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ABSTRACT 

A Survey of Monge Properties 

by 

Swetha Sethumadhavan 

Dr. Wolfgang Bein, Examination Committee Chair 
Professor of Computer Science 

University of Nevada, Las Vegas 

Monge properties play an important role in theoretical computer science. Many greedy 

algorithms are based on such properties, as is speedup in dynamic programming. Monge 

properties are simple monotonicity properties which are observed and used in various set

tings such as resource optimization, computational geometry, statistical sampling, compu

tational biology and coding. 

These properties occur naturally, and it was the eighteenth century French engineer 

Gaspard Monge who first wrote about them. The plural in "Monge properties" is used 

deliberately, as researchers today study a variety of different Monge-like properties: bottle

neck, algebraic, higher-dimensional, joint-meet submodular on lattices, total monotonicity. 

The thesis discusses various Monge properties and its application in solving various 

fundamental problems. It also focuses on algorithmic speed-up and the use of the SMAWK 

and LARSCH algorithms for exploiting total monotonicity of Monge matrices. We consider 

applications such as the Traveling Salesman Problem, the Assignment Problem, the Higher 

Dimensional Transportation Problem, various scheduling problems, specifically batching, 

and host of other problems. 

m 



TABLE OF CONTENTS 

ABSTRACT iii 

LIST OF FIGURES v 

ACKNOWLEDGMENTS vi 

CHAPTER 1 INTRODUCTION 1 

CHAPTER 2 DEFINITIONS 4 

CHAPTER 3 MONGE PROPERTY AND ITS CHARACTERIZATION 9 
3.1 Some examples of Monge Matrices 9 

3.2 Characterization of Monge Matrices 15 

CHAPTER 4 SMAWK ALGORITHM ON A TOTALLY MONOTONE MATRIX . 20 

CHAPTER 5 APPLICATIONS OF THE MONGE MATRICES 23 
5.1 Traveling Salesman Problem 23 
5.2 Assignment Problem 28 
5.3 Special Case of Gilmore-Gomory Matching Problem 30 
5.4 Batching Problems 31 
5.5 d-Dimensional Transportation Problem 38 
5.6 A Scheduling Problem - P | | £ C i 40 

5.7 Geometric Application-Finding the farthest neighbor 42 

CHAPTER 6 CONCLUSION 44 

BIBLIOGRAPHY 46 

VITA 48 

IV 



LIST OF FIGURES 

1.1 Monge Property 1 

2.1 Forbidden criteria 6 

2.2 Higher-dimensional Monge Property 8 

3.1 i, TT(Z) 15 

5.1 Shortest pyramidal path 26 
5.2 Schedule for batching problem 32 
5.3 Shortest pyramidal path from 0 to n 33 
5.4 shortest path from 0 to 5 34 
5.5 Resulting Schedule 35 
5.6 Matrix E 35 
5.7 Hire/Fire/Retire Algorithm 36 
5.8 Crossover Point 37 
5.9 Crossover point of Two columns 38 
5.10 Transportation Problem 39 
5.11 Scheduling Problem 42 
5.12 Schedule of the jobs 42 
5.13 Convex Polygon 44 
5.14 Distance Matrix 44 

v 



ACKNOWLEDGMENTS 

I would like to thank Dr. Wolfgang Bein for chairing my committee and advising this 

work. I am thankful for his continous guidance and help to deepen my work. Without his 

generous help this thesis would not have had such a rich content. 

I am thankful to Dr. Ajoy K Datta for his moral support and guidance through my 

Masters program and help on my thesis. I would also like to specifically thank Dr.Yoohwan 

Kim and Dr. Venkatesan Muthukumar for serving on the committee. For this and for being 

generous with their time when I needed it, I am deeply indebted to them. 

Special thanks go to Dr. Doina Bein for helping with my thesis report. 

I would like to thank the faculty at the School of Computer Science, University of 

Nevada, Las Vegas for the formal education along with generous financial support. 

I am grateful to my husband for his support and inspiration. 

Finally and most importantly, I thank my parents and my brother, for their love and 

support. 

VI 



CHAPTER 1 

INTRODUCTION 

In this chapter we present notions related to Monge matrices. This chapter goes through the 

history of development of Monge matrices and its properties. It discusses how the property 

was dormant for about a century and then gaining popularity in late 20"1 century. 

Upon further research into the functions and uses of Monge matrices, I found immense 

literature on the topics detailing the various properties of Monge Matrix. For example, a 

Monge matrix in scheduling problems in many interesting cases improves the running time 

of algorithms. 

Definition 1.1 An m x n matrix C is said to be a Monge matrix i/V ?'i, ji, i%, ji such 

that 

1 < i\ < ii < m and 1 < j \ < J2 < n 

we have 

C[ii,ji] + C K j 2 ] < C[iuJ2} + C[i2Ji} (1.1) 

A matrix is called a Monge matrix if it satisfies Monge property as shown in Figure 1.1. 

If we consider any two rows and any two columns of a Monge Array then the sum of upper 

NX" 
j2 © ^ ^ # J2 

Figure 1.1: Monge Property 
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left and lower right element is less than or equal to the sum of the lower left and upper right 

element. 

Matrices showing Monge properties arises often in practical applications especially in 

geometric settings. Monge property is named in honor of the French Mathematician Gaspard 

Monge who studied the property in the 18"' century, which was rediscovered in 1961 by A.J. 

Hoffman when he showed that a transportation problem can be solved by a Greedy method 

if the underlying cost are showing Monge properties [Hof63]. Hoffman coined the term 

Monge Matrix to credit Gaspard Monge for his early study and discovery. 

G. Monge considered this property in connection with transporting earth, when he 

wanted to split two equally large volumes of earth representing point x and y. Monge 

looked at this problem as splitting the large volume into infinitely small particles and then 

associate them with each other so that sum of the product of the lengths of the paths used 

by the particles and the volume of the particle is minimized. 

In 1961 Hoffman showed that if the cost matrix satisfies the Monge property then the 

Hitchcock transportation problem can be solved using a simple greedy approach [Hof63]. 

The research on Monge property had been silent after work of Hoffman till the paper 

published by Aggarwal [AKM+87] on searching in totally monotone matrices, which lead 

to a new interest in this area sparking a series of research and publications. Researchers 

interested in this field are overwhelmed by the literature's available in this area which lead 

to the need for a study to connect the results from these researchers. Monge properties are 

used in various settings such as resource optimization, computational geometry [AKM+87], 

statistical sampling [FP89], computational biology [EZGI90] coding theory [Yao80, AKL+89] 

and theory of greedy algorithms [BBH93]. 

Recently the Monge property has again been shown to be useful in diverse fields showing 

that Monge property is not a single property but a set of properties like algebraic Monge 

property, reverse Monge, higher dimensional, total monotonicity etc.. 

Thesis Overview This thesis presents an overview of different Monge properties and 

draws a connection between them. The thesis is organized as follows. Chapter 2 gives the 

definition of major terms used in the survey and it also explains some of the properties of 
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Monge matrices. Chapter 3 discusses Monge property and its characterization, also lists 

some examples of Monge matrices. Chapter 4 deals with the SMAWK algorithm for finding 

the minimum value of all rows in a Monge matrix in linear time. Chapter 5 discusses 

several applications of Monge matrices. Some of the applications discussed are Traveling 

Salesman Problem, Batching Problem, Assignment Problem, Scheduling Problem and d-

dimensional Transportation Problem. This chapter also discusses about Gilmore-Gomory 

matching problem. We conclude in Chapter 6. 

3 



CHAPTER 2 

DEFINITIONS 

In this chapter we present some of the important properties of Monge matrices. Some of the 

properties which we consider are total monotonicity property, algebraic Monge property, 

bottleneck Monge property and higher dimensional Monge property. This chapter also 

discusses about the Distribution arrays and Inverse Monge matrices. 

Definition 2.1 (Inverse Monge) A matrix C is called an inverse Monge matrix if 

C[ii,ji] + C[i2,J2] > C[iuJ2] + C[i2,j1} 

V h,ji,h,J2 such that 

1 < i\ < h < m and 1 < j i < J2 < n 

An inverse Monge matrix can be transformed into a Monge matrix by multiplying all entries 

by —1. For Monge matrices it suffices to require that the Monge property holds for adjacent 

rows and adjacent columns. Equation (1.1) holds if and only if 

L'tJ + L'i+lj + l < ^i+lj + L^iJ + 1 (•^•l) 

V l < i < m , l < j < n 

Lemma 2.1 / / the Monge property holds for all adjacent rows and columns of a Matrix, 

then that matrix is a Monge matrix. 

Proof. Since the Monge property holds for adjacent rows and columns 
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^ij+1 + Li+lJ+2 5; Cij+2 + Ci+ij+i 

Q + l j + W+2J+1 ^ Ci+l,j + l + Cj+2,j 

Q+l j+1 + Cj+2,j+2 < Ci+l,j+2 + Ct+2,j+l 

By adding equations (2.2),(2.3),(2.4) and (2.5) will obtain that 

Cij + Q+2,j+2 < Ci,j+2 + Cj+2,j 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Equation (2.6) shows that Monge property holds for any rows and columns thus the 

Matrix C is a Monge Matrix. • 

Definition 2.2 (Monotone and Totally Monotone) Let C be a matrix with real en

tries and let j{i) be the index of the leftmost column containing minimum value in row i of 

C. C is said to be monotone if i\ < ii implies j(ii) < jfo)-

C is called totally monotone if all sub matrices are monotone. 

For example the matrix C = 

tone matrix, since the sub matrix 

1 2 1 
2 1 2 

2 1 
1 2 

Thus a matrix C is a totally monotone matrix if 

is a monotone matrix but not a totally mono-

is not a monotone matrix. 

dj > Cij+i then Ci+u > Ci+Uj+i V z < i + 1, j < j + 1 

Monge matrices are totally monotone matrices. Figure 2.1 shows that if C is a Monge 

matrix and C,j is greater than Cy+i then Cj+ij cannot be less than or equal to CJ+IJ+I . 

Definition 2.3 (Algebraic Monge Matrices) Let (H, *, •<) be an ordered commutative 

semi-group and the operation * is compatible with the order relation •< i.e. 

V a,b,c € H a -< b if and only if c * a < c*b 

An m x n array C has the algebraic Monge property i/V 1 < i < k < m and 1 < j < 

I <n, 

Ci,j *Ckl < Ci,l *Ck,j-
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Figure 2.1: Forbidden criteria 

Any matrix that satisfies the algebraic Monge property is called as an algebraic Monge 

matrix. 

If the semi-group operator * is strictly compatible with the order relation -< then 

V a,b,c € H a -< b if and only ifc*a<c*b 

Lemma 2.2 Let the operation * be strictly compatible with the order relation and let C — c; •J j 

denote an array whose entries are drawn from the semi-group (H,*,<). If the matrix C 

has the algebraic Monge property, then C is a totally monotone matrix. 

If the operation * is compatible with the order relation but not strictly compatible, then 

the array whose entries are drawn from semi-group may have the algebraic Monge property 

without being a totally monotone matrix. 

For example consider the semi-group (R,max, <). The array C 1 0 
1 1 

is an alge

braic Monge matrix since max{cy, Cki\ < max{cn,Ckj} V i < k and j < I. But the above 

matrix is not totally monotone, whereas the matrix C = 
1 0 

is an algebraic Monge 

matrix as well as it is totally monotone since the operator max is strictly compatible with 

the order relation <. 

There are the following two special cases of Algebraic Monge property: 

a) If the operation * is replaced with + operator and < as natural order then the array 

C has Monge property. 
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b) If the operation * is replaced with "max" operator and < as natural order then we 

say that the array C has the bottleneck Monge property. 

Definition 2.4 (Bottleneck Monge property) A matix C has bottleneck Monge 

property if and only if 

V *i> Ji, *2, J2 such that i\ < i% and j \ < 21 

A matrix is called a bottleneck Monge matrix if it satisfies the bottleneck Monge 

property. 

Definition 2.5 (Distribution Matrix) Let D = (d,j) be any nonnegative real m x n 

matrix. The matrix C obtained by 

i 3 

Ck,i = - / J / J dki 
k=\ ;=i 

is a Monge matrix and -C is a Reverse Monge matrix. Matrix C is called the distribu

tion matrix, generated by the density matrix D. 

For example, let the matrix D be 

and it is a Monge matrix. 

2 3 
3 5 

. Then the matrix C will be - 2 - 5 
- 5 -13 

Figure 2.2: Higher-dimensional Monge Property 
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Definition 2.6 (Higher-Dimensional Monge Matrices) AnniX^X- • .rid d-dimensional 

array C = {c[ii,i2, • • • id}}, where d>2 has the Monge propertrfif, for all entries c[ii,i2, • • • id] 

and c[ji,J2, •••Cd] the following relation holds (Figure 2.2) 

c[sus2,...sd} +c[ti + t2,...td] < c[i1,i2,...id] + c[ji,J2,---jd] 

where 1 < k < d,sk = imn(ik,jk) and tk = m&x(ik,jk) 

An n\ x n2 x . . . rid d-dimensional array C = {c[i\, i2, • • • id}} is called Monge if every 

two dimensional array of C is Monge. 

The d-dimensional Monge property was first proposed by Aggarwal and Park [AP88a, 

AP88bj. 
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CHAPTER 3 

MONGE PROPERTY AND ITS CHARACTERIZATION 

In this chapter we present examples of Monge matrices and also give the characterization of 

Monge matrices. Namely, any Monge matrix can be represented as sum of two unit vectors 

and the distribution array. We also discusses the Gilmore-Gomory matching problem. 

3.1 Some examples of Monge Matrices 

1. We prove that C[i,j] = a* + bj is a Monge matrix where a,; and bj are unit vectors 

such that a\ < a2 < ...am,bi < 62 < •••bn 

Proof. 

CHiJi] + C[i2, J2\ = ah + bjl + ai2 + bh. 

= ah + bj2 + ai2 + bh. 

= C[i1,J2\ + C[i2Ji}. 

Thus C[i, j] — &i + bj is a Monge matrix. • 

2. We prove that C[i,j] = nm — a* * bj is a Monge matrix where A = {<2j} and B = 

{bj} are unit vectors, a^ < a,j2 < ... cnn,bjl < bj2 < .. .bjn: n represents the number 

of rows and m represents the number of columns. 

Proof. We first consider the matrix C[i,j] = at * bj. The matrix C is a Monge 

matrix if and only if 
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C[iiJi} + C[i2,j2] < C[ii,j2] + C[i2)ji]. 

ah * bh + ai2 * bJ2 < ah * bh + ai2 * bn. 

ah * bjl - ait * bj2 < ai2 * bjl - ai2 * bJ2. 

ah(bh~bh) ^ ai2(bji-bh). 

Oil ^ ai2 

Since bj1 — bj2 is negative, this shows that C[i,j] = at * fy is a reverse Monge matrix. 

Thus 

C[i1,j1] + C[i2,J2] > C[i,,j2] + C[i2)ji]. 

And C[i, j] = — a,i * bj is a Monge matrix. 

Now we consider the matrix C[i, j] = n*m — cii*bj. Since the matrix C[i,j] = a* * bj 

is a reverse Monge matrix, then 

C[il,ji] + C[i2,J2] > C^. ja l + Clia.ji]. 

We multiply both sides by the value —1 and we obtain: 

-C[i i , ji] - C[i2,j2] < -C[i1,j2] - C[i2,ji]. 

-OJ! * bh - ai2 * 6j2 < -an * bj2 - ai2 * bh. 

nm - OJ! * 6j! + nm — ai2 * bj2 < nm — atlbj2 + nm — at2 * bJX 

C[ix,h\ + C[i2,h] < C[iuj2] + C[i2,ji]. 

Thus C[i,j] = n * m - di * bj is a Monge matrix. • 

3. Generally C[i, j] = a^bj V ai < a2 < ... an, bi > b2 > . . . bn or V a\ > a2 > ... an, b\ < 

b2 < • •. bn is a Monge matrix. 

Proof. If C[i,j] is a Monge matrix then 

C[ii,ji} + C[i2,j2} < C[i1,J2] + C[i2Ji] 

ah * bjl + ai2 * bj2 < ah * bJ2 + ai2 * b3l 

a»i(&ji-fya) < ai2(bh-bj2) 

10 



If ax < a2 < . . . an and b\ > b2 > • • • bn then bjx — bJ2 > 0. Thus aix < ai2. This shows 

that C[i, j) = a, * bj is a Monge matrix if ax < a2 < ... an, bx > b2 > ... bn. 

If a\ > a-2 > • • • an and bi < b2 < • • • bn then bjl — 6J2 < 0. Therefore a^ > a,2, which 

is true. This shows that C[i,j] = di* bj is a Monge matrix if a! > a2 > ... an, bi < 

b2<...bn. • 

4. We prove that C[i,j] is a Monge matrix where 

C[i,j] = max(i, j) V ii < i2 and ji < j2 

Proof. The matrix C is a Monge matrix if and only if 

C[h,ji} + C[i2,j2) < C[ii,j2] + C[i2ji] 

max(ii,ji) + max(i2,J2) < max^i,j2) + max(i2,ji) (3.1) 

There are four different cases: 

Case 1: ii > ji and i2 > j2 

Thus Equation (3.1) becomes 

ii + i2 < max(ii, j2) + i2 (3.2) 

Case 1.1: ii > j2 

Thus Equation (3.2) becomes 

i\ +i2 = h + «2 

This satisfies the Monge property. 

Case 1.2: i\ < j2 

Thus Equation (3.2) becomes 

i\ + h < h + h 

This satisfies the Monge property. 
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Case 2: ii < ji and i2 < j2 

Thus Equation (3.1) becomes 

h + h < J2 + max(i2,ji) 

Case 2.1 : i2 > j \ 

Thus Equation (3.3) becomes 

Jl + h < J2 + 12 

This satisfies the Monge property. 

Case 2.2 : i2 < j \ 

Thus Equation (3.3) becomes 

h + h = ]\ + h 

This satisfies the Monge property. 

Case 3: i\ < j \ and i2 > J2 

Thus Equation (3.1) becomes 

jl +l2<l2+ h 

This satisfies the Monge property. 

Case 4: ix > jx and i2 < J2 

Thus Equation (3.1) becomes 

il+J2<J2 + l2 

This satisfies the Monge property. 

Thus c[i,j] = max(i,j) is a Monge matrix. 

5. We prove that the matrix C[i,j] is a Monge matrix where 

C[i,j) = max(i j) - min(i, j) V ii < i2 and j \ < j2 

Proof. The matrix C is a Monge matrix if and only if . 

C[iuj1} + C[i2,j2} < C[ii,j2] + C[i2,ji] 
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min(i, j ) can be written as 

min(i, j) = i + j - max(i, j) 

Thus Equation (3.4) becomes 

2max(ii,j'i) - ix - j i + 2max(i2,j2) ~ii ~h < 2max(ii,j2) - h - h 

+ 2max(z2,ji) - i2 - j i 

We cancel i i , j i , i 2 , j 2 

2max(ii, ji) + 2max(i2, j2) < 2max(ii, j2) + 2max(i2, ji) 

We divide the equation by 2. Thus Equation (3.5) becomes 

max(z1;ji) + max(i2,j2) < max^, j 2 ) + max(z2, j i) 

Since C[i,j] — maxfi, j) is a Monge matrix, E[i,j] = max(i, j ) - min(i, j) is 

Monge matrix. 

6. We prove that the matrix C[i,j] is a Monge matrix where 

C[i,j] = {i + j)2 V h < i2 and j l < j 2 . 

Proof. 

(i + j)2 = i2 + j 2 + 2 * i * j 

Since C[i,j] = i * j is a reverse Monge matrix then 

C[iuji} + C[i2,j2] > C{i1,J2] + C[i2,ji] 

ii*ji+i2*j2 > h*J2 + i2*ji-

13 



We multiply both sides by 2, thus Equation (3.6) becomes 

2 * i\ * j \ + 2 * i2 * j2 > 2 * ij * j2 + 2 * i2 * ji 

*i + Ji + + 2 * *i * Ji + «2 + J'l + 2 * i2 * j 2 > *? + j? + 2 * ii * j 2 

+ «2 + Jl + 2 * J2 * jl 

C[ii,ji] + C[i2)j2] > C[ii,j2] + C[i2,.7i] 

The above equation shows that C[i,j] = (i + j)2 is a reverse Monge matrix. • 

7. We prove that the matrix C[i,j] is a Monge matrix where 

C[i,j] = mm(i,j) V ix < i2 and j \ < h-

Proof. 

min(i, j) can be written as min(z, j) = i + j — max(i,j) 

We know that C[i,j] = max(?',j) is a Monge matrix 

C[h,jl]+C[i2,J2] < C[ii,J2]+C[i2lji] 

max(ii,ji) + max(i2,j2) < max(ii, j2) + max(i2, ji) (3.7) 

We multiply both sides by —1 

Thus Equation (3.7) becomes 

-max(z1 , j1) - max(i2, j2) > -max(ii,j2) ~ max(i2,ji) 

ix + ji + max(i1,ji) + i 2 + j 2 + max(i2, j2) > h + j2 

+ mnx{iuj2) + i2 + j ! + max(i2, jx) 

C[iuji] + C\i2,j2] > C[iltJ2] + C[i2,h] (3.8) 

Equation (3.8) shows that C[iJ] = min(i, j ) is a reverse Monge matrix. • 

8. For permutation ir(i),i e {1,2...n}, let us consider the function f(n) = Y^=i*TT(*)-

We show that the function / is maximized when ir is the identity permutation. 

14 



i . O O J, 

i2 O O J2 

{n O O Jn 

Figure 3.1: i, 7r(i) 

Proof. 

Let us consider Figure 3.1 where jt corresponds to n(i) V i € {1,2, . . . n } . Let 

C[ii,ji] =i\* j \ = i\ * 7r(ii) and ir(i) is identity ie i = ir(i), i\ < ii < . . . in 

C[iuji] + C[i2,J2] < C[ii,J2] + C[i2lji] 

i\ * jl +12* J2 < i\ * J2 + t2* j \ 

i\(ji-h) < k{j\-J2) 

h > i2 

This shows that the matrix C is a reverse Monge matrix. The value of the function / 

will be maximized when 7r(i) is the identity permutation. • 

3.2 Characterization of Monge Matrices 

Bein and Pathak [BP96] give a characterization of the Monge property. The authors 

show that any mtimesn Monge matrix G = {gij} has a representation of the form 

9ij = Ui + Vj + Fitj (3.9) 

where u and v are vectors and F is a distribution array 

Fij = Yl Pkl> Pk>1 - ° 
k<i,l<j 

Thus if g is a Monge matrix then there exist the vectors u, v and the distribution array F 

such that Equation (3.9) holds. 
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Definition 3.1 Let • gtj be defined as 

a9i,j = 9i,j - ffij-i _ 9i-i,j + 9i-i,j-i (3-10) 

9ij = 0 if either i = 0 or j — 0. 

The matrix G is said to be a Monge array if 

° 9 z j < 0 V i , j > 2 

The matrix G is said to be Monge and monotone if 

a9i,i < 0 V i e Nm,j e Nm, (i,j) e Nm x Nn - (1,1) 

Theorem 3.1 Given a distribution array F and the vectors u and v with 

9i,j = ui + Vj + Fij 

then G is a Monge matrix. 

Proof. If G is a Monge matrix then 

9iJ + 9i+l,j+l ^ 9i+l,j + 9iJ+l 

Ui + Vj + Fij + ui+i + Vj+i + Fj+ij+i < ui+i + Vj + Fi+hj 

+ ut + vj+i + FiJ+l (3.11) 

Ui,Vj,Ui+i,Vj+i get cancel out. Thus Equation (3.11) becomes 

Fij + Fi+ij+i < Fi+ij + F j j + i 

F i + i j + i — Fi+ij < Fij+i — Fij 

i+\ i 

^2PM < Ylpki 

fc=i fc=i 

Pk,i < 0 

This is true. Thus the matrix G = gij where gitj = u, + Vj + Fitj is a Monge matrix. • 

The matrix G — {9i,j}, 9%,j = ik + Vj — F^ is a reverse Monge matrix. 
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Lemma 3.1 Let g : Nm * Nn —» R with 

n9iJ = 0 V Nm * Nn - (1,1) 

T/ien £/iere exisi £/ie vectors u : iVm —• R, u : A/'n —> R suc/i £/ia£ 

5«j = ui + vj 

Proof. 

affi,i = ffi.i ~ 5i,o - 5o,i + 5o,o 

a 5 i , i = 5i,i 

l<fe<i,l</<j 

Since D9ij- = 0 V iVm * Arn - (1,1) 

31,1 = Y2 Ugkl = &J ~ gi>1 ~ 9i,j + 9i,i 
l<k<i,l<l<j 

9i,j = 9i,i + 9i,j 

9i,j = Ui + Vj 

a 

This lemma shows that if G is a Monge array then it is linearly separable i. e. G can be 

represented as gij = u, + Vj. 

Lemma 3.2 Let G:Nm x Nn —* M then there exists the vectors u and v such that gitj = 

Ui + Vj is monotone. 

Proof. The matrix G = {gtj} is a Monge matrix. We need to show that 

9h,ji i 9ii,J2 = uh ' vji ' ui2 ~> VJ2 

— Uj, + Vj2 + Ui2 + Vjt 

= 9h,j2 + 9i2,h 

We consider the first two columns gij and g2j. If they are not monotone, we add the 

constant u\. Then we consider the next two columns, i.e. the columns 2 and 3. If they are 

not monotone, we add the constant u2. 

U = Ui + U2 + . • . + Um 
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We repeat this process to obtain to obtain the vector v. If G is a Monge then g + u + v 

is also Monge. G is indeed a Monotone matrix. • 

Lemma 3.3 Let g : Nm x Ar„ be a Monge and monotone matrix. Let 

Fi,j = Yl Pkl with Pk'1 = Ugk'1 k e Nm ' l e Nn 

k<i,l<j 

Then F is a distribution function and 

D ( F - 5 ) = 0 

Proof. Given pkj = Ogkti, Dgk<t is denned as 

D5fc,/ = 9k,i - 9k,i-i - 9k-u + 9k-i,i-i 

Since G = {gk,i} is a Monge matrix, then Ogk,i is negative. Thus pk,i is negative V k, I. Thus 

Fij = Tjk<% i<j Pkl is a distribution function. • 

Theorem 3.2 Let g : Nm x Nn be a Monge. Then there exists the distribution array 

F : Nm x Nn and the vectors u and v such that 

9i,j = Ui + Vj + Fij 

Proof. We are given the array F as a distribution array. Then, using Lemma 3 we have 

that 

F^= Y2Pki = Yl Dgk'1 

k<i,l<j k<i,l<j 

Fi,j = Y. ngk>1 

k<i,l<j 

^k<i,i<j n9k,i can be written as 

Fij = 9ij - 9i,i - 9i,j + 5i,i 

9i,j =ut + Vj + Fitj 

Thus we are done. 
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The paper [BP96] shows that the Monge characterization is a natural generalization of 

the results of Gilmore and Gomory. Let us consider the Monge array of the form 

w(i *-[!%f(v)dv <*±Pi n u ) 
{h3)~\ti;9(y)dy p j < a i <3-12> 

where / and g are two non-negative integrable functions, ao < ax < • • • an, and fio < fix < 

.. .fin- Let us consider F and G to be the primitives of the functions / and g. Then the 

above equation can be written as 

witj = max(0, F(fij) - F(ai)) + max(0, G{cn) - G(fij)) 

wid = - G ( / 3 J ) - F ( a i ) + max(F(/3J),F(a l)) + max(G(a i)!G( /9 j)) 

UWU = Wij - Wij-x - Wi-lj + Wi-lJ-1 

nWiJ = -G(fij) - F(oi) + max(F(/3,), F(a,)) + max(G(ai), <?(&)) 

- (-G(fij-x) - F{at) + max(F(^_1), F{at)) + max(G(ai), G ^ ) ) ) 

- (-G(Pj) - F(ai- i) + max(F(^) , ^ - i ) ) + max(G(a!_1), G(&)) 

+ (-G(fij-x) ~ F(a i_1) + max(F()SJ-_1), F( a i_x)) + max(G(ai_1), G(/?;_i))) 

Thus 

Dwy = Dmax(F(/? j),F(a i)) + •max(G(a i),G(/3 j)) 

The value of Owij will be always positive. Thus F can be defined as 

Pi J = ~nwij 

This shows that characterization of Monge matrix is a proper generalization of the Gilmore-

Gomory result. 
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CHAPTER 4 

SMAWK ALGORITHM ON A TOTALLY MONOTONE MATRIX 

In this chapter we present one method of calculating the row minima of a totally monotone 

matrix using the SMAWK algorithm in linear time, which is an off-line algorithm. The 

SMAWK algorithm is one method available for calculating the row minima of a totally 

monotone matrix. 

The paper by Aggarwal [AKM+87] gives us a linear time algorithm to compute all 

row minima of a totally monotone n xm matrix, when m > n. The algorithm is called the 

SMAWK algorithm. Since all Monge matrices are totally monotone, the SMAWK algorithm 

computes all row minima of a Monge matrix in 0{rn) time. Let C be a Monge matrix and 

j(i) represent the leftmost column index such that C(i,j(i)) contains the minimum value 

in row i of C. The main component of the SMAWK algorithm is the subroutine REDUCE. 

The subroutine REDUCE deletes the 'dead' columns of the matrix C: 

The element C(i,j) is called dead if j ^ j(i). A column is called dead if all its 

elements are dead. 

Lemma 4.1 Let C be a totally monotone n x m matrix and let 1 < ji < j2 < m. If 

C(r,ji) < C(r,j2) then all the entries C(i,j2) : 1 < i < r are dead. If C(r,ji) > C(r,J2) 

then the entries in C{i,j\) : r < i < n are dead. 

Proof. First part of the lemma, C(r,ji) < C(r, j2) shows that the minimum element of 

the rows 1 to r has never occurred in the column j2 since C is a totally monotone matrix. 

Similarly, if C(r,ji) > C(r,j2) then C{r + 1, jx) > C(r + l,j2) V i where r < i < n. D 

The main ideas of the subroutine REDUCE is as follows: 

If the input to the subroutine REDUCE is a totally monotone nxm matrix C then the 

value returned by REDUCE i s a n x n sub-matrix of C, called X. The subroutine reduces 
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the number of columns by deleting only the dead columns. Thus for 1 < i < n, the resulting 

sub-matrix X contains the columns C^l\ 

Let k be the index of the sub-matrix X. 

The subroutine REDUCE(C) is defined as follows: 

X^C;k<-l 

while X as more than n columns do 

case 

X(k, k) < X{k, k + 1) and k < n : A;«- k + 1. 

X{k, k) < X(k, k + 1) and k = n : Delete column Xk+1. 

X{k, k) > X(k, k + 1): Delete column Xk; If k > 1 then k *- k - 1. 

endcase 

return(X) 

Initially the value of k is set to 1. Then we can have any of the following cases: 

• If X(k,k) < X(k,k + 1) then, by Lemma 4.1, all the elements of Xk+1 in rows 1 

through k are dead. If k ^ n, then we increase the index of k by one. 

• If k = n then all elements of Xk+1 are dead, the subroutine REDUCE removes that 

column and the index of k is remains unchanged. 

• If X(k, k) > X(k, k+l) then, by Lemma 4.1, all the elements of Xk in rows k through 

n are dead. Since the elements of Xk in rows 1 through k — 1 are dead, then Xk is 

dead. The subroutine REDUCE deletes an entire column when all the elements of 

that column are dead. If k > 1 then the index of C is decreased by one, else the index 

value k remains the same. 

Theorem 4.1 In O(m) comparisons, the subroutine REDUCE reduces the maximum prob

lem, for ann x m totally monotone matrix to an n x n totally monotone matrix. 

Proof. Let a, b, and c denote the number of times the first, the second, and the third 

branches of the CASE statement are executed. The subroutine REDUCE will convert an 

n x m matrix to an n x n matrix. The number of columns deleted is m — n. In the second 

and third cases, the columns are deleted. Thus b + c = m — n. 
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The index value is changed in the first and third cases only. In the first case, the index 

value is increased by one and in the third case, it is decreased by one or is unchanged. The 

index value starts with value 1 and it cannot go beyond n. Thus a-c < the net increase in 

the index < n — 1. Combining these two inequalities, the total time taken by the subroutine 

REDUCE to execute is 

t = a + b + c < a + 2b + c 

< a - c + 26 + 2c 

< 2m — n — 1 

Thus we are done. • 

The subroutine MINCOMPUTE(C) is defined as follows: 

B *- REDUCE(C) 

if n=l then output the minimum and return 

A - - B [ 2 , 4 , . . . 2 | n / 2 J ; l ,2 , . . . ,n ] 

MINCOMPUTE(X) 

from the known positions of the minima in the even rows of B, 

find the minima in its odd rows 

end 

Theorem 4.2 When n <m, the subroutine MINCOMPUTE solves the minimum problem 

on a totally monotone n x m matrix in 0(m). 

Proof. Let t(n,m) denotes the time taken by the subroutine MINCOMPUTE to 

solve the minimum problem for a totally monotone matrix. We recall that the subroutine 

REDUCE takes 0(m) time. The assignment of the even number of rows of B to X takes 

0{n) time and the recursive call to subroutine MINCOMPUTE takes t(n/2,n) time. Thus 

the total time taken by MINCOMPUTE is 

t(n, m) < t(n/2, n) + C-ji 4- C^m 

Since m > n, the total time taken by a MINCOMPUTE is 0(m). 

Thus we are done. • 
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CHAPTER 5 

APPLICATIONS OF THE MONGE MATRICES 

In this chapter we present various applications of Monge matrices. Monge matrices find their 

use in solving fundamental combinatorial optimization problems such as traveling salesman 

problem, assignment problem, batching problem, a higher dimensional transportation prob

lem, scheduling problems, etc.. We also present two special cases of the Gilmore-Gomory 

matching problem. 

5.1 Traveling Salesman Problem 

The Monge property plays an important role in solving the Traveling salesman problem 

(TSP). TSP can be stated as follows: Given a list of cities and pairwise distances among 

them, the problem is to find the shortest possible tour that visits all the cities exactly once 

and then returns to the starting city. TSP belongs to the set of NP-hard problems. Thus 

there is no efficient way of solving TSP for very large value of n where n is the number of 

cities. If the number of cities is n then number of different possible tours is exponential, 

namely (n — 1)!. In the symmetric TSP, where the cost of traveling does not depends on the 

direction then the number of different possible tours is still exponential, namely ((n —1)!/2). 

There are several special cases of TSP that can be solved in polynomial time. The paper 

by Gilmore [GLS85] presents a survey of special cases of TSP that can be solved efficiently. 

One of the solvable special cases of TSP is when the distance matrix of a traveling sales man 

problem fulfills the Monge property; then the traveling sales man problem can be solved in 

linear time and the tour on cities is pyramidal: 

Let n be the number of cities. If the tour r is pyramidal then it is of the form 

(Mi , ,ir,n,ji, Jn-r-2) where ii < i2 < ... < ir and ji > j2 > ... > jn-r-2 

or, for each city j , 1 < j < n either r~l( j ) < j < r(j) or r~l(j) > j > r(j). 

23 



In other words, the salesman starts from the city 1, visits some cities in increasing order, 

reaches the city n and returns to city 1 by visiting the remaining cities in decreasing order. 

If the number of cities is 4 then a tour (1,3,4,2) is pyramidal whereas a tour (1,3,2,4) is 

not pyramidal. 

When a distance matrix is given, the shortest pyramidal tour can be computed using the 

dynamic programming scheme. Let E(i,j) denote the cost of a minimum cost pyramidal 

path from the vertex i to j that visits all the cities from 1,2... max(z,j). If the path P 

is pyramidal then it can be decomposed into two sub-paths Pi and P2 such that one is 

monotonically increasing and the other is monotonically decreasing. E(i,j) is defined as 

E(iJ)=< 

E(i,j - 1) + Cj-ij for i < j - 1 
mmk<i{E(i,k) + ckj} for i = j - 1 

E(i - 1, j ) + Cj,i_i for i > j + 1 
[ mmk<j{E(k, j) + cijfc} for i = j + 1 

(5.1) 

The length of the shortest pyramidal tour is given by 

min{£(n - 1, n) + cn,?l_i, E(n, n - 1) + c„_Xi„} 

Using the above equation, the shortest pyramidal tour can be computed in 0(n2) time 

starting from the initial condition £(1,2) = c1<2 and E(2,1) = c2,i 

If C is a Monge matrix then 

Ch,jl < C J2J2 — C U J 2 1 C i2 , j l \d-^) 

V l i < l2 , j l < J2 

The following theorem relates pyramidal tours and Monge matrices. 

Theorem 5.1 If C is a Monge Matrix then there exists an optimal tour that is pyramidal. 

Proof. The induction method is used to prove the above result. 

We have the following cases: 

a) If n = 2, the number of possible tours is 1. Thus the above theorem is trivially true 

for n = 2. 
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Figure 5.1: Shortest pyramidal path 

b) Assume that the theorem is true for n - 1, i.e. we can have an optimal tour of n — 1 

cities that is pyramidal. 

c) There are n cities to travel. Let r be the optimal tour and r contains a city j \ , where 

ji 7̂  n and r ^ l ^ ) < ji > r(ji). Thus r is not a pyramidal tour. 

Let i\ = ji, it = tau~l(ji) and j% = r(ji). Since C is a Monge array, we can apply 

Equation (5.2) and the result is C(T) > C(T ). The new permutation r contains two sub-

tours, one containing j \ only and the other containing the other n — 1 tours. From Case (b) 

we know that there is an optimal tour of n — 1 cities that is pyramidal. Now we patch ji 

into T . 

There is an ix such that i\ < j \ < r(ii). When combining Equation (5.2) with i2 = j \ 

and j2 = r(ii), we will obtain another permutation r" where C(T") < C(T). The tour r" is 

a pyramidal tour for n cities. D 

The paper [Par91] presents an 0(n) time algorithm for any n-vertex TSP whose cost 

array satisfies the Monge property. The paper has improved the running time of the earlier 

mentioned dynamic programming scheme to 0(n). To show this, let F(j) denote E(j, j + 1), 

the cost of a minimum cost pyramidal path from vertex j to j + 1. Let G(j) denote 

E(j + 1, j ) , the cost of a minimum cost pyramidal path from vertex j + 1 to j . Thus 

F(l) = £(1,2) = c[l, 2] and G(l) = E(2,1) = c[2,1]. The cost of a minimum cost pyramidal 

tour is 

min{F(n — l,n) + c[n,n — \},G(n,n - 1) + c[n - l,n]} 

Let P be the shortest pyramidal path from j to j + 1 as shown in Figure 5.1. Since 
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this is a shortest pyramidal path, it achieves F(j). Let (i,j + 1) is the last arc traversed 

by P. Since P is a pyramidal path, it can be decomposed into two paths, where the 

labels on one path are monotonically increasing and labels on other path are monotonically 

decreasing. While considering F(j), the labels on the path from j to 1 are monotonically 

decreasing thus i + 1 < j . If i + 1 < j then the first j - (i + 1) arcs traversed by P must be 

(j,j - 1), (j — 1, j - 2 ) , . . . , (i + 2, i + 1) Thus the minimum cost pyramidal path from j to 

j + 1 is 

j - i 

F(j) = min { G(i) + c[i,j + 1] + T c[l + 1,1] } (5.3) 
\<i<3 *—' 

Similarly, the minimum cost pyramidal path from j'• + 1 to j is 

G(j) = min. • { F(i) + c[j + 1, i] + £ c[i, i + 1] } (5.4) 
l= i+l 

If the algorithm computes all the values for F(j) and G(j) from 1 to n then the computation 

takes 0(n2) time. The paper [Par91] uses an online array searching technique to reduce the 

running time to 0(n). To improve the running time of the algorithm, we consider two 

(n — 1) x (n — 1) arrays, A = {a[i,j}} and B = {b[i, j]} where 

ali , i = / G(i) + c[i, j + l} + E C ^ ! c[l + 1, i] if i < j (5 5) 
[,Ji \ +oo if i>j K ' 

bli 7l = { F(i) + c[j + 1, i] + EtzVi cll> * + 1] if * < .7 /5 6 ) 
L ,Ji \ +oo if i > j K ' ' 

From Equation (5.3), it is obvious that 

FU) = min. a[i,j] 
Ks<3 

This shows that minimum cost pyramidal path from j to j + 1 is the minimum value in the 

j t h column of A. Similarly, from Equation (5.4) 

G(j)= min.&M 
i < t < j 

The above equation shows that G(j) is the j t h column minimum of B. 
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Lemma 5.1 Both A and B are Monge matrices if and only if C is a Monge matrix. 

Proof. We show fist that A is a Monge matrix if and only if C is a Monge matrix. 

A is Monge if and only if 

a[i,j] + a[i + 1, j + 1] < a[i,j + 1] + a[i + l,j] 

VI < i < n — 1,1 < j < n — 1. lii + l > j then a[i +1, j] = +oo, the above Monge property 

is satisfied. By substituting the value of a[i,j] we obtain that 

3-1 

G(i) + c[i,j + l}+ J2 c[l + l,l] + 

3 3 

G(i + l) + c[i + l,j + 2}+ Yl c[i + l,i] < G{i) + c[i,j + 2}+^c[l + l,l} 
l=i+2 l=i+l 

+ G(i + l) + c[t + l , j + l ]+ J ^ c[/ + l,/] 

l=i+2 

We cancel the values G(i) and G(i + 1) and we obtain that 

3-1 

c[i,j + l}+ Y, C[* + M + 
j 

c[i + l , j + 2]+ Y c[l + l,l] < 
l=i+2 

3 

c{i,j + 2}+ Y c[l + l,l] 

j - i 

+c[i + l , j + l ]+ 5 3 c[i + l,i] 

c[i,j + 1] + c[i + 1,j + 2] + c[j + 1,j] < c[i,j + 2]+ c[i + l,j + l} + c[j + l,j] 

c[i,j + l]+c[i + l,j + 2] < c[i,j + 2]+c[i+l,j + l] 

This shows that A is Monge if and only if C is Monge. 

We can show that B is a Monge matrix if and only if C is a Monge matrix in a similar way. 

D 
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We pre-compute the value of J^Li c\l + M> E/=i c[*>' + 1] V 2 < j < n. This com

putation takes 0(n) time. Once the preprocessing is done, any entry a[i,j] of A can be 

computed in constant time from G(i), the ith column minimum of B and any entry of B 

can be computed in constant time from F(i) which is the ith column minimum of A. Thus 

by interleaving the computation of column minima of A with the computation of column 

minima of B and by using online array searching algorithm of either Larmore and Schieber 

[LS91] or Eppstein [D.E90] the values F(2), F (3) , . . . , F(n - 1) and G(2), G(3), . . . G(n - 1) 

can be computed in O(n) time. Minimum cost pyramidal tour can be found once the values 

of F(n — 1) and G(n — 1) are calculated. Thus the minimum cost traveling salesman tour 

through a graph G can be computed in 0(n) time when the cost matrix satisfies the Monge 

property. 

5.2 Assignment Problem 

Monge matrices play an important role in solving the assignment problem. The first 

algorithm for the assignment problem was given by Kuhn [Kuh04] and it solves the as

signment problem in 0(n2m) steps. Brucker [Bru04] gives a special case of an assignment 

problem that has a very simple solution. He considered the case where cost array satisfies 

the Monge property. He shows that if the cost array satisfies the Monge property then 

optimal solution for the assignment problem will have a fixed structure. 

The assignment problem can be stated as follows: Given a bipartite graph G — {V\ U 

V2, Vi x V2) with Vi = (i>i,t>2, • • -vn) ,V2 = (wi,W2 • • .wm),n < m, and cy that represent 

the cost associated with arc ViWj, the objective is to find the matrix X = (xy) so as to 

n m 

minimize Y j YJ °ijxij 
i= l j = l 

S.t 

m 

3 = 1 
n 

2_jXi>i — 1- s m c e n <m 

xid 6 {0,1}, » = {1,2, . . .n}, j = {1,2, . . .m} 
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Xij — 1 if vt is assigned to Wj else the value of x^ is zero. Each element in V\ is assigned 

to a unique element in V2. 

Brucker [Bru04] gives the following theorem which relates the Monge array and the 

assignment problem. 

Theorem 5.2 Given an assignment problem with n <m. Let cy be 

a) a Monge Array 

Ci,k + Cjti < Cij + Cjtk 

b) monotone 

then 

Cij <Ci,lV j <l 

x^fi ~ ^ 0 otherwise ( 5 J ) 

is an optimal solution. 

Proof. 

Let y be an optimal solution with yvv = 1 V v — 1,2 . . . i where i is as large as possible, 

i < n. Thus J/J+I^+I = 0 and there exists an I, I > i + 1 and yt+ij = 1. 

We have the following cases: 

Case 1) There exists an index j such that y^i+\ = 1 (i.e. i + 1 is matched). 

Since C is a Monge array then 

Ci+l,i+l + cj,l < ci+l,l + cj,i+l 

Thus switching the two assignments will also give an optimal solution, contradicting 

the maximality of i. 

Case 2) ylti+i = 0 V I > i + l 

Since c,j < c^k V j < k, changing the assignment from 2/j+i,; to J/J+I^+I will give an 

optimal solution, contradicting the maximality of i. 
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Thus we are done. • 

If n = m then only Case 1 will exist since all Wj € Vj have to be matched. 

5.3 Special Case of Gilmore-Gomory Matching Problem 

Let G = ( 5 , T , 5 x T ) be a complete bipartite graph with \S\ = \T\ = n. Each node 

i € S has associated with a real number an and each node j e T has associated with a real 

number (5j. For all i,j the weight of the arc (i,j) is given as 

v{ii)-{5%f{y)dy ai~^ (58) 
w{hj}-\ f*;g(y)dy p3<at

 (5-8) 

where f(y) and g(y) are given integrable functions. A matching problem with arc weights 

given as an integral of some function is referred to as Gilmore-Gomory matching problem. 

Consider following matching problems: 

a) Skies and Skiers: 

A ski instructor has n pairs of skies to be assigned to n skiers. The objective of the 

problem is to assign skies to skiers such that the sum of the difference between ski 

length and height of the skier is minimized. 

The solution to this problem is to assign the shortest pair of skies to the shortest 

skier. This problem can be represented as a special case of Gilmore-Gomory matching 

problem. Let Qj denote the length of the ith pair skies, Pj denotes the height of j t h 

skier. We also have that c*i < 02 -.. < an, Pi < fh- • • < Pn- The integrable functions 

f(y) and g(y) are set as 1, and the weight of the arc (i,j) is defined as 

Wij = \aii- pj\ 

In this case a direct assignment will give the minimum value for sum of difference 

between ski length and height of skier, i.e. X = {(i, i)\i — {1,2. . . n}} is a minimum 

weight complete matching problem. 

b) School Busing 
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A bus company has n morning runs and n afternoon runs to assign to n drivers. If 

a driver is given a morning runs and an afternoon run whose total duration exceeds 

T hours then he/she has to be paid a premium on the overtime hours. The objective 

from the management point of view is to match the morning runs with afternoon runs 

so as to minimize the total number of overtime hours. 

The solution for this problem is to assign the kth smallest run in the morning with 

the kth longest run in the evening. This problem can be represented as a special 

case of Gilmore-Gomory matching problem. Let a, and bj denote the length of the 

ith morning run and j t h evening run. Let «j = T — at and fy = bj. The integrable 

functions f(y) = 1 and g(y) = 0. The weight of the arc (i,j) is defined as 

Wij = max{0,ai + fa} 

which represents the overtime hours. The management wants to minimize the total 

overtime hours. A direct assignment gives an optimal solution to this problem. 

The bus drivers' union has a different objective. Their objective is to maximize the 

minimum number of hours worked by any driver. Let a, = —a*, (3j = bj and the 

integrable functions f(y) = g(y) — 1. Thus the weight of the arc (i,j) is defined as 

wt,j = <*i + (3j 

The objective is to maximize the minimum of the weight. X = {(i, i)\i = {1 ,2 . . . n}} 

is a min-max optimal complete matching if f(y) > 0, g(y) > 0 V y. 

5.4 Batching Problems 

A batching problem can be formulated as follows: Given n jobs, Ji, i = {1 ,2 , . . . , n} 

with their corresponding processing times p, and weights Wi, i = {1,2,.. . n} , the jobs are 

scheduled in batches. A batch is a set of jobs which are processed jointly. The size of the 

batch is defined as the number of jobs inside that particular batch. The completion time of 

a job is same as the completion time of the batch in which it resides. All jobs in the same 

batch will have the same completion time. There is a setup time for each batch which is 

independent of the batch. Normally the setup time is set to 1. 
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In the list-batching problem, the order of the jobs will be given and the objective is 

to batch the jobs such that the value of the objective function is minimized. Albers and 

Brucker [AB93] show that the problem of finding the optimal batch sequence for a fixed job 

sequence can be reduced to a shortest path problem. Thus the list-batching problem can 

be reduced to a shortest path problem and there is a one-to-one correspondence between 

the shortest path problem and the list-batching problem. 

Let the order of the jobs in the list-batching problem to be J1; J 2 , . . . Jn. The objective is 

to find the batch sequence based on the general objective function F = ^ u/jC, where Wi, c, 

represent the weight and completion time of job i. Any solution is of the form as shown in 

Figure 5.2. 

s -+
 

'2 s i 2
+ 1 

'3 s ?' 'Hi 

Figure 5.2: Schedule for batching problem 

where ij + 1 represents the starting of j t h batch. 

The processing time of the j t h batch equals to 

l3 + l 

Thus the value of the schedule is 

n 

F(S) = ^WiPi 
i = l 

3fc + l 

= px( ]T u,7) + ... + (p1 + ... + pfe)( £ Wv 

7=»1 + 1 

k n 

i=l 7 = ^ + 1 

fc n ij+i 

7 = i f c + l 

32 



To reduce the list-batching problem to the shortest path problem we construct a weighted 

acyclic directed graph as shown in Figure 5.3, where the jobs represent the nodes. We add 

a dummy node 0 to the graph. There is an edge (i,j) if i < j . 

0 Job 1 Job 2 Job n 

K •*-. ..>!•-. --.&- .--?-... J, 

cij 

Figure 5.3: Shortest pyramidal path from 0 to n 

The edge cost Cjj for i < j is defined as 

n j 

7=j+l 7= i+ l 

The matrix C,j is a Monge matrix V i\ < i-i and ji < j 2 . Let Pk = 52i=0Pi and W\. = 

Efc 
i=Qwi-

If C is a Monge matrix then 

( W ^ - W i J ^ + P ^ - P i J + (VK„-Wi2)(s + P j 2 - F i 2 ) 

< (Wn-Wh)(s + PJ2-Ph) 

+ (Wn-Wi2)(s + Ph-Pn) (5.9) 

We cancel some values in Equation (5.9) and we obtain 

{Wn-Wn){Ph-Ph) < (Wn-Wi2){Ph-Pl2) 

(Pn-PjJiWn-W^-Wn + Wi,) < 0 

(Ph-Ph)(Wi2-Wh) < 0 

33 



This is true since Pjl < Pjt and Wi2 > W^. 

If there are n jobs then the number of nodes present in the graph G is n + 1. They 

are numbered from 0 to n, where 0 represents the dummy node. The objective of the path 

problem is to find the shortest path from 0 to n, given all the edge costs. 

Any solution of the path problem can be transformed to find a solution for the list-

batching problem. The cost of the path (0,«i, 12, • • -ik,n) gives the YA=I
 wi°i value of the 

schedule which batches at each job ilti2,... ik- Since there is a one-to-one correspondence 

between the shortest path problem and the list-batching problem, any batching with cost 

S corresponds to a path in graph G with the path length S. 

For example, consider that we have 5 jobs. Then the number of nodes present in the 

path problem is 6. Let the shortest path to be (0,1,3,5) as shown in Figure 5.4. 

0 Job I Job2 Job 3 Job 4 J o b 5 
0 • • • • • 

Figure 5.4: shortest path from 0 to 5 

Then the solution to the batching problem is shown in Figure 5.5. 

s 1 s 2 3 S 4 5 

Figure 5.5: Resulting Schedule 

5 

Coi + ^13 + C3,5 = ^ WiCi 
4 = 1 

Albers and Brucker [AB93] give a dynamic programming method that computes the 

shortest path in 0(n2) time. Let 

E(l) = cost of the shortest path from 0 to 1 

then 

E{1) = min {E(k) + cM} with E(0) = 0 
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This results in a matrix E which is shown in Figure 5.6. 

E(0)+C 01 

E(0)+C 0 , 

E(0)+C 03 

E(0)+C 04 

E(l)+C ,, 

E(l)+C l3 

E(l)+C l4 

E(2)+C 23 

E(2)+C ,„ E(3)+C 34 

Figure 5.6: Matrix E 

The matrix E is denned as follows 

E[l,k] = 

E(l) 

E(2) 

E(3) 

E(4) 

E(n) 

E[k- l] + c[k-l,l] if l>k 
oo else 

(5.10) 

with I = 1,2 . . . n and k = 1,2 . . . n. 

The matrix E is calculated row by row. The protocol for this algorithm is: An element 

in the column i + 1 is available once the minimum of ith row is calculated. The matrix E 

is a Monge matrix since the matrix C = {ctj} is a Monge matrix. The row minima of nth 

row is represented as E(n). Once the minimum of nth row is calculated, the backtracking 

method is used to find the shortest path. This algorithm takes 0{n2) time to compute 

all row minima. Another dynamic programming approach to compute all row minima is 

HIRE/FIRE/RETIRE algorithm. 

Hire/Fire/Retire Algorithm This algorithm computes all the row minima in 0{nlog{n)) 

time, which is better than the above approach. This algorithm executes row by row. The 

protocol for this algorithm is: Once the minimum of ith row is known then (i + l)th column 

is hired. Initially no column is fired as well as retired. The algorithm starts from the first 

row. After computing the minimum of the first row, the algorithm hires the second column. 

Then it computes the minimum of second row and hires the third column. Once a column is 
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hired the firing process starts from right to left. A column is fired if none of the elements in 

that column can be the minimum of any row. Here third and first column will work together 

to fire the second column. Firing process stops when the newly hired column cannot fire 

anymore available columns. A column is retired if it cannot contain the minimum value for 

the upcoming rows. For example if the minimum of 3 r d row is in 3 r d column then all columns 

which are before column 3, i.e. column 1 and column 2, are retired. Since the matrix is a 

totally monotone matrix it cannot have the minimum value of rows 4 to n as well as if the 

value of third column is greater than value of any other column that is currently available 

then third column is considered as a retired column. 

• 

X 

1 2 3 4 5 6 7 8 9 10 

Figure 5.7: Hire/Fire/Retire Algorithm 

Consider Figure 5.7, let the minimum value of rows from 1 to 4 are already computed 

and the column 3 is already fired. Once the minimum of row 4 is known then column 5 

becomes available. Column 5 will combine with 2nd available column from left (column 2) 

to fire the middle column. For firing a column, first do binary search to find the crossover 

point. 

Cross over point is the point where a, - bj > 0. Since the matrix is a Monge Matrix 

the difference of adjacent column is non decreasing ie a\ - b\ < a2 — b2 < . . . on — bn. If 

the difference of adjacent column is negative from row 1 to row n then 2nd column can be 

fired. Similarly if the difference of adjacent column is positive from row 1 to row n then 

l s i column can be fired. Crossover point can be found using binary search. In Figure 5.8 

shaded portion represents the area where minimum cannot be present. 

36 



a 2 1 
Figure 5.8: Crossover Point 

2 4 5 

Figure 5.9: Crossover point of Two columns 

For firing column 4 first do binary search on column 2 and 4. Find the left crossover 

point. Then do binary search on column 4 and 5 and find the right crossover point. If the 

right crossover point is above the left crossover point then the column 4 can be fired. This 

indicates that minimum of any of the rows cannot be in the 4th column. Figure 5.9 shows 

the case where right crossover point is above left crossover point. If the right crossover point 

is below the left crossover point then that particular column cannot be fired. 

When no more columns can be fired then the firing process stops. For finding the 

minimum value in the next row, the value X, as shown in Figure 5.7, is compared with value 

of next available column from right. If the available column's value is less than the value 

X then the column containing X will be retired. Then the new column value is compared 

with the next available column value. This process continues until the new columns value 
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is less than the next available column value. Then the value which is present in that new 

column value becomes the minimum value in that particular row. Once the minimum value 

of a row is found then all columns which come before the column index where the minimum 

value resides will be retired. This process continues until all row minima are calculated. 

5.5 d-Dimensional Transportation Problem 

The transportation problem can be stated as follows: Given m supply vectors, n demand 

vectors and an m x n cost matrix, the objective is to satisfy all the demands, so that the 

total cost of meeting the demand, given the supply constraints, is minimized(as shown in 

Figure 5.10). 

Figure 5.10: Transportation Problem 

The fastest algorithm for the general transportation problem given by Orlin [Orl88] 

runs in 0(mn2 Ign + n2 lg2 n) time. In 1963, Hoffman gave the necessary conditions under 

which the family of greedy algorithms solve the two-dimensional transportation problem 

in 0(mn) time. He proved that, if the problems cost array satisfies the Monge property 

then the northwest-corner rule greedy algorithm solves the two-dimensional transportation 

problem in 0(m + n) time. 

The paper [BBPP95] gives the condition under which the northwest-corner rule greedy 

algorithm solves the d-dimensional transportation problem. The paper shows that if the 

problems cost array satisfies the d-dimensional Monge property then the northwest corner 

rule greedy algorithm solves an instance of the d-dimensional transportation problem. 
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In a mathematical way, the transportation problem can be stated as follows: Given an 

m-entry supply vector A — {a[i}}, an n-entry demand vector B=6[j], and an m x n cost 

matrix C = {c[i, j}} such that all entries of A and B are positive and ]T\ a[i] = Hj &b']>tne 

objective is to find the variable array X = {x[i][j]} in order to 

m n 

minimize ^2^2c[i,j]x[i,j] 
j= i j = i 

s.t 

n 

^ x [ / , j ] = a[I] for 1 < I <m 

m 

5^x[ i , J ] = 6 [ J ] f o r l < J < n 
i= l 

* M > 0, i = {l,2,...m},j = {l,2,...n} 

If the cost matrix is a Monge matrix then the northwest-corner rule greedy algorithm solves 

the two-dimensional transportation problem in 0(m + n) time. 

The d-dimensional transportation problem can be stated as follows: Given d-supply 

demand vectors Ai,A2...Ad where the kth vector A^ = {a/c[i]} has n/~ entries and an 

Ui x IJ2 x . . . x Tij cost array C — {c[iy, 12, • • • id}} such that the entries of Ai, A2.. .Ad are 

positive and ]T\ ai[i} — Hi a2[i] = . • • = Hi &d[i], the objective is to find the variable array 

X = {x[ii,t2 • • • id}} m order to 

minimize ^ c[ix,i2. • .id}x[i\,i2. •-id} 

S.t 

S~\ x[ii,%2, •••id] — ak[I] for 1 < k < d and 1 < / < nk 
ii,i2...itts-tik=I 

x[ii,i2---id] > 0 V i i , i 2 . . . id 

A d-dimensional matrix is called as a Monge matrix if it satisfies d-dimensional Monge 

property. The paper [BBPP95] gives some of the properties of d-dimensional Monge matri

ces. 
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Definition 5.1 (d-dimensional Distribution Array) For any d>2, an n\ x n2 x . . . n^ 

d-dimensional array C = c[i\, i2 • • • id] is called a distribution array if 

c[iui2...id] = ^2 P[h,h---ld] 

where p{lul2...ld] < 0, V l1:l2...ld. 

Definition 5.2 (d-dimensional Monotone Matrix) For any d > 2, let C = c[ii,i2 • --id] 

denote a d-dimensional array and let f2(h), fz{h) • • • fd(h) denote the 2nd through dth co

ordinates of the minimum entry in the (d— 1)-dimensional plane consisting of those entries 

whose first coordinates is h so that 

C[h,f2(h),f3(h)...fd(h)} 

If C is a Monotone matrix then V Ii < J\ , fk{h) < fk{J\) for all k, 2 < k < d. 

The paper [BBPP95] presents a northwest-corner rule greedy algorithm for the d-dimensional 

transportation problem. The algorithm works as follows: 

1. First we set x[l, 1 , . . . , 1] = min{ai[l],a2[l],..., ad[l]}. 

2. Then we reduce each of ai[l],a2[l], • • • ,a„[l] by min{ai[l],a2[l],... ,a,j[l]}. At least 

one of a1[l] ,a2[l] , . . . ,ad[l] is reduced to 0, i.e. one of the problem's dimensions 

ni,n2,...,nd has been reduced by 1. 

3. The smaller transportation problem obtained this way is solved recursively. 

The running time of the algorithm is 0(d(rii + n2 + . . . + nd))- Each variable assignment 

takes 0(d) time and at each iteration, at least one of the problem's dimension has been 

reduced by 1. 

5.6 A Scheduling Problem - P\ \ £ Q 

The scheduling problem F | | ̂  C% can be stated as follows: Given n jobs with the cor

responding processing times and m identical parallel machines, the objective is to schedule 
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the jobs such that sum of completion time of jobs or the mean flow time is minimized. There 

are no precedence constraints between the jobs. 

The scheduling problem P\\Y2 Ci can be transformed to an assignment problem by doing 

the following steps: 

1. First we sort the jobs based on the processing time such that p\ > pi > ...pn. 

2. Then we partition the set of jobs into into m disjoint sets Ix,Ii,... ,Im. The jobs in 

Ij are scheduled on machine rrij starting at time 0 without any idle time. We arrange 

the jobs on the left-hand side and machines on the right-hand side. 

The following corollary derived from the theorem given by Brucker [Bru04] helps to solve 

the scheduling problem efficiently: 

Corollary 5.6.1 Let a, and bj be arrays of real numbers a\ > a^ > ... an and b\ < b-2 < 

. . . bn where n < m. Then the assignment problem given by the array 

C = Cij with Cjj — ai * bj 

has an optimal solution given by 

x •• = / 1 i = j (511) 
h3 \ 0 otherwise 

Since the array cy = ai*bj, where ai > a<i > ... an and b\ < b^ < •.. bn, is a Monge 

matrix, the direct assignment gives the minimum value for the mean flow time. 

We consider the scheduling problem P\ | ̂  C, where the number of jobs given is 7 and 

the number of machines given is 3. To transform the scheduling problem into an assignment 

problem, we first sort the jobs based on their processing time such that px > p2 > ....py. 

Then we arrange the jobs as in Figure 5.11. 

Let the schedule be as shown in Figure 5.12 

The completion time of Job 7 is P4 + P3 + P7. 

The completion time of Job 3 is F4 + P3. 
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Figure 5.12: Schedule of the jobs 

The completion time of Job 4 is P\. 

In the value of the objective function, the processing time of the 4th job is added 3 

times. Thus the cost of assigning a job to a machine depends on whether the job has been 

processed and on the processing time of that job. 

Thus the cost of assigning job i to j t h last machine is 

Cij = Pi*j 

Cij a, * hi 

The matrix C = Cy — a* * bj where an — Pi for i = 1,2,... n and bj = \j/m] for j = 

1,2,... n is a Monge matrix as per above corollary. Thus the direct assignment will give 

the minimum value for Y2i=i nCi-

After sorting the jobs, the direct assignment gives the solution. Thus the scheduling 

problem P\\ ]T C, can be solved in 0(nlogn) time. 

5.7 Geometric Application-Finding the farthest neighbor 

The paper [AKM+87] gives a geometric application of Monge matrices. The paper shows 

that problem of finding the farthest neighbors of all vertices in a convex polygon can be 
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done in linear time by applying Monge properties. Let the convex polygon be P and the 

distances are measured in clockwise order, see Figure 5.13. We define a matrix A as follows 

if i < j < i + n - 1 then A(i, j) = d(pi,pj). 

if j < i then A(i, j) = j - i, and if j > i + nthen A(i, j) = - 1 . 

For example a convex polygon with 5 vertices as shown in Figure 5.13. In the poygon 

vertices are numbered in clockwise order. 

4 

Figure 5.13: Convex Polygon 

Then coresponding matrix A is shown in Figure 5.14. 

/ - io v v - i - i - i \ ' . X W I S E V 
C= -2-10 \ D I S T A V 1 - I 

-3-2-10 \ 1 S ™ f ^ l / 

Figure 5.14: Distance Matrix 

If a 2 x 2 submatrix of A[i,j : k,l], has only positive values then i < j < k < I and the 

vertices Pi,Pj,Pk, and pi are in clokwise order. From triangular inequality 

d{Pi,Pk) + d{pj,pi) > d{jpupi) + d(pj,pk) 

Since the matrix A is an inverse Monge Matrix the maximum problem on A gives the 

solution to farthest neighbor problem and the problem of finding the maximum value in 

each row of A can be done in linear time. 
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CHAPTER 6 

CONCLUSION 

In this thesis we survey the broad research done on a large number of various Monge prop

erties and find out how these properties play an important role in different applications. 

Some of the Monge properties which we considered in the thesis are monotonicity prop

erty, algebraic Monge property, higher-dimensional Monge property and bottleneck Monge 

property. In this thesis we show that some of the optimization problems, like the Traveling 

Salesman Problem which is an NP-hard problem, can be solved in polynomial time when is 

restricted to a Monge structure. We also show how the Monge arrays can be used to speed 

up the dynamic programming algorithms. We also discuss several algorithms for computing 

the row minima in Monge arrays. One of them is SMAWK algorithm, which is an off-line 

algorithm that computes all row minima of a Monge matrix in linear time. For computing 

the row minima in linear time, the SMAWK algorithm uses the monotonicity property of 

the Monge matrices. 

We show how the northwest-corner rule greedy algorithm solves the d-dimensional trans

portation problem when the problem's cost array satisfies the higher dimensional Monge 

property. Another important application of Monge properties is for the assignment prob

lem. We show that the assignment problem has a fixed structure when the underlying cost 

matrix satisfies the Monge property. We also discuss how the Monge properties can be 

applied in some scheduling problems to improve their running time. In this thesis we have 

considered l\list — s — batch\ J2 C* batching problem and we show that it can be solved by a 

dynamic programming approach in 0(n2) time. Next we show that hire-fire-retire algorithm 

solves the above batching problem in 0(n log n) time. Another scheduling problem that we 

consider in the thesis is P\\^Ci. This problem is similar to an assignment problem and 

it can be solved in 0(n logn) time. Even though we concentrated mainly on application of 
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Monge matrix in combinatorial optimization problems, we also mentioned an application of 

Monge matrix in geometric problems. 

Further research on the topic of Monge matrix can be directed in finding other applica

tions of Monge matrix and it variations. One possible area could be the use of Monge matrix 

in the field of Bioinformatics since Monge properties occurs naturally. Also, investigation on 

Monge properties to speed up the dynamic programming algorithm can be a good research 

topic. 

There are several papers published on applications which lead to Monge structures. In 

this thesis we present an overview of different properties and we draw a connection between 

them. 
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