First Search (BFS) Trees from the

selected BFS source vertex bs. The second display window shows the shortest path

from s to t along with the detour from the selected source if the BFS target vertex

bt is reachable within the given maximum hop.
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Figure 20 Snap-shot of Export to XFig format.

Figure 21 Interface for k-detour computation.
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Figure 22 Snap-shot of Bounded BFS-tree

Breadth First Search Tree (BFS) generation

The variation of the Breadth First Search algorithm is implemented to recognize

detour admitting paths. The BFS program is implemented by recording the source

vertex s in the Queue. The program explores the graph starting from a given source

vertex s taken out from the queue. When vertex s is visited, its adjacent vertices

that have not been visited are inserted into the queue. The Breadth First Search Tree

of the generated or selected graph can be produced by selecting a source vertex s.

The BFS program has the function public void bfs(int bfsSource). The function is

used to accept the bfsSource as the parameter, by selecting a source vertex s, using

a mouse cursor position. The BFS class has the main implementation of the BFS

algorithm, which stores the BFS tree in a queue. This queue is then given to the

JFrame where the BFS tree is drawn. The JFrame GUI has a single panel, which is

used as a display panel on which the BFS tree is drawn. Figure 22 shows the GUI

with the BFS checkbox enabled and the center display panel with BFS tree. The

JFrame GUI has a File menu. The File menu has a single function Export to XFig

that allows the user to save the generated BFS tree with the extension .fig.
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Detour Generation

A variation of the above Breadth First Search algorithm is implemented to rec-

ognize detour admitting paths. The variation includes a maximum number of al-

lowed hops as a parameter to the BFS algorithm. The program is implemented by

using variations of two algorithms, Dijkstra’s algorithm and BFS algorithm. The

variations include the source vertex, the target vertex and maximum number of

allowed hops for the Dijkstra’s and BFS algorithms respectively. The shortest path

between source vertex s and the target vertex t is found by using Dijkstra’s algo-

rithm. Similarly the detour is found from the BFS source vertex bs to the BFS target

vertex bt with the variation of the above BFS algorithm. This algorithm records the

source vertex in the Queue. The program explores the graph starting from a given

source vertex s taken out from the queue. When vertex s is visited, its adjacent

vertices that have not been visited before are inserted into the queue. When the

first vertex s removed from the queue has distance from the source vertex s equal

to k, the search stops. The search also stops when one of the leaf vertices in the

partially constructed BFS tree is the target vertex t. The Breadth First Search Tree

of the generated or selected graph can be displayed by selecting a source vertex

s along with the given hop count in textField. Figure 23 shows the program in-

terface for selecting hop-count and BFS. Figure 24 and Figure 25 show execution

snap-shots of detour generation.
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Figure 23 Generation of Bounded BFS Tree

Figure 24 A shortest path not admitting 5 hop-detour.
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Figure 25 A shortest path admitting 8hop-detour.
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CHAPTER 5

CONCLUSION

We presented a comprehensive review of the development of an efficient algo-

rithm for solving the standard shortest path problem and approaches for updating

the shortest path when some edge weights change. We reviewed the develop-

ment of an efficient algorithm for solving the shortest path problem under various

constraints. The constrained shortest path problems include (i) Computation of

turn-constrained shortest path, (ii) Construction of multiple disjoint shortest path

and (iii) Formation of shortest path under visibility constraints.

We introduced a new variation of the shortest path problem: computation of

detour admitting shortest paths between two nodes in a weighted graph. The de-

tour admitting shortest path problem seeks to construct a shortest path connecting

two given vertices s to t such that each edge of the path has a detour of at most

k−edges, where k is a given integer. To solve the detour admitting shortest path

problem we first considered a variation of the standard Breadth First Search (BFS)

algorithm called the k−bounded Breadth First Search (k-bfs) algorithm. It is re-

marked that (k-bfs)algorithm constructs a bfs tree whose height is no more than k.

The k-bfs algorithm is used to detect whether or not a given path is a k−detour

admitting path.

We presented a modification of the standard Dijkstra’s algorithm for construct-

ing a shortest path connecting two given nodes u and v such that each edge of the

path admits a k−detour. Our approach for developing this algorithm is to first

identify all edges (singular edges) of the graph that do not admit k−detours. We

then applied Dijkstra’s algorithm on the reduced graph obtained by removing all

singular edges. We formally proved that the proposed algorithm correctly com-

putes k−detour admitting shortest path.

The k−detour shortest path algorithm is such that the detour of the edges could
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overlap with one or more edges of the shortest path. Motivated by this obser-

vation, we presented another variation of the shortest path problem called the

overlap-free detour admitting shortest path problem (OF-DASPP). We present a

polynomial time algorithm for solving OF-DASPP. The algorithm runs in O(n|E|(dk
max+

|E| log |E|)) time.

We addressed implementation issues of the shortest path algorithm and its vari-

ations. We developed a program in Java that can be used to compute the shortest

path, and to check for k−detours for the edges of the shortest path. The program

has a friendly front-end GUI, so that users can construct custom geometric net-

works by interacting with mouse clicks and drags. For clarity of presentation, we

considered only planar graphs for the implementation.

Several modifications and extensions of the proposed problems arise. The time

complexity of the algorithm for solving OF-DASPP is rather high. It would be

interesting to develop a faster algorithm.

We did not implement the algorithm for solving OF-DASPP. It would shed

more insight on OF-DASPP, if we could experiment with the performance of the

algorithm on several randomly generated weighted graphs.

A related problem that has potential applications for unmanned aerial vehicles

can be stated as follows. Construct a shortest path connecting two vertices in a

geometric graph such that the shortest path does not have any sharp turns and that

each edge of the path admits a k−detour. Development of an efficient algorithm

for solving this problem would be interesting.

Furthermore, in our implementation we only considered planar graphs. It

would be fruitful to study the performance of proposed algorithms by implemen-

tating them on non-planar graphs.
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