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ABSTRACT

SHOP PROBLEMS IN SCHEDULING

By

James Andro-Vasko

Dr. Wolfgang Bein, Examination Committee Chair
Professor of Computer Science

University of Nevada, Las Vegas

The shop problems in scheduling will be discussed in this thesis. The ones I’ll

be discussing will be the flow shop, open shop, and job shop. The general idea of

shop problems is that you’re given a set of jobs and a set of machines. Each job is

predeterminely broken into parts and there are rules to how each part is executed

on a machine. In this thesis, several shop problems and their algorithms will be

introduced that I have researched. There are several examples and counter examples

that I have constructed. Also I will discuss how an arbitrary problem that can be

solved polynomially can be changed so that there are no polynomial algorithms that

can solve it. Scheduling is used in computer science in the area of operating systems

and it can be used in engineering. This is an important for a company when they

want to run several jobs efficiently so that resources can be saved.
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CHAPTER 1

INTRODUCTION

In this paper, various scheduling algorithms will be discussed. The scheduling

problems that will be discussed heavily is the shop problems. Shop problems consist

of jobs and each job is broken into several predetermined parts. The different shops

have restrictions to how these parts can run. Before I go along, I should discuss the

notation used in scheduling. The notation is α|β|γ where α represents the machine

criteria. The ones discussed will be O, F , and J , which mean open shop, flow shop,

and job shop respectively. A number following those letters describe an exact machine

amount, otherwise there are arbitrary number of machines. β represents precedence

constraints for example ri which means there are release times and pmnt which means

preemption is allowed. γ means the optimality criteria which can be the sum of the

completion time,
∑
Ci and the maximal completion time, Cmax. There are many

others as well, this represents a function to be minimized.

The algorithms, lemmas, and proofs are obtained through my research and I

quoted them accordingly. My contributions in this paper were the examples and

counter examples of the algorithms. I constructed a schedule the way the algorithm

constructs them to have a better understanding of how the algorithm works and to

see that the algorithms are efficient. I also discovered an alternative algorithm for

these algorithms that would not yield an optimal result and showed the schedule

constructed from that algorithm to see that it is not optimal. I also showed how

some of the schedule as polynomial solvable and by modifying it slightly, the problem

becomes NP -hard.
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CHAPTER 2

COMPUTATIONAL COMPLEXITY

2.1 The Classes P and NP

One main issue in complex theory is to measure an algorithm’s performance with

respect to computational time. To measure the performance of an algorithm, we will

need some form of an input. The input will be x which can be represented as |x|

which is the input length. Here are some encoding to the input length:

|x|bits : length of the binary encoding of x

|x|max : magnitude of the largest number in x

We measure the upper bound of x by T (n). It is sometimes hard to calculate the

exact value so we estimate by its asymptotic order. So we can say that T (n) ∈ O(g(n))

[Brucker, 2007]. Thus, instead of saying that the complexity is bounded by 2x2+x−2

is just simply O(n2) [Aho, 1974]. A problem is called polynomially solvable if

there exists a polynomial p such that T (|x|) ∈ O(p(|x|) for all inputs x for the

problem.[Brucker, 2007] For example problem J |n = 2|Cmax is polynomially solvable.

A problem is called pseudo-polynomial if T (n) is polynomial where n is the input

length with respect to the unary encoding [Aho, 1974]. It takes the form:

T (|x|) ∈ O(p(|x|bin, |x|max))

A problem is called pseudo-polynomially solvable if there exists a pseudo-polynomial

algorithm that solves it. A decision problem is in which the output is {yes, no}.

The class of all decision problems which are polynomially solvable is denoted as P .

In decision problems, P can verify yes or no polynomially [Aho, 1974]. The NP can

verify yes polynomially but not no.
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2.2 Reductions

Decision problems can be used for reducing one problem to another. The form

P → Q means that P reduces to Q. The way the decision problem can be used here

is as:

Figure 1: Visual for reductions

There is an input from P that goes into Q. Then Q attempts the validate it and

return a yes or a no. This shows that Q has to be a harder problem than P . Since it

is its own problem and it can solve another problem as well. A decision problem Q

in NP is NP − Complete, if any P ∈ NP then P → Q [Brucker, 2007].
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CHAPTER 3

FLOW SHOP PROBLEM

3.1 Definition

The flow shop problem is a general shop problem in which:

• each job i consists of m operations Oij with processing times pij (j = 1, ...,m)

where Oij must be processed on machine Mj

• there are precedence constraints of the form Oij → Oi,j+1 (i = 1, ...,m− 1) for

each i = 1, ..., n). In other words, Oi1 must be completed before Oi2 can run

and so on.

[Garey, 1976]

We want to find the job order πj on machine j. We will discuss only the problems

involving flow shop with the Cmax objective function since it is the only objective

function for flow shop the is not NP hard for arbitrary processing times.
∑
Ci is

an example of an objective function which is NP hard for arbitrary processing times

[Brucker, 2007].

3.2 Minimizing Makespan

The central idea of minimizing the makespan is to run several jobs on machines,

efficiently, such that Cmax is as small as possible. One of the only flow shop problems

that are polynomially solvable is the F2 || Cmax [Brucker, 2007]. The F2 means that

this a flow shop and there are exactly two machines. Johnson’s Algorithm can be used

to find an efficient schedule to the F2 || Cmax problem. The efficient schedule can be
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found if the sequence of jobs on both machines are identical, that is how Johnson’s

Algorithm finds the efficient schedule.

3.3 Lemma 1

For problem Fm || Cmax an optimal schedule exists with the following properties:

1. The job sequence on the first two machines are the same.

2. The job sequence on the last two machines are the same.

[Brucker, 2007]

Proof:

Take an optimal schedule in which the processes order is the same on both

machines for the first k jobs where k < n. Let the i-th job be the job following k.

Then job j is a immediately successor of i on the first machine and not an immediate

successor of i on the second machine. The following figure illustrates this situation.

Figure 2: Example of schedule

If on machine 1 we shift job j to the position immediately after job i and move

the rest of the jobs that follow by pj1 time units to the right, the Cmax value will not

change. Therefore the schedule will still be optimal. This contradicts the maximality

of k. The second part of the lemma is proved similarly(just replace machine 1 with

machine n− 1 and machine 2 with machine n) [Garey, 1976].
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3.4 Johnson’s Algorithm

Now we will present Johnson’s Algorithm for solving the 2 machine flow shop

problem. The main part of Johnson’s Algorithm is to find permutation or a list of

jobs

L : L(1), ..., L(n)

such that this order is the same on machine 1 and machine 2, if the schedule

follows this permutation then the makespan(Cmax) is minimized [Brucker, 2007]. An

optimal order is constructed by calculating a left list T : L(1), ..., L(t) and a right

list R : L(t + 1), ..., L(n), and then concatenating them to obtain L = T · R =

L(1), ..., L(n). The lists T and R are constructed step by step.

At each step we find a job pij with the smallest processing time. If j = 1 then we

put job at at the end of T , so we have i ·T . If j = 2 then we put job i at the beginning

of R, so we have i · R. We then remove job i from our set of jobs that haven’t been

processed yet. Then at the end we concatenate to form L = T ·R. Here is the formal

sketch of the algorithm:

Johnson’s Algorithm : F2 || Cmax

1. While X = {1, ..., n};T = ∅; R = ∅

2. While X 6= ∅ DO

BEGIN

3. Find i∗, j∗ with pi∗j∗ = min{pij|i ∈ X; j = 1, 2};

4. If j∗ = 1 THEN T = T · i∗ ELSE R = i∗ ·R;
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5. X = X − i∗

END;

6. L = T ·R

The * denotes i’s or j’s index not the actual processing time [Brucker, 2007].

3.5 Example of Johnson’s Algorithm

Given jobs p11 = 3, p12 = 2, p21 = 1, p22 = 5, p31 = 2, p32 = 3, p41 = 6, p42 =

4, p51 = 4, p52 = 5. We can draw the following table to help construct the list.

Figure 3: Table of jobs

We can see that T = {2, 3, 5} and R = {4, 1} so the permutation L = {2, 3, 5, 4, 1}.

Therefore, an optimal schedule has the same order on machine 1 and 2. The following

schedule shows this.

7



Figure 4: Schedule of jobs

3.6 Degenerate Case with Johnson’s Algorithm

In this case our objective function is the sum of all the completion times. Johnson’s

Algorithm will always yield an optimum Cmax value but doesn’t necessarily work for∑
Ci. Here is an example of the degenerate case.

Figure 5: Table of hypothetical jobs

8



Figure 6: Schedule of hypothetical jobs

In this example the following inequality applies:

ε1 < ε2 < ... < εn < α1 < α2 < ... < αn

Johnson’s Algorithm will select all the ε jobs first and places them into R. Then

pn1 → pn2 will run first and so on. But job n has the largest processing time which

will hurt the
∑
Ci value. The efficient way to achieve the minimum

∑
Ci value is to

run the job with the smallest processing time first. In this case reversing the order

would be more optimal. The second schedule shows the optimal schedule for
∑
Ci

value.

3.7 Lemma 2

Let L = L(1), ..., L(n) be a list constructed by Johnson’s Algorithm. Then

min{pi1, pj2} < min{pj1, pi2}

implies that job i appears before job j in L [Brucker, 2007].

Proof:

If pi1 < min{pj1, pi2}, then pi1 < pi2 implies that job i belongs to T . If j is

added to R, we have finished. Otherwise j appears after i in T because pi1 < pj1. If

9



pj2 < min{pj1, pi2}, then pj2 < pj1 implies that job j belongs to R. If i is added to T ,

we have finished implying that job i must appear before j in L. Otherwise j appears

in R after i because pj2 < pi2 implies that i appears before j in R, making i appear

before j in L [Garey, 1976].

3.8 Lemma 3

Consider a schedule in which job j is scheduled immediately after job i. Then

min{pj1, pi2} ≤ min{pi1, pj2}

implies that i and j can be swapped without increasing the Cmax value [Brucker,

2007].

Proof:

If j is scheduled immediately after i, there are three possible cases:

1. pi2 starts during pj1 is running but doesn’t finish before pj1

2. pi2 starts at the same time as pj1 and pi2 finishes after pj1

3. pi2 starts when pj1 is running and finishes after pj1

The idea is that in all three cases, pi2 can only run once pi1 finishes. If the

operations on machine 2, before pi2, take longer than pi1 then machine 2 will not be

idle. Otherwise machine 2 will be idle until pi1 finishes executing. Also if pi2 takes

completes after pj1 then there will be no idle time on machine 2, otherwise machine

2 will be idle until pj1 finishes. The diagram describes the three cases.

10



Figure 7: Three possible cases if j is scheduled immediately after i

Denoted by wij the length of the time period from the start of job i to the finishing

time of job j in the situation. We have

wij = max{pi1 + pj1 + pj2, pi1 + pi2 + pj2, x+ pi2 + pj2}

The common terms can be combined under one max function.

wij = max{pi1 + pj2 +max{pj1, pi2}, x+ pi2 + pj2}

We have the following expression

wji = max{pj1 + pi2 +max{pi1, pj2}, x+ pi2 + pj2}

if i is scheduled immediately after j. The current lemma implies

max{−pi1,−pj2} ≤ max{−pj1,−pi2}

We just multiply −1 to both sides of the inequality to get the above inequality.

Adding pi1 + pi2 + pj1 + pj2 to both sides of this inequality, we get

pi1 + pi2 + pj1 + pj2 +max{−pi1,−pj2} ≤ pi1 + pi2 + pj1 + pj2 +max{−pj1,−pi2}

There is a property a+ b+max{−a,−b} = max{a, b}, thus we get

11



pj1 + pi2 +max{pi1, pj2} ≤ pi1 + pj2 +max{pj1, pi2}

which implies that wji ≤ wij. Thus, swapping i and j will not increase the Cmax value

[Garey, 1976].

3.9 Lemma 4

Let the sequence L : L(1), ..., L(n) constructed by Johnson’s Algorithm is optimal

[Brucker, 2007].

Proof:

Let Ψ be the set of all optimal sequences and assume that L /∈ Ψ. Then we

consider a sequence R ∈ Ψ with

L(v) = R(v) for v = 1, ...s− 1 and i = L(s) 6= R(s) = j

where s is maximal. So the order of jobs in L(n) are equal with R(n) up to a certain

point. Then job i is a successor of j in R since i doesn’t appear in R(s), therefore

job i must appear after j in R. Let k be a job scheduled between job j and job i or

k = j in R. In L, job k is scheduled after job i. Thus, we must have

min{pk1, pi2} ≥ min{pi1, pk2}

This holds for each such job k because k follows i so we can use the three cases

to show that wik ≤ wki. So by applying the last lemma to R, we may swap each

immediate predecessor k of job i with i without increasing the objective value. We

then get a sequence R ∈ Ψ with R(v) = L(v) for v = 1, ..., s which contradicts the

maximality of s. So the general idea behind this is that we have an optimal schedule,

and a schedule that is equal to that optimal schedule to a certain point say s. Then,

from the list that’s not optimal, we can always swap any two jobs after s and the

schedule will equal the optimal schedule after point s which is a contradiction [Garey,

12



1976].
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CHAPTER 4

OPEN SHOP PROBLEM

4.1 Definition

An open shop problem is a special case of the general shop in which

• each job i consists of m operations Oij (j = 1, ...,m) where Oij must be

processed on machine Mj

• there are no precedence constraints between operation

[Brucker, 2007]

The problem is to find the job orders(operations belonging to a job) and the

machine orders(orders to be processed on a machine)

4.2 O2||Cmax

This is truly the only open shop problem, without preemption, which is polynomially

solvable [Brucker, 2007]. The others are NP hard. The algorithm that solves this

starts with two machines A and B. Processes that can run on A and B are ai and bi

respectively with job i (1, .., n) jobs. We define two sets I and J with the following

properties:
I = {i | ai ≤ bi; i = 1, ..., n}

J = {i | bi < ai; i = 1, ..., n}

Now we consider 2 cases that will give the optimal results.

Case 1:

ar = max{max{ai | i ∈ I},max{bi | i ∈ J}}

An optimal schedule is done the following way:

14



• all the I − r jobs in an arbitrary order, jobs in set J in an arbitrary order, and

then job r on machine A

• job r, jobs I − r in the same order as on machine A, and then jobs in J with

the same order as on machine A on machine B.

[Gonzalez and Sahni, 1980]

The figure below illustrates this.

Figure 8: Case 1 schedule

Case 2:

br = max{max{ai | i ∈ I}, max{bi | i ∈ J}}

An optimal schedule is done the following way:

• job r, jobs J − r in an arbitrary order, and then I in an arbitrary order on

machine A

• jobs J − r in the same order as on machine A, jobs in I in the same order as

on machine A, and then job r

[Gonzalez and Sahni, 1980]

The figure below illustrates this.

15



Figure 9: Case 2 schedule

4.3 Example

Here is an example of a schedule with the given jobs. The jobs are p11 = 2, p12 =

1, p21 = 8, p22 = 5, p31 = 2, p32 = 4, p41 = 6, p42 = 3, p51 = 1, p52 = 3. Now, all

the ai’s are going to be the pi1’s and the bi’s are going to be the pi2’s. So we have

the following list: a1 = 2, a2 = 8, a3 = 2, a4 = 6, a5 = 1 and we have another list:

b1 = 1, b2 = 5, b3 = 4, b4 = 3, b5 = 3. Then based on the properties of sets I and J we

have the following two sets

I = {3, 5} and J = {1, 2, 4}

We find ar which is the maximum processing time from set I which is a3 = 2.

Then we find the br which is the maximum processing time from set J which is b2 = 5.

Out of a3 and b2, b2 is the larger of the two so the r will be job 2. Since br > ar

will apply the second case of our algorithm. When applied, the following schedule

represents the optimal schedule.

16



Figure 10: Schedule for O2||Cmax

4.4 Completeness of Algorithm

Here we will show that this algorithm will always come up with the minimum

makespan. We can look at the following graph to have a better visualization of how

to pick a makespan.

Figure 11: Graph of all possible paths for open shop

This graph shows all possible paths that be done for a typical open shop problem.

A makespan of this is the path from 0 to all operations of one machine and the *

[Brucker, 2007]. Here’s an example of the makespan.

Here, a possible makespan is 0 → p11 → p21 → ∗. The order can be changed

between p11 → p21 to p21 → p11. You can also have a possible path that involves

machine 2. Now we need to apply to this to show the correctness of the O2||Cmax.

17



Figure 12: Graph of one possible case of open shop

We will look at each case separately and show that the makespan of the algorithm

can never be worse than an actual makespan generated by the graph.

Case 1

There are two possible makespans, the larger of the two is the schedule’s makespan.

We take the path from the first machine and the second machine that the algorithm

generates. They are

• 0→ ai(i ∈ I − r)→ ai(i ∈ J)→ ar → ∗

• 0→ br → bi(i ∈ I − r)→ bi(i ∈ J)→ ∗

[Brucker, 2007]

The obvious path that any open shop problem can contain on machine 1 is 0 →

p11 → p21 → ... → pi1 → ∗. For machine 2, the obvious path is 0 → p12 → p22 →

... → pi2 → ∗. The makespan for each of these is
∑
pi1 and

∑
pi2. Now we need to

show that the makespan of the algorithm will never be greater than the makespan of

18



the makespan that was just calculated. We set up the inequalities as such:

|I|−1∑
i=1

ai +
n−1∑
i=|I|

ai + an ≤
n∑

x=1

px1

bn +

|I|−1∑
i=1

bi +
n−1∑
i=|I|

bi ≤
n∑

x=1

px2

In the first inequality, we basically add up all the ai’s which is the first operations

of all the jobs. So that’s the same thing as if we just add up all the pi1’s. In the

second inequality, we basically add up all the bi’s which is the second operations of all

the jobs which is the same thing as adding up all the pi2’s. Unless there is a moment

when either machine 1 or machine 2 has some idle times. Based on the way set A and

set B are created, that will never happen. Therefore, in the first case, the schedule

will always yield the minimal makespan.

Case 2

Like the previous case, there are two possible makespans, and the larger of the

two is the lower bound Cmax value. We take the path from the first machine and the

second machine that the algorithm generates. They are

• 0→ ar → ai(i ∈ J − r)→ ai(i ∈ J)→ ∗

• 0→ bi(i ∈ J − r)→ bi(i ∈ I)→ br → ∗

[Brucker, 2007]

Once again, the obvious path an open shop can have on machine 1 is 0→ p11 →

p21 → ... → pi1 → ∗. For machine 2 the path is 0 → p12 → p22 → ... → pi2 → ∗.
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The makespan for each of these is
∑
pi1 and

∑
pi2. Now we need to show that

the makespan of the algorithm will never be worse than the makespan that was just

calculated. The inequalities will look as

an +

|J |−1∑
i=1

ai +
n−1∑
i=|J |

ai ≤
n∑

x=1

px1

|J |−1∑
i=1

bi +
n−1∑
i=|J |

bi + bn ≤
n∑

x=1

px2

In the first inequality we add up the ai’s which is the all of the jobs’ first operations.

That is the same thing like adding up the pi1’s . In the second inequality we just add

up all the bi’s which is the same thing like adding up the pi2’s. Just like in case 1, the

machines will never be idle so trivially the inequalities will be equal, therefore this

algorithm, in either case, will construct a schedule with a minimal makespan.

4.5 O|pmnt|Cmax

This problem, due to the preemption, is polynomially solvable [Baptiste]. We first

want to calculate the lower bound Cmax value. If we create a schedule with a Cmax

value equal to the lower bound value, we have solved the problem. To find this value

we have two values:

Tj =
n∑

i=1

pij and Li =
m∑
j=1

pij

where n is the number of jobs, m is the number of machines, Tj is the total time

needed on machine Mj, and Li is the length of job Ji [Gonzalez, 1979]. The lower
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bound T is as follows:

T = max{ n
max
i=1

Li,
m

max
j=1

Tj}

There are n jobs and m machines [Gonzalez, 1979]. We, then, make an n + m

by n + m matrix. The columns of this matrix will be the jobs and the rows of this

matrix will be the machines. There will be extra machines and extra jobs since it’s

larger than an n by m matrix.

To these extra rows and columns, we give those cells a value such that if each row

and column is added, it will equal to T . Then we take a cell in each row in which

neither of them have the same column index and put them into the appropriate

machine. If a cell is chosen in which it’s in an extra row or extra column, then do not

place them into the schedule(otherwise put into schedule matching job with machine).

After placed into the machine for one cycle subtract 1 to all cells, even those extra

cells. Then this process is repeated until the n by m matrix has no more processing

time remaining.

Example

In this example we have 4 jobs and 3 machines and processing times p11 = 1, p13 =

4, p22 = 2, p23 = 1, p31 = 2, p33 = 1, p41 = 4, p42 = 3 and all other pnm = 0. We

can construct a 7 by 7 matrix shown below.

We can calculate our T value to be 7. This will be the lower bound Cmax value in

this schedule. We can now select 7 jobs on 7 different machines. We can arbitrarily

pick them. We can pick J1 on M3, J2 on M2, J4 on M1, and now we select the

extra jobs or extra machines J3 on M6, J5 on M5, J6 on M4, and J7 on M7. This
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Figure 13: Graph of 7 by 7 matrix

will be the first cycle of our schedule. Any combination of extra job or machine does

not get placed into a schedule. Every combination will be decremented by 1. The

process goes until the highlighted box n by m matrix has no processing time left.

Here is the final schedule below:

Figure 14: Schedule of open shop jobs
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4.6 Network Flow Approach to Solve Preemptive Open Shop

The network flow can be used to solve this particular problem. It uses the same

approach like the last algorithm. You need n + m jobs (dummy jobs) and m + n

machines (dummy machines). Once again you have to calculate the Li values and

you have to calculate the Tj values. Then you have to find

T = max{ n
max
i=1

Li,
m

max
j=1

Tj}

Which is going to be the lower bound Cmax value. Now we have to create a network

N . The vertices of N will be

• a source s and a sink t

• job vertices Ji (i = 1, ..., n+m)

• machine vertices Mj (j = 1, ..., n+m)

[Ahuja, 1993]

The arcs are:

• for each Ji there is an arc (s, Ji) with capacity T and for each Mj and arc (Mj, t)

with capacity t

• for each job Ji and each machine Mj with pij > 0, an arc (Ji,Mj) with capacity

pij

• for each i = 1, ..., n with T − Li > 0 an arc (Ji,Mm+i) with capacity T − Li

which connects jobs with a dummy machines

• for each j = 1, ...,m with T − Tj > 0 an arc (Jn+j,Mj) with capacity T − Tj

which connects dummy jobs with machines
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• for each dummy job and dummy machine an arc (Jn+j,Mm+i) with capacity to

complete the network N

[Ahuja, 1993]

The last arc type is to complete the network such that the flow coming into a

node must be equal to the flow coming out of the node. The following figure shows

the property

Figure 15: Node property for network flow

The following network will look something like the following figure.
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Figure 16: Graph of network flow

[Brucker, 2007]

Once you have the graph all worked out you have to apply the simple network

flow mechanism. To draw the schedule, you pick one path from source s to a job Ji to

a machine Mj to the sink t. For each arc from a job to a machine, you always want to

pick the arc with the largest possible flow available. Then you find the minimum flow

for all the arcs chosen as the preemption bound for a cycle. At each step, one arc will

have no more available flow so in other words at each step an arc will be eliminated.

4.7 Example of Network Flow Algorithm

For this example, we will use the same values as from the previous example. The

values are p11 = 1, p13 = 4, p22 = 2, p23 = 1, p31 = 2, p33 = 1, p41 = 4, p42 = 3. We can

calculate the following values L1 = 5, l2 = 3, L3 = 3, L4 = 7, T1 = 7, T2 = 5, T3 = 6.

So it can be seen that T = 7, so that will be the lower bound Cmax value. The

following network can now be constructed:
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Figure 17: Graph of the example

The circles that have bold borders just denote dummy jobs or dummy machines.

If we construct the schedule step by step we should have the following schedule

constructed that will be obtained with the minimal Cmax.

Figure 18: Schedule obtained from network flow

4.8 Alternative Algorithm

This starts with a bipartite graph. One side has all the jobs(i) and the other side

has all the machines(j). Then a matching is done, if there are j machines then there
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are j arcs coming out of each job i and they will go to each machine j. A graph is

shown below

Figure 19: Bipartite Graph

The central idea behind this algorithm is picking the correct permutations. Initially

for the first machine, use the graph to pick the first permutation. Then a table is

created, each row represents a different machine and each column represents a job that

runs on that machine. The row of permutations must have the following property:

i∑
k=1

ROWlCOLUMNk ∩ ROW2COLUMNk... ∩ ...ROWjCOLUMNk = ∅

In other words, if you take a column and check each row, we shouldn’t have

anything in common. Then we do this for all the columns. Now that we have the

initial data, here is the algorithm:

1. start x = x mod i

2. for column x of our table place all the operations of all rows in column x

27



3. run those operations until one of them equals zero and subtract the run time

from the rest of the operations

4. if all operations equal zero we are done else x = x + 1 go to step (1)

Here’s an example of the algorithm. We have jobs p11 = 3, p12 = 4, p13 = 2, p21 =

1, p22 = 5, p23 = 3, p31 = 2, p32 = 1, p33 = 4 and have three machines. We can

calculate the lower bound Cmax value equals 10.

Figure 20: Schedule of counterexample

We can see that the Cmax value = 12, therefore this algorithm will not always

yield an optimal value for any arbitrary set of values.

28



CHAPTER 5

JOB SHOP PROBLEM

5.1 Definition

The job shop problem is a general shop problem with jobs Ji(i = 1, ..., n) and

machines Mj(j = 1, ...,m) with the following properties:

• there are precedence constraints Oij → Oij+1

• operation Oij runs for Pij time units on machine µij ∈M1, ...,Mm

[Brucker, 2007]

The idea is that operation 1 has to be completed before operation 2 can begin

and there is no restriction to which machine operation j can run on.

5.2 J2|ni ≤ 2|Cmax

This particular job shop problem with 2 machines and at most 2 operations per

job can be used by reducing this two a 2 machine flow shop problem using Johnson’s

Algorithm. Before this reduction can be done, we must construct the following subsets

first:

I1: jobs which are processed only on machine 1

I2: jobs which are processed only on machine 2

I1,2: jobs which are processed first on machine 1 then on machine 2

I2,1: jobs which are processed first on machine 2 then on machine 1

[Brucker, 1994]
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Note that I1 and I2 contain jobs with only one operation. A remark to be made

about this is that a job can start on machine 2 and then run machine 1. This is unlike

the flow shop. On flow shop, Oij must run on machine j the same goes for open shop.

But on job shop Oij must run on µij where µij could be on any available machine.

In other words with job shop, O12 can run on machine 1, it doesn’t have to run on

machine 2. Now that we have constructed our subsets, we can use the following steps

to to get an efficient schedule that will minimize the Cmax value:

1. with the set I1,2 construct an optimal sequence using Johnson’s Algorithm and

place that into R1,2

2. with the set I2,1 construct an optimal sequence using Johnson’s Algorithm and

place that into R2,1

3. on machine 1 first schedule jobs I1,2 according to order of R1,2 , then jobs I1 in

an arbitrary order, and then jobs I2,1 according to the order in R2,1

4. on machine 2 first schedule jobs in I2,1 according to the order of R2,1, then jobs

in I2 in any arbitrary order, and the jobs in I1,2 according to the order of R1,2

[Brucker, 1994] [Brucker and Kramer, 1996]

We can assume that in this schedule will always be active , i.e. there won’t be a

case in which both machines will be idle. If

∑
i∈I2,1

pi2 ≤
∑
i∈I1,2

pi1 +
∑
i∈I1

pi1

then there is no idle time on machine 1. Otherwise there is no idle time on machine

2. The reason is that if the sum of processing times for jobs on machine 1 in set I1

30



and set I1,2 will take longer than the jobs on machine 2 and machine 1 in set I2,1 then

the jobs in I2,1 that run on machine 1 won’t have to stop while it’s pi1 first part runs

because it is already finished [Brucker, 1994].

Now we will prove that the following schedule is optimal. If there is no idle time

on machine 1 and no idle time on machine 2 or if

n
max
i=1

Ci =
∑

i∈I1,2∪I1

pi1 +
∑
i∈I2,1

pi2

then we proved that it is optimal. Otherwise we restrict our problem to I1,2 which is

optimal using Johnson’s Algorithm [Brucker, 1994][Peter Brucker and Sotskov, 1997].

5.3 Example

Now we will construct a schedule by using the previous algorithm. We are given

the following jobs p11 = 2, p12 = 3, p2 = 3, p3 = 4, p41 = 4, p42 = 3, p5 = 5, p6 =

7, p71 = 3, p72 = 1, p81 = 1, p82 = 6. Now the sets will contain:

I1 = {P2, p3}

I2 = {P5, P6}

I1,2 = {P1, P4}

I2,1 = {P7, P8}

In set I1 and I2 the order can be arbitrary so the order will be the same in which

it appears in I1 and I2. The order in I1,2 and I2,1 will be constructed using Johnson’s

Algorithm.

i/j 1 2

1 2 3

4 4 3
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By using Johnson’s Algorithm, we get the order R1,2 = {P1, p4}. Now we have

the jobs in set I2,1 can be represented by the following table.

i/j 1 2

7 3 1

8 1 6

By using Johnson’s Algorithm on this, we can obtain the order R2,1 = {P8, P7}.

Now we are ready to construct the schedule. If we just follow the algorithm, we will

have the following schedule:

Figure 21: Schedule for J2|ni ≤ 2|Cmax

5.4 Alternative Algorithm

Another way to construct a schedule for the J2|ni ≤ 2|Cmax problem can be done

with a greedy−type algorithm as well. We can achieve this by following these steps:

1. create a two stacks s1 and s2 representing the order of jobs on machine 1 and 2

respectively.

2. take all the operations and sort them from smallest processing time to largest

processing time and put into a queue Q.

3. starting from the beginning of Q pick the next available job and push onto s1,

the next iteration push onto s2.
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4. repeat step 3 until Q = {∅}

This schedule would be optimal if the next job selected from Q is always from the

front. This way there won’t be any idle time on either machine. Otherwise it won’t

always yield the optimal Cmax value. If pi2 < pi1 then we can’t select from the front

of Q each time due to the job shop precedence constraints.

Counter example

Suppose we have jobs p11 = 3, p12 = 5, p2 = 1, p31 = 4, p32 = 2. Then our

queue Q = {p2, p32, p11, p31, p12}. Then after we run the algorithm we would get

s1 = {p2, p31, p12} and s2 = {p11, p32}. Here is the following schedule below.

Figure 22: Schedule with alternative algorithm

Figure 23: Optimal schedule for given jobs

The alternative algorithm will yield a Cmax value of 10 and the optimal schedule

has a Cmax value of 9. So this shows that the alternative algorithm will not always

give an optimal solution.

5.5 J|n = 2|Cmax
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This is a job shop problem with arbitrary number of machines and there are two

jobs. We try to minimize the Cmax value. This problem can be reduced to a shortest

path problem. We first calculate the lower bound Cmax value, if the shortest path

equals the lower bound value, an efficient schedule can be constructed.

We put the processing times of job 1 on the x-axis and the processing times of

job 2 on the y-axis. The intervals on both x and y axis are labeled by the machines

on which they are to be processed. A feasible schedule corresponds to a path from

0 to F . Point 0 is just the origin of the graph and F is the pair a and b which is

calculated:

a =

n1∑
v=1

p1v and b =

n2∑
v=1

p2v

[Brucker, 1988]

The max{a, b} will give the lower bound Cmax value. We want to find a shortest

path from 0 to F with the following properties:

1. the path consists of horizontal, vertical, and diagonal lines(the diagonal lines

are 45 degrees)

2. the path has to avoid the interior of any rectangle obstacles of the form I1 x I2

where I1 and I2 are intervals on the x-axis and y-axis which correspond to the

same machine

3. the length of the path which is equal to the lower bound schedule length is equal

to: length of horizontal parts + length of vertical parts + (length of diagonal

parts) /
√

2
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[Brucker, 1988]

We draw these lines such that none of these lines cross with the interior of any

obstacles. To construct the shortest path we start from i(which is point O at the

beginning) and draw a diagonal until we hit either the boundary of the rectangle

formed by O and F or an obstacle. In the first case, if we hit the top of the rectangle,

we go horizontally until we reach point F , or if we hit the far right of the rectangle

then we go vertical until we hit point F . The second case is if the diagonal hits an

obstacle then we have k which is a the SE corner of the obstacle and j is the NW

corner of the obstacle. We than have two line segments (i, j) and (i, k). The length

of (i, j) or D(i, j) is equal to the horizontal or vertical piece plus the length of the

projection of the diagonal piece on the x-axis or y-axis [Brucker, 1988].

In order to explain the algorithm we need to represent a few terms. We first order

the forbidden regions according to lexicographic order of their NW corners. Di < Dj

if for the NW corners (xi, yi) and (xj, yj) we have yi < yj or yi = yj, xi < xj. We

have r forbidden regions are indexed as:

D1 < D2 < ... < Dr

We have a set V which contains 0, F , and all the NW and SE corners of all

forbidden obstacles. The shortest path will be denoted as d∗ [Brucker, 1988]. Now

here is the formal sketch of the algorithm.

1. FOR ALL vertices i ∈ V DO d(i) = ∞

2. FOR ALL successors j of 0 DO d(j) = d(O, j)

3. FOR i = 1 TO r DO BEGIN
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4. FOR ALL successors j of the NW corner k of Di

5. DO d(j) = min{d(j), d(k) + d(k, j)}

6. FOR ALL successors j of the SE corner k of Di

7. DO d(j) = min{d(j), d(k) + d(k, j)} END

8. d∗ = d(F )

[Brucker, 1988]

Example of Algorithm

Given the following processes p11 = 2, p12 = 1, p13 = 3, p21 = 1, p22 = 3. We have

the following solution
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Figure 24: Run of geometric algorithm

F = (6, 4), the lower bound Cmax value is 6. It is trivial to see that the bold line’s

horizontal line and the projected diagonal over the x-axis is equal to the lower bound

Cmax value, therefore this graph represents an optimal schedule.

5.6 Theorem

A shortest path from O to F corresponds to an optimal solution of the shortest

path problem with obstacles [Brucker, 2007].

Proof:

We know that the path from O→ F is a path that avoids any obstacles, otherwise

it would not be the shortest path. We consider the optimal solution p∗ with longest
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starting sequence of arcs. If p∗ is equals to this path, we have proved our case,

otherwise assume that the last arc in this sequence ends at i. We would have the

following situation:

Figure 25: Graph of proof of first case

Let D be the obstacle we hit at some point s if we go in a NE direction from i.

Line l is a line parallel to the x-axis and goes through point k which is the SE corner

of D. Line l′ is the line parallel to the y-axis and goes through point j which is on

the NW corner of D. We denote the SW corner of D by u. Assume that s is on l

and s′ is on l′. Path p∗ will cross line l at some point t. If t = u, t = k, or t = k then

we can replace the arc i → k by arc i → s → k without increasing the length of p∗.

If t is to the right of k then way replace arc i → t by arc i → s → k → t without
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increasing the length of p∗ [Brucker, 2007].

Figure 26: Graph of proof of second case

Now if the arc from i′ crosses line l to the left of l and crosses l′ at some point t′

we have another set of cases. If t′ = u, t′ = s′, or t′ = j the we can replace i′ → j by

i′ → s′ → j without increasing the length of p∗. If t′ is above j then we can replace

i′ → t′ by arc i′ → s′ → j → t′ without increasing the length of p∗. Both of these

cases contradicts the maximality assumption [Brucker, 2007].
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CHAPTER 6

VARIOUS SHOP PROBLEMS

6.1 Introduction

In this section we will discuss that various scheduling problems that are polynomially

solvable can become NP -hard just by modifying one of its constraints or objective

functions.

6.2 Open Shop

We earlier showed that the O2||Cmax problem is polynomially solvable. If we were

to change the objective to function and make the scheduling problem into O2||Lmax,

we would have an NP hard problem [Brucker, 2007]. To calculate Lmax we have to

calculate all the Li’s the following way

Li = Ci − di

where di is the deadline for a particular job i. The reason it’s NP hard is because we

have to make the schedule such that we don’t have any idle times on either machine

1 or machine 2. We also have to schedule the jobs such that we are not too late

behind the deadline. If O2||Lmax is polynomially solvable then O2||Cmax must also

be polynomially solvable. Lateness implies completeness. But this doesn’t always

work the other way around.

Like the previous example, O2||Cmax is polynomially solvable but if we add release

times to this making it O2|ri|Cmax is NP -hard [Brucker, 2007]. When we don’t have

release times, we can create the sets I and J and find the ar and br and so on. But

the problem with the release times is that we just can’t schedule any job in any set

because if job has a release time ri = 2 and the algorithm schedules job i at time 1,
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it won’t be allowed.

Another example is theO|pij = 1|
∑
Ui problem is polynomially solvable [Peter Brucker

and Jurisch, 1993]. In this problem, you have Ui which is 0 if Ci ≤ di and 1 otherwise.

So if the job is late to finish, there is a unit penalty, the idea is to try to finish the jobs

before its deadline. If we were to add release times to this and have O|pij = 1; ri|
∑
Ui,

now this problem is NP -hard [Kravchenko]. Once again we don’t know how to

construct the schedule. Release times are a factor but it can’t influence the schedule

order.

6.3 Flow Shop

We showed earlier that the F2||Cmax can be solved using Johnson’s Algorithm.

If we would add release times to the jobs, like in the open shop, we would get an

NP -hard problem [Brucker, 2007]. Like in the open shop, if we schedule jobs in a

certain way to minimize the Cmax value the release times could get us into trouble.

If we schedule a job i at time 2 but its release time ri = 5, then we can’t schedule the

job at that time. We won’t know that exact order of the jobs when release times are

present.

Like in the open shop, if we take our polynomial problem F2||Cmax and replace

the objective function with Lmax, the problem F2||Lmax would be NP -hard [Brucker,

2007]. Same as in the open shop, we could construct an optimal schedule to minimize

the Cmax value but we have a set of due dates and they can be any arbitrary value.

It would be hard to construct an algorithm that minimizes Cmax and the Lmax. You

could construct all the possible schedules and one of them would be optimal but that

wouldn’t be found in polynomial time and hence it would be NP -hard.
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We already know that F2||Cmax has a polynomial algorithm that maximizes the

Cmax value. If we would change the objective function to
∑
Ci which means the

sum of all completion times, would be NP -hard [Peter Brucker and Sievers, 1994].

There is a branch and bound algorithm that finds all the possible permutations of

the schedule and that would find the schedule that computes the minimal
∑
Ci value.

This would obviously be an exponential algorithm algorithm making this NP -hard.
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CHAPTER 7

CONCLUSION

In this paper, many different types of shop scheduling problems were discussed.

But, there are many different algorithms that have no polynomial time algorithms

that solve them. Only a few shop problems such as O|pmnt|Cmax, O2||Cmax , J2|n =

2|Cmax , and etc are some of the ones that have been discussed. This seems like not

many, but however, many of the shop problems, or most scheduling problems for that

matter, are NP -complete. This is a uniquely strange area of computer science but,

at the same time, a very interesting area in computer science.

Scheduling is an area studied by many different areas such as management, industrial

engineering, and operations research. Good scheduling is an important part of the

business world. If a scheduling algorithm is good, it can lower production and/or

manufacturing cost which could keep a company competitive. This field started

in the 1950s. Back then, many of these algorithms were very simple. This field

has evolved a lot since then, now that many sophisticated algorithms have been

developed.Scheduling plays an important role in implementing operating systems

especially a long time ago when CPU, memory, and other resources were scarce

[Leung, 2004]. Scheduling algorithms helped efficiently utilize these resources. Scheduling

has come a long way but there is still much more to be discovered.
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