
UNLV Theses, Dissertations, Professional Papers, and Capstones

8-1-2014

Approaches for Generating 2D Shapes Approaches for Generating 2D Shapes

Pratik Shankar Hada
University of Nevada, Las Vegas, pratik.hada@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Geometry and Topology Commons, and the Theory and Algorithms Commons

Repository Citation Repository Citation
Hada, Pratik Shankar, "Approaches for Generating 2D Shapes" (2014). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 2182.
https://digitalscholarship.unlv.edu/thesesdissertations/2182

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2182?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2182&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

APPROACHES FOR GENERATING

2D SHAPES

by

Pratik Shankar Hada

Bachelor of Computer Engineering

Tribhuvan University

Institute of Engineering, Pulchowk Campus

2007

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science Degree in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

August 2014

c© Pratik Shankar Hada, 2014

All Rights Reserved

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Pratik Shankar Hada

entitled

Approaches for Generating 2D Shapes

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Laxmi P. Gewali, Ph.D.,, Committee Chair

Ajoy Datta, Ph.D.,, Committee Member

John Minor, Ph.D.,, Committee Member

Rama Venkat, Ph.D.,, Graduate College Representative

Kate Hausbeck Korgan, Ph.D., Interim Dean of the Graduate College

August 2014

ii

Abstract

Constructing a two dimensional shape from given a set of point sites is a well known

problem in computation geometry. We present a critical review of the existing algorithms

for constructing polygonal shapes. We present a new approach called inward denting for

constructing simple polygons. We then extend the proposed approach for modeling polygons

with holes. This is the first known algorithm for modeling holes in the interior of 2d

shapes. We also present experimental investigations of the quality of the solutions generated

by the proposed algorithms. For this we implemented the proposed algorithms in Java

programming language. The prototype program can be executed by users to enter point

sites interactively. The experimental results show that the perimeter of the generated shape

is at most 33% more than the length of the minimum spanning tree.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Laxmi Gewali for guiding

me on each and every aspect of the thesis. I would also like to thank Dr. Ajoy Datta for

helping me with the difficulties and the confusion in official matters. I would also like to

thank Dr. John Minor and Dr. Rama Venkat for being part of the committee.

My sincere gratitude goes to my parents, my brother Sushant Shankar Hada and my

sister Moonmoon Hada as they have always inspired me to work hard and supported me.

At last, I would like to thank all my friends, seniors and juniors for their love and sup-

port.

Pratik Shankar Hada

University of Nevada, Las Vegas

August 2014

iv

Contents

Abstract iii

Acknowledgements iv

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Review of Polygon Generation Algorithms 3

2.1 Preliminaries . 3

2.2 Generating Star-Shaped Polygons . 4

2.3 Heuristics Approaches . 5

2.4 Generating Random Polygons . 7

2.4.1 Generating Random Monotone Polygons 7

2.4.2 Random Generation of Convex Polygons 8

3 Inward Denting and Polygon Generation Algorithms 10

3.1 Inward Denting Algorithm . 10

3.2 Voronoi Based Inward Denting Algorithm 18

3.3 Modeling Holes . 21

3.4 Measuring Solution Quality . 25

v

4 Implementation 27

4.1 GUI Description . 27

4.2 Interface Description . 28

4.3 Execution of Denting Algorithm . 31

4.4 Results and Statistics . 34

5 Conclusion and Discussion 38

Bibliography 40

Vita 41

List of Tables

4.1 File Menu Items Description. 30

4.2 Checkbox Items Description. 30

4.3 Button Description. 30

4.4 Comparing Polygon and MST with 10 Nodes. 34

4.5 Comparing Polygon and MST with 20 Nodes. 34

4.6 Comparing Polygon and MST with 30 Nodes. 35

4.7 Comparing Polygon and MST with 40 Nodes. 35

4.8 Comparing Polygon and MST with 50 Nodes. 35

4.9 Comparing Polygon and MST with 100 Nodes. 35

4.10 Comparing Polygon and MST with 200 Nodes. 36

4.11 Comparing Polygon and MST with 300 Nodes. 36

4.12 Comparing Polygon and MST with 400 Nodes. 36

4.13 Comparing Polygon and MST with 500 Nodes. 36

vii

List of Figures

2.1 Illustrating Polygonization by Sorting. 3

2.2 Illustrating Partitioning into Cells. 5

2.3 Illustrating Permute and Reject. 6

2.4 Illustrating 2-opt Moves. 7

2.5 Illustrating Monotone Polygon with respect to X axis. 8

2.6 Illustrating Random Generation of Convex Polygon. 9

3.1 Illustrating Denting. 11

3.2 Illustrating Invalid Edge. 13

3.3 Overlay of Voronoi Diagram and Partially Constructed Polygon. 20

3.4 Showing Empty Spots in a Node Distribution. 22

3.5 Voronoi Diagram of the Empty Spots. 23

3.6 Construction of Hole using Largest Empty Circle. 25

3.7 Comparing Polygon boundary with the Minimum Spanning Tree. 26

4.1 Layout of Main User Interface. 28

4.2 Graphical User Interface. 29

4.3 Normal Output of Inward Denting Algorithm. 31

4.4 Output from Tracing Version of Inward Denting Algorithm. 32

4.5 Class Interface Diagram of the Implementation. 32

4.6 Generated Polygons for Various Number of Nodes. 33

4.7 Plot of the Length of the Polygon Tree compared to the MST. 37

viii

Chapter 1

Introduction

Connecting dots to make a shape is a fascinating problem well known from the dawn of

civilization to the present time. Star clusters in the night sky were intuitively connected to

give shapes such as ursa major and ursa minor by ancient astronomers [4]. After the advent

of computational geometry in early 1970, a formal way of connecting dots to make shapes

was pursued [6]. One of the main motivations for investigating this problem is its wide range

of applications in image processing, edge detection and object recognition [3]. Constructing

shapes by connecting dots has also been applied in optical character recognition and face

recognition [3].

In computational geometry, one of the widely used models of shape is a simple polygon

[5]. A simple polygon is a closed chain consisting of line segments such that the plane is

partitioned by the polygon into three connected parts: bounded interior, unbounded exte-

rior, and the polygon itself. For experimental investigation of the properties of polygonal

shapes, it is very important to construct random polygons for a given set of point sites.

However, the problem of constructing random polygons from a given point sites (vertices)

is still open [1]. For restricted classes of polygons, a few algorithms for randomly generating

such shapes have been reported [1,8]. For example, polynomial time algorithms for random

generation of monotone polygons are described in [8]. For generating simple polygons from

a given set of point sites only heuristics have been considered [1]. In a heuristic approach,

the boundary is constructed by following certain rules. If the resulting shape is a simple

polygon then it is accepted as a solution. If the boundary edges are intersecting in their

1

interior then such edges are replaced by non-intersecting ones. This approach can generate

polygonal shapes for practical purpose but can not be used for random generation.

In this thesis, we present a new approach for generating a simple polygon for given set

of point sites (i.e. vertices). The technique, which we call inward denting, starts from

the convex-hull boundary as a partial solution Si and connects interior nodes iteratively

by deforming a selected edge from Si. We also consider the performance of the proposed

algorithm by actual implementation.

The thesis is organized as follows. In Chapter Two, we present a brief review of existing

algorithms for generating polygonal shapes. In Chapter Three, we present a detailed devel-

opment and description of the proposed inward denting algorithm. We show how Voronoi

diagrams can be used to make the algorithm more efficient. In addition, we show that

Voronoi diagrams can be further used to model holes inside the polygon. In Chapter Four,

we present an implementation of the inward denting algorithm in the java programming

language. To measure the performance of the generated solution, we compare the length of

the perimeter of the generated shape with the length of the minimum spanning tree induced

by the input vertices of the polygon. Finally, in Chapter Five, we discuss the implication

of the experimental results and possible improvements and generalizations of the proposed

inward denting approach.

2

Chapter 2

Review of Polygon Generation

Algorithms

2.1 Preliminaries

In this chapter we present a critical review of algorithms reported in the literature, for

connecting a given set of points (nodes) to make a simple polygon. One of the simple ways

to connect a set of nodes S in two dimensions (2D) is to first obtain an angularly sorted list

L of nodes about some point in the interior of the convex hull. The points are connected

in the order they appear in L. This is illustrated in Figure 2.1.

p1

p8

p4

p5p3

p2

p12

p9

p10

p6

p11

p7

(a) Given Set of Nodes S.

p1

p8

p4

p5p3

p2

p12

p9

p10

p6

p11

p7

(b) Generated Polygon.

Figure 2.1: Illustrating Polygonization by Sorting.

In Figure 2.1a, twelve point sites are drawn as small dots. The set S of these points are

3

denoted as S = {p1, p2,...,p12}. We pick a point say p1 in the interior of convex hull CH of

S. The points are angularly sorted about p1. The sorted list is L={p3, p2,p12,...,p5}. When

consecutive point sites in L are joined by edges we get a simple polygon as shown in Figure

2.1b. We call this method angular-sorting method. The shape of the resulting polygon

clearly depends on the choice of the point about which the sorting is performed. The

sorting method is intuitive and easy to implement. The time complexity of the algorithm

is clearly O(nlogn), where n is the number of vertices in the polygon.

2.2 Generating Star-Shaped Polygons

Some researchers have considered the problem of generating polygons satisfying certain

properties. Auer and Held [1] have proposed an algorithm for constructing a star-shaped

polygon from a given set of point vertices V = v0, v1,, vn−1 in the plane. This algorithm’s

time complexity is O(n2). It is noted that a polygon is called star-shaped if there is an

internal point from which all other points inside the polygon are visible. The algorithm

starts with the convex hull CH of the given set V and partitions the CH region into several

cells. The cells are produced by considering partitioning line segments formed by extending

pairs of vertices. The end points of partitioning segments are on the boundary of the

convex hull CH. The arrangement of partitioning segments produce cells. There could be

potentially O(n4) cells. Figure 2.2b shows the partitioning cells for the point distribution

shown in Figure 2.2a.

4

V 1V

2V

3V

4V

5V

0

(a) Input Points.

V 1V

2V

3V

4V

5V

0

(b) Partitioning into Cells.

V 1V

2V

3V

4V

5V

1k

0

(c) Induced Star-Shaped Polygon.

V 1V

2V

3V

4V

5V

1k

1k

1k

1k
1k

1k1k

1k

1k

1k
1k

1k

1k

0

(d) Equivalent Cells.

Figure 2.2: Illustrating Partitioning into Cells.

The star polygon induced by a point q inside a given cell is obtained by connecting input

vertices angularly sorted about q. Figure 2.2c shows a star-shaped polygon corresponding

to cell k1. It is easily observed that star-polygons induced by all points inside a particular

cell are identical. It is also noted that in some cases more than one cell could have identical

star-shaped polygons. All cells equivalent to k1 are labeled as k1 in Figure 2.2d.

2.3 Heuristics Approaches

A technique of generating a polygon from given nodes is to try a permutation of the input

point set. This approach was suggested by Auer and Held [1] in which a permutation of n

given vertices is picked randomly and the vertices are connected implied by the picked per-

mutation order. If the implied permutation results in a simple polygon then it is accepted.

Otherwise, the permutation is rejected. We can illustrate with an example as follows.

5

4

v3
v2

v6

v0 v1

v5

v

(a) Given Set of Nodes S.

4

v3
v2

v6

v0 v1

v5

v

(b) Generated Polygon.

Figure 2.3: Illustrating Permute and Reject.

Suppose we have seven input points as shown in Figure 2.3a. If we pick a permutation

v0, v5, v1, v4, v6, v3, v2, then the implied polygon is as shown in Figure 2.3b. Clearly this

permutation has to be rejected. If we pick permutation v0, v5, v1, v6, v2, v3, v4 then no two

edges intersect and the permutation is taken as accepted. This method uses an exhaustive

search and check approach and is not feasible even for number of nodes around 20. The

time complexity of the algorithm is exponential in the number of nodes and is not at all

useful for practical implementation.

A method for generating polygons that attempts to correct intersecting edges was pro-

posed by Auer and Held [1]. In this method, a permutation of n given vertices is picked

randomly and the vertices are connected implied by the picked permutation order resulting

in a polygon P . Any self intersections of P are removed by applying the so-called ’2-opt

moves’. The 2-opt move replaces a pair of intersecting edges (vi, vi+1) and (vj , vj+1) with

the edges (vj+1, vi+1) and (vj , vi). The pair of intersecting edges for correction are picked

at random.

We can illustrate this method by a specific example shown in Figure 2.4. The boundary

implied by connecting permutation v0, v1, v2, v3, v4, v5, v6 results in the intersection of one-

pair of edges with edges (v3, v4) and (v6, v5). The correction is applied to replace these two

intersecting edges with edges (v3, v5) and (v6, v4) which is shown in Figure 2.4b. The paper

[1] does not explain the steps to be taken if the 2-opt move results in further intersections.

This method also takes exponential time to check all cases and is not feasible for practical

6

6

v4
v5

v1

v2 v3

v0

v

(a) Polygon P from Random Permuta-
tion.

6

v4
v5

v1

v2 v3

v0

v

(b) Polygon contained after 2-opt
Moves.

Figure 2.4: Illustrating 2-opt Moves.

implementation.

2.4 Generating Random Polygons

In order to perform experimental investigation of algorithms on polygonal shapes it is

necessary to use randomly generated polygons. In this context it is first necessary to clarify

the very notion of random polygon. As reported in [8] a polygon P is generated randomly

for a given set S of n points in the plane if the probability of generating P is 1/k, where k is

the number of simple polygons that can be generated from S. The problem here is that no

method is known yet to determine the value of k, hence the problem of generating a random

polygon from given vertices is still an open problem. For restricted classes of polygons, a

few algorithms have been reported.

2.4.1 Generating Random Monotone Polygons

The problem of generating random monotone polygons was first reported in [1]. It is noted

that a simple polygon P is called monotone [5] with respect to a given direction d if the

boundary of P can be partitioned into two chains such that both chains are monotone with

respect to d. Figure 2.5 shows a monotone polygon which is monotone with respect to the

x-axis.

In the figure the vertices are labeled in the increasing order of x-coordinates from left

7

8

v3

v2

v4

v10

v14

v16

v20

v17

v15

v13

v11

v7

v5

v0

v6

v9

v19

v12

v18

v1

v

Figure 2.5: Illustrating Monotone Polygon with respect to X axis.

to right. The algorithm presented in [8] establishes that the number of permutations of

vertices that admit monotone polygons can be counted. The counting is done by using a

recursive formulation as follows.

Let Si denote the ordered list of vertices from leftmost vertex v0 to vertex vi, i.e. Si

= < v0, v1, ..., vi >. As a direct consequence of monotonicity of the polygon along the

x-axis, any prefix of Si is also a monotone polygon. The segment (vi−1, vi) could be either

in the upper-chain or on the lower chain. The number of monotone polygons for Si can

be counted in terms of the number of monotone polygons for Si−1 and the ones formed by

adding the ast segment (vi−1, vi) . Let T (i) be the number of monotone polygons on Si

that have segment (vi−1, vi) in the upper chain. Furthermore, let B(i) be the number of

monotone polygons on Si with (vi−1, vi) in the lower chain. It is established in [8] that the

total number of monotone polygon on Si is related to Bi and Ti. To complete Bi and Ti

efficiently, one can use the visibility graph [8] of the monotone polygons. It is necessary to

pre-compute Bi and Ti. Zhu et al [8] have shown that given pre-computed values of Bi and

Ti, 1 < i < n, random generation of polygons can be performed in O(n) time.

2.4.2 Random Generation of Convex Polygons

Given a set of points in 2D, there is only one way to generate a convex polygon from them,

and it is their convex hull. So, researchers have suggested a variation of this problem [8] in

8

which it is required to randomly generate a convex polygon using subsets of a given point

set. If there are n given points and we need to generate a convex polygon of size k ≤ n

then several such convex polygons can be generated. This is shown in Figure 2.6.

2

v0

v7

v8 v9

v10

v11

v12

v13

v14v1

v3

v5

v15

v14

v6

v

(a) Convex Hull from Point Sets.

7

v8 v9

v10

v11

v12

v15

v14

v6

v5

v2
v3

v13

v14
v0

v

(b) Convex Polygons from Subset of Point Sets.

Figure 2.6: Illustrating Random Generation of Convex Polygon.

Figure 2.6b shows only three convex polygons out of many possible ones. Here again the

critical issue is counting the number of convex polygons.

9

Chapter 3

Inward Denting and Polygon

Generation Algorithms

In this chapter we present a new approach for developing algorithms for extracting polygonal

shapes for a given set of n point S=v0, v1, ..., vn−1. Our approach called ’inward denting’

constructs the shape iteratively starting from the convex hull boundary of the polygon.

We then present algorithms for constructing holes inside the extracted polygon. We next

propose a method for measuring the quality of the generated solution by using the induced

minimum spanning tree.

3.1 Inward Denting Algorithm

We first clarify the objectives for generating polygonal shapes. The first objective is that

the nodes that are very close to each other should also appear within a small ’hop distance’

along the constructed polygonal boundary. Here the hop-distance between two nodes u

and w in the constructed polygonal boundary is the number of edge links between u and

w in the polygonal path. The hop-distance between two nodes u and w on the polygonal

boundary can be measured clockwise or counterclockwise. When we simply use the term

’hop-distance’ it is taken as the smaller of the clockwise and counterclockwise hop distance.

The inward denting starts from the convex hull boundary. The algorithm examines each

edge in this approximate boundary and determines the splitable edge which is defined as

10

follows.

Definition 3.1 : If there are unconnected nodes inside the approximate boundary then

each edge has a closest node. The distance of an edge to its closest node is called the

breaking distance.

Definition 3.2 : The boundary edge with the smallest breaking distance is called the

splitable edge . In Figure 3.1a, edge (v1, v3) is the splitable edge.

Once the splitable edge is identified, it is refined by splitng it into two edges by connecting

its endpoints to its closest node as shown in Figure 3.1b, where edge (v1, v3) is replaced by

two edges (v1, v8) and (v8, v3). The process of identification of the splitable edge and edge

refinement is repeated until there is no unconnected node in the interior of the constructed

boundary.

5

v7

v2

v0
v1

v8

v6

v4

v3

v

(a) Convex Hull from the Input Points.

5

v7

v2

v0
v1

v8

v6

v4

v3

v

(b) Choosing closest Point v8.

5

v7

v2

v0
v1

v8

v6

v4

v3

v

(c) Choosing closest Point v2.

5

v7

v2

v0
v1

v8

v6

v4

v3

v

(d) Choosing closest Point v7.

Figure 3.1: Illustrating Denting.

If we perform the inward denting operation repeatedly then we should be able to connect

11

all nodes in a polygonal chain. However there is a catch in this simple iteration. When the

intermediately constructed polygon is complex, then the denting operation can lead to self

intersecting polygonal edges as shown in Figure 3.2. The denting of an edge e that results

in a self intersecting polygon is called an invalid edge. In Figure 3.2, edge (v1, v3) is an

invalid edge. Such edges should be discarded and marked invalid and the next splitable

edge is searched.

12

11

v4
v12

v1

v2
v3

v5v7

v0

v13

v8

v6

v14

v10 v9

v

(a) Convex Hull from the Input Points.

11

v4
v12

v1

v2
v3

v5v7

v0

v9

v13

v8

v6

v14

v10

v

(b) First Denting.

11

v4
v12

v1

v2
v3

v5v7

v0

v9

v13

v8

v6

v14

v10

v

(c) Second Denting.

11

v4
v12

v1

v2
v3

v5v7

v0

v9

v13

v8

v6

v14

v10

v

(d) Third Denting.

edge e

11

v4
v12

v1

v5v7

v0

v9

v13

v8

v6

v14

v10

v2

v3

v

(e) Invalid Edge e.

Figure 3.2: Illustrating Invalid Edge.

In order to develop a formal sketch of the algorithm in a convenient and clear way, we

store the boundary of polygon P in a data structure consisting of a list of nodes and a

list of edges. The ith node and jth edge of polygon are referred as p[i].node and p[j].edge,

respectively. In addition, the data structure for storing polygon P has necessary methods

such as intersection of nodes, etc. The set of internal nodes Q is stored in a simple list data

structure. Furthermore, each edge of the polygon boundary has methods to access start

13

node and end node with obvious meaning. We distinguish each edge of the polygon either

as ’valid’ or ’invalid’. An edge e of polygon P is valid if there is an internal node nd1 in Q

such that possible replacement edges (e.startNode(), nd1) and (e.endNode(), nd1) do not

intersect with edges of P . A function to determine whether a given edge e of P containing

the set of internal nodes Q is valid is listed as follows.

Function 3.1

bool isV alid (Edge e, Polygon P , Node [] Q) {

bool valid = false;

i = 0;

Edge e1, e2;

while (not valid) {

e1 = (e.start,Q[i]);

e2 = (Q[i], e.end);

if(notIntersecting(e1, P) and nonIntersecting(e2, P))

valid = true;

i + +;

}

return valid;

}

This function checks for intersection of replacement edges with edges of polygon P by

considering all nodes of Q as candidates for nd1. The function getNearestNode(..) returns

the node of Q that is closest to edge e1 of polygon P such that its replacement edges do

not intersect the boundary of P . This function is listed as Function 3.2 .

Function 3.2

Node getNearestNode (Edge e1, Polygon P , Node [] Q){

double d1, d2;

Node nearestNode = null;

14

d1 = largeNum;

for (int i=0; i< Q.size; i++) {

if(e1.valid){

d2 = dist(e1, Q[i]);

if(d2 < d1){

d1 = d2;

nearestNode = Q[i]

}

}

}

return nearestNode;

}

Function 3.3

void markV alidEdges(P,Q){

for (int i=0; i< P .size; i++) {

if(isValid(P [i].edge,P,Q)){

p[i].edge.valid=true;

}

}

15

The function getBreakingEdge(...) returns the best edges via an internal node. The

function essentially examines each valid edge of polygon P to determine the best one to

break. The valid edge with smallest total length after replacement is considered as the best

edge. This function is listed as Function 3.4 .

Function 3.4

Node getBreakingEdge(P,Q) {

double d1 = largeNum;

Edge eBreaking = null;

for (int i=0; i < P .size; i++) {

e1 = P [i].edge;

if isValid(e1.valid){

d2=getNearestNode(e1, P,Q)

if(d1 < d2){

d1 = d2;

eBreaking = e1;

}

}

}

return eBreaking;

}

Now we are equipped with the necessary functions to present a formal description of

the inward denting algorithm which is listed as Algorithm 3.1. The algorithm takes a

given set S of points in 2D as input and outputs the polygonal boundary constructed from

them. It increases the number of boundary edges by one by replacing the selected boundary

edge with a replacement edge pair. It repeats this replacement process until there are no

internal nodes left. The functions to implement most of the steps in the algorithm are listed

as Function 3.1-3.4. Step 4 to compute the nearest node of a valid edge can be implemented

in a straightforward manner by checking the distance to internal node set Q from edge e.

16

This takes O(n) time.

17

Algorithm 3.1 Inward Denting Algorithm

Input: A set of point nodes S = v0, v1, ..., vn−1 in 2D.

Output: A polygonal shape with nodes is S.

Step 1: a. Let P be the convex hull boundary of points in S.

b. Q = S − P ;

Step 2: while (Q is not empty) {

Step 3: e = getBreakingEdge(P,Q);

Step 4: w = getNearestNode(Q, e);

Step 5: a. insertNode(P, e, w);

b. removeNode(Q,w);

Step 6: markV alidEdges(P,Q);

}

Step 7: Output P .

The time complexity of Inward Denting Algorithm (Algorithm 3.1) can be analyzed as

follows. Convex hulls can be computed in O(nlogn) time [5]. Hence Step 1 takes O(nlogn)

time. Step 4 and Step 5 each take O(n) time. Step 3 is one of the most expensive steps

in the while loop which takes O(n2) time. Step 6 takes O(n2) time. One execution of the

while loop eliminates one internal node and hence the while loop iterates in O(n) time. The

total time for the whole algorithm adds up to O(n3).

3.2 Voronoi Based Inward Denting Algorithm

The time complexity of Algorithm 3.1 is O(n3) which is rather high. If we closely examine

the functions invoked by Algorithm 3.1 we find that we could reduce its time complexity

if we could find a faster way of computing the nearest neighbor of a node. It is remarked

that the time complexity of function getNearestNode(Q, e) is O(n). The nearest neighbor

of each node of the partially constructed polygon is repeatedly computed to determine

the edge to split into two edges. This overhead for obtaining nearest neighbors can be

18

reduced by pre-computing the nearest neighbor of each edge and storing them for future

use. A straight-forward approach for pre-computing all nearest neighbors is to determine

nearest neighbors for each node separately, which leads to O(n2) time. The Voronoi diagram

induced by input points can be used to determine the nearest neighbors of all nodes in S.

This is illustrated in Figure 3.3, where the overlay of Voronoi Diagram and the partial

polygon connecting input nodes is shown. The nearest node of a polygonal node could be

one of the polygonal or internal nodes. In order to find candidate internal nodes we should

avoid polygonal nodes. To illustrate this we can inspect Figure 3.3, where the nearest node

for edge (v2, v9) is v7 which is a polygonal node. In such situations we need to examine all

neighbors of the end points of a candidate edge in the Voronoi Diagram. What happens if

all Voronoi neighbor of a candidate polygonal node are polygonal nodes? In such situations

we can examine all k − hop neighbors (say k = 3) of the candidate polygonal edge to

the determine nearest internal node. A function based on this technique, which we call

getNearestNodeViaVD(...), is listed as Function 3.5. The function takes candidate edge e1,

partially constructed polygon P , list of internal nodes Q, and Voronoi diagram VD of input

points as arguments and returns the nearest internal node. This function is essentially an

improved version of Function 3.2.

Function 3.5

Node getNearestNodeViaVD(Edge e1, Polygon P , Node [] Q, Voro VD){

double d1, d2;

Node nearestNode = null;

Let R be the k − hop neighbors of e1 in VD

nearestNode = nearestV alid(e1, R, P,VD)

return nearestNode;

}

Similarly, functions getBreakingEdgeViaVD(...) and getNearestNodeViaVD(...) can be

obtained as improved versions of getBreakingEdge(...) and getNearestNode(...). When a

node is inserted into the partially constructed polygon P , the two new edges could be valid

or invalid. This can be checked in O(n) time by using the Voronoi diagram. An improved

19

5
v

1

v
3

v
4

v
7

v
9

v
10

v
6

v
8

v
2

v

Figure 3.3: Overlay of Voronoi Diagram and Partially Constructed Polygon.

version of Algorithm 3.1 is sketched as Algorithm 3.2. The time complexity of this algorithm

can be analyzed as follows. Step 1 and Step 2 can be implemented in O(nlogn) time [5] .

Since only k − hop neighbors of a node are examined by using the pre-computed Voronoi

diagram, Step 4 and Step 5 can be done in O(n) time and O(1) time respectively. Step

6 takes O(1) time. Since each partially constructed edge needs to be checked for possible

intersection, each execution of Step 7 takes O(n2) time. Hence the total time of Algorithm

3.2 is O(n2).

Algorithm 3.2 Improved Inward Denting Algorithm

Input: A set of point nodes S = v0, v1, ..., vn−1 in 2D.

Output: A polygonal shape with nodes is S.

Step 1: a. Let P be the convex hull boundary of points in S.

b. Q = S − P ;

Step 2: Let VD be the Voronoi Diagram of points in S.

Step 3: while (Q is not empty) {

20

Step 4: e = getBreakingEdgeV iaVD(P,Q,VD);

Step 5: w = getNearestNodeV iaVD(e, P,Q,VD);

Step 6: a. insertNode(P, e, w);

b. removeNode(Q,w);

Step 7: markAdjacentV alidEdges(P,Q);

}

Step 8: Output P .

3.3 Modeling Holes

Most of the algorithms for constructing polygons, reported in computational geometry

literature, do not consider polygons with holes. In this subsection we present an approach

that can be used to construct holes inside a polygonal boundary. Intuitively, holes are the

regions which have no node in their interior. Nodes around empty regions can be connected

(some how) to model a hole. This is illustrated in Figure 3.4.

21

Figure 3.4: Showing Empty Spots in a Node Distribution.

In the figure, there are two spots indicated by dashed circles, which are distinctively

empty regions. This gives us a hint that nodes in the vicinity of the empty spots can be

connected in some effective way to model holes.

Consider the empty largest circle that is contained completely inside the convex hull of

input nodes. The left empty circle is such a circle for node distribution in Figure 3.4. To

construct the largest empty circle inside the convex hull we can use the Voronoi diagram of

input points.

Figure 3.5 shows the Voronoi diagram of input points of Figure 3.4. From the properties

of Voronoi diagram it is known [5] that the vertex of a Voronoi diagram is the center of

an empty circle defined by three nodes. In Figure 3.5, the Voronoi node corresponding to

the largest empty circle is shown as an unfilled dot. So, the approach is to identify the

center of the largest empty circle corresponding to each Voronoi vertex and select the one

that has the largest area. Only those Voronoi vertices are examined whose corresponding

empty circles lie completely inside the convex hull. Once the largest empty circle CL is

22

Figure 3.5: Voronoi Diagram of the Empty Spots.

identified, we can start constructing holes by connecting three nodes corresponding to CL.

The empty triangle TL corresponding to CL can now be dented outward to construct a

hole. A procedure similar to the inward denting algorithm described in subsection 3.1 can

be used to achieve outward denting. Some threshold factor can be predetermined to stop the

outward denting process. Figure 3.7 shows the progress of the outward denting procedure

and the construction of the final hole.

A formal sketch of the hole construction algorithm can be listed as follows.

Algorithm 3.3 Hole Construction Algorithm

Input: A set of point nodes S = v0, v1, ..., vn−1 in 2D.

Output: A polygonal H modeling hole.

Step 1: Compute the Voronoi diagram VD of S.

23

Step 2: Compute the convex hull CH of S.

Step 3: For each vertex wi in VD do

Ci = Empty Circle for wi.

Step 4: Find the largest empty circle CL among Ci’s that lies inside CH.

Step 5: Let CT be the triangle corresponding to CL.

Step 6: Perform k(k = 3,say) outward denting on CT to construct H.

Step 7: Output H as hole.

24

(a) (b)

(c) (d)

Figure 3.6: Construction of Hole using Largest Empty Circle.

3.4 Measuring Solution Quality

It is very tempting to measure the quality of the solution obtained by inward denting

algorithm. For this purpose we need to first set the objective criteria. We set the length

of the boundary of the generated polygon as the quality to minimize. It is obvious that

25

the boundary of the polygon can be taken as the route that visits all the nodes, one node

exactly one time. So, we could compare the boundary length of the generated polygon with

the length of the Euclidean minimum spanning tree. Let us illustrate with an example in

Figure 3.7 where the left part shows the boundary of the generated polygon and the right

part shows the Euclidean minimum spanning tree.

(a) (b)

Figure 3.7: Comparing Polygon boundary with the Minimum Spanning Tree.

Let T denote the length of the minimum spanning tree induced by input point sites.

Let L1 denote the length of the boundary of the generated polygon. If we remove one edge

from the boundary of the generated polygon then we get a new spanning tree. Let L2 be

the length of the chain obtained by removing the largest edge from the boundary of the

polygon. It is straightforward to observe that L2 ≥ T . Hence we can get an estimate of the

quality of the generated solution by comparing the values of T, L1 and L2.

26

Chapter 4

Implementation

In this chapter we present an implementation of algorithms proposed in Chapter Three. The

implementations include (i) inward-denting algorithm for generating 2-d shapes, (ii) assess-

ment of the generated shape, and (iii) methods for modeling holes. All implementations

are done in Java programming language. The top layer of the program is a user friendly

graphical interface. Users can interact with the program intuitively by mouse clicks and

drop-down menus. The prototype programs are implemented both in desktop environment

and for Android tablet devices.

4.1 GUI Description

The main graphical user interface is formed by importing the JFrame object from javax.swing.

The main frame is partitioned into four panels: top, left, middle, and right as shown in

the layout of Figure 4.1. The top panel contains drop down menus for file and other func-

tionalities. The central panel is used to display the graphics of input data and generated

output. The left panel contains various check boxes so that users can specify the state of

the program and other related properties. The right panel contains various buttons and

text boxes.

27

PANEL

LEFT
RIGHT

PANEL

MAIN PANEL

MENU BAR

Figure 4.1: Layout of Main User Interface.

4.2 Interface Description

Figure 4.2 shows a snap-shot of the actual top level user interface of the program. The file

menu on the top panel allows users to (i) read object data from an existing file, (ii) save

the object data to a file system, (iii) save the object data in xfig format, and (iv) exit the

application. A brief description of the functionalities of the file menu items is listed in Table

4.1 . Users can plot nodes by enabling the Draw node checkbox. The nodes can be edited

and a 2D shape can be drawn with it. To actually draw a node in the main panel, the user

can use the mouse. The mouse position cursor arrow is displayed on the draw canvas and

suggests where the user can draw a node. The coordinates of the position of the mouse

cursor are displayed in the upper left corner of the draw canvas. When the user clicks the

left button of the mouse a small black-filled circular dot is drawn there. The corresponding

co-ordinates in ASCII characters are displayed on the textbox which is contained on the

28

right panel. Figure 4.2 is a snap-shot of the actual interface which shows 10 vertices entered

by a user via mouse clicks. If the user wants to change the position of one or more nodes,

this can be done by checking the Edit vertex box in the left panel. When Edit Vertex box is

checked and the left button of the mouse is pressed and dragged, the vertex nearest to the

cursor changes its position following the position of the mouse cursor. A brief description of

the functionalities of the check box items in the left panel are listed in Table 4.2. Similarly,

the functionalities of the buttons contained in the right panel are listed in Table 4.3.

Figure 4.2: Graphical User Interface.

29

Table 4.1: File Menu Items Description.

S.N. File Menu Items Functionalities

1 Read File Brings up a dialogue box to allow the user to select a pre-saved
file.

2 Save File Brings up a dialogue box up to allow the user to save the dia-
gram.

3 Save Xfig File Brings up a dialogue box to allow the user to save the diagram
in fig format.

4 Exit Exits the application

Table 4.2: Checkbox Items Description.

S.N. Menu Item Functionalities

1 Draw Vertex Allows users to draw vertices on the mainPanel.

2 Edit Vertex Allows users to edit drawn vertices.

3 Minimum Spanning Tree Displays the Minimum Spanning Tree of the points.

4 Voronoi Diagram Displays the Voronoi Diagram of the points.

5 Inward Denting Display the Polygon including all the points by using
Inward Denting Approach.

6 Circum Circles Draws circumcircles around the triangles in the mesh.

Table 4.3: Button Description.

S.N. Menu Item Functionalities

1 Clear Canvas Clears the main panel

2 Random Draws random set of points on the main panel

30

4.3 Execution of Denting Algorithm

After the nodes are displayed in the draw canvas, the user can execute the inward denting

algorithm. It is noted that the nodes on the canvas can be entered either by mouse click

or read from a previously saved node coordinate file. When the inward denting checkbox

is checked and the mouse movement is detected on the draw canvas, the inward denting

algorithm is invoked and the resulting polygonal shape is displayed by connecting the nodes.

Figure 4.3 shows a snap-shot of the polygonal shape generated by the inward denting algo-

rithm. When the denting algorithm proceeds by connecting nodes, some intersecting edges

can be formed in some rare cases. The algorithm can be executed in two versions. In the

normal version, the final polygon is displayed as in Figure 4.3. In the tracing version, the

intersecting edges are displayed for verification as shown in Figure 4.4. Of course the cor-

rection is made to the intersecting edges by following the replacement method described in

Chapter Three. Figure 4.5 shows the Class Interface Diagram of the implemented program.

Figure 4.3: Normal Output of Inward Denting Algorithm.

31

Figure 4.4: Output from Tracing Version of Inward Denting Algorithm.

Figure 4.5: Class Interface Diagram of the Implementation.

32

We generated nodes randomly. For this purpose two integers in the range 0-1000 were

randomly generated that represent the x- and y- coordinates of a random node. For random

generation, Java function Math.Random() available in the Java language library was used.

The snap-shots of the polygonal shapes generated for the number of nodes n = 20, 50, 100,

200, 500, 1000 are shown in Figure 4.6.

(a) n=20 (b) n=50

(c) n=100 (d) n=200

(e) n=500

Figure 4.6: Generated Polygons for Various Number of Nodes.

33

4.4 Results and Statistics

We generated various polygons to test the performance of inward denting algorithm. We

used the method described in Section 3.4, Chapter Three for measuring the performance.

The length of the boundary of the polygon (L1), the length of the polygon tree (L2), and the

length of the minimum spanning tree (T) were measured corresponding to each randomly

generated point sites. Five set of point sites with number of points n = 10, 20, 30, 40, 50,

100, 200, 300, 400, and 500 were considered. The values of R1 = (L1/T) * 100, and R2 =

(L2/T) * 100 for these points are listed in Table 4.4. A plot of R1, for various values of n

is shown in Figure 4.7.

Table 4.4: Comparing Polygon and MST with 10 Nodes.

No of nodes
Length of

Polygon Boundary
(L1)

Length of
Polygon Tree

(L2)

Length of
MST (T)

R1=
(L1/T) ∗ 100

R2=
(L2/T) ∗ 100

10

1981 1706 1417
1246 1011 986
2114 1917 1805
1762 1379 1333
1877 1317 1251
1796 1466 1358.4 132.21 107.92

Table 4.5: Comparing Polygon and MST with 20 Nodes.

No of nodes
Length of

Polygon Boundary
(L1)

Length of
Polygon Tree

(L2)

Length of
MST (T)

R1=
(L1/T) ∗ 100

R2=
(L2/T) ∗ 100

20

2661 2444 2144
2606 2379 2130
3124 2774 2304
2753 2245 2004
2786 2460.5 2145.5 129.85 114.68

34

Table 4.6: Comparing Polygon and MST with 30 Nodes.

No of nodes
Length of

Polygon Boundary
(L1)

Length of
Polygon Tree

(L2)

Length of
MST (T)

R1=
(L1/T) ∗ 100

R2=
(L2/T) ∗ 100

30

4296 3963 3205
3318 2978 2409
3581 3294 2813
3924 3681 2822
3191 2892 2572
3662 3361.6 2764.2 132.47 121.61

Table 4.7: Comparing Polygon and MST with 40 Nodes.

No of nodes
Length of

Polygon Boundary
(L1)

Length of
Polygon Tree

(L2)

Length of
MST (T)

R1=
(L1/T) ∗ 100

R2=
(L2/T) ∗ 100

40

5034 4740 3988
4298 3958 3160
4279 4057 3497
4516 4285 3425
3671 3453 2845
4359.6 4098.6 3383 128.86 121.15

Table 4.8: Comparing Polygon and MST with 50 Nodes.

No of nodes
Length of

Polygon Boundary
(L1)

Length of
Polygon Tree

(L2)

Length of
MST (T)

R1=
(L1/T) ∗ 100

R2=
(L2/T) ∗ 100

50

5468 5174 4314
4935 4687 3731
4928 4650 3849
4760 4519 3711
3861 3691 3098
4790.4 4544.2 3740.6 128.06 121.48

Table 4.9: Comparing Polygon and MST with 100 Nodes.

No of nodes
Length of

Polygon Boundary
(L1)

Length of
Polygon Tree

(L2)

Length of
MST (T)

R1=
(L1/T) ∗ 100

R2=
(L2/T) ∗ 100

100

5849 5712 4652
6116 6400 4994
6805 6602 5131
6798 6607 5251
6194 6057 5086
6352.4 6275.6 5022.8 126.47 124.94

Table 4.10: Comparing Polygon and MST with 200 Nodes.

No of nodes
Length of

Polygon Boundary
(L1)

Length of
Polygon Tree

(L2)

Length of
MST (T)

R1=
(L1/T) ∗ 100

R2=
(L2/T) ∗ 100

200

8841 8674 6888
9131 8933 6918
8978 8836 6969
8935 8805 6747
9230 9063 7069
9023 8862.2 6918.2 130.42 128.09

Table 4.11: Comparing Polygon and MST with 300 Nodes.

No of nodes
Length of

Polygon Boundary
(L1)

Length of
Polygon Tree

(L2)

Length of
MST (T)

R1=
(L1/T) ∗ 100

R2=
(L2/T) ∗ 100

300

11119 10938 8544
11055 10784 8258
11110 10943 8423
10689 10187 8169
10915 10656 8483
10977.6 10701.6 8375.4 131.06 127.77

Table 4.12: Comparing Polygon and MST with 400 Nodes.

No of nodes
Length of

Polygon Boundary
(L1)

Length of
Polygon Tree

(L2)

Length of
MST (T)

R1=
(L1/T) ∗ 100

R2=
(L2/T) ∗ 100

400

12652 12362 9741
12643 12489 9897
12655 12516 9727
12704 12567 9745
11998 11891 9665
12530.4 12365 9755 128.45 126.75

Table 4.13: Comparing Polygon and MST with 500 Nodes.

No of nodes
Length of

Polygon Boundary
(L1)

Length of
Polygon Tree

(L2)

Length of
MST (T)

R1=
(L1/T) ∗ 100

R2=
(L2/T) ∗ 100

500

14384 14259 11333
14180 14050 11341
14630 14453 11372
14663 14457 11227
14729 14504 11352
14517.2 14344.6 11325 128.18 126.66

Figure 4.7: Plot of the Length of the Polygon Tree compared to the MST.

Chapter 5

Conclusion and Discussion

We presented a critical review of published algorithms for generating polygonal shapes from

a given set of point nodes in two dimensions. We formulated a new approach for generating

polygonal shapes for a given set of nodes. The formulated approach leads to an algorithm

based on the concept of inward denting starting from the convex hull boundary. The

first version of the algorithm performs the denting process by selecting splitable edges that

minimize the distance to the nearest node. In this version, the nearest node is computed at

each iteration. In the second version of the inward denting algorithm, the algorithm makes

use of the precomputed Voronoi diagram of input nodes. The improved algorithm picks

the nearest node by walking through the Voronoi polygons of the nodes in the proximity of

the endpoints of the candidate edge. This leads to a faster algorithm for performing of the

denting process. The time complexity of the improved denting algorithm is O(n2).

We conceptualize a new approach for modeling polygons with holes. The hole modeling

algorithm uses the largest empty circle to locate the region where a hole can be present

inside the convex hull. To locate the center of candidate empty circles, the hole modeling

algorithm makes use of the Voronoi diagram. The vertices of the Voronoi diagram inside

the convex hull boundary are taken as the center of a possible empty circle. The algorithm

examines the empty circles among all Voronoi vertices in the interior of the convex hull to

identify the largest empty circle. The empty triangle T0 is dented outward to connect more

nodes to the boundary of the hole. This algorithm was not implemented.

We presented experimental results for constructing 2D polygonal shapes for various numbers

38

of input point sites. The length of the boundary of the generated polygon was compared

with the length of the corresponding minimum spanning tree. The nodes were generated

randomly. The analysis was done on 20 sets of data and the results show that the length

of the perimeter of the generated polygon is within 33% of the length of the minimum

spanning tree induced by the input points. The denting approach can be extended to

develop polygonal shapes that have some pre-specified properties. For example, we could

modify the inward denting algorithm for generating monotone polygons, monotone in a given

direction. Another useful extension would be to apply the algorithm to three dimensions.

Then the faces of the surface can be dented inward to include interior nodes. The details

would be very complicated but can be pursued to develop an effective algorithm.

The hole modeling approach suggested in Chapter Three is not adequate enough to capture

complex shaped holes. A thin and long hole can not be modeled by a straightforward

application of the largest empty circle. It would be interesting to come up with an effective

method for capturing holes with complicated shapes.

39

Bibliography

[1] Thomas Auer and Martin Held, ”Heuristics for the Generation of Random Polygons.”

Proceedings of Eighth Canadian Conference on Computational Geometry, pp. 38-44,

1996.

[2] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf Computational Geometry :

Algorithms and Applications, Springer, 1997.

[3] W. Berger and M. J. Bursa, Principles of Digital Image Processing, Springer, 2013.

[4] Robin Kerrod, The Book of Constellations: Discover the Secrets in Stars, Barron’s

Educational Series, 2002.

[5] J. O’Rourke, Computational Geometry in C, Second Edition, Cambridge University

Press, 1998.

[6] J. O’Rourke, J. Booth, and R. Washington, ”Connect the Dots: A New Heuristic”,

Computer Vision, Graphics, and Image Processing, 39(1987) pp. 258-266.

[7] M. Shunji, N. Hirobumi, and Y. Hiromitsu, Optical Character Recognition, Wiley 2007.

[8] Chong Zhu, Gopalakrishnan Sundaram, Jack Snoeyink and, Joseph S.B. Mitchell, ”Gen-

erating Random Polygon with Given Vertices.” Computational Geometry: Theory and

Applications, Vol. 6, pp. 277-290, 1996.

40

Vita

Graduate College

University of Nevada, Las Vegas

Pratik Shankar Hada

Degrees:

Bachelor of Engineering in Computer Engineering 2007

Tribhuvan University

Institute of Engineering, Pulchowk Campus

Thesis Title: Approaches for Generating 2D Shapes

Thesis Examination Committee:

Chairperson, Dr. Laxmi Gewali, Ph.D.

Committee Member, Dr. Ajoy Datta, Ph.D.

Committee Member, Dr. John Minor, Ph.D.

Graduate Faculty Representative, Dr. Rama Venkat, Ph.D.

41

	Approaches for Generating 2D Shapes
	Repository Citation

	tmp.1418378230.pdf.kmLsE

