
UNLV Theses, Dissertations, Professional Papers, and Capstones

8-1-2012

Degree Constrained Triangulation Degree Constrained Triangulation

Roshan Gyawali
University of Nevada, Las Vegas, roshangyawali@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Geometry and Topology Commons, Numerical Analysis and Computation Commons, and

the Theory and Algorithms Commons

Repository Citation Repository Citation
Gyawali, Roshan, "Degree Constrained Triangulation" (2012). UNLV Theses, Dissertations, Professional
Papers, and Capstones. 1670.
https://digitalscholarship.unlv.edu/thesesdissertations/1670

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1670?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

DEGREE CONSTRAINED TRIANGULATION

by

Roshan Gyawali

Bachelor in Computer Engineering
Institue of Engineering, Pulchowk Campus, Tribhuvan University, Kathmandu

2008

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science in Computer Science

School of Computer Science
Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas
August 2012

Copyright by Roshan Gyawali 2012

All Rights Reserved

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Roshan Gyawali

entitled

Degree Constrained Triangulation

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Laxmi P. Gewali, Committee Chair

Ajoy K. Datta, Committee Member

John T. Minor, Committee Member

Rama Venkat, Graduate College Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies

and Dean of the Graduate College

August 2012

ABSTRACT

Degree Constrained Triangulation

by

Roshan Gyawali

Dr. Laxmi Gewali, Examination Committee Chair
Professor of Computer Science

University of Nevada, Las Vegas

Triangulation of simple polygons or sets of points in two dimensions is a widely

investigated problem in computational geometry. Some researchers have considered

variations of triangulation problems that include minimum weight triangulation, de-

launay triangulation and triangulation refinement. In this thesis we consider a con-

strained version of the triangulation problem that asks for triangulating a given do-

main (polygon or point sites) so that the resulting triangulation has an increased

number of even degree vertices. This problem is called Degree Constrained Triangu-

lation (DCT). We propose four algorithms to solve DCT problems. We also present

experimental results based on the implementation of the proposed algorithms. The

implementation is done in Java programming language with user friendly graphical

interface.

iii

ACKNOWLEDGMENTS

First and foremost I offer my utmost gratitude to my supervisor, Dr Laxmi Gewali,

who has supported me throughout my thesis with his dedication and knowledge while

allowing me the room to work in my own way. His encouragement to implement the

proposed solutions has not only made my thesis more resounding but also honed my

programming skills. I would like to thank my advisor committee members Dr. Ajoy

K Datta, Dr. John Minor and Dr. Rama Venkat for their continued cooperation

and encouragement. Finally, I thank my wife Srijana Poudel and my family for their

support, patience and sacrifices during my graduate studies.

iv

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ALGORITHMS . viii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 LITERATURE REVIEWS 3
Preliminaries . 3
Review of Triangulation Algorithms . 5

Triangulation by Ear Clipping . 6
Triangulation using Monotone Partitioning 7
Partitioning into Montone Pieces . 7
Trapezoidalization by Plane Sweep 9
Triangulation of a Monotone Polygon 10
Delaunay Triangulation . 13
Flipping . 14
Triangulation Graph . 15

CHAPTER 3 DEGREE CONSTRAINED TRIANGULATION 17
Preliminaries and Problem Formulation . 17
Degree-Constrained Triangulation of Simple Polygons 22

Development of Scan-Flip Algorithm 22
Development of Partitioning-AQT Algorithm 25

Degree-Constrained Triangulation for Points in Two Dimension 28

CHAPTER 4 IMPLEMENTATION AND OBSERVATIONS 32
Interface Overview . 32
Structure of the Interface . 33
Generating Polygons and Point Sites . 38
Observations . 43

CHAPTER 5 CONCLUSION AND FUTURE WORK 45

BIBLIOGRAPHY . 46

VITA . 48

v

LIST OF TABLES

4.1 Menu bar description . 33
4.2 East Panel Checkboxes description . 34
4.3 East Panel Button description . 36
4.4 Observation of flipping affect on different sets of point sites 44

vi

LIST OF FIGURES

2.1 Triangulation of a polygon of n = 14 vertices. Dashed lines are internal
diagonals. Dotted lines are some of the external diagonals 4

2.2 Comparing Monotone and Non-Monotone Polygon 5
2.3 Illustrating ear and non-ear . 6
2.4 Trapizoidalization. Dotted lines show trapezoid partition chords; dashed

lines are diagonals that resolve interior cusps. 8
2.5 Sweep Line Events . 9
2.6 Distinguishing three cases . 12
2.7 Delaunay triangulation and Incircle test. 13
2.8 Relationship between delaunay triangulation and voronoi diagram 14
2.9 Illustrating Flipping Operation . 15
2.10 Triangulation Graph . 16

3.1 Even Degree Triangulation . 17
3.2 No Even Degree Triangulation . 18
3.3 Illustrating the proof of Lemma 3.2 . 19
3.4 Partial Even Degree Triangulation . 20
3.5 Ear Diagonal . 20
3.6 Not a true Odd Degree Triangulation . 21
3.7 Odd Degree Triangulation . 22
3.8 Flipping in Monotone Triangulation . 23
3.9 Even Degree Constrained Triangulation using Convex Components . . . 26
3.10 Scan-Flip Algorithm applied on triangulated polygon generated by Partitioning-

AQT Algorithm . 27
3.11 Ineffective Even Degree Constraint Triangulation using Convex Compo-

nents . 28
3.12 Scan-Flip Algorithm applied to triangulated point sites generated by De-

launay Triangulation Algorithm . 29

4.1 GUI Layout . 34
4.2 Starting Interface . 34
4.3 Layout for Point Sites Based Triangulation Applications 35
4.4 Layout for Polygon Based Triangulation Applications 35
4.5 File Open Dialog Window . 36
4.6 Polygon Frame . 37
4.7 Snap-shot of polygon triangulation . 37
4.8 Snap-shot of polygon triangulation after flipping operation 38
4.9 Snap-shot of initial Delaunay triangulation of 1000 point sites 39
4.10 Snap-shot of triangulated point sites after flipping operation 40
4.11 Polygon based Application Class Diagram 41
4.12 Point Sites Application Class Diagram 42

vii

LIST OF ALGORITHMS

2.1 Triangulation by Ear Clipping . 6
2.2 Plane Sweep Algorithm for Monotone Partitioning 11
2.3 Triangulation of a Monotone Polygon . 12

3.1 Alternate Quadrangulation-Triangulation (AQT) Algorithm 19
3.2 Scan-Flip Algorithm . 25
3.3 Partitioning-AQT Algorithm . 27
3.4 Increased Even-Degree Triangulation of Point Sites 31

viii

CHAPTER 1

INTRODUCTION

Triangulation is one of the fundamental topics in computational geometry and

is used in many areas, such as terrain modeling (GIS), scientific data visualization

and interpolation, robotics, pattern recognition, meshing for finite element methods

(FEM), natural sciences, computer graphics and multimedia. Triangulation of poly-

gons or point sites is a well studied problem [15]. It also serves as a basis for many

other geometrical problems. However, triangulation of polygons or point sites may

not be unique. In fact, a polygon or a set of points can be triangulated in exponen-

tially many ways [15]. Due to the rich and fertile structure of triangulation problems,

many interesting variations have been considered [15]. Generating minimum weight

triangulation, triangulation that contains large proportion of fat triangles, and trian-

gulation that maximizes the smallest angle are some of the generalizations proposed

for triangulation problems [15]. One approach for expressing generalization is to im-

pose some useful constraints on triangulation. In this thesis, we consider the problem

of triangulating simple polygons and point sites subject to vertex degree constraints.

In particular, we present efficient algorithms for triangulating simple polygons and

point sites so that the number of vertices with even degree is substantially increased.

This problem has applications in understanding the illumination property of polygons

[17].

The thesis is organized as follows. In Chapter 2, we review important properties

and algorithmic results dealing with general triangulation and triangulation satisfy-

ing certain constraints. In Chapter 3, we formulate a problem of triangulating simple

polygons so that the number of vertices with even degree is significantly increased. We

name the problem as Degree Constrained Triangulation (DCT). We present efficient

algorithms for solving DCT for simple polygons. For convex polygons, the algorithm

runs in linear time and for simple polygons the time complexity is O(t(n)), where

t(n) is the time complexity needed to obtain the initial triangulation. Another al-

1

gorithm based on convex partitioning called P −AQT Algorithm is presented which

produces high quality results for polygons which can be decomposed into a fewer

number of convex pieces. Chapter 3 also contains the presentation of an efficient

algorithm called scan-flip that solves DCT problems for sets of point sites in two

dimensions. The scan-flip algorithm for point sites runs in O(nlogn) time, where n is

the number of input point sites. Furthermore, we present some interesting geometric

properties related to the degree constrained triangulations. One interesting property

worth noting is that no simple polygon admits complete odd-degree triangulation.

In Chapter 4, we present implementation of selected algorithms described in Chap-

ter 2 and Chapter 3. The implementations are done in the Java programming lan-

guage and support a friendly user interface. An experimental investigation of the

performance of the scan-flip algorithm for solving DCT problems for point sites in

two dimensions is described at the end of Chapter 4. Finally, Chapter 5 is a brief

discussion about the proposed algorithms and their extensions.

2

CHAPTER 2

TRIANGULATION AND CONSTRAINED TRIANGULATION

In this chapter we present a critical review of algorithms for triangulating a simple

polygon. We first start with the definitions and terms often used for describing trian-

gulation algorithms. We also consider the notion of constrained polygon triangulation

and present a review of efficient algorithms for generating such triangulation.

2.1 Preliminaries

A polygon is a connected region of a plane bounded by a finite collection of line

segments that intersect only at their end points.

Formally, let v0, v1, v2, . . . , vn-1 be n point vertices in the plane. Let e0 = (v0, v1), e1 =

(v1, v2), . . . , ei = (vi, vi+1), en-1 = (vn-1, v0) be n segments connecting the points. Then

these segments bound a polygon if

1. The intersection of each pair of segments adjacent in the cyclic ordering is the

single point shared between them: ei ∩ ei+1 = vi+1, for all i = 0, . . . , n− 1.

2. Nonadjacent segments do not intersect: ei ∩ ej = φ, for all j 6= i+ 1.

The points vi’s are the vertices of the polygon, and the segments ei’s are its edges.

Note that a polygon with n vertices has n edges [15]. Polygons defined in this way

are called simple polygons to distinguish them from polygons that encloses holes.

Now onwards, unless stated otherwise, the term “polygon” is used to indicate simple

polygon.

Definition 2.1. An internal diagonal of a polygon P is a line segment between two

of its non-consecutive vertices vi and vj that are clearly visible to one another. In

other words, vi and vj can be connected by a line segment that lies completely inside

the polygon.

External diagonals of a polygon are defined similarly.

3

Definition 2.2. Triangulation of a polygon P is the partitioning of its interior by

diagonals into a set of non-overlapping triangles (where their interiors do not intersect)

without adding new vertices. Figure 2.1 illustrates a triangulated polygon.

Figure 2.1: Triangulation of a polygon of n = 14 vertices. Dashed lines are internal
diagonals. Dotted lines are some of the external diagonals

It is remarked that a polygon can be triangulated in exponentially many ways. In

fact the number of ways a polygon can be triangulated is related to Catalan Number

[15].

Definition 2.3. A chain C = (vi, vi+1, . . . , vj) is a sequence of line segments with

vertex set {vi, vi+1, . . . , vj} and edge set {(vk, vk+1)|k = i, . . . , j}.

Definition 2.4. A chain C = (vi, vi+1, . . . , vj) is said to be monotone relative to a

given line l if any line orthogonal to l intersects C in exactly one point. In other

words, the orthogonal projections {l(v1), l(v2), . . . , l(vn)} of the vertices of C on l are

ordered as l(vi), l(vi+1), . . . , l(vj).

4

Definition 2.5. A polygon is called monotone if its boundary is composed of ex-

actly two non-intersecting monotone chains relative to the same line. For example, a

polygon is horizontally monotone if its boundary is composed of two horizontal mono-

tone chains: upper chain and lower chain. In this case, each chain terminates at the

polygons leftmost vertex and rightmost vertex and contains zero or more vertices in

between. Figure 2.2 (a) illustrates a monotone polygon, monotone w.r.t to y − axis.

(a) Monotone Polygon w.r.t y−axis
(b) Non−Monotone Polygon w.r.t y−axis

Figure 2.2: Comparing Monotone and Non-Monotone Polygon

A y-monotone polygon has two distinguished vertices, the top-most vertex and

the bottom-most vertex with obvious meaning. A concept useful in characterizing

monotonicity is cusp. A cusp is a vertex v, other than the top-most or bottom-most

vertex, such that both edges incident on v are either above or below the horizontal

line through v. In Figure 2.2 (b), there are three cusps. It has been established that

a polygon is y-monotone if it has no cusps [15].

2.2 Review of Triangulation Algorithms

In this sub-section, we present a brief overview of algorithms for triangulating a

simple polygon. The first algorithm we review is based on clipping carefully selected

triangles called ear. We next examine the algorithm for triangulating a special class

of polygons - the y-monotone polygon. We also present an overview of triangulating

a polygon by using monotone partitioning as a pre-processing step.

5

v5 v6 v7

v0 v1 v2

v0

v2

v1

v9

v8

v3

v4

v6

v7

v5

− is an ear

− is not an ear

Figure 2.3: Illustrating ear and non-ear

2.2.1 Triangulation by Ear Clipping

This algorithm is based on using the concept of ear of a polygon. Three consec-

utive vertices vi-1vivi+1 are said to form an ear if vi-1vi+1 forms an internal diagonal.

Figure 2.3 illustrates the concept of ear.

It has been established that any simple polygon with at least four vertices contain

at least two ears [12]. The algorithm is based on removing ears by examining its

boundary. When an ear is identified in the original polygon Pn (polygon with n

vertices). A smaller residual polygon Pn-1 is obtained by removing an ear. The

process of ear removal is continued until the residual polygon becomes a triangle.

A formal sketch of the algorithm is listed as Algorithm 2.1.

Algorithm 2.1 Triangulation by Ear Clipping

INPUT: A simple polygon Pn with vertices v0, v1, . . . , vn-1
OUTPUT: A set of diagonals that triangulate the polygon
Step 1: D = Φ; Initialize diagonals to null

P = Pn;
Step 2: while(P is not a triangle) do
Step 3: Let vi-1vivi+1 be an ear of P
Step 4: P = P - vi;

D = D ∪ <vi-1, vi+1>;
Step 5: end while
Step 6: Output D

The time complexity of ear-clipping triangulation depends on the implementation

6

of identifying ears (Step 3). A brute force implementation of Step 3 takes O(n2) time

which leads to O(n3) for the whole algorithm. A careful implementation can lead to

O(n2) algorithm. Details are given in [15].

2.2.2 Triangulation using Monotone Partitioning

In order to improve the time complexity for triangulation, an approach based on

partitioning the polygon into simpler pieces was introduced. These simpler pieces are

called monotone pieces. There is a O(nlogn) algorithm for partitioning a polygon into

montone polygons and a linear time algorithm for triangulating monotone polygon,

leading to an O(nlogn) algorithm for triangulating the polygon. We will describe

these two algorithm in detail.

2.2.3 Partitioning into Montone Pieces

It is relatively easier to triangulate a polygon with simpler shapes. Convex poly-

gons and monotone polygons are examples of simpler shapes. To triangulate a convex

polygon, it is enough to draw diagonals from a given vertex to all other vertices. Sim-

ilarly, a y-monotone polygon can be triangulated by a simple top-down scan. (We will

provide a short review of such an algorithm at the end of this sub-section). Based

on these observations, an approach for triangulating a polygon is to partition the

polygon into simpler shapes (say monotone pieces) and apply a monotone triangula-

tion algorithm in each pieces independently. We therefore present a brief overview of

partitioning a polygon into monotone pieces.

Polygons can be partitioned into monotone pieces by first breaking them into

simpler quadrilaterals. This technique is called Trapezoidalization i.e, partitioning

into trapezoids. We recall the definition of trapezoid from elementary geometry. A

trapezoid is a quadrilateral with two parallel edges. This kind of partitioning was

introduced by Chazelle and Incerpi(1984) as the key step for triangulation.

A horizontal trapezoidalization of a polygon is obtained by drawing horizontal

chords through every vertex of the polygon. More precisely, we construct through each

vertex v the maximal (open) horizontal segment s such that s ⊂ P and s ∩ ∂P = v.

Here P represents the polygonal region and ∂P is the boundary of P . Thus s rep-

7

v0

v2

v3

v4

v11

v9

v7

v5

v12

v10

v6

v1

v8

Figure 2.4: Trapizoidalization. Dotted lines show trapezoid partition chords; dashed
lines are diagonals that resolve interior cusps.

resents clear lines of sight from v left and right. It may be that s is entirely to one

side or the other of v ; and it may be that s = v. An example of trapezoidalization

is shown in Figure 2.4, where horizontal sides of trapezoids are drawn dotted. To

simplify the exposition we will only consider polygons whose vertices have unique y

coordinates, i.e, no two vertices lie on the same horizontal chord. Such a condition is

known as non-degeneracy in computational geometry [3].

With this non-degenerate assumption, every trapezoid has exactly two supporting

vertices, one on its upper edge and one on its lower edge. If a supporting vertex is

on the interior of an upper or lower trapezoid edge, then it is an interior cusp. Par-

titioning diagonals are obtained by connecting interior cusp vertices to the opposing

supporting vertex of the trapezoid. In Figure 2.4, interior cusp v3 is connected by

supporting vertex v5 to make a partitioning diagonal v3, v5. If this kind of opera-

tion is applied to all interior cusps, the resulting diagonals partition the polygon into

8

monotone pieces. In Figure 2.4, four interior cusps (v3,v5,v9,v12) are resolved by three

diagonals v3, v5, v5, v12 and v9, v12. We next consider the construction of trapezoids

in detail.

2.2.4 Trapezoidalization by Plane Sweep

The algorithm we use to construct a trapezoidalization depends on the well known

technique called the plane sweep (or sweep line), which is useful in many geometric

algorithms (Nievergelt & Preparata 1982). The main idea is to “sweep” a line over the

plane, maintaining some type of data structure during the sweep. The sweep line L

stops at discrete “events” where processing occurs and the data structure is updated.

Sweep lines requires some preprocessing to be done with the vertices of the polygon.

For performing sweep from top to bottom, the vertices are sorted by y-coordinates.

Three types of events can be distinguished. When the sweep line is on the vertex vi,

the edges ei and e′i+1 incident on it can have the following three properties:

(i)ei and ei+1 are both above L.

(ii) ei and ei+1 are both below L.

(iii) One of them is above L and the other below it.

These properties are illustrated in figure 2.5

e
i

e
i

e
i+1

v
i

e
i

e
i+1

e
i+1

v
i

v
i

L L L

 i ii iii

Figure 2.5: Sweep Line Events

In all of these three types, two left and right neighboring edges may exist. The

processing required at each of these events is to identify the corresponding event type.

The list of edges intersected by the sweep line L are maintained in a sorted list £.

9

This sorted list £ can be a height-balanced or 2-3 or red-black tree having O(logn)

height where n is the number of vertices in the polygon. The edges in a type (i) event

will be deleted from the list. The edges in a type (ii) event will be inserted into the

list in left to right order. The upper edge in a type (iii) event will be deleted from

the list while the lower edge will be inserted into the list. In each of these events, an

implied chord corresponding to vertex v is drawn, thus creating a trapezoid. After

obtaining the trapezoidization, the partitioning diagonals are constructed by using

the concept of interior cusp as mentioned earlier.

A formal sketch of this algorithm is presented in Algorithm 2.2.

2.2.5 Triangulation of a Monotone Polygon

There is a well known linear time algorithm to triangulate monotone polygons [15].

The basic idea for achieving linear time is to make use of the property of monotonicity.

It is noticed that vertices of a montone polygon are already available in two sorted

list. This means the entire sorted list of vertices (sorted by y-coordinates) can be

obtained by merging the sorted sub-list in linear time. Let Lp denote this sorted list.

The algorithm proceeds top to down in a greedy manner by processing the vertices

in the sorted list, and temporarily storing the scanned vertices which cannot be used

for triangulation in a stack data structure. Initially two top-most vertices p0 and p1

are pushed onto an empty stack S. We denote the vertices in the stack S, bottom to

top as w0, w1,. . . , wt. The next scanned vertex pi from Lp is called bottom-incident

if pi is adjacent to w0 in the polygon boundary. Similarly, pi is called top-incident if

pi is adjacent to wt. For constructing triangulation with pi as a vertex, three cases

are distinguished.

First case (Case 1) is the one in which pi is top-incident and angle <wt-1,wt,pi>

is reflex. In the second case, pi is top-incident and angle <wt-1,wt,pi> is less than π.

When pi is bottom-incident, we have the third case. These are illustrated in figure

2.6.

For Case 1, pi is pushed onto the stack. For Case 2, points are popped from the

stack until piwi becomes tangent to the chain in the stack as shown in Figure 2.6.

10

Algorithm 2.2 Plane Sweep Algorithm for Monotone Partitioning

INPUT: A simple polygon P with vertices v0, v1, . . . , vn-1 listed along the bound-
ary.
OUTPUT: Monotone Components
Sort vertices of P by y-coordinates. Let the sorted list be <w0, w1, . . . , wn-1>

Let £ be a height balanced search tree data structure where we can maintain
polygon edges in left to right order (i.e order of x-coordinates). Initialize £ to
empty.
for(i = 0; i < n− 1; i+ +){

1. Let Li be the horizontal line through wi.

2. Let c and d be the polygon edges incident on wi.

3. Let a and b (if any) be edges immediately to the left and right of wi.

4. if(c is above L and d below){
draw horizontal chord from wi to a or b.
delete c from α.
insert d to α.

}

5. if(both c and d are above L){
draw horizontal chord from wi to a or b.
delete c and d from α.

}

6. if(both c and d are below L){
draw horizontal chord from wi to a or b.
insert c and d to α.

}

}
for cusp vertex wi in w do

draw diagonal from wi to appropriate supporting vertex in the trapezoid.
end for
Output components by traversing the boundary of the polygon.

For Case 3, triangulation is performed by drawing edges from p2 to the vertices in

the reflex chain as shown in figure 2.6 case 3. It is remarked that the vertices in the

stack always form a reflex chain. The algorithm is formally listed as Algorithm 2.3.

11

w t

w tw2

w2w1

w1
w0

w0
w0

i
p i

p
i

p

Case 2 Case 3Case 1

Figure 2.6: Distinguishing three cases

Algorithm 2.3 Triangulation of a Monotone Polygon

INPUT: Monotone polygon P with vertices v0, v1, . . . , vn-1.
Sort vertices of P by y-coordinates. Let the sorted list be <p0, p1, . . . , pn-1>
Push p0, p1 onto stack S.
Let <w0, w1, . . . , wt> denote stack content from bottom to top order.
for i = 2 to n− 1 do

if pi is adjacent to w0 then
x = wt

while t > 0 do
draw diagonal pi → wt

pop S
t−−

end while
push x, push pi

else if pi is adjacent to wt then
while t > 0 and wt is not reflex do

draw diagonal pi → wt-1

pop S
t−−

end while
push push pi

end if
end for

12

Figure 2.7: Delaunay triangulation and Incircle test.

2.2.6 Delaunay Triangulation

Delaunay triangulation DT(P) of a finite set P = {p0, p1, . . . , pn-1} in 2D, is

the triangulation that fulfills the condition that no points of point sites P is inside

the circumcircle of any triangle in DT(P). This condition is often called Empty

Circumcircle or Incircle Test. Figure 2.7 illustrates a Delaunay triangulation of point

sites and circum-circles drawn by dashed arcs. Delaunay triangulation satisfies many

interesting properties that includes:

1. The interior of each face of DT(P) contains no point sites.

2. The circumcircle of each triangle contains no point sites.

3. The convex hull of point sites encloses all triangles.

4. The dual of a Delaunay triangulation is a Voronoi diagram. In Figure 2.8, the

Voronoi diagram is drawn by dashed lines.

5. Among all possible triangulations of point sites P , Delaunay triangulation has

the largest minimum inner angle. It is also referred as MaxMin angle criterion.

6. No four points of P are co-circular.

Many algorithms for generating Delaunay triangulation have been reported [15].

Some algorithms make use of the duality property of Voronoi diagrams. However,

It is equally efficient to use direct algorithms to construct Delaunay triangulation.

13

Figure 2.8: Relationship between delaunay triangulation and voronoi diagram

Some of the well known delaunay triangulation algorithms are local improvement [2],

incremental construction [7], incremental insertion [11], higher dimension embedding

[15] and divide & conquer [6].

2.2.7 Flipping

As mentioned in chapter 1, a polygon or point set can be triangulated in expo-

nentially many ways. It is thus itself an interesting problem to obtain some other

triangulation from a given triangulation. The flipping operation in triangulation has

been considered to obtain one kind of triangulation from an other. Informally, the

flipping operation is obtained by replacing diagonals of the quadrilateral of two ad-

jacent triangles in the triangulation. It has been established that any triangulation

of a point set (or polygon) can be obtained from an other by a sequence of flip-

ping operations [16]. A formal definition of flipping operation is given in the next

definition.

Definition 2.6. Consider a triangulated polygon T (P) obtained by triangulating a

simple polygon P . Let <vi, vj, vk, vr> be the convex quadrilateral formed by adjacent

triangles T1 and T2 sharing edge <vi, vk> as shown in Figure 2.9a.

The modification of T (P) obtained by replacing edge <vi, vk> with crossing-diagonal

<vj, vr> is called flipping operation. Modified T (P) is shown in Figure 2.9b.

14

T1 T2

v i

v
v j

v k

 r T1

T2

v i

v
v j

v k

 r

 (a) Before Flipping (b) After Flipping

Figure 2.9: Illustrating Flipping Operation

It is noted that an edge is flippable if it is a common edge to two adjacent triangles

that forms a convex quadrilateral. In Figure 2.9a, edge <vi, vk> is flippable because it

is the common edge of adjacent triangles T1 and T2 that forms a convex quadrilateral

<vi, vj, vkvr>. Not every two adjacent triangles of a arbitrary triangulation forms a

convex quadrilateral. This leads to a quest to know how many edges of arbitrary

triangulation are flippable or how many flips are needed to transform from one tri-

angulation to another. Studies have shown that, for n point set, there are n−4
2

edges

that can be flipped [9]. It is also known that, it takes at most O(n + k2) flips for a

simple triangulated polygon P with n vertices and k reflex vertices to transform from

one triangulation T1(P) to another triangulation T2(P). There is a close relationship

between visibility graph, flipping operation, and triangulated graph which we briefly

review next.

2.2.8 Triangulation Graph

Given a set P of points in general position in the plane, the graph of triangulations

TG(P) has a vertex for every triangulation of P , and two of them are adjacent if they

differ by a single edge flip. It is well-known that T (P) is a connected graph [9]. There

are a number of interesting properties discovered about Triangulation Graph. The

diameter of TG(P) is at most O(n2) where n is the size of its point set [9]. Note

that diameter of triangulation graph TG(P) can be defined as the maximum distance

between two nodes of the entire TG(P) where distance is measured by the number

15

Figure 2.10: Triangulation Graph

of edges in the path. Diameter is also related to its visibility graph. It is at most

equal to the number of edges of the visibility graph of a simple polygon. Note that

the Visibility graph VG of a simple polygon P is defined by associating a vertex vi

with each point pi of P such that (vi, vj) is an undirected edge of VG if pi and pj are

mutually visible [14]. Some further results on the graph of triangulations of convex

polygons have been reported in [10]. Figure 2.10 depicts the triangulation graph

of a regular hexagon. Each node of the graph represents a unique triangulation of

the hexagon. Also each connected node differs only in one flipped diagonal. Since

triangulation graph TG(P) is connected, it can be easily observed that each node can

be transformed to another node in TG(P) with a series of flips.

16

CHAPTER 3

DEGREE CONSTRAINED TRIANGULATION

3.1 Preliminaries and Problem Formulation

In this chapter, we present the main contribution of the thesis. We first formulate

the Degree Constrained Triangulation (DCT) problem that asks for a triangulation

of a simple polygon or set of nodes with higher number of even-degree nodes. We

then describe the development of efficient algorithms for solving DCT problem. The

first algorithm we develop called AQT Algorithm, is designed to work only for “near

convex” polygons. For non-convex polygons we propose two algorithms - one based

on scanning and flipping (Scan-Flip Algorithm) and the other based on convex par-

titioning (Partitioning AQT Algorithm). Finally, we present a Scan-Flip Algorithm

for solving DCT problem for node distribution in two dimensions. This algorithm

solves DCT by flipping adjacent triangles on Delaunay triangulation.

Definition 3.1. A simple polygon P is said to admit even-degree triangulation if

every vertex in the triangulated graph of P is of even degree. Figure 3.1 shows an

example of even degree triangulation.

The notion of odd-edge triangulation can be defined similarly.

Lemma 3.1. Not every polygon admits even degree triangulation. Figure 3.2 illus-

trates this lemma. Vertices vi and vj will never be of even degree in the triangulation.

Figure 3.1: Even Degree Triangulation

17

v i

v j

Figure 3.2: No Even Degree Triangulation

This polygon can be triangulated only in one way.

Degree Constrained Triangulation (DCT) Problem: Given a polygon P, the

DCT problem asks to triangulate P with increased number of even-degree vertices.

DCT problem for a set of nodes in two dimensions can be defined similarly.

Lemma 3.2. Any convex polygon with n = 3k (k>1) vertices admits even degree

triangulation.

Proof We sketch a constructive proof. Note that the vertices of polygon P are

v0, v1, v2, . . . , vn-1 We first partition the convex polygon of 3k vertices into alternate

triangles and quadrilaterals by following Rule 1. Rule 1 requires to draw diagonals

from vertex v0 to all other vertices vi such that index i is not a multiple of 3. The

partitioning of the convex polygon by executing Rule 1 is shown in Figure 3.3a, where

the polygon is partitioned into alternate triangles and quadrilaterals.

Partition each quadrilateral by executing Rule 2. Rule 2: Each quadrilateral

v0vivi+1vi+2 is partitioned into triangles by drawing diagonal vivi+2. The resulting

triangulation is shown in 3.3b. It is easily observed that the degree of vertices in the

triangulation is either 2 or 4.

A formal sketch of the algorithm for solving DCT problem for convex polygon as

outlined in the proof of Lemma 3.2 is written in Algorithm 3.1.

Lemma 3.3. Any convex polygon with n = 3k + 1 or 3k + 2 (k>0) vertices can be

triangulated to have at least n− 2 vertices of even degree.

18

v0

v17

v10

v11

v12

v13

v15

v16

v14

v1

v2

v3

v4

v5

v6

v7

v8

v9

v0

v17

v10

v11

v12

v13

v15

v16

v14

v1

v2

v3

v4

v5

v6

v7

v8

v9

(a) Partitioning to alternate triangles and quadrilaterals

 with diagonals obtained by following Rule 1

(b) Triangulation obtained by following Rule 2

Figure 3.3: Illustrating the proof of Lemma 3.2

Algorithm 3.1 Alternate Quadrangulation-Triangulation (AQT) Algorithm

INPUT: A convex polygon P = <v0, v1, . . . , vn-1>
OUTPUT: Triangulation T (P) of P with higher number of even-degree vertices
Step 1: T (P) = P
Step 2: for i = 2 to n− 2 do
Step 3: if (i is not a multiple of 3)
Step 4: T (P) = T (P) ∪ <v0, vi>
Step 5: end if
Step 6: end for

// Now T (P) consists of alternate Triangles and Quadrilaterals
Step 7: i = 2; //Skip the first triangle
Step 8: while (i < n− 3) do
Step 9: T (P) = T (P)∪ <vi, vi+2> //partition quadrilateral <v0, vi, vi+1, vi+2>

Step 10: i = i+ 3; //Skip the triangle
Step 11: end while
Step 12: Output T (P)

Proof First consider the case when the number of vertices is n = 3k + 1. We chop

a triangle T ′ = vivi+1vi+2 from polygon P to obtain a polygon P ′ with 3k vertices.

Polygon P ′ can be triangulated to have all its vertices of even degree by Lemma 3.2.

When we put back T ′ to triangulated P ′ all vertices except vi and vi+2 are of even

degree. The case for n = 3k + 2 (k>0) follows similarly. Figure 3.4 illustrates this

19

lemma. Vertices vi+ and vi+2 are the only odd degree vertices.

Theorem 3.1. DCT problem for convex polygon can be solved in O(n) time

Proof The for-loop of AQT algorithm executes O(n) time and each execution takes

O(1) time. Also, the while-loop of AQT algorithm executes O(n) time and one

execution of the body of while-loop takes O(1) time. Hence the entire algorithm

takes O(n) time.

T ’ T ’

T ’

vivi vi+1 vi+1

vi+2 vi+2

vi+3

P’ P’

Polygon with 3k+2 vertices (k>0)Polygon with 3k+1 vertices (k>0)

Figure 3.4: Partial Even Degree Triangulation

Definition 3.2. If (vi, vi+2) is a diagonal of a triangulated polygon T1(p) then it is

called ear-diagonal. In the Figure 3.5 there are three ear diagonals.

The following lemma directly follows from Meister’s two-ears theorem [12].

Figure 3.5: Ear Diagonal

20

Lemma 3.4 (Ear-Diagonal Lemma). Every triangulated polygon with at least

four vertices contains two ear-diagonals.

It is interesting to examine the possibilites of triangulating a simple polygon so that

all its vertices have odd degree. It turns out that no polygon of n > 3 vertices admit

odd-degree triangulation. This is established by the following Lemma.

Lemma 3.5. No simple polygon admits odd-degree triangulation.

Proof Assume to the contrary that some simple polygon of n > 3 vertices admits

odd-degree triangulation T (Q). Then there will be at least one diagonal emanating

from every vertex of Q in T (Q) as shown in Figure 3.6.

Figure 3.6: Not a true Odd Degree Triangulation

The presence of diagonal incident at all vertices imply that T (Q) has no ear-

diagonal. This is contradictory to ear-diagonal lemma (lemma 3.4).

Observation 3.1. It turns out that a polygon with holes could admit odd-degree

triangulation. This is illustrated in Figure 3.7

21

Figure 3.7: Odd Degree Triangulation

3.2 Degree-Constrained Triangulation of Simple Polygons

We now develop algorithms to solve DCT problems for simple polygons, not nec-

essarily convex. The first algorithm we present works by applying flipping operations

on a triangulated partitioning of the polygon. The second algorithm applies flipping

operations by first partitioning the input polygon into convex components.

3.2.1 Development of Scan-Flip Algorithm

The input is a simple polygon P . The polygon P is first triangulated by using

any suitable triangulation algorithm available in the literature [15]. We use doubly

connected edge list data structures (DCEL) [13] to store the resulting triangulated

polygon T (P). The algorithm proceeds by processing diagonals incident on a vertex.

The vertices are visited by traversing them along the boundary of the polygon. It

is noted that each diagonal d of triangulated polygon T (P) corresponds to a unique

quadrilateral Q(d) formed by combining two triangles incident on it. The algorithm

processes Q(d) to check if its diagonal can be flipped to increase the number of even-

degree vertices. The two rules for checking valid flipping conditions for quadrilateral

Q(d) can be listed as follows.

22

Flippability Rules

Rule 3: Q(d) must be convex.

Rule 4: Q(d) must have more than two odd-degree vertices.

v
1

v
2

v
4

v
7

v
9

v
10

v
11

v
12

v
13

v
16

v
17

v
18

v
20

v
21

v
22

v
19

v
8

v
14 v

15

v
6

v
3

v
23

v
5

v
0

v
1

v
2

v
3

v
7

v
9

v
10

v
11

v
12

v
13

v
16

v
17

v
18

v
20

v
21

v
22

v
15

v
19

v
8

v
14

v
23

v
6

v
5

v
0

v
4

(a) Triangulated simple polygon T(p) with its dual

 Dotted line represents flipped diagonal

(b) T(p) after flipping operation

Figure 3.8: Flipping in Monotone Triangulation

We can illustrate the progress of the algorithm with a running example. Figure

3.8(a) represents a triangulated simple polygon T (P) with vertices v0, v1 . . . , v23. The

Triangulation dual of T (P) is drawn as thick segments connecting black dots. Note

that the dual of a triangulated polygon T (P) is a graph whose nodes are the triangles

and edges are formed by connecting adjacent triangles. The dual of a triangulated

simple polygon is a tree.

In order to traverse diagonals of T (P), we perform a vertex scan starting with any

vertex say, v0. For each vertex vi, we find the diagonals incident on it. In Figure

3.8(a), the incident diagonals for vertex v0 are v0, v2, v0, v3, v0, v4. These diagonals

are checked for possible flipping. In order to apply the flipping opertation, the diag-

onal must satisfy the two rules stated above. Furthermore, there are two additional

23

conditions that the candidate diagonal d must satisfy.

Condition 1: Diagonal d was not processed before.

Condition 2: Diagonal d cannot be a newly created diagonal, obtained by applying

flipping operation.

In Figure 3.8(a), <v0, v1, v2, v3> is the quadrilateral represented by diagonal v0, v2.

Quadrilateral <v0, v1, v2, v3> satisfies both rules and both conditions, and hence di-

agonal v0, v2 is flipped by replacing it with new diagonal v1, v3. The diagonals that

bound the flipped quadrilateral are marked processed. In our example, diagonal v0, v3

is marked processed. The other diagonal v0, v4 incident on v0 is inspected. It satisfies

Rule 3 but fails on Rule 4. Hence it is not flipped. Next, we move to vertex v1.

Newly created diagonal v1, v3 is skipped (Condition 2 fails). Now, we move to vertex

v2, which has no diagonal incident on it as it was already flipped, see Figure 3.8(b).

Next, vertex v3 is skipped because diagonal v0, v2 incident on it was already processed

(Condition 1). For vertex v4, diagonal v0, v2 is skipped (Rule 3 fails). Diagonal v4, v23

fails on Condition 2. Next, we move to vertex v5. There are five diagonals incident

on v5, v5, v23, v5, v21, v5, v12, v5, v11 and v5, v7. We process v5, v23 and find out that

it does not satisfy Condition 1. Diagonal v5, v21 satisfies both rules and both condi-

tions, therefore it is flipped with v23, v12. In this way, diagonal v5, v12 fails on Rule

4; diagonals v5, v11 and v5, v7 fail for Rule 3 and Rule 4 respectively. This kind of

processing is done until all the vertices of polygon are scanned and thus all the diago-

nals are recorded and processed. Figure 3.8(b) represents the polygon after applying

this algorithm to T (P). Diagonals v1, v3 and v23, v12 are the newly created diagonals

after the execution of Scan-Flip algorithm. It can be observed that triangulation dual

can change due to flipping operation. A formal sketch of this algorithm is listed in

Algorithm 3.2.

Theorem 3.2. DCT problem for simple polygons can be solved in O(n) time.

24

Algorithm 3.2 Scan-Flip Algorithm

INPUT: A simple polygon P with vertices v0, v1, . . . , vn-1
OUTPUT: Triangulated polygon T (P) with increased number of even-degree

vertices
Step 1: Obtain a triangulated polygon T (P) of P by applying any standard polygon

triangulation algorithm
Step 2: i = 0;
Step 3: repeat
Step 4: for each diagonal d incident on vi do
Step 5: if (Q(d) satisfy flippability rules and condition 1 and 2)
Step 6: T (P) = flip(T (P), d)
Step 7: end if
Step 8: end for
Step 9: i = (i+ 1)mod n
Step 10: until (i 6= 0)
Step 11: Output T (P)

Proof Step1 can be done in O(n) time by appealing to Chazzele’s linear time poly-

gon triangulation algorithm [4]. Each diagonal is examined at most two times for

flippability test. By representing T (P) obtained in Step1 in DCEL, the for-loop

(Step4 - Step8) can be done in O(degi) time, where degi is the degree of vertex vi.

This implies that the repeated-loop (Step 3 - Step 10) takes O(n) time. Hence the

entire algorithm takes O(n) time.

3.2.2 Development of Partitioning-AQT Algorithm

The quality of the solution obtained by applying Scan-Flip Algorithm (3.2) may

not always yield a good solution. However, the quality of the solution obtained by

applying AQT to convex polygons is such that almost all vertices have even degree.

This motivates us to take a slightly different approach for developing the algorithm. A

promising approach based on this observation is to first break the given simple polygon

into convex pieces and apply AQT algorithm to each piece separately. Breaking a

simple polygon into convex pieces is itself a very difficult problem. Some of the well-

know algorithms for breaking a polygon into convex pieces are reported in [15]. For

our investigation, we pick Hertel-Melhorn’s algorithm [8] (HM-algorithm, for short)

for convex decomposition. HM algorithm is simple to understand and implement.

25

v
9

v
10

v
11

v
12

v
13

v
14

v
15

v
16

v
17

v
18

v
19

v
20

v
21

v
22

v
23

v
24

v
25

v
26

v
27 v

28
v
29

v
30

v
31

v
32

v
33

v
34

v
35

v
36

v
37

v
38

v
39

v
40

v
41

v
42

v
43

v
1

v
0

v
2

v
3

v
4

v
5

v
6

v
7

v
8

Figure 3.9: Even Degree Constrained Triangulation using Convex Components

An Additional merit of HM algorithm is the fact that it has a guaranteed bound

for the quality of the resulting solution. In fact, HM algorithm obtains the solution

which is no more than four times the optimal solution [15]. HM algorithm works

by first triangulating the given polygon. In the triangulated polygon, the diagonals

are carefully removed (removal of “non-essential” diagonals) to obtain the convex

components.

The algorithm we propose that makes use of convex partitioning is called the

partitioning-AQT algorithm. Let c0, c1, . . . , ck be the k convex components when the

input polygon P is partitioned by applying HM algorithm. The alternate AQT algo-

rithm of Section 3.1 is applied on each component. The application of this algorithm

is illustrated in Figure 3.9. This example shows that 36 out of 44 vertices are of even

degree. In this figure there are four major convex components. We can see that if a

larger number of convex pieces are generated in the convex decomposition then the

quality of the solution obtained by applying partitioning-AQT algorithm improves

significantly. When we apply Scan-Flip algorithm to the triangulated polygon ob-

tained by applying partitioning-AQT algorithm, it is likely that only few number of

26

Algorithm 3.3 Partitioning-AQT Algorithm

INPUT: A simple polygon P with vertices v0, v1, . . . , vn-1
OUTPUT: Triangulated polygon T (P) of P with increased number of even-degree
vertices
Step 1: Obtain convex components of P by using HM-Algorithm. Let c0, c1, . . . , ck

be the resulting convex components
Step 2: for each component ci of P do
Step 3: ci = AQT (ci)
Step 4: end for
Step 5: T (P) = φ
Step 6: for i = 1 to k do
Step 7: T (P) = T (P) ∪ ci;
Step 8: end for
Step 9: Output T (P)

v
9

v
10

v
11

v
12

v
13

v
14

v
15

v
16

v
17

v
18

v
19

v
20

v
21

v
22

v
23

v
24

v
25

v
26

v
27 v

28
v
29

v
30

v
31

v
32

v
33

v
34

v
35

v
36

v
37

v
38

v
39

v
40

v
41

v
42

v
43

v
1

v
0

v
2

v
3

v
4

v
5

v
6

v
7

v
8

Figure 3.10: Scan-Flip Algorithm applied on triangulated polygon generated by
Partitioning-AQT Algorithm

flips are possible. This is illustrated by figure 3.10 which has just one flip and whose

resulting triangulated polygon has 40 out of 44 even-degree vertices. A formal sketch

of partitioning-AQT algorithm is listed as Algorithm 3.3.

This algorithm does not always provide an effective even degree triangulation. It is

highly dependent on the quality of convex decomposition provided by HM Algorithm.

27

Some shapes having a series of reflex chains can only be decomposed into thin convex

polygons. Our algorithm is not effective for those shapes. Figure 3.11 illustrates a

polygon for which this algorithm is not effective.

v
0

v
1

v
5

v
6

v
7

v
8

v
9

v
10 v

11
v
12

v
13

v
14

v
17

v
16

v
2

v
3

v
4

v
15

v
18

v
19

v
20

Figure 3.11: Ineffective Even Degree Constraint Triangulation using Convex Compo-
nents

3.3 Degree-Constrained Triangulation for Points in Two Dimension

We now consider the development of efficient algorithm for solving DCT problem

for a set of points in two dimensions. Our approach is to start an initial triangulation

of the given input point site S = {p0, p1, . . . , pn-1} and apply a sequence of feasible

flipping to obtain the desired solution. Since Delaunay triangulation is one of the

most widely used triangulations algorithm, we pick it as the initial triangulation. Let

DT (S) be the Delaunay triangulation of S obtained by using Fortune’s plane sweep

algorithm [5]. The edges of Delaunay triangulation can be distinguished into two

kinds: (i) external edges are those that lie on the convex-hull boundary, and (ii)

internal edges are the edges inside the convex-hull. Figure 3.12(a) is the Delaunay

triangulation of 17 point sites. Among the 38 edges of DT (S), 10 are external and the

remaining 28 are internal edges. The algorithm we propose processes each internal

edge, one at a time, to apply a flipping operation. If a selected internal edge ei satisfies

28

flipping conditions then the triangles of quadrilateral Qei are modified by applying a

flipping operation. It is remarked here that the order in which the internal edges are

processed exactly depends on the order in which the Delaunay triangulation outputs

the edges of the triangulation.

v16

v0
v1

v2

v3

v4

v5

v8

v7

v6

v9

v10
v11

v15

v14

v12
v13

v16

v0
v1

v2

v3

v4

v5

v8

v7

v6

v9

v10

v11

v15

v14

v12v13

v0
v1

v2

v3

v4

v5

v8

v7

v6

v9

v10
v11

v15

v14

v12

v16

v13

v0
v1

v2

v3

v4

v5

v8

v7

v6

v9

v10
v11

v15

v14

v12

v16

v13

(a) Original Triangulation (b) Triangulation after first flip

(d) Triangulation after third flip(c) Triangulation after second flip

Figure 3.12: Scan-Flip Algorithm applied to triangulated point sites generated by
Delaunay Triangulation Algorithm

We illustrate the application of flipping operations on a running example as shown

in Figure 3.12. The algorithm picks ei = <v4, v16> as the first internal edge to process.

The quadrilateral Qei corresponding to edge ei is convex and it has three odd-degree

vertices. (In the figure, vertices with odd-degree are drawn white and those with

even-degree are drawn black. In the original triangulation there are 5 even-degree

29

vertices and the remaining 12 are odd-degree vertices.)

The algorithm thus finds Qei fit for flips. Figure 3.12(b) is the triangulation after

one flip. In this triangulation the number of even-degree vertices increases by 2 to a

total of 7. Next, the algorithm checks internal edge e2 = <v3, v16> and finds that the

corresponding quadrilateral Qe2 is not convex and it is rejected for flipping. The third

internal edge e3 = <v12, v16> is appropriate for flipping and results in the triangulation

shown in Figure 3.12(c), where the total number of even-degree vertices increases to

9. This is continued and the final triangulation is shown in Figure 3.12(d) where the

total number of even-degree vertices is 11.

A formal sketch of the algorithm is listed as Algorithm 3.4.

Theorem 3.3. Algorithm 3.4 can be executed in O(nlogn) time.

Proof Step 1 can be done in O(nlogn) time by using Fortune’s plane-sweep algo-

rithm. The triangulation given by Fortune algorithm can be implemented using a

doubly connected edge list structure [13] so that faces, edges and vertices can be ac-

cessed quickly. Interior edges from T (P) can be accessed in O(n) time and hence Step

2 takes O(n) time. The while loop executes at most n time. Validity of flippability

rules, and Condition 1 and Condition 2 can be checked in O(1) time by using the

dcel data structure. Hence each execution of the body of while loop takes O(1) time

implying that Step 3 - Step 8 takes O(n) time. Thus the time for the entire algorithm

is O(nlogn).

30

Algorithm 3.4 Increased Even-Degree Triangulation of Point Sites

INPUT: Set of point sites S = {p0, p1, . . . , pn-1}
OUTPUT: Triangulated point sites with increased number of even-degree point
sites
Step 1: Obtain triangulation of S (T (S)) using delaunay triangulation algorithm
Step 2: α← Interior edges of T (S)
Step 3: while(α is not empty) do
Step 4: Find corresponding quadrilateral Q(e) w.r.t interior edge e from α
Step 5: if (Q(e) satisfy flippability rules and condition 1 and condition 2)
Step 6: T (S) = flip(T (S), d)
Step 7: end if
Step 8: end while
Step 9: Output T (S)

31

CHAPTER 4

IMPLEMENTATION AND OBSERVATIONS

This chapter describes the implementation and experimental study of the proposed

algorithms for solving DCT problems. We have used Java programming language for

implementing the algorithms. The implemented algorithms include

1. Triangulation of monotone polygons

2. Plane-Sweep algorithm for monotone partitioning

3. Hertel-Melhorn’s convex decomposition algorithm

4. Delaunay triangualation of point sites

5. Even-degree triangulation of convex polygons.

6. Scan-Flip algorithm for solving DCT problems.

4.1 Interface Overview

A graphical user interface (GUI) is designed so that the users can execute selected

algorithms easily and intuitively. The GUI contains serveral components that include

buttons, textArea, dropdown menus, canvas, menubar, check boxes and radio buttons.

The input data in the form of co-ordinates of nodes can be read from files or manually

by mouse click. The implementation allows the user to generate upto 1000 nodes. The

location of generated nodes can be visually altered by mouse drag. Furthermore, the

implementation allows the random generation of nodes. Random generation of nodes

is done by randomly generating x and y co-ordinates in a range that corresponds

to a pixel size of the canvas. The maximum pixel size of the display canvas in the

implementation is 1000X700 and can be altered to a smaller size.

32

Table 4.1: Menu bar description

Item Name Functional Description

1 Open Brings up a file selection panel, user can choose a pregenerated graph file

2 Save Brings up a file save panel, user can save a new generated file or replace an existing file,
Naming convention is maintained to distinguish files for two application which are
<filename> polygonbased and <filename> pointbased

3 Exit Brings up a confirmation dialog box, which if selected, closes the application

4.2 Structure of the Interface

The initial interface frame on which components are placed is imported from

Java.swing API JFrame. Four components are placed on the initial frame which are

(i) Menu bar, (ii) Central panel and (iii) East panel. The layout of these components

on the frame is as shown in Figure 4.1. Menu Bar has three basic items: open, save

and exit selections. Table 4.1 lists the functionalities of these items. Center panel

contains main display area that allows user to manually draw, edit, split, delete nodes

or display nodes that are read from a file. Mouse coordinates are shown in the upper

left corner to help navigate or draw objects within the center area. The east panel is

divided into three parts. The Top part of the east panel is the checkbox grid, which

contains checkboxes labeled draw, edit, split and delete. These check box functions

are used for setting a mode for drawing in the canvas. The Middle Part of the east

panel is the button grid, which has buttons labeled “clear canvas”, “perform flip”

and “random points” in Point sites based applications and “clear canvas”, “convex

polygon even triangulation”, “convex polygon odd triangulation”, “monotone polygon

triangulation” and “perform flip” in Polygon based applications. Clicking of these

buttons executes respective algorithms that are labeled with them. Tables 4.2 and

Table 4.3 describe the functionalities of checkbox grid and button grid, respectively.

The Bottom part of east panel is the text area, where co-ordinates of the displayed

nodes are listed in order. Figure 4.2, Figure 4.3 and Figure 4.4 illustrate the starting

interface, layout of point sites, and layout of polygon based applications respectively

33

Menu Bar

Center Panel
East Panel

Figure 4.1: GUI Layout

Figure 4.2: Starting Interface

Table 4.2: East Panel Checkboxes description

Item Name Functional Description

1 Draw Vertex Adds a vertex vn to a polygon or point sites v0, . . . , vn-1
In point sites application, delaunay triangulation is calculated with each drawn vertex

2 Delete Vertex Deletes clicked vertex of a polygon by updating the values to the connecting vertices

3 Edit Vertex Changes x and y coordinates of a vertex, update is done by clicking the vertex
and dragging it into desired place within a main panel area

4 Split Vertex Splits the closest edge into two parts by generating new vertex to the closest edge

34

Figure 4.3: Layout for Point Sites Based Triangulation Applications

Figure 4.4: Layout for Polygon Based Triangulation Applications

35

Table 4.3: East Panel Button description

Polygon Based Triangulation

1 Clear Canvas Clears the canvas, flushing out all the objects created

2 Convex Polygon Even Triangulation Breaks down a simple polygon to a number of convex pieces
and applies even triangulation algorithm to them

3 Convex Polygon Odd Triangulation Breaks down a simple polygon to a number of convex pieces
and applies odd triangulation algorithm to them

4 Monotone Polygon Triangulation Breaks down a simple polygon to a number of monotone pieces
and applies monotone triangulation algorithm to them

5 Perform Flip Apply flipping algorithm to the triangulated simple polygon

Point Sites Based Triangulation

1 Clear Canvas Clears the canvas, flushing out all the objects created

2 Perform Flip Apply flipping algorithm to the triangulated simple polygon

3 Random Sites Pops up a dialog input box to set the number of points say n
generates n number of random point sites

Figure 4.5: File Open Dialog Window

36

Figure 4.6: Polygon Frame

Figure 4.7: Snap-shot of polygon triangulation

37

Figure 4.8: Snap-shot of polygon triangulation after flipping operation

4.3 Generating Polygons and Point Sites

There are two approaches to generating polygons or point sites in the applica-

tion. The first one is to load a file (Figure 4.5), which has informations regarding

the polygon or point sites for the application. The other way is to make sure that

the application is in draw mode and create vertices by clicking in the desired place

within the central panel. Once the object is drawn, it can be saved to a file using the

save option in the file menu. However, these two applications behave differently while

drawing. The point sites application calculates Delaunay triangulation with each

added point (after initial three points) as shown in Figure 4.9. On the other hand,

the polygon application simply draws the polygon connecting those drawn points as

shown in Figure 4.6. When the user clicks any of the triangulation buttons in the

polygon application, a new frame is displayed showing the resulting triangulation.

There are certain graphical features that have been used to represent triangulated

point sites or polygons. While even degree vertices are drawn as “red” dots, odd

degree vertices are displayed with “blue” color. On the top right corner of the frame,

38

Figure 4.9: Snap-shot of initial Delaunay triangulation of 1000 point sites

the count of odd/even degree vertices is shown. Furthermore, all the interior edges of

point sites and diagonals of polygon are colored green. The diagonal determined by

the decomposition algorithm for breaking into component polygons are displayed in

“cyan” color. Snap-shots of a triangulated polygon and an initial Delaunay triangula-

tion of point sites are shown in Figure 4.7 and Figure 4.9 respectively. Once we have

the triangulation of polygon or point sites, the flipping operation can be started by

clicking corresponding buttons. The flipped diagonals are colored “magenta” to make

them distinctly visible. Figure 4.8 shows the result after applying flipping operations.

Similarly, Figure 4.10 is the snap-shot of triangulation of point sites after applying

flipping.

The class interface diagrams in UML style used for implementing the algorithms

are shown in Figure 4.11 and Figure 4.12. It is remarked that this is only a partial

list.

39

Figure 4.10: Snap-shot of triangulated point sites after flipping operation

40

PolygonFrame

+ nodelpanel : MyNodePanel

+ bt1…bt5 : JButton
+ cb1…cb4 : JCheckbox

+ tArea1 : JTextArea

+ fileMenu : JMenu
+ openMenu : JMenuItem

+ saveMenu : JMenuItem

+ PolygonFrame()

+ updateTextArea()

ButtonListener

+ actionPerformed()

MenuListener

+ actionPerformed()

MyNodelPanel

- dcel : DoublyConnectEdgeList

+ MyNodelPanel()

SweepLine

+ getMonotoneDecomposition()

+ getConvexDecomposition()

Flipping

dcel : DoublyConnectEdgeList

+ Flipping(DoublyConnectedEdgeList)

+ setNodeDegree ()

+ findDiagonalByBoundryScan ()
+ findQuarilateral (HalfEdge)

+ performFlip()

TriangulationFrame

- dcel : DoublyConnectEdgeList

+ fileMenu : JMenu
+ openMenu : JMenuItem

+ saveMenu : JMenuItem

+ TriangulationFrame (DoublyConnectedEdgeList)

MenuListener

+ actionPerformed()

TriangulationPanel

+ paint(Graphics)

Point2D_R

+ x : Double
+ y : Double

+ Point2D_R ()

+ getX ()

+ setX (double)
+ getY ()

+ setY (double)

+ getAngleBetween (Point2D_R)
+ getDistance (Point2D_R)

+ to (Point2D_R)

+ dot (Point2D_R)
+ cross (Point2D_R)

DoublyConnectedEdgeList

sweepLine : SweepLine

vertices : List<Vertex>
edges : List<HalfEdge>

faces : List<Face>

+ DoublyConnectedEdgeList()
+ addHalfEdge (Vertex, Vertex)

+ getReferenceFace (Vertex, Vertex)

+ moveVertex (Vertex)
+ removeVertex (Vertex)

+ removeHalfEdge (HalfEdge)

+ splitEdge (Vertex)
+ triangulateConvex ()

+ triangulateMonotone ()

Vertex

+ even : Boolean
+ leaving : HalfEdge

+ point : Point2D_R

+ getLeaving()
+ getPoint()

HalfEdge

+ face : Face

+ isDiagonal : boolean
+ isFlip : Boolean

+ orgin : Point2D_R

+ next : HalfEdge
+ twin : HalfEdge

+ getDestination()
+ getFace()

+ getNext()

+ getOrgin()
+ getTwin()

Face

+ edge : HalfEdge

+ getIncidentEdge()

Figure 4.11: Polygon based Application Class Diagram

41

PointFrame

+ nodelpanel : MyNodePanel

+ bt1…bt3 : JButton
+ cb1…cb4 : JCheckbox

+ tArea1 : JTextArea

+ fileMenu : JMenu
+ openMenu : JMenuItem

+ saveMenu : JMenuItem

+ PointFrame()

+ updateTextArea()

ButtonListener

+ actionPerformed()

MenuListener

+ actionPerformed()

MyNodelPanel

- dcel : DoublyConnectEdgeList

+ MyNodelPanel()

Flipping

dcel : DoublyConnectEdgeList

+ Flipping (DoublyConnectedEdgeList)

+ setNodeDegree ()

+ findDiagonalByInteriorDiagonalScan ()
+ findQuarilateral (HalfEdge)

+ performFlip()

Point2D_R

+ x : Double

+ y : Double

+ Point2D_R ()

+ getX ()
+ setX (double)

+ getY ()

+ setY (double)
+ getDistance (Point2D_R)

+ getAngleBetween (Point2D_R)

+ to (Point2D_R)
+ dot (Point2D_R)

+ cross (Point2D_R)

TriangulationFrame

- dcel : DoublyConnectEdgeList

+ fileMenu : JMenu
+ openMenu : JMenuItem

+ saveMenu : JMenuItem

+ TriangulationFrame (DoublyConnectedEdgeList)

MenuListener

+ actionPerformed()

TriangulationPanel

+ paint(Graphics)

DelaunayTri

- onHull : boolean

- process : boolean
- removed : boolean

- visible : Boolean

+ DelaunayTri ()

+ drawDelaunayTri()
+ start ()

+ clearDelaunay ()

+ lowerFaces ()
+ readVertices ()

- doubleTriangle ()

- constructHull ()

- volumnSign ()

- makeConeFace ()

- makeFace()
- collinear()

- normz ()

- checkEuler()

DoublyConnectedEdgeList

vertices : List<Vertex>

edges : List<HalfEdge>
faces : List<Face>

+ DoublyConnectedEdgeList()

+ addHalfEdge (Vertex, Vertex)

+ getReferenceFace (Vertex, Vertex)
+ splitEdge (Vertex)

+ moveVertex (Vertex)

+ removeVertex (Vertex)
+ removeHalfEdge (HalfEdge)

+ getConvexHullEdges ()

+ isConvexHullEdge ()
+ insertTriangle()

+ draw (Graphics)

Vertex

+ point : Point2D_R

+ leaving : HalfEdge

+ even : Boolean

+ getPoint()

+ getLeaving()

HalfEdge

+ orgin : Point2D_R

+ twin : HalfEdge

+ next : HalfEdge
+ face : Face

+ isDiagonal : boolean

+ isFlip : Boolean

+ getOrgin()

+ getTwin()

+ getNext()
+ getFace()

+ getDestination()

Face

+ edge : HalfEdge

+ getIncidentEdge()

Figure 4.12: Point Sites Application Class Diagram

42

4.4 Observations

We conducted several experiments on the performance of the scan-flip algorithm

for solving DCT problem on point sites in two dimensions. The initial triangula-

tion of the input point sites was the Delaunay triangulation. Our implementation of

Delaunay triangulation was done by using some Java classes available in [15]. Our pro-

gram converts the Delaunay triangulation into Doubly Connected Edge List (DCEL)

data structures so that the faces, vertices, and edges can be traversed quickly. Ini-

tial Delaunay triangulation (DT) was done on randomly generated point sites. The

scan-flip algorithm was then applied to DT to increase the number of even-degree

vertices. The algorithm was executed on 5 sets of randomly generated 10 subsets of

point sites. Each of the 10 subsets contain a number of points starting from 50 up to

500 in increments of 50. The number of vertices with even degree was recorded for the

initial triangulation and the triangulation after applying scan-flip algorithm. These

results are tabulated in Table 4.4. An inspection of the results in the table reveals

that the percentage increase in the number of even-degree vertices ranges from as

little as 31% to as much as 111%. Furthermore, it seems that the percentage increase

does not depend on the number of the number of input points.

It is not easy to conduct such an experiment for triangulation of polygons. This

is due to the fact that there is no accepted algorithm for generating random poly-

gons [1]. The quality of the result produced by the scan-flip algorithm for polygons

depends on the initial triangulation of the polygon. As expected, the quality of the

generated solution is substantially increased if the polygon has a fewer number of

convex components as in Figure 3.9.

43

Table 4.4: Observation of flipping affect on different sets of point sites

Set 1

Number of Points
Number of Odd Degree Vertices (no) Number of Even Degree Vertices (ne) % increase of (ne)Before After Before After

50 24 12 26 38 46.15%

100 48 28 52 72 38.46%

150 80 30 70 120 71.43%

200 98 46 102 154 50.98%

250 130 54 120 196 63.33%

300 162 70 138 230 66.67%

350 174 78 176 272 54.55%

400 200 82 200 318 59.00%

450 238 100 212 350 65.09%

500 260 102 240 398 65.83%

Set 2

50 20 10 30 40 33.33%

100 50 18 50 82 64.00%

150 82 32 68 118 73.53%

200 104 52 96 148 54.17%

250 128 56 122 194 59.02%

300 152 56 148 244 64.86%

350 174 74 176 276 56.82%

400 190 78 210 322 53.33%

450 222 95 228 355 55.70%

500 268 114 232 386 66.38%

Set 3

50 18 8 32 42 31.25%

100 64 24 36 76 111.11%

150 80 32 70 118 68.57%

200 112 40 88 160 81.82%

250 116 56 134 194 44.78%

300 158 72 142 228 60.56%

350 174 68 176 282 60.23%

400 220 94 180 306 70.00%

450 226 94 224 356 58.93%

500 254 100 246 400 62.60%

Set 4

50 26 14 24 36 50.00%

100 46 23 54 77 42.59%

150 68 28 82 122 48.78%

200 98 42 102 158 54.90%

250 124 52 126 198 57.14%

300 156 58 144 242 68.06%

350 180 78 170 272 60.00%

400 198 94 202 306 51.49%

450 222 98 228 352 54.39%

500 260 108 240 392 63.33%

Set 5

50 24 12 26 38 46.15%

100 50 20 50 80 60.00%

150 74 28 76 122 60.53%

200 104 46 96 154 60.42%

250 144 58 106 192 81.13%

300 168 72 132 228 72.73%

350 170 68 180 282 56.67%

400 198 82 202 318 57.43%

450 230 96 220 354 60.91%

500 250 106 250 394 57.60%

44

CHAPTER 5

CONCLUSION AND FUTURE WORK

We presented a critical review of the existing algorithms for triangulating simple

polygons and point sites. We formulated a variation of triangulation problems called

Degree Constrained Triangulation (DCT). To solve DCT problems for convex poly-

gons we presented an algorithm called AQT algorithm. The quality of the solution

generated by applying AQT algorithm to convex polygons is near-perfect in the sense

that almost all vertices in the triangulation are of even degree. We presented a formal

proof that no simple polygon admits odd-degree triangulation.

We proposed two algorithms for solving DCT for simple polygons. The first al-

gorithm, called scan-flip polygon triangulation algorithm, solves DCT problems by

applying flip operations on a carefully selected initial triangulated polygon. The time

complexity of scan-flip algorithm is O(n). The second algorithm called Partitioning

AQT (P−AQT) algorithm, solves the DCT problem by using a convex-decomposition

tool from computational geometry. The quality of the solution generated by P−AQT

algorithm depends on the quality of the convex-decomposition algorithm.

For solving DCT problems for set of points in 2D, we use the well known Delau-

nay triangulation as the initial triangulation to apply scan-flip operations. The time

complexity for the scan-flip algorithms for point sets in 2D is O(nlogn). Scan-flip

algorithm for point sites and simple polygons were implemented for testing the per-

formance of proposed algorithms. Experimental results show that the algorithm for

points sites is fairly effective in generating good quality solutions for DCT problems.

We could not perform an extensive experimental investigation of the scan-flip al-

gorithm for polygons. If we could develop a good algorithm for generating random

polygons then it would be feasible to perform a serious experimental investigation.

Our future work is planned in this direction.

45

BIBLIOGRAPHY

[1] Thomas Auer and Martin Held. Heuristics for the generation of random polygons.
In Frank Fiala, Evangelos Kranakis, and Jrg-Rdiger Sack, editors, Proceedings of
the 8th Canadian Conference on Computational Geometry, Carleton University,
Ottawa, Canada, August 12-15, 1996, pages 38–43. Carleton University Press,
1996.

[2] Marshall W. Bern, Herbert Edelsbrunner, David Eppstein, Sandra L. Mitchell,
and Tiow Seng Tan. Edge insertion for optimal triangulations. Discrete &
Computational Geometry, 10:47–65, 1993.

[3] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. On degeneracy in geo-
metric computations. In Proceedings of the fifth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’94, pages 16–23, Philadelphia, PA, USA, 1994.
Society for Industrial and Applied Mathematics.

[4] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput.
Geom. 6, pages 485–524, 1991.

[5] Steven Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica,
2:153–174, 1987.

[6] Leonidas Guibas and Jorge Stolfi. Primitives for the manipulation of general
subdivisions and the computation of voronoi. ACM Trans. Graph., 4(2):74–123,
April 1985.

[7] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremen-
tal construction of delaunay and voronoi diagrams. Algorithmica, 7(4):381–413,
1992.

[8] Stefan Hertel and Kurt Mehlhorn. Fast triangulation of simple polygons. In Pro-
ceedings of the 1983 International FCT-Conference on Fundamentals of Compu-
tation Theory, pages 207–218, London, UK, UK, 1983. Springer-Verlag.

[9] F. Hurtado, M. Noy, and J. Urrutia. Flipping edges in triangulations. In Pro-
ceedings of the twelfth annual symposium on Computational geometry, SCG ’96,
pages 214–223, New York, NY, USA, 1996. ACM.

[10] Ferran Hurtado and Marc Noy. The graph of triangulations of a convex polygon.
In Proceedings of the twelfth annual symposium on Computational geometry, SCG
’96, pages 407–408, New York, NY, USA, 1996. ACM.

[11] C. L. Lawson. Software for c1 surface interpolation. Mathematical Software III,
pages 161–194, 1977.

[12] G. H. Meisters. Polygons have ears. American Mathematical Monthly, 82:648651,
1975.

46

[13] David E Muller and Franco P Preparata. Finding the intersection of two convex
polyhedra. Theoretical Computer Science, 7(2):217–236, 1978.

[14] Joseph O’Rourke. Art gallery theorems and algorithms. Oxford University Press,
Inc., New York, NY, USA, 1987.

[15] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press,
second edition, 1998.

[16] E. Osherovich and A. M. Bruckstein. All triangulations are reachable via
sequences of edge-flips: an elementary proof. Comput. Aided Geom. Des.,
25(3):157–161, March 2008.

[17] Jorge Urrutia, Canek Pelez, and Adriana Ramrez-Viguer. Triangulations with
many points of even degree. In Proceedings of the 22nd Annual Canadian Con-
ference on Computational Geometry, Winnipeg, Manitoba, Canada, August 9-11,
2010, pages 103–106, 2010.

47

VITA

Graduate College
University of Nevada, Las Vegas

Roshan Gyawali

Degrees:
Bachelor of Computer Enginnering 2008
Institute of Engineering, Pulchowk Campus, Tribhuvan University

Thesis Title: Degree Constrained Triangulation

Thesis Examination Committee:
Chairperson, Dr. Laxmi Gewali, Ph.D.
Committee Member, Dr. Ajoy K. Datta, Ph.D.
Committee Member, Dr. John Minor, Ph.D.
Graduate Faculty Representative, Dr. Rama Venkat, Ph.D.

48

	Degree Constrained Triangulation
	Repository Citation

	tmp.1374277684.pdf.rFUF6

