
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-2011

Sharp feature identification in a polygon Sharp feature identification in a polygon

Joseph P. Scanlan
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Geometry and Topology Commons, and the Theory and Algorithms Commons

Repository Citation Repository Citation
Scanlan, Joseph P., "Sharp feature identification in a polygon" (2011). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 965.
https://digitalscholarship.unlv.edu/thesesdissertations/965

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/965?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

SHARP FEATURE IDENTIFICATION IN A POLYGON

by

Joseph P. Scanlan

Bachelor of Science
University of Nevada, Las Vegas

1983

A thesis submitted in partial fulfillment of
the requirement for the

Master of Science in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

May 2011

http://www.n7xsd.us/JosephScanlan
http://www.cs.unlv.edu/
http://engineering.unlv.edu/
http://graduatecollege.unlv.edu/
http://www.unlv.edu/

Copyright by Joseph P. Scanlan 2011
All Rights Reserved

http://www.n7xsd.us/JosephScanlan

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Joseph P. Scanlan

entitled

Sharp Feature Identification in a Polygon

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Laxmi Gewali, Committee Chair

Evangelos A. Yfantis, Committee Member

Jan B. Pedersen, Committee Member

Henry Selvaraj, Graduate Faculty Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies
and Dean of the Graduate College

May 2011

ABSTRACT

Sharp Feature Identification in a Polygon

by

Joseph P. Scanlan

Dr. Laxmi Gewali, Examination Committee Chair
Professor of Computer Science

University of Nevada, Las Vegas

This thesis presents an efficient algorithm for recognizing and extracting sharp-

features from polygonal shapes. As used here, a sharp-feature is a distinct portion of a

polygon that is long and skinny. The algorithm executes in O(n2) time, where n is the

number of vertices in the polygon. Experimental results from a Java implementation

of the algorithm are also presented.

iii

http://www.n7xsd.us/JosephScanlan
http://www.unlv.edu/

TABLE OF CONTENTS

ABSTRACT . iii

LIST OF FIGURES . v

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BOUNDARY SIMPLIFICATION 3

2.1 Preliminaries . 3

2.2 Boundary Vertex Retention . 4

2.3 Boundary Vertex Elimination . 6

2.4 Boundary Replacement . 9

2.5 More Boundary Vertex Retention . 15

CHAPTER 3 SHARP FEATURE RECOGNITION 20

3.1 Characterizing Sharp Features of Polygonal Shapes 20

3.2 Algorithm Development . 23

3.3 Dominated and Prime Candidate Diagonals 23

CHAPTER 4 IMPLEMENTATION . 30

4.1 User Interface . 30

4.2 Experimental Results . 34

4.3 Application Programming Interface 37

CHAPTER 5 CONCLUSION . 38

BIBLIOGRAPHY . 40

VITA . 43

iv

LIST OF FIGURES

2.1 Polygonal chain with 11 vertices. 6

2.2 Execution of Douglas Peucker Algorithm. 7

2.3 Polygonal chain with 5 vertices. 7

2.4 Polygon with 13 vertices. 9

2.5 Execution of Pikaz Dinstein Algorithm. 10

2.6 Polygon with 7 vertices. 11

2.7 Monotone chain with corresponding upper and lower chains. 12

2.8 Strip polygon. 12

2.9 Interior windows and visibility polygons. 14

2.10 Approximation chain shown with strip polygon and interior windows. . . 15

2.11 Monotone chain shown with its approximation. 15

2.12 Directed Graph. 16

2.13 Monotone chain with its approximation. 17

2.14 Highlighted Loss-area and Gain-area. 18

3.1 Tea pot polygon and its subpolygons. 20

3.2 Spider polygon. 21

3.3 Visibility graph in a polygon. 24

3.4 Tea pot polygon with feasible diagonals. 25

3.5 Prime diagonals after dominated diagonals are removed. 25

3.6 Relating A(i, ik−1) and A(i, ik). 26

3.7 Sharp features overlap when prime diagonals intersect. 29

4.1 Main Window layout. 30

4.2 Example Main Window with two polygons. 31

4.3 Auxiliary windows for each polygon. 33

4.4 Parameters window. 34

4.5 Ant Polygon with 10% limit. 35

4.6 Ant Polygon with 15% limit. 36

4.7 Turtle Polygon with 15% limit. 36

4.8 Kiwi Bird Polygon with 15% limit. 37

4.9 Spiky polygon with 13% limit. 37

v

CHAPTER 1

INTRODUCTION

Problems dealing with the recognition and simplification of two dimensional

shapes have been investigated extensively in robotics, geographic information system,

medical imaging, and computational geometry. In computational geometry [1, 8, 10],

two dimensional shapes are usually modeled by polygons. An important sub-problem

used in shape recognition is the formulation of a “shape-similarity” measure. One of

the first geometric algorithms for measuring shape similarity is based on the concept

of a “signature function” [15]. The signature function is essentially a rectilinear step

function derived from the local and global properties of the polygonal shape. The

signature of an edge e of a polygon is obtained by accumulating the portion of the

boundary of the polygon lying to the left of the line passing through e. The signature

of the whole polygon is obtained by combining the signatures of all the edges of the

polygon. If two shapes are similar then the area enclosed between their signatures is

very small. For identical shapes the area enclosed between their signatures is zero.

The technique of signature analysis has been found to be very effective for comparing

orthogonal shapes and in recognizing hand-written characters [15]. Algorithms for

measuring shape similarity based on signature functions are not easy to implement.

Another approach for measuring shape similarity is based on the notion of a “turning

function”. The turning function of a polygonal shape is also a rectilinear step function.

Shape-similarity measures based on the turning function have been used successfully

for developing efficient recognition algorithms and these algorithms are not difficult

for practical implementation. One drawback of the turning function method is that it

does not produce acceptable results when the boundary of the input polygon contains

noisy edges.

Chapter 2 presents a review of the existing boundary simplification algorithms

1

for two dimensional shapes. Chapter 3 proposes a new technique for shape recogni-

tion. This technique is based on a partitioning procedure that separates narrow

regions from the core regions. The notion of “sharp-features” for 2-d shapes is in-

troduced for performing such partitioning. Efficient algorithms for identifying such

features are presented. The sharp feature recognition algorithm runs in O(n2) time,

where n is the number of vertices in the polygon. Chapter 4 describes an implemen-

tation used to demonstrate the algorithm. Chapter 5 concludes with a discussion of

possible extensions of the proposed technique.

The main contributions of this thesis are i) formulation of the concept of

sharp features of two dimensional shapes, ii) development of an O(n2) algorithm

for extracting sharp components from a polygon, and iii) experimental study of the

proposed algorithm by actual implementation in Java.

2

CHAPTER 2

BOUNDARY SIMPLIFICATION

In this chapter we present an overview of the algorithmic techniques, partic-

ularly from computational geometry, for approximating the boundary of a complex

polygonal shape with a simpler one. While a complex polygonal boundary contains

large numbers of vertices, its simplification is expected to contain a smaller number of

vertices. In performing boundary simplification, it is necessary to preserve the poly-

gon’s global structure and properties. Boundary simplifications have application in

medical image processing [9, 13], data compression [6], cartography [5], GIS [14], and

remote sensing [19]. For example, the images obtained by remote sensing techniques

contain complex boundary detail. Analyzing such complex boundaries require huge

amount of memory and processing time. In such cases it is desirable to replace a

boundary with very large numbers of nodes with one that has fewer nodes.

2.1 Preliminaries

Interest in automated boundary simplification spans more than fifty years [18].

The input boundary is available either as a closed loop (representing the boundary

of a simple polygon) or an open chain that represents a portion of linear features and

contours. The strategies applied for boundary simplification depend on whether the

boundary is closed or not. While representing a complex boundary with fewer number

of vertices, it is necessary to preserve two types of properties i) linear structural

properties and ii) shape properties. Examples of linear structural properties include

winding number, number of maximal convex chains, number of spiral chains, etc.

Similarly, shape properties include enclosed area, convex-hull, internal / external

visibility properties, centroid, etc. In most cases, linear structural properties are

applicable to both closed and open boundaries. On the other hand, shape properties

are mostly applicable only to closed boundaries.

3

Two types of simplification approaches have been considered for boundary

simplification problems [12]. In the vertex-elimination approach, the objective is to

describe the polygonal shape with as few vertices as possible without exceeding a

given error tolerance ε. In the solution size approach, the objective is to minimize

the error for obtaining the given number of vertices in the approximated solution.

2.2 Boundary Vertex Retention

One approach to polygonal boundary simplification is to remove unneeded

vertices from the boundary. Which vertices are not needed will be determined by the

intended use of the final approximated polygon but there are some intuitive criteria

that should always apply. The polygon after simplification should i) look similar to

the original polygon to a human observer, ii) the resulting enclosed area should be

close to the area of the original polygon, and iii) the centroid of the original and

simplified polygon should not be far apart. Note that the perimeter of the simplified

polygon could be shorter than the perimeter of the original polygon.

When David Douglas and Thomas Peucker published their algorithm [4] for

polygonal chains, they cited storage capacity and bandwidth as motivators for sim-

plification. While the ability to store data has greatly increased, so has the ability

to generate data. Polygonal chain simplification remains just as relevant today as it

was in a world of punch cards and paper tape.

Algorithm 2.1 is the iterative “method 1” from the 1973 paper. A recursive

variation of Algorithm 2.1 is presented as Algorithm 2.2. In this variation, a subset of

vertices of the original polygonal chain are eliminated by using the predetermined tol-

erance error ε. The algorithm is developed for open polygonal chains. The algorithm

works in a sequence of recursive calls. If the vertices along the boundary chain are

p0, p1, . . . , pn−1 then the algorithm finds errors εis for vertices p1, p2, . . . , pn−2. The

error corresponding to vertex pi is denoted by εi. The error for pi is measured in

4

Algorithm 2.1: DouglasPeucker-Iterative

1: Chain Chs DouglasPeucker(Chain Ch, Error ε);
2: // Chain Ch has vertices p0, p1, . . . , pn−1

3: // Chain Chs has vertices s0, s1, . . . , sm−1 where m <= n
4: a = p0;
5: f = pn−1;
6: Chs = < a >;
7: while a 6= pn−1 do
8: for each vertex between a and f do
9: εj = perpendicular distance from pk to the line passing through a

and f ;
10: εj = largest amongst εks;
11: pj = the vertex corresponding to εj;
12: if εj < ε then
13: a = f ;
14: Chs += < a >;

15: else
16: f = pj;

17: end if

18: end for

19: end while

Algorithm 2.2: DouglasPeucker-Recursive

1: Chain Chs DouglasPeucker(Chain Ch, Error ε);
2: // Chain Ch has vertices p0, p1, . . . , pn−1

3: // Chain Chs has vertices s0, s1, . . . , sm−1 where m <= n
4: for k = 1 to n− 2 do
5: εk = perpendicular distance from pk to the line passing through p0

and pn−1;

6: end for
7: εm = largest amongst ε1, ε2, . . . , εn−2;
8: pm = the vertex corresponding to εm;
9: if εm < ε then

10: return pn−1

11: else
12: return concat(DouglasPeucker(p0, pk), DouglasPeucker(pk, pn−1))

13: end if

5

terms of the perpendicular distance from pi to the line through vertices p0 and pn−1.

If all errors ε1, ε2, . . . , εn−2 are less than the predetermined threshold value ε then the

segment p0, pn−1 is taken as the approximation for chain < p0, p1, . . . , pn−1 >. Other-

wise, the vertex pm corresponding to the maximum error εm is determined. Then the

algorithm recurses on the chains < p0, p1, . . . , pk > and < pk, pk+1, . . . , pn−1 >. Note

that if more than one of the vertices are maximum then ties are broken arbitrarily.

The time complexity of the algorithm is O(n2).

Note that Algorithm 2.1 travels along the chain in a linear fashion while Al-

gorithm 2.2 uses a divide and conquer approach.

With the polygonal chain shown in Figure 2.1, Figure 2.2 illustrates the

p
0

p
n1

p
1

n=11

Figure 2.1: Polygonal chain with 11 vertices.

execution trace of Algorithm 2.2 for the indicated error threshold value. Figure 2.3

shows the approximated chain which contains five vertices in comparison to eleven

vertices in the original chain. If the error threshold ε is small, then no vertices will

be eliminated.

2.3 Boundary Vertex Elimination

An alternative to removing unimportant boundary vertices is to identify im-

portant boundary vertices and remove the rest.

6

p
0

p
n1

p
1

(a)

p
0

p
n1

p
1

(b)

p
0

p
n1

p
1

(c)

ε

p
0

p
n1

p
1

(d)

Figure 2.2: Execution of Douglas Peucker Algorithm.

m=5

s
0

s
m1

s
1

Figure 2.3: Polygonal chain with 5 vertices.

7

Algorithm 2.3: PikazDinstein

1: Polygon Ps PikazDinstein(Polygon P , Error ε);
2: // Polygon P has vertices p0, p1, . . . , pn−1

3: // Polygon Ps has vertices s0, s1, . . . , sm−1 where m <= n
4: Attach to each vertex its error value, pi.error;
5: Build(Heap) from vertices p0, p1, . . . , pn−1;
6: repeat
7: DeleteMin(Heap, pi);
8: Compute new error values for pi’s two neighbors pi−1 and pi+1;
9: Remove pi from polygon P ;

10: Update(Heap, pi−1);
11: Update(Heap, pi+1);

12: until pi.error > ε;

Arie Pikaz and Its’hak Dinstein [17] published an algorithm that reduces the

number of vertices in a polygon by iteratively eliminating vertices from a polygon.

This method is applicable to both open and closed chains.

Line 4 of Algorithm 2.3 assigns an error value to each vertex in the polygon.

Two error criteria are discussed in [17] i) area of the triangle formed by pi−1, pi, and

pi+1; and ii) the perpendicular distance from pi to the line passing through pi−1 and

pi+1. The example uses perpendicular distance as the error criteria. After this is

done, a min-heap is built using the error value as a key.

Lines 6 through 12 repeatedly remove the vertex with the smallest error from

the polygon and the heap, adjusts the error of the removed vertex’s neighbors, and

adjusts the heap.

Figure 2.4 is a sample polygon with 13 vertices. Figure 2.5 illustrates progress

of the algorithm on the sample polygon shown in Figure 2.4. Figure 2.6 shows the

approximated polygon with only 7 vertices.

Figure 2.5(c) illustrates an interesting point. Because error values are recal-

culated for two neighbor vertices during the execution of the algorithm, error values

may not be increasing as vertices are removed. However, as pointed out in [17] the

8

p
0

p
n1

p
1

ε

n=13

Figure 2.4: Polygon with 13 vertices.

neighbors’ errors will only increase if the deleted vertex and its neighbors pi−1 and

pi+1 are in the same convex chain.

The time complexity of lines 4 and 5 in Algorithm 2.3 is O(n).

Errors for each vertex can be found in O(n) time by scanning them from start

to end in the polygon and computing the perpendicular distance. Heap operations

at lines 7, 10, and 11 take O(log n) time. Computation of new error values and

removing vertices from the polygon can be done in linear time, given appropriate data

structures. The time complexity of the algorithm depends on the value of tolerance

error ε. If k vertices are eliminated, the total time complexity is O(k log n). This

follows from the fact that lines 7, 10, and 11 take O(log n) time each and lines 8, and

9 take O(1) time.

2.4 Boundary Replacement

This section considers the problem of replacing the boundary of a polygon

with a boundary of fewer vertices, where the new vertices may not have been in the

original polygon at all.

Hiroshi Imai and Masao Iri [11] describe an algorithm that replaces a strictly

monotone polygonal chain with a new polygonal chain containing fewer vertices. This

9

p
i+1

p
i

p
i1

(a)

p
i+1

p
i

p
i1

(b)

p
i+1

p
ip

i1

(c)

p
i+1

p
i

p
i1

(d)

p
i+1

p
i

p
i1

(e)

p
i+1p

i

p
i1

(f)

Figure 2.5: Execution of Pikaz Dinstein Algorithm.

10

m=7

ε

s
0

s
m1

s
1

Figure 2.6: Polygon with 7 vertices.

algorithm can be used for simple polygons by breaking the polygon boundary into

separate monotone chains. A brief overview of this algorithm can be described as

follows.

The algorithm takes the monotone chain Ch =< p0, p1, . . . , pn−1 > and pre-

determined threshold error ε as the input. Without loss of generality, the chain

Ch can be assumed to be monotone along the x-axis. The algorithm constructs a

monotone polygon P (ε) by shifting the chain Ch above and below by ε, as shown in

Figure 2.7. Specifically, let the vertices of the chain formed by shifting Ch above by ε

be Chq =< q0, q1, . . . , qn−1 >. Similarly the lower chain is Chr =< r0, r1, . . . , rn−1 >.

The polygon P (ε) is formed by connecting r0 to q0 forming the leftmost window e0

and rn−1 to qn−1 forming the rightmost window em−1. Creation of these windows is

shown in Figure 2.8.

It can be easily verified that any monotone chain connecting the leftmost chain

to the rightmost chain will be within ε error from the original chain Ch.

The algorithm is based on finding a monotone chain with minimum number

of vertices that connects e0 with em−1. For constructing such a chain the algorithm

uses the concept of visibility polygon from line segment. It finds the edge-visibility

polygon from e0. To determine the first internal window e1, let V P (P, e0) denote the

11

p
0

p
n1

q
0

q
1

q
n1

r
0

r
1

r
n1

p
1

Figure 2.7: Monotone chain with corresponding upper and lower chains.

rightmost windowleftmost window

Figure 2.8: Strip polygon.

12

Algorithm 2.4: ImaiIri

1: Chain Chs ImaiIri(Chain Ch, Error ε);
2: // Chain Ch has vertices p0, p1, . . . , pn−1

3: // Chain Chs has vertices s0, s1, . . . , sm−1 where m <= n
4: Construct strip polygon P (ε) = r0, r1, . . . , rn−1, qn−1, qn−2, . . . , q0;
5: e0 = q0r0;
6: P0 = P (ε);
7: i = 0;
8: while qn−1rn−1 is not visible from ei in polygon Pi do
9: ei+1 = the window from ei to qn−1rn−1 in Pi;

10: Pi+1 = the invisible polygon of ei containing qnrn in polygon Pi;
11: si = point of Intersection of edge ei and the line containing ei+1;
12: i = i+ 1;

13: end while
14: m = i+ 1;
15: Find the point sm−1 on edge em−1 and a point sm on qn−1rn−1 which are

visible from each other in polygon Pm−1;
16: return < s0, s2, . . . , sm−1 >;

edge visibility polygon from e0. Let P ′ be the invisible sub-polygon of P containing

the rightmost window em−1. The common boundary between V P (P, e0) and P ′ gives

the first internal window e1. The algorithm determines the second internal window

e2 by computing V P (P ′, e1). This is continued until the rightmost window em−1 is

visible from the most recent internal window. Computation of internal windows and

the construction of the final approximation chain for the strip polygon in Figure 2.8

are illustrated in Figure 2.9 and Figure 2.10

Figure 2.11 shows the original chain overlaid with it approximation. A formal

sketch of the algorithm is listed as Algorithm 2.4.

Time complexity analysis can be done in a straightforward manner. Construc-

tion of the monotone polygon (line 4) from the given monotone chain can be done

trivially in O(n) time.

Imai and Iri [11] have shown that by careful use of the convex hull of a mono-

tone chain, the interior windows can be determined in O(n) time. Hence lines 5

13

interior window

(a)

interior window

(b)

(c)

Figure 2.9: Interior windows and visibility polygons.

14

Figure 2.10: Approximation chain shown with strip polygon and interior windows.

through 12 takes O(n) time.

Lines 14 through 16 take O(n) time. Hence Algorithm 2.4 can be executed in

O(n) time.

2.5 More Boundary Vertex Retention

A class of boundary chain approximation algorithms have been reported where

the approximated solution contains only the sub-set of vertices of the original chain

as in the Douglas-Pucker algorithm. We briefly describe a few such algorithms here.

Figure 2.11: Monotone chain shown with its approximation.

15

p
0

p
1

P
n1

(a) Given Chain.

v
0

v
1

v
n1

(b) Resulting Directed Acyclic Graph.

Figure 2.12: Directed Graph.

2.5.1 Directed-Graph Approach

Imai and Iri [11] have reported a boundary approximation algorithm based on

the construction of directed graphs from the given chain Ch =< p0, p1, . . . , pn−1 >.

The set of vertices V of the directed graph G(V,E) corresponds exactly to the set

of vertices of the chain Ch, that is V = {vi|pi ∈ Ch}. Two vertices vi and vj are

connected by an edge −−→vivj if i < j. It is straightforward to see that the resulting graph

G(V,E) is a directed acyclic graph. Figure 2.12 shows an example of constructing

the directed graph for a given chain.

16

p
n1

p
0

p
4

s
0

s
m1

s
1

Figure 2.13: Monotone chain with its approximation.

2.5.2 Area-Preserving Approximation

When the boundary of a polygon is approximated by a simpler chain, the area

enclosed by the approximated chain changes. It is thus interesting to seek for the

development of boundary approximation algorithms that preserve the enclosed area.

Very few research results have been reported on polygonal chain approximation that

address preservation of enclosed area. One of the first interesting algorithms on area-

preserving chain approximation was given by Bose, et al. [2]. This paper deals with

the approximation of monotone chains. Consider an x-monotone chain with vertices

n vertices and its approximation by a chain of m vertices as shown in Figure 2.13.

In the figure the approximated chain is drawn with dashed edges. The area enclosed

between the original chain and the approximated chain can be distinguished into two

kinds: i) The enclosed area lying below the original chain can be viewed as loss-

area. ii) Similarly, the enclosed area lying above Ch is gain-area. In Figure 2.14

the loss-area and gain-area are drawn shaded. Three criteria have been considered

in [2] to obtain the approximation. In the first criteria the objective is to minimize

the sum of enclosed areas without distinguishing loss or gain. In the second criteria,

the objective is to minimize the maximum of total loss-area and total gain-area. The

17

p
n1

p
0

p
4

s
0

s
m1

s
1

Gain-area

Loss-area

Figure 2.14: Highlighted Loss-area and Gain-area.

objective of the third criteria is to minimize the difference between total loss-area and

total gain-area.

2.5.3 Boundary Simplification and Rendering

Almost all boundary simplification algorithms have been developed by mod-

eling boundary as a sequence of line segments without addressing the issue of digi-

tization. For practical applications in GIS and medical imaging, the approximated

boundary should preserve shape properties even when it is digitized and rendered in

graphic display devices. One of the first results on curve simplification that exam-

ines the issue of rendering has been reported by Lilian Buzer in [3]. Buzer’s paper

introduces the digital zoning criteria for estimating approximation error.

In the standard way, a line segment connecting two given pixels can be uniquely

digitized by making use of Bresensham’s line drawing algorithm. The digital zoning

technique reported in [3] shows that a line segment connecting two pixels can be

digitized in more than one way. The existence of more than one solution is useful

for polygonal chain approximation. The idea is to select the solution that best fits

the approximation. It is argued in [3] that the approximation based on digital zoning

18

criteria results in solutions that do not compromise topological consistency. The

algorithm presented in [3] runs in O(n log n) time. Furthermore, the approximated

solution is within half a pixel from the original chain.

19

CHAPTER 3

SHARP FEATURE RECOGNITION

3.1 Characterizing Sharp Features of Polygonal Shapes

Examples of polygonal shapes (the outlines of a tea pot and a spider) are

shown in Figure 3.1 and Figure 3.2. Consider a polygonal shape P , such as the

Vs

Vt

Vi

Vj

VmVn

Figure 3.1: Tea pot polygon and its subpolygons.

one in Figure 3.1, whose vertices, in counterclockwise order along the boundary, are

v0, v1, . . . , vn−1. The sub-polygon P (m,n) induced by vertices vm and vn is the portion

of the polygon lying to the right of the diagonal (vm, vn).

Some sub-polygons are round or broad and others are sharp or skinny. In

Figure 3.1, the sub-polygon to the right of the diagonal (vm, vn) is broad or round

and those to the right of the diagonals (vs, vt) and (vi, vj) are skinny or sharp. The

notion of sharpness of a sub-polygon can be formalized in terms of its structural

properties. It can be observed that for a given perimeter, the area enclosed by a

round sub-polygon is more than the area enclosed by a sharp sub-polygon. This

leads to the following definition.

20

Figure 3.2: Spider polygon.

Definition 3.1. The sharpness of a sub-polygon P (i, j) denoted α(i, j) is defined in

terms of the ratio of perimeter squared over the enclosed area, that is α(i, j) = R(i,j)2

A(i,j)

where R(i, j) and A(i, j) represent the perimeter and area of the sub-polygon P (i, j),

respectively.

It is noted that the value of sharpness is small for circular shapes and for

skinny ones it can become very large. It can be easily verified that for circular shapes

the sharpness value can be a minimum of 4π and for very skinny ones it becomes

very high, approaching infinity, for long, narrow, hair-like shapes. The lid of the tea

pot in Figure 3.1 has a small sharpness value, 12.93. The spout and handle are much

sharper with values of 48.80 and 103.16, respectively.

Sharpness values for some example shapes are given in Table 3.1.

For identifying and extracting sharp-features (i.e., sharp sub-polygons) of a

polygonal shape, additional conditions of sub-polygons listed below are used. Prelim-

inary experiments suggest that polygons with α values ≥ 20 are perceptually sharp.

This leads to the following condition.

21

12.57

12.81

13.92

16.00

16.76

32.66

67.17

81.23

159.41

288.57

Table 3.1: Sample sharpness values.

Condition 3.1. (Sharpness threshold)

A sub-polygon P (i, j) is sharp if its sharpness value α(i, j) is at least 20.

Remark. The threshold value of 20 was chosen rather subjectively. Another value

could have been chosen to formalize the concept of sharpness.

Closer examination of the boundary of a complex polygon shows sharp features

generally start from a reflex vertex. This leads to the next condition.

Condition 3.2. (Originating from reflex vertex)

At least one end-point of the diagonal separating a sharp feature is incident on a

reflex vertex.

The area of a sharp feature must not be a large fraction of the area of the

whole polygon. An analogous condition applies for the perimeter.

22

Condition 3.3. (Threshold area and threshold perimeter)

The perimeter R(i, j) (or area A(i, j)) of the sub-polygon P (i, j) is no more than δ1

(δ2) times the perimeter (area) of the whole polygon. A typical value of δ1 could be

0.35.

For most maximal sharp features the diagonal that separates it from the whole

polygon is of relatively shorter length.

Condition 3.4. (Short Diagonal)

The diagonal d = (vi, vj) on which the sub-polygon is subtended should be of short

length. 0.24 of the total perimeter works in tests.

3.2 Algorithm Development

An algorithm for identifying sharp features of a polygon uses the visibility

graph of the polygon to identify candidate diagonals on which sharp features can

be subtended. Note that the visibility graph of a polygon is the graph V G(V,E),

where V is the set of vertices of the polygon and E is the set of its internal diagonals.

This is illustrated in Figure 3.3. The algorithm examines each diagonal from the

visibility graph to determine the sharpness of the subtended sub-polygon P (i, j). Only

those sub-polygons are considered for sharpness computation that satisfy conditions

3.1 through 3.4. The area of the polygon or sub-polygon is computed by using the

following expression. A(P) = 1
2

∑n−1
i=1 (xi + xi+1)(xi+1 − yi) [16]

The perimeter of a sub-polygon is determined in a straightforward manner by

adding the lengths of the edges bounding the sub-polygon. The values of the area

and perimeter are used to determine the sharpness value α.

3.3 Dominated and Prime Candidate Diagonals

Definition 3.2. A diagonal whose sub-polygon satisfies sharpness conditions is called

a feasible diagonal.

23

Figure 3.3: Visibility graph in a polygon.

Definition 3.3. A feasible diagonal inside a sharp feature is called a dominated

diagonal.

Definition 3.4. A prime diagonal is a feasible diagonal that is not inside any sharp

feature.

The notion of feasible and prime diagonals are illustrated in Figure 3.4 and

Figure 3.5, respectively. Two prime diagonals are retained in Figure 3.5 when all

non-prime diagonals are removed from Figure 3.4.

To recognize and extract all sharp features of a polygon, areas A(i, j)’s and

perimeters R(i, j)’s must be calculated for all sub-polygons. A brute force approach

would be to compute these quantities separately for all diagonals. Time needed

to compute area A(i, j) for one pair is O(n). There can be O(n2) diagonals and

consequently the total time for computing all sub-areas in this way is O(n3).

A faster algorithm makes use of one sub-area to compute another related sub-

area. This approach is based on angularly sweeping the sub-areas corresponding to

diagonals originating from a vertex. Let the list of diagonals in the counterclockwise

24

Figure 3.4: Tea pot polygon with feasible diagonals.

Figure 3.5: Prime diagonals after dominated diagonals are removed.

25

angular order originating from vertex vi be di1 , di2 , . . . , dim . Suppose A(i, ik−1) has

been computed. Then A(i, ik) can be expressed as

A(i, ik) = A(i, ik−1) + A(vi, vik , vik+1, . . . , vik+1
) (3.1)

This is illustrated in Figure 3.6.

Vi

Vi
k

Vi
k1

Figure 3.6: Relating A(i, ik−1) and A(i, ik).

It is thus not necessary to recompute the areaA(i, ik) when computingA(i, ik+1).

Sub-areas corresponding to the diagonals can be processed in the angular order di,

di2 , . . . , dik , to obtain corresponding sub-areas and also sub-perimeters in O(n) time.

Consequently, all sub-areas and all sub-perimeters can be computed in O(n2) time.

A formal listing of the algorithm is given as Algorithm 3.1 (AngularSweep).

Lemma 3.1. Algorithm 3.1 (AngularSweep) can be executed in O(n2) time.

Proof. Computing the visibility graph of a polygon (line 1) can be done in O(n2)

time [16]. It is noted that the angularly ordered diagonals originating from a vertex

can be extracted from the visibility graph in O(n) time and hence the time needed for

26

Algorithm 3.1: AngularSweep

1: Compute visibility graph V G of polygon P ;
2: foreach vertex vi of P do
3: Let di1 , di2 , . . . , dik be the counterclockwise ordered list of diagonals

emanating from vertex vi;
4: A(i, j0) = 0;
5: R(i, j0) = 0;
6: for j = 1 to k do
7: A(i, ij) = A(i, ij−1) + Ar(vi, vik−1, vik−1+1, . . . , vik)

R(i, ij) = R(i, ij−1) + Pr(vi, vik−1, vik−1+1, . . . , vik)
8: end for

9: end foreach

Algorithm 3.2: SharpFeatureRecognition

Input: A simple polygon P with vertices v0, v1, . . . , vn−1

Output: Set of prime diagonals
1: Compute area A(P) of polygon P ;
2: Perform AngularSweep;

3: // Determine feasible diagonals

4: Mark all diagonals unfeasible;
5: foreach diagonal dij of P do
6: if dij satisfies all conditions then mark dij feasible
7: end foreach

8: // Determine prime diagonals

9: Let dyk be the starting prime diagonal;
10: while all vertices are not processed do
11: foreach feasible diagonal d within indexRange(y, k) do
12: mark d dominated;
13: end foreach
14: dyk = next prime diagonal;

15: end while

27

one execution of line 3 is O(n). The for-loop in line 6 executes in O(n) time. Hence

the total time for all steps adds-up to O(n2).

The set of feasible diagonals that separate a sharp feature are illustrated in

Figure 3.4. By examining the indices of the vertices of a feasible diagonal dk it can

determine whether or not dk is dominated. Let Ik1 and Ik2 be the indices of the

end vertices of a feasible diagonal dk. Let Jr1 and Jr2 be the indices of the end

vertices of another feasible diagonal dr. Then dk is dominated by dr if Ik1 and Ik2

are within the range of Jr1 and Jr2 . When checking range it is necessary to take

index addition modulo n. In this way all dominated diagonals are marked. The set

of unmarked feasible diagonals are the prime diagonals. The sub-polygons subtended

by prime diagonals give the sharp features. A formal sketch of the algorithm is listed

as Algorithm 3.2: SharpFeatureRecognition.

It is interesting to note that the set of prime diagonals found by Algorithm 3.2

do not necessarily partition the polygon. That is, sharp features can overlap. This is

illustrated in Figure 3.7.

Theorem 3.2. All sharp features of a polygon can be recognized in O(n2) time.

Proof. We proceed to perform an analysis of Algorithm 3.2 line by line. The area of

a polygon can be computed in O(n) time by using the well known formula and hence

line 1 takes O(n) time. By Lemma 3.1, line 2 can be done in O(n2) time. There can

be O(n2) diagonals in the worst case and hence the marking task in line 4 can take

O(n2) time. Since all sub-areas and sub-polygons have been pre-computed, each of

the four conditions for sharpness satisfaction can be verified in O(n) time. Thus the

first for-loop can be done in O(n2) time. The starting prime diagonal can be obtained

in O(n2) time by scanning the diagonals along the boundary and by using the pre-

computed sub-areas and sub-perimeters. Whether or not an index i lies between the

28

Figure 3.7: Sharp features overlap when prime diagonals intersect.

other two indices y and k can be done in constant time, hence the while loop can be

done in O(n2) time. The total time complexity adds up to O(n2).

29

CHAPTER 4

IMPLEMENTATION

The algorithms proposed in this thesis were implemented to observe the quality

of generated results. The actual programs were implemented in the Java programming

language. The user can enter the polygon by clicking the points on a graphic canvas.

The points are used to draw the polygon. The polygon can then be edited by adding,

deleting, and moving vertices. Files with polygon coordinates can be included on the

command line when invoking the program.

4.1 User Interface

The main window consists of a drawing canvas to displayed the polygons, a

console tree listing the polygons on the canvas, and buttons to open auxiliary windows.

The layout is shown in Figure 4.1 with an example shown in Figure 4.2.

Menu Bar

Message Bar

Controls

Polygon
List

Canvas(x,y)

Figure 4.1: Main Window layout.

Only one polygon is “active” at any time. The active polygon is selected by

clicking on its name in the console tree. The active polygon is drawn on the canvas

in black, all other polygons are drawn in red.

30

Figure 4.2: Example Main Window with two polygons.

31

Four auxiliary windows can be displayed for each polygon.

The Metrics Window, in addition to the polygon name, displays the number

of vertices, area, and total perimeter length of the polygon. An example is given in

Figure 4.3(a).

The user interface includes the ability to edit a polygon. These features are

controlled in the Edit Window, shown in Figure 4.3(b). The Edit Window features

a list of the vertices on the perimeter of the polygon and a set of buttons to control

the edit mode. These buttons are latched, that is, the mode remains in effect until a

different button is pressed.

With the Draw Polygon button pressed, each click on the canvas adds that

point to the perimeter of the polygon. Vertices are added to the end of the list.

Polygons are dragged across the canvas when the Move Polygon button is

pressed. The mouse can be dragged along any part of the canvas. Only the bounding

box of the polygon is displayed while it is being dragged.

The Split Edge button also adds vertices to the polygon’s perimeter with each

mouse click on the canvas. In this case, each vertex is added after the nearest vertex

to the mouse pointer.

With the Delete Vertex button pressed, a vertex is removed from the perimeter

each time the mouse is clicked on the canvas. The vertex nearest to the mouse pointer

is removed. Note that the mouse click can occur anywhere on the canvas for a point

to be deleted. The nearest vertex need not be “close” to the mouse pointer.

Dragging the mouse along the canvas with the Move Vertex button pressed,

moves the closest vertex to the mouse pointer. The mouse pointer need not be

precisely on the vertex when the mouse button is pressed but the new value of the

vertex is the point where the mouse button was released.

The behavior of the Reset button is a little different from the rest. All vertices

are deleted from the polygon and mouse clicks on the canvas will add new vertices to

32

(a) (b) (c)

Figure 4.3: Auxiliary windows for each polygon.

the polygon. The Draw Polygon button is shown pressed in the edit window.

Testing of Algorithm 3.2 is done in the Features Window show in Figure 4.3(c).

Check boxes are provided to control the display of prime diagonals, feasible diagonals,

and all diagonals. The algorithm is executed using the Find All Features button.

Buttons for Find All diagonals and Reset are also provided.

In addition to the auxiliary windows provided for each polygon, the Parameters

Windows controls some parameters used by the algorithm. Diag Max Fraction limits

the length of any diagonal used to separate a feature from the rest of the polygon.

The diagonal length is expressed as a fraction of the polygon’s perimeter. Peri Max

Fraction sets the largest fraction of the polygon’s perimeter. Diag Max Growth sets

a factor that can not be exceeded when searching “outward” for the next diagonal.

Changing any of these parameters and pressing the Set button causes the

algorithm to use the new values. It also deletes all diagonals, including prime and

feasible diagonals, from all polygons. The clear button deletes any changes and

restores the current values. Get me out of here! will close the window without

33

Figure 4.4: Parameters window.

changing any values.

The window also provides a message that encourages the user to exercise cau-

tion when changing values. An example of the Parameters window is shown in Fig-

ure 4.4.

4.2 Experimental Results

A variety of polygons were constructed to test the performance of the proposed

algorithm. Since the central problem in the investigation is the identification of sharp

features, the polygonal shapes contain long and narrow structures.

The polygon shown in Figure 4.5 resembles the outline of an ant. When the

algorithm limits the perimeter of a sharp feature to 10% of the total perimeter, it

is able to clearly identify the ant’s antennae and front legs. Part of the rear legs,

however, are not identified. The figure shows this clearly and displays both prime

and feasible diagonals.

Figure 4.6 shows the prime diagonals when the algorithm only limits feature

perimeters to 15% of the total perimeter. In this case, the rear legs are defined well

34

Figure 4.5: Ant Polygon with 10% limit.

enough but part of the head was identified as parts of each antenna.

The algorithm can clearly identify the tail when the polygon resembles a turtle,

such as the one shown in Figure 4.7, even when a feature’s perimeter can be as large

as 15% of the total perimeter. Notice the head and legs of the turtle are not sharp

enough to be identified.

The 15% limit also works well with the Kiwi Bird polygon show in Figure 4.8.

One of the kiwi bird’s legs clearly shows that prime diagonals do not partition the

polygon. The foot can be identified by any one of three prime diagonals.

Some polygons are very sensitive to the perimeter limit imposed on the algo-

rithm. The spiky polygon shown in Figure 4.9 looks like it has sharp features when

35

Figure 4.6: Ant Polygon with 15% limit.

Figure 4.7: Turtle Polygon with 15% limit.

36

Figure 4.8: Kiwi Bird Polygon with 15% limit.

a 13% limit was used, but the results were unacceptable when 12% and 14% limits

were attempted.

4.3 Application Programming Interface

The complete API document is supplied with the source code and is available

at http://www.n7xsd.us/scanlan2011sharp/.

Figure 4.9: Spiky polygon with 13% limit.

37

http://www.n7xsd.us/scanlan2011sharp/

CHAPTER 5

CONCLUSION

This thesis presented a survey of polygon boundary simplification algorithms.

Three approaches were examined in detail: boundary vertex retention, boundary

vertex elimination, and boundary replacement. David H. Douglas and Thomas K.

Peucker presented their boundary vertex retention algorithm in 1973 [4]. Their orig-

inal iterative algorithm and a recursive variant were presented here. Other vertex

retention approaches were also touched upon. Arie Pikaz and Its’hak Dinstein’s ap-

proach to boundary vertex elimination [17] was demonstrated. This approach uses a

min-heap and has a time complexity of O(k log n). Hiroshi Imai and Masao Iri’s algo-

rithm replaces a monotone chain with a new chain [11] without selecting vertices from

the original chain. This thesis also touched upon work by Lilian Buzer from her paper

“Optimal simplification of polygonal chains for subpixel-accurate rendering” [3].

The notion of polygonal sharp features was introduced. A working definition

of a sharp feature was given and the characteristics of sharp features examined. A

formula was derived to quantify the sharpness of a polygon and various polygons

compared to find a working threshold value to determine when a polygon can be

considered sharp. An algorithm, utilizing the visibility graph of a polygon, was pro-

posed to recognize sharp features along with the basis of its development. The time

complexity of this algorithm is O(n2). The concepts of candidate diagonal, feasible

diagonal, and prime diagonal were used to find the diagonals that separate sharp

features from the rest of the polygon. It was also noted that prime diagonals do not

partition a polygon.

A program framework used to test the algorithm was demonstrated. This

framework allowed the input of polygons from simple text files as well as by drawing

polygons on a canvas. The canvas supports display of multiple polygons. Polygons

can also be edited after they are entered.

38

The framework was then used to test several polygons. Adjustments were

made to the sharpness threshold and fraction of the polygon perimeter that could be

incorporated into the sharp feature. No change to the sharpness threshold was needed

for the tested polygons. It was found that adjustment to the fraction of perimeter the

sharp feature could use was needed to produce results that were pleasing to the eye.

An interesting idea for the future would be to change the definition of sharp

feature. This thesis’ definition only allows for one diagonal to separate the sharp

feature from the remainder of the polygon. Allowing two or more diagonals to sep-

arate the feature would show narrow structures in a polygon that connect broad

shaped structures. Sharp feature recognition also has the potential for use in polygon

similarity comparison, perhaps as a preprocessing step.

39

BIBLIOGRAPHY

[1] Esther M. Arkin, L. Paul Chew, Daniel P. Huttenlocher, Klara Kedem, and

Joseph S. B. Mitchell. An efficiently computable metric for comparing polygonal

shapes. IEEE Trans. Pattern Anal. Mach. Intell., 13(3):209–216, 1991.

[2] Prosenjit Bose, Sergio Cabello, Otfried Cheong, Joachim Gudmundsson, Marc

van Kreveld, and Bettina Speckmann. Area-preserving approximations of polyg-

onal paths. Journal of Discrete Algorithms, 4(4):554–566, 2006.

[3] Lilian Buzer. Optimal simplification of polygonal chains for subpixel-accurate

rendering. Computational Geometry, 42(1):45–59, 2009.

[4] David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature. The

Canadian Cartographer, 10(2):112–122, December 1973.

[5] A. Garrido, N. P. Blanca, and M. Garcia-Silvente. Boundary simplification

using a multiscale dominant-point detection algorithm. Pattern Recognition,

31(6):791–804, 1998.

[6] T. Gerstner. Multiresolution visualization and compression of global topographic

data. GeoInformatica, 7(1):7–32, 2003.

[7] Laxmi Gewali and Joseph P. Scanlan. Recognizing Sharp Features of 2-D Shapes.

International Journal of Electronics and Telecommunications, 56(2):153–156,

2010.

[8] Eric Guilbert and Hui Lin. B-spline curve smoothing under position constraints

for line generalisation. In GIS ’06: Proceedings of the 14th Annual ACM In-

ternational Symposium on Advances in Geographic Information Systems, pages

3–10. ACM, 2006.

40

[9] Denise Guliato, Juliano D. de Carvalho, Rangaraj M. Rangayyan, and Sérgio A.

Santiago. Feature extraction from a signature based on the turning angle function

for the classification of breast tumors. Journal of Digital Imaging, 21(2):129–144,

2008.

[10] Martin Held and Johannes Eibl. Biarc approximation of polygons within asym-

metric tolerance bands. Computer-Aided Design, 37(4):357–371, 2005.

[11] Hiroshi Imai and Masao Iri. Polygonal approximations of a curve – formulations

and algorithms. In Godfried T. Toussaint, editor, Computational Morphology,

pages 87–95. Elsevier Science Publishers B. V. (North-Holland), Amsterdam,

Netherlands, 1988.

[12] Y. Kurozumi and W. A. Davis. Polygonal approximation by the minimax

method. Computer Vision, Graphics, and Image Processing, 19(3):248–264, July

1982.

[13] D. J. Lee, Sameer Antani, and L. Rodney Long. Similarity measurement using

polygon curve representation and fourier descriptors for shape-based vertebral

image retrieval. In M. Sonka & J. M. Fitzpatrick, editor, Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series, volume 5032 of Presented

at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference,

pages 1283–1291, May 2003.

[14] Adam Lewis, Suzanne Slegers, Dave Lowe, Leath Muller, leanne Fernandes, and

Jon Day. Use of spatial analysis and gis techniques to re-zone the great barrier

reef marine park. Coastal GIS, pages 431–451, 2003.

[15] Joseph O’Rourke. The signature of a plane curve. SIAM Journal on Computing,

15(1):34–51, 1986.

41

[16] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press,

Cambridge, UK, second edition, 1998.

[17] Arie Pikaz and Its’hak Dinstein. An algorithm for polygonal approximation

based on iterative point elimination. Pattern Recognition Letters, 16(6):557–563,

June 1995.

[18] Waldo R. Tobler. Automation and cartography. Geographical Review, 49(4):526–

534, 1959.

[19] Shen Wei. Building boundary extraction based on lidar point clouds data. Pro-

ceedings of the International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, 37:157–161, 2008.

42

VITA

Graduate College
University of Nevada, Las Vegas

Joseph P. Scanlan

Degrees:
Bachelors of Science, 1983
University of Nevada, Las Vegas

Thesis Title: Sharp Feature Identification in a Polygon

Thesis Examination Committee:
Chairperson, Laxmi P. Gewali, Ph. D.
Committee Member, Evangelos A. Yfantis, Ph. D.
Committee Member, Jan B. Pedersen, Ph. D.
Graduate Faculty Representative, Henry Selvaraj, Ph. D.

43

	Sharp feature identification in a polygon
	Repository Citation

	tmp.1319233811.pdf.UMY4i

